Useful references


Quantum Connections and the Modular Quantum Computer,” C. Monroe, R. J. Schoelkopf, and M. D. Lukin, Scientific American, p. 50 (May, 2016).

“From Cbits to Qbits: Teaching Computer Scientists Quantum Mechanics,” N. David Mermin, Am. J. Phys. 71 (2003).

Battling Deceoherence: The fault-tolerant quantum computer“, J. Preskill, Physics Today, June 1999, pp 24-30.

Quantum Computing,” Andrew Steane, Rep. Prog. Phys. 61, 117 (1998).

Quantum Computing for High School Students, notes by Scott Aaronson (2002).


Radiofrequency spectroscopy of stored ions I: Storage,” H.G. Dehmelt, Adv. At. Mol. Phys. 3, 53 (1967).

Exchange-Collision Technique for rf Spectroscopy of Stored Ions,” F. G. Major and H. G. Dehmelt, Phys. Rev. 170, 91-107 (1968). (Note: first 3.5 pages are an excellent condensed primer on rf traps)

Electromagnetic traps for charged and neutral particles“, W. Paul, Rev. Mod. Phys, 62, 531,(1990).


Realization of a Filter with Helical Components“, A. I. Zverev and H. J. Blinchikoff, IRE Trans. Compon. Parts, 99 (1961).

Coaxial Resonators with Helical Inner Conductor,” W. W. MacAlpine and R. O. Schildknecht, Proc. IRE, 2099 (1959).

Phase Transitions in Anisotropy Confined Ionic Crystals,” J. P. Schiffer PRL 70, 6 (1992).

Destabilization of dark states and optical spectroscopy in Zeeman-degenerate atomic systems,” D. J. Berkeland and M. G. Boshier, Phys. Rev. A 65, 033413 (2002).


Co-designing a Scalable Quantum Computer with Trapped Atomic Ions,” K. R. Brown, J. Kim, and C. Monroe, Nature Quantum Information 2, 16034 (2016).

Scaling the Ion Trap Quantum Processor,” C. Monroe and J. Kim, Science 339, 1164 (2013).

Quantum Computing with Ions,” C. Monroe and D. Wineland, Scientific American (August, 2008), pp. 64-71.

Entangled states of trapped atomic ions,” R. Blatt and D. J. Wineland, Nature 453, 1008 – 1014 (2008).

Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions“, D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, Journal of Research of the National Institute of Standards and Technology 103, 259 (1998).

Experimental Primer on the Trapped Ion Quantum Computer,” D.J. Wineland, C. Monroe, W.M. Itano, B.E. King, D. Leibfried, D.M. Meekhof, C. Myatt, and C. Wood, Fortschr. Phys. 46 (1998).

Quantum dynamics of cold trapped ions with application to quantum computation,” D. F. V. James, Applied Physics B 66, 181-190 (1998). (Good treatment of classical normal mode analysis of a linear Coulomb chain.)

The ion trap quantum information processor“, A. Steane, Appl. Phys. B. 64, 623 (1997).



Quantum computations with cold trapped ions,” J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 – 4094 (1995).

Trapped ions in the strong excitation regime_Ion interferometry and nonclassical states,” J. F. Poyatos, J. I. Cirac, R. Blatt, and P. Zoller, Phys. Rev. A 54, 1532 (1996).

Multipartite entanglement of hot trapped ions,” K. Mølmer and A. Sørensen, Phys. Rev. Lett. 82, 1835 (1999).

Deterministic bell states and measurement of the motional state of two trapped ions,” E. Solano, R. L. de Matos Filho, and N. Zagury, Phys. Rev. A 59, R2539 (1999).

Ion trap quantum computing with warm ions,”G.J. Milburn, S. Schneider and D. F. V. James, Fortschritte der Physik 48, 801-810 (2000) .

Entanglement and quantum computation with ions in thermal motion,” A. Sørensen and K. Mølmer , Phys. Rev. A 62, 022311 (2000).

Speed optimized Two-Qubit gates with laser coherent control techniques for ion trap quantum computing,” J. J. Garcia-Ripoll, P. Zoller, and J. I. Cirac, Phys. Rev. Lett. 91, 157901 (2003).

Coherent control of trapped ions using off-resonant lasers ,” J. J. Garcia-Ripoll, P. Zoller, and J. I. Cirac,  PRA 71, 062309 (2005).

Scaling ion trap quantum computation through fast qantum gates,” L.-M. Duan, Phys. Rev. Lett. 93, 100502 (2004).


Effective Quantum Spin Systems with Trapped Ions,” D. Porras, and J. I. Cirac, Phys. Rev. Lett. 92, 207901 (2004).

Effective spin quantum phases in systems of trapped ions,” X.-L. Deng, D. Porras, and J. I. Cirac, Phys. Rev. A 72, 063407 (2005).

Quantum Manipulation of Trapped Ions in Two Dimensional Coulomb Crystals,” D. Porras, and J. I. Cirac, Phys. Rev. Lett. 96, 250501 (2006).

