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Quantum computers have wide-ranging potential applications, many of which

will require thousands or even millions of quantum bits to be useful. Current state-

of-the-art universal quantum computers, on the other hand, contain only several tens

of qubits, and scaling to larger system sizes remains one of the primary challenges.

Among current quantum computing platforms, trapped ions are a leading hardware

option. One proposal for scaling such systems consists of a modular architecture.

The architecture consists of multiple nodes, each with an ion trap containing a

communication qubit (138Ba+) and a memory qubit (171Yb+). The communication

qubit is responsible for generating photons that link the remote nodes together via

entanglement swapping while the memory qubits are used for storing information

and performing local computations. We report progress towards demonstration

of the remote entanglement of two barium ions. The creation of this link is a

probabilistic process and fails much more often than it succeeds. The success rate

does not impact the fidelity of the resulting entangled state but imposes significant



constraints on the utility of this protocol. We examine the current limitations on

both the fidelity of the resulting entangled state and the success probability.

In addition to the two-node experiment, we have designed and built a new

ion trap system that should yield much higher photon collection rates. This design

represents a significant shift from previous systems because of the inclusion of optical

elements inside the vacuum chamber and their resulting proximity to the ions. We

incorporate two objective lenses with a numerical aperture of 0.8, each of which

can collect twice as much light as the objectives used for the remote entanglement

experiment. We present preliminary results characterizing the performance of this

system and discuss how it could be incorporated into a three-node network, which

has not yet been demonstrated using trapped ions.
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Chapter 1: Introduction

1.1 Quantum Computing Background

Spurred on by a myriad of possible applications beginning with Shor’s factor-

ing algorithm [1], quantum computing has progressed dramatically in the last few

decades. General proposals [2, 3] gave way to more specific implementations [4]

and finally recent claims of quantum computers outperforming classical computers

[5]. Quantum computing relies on two uniquely quantum properties: the ability to

form superposition states and the correlations of the states of multiple quantum bits

(qubits) beyond what is possible in a classical system. Intuitively, we can begin to

understand the potential of a quantum computer by noting that for a system with

N qubits, 2N (complex) numbers are required to describe the full state of all of the

qubits. Unlike this exponential growth, the amount of information that classical

computers can store, grows linearly with the number of bits. Therefore, simulating

quantum systems with classical computers rapidly becomes infeasible as the system

size grows. To date, a system of 56 qubits has been simulated on a classical computer

[6], but this simulation required several terabytes of classical data. To calculate the

state of 400 qubits, a classical computer with more bits than the number of particles

in the universe would be required.

1



As mentioned above, Shor’s algorithm was one of the first practical uses of a

quantum computer proposed, but others have followed. These applications include

optimization problems [7], quantum chemistry [8], and simulations of more compli-

cated quantum systems [9]. Several of these applications have been experimentally

demonstrated on a small scale, such as in [10] and [11]. However, the full practical

capabilities of quantum computers will likely require millions of qubits [12]. The

largest current universal quantum computers, however, contain approximately 50

qubits at most. In part, this limitation is due to limited fidelities of quantum op-

erations and the sensitivity of quantum systems to noise, but it is also partially a

result of the difficulty of linking many qubits together.

1.2 Trapped Ion Quantum Computers and Networks

There has been progress toward building a quantum computer on many differ-

ent quantum hardware platforms such as neutral and charged atoms, superconduc-

tors, NV centers in diamond, and others [13]. Trapped ions and superconductors

are the two most advanced platforms, and each have their own advantages. Trapped

ions have the longest coherence times [14], highest single-qubit [15] and two-qubit

[16] gate fidelities (99.9999% and 99.92% respectively), and natural all-to-all con-

nectivity. Superconductors, on the other hand, have much shorter gate times than

trapped ions [17] and do not require lasers for control. While contributions using

each platform have been made to the field, we focus on trapped ions in this thesis.

In small systems, trapped ions have been shown to have extremely high per-

2



formance in all operations. As stated above, they have the highest single-qubit

and two-qubit gate fidelities along with the longest coherence times of any qubit

yet demonstrated. Additionally, state preparation and readout with fidelities of

> 99.9% have been achieved [15, 18]. As with many other quibt platforms, the main

limitation of trapped ion systems to date is scaling beyond a few tens of qubits. If all

of the ions are arranged in a single crystal, some of the motional modes will become

increasingly close together in frequency as the chain length increases [19]. These

modes are of central importance to entangling operations within a crystal, and this

“spectral crowding” will require longer gate times to achieve the same fidelity. Gate

times also increase in time proportional to
√
N due to the increased total mass of

the chain, where N is the number of ions in the chain [20]. Additionally, longer

chains will result in faster heating of the ions, which will hurt the gate fidelities [21].

We can consider these successes and challenges in the framework of the DiVin-

cenzo criteria, the first five of which are required for a universal quantum computer

[22]:

1. The system must be scalable and consist of qubits whose properties are well

understood.

2. It must be possible to prepare the qubits in a simple initial state.

3. The coherence time of the qubit must be much longer than the time to perform

gates.

4. A universal gate set must be possible.

3



5. The state of each qubit can be independently measured.

6. Transferring information between stationary and flying qubits is possible (not

required, but preferable).

7. If flying qubits are involved, it is important that they maintain their informa-

tion as they propagate from one location to another.

The second through fourth criteria have clearly already been demonstrated,

with the third satisfied, for example, by a combination of our native XX gates and

single qubit rotations [23]. For the first criterion, the possibility of scaling is not

fundamentally limited, but it is technically challenging. The qubit properties are

very well understood, however. The sixth and seventh criteria are requirements

for quantum communication, not computing, but they are related to the work we

perform in this thesis.

One possible solution to the issue of scaling is the quantum charge-coupled

device (QCCD) architecture proposed in [24] and demonstrated in [25]. This ar-

chitecture requires an ion trap with multiple zones, each with a small ion crystal.

The ions can be shuttled between zones to interact temporarily without suffering

the negative consequences of adding more ions to a single chain. Utilizing this ar-

chitecture, it will likely be possible to significantly increase the number of ions in

a single trap, but there is substantial overhead involved with moving the ions. A

single such trap also likely will not be able to contain millions of ions [26].

An alternative approach, as proposed in [20, 27], is the use of photons to con-

nect multiple relatively small ion traps, each of which contains all the functionality
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Figure 1.1: Architecture for a modular quantum computer with photonic links. The
figure is from [27]. Photonic links connect many small ion traps through a recon-
figurable optical switch so that any pair of traps may be connected. The switch is
followed by beam splitters in which photons from each path will interfere to become
entangled. The arrival of a photon on the detector array heralds entanglement.

of a universal quantum computer. A schematic of this modular quantum computing

architecture is shown in Fig. 1.1. Ideally, each of the small ion trap modules would

be identical and easily replicable. Each trap contains a communication qubit that

generates photons carrying quantum information that can be used to link multiple

traps remotely (see Chapter 6 for more details) and a memory qubit for storing

information and performing local computations. For the photonic link, the photon

qubit must be entangled with the communication qubit.

Photonic transmission is inherently lossy and as such may appear to be a

poor link between ion traps. However, probabilistic entanglement generation is

acceptable as long as we know when the entanglement attempt has been successful.
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In our case, successful detection of two photons, one from each of two of the ion

trap modules, on appropriate detectors will indicate that we have succeeded in

generating entanglement between the modules. This approach is known as heralding

and ensures the fidelity of our entanglement is not harmed due to photon loss.

Probabilistic entanglement will, however, require many trials to succeed.

Since it is unlikely that remote entanglement generation will have either a

higher rate or a higher fidelity than local operations, we want to be able to perform

local computations as well. Additionally, one of the major advantages of ions is

the fact that all ions in a trap can interact via their collective motion, which would

not be the case for the photonic links [28]. Therefore, each ion trap module will

also have some number of computational or memory qubits, which are used for

performing local operations and storing memory. The photon generation protocol

must not disturb this stored information. As a result, we find that it is essential to

use different species of ions for the communication and memory qubits. In our case,

we use 138Ba+ as our communication qubit and 171Yb+ as our memory qubit. The

atomic structure of 171Yb+ naturally yields long qubit coherence times. Barium ions,

on the other hand, have the reddest photon emission on the primary transition to

the ground state of any commonly trapped ion, which increases compatibility with

fiber optic technology, and a fairly similar mass to ytterbium. This second factor is

important for local entangling operations, as will be discussed in Chapter 8. The

properties of these ions will be detailed in Chapter 3.

In this thesis, we demonstrate high-fidelity entanglement of a communication

qubit with a photonic qubit. We also discuss progress toward demonstrating entan-
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glement between two modules. Together, these two steps satisfy DiVincenzo’s sixth

and seventh criteria. Thus, this architecture serves not only as a quantum computer

but also as a system capable of quantum communication. Quantum communication

in and of itself has many applications since it is more secure than classical com-

munication because quantum information cannot be copied without affecting the

transmitted state [29]. Multiple protocols for quantum communication that are

provably secure have been proposed [30, 31].

The main limitation with the modular architecture approach to scaling is the

rates we can achieve for the remote entanglement generation. Recent work has

demonstrated a large improvement in the achievable rates with Sr+ as the commu-

nication qubit [32], and we anticipate rates that are not quite as high as those but

much higher than the previous results from our group [33]. Nonetheless, the time

to generate entanglement for both of these results will be approximately 10 ms. For

comparison, the time that it takes to perform a local entangling gate is approxi-

mately 100 µs. Much of the work discussed in this thesis was devoted to improving

those rates with a redesigned experimental system. In the new trap, we place the

objectives inside the vacuum chamber and only 6 mm from the ion, enabling us to

collect a much larger fraction of the light the ion releases.

So far, there has not been any demonstration of a trapped ion modular quan-

tum computer with more than two nodes. Not only is moving to more than two

nodes a critical element of demonstrating the true scalability of this architecture,

but the scientific problems that can be explored with tripartite entanglement are

also significantly broader than what is possible with two traps [34]. For example,
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with three qubits, there are two classes of maximally entangled states–the GHZ

and W states–with fundamentally different properties. Each of these states cannot

be translated into the other with only local operations and classical communica-

tion (LOCC) [35]. With a three-node network, we could explore the properties of

these states. Additionally, we could perform experiments with differing types of

nonlocality such as the bilocal and triangle configurations [36].

We now have three fully functional ion traps in our lab and all of the build-

ing blocks necessary to link together the three traps. To our knowledge, the only

demonstration of a three-node network with memories to date has utilized NV cen-

ters in diamond [37]. We hope to follow up on this result with a demonstration of

a trapped ion network with three nodes in the near future.

1.2.1 Experimental Apparatus

As mentioned above, our lab contains three vacuum chambers, which can be

linked together to form a quantum network. Throughout this work, we will refer to

the first chamber as Alice, the second as Bob, and the third as Cleo. Alice and Bob

have nearly identical designs with regards to the ion traps they contain and the lenses

they use for collecting the photons for remote entanglement. Most importantly, the

lenses used are out-of-vacuum multi-element objectives with a numerical aperture

(NA) of 0.6. Cleo, on the other hand, contains in-vacuum aspheric lenses with an

NA of 0.8, which should allow for significantly more light collection. The three

vacuum chambers are shown in Fig. 1.2.
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Figure 1.2: Pictures of Alice, Bob, and Cleo. (a) Photograph of Alice and its
surrounding optics. (b) Photograph of Bob and its surrounding optics. The large
black tube above the vacuum chamber contains the NA 0.6 lens. (c) Photograph of
Cleo during construction from a top-down perspective. One of the aspheric lenses
is visible in the white holder.

1.3 Thesis Outline

In this thesis, we report progress toward demonstration of a two-node quantum

computer using 138Ba+. We present significant improvements in the fidelity of the

ion-photon entanglement and rates compared with previous work from our lab.

Additionally, we have designed, built, and begun testing a redesigned ion trap system

that should enable much higher rates of remote entanglement generation and can

serve as a third node in an ion trap quantum network.

Chapter 2: Theory of Trapped Ion-Laser Interactions: In this chapter, we

present the theoretical background behind the interactions of laser light with our

ions and the necessary operations on our ions.
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Chapter 3: Operations with Ytterbium and Barium Ions: We detail the

atomic structure and relevant quantum operations for both 171Yb+ and 138Ba+ ions.

The discussion of 138Ba+ includes novel theoretical simulations of our state prepa-

ration protocol.

Chapter 4: RF Paul Traps: We discuss the theoretical basis of the RF Paul

traps that we use to trap our ions as well as the design of our new trap. Also, we

present some experimental optimization and characterization techniques.

Chapter 5: Experimental Design: This thesis as a whole focuses on improving

the photonic links between traps for remote entanglement, so we first provide a

detailed discussion of the optics we use for collecting these photons in our first two

traps. This discussion serves as a motivation for the design of our third trap, which

comprises the rest of the chapter. We present the details of the design of both the

optical system and vacuum chamber and the reasoning for the choices we made in

its development. We also present our tests of this system to characterize both the

optics and the ion trap, since the close proximity of the lenses to the ion could have

a negative impact on the trap performance.

Chapter 6: Remote Entanglement of 138Ba+: In this chapter, we discuss

the remote entanglement of two barium ions in separate traps. While the results

presented are preliminary, we provide a thorough examination of the possible limita-

tions to both the rate and fidelity with a focus on the fact that our implementation

of the system is the first that will perform the photonic interference in fiber.
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Chapter 7: Optics Considerations for Fiber Coupling Ion Light: During

the course of this work, we have developed several techniques for improving the fiber

coupling of ion light. We discuss background optics information to contextualize

these techniques and the methods we attempted to use to increase the fraction of

light successfully collected.

Chapter 8: Outlook: Finally, we conclude by examining some future directions

we could take the experiment. During the course of the work discussed in this thesis,

it has become apparent that the lack of deterministic state detection in 138Ba+ is at

the very least a significant inconvenience, so we briefly discuss the requirements for

a deterministic detection protocol. We also discuss a method to improve the fidelity

of the results of our remote entanglement using entanglement distillation. Next,

we detail our plan for generating entanglement among three traps and examine the

scaling of the protocol to higher numbers of traps. We conclude by looking at the

motivation for and details of using 133Ba+ as our memory qubit instead of 171Yb+.
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Chapter 2: Theory of Trapped Ion-Laser Interactions

In this chapter, we present a general overview of the theory behind the control

of ions using lasers. We discuss here only operations that are common to both

barium and ytterbium ions. The details of the operations for each specific ion will

be discussed in Chapter 3.

