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Entanglement and quantum computation with ions in thermal motion

Anders So”rensen and Klaus Mo” lmer
Institute of Physics and Astronomy, University of Aarhus, DK-8000 Århus C, Denmark
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With bichromatic fields, it is possible to deterministically produce entangled states of trapped ions. In this
paper we present a unified analysis of this process for both weak and strong fields, for slow and fast gates.
Simple expressions for the fidelity of creating maximally entangled states of two or an arbitrary number of ions
under nonideal conditions are derived and discussed.

PACS number~s!: 03.67.Lx, 03.65.Bz, 89.70.1c
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I. INTRODUCTION

Quantum computing relies on the ability to perform a c
lection of unitary evolutions of a quantum system, compo
of a number of two-level systems~the qubits!, and it is a key
result that a small set of so-called universal gates ex
which may form the basis for the entire computation@1#. The
development of proposals for physical implementation
quantum computing has followed different routes, accord
to the various views one may have on the quantum dyna
cal processes.~i! One may view a gate operation on a sing
qubit or on several qubits as a controlled transition fro
initial to final states, and one may implement it by a Ham
tonian, or a sequence of Hamiltonians, that couple th
states directly.~ii ! One may consider Hamiltonians th
couple quite many states, but where unwanted operations
dynamically suppressed by resonance conditions or
‘‘bang-bang’’ Hamiltonians@2#. ~iii ! One may depart from a
more systematic analysis of the Lie algebra generated~by
commutation! from a given set of basic Hamiltonians. If on
has access to HamiltoniansH1 andH2 with variable strength
parametersk1 and k2, subsequent application over sho
time intervalsdt of k1H1 , k2H2 , 2k1H1, and 2k2H2
leads to the evolution operator (\51)

eik2H2dteik1H1dte2 ik2H2dte2 ik1H1dt

5ek1k2[H1 ,H2]dt21O~dt3!, ~1!

so that effectively the Hamiltoniani @H1 ,H2# is obtained. As
expressed by Lloyd@3#, ‘‘By going forward and backing up
a sufficiently small distance a large enough number of tim
it is possible to parallel park in a space only« longer than the
length of the car.’’ IfH1 andH2 commute with the commu
tator @H1 ,H2#, the higher-order terms indt vanish exactly,
and one may applyH1 and H2 for arbitrarily largedt and
‘‘make a round trip in the parking lot and park in one sing
operation.’’

Different proposals for quantum computing with trapp
ions can be roughly categorized according to the lines ab
In their original proposal@4#, Cirac and Zoller noted tha
lasers resonant with sideband excitation of the trapped
couple the ground and first vibrational states conditioned
the internal state of the irradiated ion, and subsequent
diation of a second ion can couple its internal states co
tioned on the vibrational state. We have formulated a p
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posal for two-bit@5# and multibit @6# gates in the ion trap,
which makes use of resonance conditions to couple cer
states of the two-particle system. In our proposal we ap
bichromatic light which selects certain virtually excited i
termediate states, and by choosing appropriate paramete
show that the desired internal state dynamics of the ions m
be perfectly achieved, even if the vibrational degrees of fr
dom, used to couple the ions, are not in their ground st
Recently, Milburn@7# proposed a realization of a multib
quantum gate in the ion trap, which also operates when
ions are vibrationally excited: Adjusting the phases of la
fields resonant with sideband transitions, one may cou
internal state operators to different quadrature compone
e.g., position and momentumX andP of the oscillatory mo-
tion. In Ref. @7# it is was proposed to use the two Hamilto
niansH15l1JzP andH25l2JzX, expressed in terms of th
collective spin operatorsJj5(kj jk (j5x,y,z), where the
sum is over the ions irradiated by the lasers, and wherej jk is
the spin operator for the atomk, which may be defined by the
Pauli spin matricesj jk5sjk/2 (\51). By alternating appli-
cation of the HamiltoniansH1 and H2, we may obtain the
exactpropagator

eiH 2teiH 1te2 iH 2te2 iH 1t5e2 il1l2Jz
2t2

, ~2!

because the commutator of the oscillator position and m
mentum is a number. The interaction contained inJz

2 be-
tween the ions has been established via the vibrational
grees of freedom, but after the gate this motion is returne
the initial state and is not in any way entangled with t
internal state dynamics. Milburn also considered the po
bility of coupling different individual internal state operato
successively toX and P, so that the commutator term pro
vides the product of such operators.

In this paper, we shall demonstrate that our bichroma
excitation scheme is in fact already a realization of the p
posal by Milburn, and that a gate operation more rapid th
concluded in Ref.@5# is possible. We show that our bichro

matic scheme implements a propagator of the forme2 iA(t)Jy
2

which is analogous to the one obtained by Milburn@Eq. ~2!#.
In Ref. @6# it was shown that this propagator can be used
prepare maximally entangled states (1/A2)(ugg•••g&
1eifuee•••e&) of any number of ions (N), where thekth
letter denotes the internal statee or g of the kth ion. These
maximally entangled states, which are interesting in th
©2000 The American Physical Society11-1
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ANDERS SO”RENSEN AND KLAUS MO” LMER PHYSICAL REVIEW A 62 022311
own right @8#, are produced by applying the unitary opera

eip/2Jy
2

to a string of ions initially in the stateugg•••g&, and
they may be produced even without experimental acces
individual ions in the trap.

