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Abstract. The theory of interactions between lasers and cold
trapped ions as it pertains to the design of Cirac–Zoller
quantum computers is discussed. The mean positions of the
trapped ions, the eigenvalues and eigenmodes of the ions’
oscillations, the magnitude of the Rabi frequencies for both
allowed and forbidden internal transitions of the ions, and the
validity criterion for the required Hamiltonian are calculated.
Energy level data for a variety of ion species are also present-
ed.

PACS: 32.80.Qk; 42.50.Vk; 89.80.+h

A quantum computer is a device in which data can be stored
in a network of quantum mechanical two-level systems, such
as spin-1/2 particles or two-level atoms. The quantum me-
chanical nature of such systems allows the possibility of
a powerful new feature to be incorporated into data pro-
cessing, namely, the capability of performing logical opera-
tions upon quantum mechanical superpositions of numbers.
Thus in a conventional digital computer each data register is,
throughout any computation, always in a definite state “1” or
“0”; however in a quantum computer, if such a device can
be realized, each data register (or “qubit”) will be in an un-
determined quantum superposition of two states,|1〉 and|0〉.
Calculations would then be performed by external interac-
tions with the various two-level systems that constitute the
device, in such a way that conditional gate operations involv-
ing two or more different qubits can be realized. The final
result would be obtained by measurement of the quantum
mechanical probability amplitudes at the conclusion of the
calculation. Much of the recent interest in practical quantum
computing has been stimulated by the discovery of a quan-
tum algorithm that allows the determination of the prime
factors of large composite numbers efficiently [1] and of cod-
ing schemes that, provided operations on the qubits can be
performed within a certain threshold degree of accuracy, will
allow arbitarily complicated quantum computations to be per-
formed reliablyregardless of operational error[2].

So far, the most promising hardware proposed for im-
plementation of such a device seems to be the cold-trapped

ion system devised by Cirac and Zoller [3]. Their design,
which is shown schematically in Fig. 1, consists of a string
of ions stored in a linear radiofrequency trap and cooled suf-
ficiently so that their motion, which is coupled together due
to the Coulomb force between them, is quantum mechanical
in nature. Each qubit would be formed by two internal levels
of each ion, a laser being used to perform manipulations of
the quantum mechanical probability amplitudes of the states,
conditional two-qubit logic gates being realized with the aid
of the excitation or de-excitation of quanta of the ions’ collec-
tive motion. For a more detailed description of the concept of
cold-trapped ion quantum computation, the reader is referred
to the article by Steane [4].

There are two distinct possibilities for the choice of the
internal levels of the ion: first, the two states could be the
ground state and a metastable excited state of the ion (or more
precisely, sublevels of these states) and second, the two states
could be two nearly degenerate sublevels of the ground state.
In the first case, a single laser would suffice to perform the re-
quired operations; in the second, two lasers would be required
to perform Raman transitions between the states, via a third
level. Both of these schemes have advantages: the first, which
I will refer to as the “single photon” scheme, has the great
advantage of conceptual and experimental simplicity; the sec-
ond, the “Raman scheme”, offers the advantages of a very low

Fig. 1. A schematic diagram of ions in a linear trap to illustrate the notation
used in this article
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rate for spontaneous decay between the two nearly degenerate
states and resilience against fluctuations of the phase of the
laser. This later scheme was recently used by the group head-
ed by Dr. D.J. Wineland at the National Institute of Science
and Technology at Boulder, Colorado to realize a quantum
logic gate using asingletrapped Beryllium ion [5].

In this article, I will discuss the theory of laser interactions
with cold trapped ions as it pertains to the design of a Cirac–
Zoller quantum computer. I will concentrate on the “single
photon scheme” as originally proposed by those authors, al-
though much of the analysis is also relevant to the “Raman
scheme”. Fuller accounts of aspects of this are available in
the literature: see, for example, [4, 6, 7]; however the deriva-
tion of several results are presented here for the first time. I
will also present relevant data gleaned from various sources
on some species of ion suitable for use in a quantum compu-
tation.

1 Equilibrium positions of ions in a linear trap

Let us consider a chain ofN ions in a trap. The ions are
assumed to be strongly bound in they andz directions but
weakly bound in an harmonic potential in thex direction. The
position of themth ion, where the ions are numbered from
left to right, will be denotedxm(t). The motion of each ion
will be influenced by an overall harmonic potential due to the
trap electrodes and by the Coulomb force exerted by all of the
other ions. We will assume that the binding potential in they
andz directions is sufficiently strong that motion along these
axes can be neglected. However, motion of the ions trans-
verse to the trap axis can be important in some circumstances:
Garg [8] has pointed out that such motion can be a source of
decoherence; furthermore if a large number of ions are stored
in the trap, the transverse vibrations can become unstable,
and the ions will adopt a zigzag configuration [9]. Hence the
potential energy of the ion chain is given by the following
expression:

V =
N∑

m=1

1

2
Mν2xm(t)2 +

N∑
n,m=1
m6=n

Z2e2

8πε0

1

|xn(t)− xm(t)| , (1)

whereM is the mass of each ion,e is the electron charge,Z
is the degree of ionization of the ions,ε0 is the permitivity of
free space, andν is the trap frequency, which characterizes the
strength of the trapping potential in the axial direction. Note

Table 1. Scaled equilibrium positions of the trapped ions for different total numbers of ionsa

N Scaled equilibrium positions

2 −0.62996 0.62996
3 −1.0772 0 1.0772
4 −1.4368 −0.45438 0.45438 1.4368
5 −1.7429 −0.8221 0 0.8221 1.7429
6 −2.0123 −1.1361 −0.36992 0.36992 1.1361 2.0123
7 −2.2545 −1.4129 −0.68694 0 0.68694 1.4129 2.2545
8 −2.4758 −1.6621 −0.96701 −0.31802 0.31802 0.96701 1.6621 2.4758
9 −2.6803 −1.8897 −1.2195 −0.59958 0 0.59958 1.2195 1.8897 2.6803

10 −2.8708 −2.10003 −1.4504 −0.85378 −0.2821 0.2821 0.85378 1.4504 2.10003 2.8708

a This data was obtained by numerical solutions of (5). The length scale is given by (4)

that this is an unconventional use of the symbolν, which often
denotes frequency rather than angular frequency; following
Cirac and Zoller, I will useω to denote the angular frequen-
cies of the laser or the transitions between internal states of
the ions, andν to denote angular frequencies associated with
the motion of the ions.

Assume that the ions are sufficiently cold that the position
of themth ion can be approximated by the formula

xm(t) ≈ x(0)
m +qm(t) (2)

wherex(0)
m is the equilibrium position of the ion, andqm(t) is

a small displacement. The equilibrium positions will be deter-
mined by the following equation:[

∂V

∂xm

]
xm=x(0)

m

= 0 . (3)

If we define the length scalèby the formula

`3 = Z2e2

4πε0Mν2
(4)

and the dimensionless equilibrium positionum = x(0)
m /`, then

(3) may be rewritten as the following set ofN coupled alge-
braic equations for the values ofum:

um −
m−1∑
n=1

1

(um −un)2
+

N∑
n=m+1

1

(um −un)2
= 0

(m = 1, 2, . . . N) . (5)

For N = 2 andN = 3, these equations may be solved analyt-
ically:

N = 2 : u1 = −(1/2)2/3 , u2 = (1/2)2/3, (6)

N = 3 : u1 = −(5/4)1/3 , u2 = 0, u3 = (5/4)1/3 . (7)

For larger values ofN it is necessary to solve for the values
of um numerically. The numerical values of the solutions to
these equations for2 to 10 ions is given in Table 1. Determin-
ing the solutions for larger numbers of ions is a straightfor-
ward but time consuming task.

By inspection, the minimum value of the spacing between
two adjacent ions occurs at the center of the ion chain. Com-
piling the numerical data for the minimum value of the sep-
aration for different numbers of trapped ions, we find that it
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obeys the following relation:

umin(N) ≈ 2.018

N0.559
. (8)

This relation is illustrated in Figure 2. Thus the minimum
inter-ion spacing for different numbers of ions is given by the
following formula:

xmin(N) =
(

Z2e2

4πε0Mν2

)1/3
2.018

N0.559
. (9)

This relationship is important in determining the capabilities
of cold-trapped ion quantum computers [10].

2 Quantum fluctuations of the ions

This section discusses the equations of motion that describe
the displacements of the ions from their equilibrium posi-
tions. Because of the Coulomb interactions between the ions,
the displacements of different ions will be coupled together.
The Lagrangian describing the motion is then

L = M

2

N∑
m=1

(q̇m)2 − 1

2

N∑
n,m=1

qnqm

[
∂2V

∂xn∂xm

]
0

, (10)

where the subscript 0 denotes that the double partial deriva-
tive is evaluated atqn = qm = 0, and we have neglected terms
O[q3

n]. The partial derivatives may be calculated explicitly to
give the following expression:

L = M

2

 N∑
m=1

(q̇m)2 − ν2
N∑

n,m=1

Anmqnqm

 , (11)

where

Anm =


1+2

N∑
p=1
p6=m

1
|um−up|3 if n = m,

−2
|um−un|3 if n 6= m .