2.1 Doppler cooling

Once ions are in trap, they must be cooled so they crystallize. We accomplish

this using a process that relies on the Doppler shift of photons relative to a moving

atom. Here, we discuss the theory behind this process.

A photon with wavenumber k = 2π/λ carries momentum ~~k where the direc-

tionality of the vector ~k is in the direction of propagation. When an atom absorbs a

photon, this momentum is transferred to the atom. In particular, when an atom ab-

sorbs light from a laser beam, the resulting force on the atom is ~F = d~p/dt = ~~kΓsc

where Γsc is the scattering rate of the atom [38]. After being excited, the atom will

reemit a photon. Unlike absorption, however, emission is isotropic and thus, when

averaged over many photons scattered, will not change the net momentum of the

atom.
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The ion scattering rate Γsc as a function of laser detuning for an approximately

two-level system is [39]

Γsc =
I
Isat

γ
2

1 + I
Isat

+
4∆2

l

γ2

(2.1)

where

Isat =
~γω3

0

12πc2
. (2.2)

γ is the natural linewidth of the relevant atomic transition, ω0 is the resonant

frequency of the atomic transition, and ∆l = ω0 − ωl is the detuning of the laser

frequency ωl from resonance. When the ion is in motion, the scattering rate is

modified by the Doppler shift [38]

Γsc =
I
Isat

γ
2

1 + I
Isat

+ 4(∆l+ωD)2

γ2

. (2.3)

Here, ωD = −~k · ~v is the Doppler shift seen by a moving atom. The force on the

atom is thus velocity and frequency dependent.

When the velocity of the atom is in the opposite direction from the propagation

of the laser beam, the force on the atom is negative and will slow the atom. In free

space, it would be necessary to have beams in all three axes and both directions

to ensure that there is always a cooling force on the ion. The potential of the

ion trap loosens this requirement, and if the beam is not parallel to any of the

principle axes and the axes are non-degenerate (ωx 6= ωy 6= ωz) [40] (see Sec. 4.3.3),

a single Doppler cooling beam is sufficient [40, 41]. Additionally, it can be shown

that optimal cooling for a two level atom is achieved when ωl = −γ/2, and the
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minimum energy of the ion for a beam with equal components along all principal

axes (for example, k̂ = 1√
3

(x̂+ ŷ + ẑ)) is Emin = ~γ
4

[40]. This energy limit can be

used to calculate an effective temperature limit by setting Tmin ≈ Emin/kB, which

is of order 100 µK for Yb.

2.2 Coherent Operations

Another important aspect of controlling ions is the ability to coherently rotate

between the qubit states. This can be accomplished using microwave radiation for

Yb and RF radiation for Ba. However, it can be advantageous to use an optical

drive instead. In particular, the use of a laser beam can couple the motional state

of an ion to its internal state (see Sec. 2.2.1) and thus entangle multiple ions in a

chain via their Coulomb interaction. Additionally, delivering sufficient power of RF

radiation to the ion can be difficult due to the shielding of the chamber. Therefore,

we instead use Raman transitions driven by laser light to rotate between the qubit

states. Details of these operations for each atomic species can be found in Sec. 3.1.4

for Yb and Secs. 3.2.5 and 3.2.6 for Ba.

To drive these rotations, we use a pulsed Nd:YVO4 laser.1 For both of these

lasers, 1064 nm radiation is frequency-doubled to 532 nm light, which we use for Ba,

and frequency-tripled to 355 nm, which we use for Yb. While these lasers produce a

frequency comb, it has been shown that for our purposes it can be effectively treated

as a continuous wave (CW) laser [42].

Let us assume that we apply a laser beam to the ion with electric field with

1Initially Spectra Physics Vanguard then Coherent Paladin Compact 355.
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two beams labeled α and β

~E (~r) =
∑
j=α,β

Ej
2

(
ε̂je

i(~kj ·~r−ωjt−φj) + h.c.
)
. (2.4)

Here, ε̂α,β is the polarization vector of the corresponding beam, ~kj is the wave

number with the direction of beam propagation, ~r is the ion position, ωj is the

carrier frequency of the jth beam, and φj is the beam phase. The electric fields will

couple to the dipole transitions from the qubit states to the excited state. These

couplings create the interaction Hamiltonian

Hint = −~µ · ~E

= −~µ ·
∑
j=α,β

Ej
2
·
(
ε̂je

i(−ωjt−φj) + ε̂∗je
−i(−ωjt−φj)

)
(2.5)

where we have combined the positional term with the phase φj. For now, the

positional dependence is unimportant, but will become relevant when we consider

the coupling of two laser beams to the motion of the ions in Section 2.2.1.

Additionally, we need to account for the intrinsic atomic Hamiltonian Hatom

for our ideal three level system (Fig. 2.1)

Hatom = ~


−ωq

2
0 0

0 ωq
2

0

0 0 ωe

 . (2.6)

Here, I have chosen to consider the zero-energy position as halfway in between the
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two qubit levels. We now consider the time-dependent Schrödinger equation

i~
∂

∂t
|Ψ〉 = H|Ψ〉. (2.7)

When the interaction is turned off, the total Hamiltonian Htotal is equal to Hatom.

As always, we can write the wavefunction |Ψ〉 in terms of any complete basis; we

choose for this purpose the eigenstates of Hatom |0〉, |1〉 and |e〉. The total time-

dependent wavefunction of the atom is then |Ψ〉 =
∑

m cm(t)|ψm〉 where |ψm〉 are

the eigenstates of Hatom. Substituting into the Schrödinger equation (Eq. 2.7) and

by multiplying by 〈ψn|, we obtain

iċn = ωncn, (2.8)

which gives us a set of differential equations. The solutions to this set of equations

are cn(t) = Ae−iωnt. We can transform into a frame rotating with the frequencies

ωn by defining c̃n ≡ cne
iωnt. We will use this transformation later in the calculation.

We now return to considering the effect of the interaction Hamiltonian, so

the Hamiltonian is now Htotal = Hatom + Hint. Like before, we express the wave-

function in terms of the eigenstates of Hatom and then multiply the time-dependent

Schrödinger equation by 〈ψn|. This process yields the differential equations

i~

〈
ψn

∣∣∣∣∣ ∂∂t∑
m

cm

∣∣∣∣∣ψm
〉

=

〈
ψn

∣∣∣∣∣(−~µ · ~E +Hatom

)∑
m

cm

∣∣∣∣∣ψm
〉

⇒ i~ċn =
∑
m

cm

〈
ψn

∣∣∣−~µ · ~E∣∣∣ψm〉+ ~ωncn . (2.9)
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|e〉

|0〉

|1〉

Δ

Figure 2.1: Simple level scheme for Raman transitions.

The laser beams cannot couple |0〉 and |1〉 together directly and they do not

couple either state to itself, so the only relevant matrix elements for the Hint term

are
〈

0(1)
∣∣∣−~µ0(1)e · ~E

∣∣∣ e〉. For simplicity, we assume Eα couples only to |0〉 and Eβ

couples only to |1〉. Defining Vnm ≡ 〈ψn|Hint |ψm〉, we obtain the corresponding

matrix elements:

V0e =
|Eα|

2

〈
0
∣∣−~µ · (ε̂αe−i(ωαt+φα) + ε̂∗αe

i(ωαt+φα)
)∣∣ e〉

= ~
(
g0ee

−iωαt + g∗0ee
iωαt
)

V1e = ~
|Eβ|

2

〈
1
∣∣∣−~µ · (ε̂βe−i(ωβt+φβ) + ε̂∗βe

i(ωβt+φβ)
)∣∣∣ e〉

= ~
(
g1ee

−iωβt + g∗1ee
iωβt
)

(2.10)
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where we have defined

gnm =
|Ej|
2~
〈ψn| − ~µ · ε̂j |ψm〉 e−iφj . (2.11)

We can choose our coordinates such that g∗nm =
|Ej |
2~ 〈ψn| − ~µ · ε̂j∗ |ψm〉 eiφj . This

choice will effectively determine our x and y axes for rotations.

With these definitions, we can now write down differential equations for the

probability amplitudes of each state

iċ0 =
(
g0ee

−iωαt + g∗0ee
iωαt
)
ce −

ωq
2
c0 (2.12)

iċ1 =
(
g1ee

−iωβt + g∗1ee
iωβt
)
ce +

ωq
2
c1 (2.13)

iċe =
(
g∗0ee

iωαt + g0ee
−iωαt

)
c0 +

(
g∗1ee

iωβt + g1ee
−iωβt

)
c1 + ωece. (2.14)

In the rotating frame, these equations become

i ˙̃c0 =
(
g0ee

−i(ωα+ωe)t + g∗0ee
−i∆αt

)
e−i

ωq
2
tc̃e (2.15)

i ˙̃c1 =
(
g1ee

−i(ωβ+ωe)t + g∗1ee
−i∆βt

)
ei
ωq
2
tc̃e (2.16)

i ˙̃ce =
(
g∗0ee

i(ωα+ωe)t + g0ee
i∆αt
)
ei
ωq
2
tc̃0 +

(
g∗1ee

i(ωβ+ωe)t + g1ee
i∆βt
)
e−i

ωq
2
tc̃1 (2.17)

where the laser detuning from resonance ∆α(β) is defined as ∆α(β) ≡ ωe − ωα(β).

So far, all of our calculations have been exact. To make further progress, we

must make some approximations based on our experimental parameters. For our

first approximation, we note that ωα(β) +ωe >> ∆α(β). Thus, terms where the time
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dependence scales with ωα(β) + ωe will oscillate much faster than those that scale

with ∆ and will average out. We can therefore drop those terms and perform a

rotating wave approximation (RWA). This approximation yields

i ˙̃c0 = g∗0ee
−i(∆α+

ωq
2 )tc̃e (2.18)

i ˙̃c1 = g∗1ee
−i(∆β−

ωq
2 )tc̃e (2.19)

i ˙̃ce = g0ee
i(∆α+

ωq
2 )tc̃0 + g1ee

i(∆β−
ωq
2 )tc̃1 . (2.20)

We do not try to solve these equations exactly; instead we use a process known

as adiabatic elimination [43], which effectively decouples the excited state population

from c0 and c1. This approximation relies on the assumption that any time variation

not explicitly in an exponential is much slower than the time dependence ei∆α(β)t,

which can be verified at the end of the calculation. In the differential equation for

c̃e, we therefore treat all other variables (c̃0, c̃1, g0e, and g1e) as constant and directly

integrate this equation.

The result of this integration is

c̃e =
g0e

∆α + ωq
2

(
1− e−i(∆α+

ωq
2 )t
)
c̃0 +

g1e

∆β − ωq
2

(
1− ei(∆β−

ωq
2 )t
)
c̃1 (2.21)

where we have imposed the initial condition c̃e(0) = 0. We now substitute this result

back into Eqs. 2.18 and 2.19. Additionally, we note that ∆α(β) � ωq
2

, so we further
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simplify the equations by setting ∆α(β) − ωq
2

= ∆α(β) + ωq
2

= ∆α(β). The result is

i ˙̃c0 =
|g0e|2

∆α

(
e−i∆t − 1

)
c̃0 +

g∗0eg1e

∆β

(
e−i∆αt − e−iδαβt

)
e−iωqtc̃1 (2.22)

i ˙̃c1 =
g∗1eg0e

∆α

(
e−i∆βt − eiδαβt

)
eiωqtc̃0 +

|g1e|2

∆β

(
e−i∆βt − 1

)
c̃1 (2.23)

where we define δαβ ≡ ωβ − ωα.

The next steps of this calculation are to make one more RWA and then finally

transform back into the non-rotating frame to better understand the behavior that

we observe in the lab. First, we note again that ∆α(β) � ωq. Similarly to the

first RWA that we performed, this comparison means that when these equations are

integrated, the terms with ∆α(β) dependence will oscillate much faster than those

with ωq dependence, and we thus drop all terms with e±i∆α(β)t

i ˙̃c0 = −|g0e|2

∆α

c̃0 −
g∗0eg1e

∆β

e−i(δαβ+ωq)tc̃1 (2.24)

i ˙̃c1 = −g
∗
1eg0e

∆α

ei(δαβ+ωq)tc̃0 −
|g1e|2

∆β

c̃1. (2.25)

Next, we write the differential equations by undoing the transformation to the ro-

tating frame. We also note that in our experimental regime ∆α ≈ ∆β, so we define

∆ ≡ 1
2

(∆α + ∆β) and let ∆α = ∆β = ∆. After some algebra, the differential
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equations become

iċ0 = −

(
|g0e|2

∆
+
ωq
2

)
c0 −

g∗0eg1e

∆
e−iδαβtc1 (2.26)

iċ1 = −g
∗
1eg0e

∆
eiδαβtc0 −

(
|g1e|2

∆
− ωq

2

)
c1. (2.27)

We now define a second rotating frame where

c′0 = c0e
−i

δαβ
2
t

c′1 = c1e
i
δαβ
2
t. (2.28)

The differential equations can be written as a single matrix equation in this new

rotating frame

i
∂

∂t

c′0
c′1

 = −

 |g0eα|
2

∆α
+

ωq−δαβ
2

g∗0eαg1eβ
∆β

g∗1eβg0eα

∆α

|g1eβ|2
∆β
− ωq−δαβ

2


c′0
c′1

 . (2.29)

We define several parameters to simplify this equation:

δ0 =
|g0e|2

∆
− δαβ

2
(2.30)

δ1 =
|g1e|2

∆
+
δαβ
2

(2.31)

δ2 =
g∗0eg1e

∆
. (2.32)
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These equations correspond to an effective Hamiltonian

Heff = −~

δ0 + ωq
2

Ω

Ω δ1 − ωq
2

 . (2.33)

This result assumes that Ω = Ω∗ and specifically that g0eg
∗
1e = g∗0eg1e. This is a

Hermitian matrix, and can therefore be expressed in terms of Pauli operators as [43]

Heff = −~
[
Ωσ̂x +

1

2
(ωq + δ0 − δ1) σ̂z + (δ0 + δ1) 1

]
. (2.34)

Now we can gain some insight into what the parameters defined in Eqs. 2.30-

2.32 mean. The Pauli matrices are generators of rotations about the corresponding

axis (see e.g. [44]), so this Hamiltonian will drive rotations about the x axis with

frequency Ω. Note that, had we chosen a complex Ω, the rotation axis simply would

have been a different axis in the x− y plane, as there would have been a σy term in

the Hamiltonian. Additionally, if the ion is not in one of the energy eigenstates |0〉

or |1〉, it will generally precess about the z axis with a frequency equal to the qubit

splitting. The effect of the σz term in the Hamiltonian is to modify this precession

frequency by δ0−δ1. This effective energy shift corresponds to the two-photon Stark

shift the ion experiences upon application of the electric field described here. δ0 and

δ1 are the two-photon AC Stark shifts on |0〉 and |1〉, respectively; their difference

is the “differential” Stark shift. The term proportional to the identity matrix does

not affect the evolution of the ion state.