In this paper we focus on the preparation of maxima
entangled states. This is convenient both for theoretical
sentation and to emphasize results which are most ea
verified experimentally. However, the procedures descri
here also apply to quantum computation. With two ions il
minated by laser light, the bichromatic scheme produ
(1/A2)(ugg&2 i uee&) and together with single-qubit rotatio
this evolution forms a universal set of gates which may
used to constuct a quantum computer. TheCONTROL-NOT

operation @1#, for example, may be obtained by applyin
single-ion operations on each ion before and after the bic
matic pulse, which creates the state (1/A2)(ugg&2 i uee&)
from ugg&.

In Sec. II, we recall our proposal for a two-qubit ga
operation, and we show that it is equivalent to the propo
of Milburn, with a harmonic rather than a stroboscopic a
plication of Hamiltonian coupling terms. In experiments
may be difficult to fulfill the requirements for the analysis
Sec. II to be precise, and in Sec. III we address the fide
with which certain entangled states may be engineered w
we take into account the off-resonant couplings and the fi
value of the Lamb-Dicke parameter. In Sec. IV we study
influence of the environment on the system. We analyze
role of spectator vibrational modes and energy exchange
tween the ionic motion and thermal surroundings. A su
mary of our results and a conclusion are presented in Sec

II. GATE OPERATION UNDER IDEAL CONDITIONS

Ions in a linear trap interacting with a laser field of fr
quencyv may be described by the Hamiltonian

H5H01H int ,

H05n~a†a11/2!1veg(
i

szi/2, ~3!

H int5(
i

V i

2
~s1 ie

i (h i (a1a†)2vt)1H.c.!,

wheren is the frequency of the vibration,a† and a are the
ladder operators of the quantized oscillator,veg is the energy
difference between the internal statese andg, andV i is the
resonant Rabi frequency of thei th ion in the laser field. The
exponentials account for the position dependence of the l
field, and the recoil of the ions upon absorption of a phot
The positions of the ionsxi are replaced by ladder operato
kxi5h i(a1a†), where the Lamb-Dicke parameterh i repre-
sents the ratio between the ionic excursions within the vib
tional ground-state wave function and the wavelength of
exciting radiation. In Eq.~3! we have assumed that the las
is close to a sidebandv'veg6n for a single vibrational
mode, and that we may neglect the contribution from
other vibrational modes. We tune the lasers close to
02231
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center-of-mass vibrational mode where all ions particip
equally in the vibration, so that the coupling of the recoil
the vibration is identical for all ions, i.e.,h i5h for all i. For
simplicity we also assume the same Rabi frequency for
ions participating in the gateV i5V. In this section we will
consider an ion trap operating in the Lamb-Dicke limit, i.
the ions are cooled to a regime with vibrational numbern
ensuring that (n11)h2!1, so that we may perform the ex
pansioneih(a1a†)'11 ih(a1a†).

A. Weak-field coupling

In a previous paper@5# we assumed that two ions in th
string were both illuminated with two lasers of opposite d
tunings v2veg56d. With this choice of laser detuning
the only energy conserving transitions are fromuggn& to
ueen& and from ugen& to uegn&, where n is the quantum
number for the relevant vibrational mode of the trap; cf F
1. We considered the weak-field regimehV!n2d, where
only a negligible population is transfered to the intermedi
levels with vibrational quantum numbersn61. In this re-
gime the effective Rabi frequencyṼ for the transition from
uggn& to ueen& may be determined in second-order perturb
tion theory,

Ṽ52(
m

^eenuHintum&^muHintuggn&
Em2~Eggn1vm!

52
~Vh!2

n2d
, ~4!

where we have used the intermediate statesum&5uegn61&
and ugen61&, and wherevm is the frequency of the lase
exciting the intermediate stateum&. For the transition from
uegn& to ugen&, we obtain the same effective Rabi fre
quency.

The remarkable feature in Eq.~4! is that it contains no
dependence on the vibrational quantum numbern. This is
due to interference between the paths shown in Fig. 1. If
take a path where an intermediate state with vibratio
quantum numbern11 is excited, we have a factor ofn11
appearing in the numerator (An11 from raising andAn11
from lowering the vibrational quantum number!. In paths
involving the vibrational staten21, we obtain a factor ofn.
Due to the opposite detunings, the denominators have op
site signs, and then dependence disappears when the t
terms are subtracted. The coherent evolution of the inte

FIG. 1. Energy-level diagram for two ions with quantized vibr
tional motion illuminated with bichromatic light. The only resona
transitions are fromuggn& to ueen& ~left! and fromuegn& to ugen&
~right!. Various transition paths involving intermediate states with
vibrational numbern differing by unity are identified.
1-2
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ENTANGLEMENT AND QUANTUM COMPUTATION WITH . . . PHYSICAL REVIEW A 62 022311
atomic state is thus insensitive to the vibrational quant
numbers, and it may be observed with ions in any super
sition or mixture of vibrational states. The coherent evolut
may even be seen if the vibrational quantum numben
changes during the gate due to heating@5#.

B. General field coupling

We now consider the interaction without restricting t
parameters to a regime where no population is transfere
states with differentn. For this purpose it is convenient t
change to the interaction picture with respect toH0. In the
Lamb-Dicke limit, with lasers detuned by6d, the Hamil-
tonian becomes

H int52VJx cosdt2A2hVJy@x„cos~n2d!t1cos~n1d!t…

1p„sin~n2d!t1sin~n1d!t…#, ~5!

where we have introduced the dimensionless position
momentum operators,x5(1/A2)(a1a†) andp5( i /A2)(a†

2a), and the collective spin operators discussed above
~2!.

Choosing not too strong laser intensitiesV!d, and tun-
ing close to the sidebandsn2d!d, we may neglect theJx
term and the terms oscillating at frequencyn1d in Eq. ~5!,
and our interaction is a special case of the Hamiltonian:

H int5 f ~ t !Jyx1g~ t !Jyp. ~6!