(12)

Fig. 2. The relationship between the number of trapped ionsN and the min-
imum separation. The curve is given by (8) while the points come from the
numerical solutions of the algebraic equations (5)

Since the matrixAnm is real, symmetric, and non-negative
definite, its eigenvalues must be non-negative. The eigenvec-
torsb(p)

m (p= 1, 2, · · · N) are therefore defined by the follow-
ing formula:

N∑
n=1

Anmb(p)
n = µpb(p)

m (p = 1, . . . , N) , (13)

whereµp ≥ 0. The eigenvectors are assumed to be numbered
in order of increasing eigenvalue and to be properly normal-
ized so that

N∑
p=1

b(p)
n b(p)

m = δnm (14)

N∑
n=1

b(p)
n b(q)

n = δpq . (15)

The first eigenvector (i.e., the eigenvector with the small-
est eigenvalue) can be shown to be

b(1) = 1√
N

{1, 1, · · · , 1} , µ1 = 1 . (16)

The next eigenvector can be shown to be

b(2) = 1(∑N
m=1 u2

m

)1/2 {u1, u2, · · · , uN} , µ2 = 3 . (17)

Higher eigenvectors must, in general, be determined numeri-
cally; (15) and (16) imply that

N∑
m=1

b(p)
m = 0 if p 6= 1 . (18)

For N = 2 andN = 3, the eigenvectors and eigenvalues may
be determined algebraically:

N = 2 : b(1) = 1√
2
(1, 1), µ1 = 1,

b(2) = 1√
2
(−1, 1), µ2 = 3, (19)

N = 3 : b(1) = 1√
3
(1, 1, 1) , µ1 = 1,

b(2) = 1√
2
(−1, 0, 1) , µ2 = 3,

b(3) = 1√
6
(1,−2, 1) , µ3 = 29/5 . (20)

For larger values ofN, the eigenvalues and eigenvectors must
be determined numerically; their numerical values for2 to 10
ions are given in Table 2.

The normal modesof the ion motion are defined by the
formula

Qp(t) =
N∑

m=1

b(p)
m qm(t) . (21)
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Table 2. Numerically determined eigenvalues and eigenvectors of the matrixAnm defined by (12), for 2 to 10 ionsa

Eigenvalue Eigenvector

N=2 1 ( 0.7071, 0.7071)
3 (−0.7071, 0.7071)

N=3 1 ( 0.5774, 0.5774, 0.5774)
3 (−0.7071, 0, 0.7071)
5.8 ( 0.4082, −0.8165, 0.4082)

N=4 1 ( 0.5, 0.5, 0.5, 0.5)
3 (−0.6742, −0.2132, 0.2132, 0.6742)
5.81 ( 0.5, −0.5, −0.5, 0.5)
9.308 (−0.2132, 0.6742, −0.6742, 0.2132)

N=5 1 ( 0.4472, 0.4472, 0.4472, 0.4472, 0.4472)
3 (−0.6395, −0.3017, 0, 0.3017, 0.6395)
5.818 ( 0.5377, −0.2805, −0.5143, −0.2805, 0.5377)
9.332 (−0.3017, 0.6395, 0, −0.6395, 0.3017)

13.47 ( 0.1045, −0.4704, 0.7318, −0.4704, 0.1045)

N=6 1 ( 0.4082, 0.4082, 0.4082, 0.4082, 0.4082, 0.4082)
3 (−0.608, −0.3433, −0.1118, 0.1118, 0.3433, 0.608)
5.824 (−0.5531, 0.1332, 0.4199, 0.4199, 0.1332, −0.5531)
9.352 ( 0.3577, −0.5431, −0.2778, 0.2778, 0.5431, −0.3577)

13.51 ( 0.1655, −0.5618, 0.3963, 0.3963, −0.5618, 0.1655)
18.27 (−0.04902, 0.2954, −0.6406, 0.6406, −0.2954, 0.04902)

N=7 1 ( 0.378, 0.378, 0.378, 0.378, 0.378, 0.378, 0.378)
3 (−0.5801, −0.3636, −0.1768, 0, 0.1768, 0.3636, 0.5801)
5.829 (−0.5579, 0.031, 0.3213, 0.4111, 0.3213, 0.031, −0.5579)
9.369 (−0.3952, 0.445, 0.3818, 0, −0.3818, −0.445, 0.3952)

13.55 (−0.213, 0.5714, −0.1199, −0.4769, −0.1199, 0.5714, −0.213)
18.32 ( 0.08508, −0.4121, 0.5683, 0, −0.5683, 0.4121, −0.08508)
23.66 ( 0.02222, −0.1723, 0.4894, −0.6787, 0.4894, −0.1723, 0.02222)

N=8 1 ( 0.3536, 0.3536, 0.3536, 0.3536, 0.3536, 0.3536, 0.3536, 0.3536)
3 (−0.5556, −0.373, −0.217, −0.07137, 0.07137, 0.217, 0.373, 0.5556)
5.834 (−0.5571, −0.0425, 0.2362, 0.3634, 0.3634, 0.2362, −0.0425, −0.5571)
9.383 ( 0.4212, −0.3577, −0.4093, −0.1647, 0.1647, 0.4093, 0.3577, −0.4212)

13.58 (−0.2508, 0.5479, 0.0669, −0.364, −0.364, 0.0669, 0.5479, −0.2508)
18.37 ( 0.1176, −0.4732, 0.4123, 0.3039, −0.3039, −0.4123, 0.4732, −0.1176)
23.73 (−0.04169, 0.2703, −0.561, 0.3324, 0.3324, −0.561, 0.2703, −0.04169)
29.63 (−0.009806, 0.09504, −0.3398, 0.6127, −0.6127, 0.3398, −0.09504, 0.009806)