We can go further and solve Eq. 2.29 using standard linear algebra. While the
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resulting probability amplitudes c′0(t) and c′1(t) are very complicated functions of

the various parameters, the probabilities |c′0(t)|2 and |c′1(t)|2 are much simpler, and

we can gain significant insight into the dynamics of the system by considering these

results. In particular, solving the system for the initial conditions |c′0|
2 (0) = 1 and

|c′1|
2 (0) = 0 gives the following equations for the time dependence of the qubit state

populations

|c′0(t)|2 = |c0(t)|2 = 1−
(

Ω

Ω′

)2

sin2 (Ω′t) (2.35)

|c′1(t)|2 = |c1(t)|2 =

(
Ω

Ω′

)2

sin2 (Ω′t) (2.36)

where we have defined the effective Rabi frequency

Ω′ =

√
Ω2 +

(
δ0 − δ1 + ωq

2

)2

. (2.37)

Thus, full population transfer from |0〉 to |1〉 will only occur if Ω = Ω′, which gives

us a resonance condition. This condition will be satisfied when

δαβ =
|g0eα|2 − |g1eβ|2

∆
+ ωq , (2.38)

or, if |g0eα|2 = |g1eβ|2, δαβ = ωq, as we anticipate.

In practice, the ions have more than a single excited state, and the laser beam

will couple to all allowed transitions. The results of the above discussion are easily

generalized, and we find that the dynamics are the same as before, just with the
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Rabi frequency and AC Stark shifts summed over all excited states.

2.2.1 Driving Ion Motion Using Coherent Operations

So far, we have disregarded the spatial dependence of the electric fields and

incorporated the term ei
~kα(β)·~r into the phase φα(β), which we, in turn, incorporated

into the single photon Rabi frequencies. However, if we redefine the single photon

Rabi frequencies as

g0eα =
|Eα|
2~
〈0 |−~µ · ε̂α| e〉

g1eβ =
|Eβ|
2~
〈1 |−~µ · ε̂β| e〉 , (2.39)

we find that the cross-terms coupling |0〉 to |1〉 depend on e±i∆
~k·~r. For a single

principal axis of the trap, the position operator ri can be written in terms of raising

and lowering operators for the motional modes

ri = ri0 + qi
(
a+ a†

)
(2.40)

where ri0 is the equilibrium position of the ion, a and a† are the lowering and raising

operators for the harmonic oscillator modes respectively, and

qi =

√
~

2mωosci
. (2.41)
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Here, m is the mass of the ion and ωosci is the secular frequency in the ith principal

axis.

It can then be shown, as in [45], that transitions will be driven between the

states |0, n〉 and |1, n′〉 if the detuning δαβ is set to

δαβ = ωq +
|g0eα|2 − |g2

1eb|
∆

+ (n′ − n)ωosci . (2.42)

These transitions will be driven with a modified Rabi frequency [45]

Ωn′,n ≡ Ω
∣∣∣〈n′ ∣∣∣eiη(a+a†)

∣∣∣n〉∣∣∣ (2.43)

= Ωe−
η2

2

√
n<!

n>!
η|n
′−n|L|n

′−n|
n<

(
η2
)

(2.44)

where η is the Lamb-Dicke parameter ∆kqi, n> is the larger of n, and Lαn is the

generalized Laguerre polynomial.

Here, we have discussed the coupling to the motion for a single ion, but the

calculation can be easily expanded to include multiple ions. The coupling of the

internal ion state of each ion to the motional state can be used to drive entangling

gates between ions [46, 47]. This treatment can also be extended to ions of multiple

masses, as in [48, 49]. The relevance of this discussion is limited in this work, since

the results we present do not rely on local entanglement via the motion of the ions.

It is important, however, to note the possibility, because it will be crucial for future

work.
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2.3 Calculation of Dipole Matrix Elements

In the previous section, we left the single photon Rabi frequencies written in

terms of the matrix elements for a dipole transition driven by a laser beam with unit

polarization vector ε̂ without delving into the calculation of those matrix elements.

However, in order to compute the strength of various transitions, we need to be able

to calculate these matrix elements.

The core of these calculations requires the quantum theory of angular mo-

mentum addition. In particular, the atomic energy levels are determined by their

angular momenta. Depending on the atom, this can consist of their nuclear spin

I, the orbital angular momentum of the electron L, and the spin of the electron S.

These angular momenta add to form the total angular momentum of each energy

level. For a spin-0 nucleus like 138Ba+, the relevant combination is the angular mo-

menta of the spins. L and S add via spin-orbit coupling to form the fine structure,

which is determined by the quantum number J = L + S. For an atom where I 6= 0,

the nuclear spin must be added to J, yielding F = J + I for the total angular mo-

mentum. We then wish to add the angular momentum carried by a photon to the

intrinsic atomic angular momentum to drive transitions. First, we will calculate the

matrix elements for the simpler case of I = 0, and then expand that derivation to

atoms with hyperfine structure. For all of the calculations, we follow the derivation

in [50].
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2.3.1 Dipole Matrix Elements for Atoms with I = 0

To begin, we need to determine the good quantum numbers, which we will

use to describe the atomic states. In the case of fine structure, we use J. We write

the matrix elements in terms of the radial quantum number α, J = |J| and the

projection of J on the quantization axis mJ as |α, J,mJ〉. Then, the matrix element

for a transition between a ground state |g〉 and an excited state |e〉 is

µeg = 〈α′, J ′,m′J | ~µ · ε̂ |α, J,mJ〉 (2.45)

where {α′, J ′,m′J} are the quantum numbers labeling |e〉 and {α, J,mJ} are the

quantum numbers for |g〉. The light, however, couples to the orbital angular mo-

mentum of the electron, so we instead need to write the transitions in terms of L.

Therefore, we need to decompose J into its L and S components. To accomplish

this, we write |α, J,mJ〉 in the L and S bases using Clebsch-Gordan coefficients

|α, J,mJ〉 =
∑
i

Ci |α,L,mL〉 |S,mS〉 (2.46)

where Ci are the relevant Clebsch-Gordan coefficients

Ci = 〈L,mL;S,mS |J,mJ 〉 = (−1)−L+S−mJ
√

2J + 1

 L S J

mL mS −mJ

 . (2.47)

We can now write the original matrix element in terms of the S and L bases,
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accounting for the fact that the light cannot act on the spin of the electron and only

on its orbital angular momentum

µeg =
∑
ij

CiCj 〈α,L′,m′L| 〈S ′,m′S| ~µ · ε̂ |α,L,mL〉 |S,mS〉

=
∑
ij

CiCj 〈α′, L′,m′L| ~µ · ε̂ |α,L,mL〉 δS′,Sδm′S,mS . (2.48)

Next, we consider the matrix element 〈α′, L′,m′L| ~µ · ε̂ |α,L,mL〉. To proceed,

we must consider the polarization vector of the light. In particular, we note that

there are three relevant polarizations as seen by the atom, which can be written in

terms of the spherical harmonics Y q
1 [51, 52]

π = Y 0
1 = i

√
3

16
sin θθ̂ (2.49)

σ± = Y ±1
1 = ie±iφ

√
3

16π

(
± cos θθ̂ + iφ̂

)
(2.50)

where θ is the polar angular coordinate and φ is the azimuthal coordinate with the

ẑ axis defined by the magnetic field. The dot product ~µ · ε̂ can then be written in

terms of an irreducible tensor operator of rank one T q1 = ~µ ·Y q
1 . We use the Wigner-

Eckart theorem to write this matrix element in terms of a Wigner-3j symbol and a

reduced matrix element, which depends only on the radial quantum number α and

the total orbital angular momentum L but not the projection of the orbital angular
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momentum on the quantization axis mL [53]

〈α′, L′,m′L| ~µ · ε̂ |α,L,mL〉 = (−1)L
′−m′L

 L′ 1 L

−m′L q m

 〈α′, L′| |µ| |α,L〉 . (2.51)

When we substitute Eq. 2.51 into Eq. 2.48, we obtain [50]

µeg = (−1)L
′+S−m′J


L′ J S

J L 1


 J 1 J ′

mJ q −m′J


×
√

(2J + 1)(2J ′ + 1) 〈α′, L′| |µ| |α,L〉 (2.52)

where the curly braces indicate the Wigner-6j symbol.

Additionally, we follow [54] to compute the reduced matrix element in terms of

constants and parameters that can be experimentally determined. In particular, we

use Fermi’s golden rule, which gives the rate of a transition in terms of the reduced

matrix element. After integrating emission over all space, the transition rate or

natural linewidth γ is given by

γ =
1

4πε0

4ω3
0

3~c3

|〈α′, L′| |µ| |α,L〉|2

2L′ + 1

⇒ |〈α′, L′| |µ| |α,L〉|2 =
3πε0~c3γ

ω3
0

(2L′ + 1) . (2.53)

Here, ω0 is the resonant frequency of the relevant transition. Both ω0 and γ can be

measured, and thus we have completely determined the value of the matrix element

in terms of known parameters.
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An important characteristic of the Wigner-3j symbol in Eq. 2.52 is that it is

only nonzero for mJ + q −m′J = 0. Thus, we have the following selection rules

π : ∆mJ = 0

σ+ : ∆mJ = 1

σ− : ∆mJ = −1 . (2.54)

2.3.2 Dipole Matrix Elements of Atoms with Nonzero Nuclear Spin

The atomic eigenstates in this case now must be initially expressed in terms

of the total angular momentum F = J + I where I is the nuclear spin. The matrix

elements are therefore initially written as

〈α′, F ′,m′F | ~µ · ε̂ |α, F,mF 〉 . (2.55)

First, we write |α, F,mF 〉 in terms of the J and I basis using the same technique

we used to write |α, J,mJ〉 in terms of L and S states

|α, F,mF 〉 =
∑
i

〈J,mJ ; I,mI |F,mF 〉 |α, J,mJ〉 |I,mI〉 . (2.56)

We then proceed as above to write the resulting matrix elements 〈α′, J ′,m′J | ~µ ·

ε̂ |α, J,mJ〉 in terms of L and S. Since the remainder of this calculation is essentially
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the same as above, we simply state the final result

µeg = (−1)1+L′+S+J+J ′+I−m′F


L′ J ′ S

J L 1



J ′ F ′ I

F J 1


 F 1 F ′

mF q −m′F


×
√

(2J + 1)(2J ′ + 1)(2F + 1)(2F ′ + 1) 〈α′, L′| |µ| |α,L〉 . (2.57)

Again, we also note the selection rules for this system, which are the same as stated

in Eq. 2.54, but with mF in the place of mJ . We will use these results in the following

sections to calculate the Rabi frequencies and AC Stark shifts for a given intensity

of light.

2.4 Optical Bloch Equations for Barium

So far, we have only treated the theory of either two-level systems or multi-

level systems where significant approximations can be made. In general, however,

we are working with much more complex systems. For Ba in particular, we need to

consider all of the energy levels with which we interact. To simulate the dynamics

of Ba, we use the optical Bloch equations. These equations can also be used to

simulate Yb, and such simulations are discussed in [48, 55]. However, for this thesis

we focus on Ba as it is more important for our work. We provide an overview of the

theory; in Sec. 3.2, we provide more details about what dynamics we simulate and

the results. Our work builds on the work in [55–57].

Because we will now not only be working with pure states since we need to

account for coupling to the environment, we must use a density matrix formalism
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where we define the density operator ρ̂ in terms of eigenstates |i〉 of the atomic

Hamiltonian

ρ̂ =
∑
ij

pij |i〉 〈j| . (2.58)

For unitary evolution, the time evolution is given by the Liouville equation

[58]

ρ̇ = − i
~

[H, ρ] . (2.59)

However, the atomic decays and finite laser linewidth mean that the evolution is no

longer unitary. Assuming all processes are Markovian, we can describe the dynamics

with the Lindblad equation [59]

ρ̇(t) = −i [H, ρ]− 1

2

∑
i

(
Â†i Âiρ̂+ ρ̂Â†i Âi − 2ÂiρÂ

†
i

)
(2.60)

where Âi are operators accounting for the dissipative processes involved. In our

case, these processes consist of spontaneous emission and nonzero laser linewidths.

For spontaneous emission, the decay operator Âi is

Âi =
√

Γjk |j〉 〈k| (2.61)

where Γjk is the decay rate from level |k〉 to level |j〉 and for nonzero laser linewidths

Âi =
√

2Γl |i〉 〈i| (2.62)

where Γl is the linewidth of the laser [56].
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We can write this equation for an N level system as N2×N2 matrix, which can

then be solved using linear algebra. To do this, we first write the density matrix as a

vector ~ρ = (ρ11, ρ12, . . . , ρNN−1, ρNN). In this form, the Lindblad equation becomes

~̇ρij =
∑
j

Mij,kl~ρkl (2.63)

where [55]

Mij,kl = − i
~

[
H̃ikδlj − H̃†ljδik

]
+
∑
n

ÂnikÂ
†
nlj

(2.64)

with an effective “Hamiltonian,” which is non-Hermitian, defined as

H̃ = Ĥ − i~
2

∑
n

Â†nÂn. (2.65)

Note that although the matrix M does not technically require four indices, it is

useful to use that many to clarify which matrix elements connect which atomic

states.