The exact propagator for Hamiltonian~6! may be represente
by the ansatz

U~ t !5e2 iA(t)Jy
2
e2 iF (t)Jyxe2 iG(t)Jyp, ~7!

and the Schro¨dinger equationi (d/dt)U(t)5H intU(t) then
leads to the expressions

F~ t !5E
0

t

f ~ t8!dt8,

G~ t !5E
0

t

g~ t8!dt8, ~8!

A~ t !52E
0

t

F~ t8!g~ t8!dt8.

FIG. 2. The paths traversed in phase space and the functionA(t)
in Milburn’s proposal~rectangle! and in our proposal~circle!.
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With f (t)52A2hV cos(n2d)t and g(t)52A2hV sin(n
2d)t, following from Eq. ~5!, we obtain

F~ t !52
A2hV

n2d
sin„~n2d!t…,

G~ t !52
A2hV

n2d
@12cos„~n2d!t…#, ~9!

A~ t !52
h2V2

n2d F t2
1

2~n2d!
sin„2~n2d!t…G .

In the xp phase space the operatorU performs translations
(x,p)→„x1JyG(t),p2JyF(t)… entangled with the interna
state of the ions.

Apart from a change of basis fromJz to Jy , the interac-
tion considered by Milburn@7# may also be put in this form
with f (t) andg(t) alternating between zero and nonvanis
ing constants. Within the present formulation, the trick
Ref. @7# is to use functionsf (t) andg(t) such thatF(t) and
G(t) both vanish after a periodt. At this instant the vibra-
tional motion is returned to its original state, and the prop

gator reduces toU(t)5e2 iA(t)Jy
2
, i.e., we are left with an

internal state evolution which is independent of the exter
vibrational state. This decoupling is possible because the
fective internal state transition is completed in the sa
amount of time for all vibrational components and becau
the ac Stark shift of the atomic levels due to the laser fie
are independent of the value ofn. In the weak field case
these properties are ensured by the interfering coupling
plitude in Fig. 1; see the detailed discussion in Ref.@5#. In
the general case it follow from the formal structure of E
~7!. According to Eq.~8! the acquired factorA(t) is equal to
the area swept by the line segment between„G(t),0… and
„G(t),2F(t)…, as shown in Fig. 2. If„G(t),2F(t)… forms a
closed path,A(t) is plus~minus! the enclosed area if the pat
is traversed in the~counter! clockwise direction. In the pro-
posal by Milburn successive constant Hamiltonians prop
tional to x and p are applied and the area enclosed
„G(t),2F(t)… is rectangular. In our proposal the area is
circle of radiusA2JyhV/(n2d), as illustrated in Fig. 2.

With the propagator in Eq.~7! we may calculate the time
evolution of the system. Suppose that the ions are initially
the internal ground state and an incoherent mixture of vib
tional state as described by the density matrixr tot

5(nPnug•••gn&^g•••gnu. The time evolution of the
internal state density operatorr5Trn(r tot) with any
number of ionsN may be found fromra1 . . . aN ,b1 . . . bN

(t)

5(nPn^g•••gnuU†(t)ub1•••bN&^a1•••aNuU(t)ug•••gn&
(aj ,bj5e or g), where we have used(nun&^nu51 to re-
move one of the summations over vibrational states. Here
list the relevant density matrix elements for the case of t
ions N52:
1-3
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rgg,gg5(
n

PnF3

8
1

1

2
e2[F(t)21G(t)2]/4

3LnS F~ t !21G~ t !2

2 D cosS A~ t !1
1

2
F~ t !G~ t ! D

1
1

8
e2(F(t)21G(t)2)Ln@2„F~ t !21G~ t !2

…#G ,
ree,ee5(

n
PnF3

8
2

1

2
e2[F(t)21G(t)2]/4

3LnS F~ t !21G~ t !2

2 D cosS A~ t !1
1

2
F~ t !G~ t ! D

1
1

8
e2„F(t)21G(t)2

…Ln@2„F~ t !21G~ t !2
…#G , ~10!

rgg,ee5(
n

PnF1

8
$12e2„F(t)21G(t)2

…Ln@2„F~ t !21G~ t !2
…#%

2
i

2
e2[F(t)21G(t)2]/4LnS F~ t !21G~ t !2

2 D
3sinS A~ t !1

1

2
F~ t !G~ t ! D G ,

whereLn is thenth-order Laguerre polynomium.
These expressions can be evaluated in different regim

In the weak-field regimehV!n2d, thexp phase-space tra
jectory is a very small circle, which is traversed seve
times. F(t) and G(t) are negligible for all times, and
e2 iF (t)Jyxe2 iG(t)Jyp is approximately unity, such that we hav
an internal state preparation which is disentangled from
vibrational motion throughout the gate. SinceA(t)
'2h2V2t/(n2d) if ( n2d)t@1 the time evolution corre-
sponds to the one obtained from an effective Hamilton
H5ṼJy

2 , and Eq.~10! describes simple Rabi oscillation
between the statesugg& and uee&. This is demonstrated in
Fig. 3~a!, which shows the time evolution described by E
~10!. The curves show sinusoidal Rabi oscillation fromugg&
to uee& superimposed by small oscillations due to the we
entanglement with the vibrational motion.

Outside the weak-field regime the internal state is stron
entangled with the vibrational motion in the course of t
gate. For successful gate operation we have to ensure tha
return to the initial vibrational state at the end of the gate
choosing parameters such thatG(t)5F(t)50, correspond-
ing to (n2d)t5K2p, whereK is an integer. A maximally
entangled state is created if we adjust our parameters so
A(t)52p/2. This is achieved if the parameters are chos
in accordance with

hV

n2d
5

1

2AK
, K51,2,3, . . . . ~11!