N=9 1 ( 0.3333, 0.3333, 0.3333, 0.3333, 0.3333, 0.3333, 0.3333, 0.3333, 0.3333)
3 (−0.5339, −0.3764, −0.2429, −0.1194, 0, 0.1194, 0.2429, 0.3764, 0.5339)
5.838 (−0.5532, −0.09692, 0.1658, 0.3078, 0.3531, 0.3078, 0.1658, −0.09692, −0.5532)
9.396 (−0.4394, 0.2828, 0.4019, 0.2558, 0, −0.2558, −0.4019, −0.2828, 0.4394)

13.6 ( 0.2812, −0.5108, −0.1873, 0.2228, 0.3881, 0.2228, −0.1873, −0.5108, 0.2812)
18.41 ( 0.1465, −0.5015, 0.2582, 0.4005, 0, −0.4005, −0.2582, 0.5015, −0.1465)
23.79 ( 0.06133, −0.3407, 0.5274, −0.02271, −0.4505, −0.02271, 0.5274, −0.3407, 0.06133)
29.71 (−0.01969, 0.1639, −0.4614, 0.5098, 0, −0.5098, 0.4614, −0.1639, 0.01969)
36.16 (−0.004234, 0.05021, −0.2195, 0.4939, −0.6408, 0.4939, −0.2195, 0.05021, −0.004234)

N=10 1 ( 0.3162, 0.3162, 0.3162, 0.3162, 0.3162, 0.3162, 0.3162, 0.3162, 0.3162, 0.3162)
3 (−0.5146, −0.3764, −0.26, −0.153, −0.05056, 0.05056, 0.153, 0.26, 0.3764, 0.5146)
5.841 (−0.5476, −0.1382, 0.1079, 0.2544, 0.3235, 0.3235, 0.2544, 0.1079, −0.1382 −0.5476)
9.408 ( 0.4524, −0.2189, −0.3786, −0.3024, −0.1123, 0.1123, 0.3024, 0.3786, 0.2189 −0.4524)

13.63 ( 0.3059, −0.4689, −0.2629, 0.09726, 0.3287, 0.3287, 0.09726, −0.2629, −0.4689 0.3059)
18.45 ( 0.1721, −0.5098, 0.1267, 0.3959, 0.194, −0.194, −0.3959, −0.1267, 0.5098, −0.1721)
23.85 ( 0.08046, −0.3902, 0.4528, 0.1795, −0.3225, −0.3225, 0.1795, 0.4528, −0.3902, 0.08046)
29.79 ( 0.03062, −0.2232, 0.505, −0.3078, −0.3154, 0.3154, 0.3078, −0.505, 0.2232, −0.03062)
36.26 (−0.009023, 0.09371, −0.338, 0.5419, −0.2886, −0.2886, 0.5419, −0.338, 0.09371 −0.009023)
43.24 ( 0.001795,−0.0256, 0.134, −0.3656, 0.5897, −0.5897, 0.3656, −0.134, 0.0256, −0.001795)

a The eigenvectors are normalized as defined by (15)
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The first modeQ1(t) corresponds to all of the ions oscillating
back and forth as if they were rigidly clamped together; this
is referred to as thecenter of massmode. The second mode
Q2(t) corresponds to each ion oscillating with an amplitude
proportional to its equilibrium distance form the trap center;
This is called thebreathing mode. The Lagrangian for the ion
oscillations (11) may be rewritten in terms of these normal
modes as follows:

L = M

2

N∑
p=1

[
Q̇2

p − ν2
pQ2

p

]
, (22)

where the angular frequency of thepth mode is defined by

νp = √
µpν . (23)

This expression implies that the modesQp are uncoupled.
Thus the canonical momentum conjugate toQp is Pp = MQ̇p
and one can immediately write the Hamiltonian as

Ĥ = 1

2M

N∑
p=1

P2
p + M

2

N∑
p=1

ν2
pQ2

p . (24)

The quantum motion of the ions can now be considered by
introducing the operators1

Qp → Q̂p = i

√
h

2Mνp
(âp − â†p) , (25)

Pp → P̂p =
√

hMνp

2
(âp + â†p) . (26)

where Q̂p and P̂p obey the canonical commutation relation
[Q̂p, P̂p] = ihδpq and the creation and annihilation operators
â†p andâp obey the usual commutation relation[âp, â†q] = δpq.