For a time-independent M , this differential equation can be directly integrated

to obtain

~ρ(t) = ~ρ(0)eMt (2.66)

for initial condition ~ρ(0). However, while M is time-independent for processes like

Doppler cooling or optical pumping, we will need to account for time dependence

when generating single photons (Sec. 6.1). For the problems we are interested in,

we can numerically solve these equations.
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2.4.1 Three-Level System

So far, we have discussed the general procedure for solving the optical Bloch

equations with a generic Hamiltonian. Now we wish to consider more specifically

applying this procedure to Ba. To illustrate the calculations, we’ll first consider a

simplified version of Ba where the only three levels are |0〉 ≡
∣∣6S1/2

〉
, |1〉 ≡

∣∣6P1/2

〉
and |2〉 ≡

∣∣5D3/2

〉
. The atomic Hamiltonian is then

Hatom = ~
∑
i

ωi |i〉 〈i|

= ~


ωS 0 0

0 0 0

0 0 ωD

 (2.67)

where ~ωS is the energy of 6S1/2 and ~ωD is the energy of 5D3/2, and we have chosen

the zero energy level to coincide with 6P1/2.

The interaction Hamiltonian, as for coherent operations, is HI = −~µ · ~E.

For these calculations, we will assume two electric fields–one close to the resonance

frequency of the S ↔ P transition ~Eg and one close to the resonance of the D ↔ P

transition ~Er. We define these fields

Eg =
Eg0
2

(
ε̂ge
−iωgt + ε̂g

∗eiωgt
)

Er =
Er0
2

(
ε̂re
−iωrt + ε̂r

∗eiωrt
)
, (2.68)
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yielding an interaction Hamiltonian

Hint = ~
(
Ωge

−iωgt + Ω∗ge
iωgt
)

(|0〉 〈1|+ |1〉 〈0|)

+ ~
(
Ωre

−iωrt + Ω∗re
iωrt
)

(|2〉 〈1|+ |1〉 〈2|) (2.69)

where we have defined the Rabi frequencies

Ωg =
Eg0
2~
〈0 |~µ · ε̂| 1〉

Ωr =
Er0
2~
〈2 |~µ · ε̂| 1〉 . (2.70)

The matrix elements 〈i |~µ · ε̂| j〉 can be computed as discussed in Sec. 2.3.

Next, we transform the total Hamiltonian into a rotating frame by applying

the unitary [56]

U = e−iωgt |0〉 〈0|+ |1〉 〈1|+ e−iωrt |2〉 〈2| . (2.71)

The application of this unitary along with a RWA gives the final total Hamiltonian

H ′ = ~


∆g Ωg 0

Ωg 0 Ωr

0 Ωr ∆r

 (2.72)
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Figure 2.2: Diagram of the atomic energy levels relevant to the calculations discussed
in this section. The numbers above the states indicate the label we assign, while
the numbers below each level indicate the corresponding value of mJ .

where we have defined the detunings

∆g = ωg − (ωP − ωS)

∆r = ωr − (ωP − ωS) . (2.73)

This final form of the Hamiltonian is the one we would use for performing

simulations. In general, Ωg and Ωr can be time dependent, which would be the

source of a time dependent M in the vector form of the Lindblad equation.
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2.4.2 Eight-Level System and Multiple Polarizations

Next we consider the eight level atomic Hamiltonian. The Zeeman splitting

within a fine structure level is given by [58]

∆E = µBgJmJB (2.74)

where µB is the Bohr magneton and gJ , the Landé g-factor, is

gJ = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
(2.75)

The three fine structure levels we will consider are 2S1/2, 2P1/2, and 2D3/2, which

have values of gJS = 2, gJP = 2
3
, and gJD = 4

5
respectively. We define a shorthand

for the atomic states as shown in Fig. 2.2.

Then, the atomic Hamiltonian is:

Hatom =
∑
i=0,1

[(−~ωg + µBBgJSmJi) |i〉 〈i|] +
∑
i=2,3

(µBBgJPmJi |i〉 〈i|)

+
7∑
i=4

[(−~ωr + µBBgJDmJi) |i〉 〈i|] . (2.76)

For the interaction Hamiltonian, the polarization now becomes important. In

previous work, it has been assumed that the light propagates perpendicular to the

magnetic field and the polarization is thus constrained to have equal proportions of

σ+ and σ− [55, 56]. In the following calculations, we generalize this treatment to
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allow for arbitrary intensities of each polarization. Recall, using Eqs. 2.11, 2.52, and

2.53, the matrix element of a transition from state i to state j in the rotating frame

and with a RWA when driven by an electric field with amplitude |Eα| is given by

Vij =
|Eα|
2~

C̃ij

√
3πε0~c3γ

ω3
0

(2L′ + 1) (2.77)

where we have defined C̃ij as a shorthand for the coefficients dependent on angular

momentum in Eq. 2.52.

We now write this matrix element in terms of the saturation intensity (Eq. 2.2)

and the laser intensity

Iα =
1

2
cε0 |Eα|2 . (2.78)

These substitutions give us

Vij =
1

2
C̃ ′ijγ

√
Iα

2Isatij
(2.79)

with C̃ ′ij = C̃ij
√

2L′ + 1. Next, we define the saturation parameter

sαij ≡
Iα
Isatij

. (2.80)

Finally, we define a Rabi frequency in terms of these parameters for a given transition

Ωαij =
1

2
γ

√
sαij
2
, (2.81)
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(a) (b)

Figure 2.3: Clebsch-Gordan coefficients for transitions in Ba relevant for the optical
Bloch equation calculations. States are labeled as in Fig. 2.2. (a) Clebsch-Gordan
coefficients for transitions between the 6S1/2 and 6P1/2 manifolds. (b) Clebsch-
Gordan coefficients for transitions between the 5D3/2 and 6P1/2 manifolds.

giving us the final form of our generic matrix element

Vij = C̃ ′ijΩαij . (2.82)

Note that all angular momentum dependence is encapsulated by C̃ ′ij, which for the

calculations performed in this section, is equal to the Clebsch-Gordan coefficient

〈J, 1,mJ , q |J ′m′J 〉. However, because we will be considering polarizations with dif-

ferent electric field amplitudes, and which polarization is relevant for a particular

transition depends on the angular momenta of the initial and final states, Ωαij will

not be the same for all transitions of a given wavelength.

We now consider more concretely the actual system we are studying. We

effectively have six lasers–one for each polarization at both 493 nm and 650 nm.
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Correspondingly, we have six Rabi frequencies

Ωg,π =
|Eg,π|

2
γSP

√
Ig,π

2IsatSP
=
|Eg,π|

2
γSP

√
sSP,g,π

2

Ωg,σ± =
|Eg,σ±|

2
γSP

√
Ig,σ±

2IsatSP
=
|Eg,σ±|

2
γSP

√
sSP,g,σ±

2

Ωr,π =
|Er,π|

2
γDP

√
Ir,π
IsatDP

=
|Er,π|

2
γDP

√
sDP,r,π

2

Ωr,σ± =
|Er,σ±|

2
γDP

√
Ir,σ±

2IsatDP
=
|Er,σ± |

2
γDP

√
sDP,r,σ±

2
] . (2.83)

Here g indicates the green 493 nm light, and r indicates the red 650 nm light. γSP

and γDP are the linewidths of the S ↔ P and D ↔ P transitions respectively. IsatSP

and IsatDP are the saturation intensities for the corresponding transitions.

The coefficients C̃ ′ij are shown in Fig. 2.3. Thus, we have the full Hamilto-

nian, which we can then substitute back into Eq. 2.65. The decay operators for

spontaneous emission, accounting for Zeeman coherences [56], are [55]

A1 =

√
2γSP

3
|0〉 〈3|

A2 =

√
2γSP

3
|1〉 〈2|

A3 =

√
γSP
3

(|0〉 〈2| − |1〉 〈3|) (2.84)

A4 =
√
γDP

(
1√
2
|4〉 〈2|+ 1√

6
|5〉 〈4|

)
A5 =

√
γDP

(
1√
2
|7〉 〈3|+ 1√

6
|6〉 〈2|

)
A6 =

√
γDP

3
(|5〉 〈2|+ |6〉 〈3|) .
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The decay operators to account for nonzero laser linewidth are given by [55]:

A7 =
√

2Γg(|0〉 〈0|+ |1〉 〈1|)

A8 =
√

2Γr

7∑
i=4

|i〉 〈i| (2.85)

where we assume that the linewidth is the same regardless of the polarization and

Γg and Γr are the linewidths of the 493 nm and 650 nm lasers, respectively. Strictly,

this may not be completely accurate, since we use different lasers for the 650 nm

σ± and π light. However, they are both diode lasers, so the linewidth is likely the

same order of magnitude, and the laser linewidth does not have a strong effect on

the simulation results.

We now have all of the components that govern the dynamics of the system.

Certain properties such as spectra are calculated and discussed in [48, 55]. In this

thesis we focus on using these calculations to optimize state preparation in the D3/2

manifold (Sec. 3.2.4.1) and simulate our single photon generation process (Sec. 6.1).
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Chapter 3: Operations with Ytterbium and Barium Ions

In the previous chapter, we presented the general theory describing the inter-

actions of laser light with trapped ions. Here, we delve into the specific operations

for each ion in our network. We also discuss our atomic sources and the steps leading

up to trapping.

3.1 171Yb+ Ions

In our network, we use 171Yb+ ions for our memory qubits because of the

excellent coherence times of their natural clock qubit [60]. In this section, I discuss

the operations we use to trap and control these ions.

3.1.1 Atomic Sources and Photoionization

We load ∼10 mg of neutral Yb metal that has been isotopically enriched to

contain primarily 171Yb into a hypodermic needle 1-2 mm in diameter. We crimp

the needle on one end to provide a seal and mount it in the vacuum chamber so the

opening is pointed at the center of the trap. In one of our traps, we TIG welded

a coiled, .016” diameter piece of tungsten to the crimped end of the hypodermic

needle (Fig. 3.1). The current required for all of these ovens is ∼2 A.
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Figure 3.1: Picture of an atomic source oven made of a hypodermic needle with an
attached tungsten coil, which serves as a heating element.

For Yb, we use a two step photoionization process described in [61]. The first

photon is resonant at ∼398.9 nm with the neutral Yb 1S0 ↔1 P1 transition, where

1S0 is the ground state, and the second is at 369 nm, which is chosen largely out of

convenience since it is the same laser used to Doppler cool Yb+. The requirement

on the second photon is simply that it have a shorter wavelength than ∼399 nm

in the presence of a strong electric field like the one in the ion trap [61]. Although

this process is sufficient for our purposes, different wavelengths could maximize the

photoionization rate.

If the laser beam is oriented perpendicular to the direction from the oven to

the trap center, the first step of the process can be used to select which isotope of

Yb is trapped because the resonance is fairly narrow (∼10 MHz) compared to the

isotope shifts (∼100 MHz). However, our ovens are not at 90◦ relative to our 399 nm

laser, and thus we expect Doppler broadening of hundreds of MHz, which is larger

than the isotope shifts of Yb. Thus, we have poor isotope selectivity in our loading.

Since we only trap one ion at a time and we are able to hold ions for days at a time,
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Figure 3.2: Fluorescence from neutral Yb atoms. The fluorescence in both images
is circled with red to distinguish it from scattered light. (a) Yb neutral fluorescence
in a test chamber with the mounting setup for the oven for our third trap. The
scattered light in the upper left corner is laser light hitting the oven. The laser
beam is oriented at 90◦ to the atomic beam. The fluorescence is observed near the
oven tip, and can be used to provide a measurement of the atomic flux density. The
magnification of the imaging system is approximately 1. (b) Yb neutral fluorescence
in the center of an ion trap. Light outside of the red oval is laser light scattered
off the trap. The laser beam is oriented at ∼ 160◦ to the atomic beam, and the
fluorescence is observed much farther from the oven, so the flux is much lower.
The imaging system also has a higher magnification (∼x10) so the fluorescence is
distributed over more pixels, reducing the signal to noise ratio.

this lack of selectivity does not cause any significant problems.

3.1.1.1 Neutral Fluorescence of Yb

For testing the atomic sources, it can be useful to first view fluorescence from

neutral atoms. This step can serve several purposes, depending on the exact setup:

(i) ensure the oven is getting sufficiently hot, (ii) measure the neutral atom resonance

frequency, (iii) measure the atomic flux at a given oven current, and (iv) if the test

is performed in the final chamber, ensure the laser alignment of the laser used for

the first step of photoionization. Observing the flux can be especially important if
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we are unable to trap any ions in order to ensure that the problem is not from the

source itself.

For this experiment, we shine only the 399 nm laser on the atomic beam

coming from the oven. We then use a simple imaging setup, preferably with a low

magnification to increase the brightness on a single pixel, to collect light from the

atoms (also at 399 nm) onto a camera (see Fig. 3.2). During the course of this

research, we looked for neutral fluorescence for both Bob and Cleo. For Bob, we

used the chamber with the ion trap (Fig. 3.2(b)), and for Cleo, we used a separate

test chamber constructed specifically for this purpose (Fig. 3.2(a)).

Each has advantages and disadvantages, but overall, the test chamber is prefer-

able. Performing the test in the chamber with the actual ion trap can be useful for

checking the alignment of the laser beam and imaging system. In addition, it guar-

antees that the oven mounting is identical for the test and for trying to trap ions.

For example, if the length of wire used in the test chamber is different from that in

the actual chamber, it can affect the current required to heat the oven to the same

temperature. In the test chamber, however, there are fewer surfaces for light to

scatter off of, giving a much cleaner background. Also, from a practical standpoint,

it is easier to design the imaging system and laser delivery system to be optimal for

the neutral fluorescence in the test chamber. In particular, it is often not possible

to orient the laser beam at exactly 90◦ in the actual chamber due to the orientation

of the ovens relative to the windows and other experimental constraints. Finally,

performing the test in a separate chamber protects the ion trap from atoms accu-

mulating on the electrodes at the much higher atomic flux densities necessary for
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neutral fluorescence compared with those for trapping a single ion. This accumu-

lation can lead to increased heating of ions if it makes the surface rougher or can

displace ions from the RF null, leading to increased micromotion.