By choosing a low value ofK such that an entangled state
created after a few rounds in phase space we may perfo
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faster gate than considered in the weak-field case. See
3~b!, where we have usedK52, and where a maximally
entangled state (1/A2)(ugg&2 i uee&) is created at the time
nt'250.

By combining the requirement of Eq.~11! with the con-
dition (n2d)t5K2p, we may express the time for the sta
preparation as

t5
p

hV
AK. ~12!

In order to avoid off-resonant excitations of the ions, w
must requireV2/n2!1 andh2 must be much less than unit
to fulfill the Lamb-Dicke approximation~see Secs. III A and
III B !. For a given trap and/or laser intensity, Eq.~12! sets a
bound on the speed of the gate. In Table I we give so
numerical examples for the time of the gate for some typi
experimental parameters. TheCONTROL-NOT operation,
which plays a central role in quantum computation@1#, may
be created by a combination of single-particle rotations an
bichromatic pulse with the duration described by Eq.~12!.
The single-particle operations may be performed much fa

FIG. 3. Time evolution of density-matrix elements for two ion
calculated from Eq~10!. ~a! Weak-field regime.~b! Fast gate. The
first curve@counting from above atnt'1000 in~a! andnt'130 in
~b!# representsrgg,gg , the second is the imaginary part ofrgg,ee,
the third isree,ee, and the last is the real part ofrgg,ee. The ions
are initially in the internal stateugg& and a thermal vibrational stat
with an average of two vibrational quanta. In~a! the physical pa-
rameters ared50.9n, h50.1, andV50.1n. In ~b! the physical
parameters ared50.95n, h50.1, andV50.177n. The parameters
in ~b! are chosen such that a maximally entangled state (1/A2)
3(ugg&2 i uee&) is formed at the timent'250, where the circular
path in Fig. 2 has been traversed twice.

TABLE I. The time required to create the maximally entangl
state (1/A2)(ugg•••g&2 i uee•••e&) with a Lamb-Dicke paramete
h50.1 for various trapping frequencies (n) and laser intensities
(V). The table shows the gate time if the entangled state is prep
after a single round in phase space. If the gate operation is acc
plished afterK rounds in phase space, the time should be multipl
by AK.

V

n

n

2p
5500 kHz

1 MHz 10 MHz

0.05 200ms 100ms 10ms
0.10 100ms 50ms 5 ms
0.20 50ms 25ms 2.5ms
1-4
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than the two-qubit gates, so the time required to perform
CONTROL-NOT operation is also given by Eq.~12!.

III. NONIDEAL CONDITIONS

In Sec. II, we used the Lamb-Dicke and the rotating-wa
approximations to arrive at an exactly solvable model. In t
section we perform a more detailed analysis of the validity
the approximations and we estimate the effect of deviati
from the ideal situation in an actual experiment. The gene
procedure in the section is to change to the interaction
ture with respect to the simple Hamiltonian~6!, using the
exact propagator in Eq.~7!, and to treat the small deviation
from the ideal situation by perturbation theory. The figure
merit for the performance of the gate is taken to be the
delity F of creation of the maximally entangledN-particle
state uCmax&51/A2(ugg•••g&2 i uee•••e&), which in the
ideal case is created at the time whenA(t)52p/2, if the
ions are initially in theugg•••g& state@6#, i.e.,

F5^Cmaxur int~t!uCmax&. ~13!

A. Direct coupling

Going from Eq.~5! to Eq. ~6!, we neglected a termHd
52VJxcos(dt). This term describes direct off-resonant co
pling of g ande without changes in the vibrational motion
For high laser power this term has a detrimental effect on
fidelity, which we calculate below.

Changing to the interaction picture, we may find t
propagatorUI(t) from the Dyson series,

UI~ t !512 i E
0

t

dt8Hd,I~ t8!

2E
0

tE
0

t8
dt8dt9Hd,I~ t8!Hd,I~ t9!1•••, ~14!

where the interaction Hamiltonian is given byHd,I(t)
5U†(t)Hd(t)U(t). Since Hd(t) is oscillating at a much
higher frequency than the propagatorU(t), we may treat
U(t) as a constant during the integration, and we obtain

UI~ t !512 i
2V

d
sin~dt !U†~ t !JxU~ t !

2
V2

d2
„12cos~2dt !…U†~ t !Jx

2U~ t !1•••. ~15!

Near the end point,U(t)'ei (p/2)Jy
2

and we obtain the fidelity

F'12
NV2

2d2
„12cos~2dt!…, ~16!

where N is the number of ions participating in the gat
In Fig. 4 we plot the product of the fidelity due to the carri
@Eq. ~16!# and the population of the EPR sta
(1/A2)(ugg&2 i uee&) expected from the time evolution i
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Eq. ~10!. The result agrees well with the result of a numeric
integration of the Schro¨dinger equation with Hamiltonian
~5!.

If the duration of the laser pulses can be controlled v
accurately in the experiment, so that one fulfills both E
~11! and 2dt52K8p, the effect of the direct coupling van
ishes. If one cannot perform such an accurate control, the
effect of the direct coupling is to reduce the average fide
by NV2/2d2 (50.03 for the parameters of Fig. 4!.

B. Lamb-Dicke approximation

In Sec. II we used the Lamb-Dicke approximatio
eih(a1a†)'11 ih(a1a†) to simplify our calculations. Now
we investigate the validity of this approximation.