Using this notation, the interaction picture operator for the
displacement of themth ion from its equilibrium position is
given by the formula:

q̂m(t) =
N∑

p=1

b(p)
m Q̂p(t)

= i

√
h

2MνN

N∑
p=1

s(p)
m (âpe

−iνpt − â†pe
−iνpt) , (27)

where the coupling constant is defined by

s(p)
m =

√
Nb(p)

m

µ
1/4
p

. (28)

For the center of mass mode,

s(1)
m = 1 ν1 = ν , (29)

1 There is some arbitariness in the definition of the operatorsP̂p and Q̂p,
which is related to the arbitrariness of the phase of the Fock states. I have
used the definitions given by Kittel ( [11], p. 16), which differs from that
given in other texts on quantum mechanics (see, for example, [12] p. 183
or [13] p. 36).

and for the breathing mode

s(2)
m =

√
N

4
√

3

1(∑N
m=1 u2

m

)1/2 um ν2 = √
3ν . (30)

The Lagrangian equation (10) was derived from a Tay-
lor expansion of the potential function about the equilibrium
positions of the ions, termsO[q3

n] being neglected. The ratio
of the strengths of the neglected terms to the strength of the
quadratic terms, which are included, is, for low phonon num-
bers, of the order of(hV/8Mc2N3α2)1/6, whereα is the fine
structure constant. Clearly this dimensionless quantity must
be small if the approximation we have made is to be valid; for
example, if we consider a singleCa II ion in a trap with axial
frequencyν = (2π)×500 KHz, it has the value2.2×10−3.
The neglected terms will however important because they
give a coupling between different phonon modes which may
be a source of decoherence.

3 Laser-ion interactions

I will now consider the interaction of a laser field with the
trapped ions. The theory must take into acount both the in-
ternal and vibrational degrees of freedom of the ions. I will
consider two types of transition between internal ionic lev-
els: the familiar electric-dipole allowed (E1) transitions and
dipole forbidden electric quadrupole (E2) transitions. Elec-
tric quadrupole transitions have been considered in detail by
Freedhoff [14, 15]. The reason for considering forbidden tran-
sitions is that they have very long decay lifetimes; sponta-
neous emission will destroy the coherence of a quantum com-
puter, and therefore is a major limitation on the capabilities
of such devices [10, 16]. Magnetic dipole (M1) transitions,
which also have long lifetimes, tend only to occur between
sub-levels of a configuration and will therefore require, when
using the single photon scheme, long wavelength lasers in
order to excite them. As it is necessary to resolve individual
ions in the trap using the laser, the use of long wavelengths
will seriously degrade performance. Transitions between sub-
levels of a configuration are however possible using the
Raman scheme. More highly forbidden transitions are also
a possibility for use in a quantum computer. In particular,
there is an octupole allowed (E3) transition of the ionYb II
at 467 nmwith a theoretical lifetime of1.325×108 sec[17],
which has recently been observed at the National Physical
Laboratory at Teddington, England [18]. However, such weak
transitions can only be excited by either very long laser pulses
or by very powerful lasers. Since it is impossible to maintain
the phase stability of a laser indefinitely, very long duration
pulses (i.e., more than∼ 100 msec) are not practicable. Very
high laser power can cause a break-down of the two-level ap-
proximation, as highly detuned dipole transitions can become
excited. Thus it appears that suchvery long lived states may
not in fact give any particular advantages for quantum com-
puting.

The interaction picture Hamiltonians for electric dipole
(E1) and electric quadrupole (E2) transitions of themth ion,
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located atxm are

Ĥ (E1)
I = ie

∑
MN

ωMN|N〉〈M|〈N|r̂ i |M〉Ai (xm, t)eiωMNt , (31)

Ĥ (E2)

I = ie

2

∑
MN

ωMN|N〉〈M|〈N|r̂ i r̂ j |M〉∂i Aj (xm, t)eiωMNt ,

(32)

where Aj (x, t) is the j th component of the vector potential
of the laser field,∂i denotes differentiation along thei th di-
rection and summation over repeated indices(i , j = x, y, z) is
implied; r̂ i is the i th component of the position operator for
the valence electron of the ion;{|N〉} is the set of all eigen-
states of the unperturbed ion and the transition frequency is
ωMN = ωM −ωN where the energy of theNth state ishωN .

For a laser beam in a standing wave configuration (see
Fig. 1), propagating along a direction specified by the unit
vectorn, the vector potential and its derivative are given by
the formulas

Ai (xm, t) = −εi
E

iω
sin

[
kζ̂m(t)

]
eiωt +c.c., (33)

∂i Aj (xm, t) = −niεj
E

c
cos

[
kζ̂m(t)

]
eiωt +c.c. (34)

In (34), I have approximated the laser beam as a plane wave,
ε being the polarization vector,E is the amplitude of the
electric field,ω is the laser frequency andk = ω/c is the
wavenumber. The operatorζ̂m(t) is the distance between the
mth ion and the plane mirror used to form the standing wave.