3.1.2 Doppler cooling

We now turn to our discussion of control of the ionized Yb atoms. All of these

operations are summarized in Fig. 3.4 and Table 3.1. As discussed above, we use the

369 nm Doppler cooling laser to provide the second photon for our photoionization

procedure. This setup guarantees that as soon as the atom is ionized it will begin

to cool, assuming the laser frequency is set correctly. In this section, we discuss the

power and frequency requirements for this and other relevant laser beams.

Fig 3.3 shows the relevant energy levels for cooling of Yb+, along with levels

relevant to the other operations we discuss. The primary transition for cooling is the

nearly-cycling transition between the 2S1/2 and 2P1/2 states with a resonance wave-

length of 369.5 nm. We apply ∼10 µW of 369.5 nm light detuned from resonance

by half the natural linewidth (∼ 20 MHz) to the Yb ion at an angle of 45◦ to all

trap axes. We (roughly) estimate a beam waist of 50 µm, which gives a saturation

parameter I/Isat of ∼13. We choose this power based on experimental observation

of the brightness and stability of the ion. We additionally need to ensure that all

levels in the S1/2 manifold are resonantly coupled to the P1/2 manifold. Noting that

the transition
∣∣S1/2, F = 0

〉
↔
∣∣P1/2, F = 0

〉
is forbidden, we set the frequency of the

369 nm beam to be approximately resonant with the
∣∣S1/2, F = 1

〉
↔
∣∣P1/2, F = 0

〉
.
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Figure 3.3: Partial energy level diagram of Yb+. The qubit is in purple, and the
other energy levels most important for our experiment are shown in blue. Addition-
ally, Zeeman levels outside of these states are not shown, as they are not important
for our work. Transitions that are driven by lasers are shown with thick dashed
lines, and decays that are relevant to the experiment but not driven with a laser are
shown with thin dashed lines. Laser wavelengths are approximately measured in our
lab with a wavemeter. The wavelengths of the 2S1/2 ↔3 [3/2]1/2 and 2D3/2 ↔2 P1/2

transitions are sourced from [62] and [63] respectively. The lifetimes of the 2P3/2,
3[3/2]1/2, 2D3/2, and 2F7/2 states are from the following sources, again respectively:
[64–67] . The branching ratio of the 2P1/2 state is measured in [68], and the branch-
ing ratio of the 3[3/2]1/2 state is from [69].
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This results in the population nearly continuously cycling between these levels.

However, this cycle can be disrupted in a few ways. First, occasionally, the

ion can be off-resonantly excited to the
∣∣P1/2, F = 1

〉
manifold, which allows the ion

to decay to the
∣∣S1/2, F = 0

〉
state. To depopulate this level we apply a frequency

sideband to our laser at 14.7 GHz, which clears out any population in
∣∣S1/2, F = 0

〉
via the

∣∣P1/2, F = 1
〉

manifold. To generate these sidebands, we currently use a

resonant LiNbO3 electro-optic modulator (EOM)1 with a resonance frequency of

7.374 GHz and use the second order sideband.2 Furthermore, once out of every 200

excitations, the ion will decay to one of the D3/2 levels instead of the desired S1/2

levels. We depopulate these states using a laser at 935 nm. Again, we need frequency

sidebands to clear out the additional hyperfine levels, so we use another EOM3, this

time at 3.1 GHz. Finally, the ion will occasionally (approximately twice an hour)

experience a collision with a background gas particle that results in population of

the F7/2 state. To avoid effectively permanent loss of ions once this happens given

the extremely long lifetime of the F7/2 state, we also use a 638 nm laser to clear

out these states. In this case, we do not use an EOM to apply sidebands; rather

we scan across the hyperfine structure by modifying the voltage of the laser piezo.

This method is slow, but given the rarity of the events, is not limiting.

1New Focus Visible Phase Modulator, Model 4851
2This device is no longer manufactured. Additionally, there are several disadvantages to the

use of this device: (i) no available anti-reflective coating for UV light, (ii) the use of second-
order sidebands dramatically limits the power available at that frequency, and (iii) UV-induced
photorefractive damage of LiNbO3, which is an issue more generally with such devices. QuBiG
now offers an alternative (PM-Yb171+ 14.7M2), with first order sidebands at 14.7 GHz and a
magnesium-doped LiNbO3 crystal, which minimizes the photorefractive effects. This is a promising
option for future setups.

3EOSPACE Inc., PM-0KS-10-PFU-PFU-935
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Another important consideration for 171Yb+ is the existence of coherent dark

states. These states are not a single energy eigenstate but are instead a superposition

of multiple states. This phenomenon is discussed in detail in [70]. For the purposes

of this work, there are a couple of important considerations for destabilizing such

dark states. First, for 171Yb+, the magnetic field must be nonzero [43]. We use coils

of copper wire to apply a controllable magnetic field, which defines the quantization

axis for all of our experiments. This field is also extremely important for our work

in barium, as will be discussed later. Additionally, the polarization of the 369.5 nm

laser is important–it must not have either pure σ or π polarization [55].

It is also worth noting that the ion occasionally becomes much hotter, likely

due to energy transferred in collisions with background gas particles. On these

occasions, it is useful to have a 369.5 nm beam that is further detuned from resonance

(∆ ∼ 200MHz) to address this higher velocity class. This beam typically enables

recovery of even the hottest ions we have in our traps. It is also useful for initial

trapping, since the ions are initially at ∼300 ◦C. To apply this beam, we use a

motorized shutter, which can be opened or shut from the computer using a TTL

signal.

3.1.3 State Initialization and Detection

We now define our qubit states: |0〉 ≡
∣∣6S1/2, F = 0,mF = 0

〉
and |1〉 ≡∣∣6S1/2, F = 1,mF = 0

〉
. These states are split by 12.6428121185 GHz + δ where

δ = 310.8 |B|2 in Hz [71]. Both state initialization and detection rely on the large
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detuning from |0〉 when the 369.5 nm light is resonant with the transition from |1〉

to one of the 6P1/2 states. For both of these processes, the 935 nm repumping light

is left on. First, we will detail the operation of state initialization then detection.

For state initialization, we always initially prepare in |0〉. If an application

ever requires preparation in |1〉, the qubit state could be coherently rotated to |1〉

(see Sec. 3.1.4). As discussed in Sec. 3.1.2, the transition |0〉 ↔
∣∣P1/2, F = 0

〉
is

forbidden, so exciting to that state would not rapidly transfer population from |1〉 to

|0〉. Instead, we apply 2.1 GHz frequency sidebands to the 369.5 nm laser beam with

another EOM.4 This laser frequency is then resonant with the |1〉 ↔ |6P1/2, F = 1〉

transition. From that excited state, the ion can decay to any state in the 6S1/2

manifold, including |0〉. However, since |1〉 and the other Zeeman levels in the F = 1

manifold are coupled to an excited state, any population left there will eventually be

transferred to the dark |0〉 state. This process takes a few µs and can be performed

with high fidelity (� 99% [72]).

The goal for state detection is to detect as many photons as possible if the ion

is in |1〉 while collecting none if the ion is in |0〉. This is achieved by applying light

that is resonant only with the |1〉 ↔
∣∣6P1/2, F = 0

〉
transition. While this light will

eventually off-resonantly couple to
∣∣6P1/2, F = 1

〉
, allowing decay to |0〉, it is still

possible to achieve fidelities of above 99% [48]. To determine the state, we set a

threshold value based on the observed counts for the dark |0〉 and bright |1〉 states.

Typically, if we detect either 0 or 1 photons, we say the ion was in |0〉, while more

than 1 photon indicates the state was |1〉.
4QuBiG EO-T2100M3
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The success of our detection scheme is in large part determined by the imag-

ing setup we use for collecting ion fluorescence since the fidelity is determined by

how many photons we can collect before the ion is off-resonantly pumped to |0〉.

For Alice, we use a custom, multi-element, 0.39 NA objective from Special Optics.

For Bob, we use a custom aspheric lens from Thorlabs (see Sec. 5.1.2) that is de-

signed to have an NA of 0.55. However, the number of photons we see from Ba

indicates an effective NA of slightly over 0.4 due to loss along the imaging optics

path. Yb detection has not yet been performed on Bob; however, we expect simi-

lar or slightly improved results given the slightly higher numerical aperture of the

objective at 370 nm than at 493 nm. The quantum efficiency of the detectors also

matters; we use PMTs with a quantum efficiency at 369 nm of about 25%.5 The

fidelity can be increased to over 99.9% by using an NA 0.6 lens and higher efficiency

superconducting nanowire detectors [72].

Cooling Pumping State Detection

Resonant 369.5 nm
(∣∣S1/2, F = 1

〉)
X X X

14.7 GHz Sidebands X × ×

2.1 GHz Sidebands × X ×

Table 3.1: Summary of which 369 nm frequencies are applied for each stage of an
experiment (Doppler cooling, optical pumping, and state detection).

5Hamamatsu H10682-210
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Figure 3.4: Diagrams showing each operation in 171Yb+. (a) Doppler cooling.
369.5 nm light 10 MHz detuned from the

∣∣S1/2, F = 1
〉
↔
∣∣P1/2, F = 0

〉
transition

is applied, along with sidebands at 14.7 GHz. (b) Preparation to
∣∣S1/2, F = 0

〉
. The

nearly resonant light is still applied, now with 2.1 GHz sidebands and no 14.7 GHz
sidebands. This configuration leaves the state

∣∣S1/2, F = 0
〉

dark, and thus trans-
fers all of the population to that state. (c) State detection. No sidebands are used.
This configuration takes advantage of the nearly cycling transition to scatter many
photons if the ion is in

∣∣S1/2, F = 1
〉
, and none if the ion is in

∣∣S1/2, F = 0
〉
. (d)

Coherent operations. 355 nm light drives off-resonant two-photon transitions via a
virtual level detuned from the

∣∣P1/2

〉
and

∣∣P3/2

〉
states by 33 and 66 THz respec-

tively. Two beams are applied with a splitting of 12.6 GHz (equal to the splitting
between

∣∣S1/2, F = 0
〉

and
∣∣S1/2, F = 1

〉
).

3.1.4 Coherent Operations

We utilize two methods to drive coherent rotations between the qubit states.

We can either drive them directly with microwave radiation at 12.6 GHz or use a

Raman transition as shown in Fig. 3.4(d). The theoretical details of driving rotations

using microwaves are discussed in [68]. Here, I briefly summarize the experimental

implementation.

To generate the 12.64 GHz signal, we mix the output of a clock at 12.45 GHz
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with a ∼200 MHz DDS signal and filter out only the sum frequency. This microwave

signal is then sent to a microwave horn placed directly outside one of the windows

of the vacuum chamber. The time to fully rotate between the qubit states (the π

time of a rotation) is typically tens of µs.

Microwaves can be useful for diagnostics and testing and can be more stable

than laser rotations. However, the low momentum of microwave photons means

that they cannot couple to the ion’s motional modes and thus cannot be used to

drive entangling operations. Additionally, the microwave horn blocks optical access

from one port, which may make it desirable to operate without microwaves once the

experiment is setup and running stably.

We can also perform coherent rotations using laser beams, as discussed in

Sec. 2.2, which provide enough momentum to couple to the ion’s motion and drive

entangling gates, as discussed specifically in Sec. 2.2.1. Additionally, we have

achieved higher Rabi frequencies (shorter π times) with lasers than with microwaves.

To drive rotations in Yb, as discussed above, we use a frequency comb centered

at about 355 nm with two beams, either in a co-propagating configuration or with

∆~k parallel to the axial direction of the trap if we wish to couple to the motion

of the ions. We use multiple comb teeth from the frequency comb to span the

hyperfine splitting in 171Yb+. The lasers we use have a fixed repetition rate of

either approximately 80 MHz for the Spectra Physics Vanguard and 120 MHz for

the Coherent Paladin. The resonance requirement consists of a comb tooth in each

beam matching the 12.64 GHz hyperfine splitting (plus any AC Stark shifts, which

we in general attempt to null). In general, the resonance condition will not be

53



satisfied without frequency modulation, so we introduce AOMs into the beam paths

to satisfy the condition:

ωHF = nωrep + ∆ωAOM (3.1)

where ∆ωAOM is the difference between the AOM frequencies on the two beam

paths.

Additionally, while the Paladin can be modified to lock the repetition rate of

the laser [73], we have not performed this procedure for our lasers and the repetition

rate therefore drifts. We must therefore feed-forward on the AOM frequency to

ensure the resonance condition remains satisfied. This feed-forward is performed by

using a beatnote lock as described in [74, 75].

3.2 138Ba+ Ions

We now discuss the specifics of control of Ba ions. While much of this discus-

sion is very similar to that for Yb ions, the presence of a low-lying D state in Ba

introduces additional complexity and opportunities to all of our operations.

3.2.1 Atomic Sources and Photoionization

For sources of Ba, we build our own ovens containing pure Ba metal. Barium

requires a significantly higher temperature than Yb for comparable atomic flux

densities. In Alice, to load barium, we run the oven at 8 Amps (the ytterbium oven

is run at ∼2.5 Amps). For Bob and Cleo, we attach a tungsten coil as described

in Sec. 3.1.1. On Bob, for which we have tungsten on the Ba oven but not on the
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Yb oven, both ovens require currents of about 2.5 Amps. The Ba oven in Cleo is

also run at a current of about 2 Amps. The procedure for loading barium into the

chamber is more complicated than that for Yb due to the rapid oxidation of Ba. To

load barium into the oven, we first pump the chamber down to high vacuum and

run the oven for a few minutes while it glows at least red hot to remove any residual

water, which can increase the rate of oxidation. We then fill the chamber with

argon without exposing it to air. This can be accomplished by using a CF flange

fitted with a Swagelok adapter on the air/pump side of the valve. The chamber

is then opened with the argon continuing to flow through with greater than 1 atm

of pressure. When the only window opened is on top of the chamber, the heavier

weight of argon compared to air along with the positive pressure should minimize

the amount of air that gets in to the oven. All tools that come in contact with the

barium are also baked under vacuum for at least several hours beforehand. The

barium is packaged in glass ampules filled with argon, which we break into a glass

dish. Over the course of a couple of minutes, we load as many of the barium beads

as we can into the oven using tweezers. This procedure minimizes the exposure of

the barium to air to a couple of minutes, during which time the barium will have

oxidized to the point that the surface will be noticeably whiter than when it started

but not so much that we will not be able to get barium out from under the oxide

layer.