Wigner crystals of ions as quantum hard drives,” J. M. Taylor and T. Calarco, Phys. Rev. A 78, 062331 (2008).


Minimization of ion mocromotion in a Paul trap,” D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, and D. J. Wineland, J. Appl. Phys. 83, 5025 (1998).

Quantum Logic with a Few Trapped Ions, C. Monroe, W. M. Itano, D. Kielpinski, B. E. King, D. Leibfried, C. J. Myatt, Q. A. Turchette, D. J. Wineland, and C. S. Wood, in Trapped Charged Particles and Fundamental Physics, eds Daniel H. E. Dubin and Dieter Schneider (American Institute of Physics, 1999), 378.

Deterministic Entanglement of Two Trapped Ions, Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland81, 3631 (1998)


Robust Long-Distance Entanglement and a Loophole-Free Bell Test with Ions and Photons,” C. Simon, W. Irvine, PRL, 91, 110405, (2003)

Quantum eraser: A proposed photon correlation experiment concerning observation and “delayed choice” in quantum mechanics,” M. Scully, K. Druhl, PRA, 25, 2208, (1982)

Creation of entangled states of distant atoms by interference,” C. Cabrillo, J. I. Cirac, P. Garcia-Fernandez, and P. Zoller, PRA, 59, 1025, (1999)


Architecture for a large-scale ion-trap quantum computer,” D. Kielpinski, C. Monroe, and D. J. Wineland, Nature 417, 709 (2002).

A scalable quantum computer with ions in an array of microtraps,” J. I. Cirac and P. Zoller, Nature 404, 579 (2000).


Heating of trapped ions from the quantum ground state“, Q. A. Turchette, D. Kielpinski, B. E. King, D. Leibfried, D. M. Meekhof, C. J. Myatt, M. A. Rowe, C. A. Sackett, C. S. Wood, W. M. Itano, C. Monroe, and D. J. Wineland, Phys. Rev. A 61, 063418-8 (2000). [.PDF, 231Kb]

A Decoherence-Free Quantum Memory Using Trapped Ions“, Q. A. Turchette, C. J. Myatt, B. E. King, C. A. Sackett, D. Kielpinski, W. M. Itano, C. Monroe, and D. J. Wineland, Phys. Rev. A 62, 053807-1 (2000). [.PDF, 514Kb]

Scaling and Suppression of Anomalous Heating in Ion Traps,” L. Deslauriers, S. Olmschenk, D. Stick, W. K. Hensinger, J. Sterk, C. Monroe, Phys. Rev. Lett. 97, 103007 (2006).

Teperature dependence of electric field noice above gold surfaces,” J. Labaziewicz, Y. Ge, D.R. Leibrandt, S.X. Wang, R. Shewmon, and I.L. Chuang, Phys. Rev. Lett., vol. 101, 180602 (2008)

Suppression of heating rates in cryogenic surface_electrode ion traps“, J. Labaziewicz, Y. Ge, P. Antohi, D. Leibrandt, K.R. Brown, and I.L. Chuang, Phys. Rev. Lett., vol. 100, 013001 (2008)


A 303-MHz frequency standard based on trapped Be+ ions,” J. J. Bollinger, D. J. Heinzen, W. M. Itano, S. L. Gilbert, and D. J. Wineland, IEEE Trans. Inst. Meas. 40, 126 (1991).

Accurate measurement of the 12.6GHz “Clock” transition in trapped 171Yb+ ions”, PTH Fisk, M.J. Sellars, M.A. Lawn, and C. Coles, IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency 44, 344 (1997).


Laser cooling and trapping of trapped Ytterbium ions using a four-level optical-excitation scheme“, A. S. Bell, P. Gill, H. A. Klein, A. P. Levick, Chr. Tamm, and D. Schnier, Phys. Rev. A 44, R20 (1991).

Observation of electric octupole transitionin a single ion“, M. Roberts, P. Taylor, G. P. Barwood, P. Gill, H. A. Klein, and W. R. C. Rowley, Phys. Rev. Lett. 78, 1876 (1997).

Investigation of the 2S1/22D5/2 clock transition in a single ytterbium ion“, P. Taylor, M. Roberts, S. V. Gateva-Kostova, R. B. M. Clarke, G. P. Barwood, W. R. C. Rowley, and P. Gill, Phys. Rev. A 56, 2699 (1997).

Measurement of the 2S1/22D5/2 clock transition in a single 171Yb+ ion“, M. Roberts, P. Taylor, S. V. Gateva-Kostova, R. B. M. Clarke, W. R. C. Rowley, and P. Gill, Phys. Rev. A 60, 2867 (1999).

Manipulation and Detection of a Trapped Yb+ Hyperfine Qubit,” S. Olmschenk, K. C. Younge, D. L. Moehring, D. Matsukevich, P. Maunz, and C. Monroe, Phys. Rev. A 76, 052314 (2007).