If we restrict our consideration to just two states,|1〉 and
|2〉, and make the rotating wave equation, the interaction
Hamiltonians may be rewritten as follows:

Ĥ (E1)
I = hΩ

(E1)
0 sin

[
kζ̂m(t)

]
ei(t∆−φ)|1〉〈2|+h.a., (35)

Ĥ (E2)
I = ihΩ

(E2)
0 cos

[
kζ̂m(t)

]
ei(t∆−φ)|1〉〈2|+h.a., (36)

where the detuning is∆ = ω−ω21 and the Rabi frequencies
are given by

Ω
(E1)
0 =

∣∣∣∣eE

h
〈1|r̂ i |2〉εi

∣∣∣∣ , (37)

Ω
(E2)
0 =

∣∣∣∣eEω21

2hc
〈1|r̂ i r̂ j |2〉εi nj

∣∣∣∣ . (38)

If the standing wave of the laser is so contrived that the
equilibrium position of themth ion is located at anode, i.e.,
the electric field strength is zero, then

ζ̂m(t) = lλ+cosθq̂m(t) (39)

wherel is some integer,λ is the wavelength, andθ is the an-
gle between the laser beam and the trap axis and we have
assumed that the fluctuations of the ions transverse to the trap
axis are negligible. In this case the two Hamiltonians become

Ĥ (E1)
I = hΩ

(E1)
0 k cosθq̂m(t)ei(t∆−φ+lπ)|1〉〈2|+h.a., (40)

Ĥ (E2)
I = hΩ

(E2)
0 ei [t∆−φ−(l+1/2)π]|1〉〈2|+h.a., (41)

where we have neglected terms involvingq̂m(t)2. It is con-
venient to write the displacement of the ion in terms of the
creation and annihilation operators of the phonon modes, viz.,

k cosθq̂m(t) = i
η√
N

N∑
p=1

s(p)
m

(
âpe−iνpt − â†pe

iνpt) , (42)

whereη = √
hk2 cos2 θ/2Mν is called the Lamb–Dicke pa-

rameter.
Similarly if the standing wave is arranged so that the ion

is at anantinode, i.e.,

ζ̂m(t) = (2l −1)λ

2
+cosθq̂m(t) , (43)

then the Hamiltonians are

Ĥ (E1)
I = hΩ

(E1)
0 ei(t∆−φ+lπ)|1〉〈2|+h.a., (44)

Ĥ (E2)
I = hΩ

(E2)
0 k cosθq̂m(t)ei [t∆−φ−(l+1/2)π]|1〉〈2|+h.a.

(45)

Thus we have two basic types of Hamiltonian:

ĤV = hΩ0ei(t∆−φu)|1〉〈2|+h.a., (46)

ĤU = hΩ0k cosθq̂m(t)ei(t∆−φu)|1〉〈2|+h.a., (47)

whereΩ0 stands for eitherΩ(E1)
0 or Ω

(E2)
0 .

By changing the node to an antinode, by moving the re-
flecting mirror, for example, we can switch from one type
of Hamiltonian to the other. In the first case, the laser beam
will only interact with internal degrees of freedom of the ion,
while in the second case the collective motion of the ions will
be affected as well.

4 Evaluation of the Rabi frequencies

We can relate the matrix elements appearing in the definitions
of the Rabi frequencies to the EinsteinA coefficients for the
transitions. In order to do this we will rewrite the matrix elem-
ents in terms of the Racah tensors:

〈1|r̂ i |2〉εi =
1∑

q=−1

〈1|rC(1)
q |2〉c(q)

i εi , (48)

〈1|r̂ i r̂ j |2〉εi nj =
2∑

q=−2

〈1|r 2C(2)
q |2〉c(q)

i j εi nj , (49)

where we have used the fact thatε ·n = 0. The vectorsc(q) and
the second rank tensorsc(q)

i j may be calculated quite easily;
explicit expressions are given in the appendix. If we assume
LScoupling, the states|1〉 and|2〉 are specified by the angular
momentum quantum numbers; thus we will use the notation
|1〉 = | jmj 〉 and|2〉 = | j ′m′

j 〉, where j is the total angular mo-
mentum quantum number andmj is the magnetic quantum
number of the lower state andj ′ is the total angular momen-
tum quantum number andm′

j the magnetic quantum number
of the upper state. Using the Wigner–Eckart theorem ([19],
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Section 11.4), the matrix elements may be rewritten as

〈1|r̂ i |2〉εi = 〈1||rC(1)||2〉
1∑

q=−1

(
j 1 j ′

−mj q m′
j

)
c(q)

i εi , (50)

〈1|r̂ i r̂ j |2〉εi nj = 〈1||r 2C(2)||2〉
2∑

q=−2

(
j 2 j ′

−m q m′
)

c(q)

i j εi nj ,

(51)

the terms containing six numbers in brackets being Wigner
3− j symbols ([19], Section 5.1), and〈1||r qC(q)||2〉 being the
reduced matrix element. The EinsteinA coefficients for the
two levels are given by the expressions:

A
(E1)

12 = 4cαk3
12

3

1∑
q=−1

∣∣〈1|rC(1)
q |2〉∣∣2

(52)

A
(E2)

12 = cαk5
12

15

2∑
q=−2

∣∣〈1|r 2C(2)
q |2〉∣∣2

. (53)

Using the Wigner–Eckart theorem again, these expressions
reduce to the following:

A
(E1)

12 = 4cαk3
12

3

∣∣〈1||rC(1)||2〉∣∣2
1∑

q=−1

(
j 1 j ′

−mj q m′
j

)2

(54)

A
(E2)