To create Ba ions, we use a two-photon protocol. Both photons are 413 nm.

The first photon resonantly drives the transition from 6s2 1S0 → 5d6p 3D1, and the
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Higher Energy Level Lifetime Lower Energy Level Wavelength Branching Ratio

6s6p 1P1 8.4 ns

6s2 1S0 553.70 nm 0.9966

6s5d 1D2 1500.40 nm 0.0025

6s5d 3D1 1107.87 nm 8× 10−5

6s5d 3D2 1130.61 nm 9× 10−4

5d6p 3D1 17 ns

6s2 1S0 413.35 nm 0.026

6s5d 3D1 659.71 nm 0.64

6s5d 3D2 667.71 nm 0.32

6s5d 1D2 781.45 nm <0.001

Others - 0.013

Table 3.2: Partial list of transitions in neutral Ba. These transitions comprise all
of the relevant ones for our work. Energies of the levels (and thus wavelengths) are
from [76] and lifetimes and branching ratios are from [77].

second provides enough energy to ionize the atom (see Fig. 3.5). We use 1.5-5 mW of

loosely focused 413 nm light, which is sufficient for trapping in about 4-5 minutes in

Alice, 1-2 minutes in Bob, and 1-2 minutes in Cleo. The exact frequency of the light

is dependent on the angle of the laser beam relative to the atoms. In Alice, the laser

beam is 167.5◦ to the atomic beam, and in Bob, the angle is 22.5◦. For temperatures

of the atoms of approximately 590 K, there is a resonance frequency difference for

the 413 nm beams for Alice and Bob of about 1.5 GHz. Additionally, at these angles,

there is a large amount of Doppler broadening so our isotope selectivity is poor and

we routinely trap 136Ba+ or 137Ba+ instead of 138Ba+.
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Figure 3.5: Partial energy level diagram of neutral Ba (not showing hyperfine struc-
ture), adapted from [78]. The ionization energy is found in [79], and the relevant
wavelengths in [76]. This figure shows two possible ionization schemes–the one
we currently use, which utilizes two 413 nm photons, first to drive the transition
6s21S0 → 5d6p3D1, and then to excite the electron to the continuum, and another
possible scheme using 553 nm for the first photon and then a photon with wavelength
≤ 417 nm to ionize. The branching ratios and decay wavelengths are presented in
Table 3.2.

As mentioned above, the resonant transition we use as the first step in our

photoionization process is from 1S0 → 3D1. This transition is an electric dipole-

forbidden transition, so we would expect it to be weak. Indeed, it is about 100

times weaker than the transition 1S0 → 1P1 transition, and, correspondingly, the

linewidth of the transition is only 240 kHz instead of almost 20 MHz. However,
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since we use a relatively high power of laser light and there is significant Doppler

broadening, our ionization rates are comparable to those in Yb. There are, however,

more efficient ionization schemes. One such scheme is shown in Fig. 3.5, where the

first photon at 553.7 nm drives the neutral atom 1S0 → 1P1 transition. The second

photon can then have any wavelength shorter than 417 nm. The disadvantage of this

scheme compared with ours is the difficulty of obtaining a 553 nm laser; however, if

this technical obstacle can be overcome, this protocol could provide more efficient

ionization. Other ionization schemes are discussed in [57].

3.2.1.1 Neutral Fluorescence in Barium

Figure 3.6: Neutral fluorescence of Ba atoms. This image was taken in the test
chamber with the laser beam at approximately 90◦ to the atomic beam and the
current of the oven at 3 A.

As in Yb (Sec 3.1.1.1), we can observe fluorescence from neutral Ba atoms.

The amount of fluorescence we will see, however, is much lower for a given atomic

flux, since the transition in the neutral atom we drive is not cycling. From the

excited state 5d6p 3D1, there are several possible decay paths–see Fig. 3.5 and Ta-
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ble 3.2–and the atom will only decay back to 1S0 after about 2% of excitations. The

majority of the time (64%), the atom will decay to 6s5d 3D1 and emit a photon at

659.7 nm. The other most common decay is to 6s5d 3D2, for which the wavelength

is 667.71 nm. For Bob, we observed neutral fluorescence in the vacuum chamber

in the center of the trap, and, for Cleo, in the test chamber. One difficulty with

neutral fluorescence observation for Ba is the sizeable amount of red light emitted

via blackbody radiation from the oven. This light can cause background on the

camera that makes observation of the atomic fluorescence considerably harder to

find. In Bob, this was our primary motivation for observing the fluorescence in the

center of the trap rather than close to the tip of the oven. A sample image of the

neutral fluorescence for the Cleo oven design is shown in Fig. 3.6. This image was

taken with the current of the oven at 3 A.

3.2.2 Doppler Cooling

Higher Energy
Level

Lifetime Lower Energy Level Wavelength Branching Ratio Linewidth
(
γ
2π

)
6P1/2 7.9 ns

6S1/2 493.4 nm 0.732 14.7 MHz

5D3/2 649.7 nm 0.268 5.5 MHz

6P3/2 6.3 ns

6S1/2 455.4 nm 0.742 18.7 MHz

5D3/2 585.4 nm 0.028 0.71 MHz

5D5/2 614.2 nm 0.230 5.8 MHz

5D3/2 80 s 6S1/2 2051.8 nm - 2.0 mHz

5D5/2 31.2 s 6S1/2 1762.2 nm - 6.1 mHz

Table 3.3: Relevant transitions in 138Ba+ with wavelengths and branching ratios.
The sources are as follows: wavelengths [76], lifetime of the P1/2 state [80], lifetimes
of the P3/2 states [81, 82], lifetime of the D3/2 state [83], lifetime of the D5/2 state
[84], branching ratios from the P1/2 state [80], and branching ratios from the P3/2

state [85].
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Figure 3.7: Partial energy level diagram of 138Ba+. Qubit levels are shown in red, and
other energy levels that are commonly populated are shown in cyan. Transitions that
we currently drive with lasers are shown in the thick dashed lines, while transitions
that can occur but do not routinely do so are shown with the thin dotted lines.
Note that the lifetimes shown are not for individual transitions but rather the total
lifetime for the energy level. More details are available in Table 3.3, and the sources
are listed in the caption for the table.

In Ba+, there is a low-lying D state with a fairly high branching ratio from

the 6P1/2 state (Fig. 3.7, Table 3.3). Thus, Doppler cooling is not quite as simple as

in Yb. In particular, we can no longer focus only on the beam driving the S ↔ P

transition without considering the repumping beam in more detail. In the case

of Ba, the repumper is a beam at about 650 nm that drives the 5D3/2 ↔ 6P1/2

transition. Because of the high branching ratio, the atomic structure effectively

forms a Λ system. More details of the implications of this structure are presented
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in [48, 55, 57], including the resulting spectra. As an example of the impact of

the structure, the spectrum of the 493 nm laser now depends on the intensity and

frequency of the repumper, as detailed in the sources cited above.

In [86], there is some discussion of the dependence of the cooling rate on the

493 and 650 frequencies for a particular configuration. These calculations show

that the dependence on the 650 nm frequency is minimal for laser detunings of the

493 nm laser of . 10 MHz. One other interesting conclusion from this paper is that

the cooling rate is symmetric about the 650 nm resonance, instead of the typical

heating on one side of resonance.

We can expand upon the calculations of this paper with some experimental

observations as well, especially since the calculations in this paper are performed only

for limited laser settings (i.e. fixed intensity, only σ± polarization). In particular,

we have observed that there is a regime with higher intensities on the 650 nm

beam where we can in fact cool on that transition instead of the 493 nm transition.

While the parameters for this regime have not been well characterized, there is

a clear signature in the behavior of the ion that leads us to this conclusion. In

general, there is a sharp drop in ion fluorescence as the cooling laser is scanned

across resonance from red detunings to blue detunings. Often, the ion crystal melts

as observed concurrently on a camera image. When we are in the regime where

cooling is occurring on the 650 nm transition, we observe this behavior only when

scanning the frequency of the 650 nm laser, but not that of the 493 nm laser. Indeed,

in this regime, the 493 nm frequency can be scanned over a wide range without the

ion crystal melting. We typically do not operate in this regime; however, it is a

61



strong indicator that the laser intensities have significantly changed.

It is also important to note that the Λ system leads to coherent dark states for

certain relative detunings of the two lasers [87]. While the linewidth of these states

are likely narrower than the linewidth of the laser, they will reduce the brightness

and thus the cooling rate since the cooling rate is proportional to the scattering

rate. To avoid this, we ensure that one beam, typically the 493 nm beam, is always

red-detuned from resonance while the other is blue detuned.

3.2.3 State Preparation and Detection in the 6S1/2 Manifold

In 138Ba+, there is no hyperfine qubit available. Instead, the only possible

choice for a ground state qubit consists of the Zeeman levels in the 6S1/2 manifold.

We define the qubit levels |0〉 ≡
∣∣6S1/2,mJ = −1

2

〉
and |1〉 ≡

∣∣6S1/2,
1
2

〉
, which are

split by 2.88 MHz
G
∗ |B|. Typically, we work with a splitting of order 10 MHz. It is

important to note that this splitting is sensitive to magnetic field fluctuations to first

order, and our coherence time in Ba is much lower than that in Yb. This splitting is

not large enough to resolve using frequency selectivity, since we only lock our lasers

to ∼10 MHz (using a wavemeter), and the natural linewidth of the 6S1/2 ↔ 6P1/2

transition is over 10 MHz. Therefore we rely on polarization to resolve the qubit

states instead.
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493 nm

(a) (b)

Figure 3.8: State preparation and measurement in the 138Ba+ 6S1/2 manifold. The
qubit is defined as the Zeeman sublevels, and transitions to the excited 6P1/2 state
are driven with a 493 nm laser. For simplicity, the 5D3/2 state is not shown in the
figures; however, for all operations in this section, all polarizations of the 650 nm
repumper beam are on to clear out all of the sublevels in that manifold. In each
diagram within an energy level, the states on the left have mJ = −1

2
and those

on the right have mJ = 1
2

(a) State preparation. To prepare |0〉, we turn on only
σ− light. Since there is no available transition with 493 nm σ− light from |0〉, all
population is transferred to this state. If we wish to prepare |1〉, we simply pump
with σ+ light instead. (b) Measurement of the qubit state. On each shot, we turn
on either σ+ or σ− light. |0〉 is dark to σ− light, while |1〉 is dark to σ+ light. Thus,
we can distinguish which state the ion is in based on the average number of photons
collected with each polarization.

3.2.3.1 State Preparation

To prepare a particular state, we first note which transitions are allowed for

each polarization as determined by the selection rules in Eq. 2.54. The P1/2 manifold

only contains states with magnetic quantum numbers ±1
2
. Therefore, from |0〉, we

can drive transitions with ∆mJ = 0,+1, corresponding to π and σ+ polarizations

respectively. From |1〉, the available transitions have ∆mJ = 0,−1, which can be

driven with π and σ− light, respectively. Note that π light can drive transitions

from both qubit states, and thus cannot be used for optical pumping. Therefore, if
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we wish to pump to |0〉 (|1〉), we use only σ− (σ+) polarized light [48]. This process

is depicted in Fig. 3.8(a). During optical pumping, all polarizations of 650 nm light

are also applied to the ion to prevent any population from being pumped to the

5D3/2 state. The entire process typically takes .1 µs.

3.2.3.2 State Detection

Detection relies on similar principles. As discussed above, one of the qubit

states is dark to one σ polarization while the other is bright. Because there is no

available cycling transition and the ion will be quickly pumped to the dark state,

most shots we will not observe any photons during state detection. Specifically, on

average, 2.8 photons will be scattered per shot before the ion is pumped dark if it is

in a single qubit state and the applied light is the correct polarization [75]. However,

the ion emits isotropically while our imaging system subtends only part of the 4π

solid angle of all of space, and we collect only a small portion of these photons. We

therefore must rely on a probabilistic detection scheme.6 For each shot, we either

apply σ+ or σ− light to the ion. Over many trials, the average number of photons

collected determines the populations. We can express this result in terms of a matrix

equation n+

n−

 = E

2.8 0

0 2.8


P0

P1

 (3.2)

where n± is the average number of photons collected for each σ± trial respectively,

E is the overall light collection efficiency, and P0 and P1 are the populations in |0〉

and |1〉. Using this equation along with the constraint P0 +P1 = 1, we can solve for
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the state populations and the efficiency of light collection

P0 =
n+

n+ + n−

P1 =
n−

n+ + n−

E =
1

2.8
(n+ + n−) . (3.3)

We rarely consider the efficiency and just focus on P0 and P1, but we have the

ability to measure it if desired. While frequency and intensity fluctuations can occur

and result in changes in n+ and n−, this detection scheme will not be sensitive to

fluctuations common to both polarizations. It is thus fairly robust to slow drifts in

frequency and intensity [48]. The matrix formulation here is unnecessary and the

equations can be written down directly; however, it provides a useful starting point

for understanding the detection scheme discussed in Sec. 3.2.4.2.

3.2.3.3 Experimental Considerations for Ba S State SPAM

For light propagating parallel to the quantization axis (θ = 0), there will be

no π component to the light, and perpendicular to the magnetic field
(
θ = π

2

)
, σ+

and σ− are indistinguishable except for a phase.7 Therefore, we are not able to

control whether a beam propagating perpendicular to the magnetic field has σ+

or σ− polarization, so for state preparation, we must deliver the light along the

6An alternative detection scheme consists of shelving to the 5D5/2 state as detailed in [88].
For our current setup, we chose not to implement this scheme because of practical considerations
and because ultimately all state readout will be performed after swapping the state onto Yb and
reading out the Yb qubit state. However, we discuss the possibility of using this scheme in an all
Ba network in Sec. 8.4.
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quantization axis.