In the weak-field case, we can use the exact matrix e
ments

^nueih(a1a†)un11&5 ih
e2h2/2

An11
Ln

1~h2!,

to obtain the effective Rabi frequency betweenuggn& and
ueen&,

Ṽn5Ṽe2h2F „Ln
1~h2!…2

n11
2
„Ln21

1 ~h2!…2

n G
'ṼF12h2~2n11!1h4S 5

4
n21

5

4
n1

1

2D G , ~17!

whereṼ is given by Eq.~4!, and whereLn
1 are the general-

ized Laguerre polynomials

Ln
a~x!5 (

m50

n

~21!mS n1a

n2mD xm

m!
. ~18!

The effective Rabi frequency is no longer independent of
vibrational quantum numbern, and the internal state be
comes entangled with the vibrational motion, resulting in
nonideal performance of the gate@9#.

FIG. 4. Population of the EPR state (1/A2)(ugg&2 i uee&) near
the optimum. The full line is obtained by a numerical integration
Hamiltonian~5! and the dashed line is the product of the express
in Eq. ~16! and the expression for the fidelity obtained from E
~10!. The parameters are the same as in Fig. 3~b!.
1-5
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To illustrate the effect of deviations from the Lamb-Dick
approximation, we consider again the production of an E
state (1/A2)(ugg&2 i uee&). With an n-dependent coupling
strength the fidelity is

F5
1

2
1

1

2 (
n50

`

Pn sin~Ṽnt !, ~19!

wherePn is the initial population of the vibrational staten.
In Fig. 5 we show the evolution of the fidelity predicted b
Eq. ~19!, and obtained by a direct integration of the fu
Hamiltonian in Eq.~3!. Due to the deviation from the Lamb
Dicke approximation, the effective Rabi frequency is r
duced@cf., Eq. ~17!#, and the optimal gate performance
achieved with a duration that is longer thanp/(2Ṽ). The
spreading of the values ofṼn , causes entanglement with th
vibrational motion which reduces the fidelity. With the p
rameters in Fig. 5, the maximally obtainable fidelity is 0.
obtained after a pulse of durationt'1.9/Ṽ.

With more than two ions, the time evolution of the syste
may be obtained by expanding the initial stateugg•••g& on
eigenstates of theJy operator:

ugg•••g&5
~2 i !N

2N/2 (
k50

N

~21!kAS N

k D uM y5N/22k&.

~20!

In the Jy basis, the propagator~7! is diagonal and in the
weak-field regime„F(t), G(t)…'0, with n-dependent cou-
pling strengths, we obtain the fidelity

F5 (
n50

`

PnU 1

2N (
k50

N S N

k D ei (N/22k)2(p/22Ṽnt)U2

. ~21!

In the limit of many ions (N@1), and near the optimum
(Ṽnt'p/2) we may approximate this expression by assu

FIG. 5. Evolution of the population of the EPR sta
(1/A2)(ugg&2 i uee&) for a vibrational thermal state with an averag
of five vibrational quanta andh50.20. The dotted line is the pre
diction from Eq.~19!, and the solid line is the result of a numeric
integration of the Hamiltonian~3! with parametersV50.02n and

d50.9n. The discrepancy between the two curves atṼt*2 is due
to additional off-resonant couplings which may be taken into
count by multiplying the coupling strength by 2n/(n1d) ~dashed
curve! @5,6#.
02231
R

-

-

ing that k is a continuous variable and by replacing the
nominal coefficient by a Gaussian distribution with the sa
width. In this limit the fidelity becomes

F5 (
n50

`

Pn

1

A11
N~N21!~p/22Ṽnt !2

4

. ~22!

Expanding this expression to lowest order inh, and adjust-
ing the pulse duration to take into account the reduction
the coupling strength, we find, to lowest order inh,

F512
p2N~N21!

8
h4 Var~n! ~23!

at the optimum time

topt5
p

2Ṽ
„11h2~2n̄11!…, ~24!

wheren̄ and Var(n) are the mean and variance of the vibr
tional quantum number.

In Eqs. ~22! and ~23! we have replaced a quantityN2

following from the Gaussian approximation to Eq.~21! by
N(N21). With this substitution Eqs.~22! and~23! describe
the fidelity well for all values ofN. With the parameters o
Fig. 5, Eq.~23! yields F50.88, which is in good agreemen
with the numerical result in the figure.

Equations~17!–~23! were derived for weak fields, bu
they also provide an accurate description of the system
side this regime. To show this we note, that with bichroma
light, H int in Eq. ~3! may be written as

H int52V cos~dt !$Jxcos@hA2„x cos~nt !1p sin~nt !…#

2Jy sin@hA2„x cos~nt !1p sin~nt !…#% ~25!

in the interaction picture with respect toH0. An expansion of
the trigonometric functions in this Hamiltonian leads to E
~5!, which formed the basis of the discussion in Sec. II. T
term proportional toJx is suppressed because it is far o
resonance. The lowest-order contribution of this term w
treated in Sec. II and we shall now consider corrections
the Jy term which may have significant effects. In the inte
action picture with respect to the lowest-order Hamiltoni
@Eq. ~6!#, x and p are changed intox1JyG(t) and p
2JyF(t), and to lowest nonvanishing order inh the interac-
tion picture Hamiltonian is

H35h3Jy

A2V

12
@cos„~n2d!t…h1~x,p!

1sin„~n2d!t…h2~x,p!#, ~26!

where

h1~x,p!53x31xp21pxp1p2x,
~27!

h2~x,p!53p31px21xpx1x2p,

-

1-6
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and where we have used thatF(t) andG(t) are proportional
to h. To calculate the effect of the Hamiltonian in Eq.~26!,
we note that the propagator

U3,int~ t !5expS F2 i
sin@~n2d!t#

n2d
h1~x,p!G D

3expS F2 i
12cos@~n2d!t#

n2d
h2~x,p!G D ~28!

is consistent with the Hamiltonian~26! until orderh5, i.e.,

i
dU3,int~ t !

dt
5„H31O~h6!…U3,int .