12 = cαk5
12

15

∣∣〈1||r 2C(2)||2〉∣∣2
2∑

q=−2

(
j 2 j ′

−mj q m′
j

)2

. (55)

These coefficients are the rates for spontaneous decay
from the upper level|1〉 to the lower level|2〉. A simpler ex-
pression for the total rate of spontaneous decay of|2〉 to all
of the sublevels of the lower state may be found by summing
these rates over all values ofmj :

A(E1)
12 ≡

j∑
m=− j

A
(E1)

12 = 4cαk3
12

3(2 j ′ +1)

∣∣〈1||rC(1)||2〉∣∣2
, (56)

A(E2)
12 ≡

j∑
m=− j

A
(E2)

12 = cαk5
12

15(2 j ′ +1)

∣∣〈1||r 2C(2)||2〉∣∣2
. (57)

These decay rates, which are the same for all of the sublevels
of the upper level, are the quantities usually quoted in data
tables. Using (37), (38), (50), (51), (56) and (57), we then
obtain the following formula for the Rabi frequencies:

Ω0 = e|E|
h
√

cα

√
A12

k3
12

σ , (58)

where

σ(E1) =
√

3(2 j ′ +1)

4

∣∣∣∣∣∣
1∑

q=−1

(
j 1 j ′

−mj q m′
j

)
c(q)

i ε
(q)
i

∣∣∣∣∣∣ , (59)

σ(E2) =
√

15(2 j ′ +1)

4

∣∣∣∣∣∣
2∑

q=−2

(
j 2 j ′

−mj q m′
j

)
c(q)

i j ε
(q)

i nj

∣∣∣∣∣∣ . (60)

The values of these quantities will be dependent on the
choice of states of ions used for the upper and lower levels,
and upon the polarization and direction of the laser beam. As
a specific example, we will assume that the ions are in a weak
magnetic field, which serves to define thez-direction of quan-
tization. Furthermore, we will assume that the lower level|1〉
is themj = −1/2 sublevel of a2S1/2 ground state, the nucleus
having spin zero. The upper level for the dipole transition is
a sublevel of a2P1/2 state, while for the quadrupole transition
it is a sublevel of a2D3/2 state:

Ω
(E1)
0 = e|E|

h

√
A(E1)

12

4cαk3
12

, (61)

Ω
(E2)
0 = e|E|

h

√
A(E2)

12

2cαk3
12

. (62)

5 Validity of Cirac and Zoller’s Hamiltonian

Equations (42) and (47) give the following expression for the
Hamiltonian for the case when the laser standing wave is so
configured that it can excite the vibration modes of the ions:

ĤU = iηhΩ0√
N

N∑
p=1

s(p)
m

(
âpe

−iνpt − â†pe
iνpt) ei(t∆−φu)|1〉〈2|

+h.a. (63)

In their paper [3], Cirac and Zoller assumed that the laser can
interact with only the center of mass mode of the ions’ fluc-
tuations. This interaction forms a vitally important element
of their proposed method for implementing a quantum con-
trolled not logic gate. Thus they used a Hamiltonian of the
following form [cf. [3], Eq. (1)]:

Ĥ (CZ)
U = iηhΩ0√

N

(
â1e−iν1t − â†1eiν1t

)
ei(t∆−φu)|1〉〈2|

+h.a. (64)

This is an approximate form of (63), in which all of the other
“extraneous” phonon modes have been neglected. We will
now investigate under what circumstances these modes may
be ignored.

We will assume that the wavefunction for a single ion in-
teracting with the laser beam may be written as follows:

|Ψ(t)〉 = α0(t)|1〉|vac〉+b0(t)|2〉|vac〉

+
N∑

p=1

αp(t)|1〉|1p〉+
N∑

p=1

bp(t)|2〉|1p〉 , (65)

where|1〉 and|2〉 are the energy eigenstates of themth ion’s
internal degrees of freedom,|1p〉 is the state of the ions’ col-
lective vibration in which thepth mode has been excited by
one quantum, and|vac〉 is the vibrational ground state. To
avoid ambiguity, the ket for the ion’s internal state appears
first, the ket for the vibrational state second.

The equation of motion for this wavefunction is

ih
∂

∂t
|Ψ(t)〉 = ĤU |Ψ(t)〉 . (66)
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By using (63), and assuming that one cannot excite states with
two phonons, one obtains the following equations:

α̇0 = Ω0η√
N

N∑
p=1

s(p)
m βp(t) , (67)

β̇0 = Ω0η√
N

N∑
p=1

s(p)
m αp(t) , (68)

α̇p = −i(νp − ν1)αp − Ω0η√
N

s(p)
m β0(t) , (69)

β̇p = −i(νp + ν1)βp − Ω0η√
N

s(p)
m α0(t) . (70)

We have assumed that∆ = −ν1, so that the laser is tuned to
the specific sideband resonance required to perform Cirac and
Zoller’s universal gate operation ([3], Eq. 3), namely, the two
level transition|1〉n|11〉 ↔ |2〉n|vac〉.