We assume the beam is perfectly aligned to the field. If we deliver any two

orthogonal polarizations through the same fiber, we can rotate those polarizations

to left-handed and right-handed circular polarizations, which correspond to σ+ and

σ−. We do not use polarization maintaining fibers in the current experiment because

of previous difficulty in achieving adequate stability in the coupling. As a result,

we routinely have to perform minimal adjustments to the polarization to ensure it

remains correct. For future experiments, polarization maintaining fibers can be used

only if the relative phase of the two polarizations does not matter.

It is important that the σ+ and σ− beams have the same intensity and result

in the same background level when there is no ion in the trap. To optimize the

polarization, we look at fluorescence from the ion with only one of the σ beams

on. If everything is perfectly configured, the ion should be completely dark. If

the polarization does not correspond perfectly to either σ+ or σ−, however, the ion

will have some residual fluorescence. We adjust a series of zero-order waveplates–a

quarter waveplate, followed by a half waveplate, then another quarter waveplate–

either before or after the fiber to minimize the ion fluorescence. This procedure

must be performed for both of the polarizations, since there can be local minima

in the polarization landscape where one of the polarizations gives very little ion

fluorescence but the other does not.

Furthermore, if the beam is not well aligned to the magnetic field it may not

7This statement is only strictly true for an infinitely small beam. However, the laser beams are
small enough that the deviation from being directly along the axis or perpendicular to it within
the beam, assuming it is aligned well, is not significant.
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be possible to minimize the fluorescence with both polarizations simultaneously.

Certain polarization-dependent loss in the fiber or optics after the fiber can also

lead to imperfections in the polarization the ion sees, since it can make the two

polarizations nonorthogonal. This issue will not arise if the polarization-dependent

loss is in the basis of the orthogonal polarizations, as that can be compensated by

increasing the power in one beam relative to the other. However, as an example,

if the two circular polarizations pass through an optic that has greater loss for

horizontally polarized light, the two polarizations will no longer be orthogonal. In

this case, the fidelity of the pumping will be lower as a result.

We currently obtain fidelities of over 98% for qubit state preparation and mea-

surement. The limitations are different between traps and have not been quantified.

However, the contributions, qualitatively, consist of background photons from scat-

tered light and polarization impurity, either from misalignment to the magnetic

field, polarization-dependent loss, drifting polarization, or imperfect polarizers.

3.2.4 State Preparation and Detection in the 5D3/2 Manifold

For generating single photons from a barium ion (see Sec. 6.1), we must prepare

the ion in one of the edge states
(
mJ = ±3

2

)
of the 5D3/2 manifold. While we do

not detect the state in the course of an experiment, it is useful to be able to perform

state detection to verify that the optical pumping is working.

In this section, we first discuss how we optically pump in the D manifold and

then how we perform state detection. Finally, we discuss how we optimize these
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Figure 3.9: 650 nm laser beam configurations for state preparation and measurement
in the 138Ba+ 5D3/2 manifold. For simplicity, only the D sublevels and 650 nm
beams are depicted and not the S states or 493 nm beams. In all of the diagrams,
dashed lines represent decays that occur where a transition is not driven, while solid
lines indicate transitions driven by a laser. Not all possible decays are shown. The
purple circles indicate population in dark states for a given beam configuration. (a)
Optical pumping to

∣∣5D3/2,mJ = +3/2
〉
. 650 nm light with σ+ and π polarizations

is applied to the ion, leaving only the mJ = +3/2 state dark. (b) Detection of
population in the D3/2 sublevels. We cycle through 5 polarization combinations: σ+

and π individually as shown in (b), plus σ+ with π (shown in (a)), σ−, and σ− with
π. The last two configurations are not shown, but are mirror images of the first
diagram in (b) and the diagram in (a) respectively. Population is extracted based
on the relative number of photons collected for each configuration over many shots.

procedures.

3.2.4.1 State Preparation

As shown in Fig. 3.9(a), we apply both σ+ and π polarizations of 650 nm

light to prepare the edge state. These two beams can be switched on and off inde-

pendently. Both polarizations are necessary due to the selection rules laid out in

Eq. 2.54. Specifically, if only σ+ light were applied, for example, there would be
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population left in the sublevels with mJ = +1/2 and mJ = +3/2 (Fig. 3.9(b), first

diagram), or if only π light were applied, there would be population in the sublevels

with mJ = ±3/2. Meanwhile, we also leave both σ+ and σ− polarizations of 493 nm

light on the ion to clear out the S manifold. 493 nm light that is π polarized can

be used in addition to or instead of the σ polarization. However, as discussed in

Secs. 3.2.3, we require the σ polarizations already, and the addition of π light does

not significantly decrease our pumping time, so we only use the σ beams.

The rate of pumping depends on many factors including the magnetic field

amplitude, the powers of all of the 650 nm polarization beams, the power of the

493 nm light, and the frequencies of all of the beams. If we operate with the same

optical powers throughout the experiment, we are constrained by the single photon

generation process (Sec. 6.1) to a saturation parameter for 650 nm σ− light of about

510. Using the optical Bloch equations discussed in Sec. 2.4.2, we can calculate how

much time will be required before at least 98% of the population is in the state∣∣D3/2,mJ = +3/2
〉
. For a magnetic field of about 2 G, where we have typically

operated in the past, we find that for any detunings and saturation intensities, the

minimum pumping time is at least 2.8 µs.

However, for larger magnetic fields, we can decrease the pumping time con-

siderably (see Fig. 3.10 for example). While pumping, we also must not heat the

ion. Thus, the 493 nm beams must still be detuned to the red of resonance while

the 650 nm beams must be blue-detuned. Furthermore, we note that given the

saturation intensities of the 493 nm and 650 nm transitions, we need considerably

higher 493 nm powers to achieve the same saturation parameter. Also, in practice,
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Figure 3.10: Pumping times to the
∣∣D3/2,mJ = +3/2

〉
state for various detunings of

the 650 nm laser beam and the 493 nm laser beam at a magnetic field of 4.2 G. The
horizontal axis in each plot is the saturation parameter for the 650 nm π beam while
the vertical axis is the saturation parameter for each 493 nm σ (sg,σ = sg,σ+ = sg,σ−).
For larger detunings of the 493 nm beam, the 650 nm beam can be closer to resonance
to achieve the same pumping time; however, larger 493 nm saturation parameters
are required. On the other hand, when the 493 nm beam is tuned closer to resonance,
lower 493 nm powers can be used but higher 650 nm powers are required. To explore
optimization of D state pumping, a far wider parameter space was explored, but
the plots shown here depict a feasible regime while achieving 2 µs pumping times.

we have much less 493 nm power available in the lab than 650 nm. This limitation

can in theory be overcome by tighter focusing of laser beams, but that would require

a major overhaul of our experimental setup. For a magnetic field of twice what we

have used in the past (B = 4.2G, ωq/(2π) = 12.1MHz), we see that we can achieve

pumping times of about 2 µs with a saturation parameter for 493 nm of well under
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100 if we detune the 493 nm beam close to resonance (∆g/(2π) = −10 MHz), and

the 650 nm beam farther from resonance (∆r/(2π) = 40 MHz). We then require

a saturation parameter for 650 nm of about 100, which is readily achievable in the

lab.

Additionally, we actually use two separate lasers for 650 nm π polarized light

and 650 nm σ polarized light. Because of this configuration, we can have different

detunings for the two 650 nm lasers. This will likely affect our pumping times;

however, we have not yet been able to incorporate multiple laser detunings into our

simulations. We can experimentally explore this regime and see if we can further

improve beyond the theoretical calculation. We do not observe significant improve-

ments in the optimal pumping time, although the observed ideal detunings differ

from the predictions from the simulations.

One other option for improving pumping times is varying the laser power

depending on the phase of the experiment. For example, we can use a lower RF

power on the AOM that controls the 650 σ beam during pumping compared with

single photon generation. With a lower 650 σ power, we would be able to use

correspondingly lower 493 power and 650 π power, as well as using a lower magnetic

field. After thoroughly exploring the above regime and struggling to decrease the

pumping times below about 3 µs for achievable magnetic fields, we decided that this

direction is more promising despite the increased complexity in the control software.

More details of this implementation are discussed in Sec. 6.4.
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3.2.4.2 State Detection

While the principles behind state readout in the D manifold are an extension

of those describing the qubit state detection discussed in Sec. 3.2.3.2, the larger

number of levels dramatically increases the complexity. We now must be able to

determine the populations in four levels instead of two, and any given polarization

has at least two bright states associated with it. However, by increasing the number

of polarization configurations we use from two to five, we can in fact achieve state

measurement in this manifold.

The five polarization combinations must all be linearly independent. There are

only three individual polarizations, of course, but certain polarizations can be com-

bined to give us the desired result. We use all three of the individual polarizations–

σ+, σ−, and π–as well as the two combinations σ+ with π and σ− with π. As with

the qubit readout scheme, this protocol is probabilistic, and we cannot obtain re-

sults from a single trial. Over thousands of trials, however, each only approximately

1 µs in duration, we can build up enough statistics for each polarization setting to

deduce the populations.

For the following discussion, we will refer to each sublevel as |mJ〉. Mathe-

matically, we write the relationship between the number of photons collected and
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the population in each sublevel as follows [55]:



n+

n−

nπ

n+π

n−π


= E



6.6 5.4 0 0

0 0 5.4 6.6

0 6 6 0

13.3 12.6 11.4 0

0 11.4 12.6 13.3





P (|−3/2〉)

P (|−1/2〉)

P (|+1/2〉)

P (|+3/2〉)


(3.4)

where nε corresponds to the polarization ε with + and − short for σ+ and σ−

respectively. This matrix is calculated using a Monte Carlo simulation with the

assumptions that the intensities of all polarizations of 493 nm light are the same

as each other and all polarizations of 650 nm light have the same intensity as well

[75]. We do not always operate exactly in this regime and are still able to obtain

reasonable results, and since we use this protocol only as a diagnostic tool, it is not

extremely important that the fidelity is maximized.

In addition to these equations, the populations must also sum to 1, and the

population in any given level must be between 0 and 1. The problem is thus over-

constrained given the number of equations. However, we can find a best fit using a

constrained linear least-squares solver as discussed in [55] and obtain equations for

the populations and efficiency in terms of the number of photons collected for each

polarization combination. These equations are complicated so we do not include

them explicitly here, but they can be found in [55].
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532 nm

44 THz
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Figure 3.11: Diagram of Raman transitions in the Ba S manifold. 532 nm light
couples to a virtual level 44 THz detuned for the P1/2 manifold and 94 THz from
the P3/2 manifold.

3.2.5 Coherent Operations in the 6S1/2 Manifold

As with Yb, we need to be able to rotate between the qubit states coherently.

For Ba, this can be accomplished either with RF radiation with frequency equal

to the Zeeman splitting or with laser light. In addition to the considerations for

microwaves with Yb, the long wavelength of the frequencies required means the

vacuum chamber will very effectively screen radiation delivered from outside the

chamber, so high powers of RF are required. While radiation could be applied

directly to the electrodes of the trap, the frequencies of the Zeeman splitting is

typically close to the secular frequency of the trap, and it is preferable to have

strong filtering on the trap electrodes at this frequency to avoid coupling to the

ion’s motion and resultant heating of the ion. Instead, we choose to rely on laser-

driven rotations only.

We drive these rotations with the same laser used for driving coherent rota-
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Figure 3.12: Clebsch-Gordan coefficients for transitions between the 6S1/2 and 6P3/2

manifolds.

tions in Yb. These lasers are primarily designed to produce the 355 nm light that we

use for Yb; however, the frequency tripling process does not have 100% efficiency,

and there is inevitably a significant amount of residual light at the second harmonic

at 532 nm. We take advantage of this light to drive coherent rotations in Ba, since

the 355 nm light is too far detuned from the Ba resonance to drive transitions with a

reasonable Rabi frequency. Because of the small qubit splitting in Ba, it is unneces-

sary to rely on multiple comb teeth of the laser to span the qubit splitting, which is

typically approximately 5 MHz, and we can achieve this simply with AOMs in each

beam path. Using the results of Sec. 2.2, we can calculate the Rabi frequencies and

AC Stark shifts. The same selection rules relevant for resonant dipole transitions

(Eq. 2.54) apply here also, so we can see that, at a minimum, we must have both

π and either σ+ or σ− polarization. For most of the results in this thesis, our only

Raman beam is perpendicular to the magnetic field, so the intensity of the σ+ light

is the same as that of the σ− light.
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We can write the interaction Hamiltonian matrix elements, as in Eq. 2.79, in

terms of the saturation intensity for a given transition. The two relevant saturation

intensities for Raman are IsatSP1/2 = 16.5 mW
cm2 for the S1/2 ↔ P1/2 transition and

IsatSP3/2 = 26.3 mW
cm2 for the S1/2 ↔ P3/2 transition. The Clebsch-Gordan coefficients

for S1/2 ↔ P1/2 transitions are given in Fig. 2.3 and those for S1/2 ↔ P3/2 transitions

are shown in Fig. 3.12. With this information, we can calculate the single photon

Rabi frequencies for all possible transitions and thus the two photon Rabi frequencies

and AC Stark shifts.

We assume that the detuning of the two Raman beams are equal to the qubit

splitting including the AC Stark shifts. Then the two photon Rabi frequencies are

given by:

Ω =
∑
e

g∗0eg1e

∆e

(3.5)

where the detuning is the same for all polarizations but is different depending on if

the excited state is in the P1/2 or P3/2 manifold. Explicitly, the two photon Rabi

frequency is:

Ωtot = 0.061
√
Iπ

(√
Iσ+ +

√
Iσ−
)

(3.6)

This equation confirms our previous statement that driving Raman transitions re-

quires at least π polarized light and one of the σ polarizations.