~But the full Hamiltonian contains terms of orderh4 andh5,
which are not taken into account inU3,int . These terms are
included below.! We are interested in the propagator at tim
t5K2p/(n2d) where the vibrational motion is returned
the initial state. At these instants the exponents in Eq.~28!
vanish, and the propagator reduces toU3(t)51 such that it
has no influence on the internal state preparation.

Expanding the Hamiltonian to orderh6 we obtain the
propagator to the same order inh in the interaction picture
with respect toH0 in Eq. ~3!:

U6~t!5expH 2 i ṼtJy
2F12h2~2n11!

1h4S 5

4
n21

5

4
n1

1

2D G J
3expS ih5Jy

3
A8V3

~n2d!2
xt D

3expS 2 ih6Jy
4 5V4

2~n2d!3
t D , ~29!

valid at timest5K2p/(n2d). The first exponential pro-
vides the time evolution with the modified effective Ra
frequency in Eq.~17!. If we evaluate propagator~29! in the
weak-field regime, the last two exponentials both vanish
the limit of largeK when requirement~11! is inserted, and
the time evolution in Eq.~29! is consistent with Eqs.~17!–
~23!. The last two exponentials are also of minor importan
for a different reason: In Eq.~17!, h2 appears in the combi
nation h2n, whereas it appears ash2 in the last two expo-
nentials of Eq.~29! when condition~11! is inserted. In situ-
ations where deviations from the Lamb-Dicke approximat
are important,h2n;1, the deviation is typically caused by
high value ofn rather than a large value ofh (h2!1). In this
case one may neglect the last two exponentials, and the
fect of the non-Lamb-Dicke terms are the same as in the c
of weak fields as described by Eqs.~17!–~23!. To achieve
the optimum operation of the gate with the parameters
Fig. 5, we have to ensureṼt'1.9, and there is a sma
correction to the condition in Eq.~11!.
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IV. EXTERNAL DISTURBANCES

So far we have considered a system described by Ha
tonian ~3!, where only the center-of-mass motion is prese
in the ion trap, and where the coupling of this mode to t
surroundings is neglible. In this section we shall remo
these two assumptions, and consider the decrease in fid
due to the presence of other modes in the trap and du
heating of the center-of-mass vibrational motion.

A. Spectator vibrational modes

With N ions in the trap, the motional state is described
3N nondegenerate vibrational modes. With a proper la
geometry or if the transverse potential is much steeper t
the longitudinal potential, the coupling of the laser to tran
verse modes will be neglible, and the only contribution
from the N longitudinal modes. WithN vibrational modes
the ion trap may be described by the Hamiltonian

H5H01H int ,

H05(
l 51

N

n l~al
†al11/2!1veg(

i
szi/2, ~30!

H int5(
i 51

N
V i

2
~s1 ie

i „( l 51
N h i ,l (al1al

†)2vt…1H.c.!,

wheren l andal
† andal are the frequency and ladder oper

tors of thel th mode. The excursion of thei th ion in thel th
mode is described by the Lamb-Dicke parameterh i ,l , which
may be represented ash i ,l5h(ANbi

l /An l /n), whereh andn
refer to the center-of-mass mode as in the previous secti

and wherebi
l obeys the orthogonality conditions( i 51

N bi
lbi

l 8

5d l ,l 8 and( l 51
N bi

lbi 8
l

5d i ,i 8 @10#.
The center-of-mass mode (l 51), which is used to create

the entangled states of the ions, hasbi
151/AN for all ions,

and is well isolated from the remaningN21 vibrational
modesn l .1>A3n, so that we could neglect the contributio
from the other modes in the previous sections. In this sec
we shall extimate the effect of the presence of the spect
modes. They have both a direct effect, due to the off reson
coupling to the other modes, and an indirect ‘‘Deby
Waller’’ effect @11# because the coupling strength of th
center-of-mass mode is reduced due to the oscilations in
spectator modes. Below we shall calculate the direct
indirect effects separately.

The lowest-order contribution of the direct coupling to t
spectator modes may be found by expanding the expon
tials as in Eq.~5!,

H int52VJx cosdt1(
l 51

N

Q l@xl f l~ t !1plgl~ t !#, ~31!

where f l(t)52A2hVAn/n l@cos(nl2d)t1cos(nl1d)t# and
gl(t)52A2hVAn/n l@sin(nl2d)t1sin(nl1d)t#, and where
the internal and external state operators are defined byQ l

5AN( i 50
N bi

l j y,i and xl5(1/A2)(al1al
†) and pl5( i /A2)
1-7
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3(al
†2al). Since the ladder operators for different mod

commute, we may find the propagator for this Hamiltoni
using the steps that lead to Eq.~7!:

U~ t !5)
l 51

N

Ul~ t !, ~32!

where

Ul~ t !5e2 iAl (t)Q l
2
e2 iF l (t)Q l xle2 iGl (t)Q l pl, ~33!

with the functionsFl , Gl , andAl defined analogously to Eq
~8!. Note that this is an exact solution of Hamiltonian~31!
without the Jx term, so that to lowest order in the Lamb
Dicke parameter it includes all effects of the coupling to t
other modes.