Since|α0(t)|, |β0(t)| ≤ 1, we can consider the following
upper limits on the amplitudes of the states which include ex-
citation of “extraneous” phonon modes (i.e., phonon modes
other than the center of mass mode):

|αp(t)| ≤ |Ap(t)|, |βp(t)| ≤ |Bp(t)| , (71)

where

Ȧ0 + i(νp − ν1)Ap = −Ω0η√
N

s(p)
m , (72)

Ḃ0 + i(νp + ν1)Bp = −Ω0η√
N

s(p)
m . (73)

Solving these equations one finds that

|Ap(t)| ≤ 2Ω0η√
N(νp − ν1)

|s(p)
m | , (74)

|Bp(t)| ≤ 2Ω0η√
N(νp + ν1)

|s(p)
m | . (75)

Thus the total probability that “extraneous” modes are excited
has the following upper limit:

Pext =
N∑

p=2

|αp(t)|2 +|βp(t)|2

≤ 2

(
2Ω0η√

Nν

)2
 N∑

p=2

µp +1

(µp −1)2

(
s(p)
m

)2

 , (76)

where we have used the definition of the mode frequencies
(23) and the fact that the eigenvalue for the center of mass
mode isµ1 = 1. This quantity will be different for each ion in
the string; taking its average value, we find

Pext ≡ 1

N

N∑
m=1

Pext ≤ 2
(

2Ω0η√
Nν

)2

Σ(N) , (77)

where we have used the definition of the coupling con-
stants (28) and the orthonormality of the eigenvectors (15).

Fig. 3. The functionΣ(N) defined by (78)

The functionΣ(N) is defined by the formula

Σ(N) =
N∑

p=2

µp +1

(µp −1)2√µp
. (78)

This must be evaluated numerically by solving for the eigen-
values of the trap normal modes for different numbers of
trapped ionsN. The results are shown in Fig. 3. The function
varies slowly with the value ofN, and, forN ≥ 10, we can, to
a good approximation, replace it by a constantΣ(N) ≈ 0.82.
Thus we obtain the following upper limit on the total proba-
bility of the “extraneous” phonon modes becoming excited:

Pext ≤
(

2.6Ω0η√
Nν

)2

. (79)

Thus we obtain the following sufficiency condition for the va-
lidity of Cirac and Zoller’s Hamiltonian (64):(

2.6Ω0η√
Nν

)2

� 1 . (80)

6 Conclusion

In the preceding sections, we have reviewed the theoretical
basis for cold-trapped ion quantum computation. How these
various laser–ion interaction effects may be combined to per-
form fundamental quantum logic gates is described in the
seminal work of Cirac and Zoller [3]. By using the formu-
las given here one can determine, for example, the laser field
strength required or the separation between ions in the trap.
Such things are of great importance in the engineering of
practical devices.

Finally there is the question of what type of ion to use.
Figure 4 shows the energy levels of four suitable species of
ion. These have been chosen based on two criteria: that the
lowest excited state has a forbidden transition to the ground
state, and their popularity among published ion trapping ex-
periments. It is not intended that this is an exhaustive list of
suitable ions, but rather it is to show the properties of typical
ions.
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Fig. 4. Energy level diagrams for four species of ions suitable for quantum computation. Wavelengths and lifetimes are given for the important transitions,
the numbers in square brackets being the reference for the data. The lifetime is the reciprocal of the EinsteinA coefficient defined in (56) and (57). The thick
lines are dipole allowed (E1) transitions, the thin lines quadrupole allowed (E2) transitions. The atomic number and the mass number of the most abundant
isotope (with its relative abundance) are also given. None of these isotopes have a nuclear spin
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Appendix

The vectorsc(q)

i are usual normalized spherical basis vectors:

c(1) = − 1√
2
(1,−i , 0) , (A.1)

c(0) = (0, 0, 1) , (A.2)

c(−1) = 1√
2
(1, i , 0) . (A.3)

Note that

c(q) = (−1)qc(−q)∗ , (A.4)

c(q) ·
{
c(q′)

}∗ = δq,q′ . (A.5)

The second rank tensorsc(q)

i j are given by the formula

c(q)

i j =
√

10

3
(−1)q

1∑
m1,m2=−1

(
1 1 2

m1 m2 −q

)
c(m1)

i c(m2)

j . (A.6)
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Explicity these five tensors are:

c(2)
i j = 1√

6

(
1 −i 0

−i −1 0
0 0 0

)
, (A.7)

c(1)
i j = 1√

6

(
0 0 −1
0 0 i

−1 i 0

)
, (A.8)

c(0)
i j = 1

3

(−1 0 0
0 −1 0
0 0 2

)
, (A.9)

c(−1)
i j = 1√

6

(
0 0 1
0 0 i
1 i 0

)
, (A.10)

c(−2)
i j = 1√

6

(
1 i 0
i −1 0
0 0 0

)
. (A.11)

Note that

c(q)

i j = (−1)qc(−q)∗
i j , (A.12)∑

i j

c(q)

i j

{
c(q′)

i j

}∗ = 2

3
δq,q′ . (A.13)
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