From the definition ofQ l it is seen thatQ15Jy and the
propagatorU1 reduces to Eq.~7! in the rotating-wave ap-
proximation. The otherN21 propagators in Eq.~32! cause a
reduction of the fidelity due to the excursion into thexlpl
phase space of these modes. Expanding the exponen
using^gg•••guQ lQ l 8ugg•••g&5d l ,l 8N/4 andd'n, and av-
eraging over time we find

F512h2N
V2

n2 (
l 52

N
n

n l
~2n̄l11!

n l
2/n211

~n l
2/n221!2

, ~34!

wheren̄l is the mean vibrational excitation of thel th mode.
In addition to the direct coupling to the spectator vibr

tional mode, the fidelity is also reduced because the coup
strength is dependent on the vibration of the other mod
Unlike the direct coupling discussed above, this effect is
suppressed by the other modes being far off-resonant, a
may have an effect comparable to the direct coupling.

Due to the vibration of the ions, the couplin
of the i th ion to the sideband is reduced fro

ihAn11 to ^n1n2•••nNuei ( l 51
N h i ,l (al1al

†)un111n2•••nN&
' ihAn11„12( l 51

N h i ,l
2 (nl11/2)…. With this reduced cou-

pling strength the effective propagator at timest5K2p/(n
2d) may be described by

U~t!5e2 iA(t)L2
, ~35!

where L5( i 51
N j y,i„12( l 51

N h i ,l
2 (nl11/2)…. In the Cirac-

Zoller scheme@4#, then-dependent ac Stark shifts caused
coupling to other vibrational modes lead to decoherence,
less these modes are cooled to the ground state. In
bichromatic scheme, these internal state level shifts dep
much less on the vibrational excitation. By expanding E
~35! around the optimumA(t)'p/2, we calculate the
lowest-order reduction in the fidelity:
02231
ls,

-
g
s.
t
it

n-
ur
nd
.

F512
p2N~N21!

8
h4(

l 51

N
Var~nl !

~n l /n!2

2
p2~N22!

16
h4 (

i ,l ,l 851

N
~bi

l !2~bi
l 8!221/N2

n ln l 8 /n2
nlnl 8 .̄

~36!

The expressions in Eqs.~34! and~36! may be simplified if
the vibrational motion is in a thermal equilibrium at a give
temperature. In a thermal state Var(nl)5n̄l

21n̄l , nlnl 8
¯

5n̄l n̄l 8 for lÞ l 8, and n̄l<n̄1n/n l , and using these expres
sions we find the lower estimate for the fidelity,

F>12h2N
V2

n2
„n̄1s1~N!1s2~N!… ~37!

for the direct coupling@Eq. ~34!#, and

F>12
p2N~N21!

8
h4

„n̄1
2s3~N!1n̄1s4~N!…

2
p2~N22!

16
h4

„n̄1
2s5~N!1n̄1s6~N!… ~38!

for the Debye-Waller coupling@Eq. ~36!#, where the sums
s1•••s6 may be derived from Eqs.~34! and ~36!. For ex-
amples3(N)5( l 51

N (n4/n l
4). With the mode functions and

frequencies of Ref.@10#, these sums are readily evaluate
and the results are shown in Fig. 6. From the figure it is s
that s5 ,s6!s3 ,s4, so that the last term in Eq.~38! may be
neglected. All the sums have a very rapid convergence,
we may estimate the fidelity by replacing the sums with th
largeN values, i.e.,

F>12h2N
V2

n2
0.8~ n̄111! ~39!

for the direct coupling@Eq. ~34!# and

FIG. 6. Evaluation of the sumss1•••s6 for different number of
ions N. Starting from above atN'5 the curves represents4 , s3 ,
s1 , s2 , s6, ands5.
1-8
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F>12
p2N~N21!

8
h4~1.2n̄1

211.4n̄1! ~40!

for the Debye-Waller coupling@Eq. ~36!#.
We note that Eq.~40! is derived from terms beyond th

Lamb-Dicke expansion, and it incorporates the reduction
fidelity due to deviations from the Lamb-Dicke approxim
tion in the center of mass mode, cf. the formal similarity
Eqs.~40! and ~23!.

B. Heating of the vibrational motion

An ion trap cannot be perfectly isolated, and the vibrat
of the ions will be subject to heating due to the interact
with the environment. Relaxation due to the interaction
tween the vibration and a thermal reservoir may be descr
by the master equation

d

dt
r52 i @H,r#1L~r!, ~41!

whereL(r) is of the Lindblad form,

L~r!52
1

2 (
m

~Cm
† Cmr1rCm

† Cm!1(
m

CmrCm
† ,

~42!

with relaxation operators C15AG(11nth)a and C2

5AG(nth)a†, whereG characterizes the strength of the i
teraction, andnth is the mean vibrational number in therm
equilibrium.

We calculate the effect of heating assuming that the i
remain in the Lamb-Dicke limit. Changing to the interactio
picture with respect to Hamiltonian~6!, the time evolution of
r is entirely due to the heating, i.e., the Lindblad term
which are transformed using propagator~7!:

C̃15U†C1U5AG~11nth! S a1Jy

G~ t !2 iF ~ t !

A2
D ,

~43!

C̃25U†C2U5AGnth S a†1Jy

G~ t !1 iF ~ t !

A2
D .

The density matrix is most conveniently expressed in
basis ofJy eigenstates, and by tracing over the vibration
states we find the time derivative of the internal state den
matrix in the interaction picture:

d

dt
rMy ,M

y8
52~M y2M y8!2G~112nth!

3
G~ t !21F~ t !2

4
rMy ,M

y8
. ~44!

This equation is readily integrated, and at timest
5K2p/(n2d) we obtain
02231
f

f

n

-
d

s
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rMy ,M
y8
~t!5rMy ,M

y8
~0!expS 2~M y2M y8!2

G~112nth!

4K
t D .

~45!

The initial state is expanded on theJy eigenstates as in Eq
~20!, and the population of the initial state~which is ideally
constant in the interaction picture! equals

F5
1

22N (
j 50

N

(
k50

N S N

j D S N

k D expS 2~ j 2k!2
G~112nth!

4K
t D .

~46!

For two ions this expressions can be readily evaluated:

F5
3

8
1

1

2
expS 2

G~112nth!

4K
t D

1
1

8
expS 24

G~112nth!

4K
t D . ~47!

In the limit of many ions (N@1) and short times (@G(1
12nth)/4K#t!1), we may again approximate the expre
sion in Eq. ~46! by assuming thatj and k are continuous
variables, and by replacing the binomial coefficients
Gaussian distributions with the same width. In this limit t
fidelity becomes

F5
1

A11N
G~112nth!

4K
t

. ~48!

For two ions the deviation between Eqs.~47! and~48! is less
than 0.02 for all values ofF larger than 0.5.

In the above expressions we have assumed the La
Dicke approximation. This corresponds to a situation wh
the heating is counteracted, for example by laser cooling
some ions reserved for this purpose. If the ions are
cooled the heating will proceed toward high vibrational nu
bers with a heating rateGnth , and the heating will eventually
take the ions out of the Lamb-Dicke limit. With strong field
(K;1) the reduction in the fidelity described by Eq.~48!
will ruin the entangled state before the heating has mad
significant change to the vibrational state (Gntht*1). For
weak fields (K@1), however, the situation is different. Wit
weak fields one may produce an entangled state even tho
the time required to entangle the ions is much longer than
decoherence time of the vibrational motion which is used
communicate between the ions, i.e., ifK.NGntht the effect
of heating is small even though the change in the aver
vibrational numberGntht is larger than unity@5,6#. Since the
effective Rabi frequency has a small dependence on the
brational quantum numbern, as described in Eq.~17! the
heating will have an indirect effect on the internal sta
preparation. This can be modeled by changing the proba
ties in Eqs.~19!, ~21!, and ~22! into time-dependent func
tions Pn(t) reflecting the change in the vibrational motio
occurring during the internal state preparation.
1-9
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TABLE II. Creation of entangled states ofN ions (1/A2)(ugg•••g&2 i uee•••e&) by interaction with a bichromatic field@Eq. ~5!# H int

52VJx cosdt2A2hVJy@x„cos(n2d)t1cos(n1d)t…1p„sin(n2d)t1sin(n1d)t…# obeyinghV/(n2d)51/2AK, K51,2,3, . . . , and for a du-
ration t52pK/(n2d). The fidelity of the preparation is reduced by various causes listed in the table.

Heating of the vibration
toward vibrational

Cause of Direct off-resonant Deviations from numbernth with
deviation coupling Lamb-Dicke Spectator vibrational modes rateGnth

Jx term in Eq.~5! ^nueih(a1a†)un11& ~i! Direct coupling ~ii ! Debye-Waller

to other modes
Þ ihAn11

12F NV2

2d2 h4 p2N(N21)
8

Var(n1) N
h2V2

n2 0.8(n̄111)
h4 p2N(N21)

8
3(0.2n̄1

210.4n̄1)
N

G~112nth!t

8K

Equation ~16! ~23! ~39! ~40! minus ~23! ~48!
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V. CONCLUSION

In this paper we have evaluated the possibility for pre
ration of entangled states of ions by illumination with bichr
matic light. We have identified two regimes:~i! a weak-field
regime where single-photon absorption is suppressed
where two-photon processes interfere in a way that ma
the internal state dynamics insensitive to the vibratio
state, and~ii ! a strong-field regime where the individual ion
are coherently excited and the motional state is highly
tangled with the internal state until all undesirable exci
tions are deterministically removed toward the end of
interaction.

We have presented analytical estimates for the fidelity
the internal state preparation. These expressions are sum
rized in Table II. The expressions for the fidelity may
readily applied to experimental parameters and they sh
that several ion trap experiments today are in a position
apply our proposal directly. In fact, using our proposal t
NIST group at Boulder has been able to produce the m
mally entangled state (1/A2)(ugggg&2 i ueeee&) with four
ions @12#. In this experiment the heating of the center-o
mass mode was so strong that this mode could not be us
communicate between the ions. Instead the experiment
an asymmetric mode where all ions have the same ampli
but a different sign, i.e.,uh i u are the same for all ionsi. Apart
from the center-of-mass mode such modes only exist in
traps containing two or four ions, and the experiment co
not go beyound four ions. In other existing traps the heat
is much less significant@13#, and these traps may be em
r-
er
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ployed to produce entangled states with more particles.
The use of ancillary degrees of freedom~center-of-mass

position and momentum! to communicate between two o
more quantum systems is a key ingredient of quantum in
mation processing. The algebraic property@Eq. ~2!# which
allows coupling and temporary entanglement with such
ancilla may find wide applications in many different system
for quantum computation with different ancillae~photons,
phonons, Cooper pairs, etc.!. However, operators with a con
stant non-vanishing commutator@which allows the formal
step from Eq. ~1! to Eq. ~2!# only exist in infinite-
dimensional Hilbert spaces@14#. In addition to the imple-
mentation in cavity QED realizations of quantum computi
@15–17#, where quantized cavity fields play the role of th
vibrational modes, it thus seems very relevant to investig
to what extent the ideas underlying Eq.~2! can be general-
ized to ancillae with a finite number of states and, e.g.,
communication across a linear qubit register by only near
neighbor interaction.
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