Next, we calculate the two photon AC Stark shifts. The Stark shift must be

summed over the contribution from all excited states to which the laser light couples

the ground state of interest, even those that do not contribute to the Rabi frequency

because they do not couple to the other ground state. The two photon Stark shifts,
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Figure 3.13: Coefficients for transition strengths between the 5D3/2 and 6P3/2 man-
ifolds. These are not equivalent to the Clebsch-Gordan coefficients and must be
calculated using Wigner-3j and Wigner-6j symbols.

calculated using Eqs. 2.31 and 2.32, are:

δ0 = − (0.16Iπ + 0.11Iσ− + 0.20Iσ+)

δ1 = − (0.16Iπ + 0.11Iσ+ + 0.20Iσ−) (3.7)

The absolute shift of the energy levels is not very important; we care more about

the differential shift. We can see from this equation that the differential shift will

be zero if Iσ+ = Iσ− . This condition will always be satisfied for any beam propa-

gating perpendicular to the quantization axis. It can also be satisfied for a beam

propagating along the quantization axis if the polarization is linear.
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Figure 3.14: Raman transitions in the 5D3/2 state in Ba. The 532 nm laser is
detuned by 51 THz from the 6P3/2 manifold and 102 THz from the 6P1/2 manifold.
(a) ∆mJ = 1 transitions. Not all possible couplings are shown for simplicity. (b)
∆mJ = 2 transitions.

3.2.6 Coherent Operations in the 5D3/2 Manifold

While most of our operations rely on the qubit in the 6S1/2 manifold, it can

be useful to be able to perform coherent rotations among the Zeeman sublevels in

the 5D3/2 manifold as well [55].

For these transitions, the Raman lasers couple to both the 6P1/2 states and the

6P3/2 states with detunings of 102 THz and 51 THz respectively (Fig. 3.14). How-

ever, due to the transition strengths, the coupling to the 6P3/2 state is considerably

weaker than that to the 6P1/2 state, although the detuning is smaller.

Because Raman transitions are two photon processes, we can change the an-

gular momentum projection on the z axis mJ in the D manifold by either 1 or 2

quanta, as shown in Fig. 3.14 (a) and (b) respectively. Which transition we drive

is selected based on the detuning of the Raman beams. In particular, to drive

∆mJ = 1 transitions, the detuning is set to 4
5
∗ 1.44 MHz

G
∗ |B|, while for ∆mJ = 2

transitions the detuning is set to 8
5
∗ 1.44 MHz

G
∗ |B|. The Rabi frequencies for both
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Transition
Rabi Frequency,
P1/2 Coupling

Rabi Frequency,
P3/2 Coupling

Total Rabi Frequency

|4〉 ↔ |5〉 −0.033
√
IπIσ+ −10−4

√
Iπ
(
8.0
√
Iσ− − 2.7

√
Iσ+

)
−
√
Iπ
(
0.033

√
Iσ+ + 8.0× 10−4

√
Iσ−
)

|5〉 ↔ |6〉 −0.019
√
Iπ
(√

Iσ+ +
√
Iσ−
)
−3.1× 10−4

√
Iπ
(√

Iσ+ +
√
Iσ−
)

−0.019
√
Iπ
(√

Iσ− +
√
Iσ+

)
|6〉 ↔ |7〉 −0.033

√
IπIσ+ −10−4

√
Iπ
(
8.0
√
Iσ− − 2.7

√
Iσ+

)
−
√
Iπ
(
0.033

√
Iσ+ + 8.0× 10−4

√
Iσ−
)

|4〉 ↔ |6〉
|5〉 ↔ |7〉 0.023

√
Iσ+Iσ− −7.5× 10−4

√
Iσ+Iσ− 0.022

√
Iσ+Iσ−

Table 3.4: Two-photon Rabi frequencies for 5D3/2 manifold Raman transitions.
The first section of the table contains the frequencies for ∆mJ = 1 transitions and
the second for ∆mJ = 2 transitions. The second column shows the two-photon
Rabi frequencies considering only coupling to the P1/2 manifold, while the third
column contains the two-photon Rabi frequencies due only to coupling to the P3/2

manifold. The last column contains the overall two-photon Rabi frequency, which for
all transitions, is nearly the same as that due only to coupling to the P1/2 manifold.
Iπ, Iσ+ and Iσ− are the intensities of π, σ+, and σ− 532 nm light respectively. States
are labeled as in Fig. 3.14.

types of transition are discussed below, and the motivations for each are discussed

in [55].

To determine the Rabi frequencies and Stark shifts, we calculate the strength

of each transition from all Zeeman sublevels in the 5D3/2 manifold to those in both

P manifolds. We calculate these coefficients using Eqs. 2.52 and 2.53 and define

the transition strength coefficient C̃ ′ as in Eq. 2.79. For the transitions to the P1/2

manifold, these coefficients are shown in Fig. 2.3, and for transitions to the P3/2

manifold, they are shown in Fig. 3.13.

Once we have the coefficients, it is straightforward to find the two photon Rabi

frequencies and AC Stark shifts as we did in Sec. 3.2.5, although there are now more

transitions to consider. We divide the results into the contributions from coupling

to the P1/2 versus P3/2 manifold to illustrate the much weaker coupling to the P3/2

manifold.
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State AC Stark shift

|4〉 0.04Iσ+ + 9.7× 10−4Iπ

|5〉 0.08Iπ + 6.5× 10−4Iσ− + 0.014Iσ+

|6〉 0.08Iπ + 6.5× 10−4Iσ+ + 0.014Iσ−

|7〉 0.04Iσ− + 9.7× 10−4Iπ

Table 3.5: Two-photon AC Stark shifts in the 5D3/2 manifold from 532 nm light of
arbitrary polarization.

For ∆mJ = 1 transitions the Rabi frequncies between the mJ = ±3
2

and mJ =

±1
2

states will in general be different from that for the transition between mJ = −1
2

and mJ = +1
2
. These frequencies, along with those for ∆mJ = 2 transitions are

shown in Table 3.4. The two photon AC Stark shifts of each state are shown in

Table 3.5.

There are two considerations for optimizing the polarization of the light driving

Raman transitions. First, for ∆mJ = 1 transitions, the Rabi frequencies may be

unequal depending on the relative intensities of the different polarizations. Second,

for either type of transition, differential AC Stark shifts for different transitions can

lead to different detunings and thus different times to drive a π rotation. For the

first consideration, it is clear from the equations in Table 3.4 that it is preferable

for the intensities Iσ+ and Iσ− to be equal. Given this constraint, it is not possible

for all of the Rabi frequencies to be exactly equal. However, the differential Stark

shift between |5〉 and |6〉 will always be 0 given this condition, while in general,

the differential Stark shift between |4〉 and |5〉 or |6〉 and |7〉 will be nonzero. By

changing the detuning of the laser, it would then, in principle, be possible to make

the π times more similar; however, this would sacrifice full population transfer.
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On the other hand, the differential Stark shifts can all be made zero by setting

Iπ = 0.67Iσ+ = 0.67Iσ− . This configuration will ensure that the resonance condition

for all transitions will be the same and thus ensure maximum population transfer.

81



Chapter 4: RF Paul Traps

The most basic experimental requirement for the work presented in this thesis

is a confined, cold, charged atom. In this chapter, we will focus on the confinement of

an ion and discuss the theory behind it. We will also discuss practical optimization

of a trap in a lab setting where the reality deviates from the theory.

4.1 RF Paul Trap Theory

An advantage of using ions is the strong interaction between the charge of the

atom and external electromagnetic fields. While intuitively it may seem that we

could use an electric field to confine a charged particle, Gauss’s law tells us that

an electric field cannot point toward the same point in all three dimensions and

thus cannot confine a charged particle to a single spot [89]. This result constitutes

Earnshaw’s theorem [90].

Thus, to trap a charged particle, we must consider alternative solutions. One

such option is to use electric and magnetic fields, as in [91]. However, in our work

we instead use an RF Paul trap, as proposed in [92]. This style of trap relies on

the time-averaged force experienced by an ion in an oscillating field, which yields a

ponderomotive potential with an effective minimum near the center of the trap.
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(a) (b)

Figure 4.1: RF Paul ion trap geometries. (a) Ideal trap with hyperbolic electrodes.
(b) The type of trap used in this work–a four rod trap with four cylinders in place
of the hyperbolas and needles to provide axial confinement.

To begin our discussion of the physics of the trap, we assume that the ion,

with charge e and mass m, is surrounded by hyperbolic electrodes in two dimensions

as shown in Figure 4.1(a). We define the direction along which the electrodes are

extended as the “axial” direction z, the direction between the two blue electrodes

in the hyperbolic geometry as x and the direction between the grey electrodes as y.

If we were to apply a static voltage V0 to the hyperbolic electrodes, as in [92], the

potential would be

V =
V0

2r2
0

(
x2 − y2

)
(4.1)

where r0 is the minimum distance from the ion to the electrode. If we momentarily

ignore the axial direction, this potential will provide a confining force in one direction

and anti-confining in the other.

Consider if we instead apply an oscillating voltage V0 cos (ΩT t) to one pair of
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opposite electrodes while grounding the others [45]. The potential experienced by

the ion is then

V =
1

2
V0 cos (ΩT t)

(
1 +

x2 − y2

r2
0

)
. (4.2)

If we take the time average of the resulting force on the ion, we see that this potential

provides a confining force in both directions.

So far, we have not addressed how the ion is confined in the axial direction.

To accomplish this final dimension of trapping, we can add endcaps, such as the

needles shown on the four-rod trap in Fig. 4.1, and apply a static voltage U0. This

gives rise to an axial potential

U ' κU0

z2
0

(
z2 − x2 + y2

2

)
. (4.3)

We have stated the potential only for a trap with hyperbolic electrodes. In

practice, this trap geometry is inconvenient since it allows very little optical access,

and, as discussed in Chapter 3, we require laser beams to control the ions and the

ability to collect photons emitted from the ions. Instead, many more feasible trap

geometries have been proposed and implemented [45, 93–98]. These trap designs

are only a sample of the possibilities. However, for many different geometries, the

physics can be described nearly identically to that for the hyperbolic trap with the

simple modification of an added geometric factor η to the radial potential [45]

V =
η

2
V0 cos (ΩT t)

(
1 +

x2 − y2

r2
0

)
(4.4)
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when considering the motion of the ion near the trap axis. This relatively straightfor-

ward result is based on the assumption that any confining potential can be expressed

as nearly quadratic for small oscillations around the minimum. In this work, we use

the four rod geometry shown in Fig. 4.1(b). All discussions in this chapter, while

derived from the hyperbolic trap potential, will apply to this trap equally well as

long as the ion motion remains small, which we require anyway for our work.

Proceeding with the calculation, we now wish to derive the equations of mo-

tion. The total potential is

Vtot = V + U =
η

2
V0 cos (ΩT t)

(
1 +

x2 − y2

r2
0

)
+
κU0

z2
0

(
z2 − x2 + y2

2

)
. (4.5)

Following [99], we now calculate the electric field

E(x, y, z, t) = −ηV0

(
xx̂− yŷ
r2

0

)
cos (ΩT t)−

κU0

z2
0

(−xx̂− yŷ + 2zẑ) . (4.6)

Now, since F = eE = mr̈ where r = xx̂+ yŷ + zẑ we have

ẍ = −eηV0

mr2
0

x cos (ΩT t) +
eκU0

z2
0

x

ÿ =
eηV0

mr2
0

y cos (ΩT t) +
eκU0

z2
0

y

z̈ = −2eκU0

mz2
0

z . (4.7)

Noting the similarities in these equations, we can write them in a more consolidated
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form as the Mathieu equation [99]

r̈i + [ai + 2qi cos (ΩT t)]
Ω2
T

4
ri = 0 (4.8)

where

ax = ay = −1

2
az = − 4eκU0

mz2
0Ω2

T

(4.9)

qx = −qy =
2eηV0

mr2
0Ω2

T

, qz = 0. (4.10)

The solution for motion in the axial direction is a simple harmonic oscillator

with frequency

ωoscz =

√
2eκU0

mz2
0

(4.11)

The solutions in the transverse directions, however, are nontrivial. Floquet theory

can be used to find a series solution, as shown in [68, 100], but here we simply state

the result to first order in qi and ai [99]:

ri(t) ≈ Ai cos (ωoscit+ φi)
[
1 +

qi
2

cos (ΩT t)
]

(4.12)

where

ωosci '
1

2
Ωt

√
ai +

1

2
q2
i , (4.13)

and φi is a phase on the ion motion determined by initial conditions. Ai is a constant

describing the amplitude of the ion’s motion, and is set by the initial conditions.
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Figure 4.2: Motion of an ion in an RF Paul trap with ai = 0.01, qi = .1, and
ΩT = 20 MHz ∗ 2π. The small amplitude oscillations with frequency ΩT are the mi-

cromotion, and the larger amplitude oscillations with frequency ω = 1
2
ΩT

√
ai + 1

2
q2
i

are the secular motion.

The motion described in Eq. 4.12 consists of two oscillations–one at frequency

ωi and one at frequency ΩT , as shown in Fig. 4.2. The small-amplitude, high-

frequency oscillations are known as the ion’s micromotion whereas the slower, larger

oscillations are the secular motion. The trap is stable when ai << 1 and qi < 1

[101].

4.2 Trap Design and Simulations

As mentioned previously, a perfect quadrupole trap would consist of hyper-

bolic electrodes, but in practice this configuration is impractical. Instead, we use a

four-rod style trap, which allows for more optical access and still approximates the

hyperbolic electrode configuration. Before building or while working with a trap, it

is useful to have a thorough understanding of the trap properties. We wish to know
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the overlap between our actual trap geometry and the ideal quadrupole trap, the

secular frequency in every dimension, and the principal axes of the trap. Because

the electrodes are no longer hyperbolic, the problem cannot be solved analytically.

There are several software options we can use to perform these calculations.

For calculating the frequencies and principal axes, we use COMSOL Multiphysics®.

To begin, we define the trap geometry. While COMSOL allows importation of CAD

files, since our trap has a very simple structure, we can define it in COMSOL itself.

First, we define the relevant parameters in “Global Definitions” → “Param-

eters.” Needed values include all dimensions for the trap geometry, the voltages

with which we operate, and physics properties such as the mass and charge of the

ions. Then, we build the model of the trap using the “Geometry” capabilities of

the software. Finally, we input the calculations that we want to perform. In the

“Study” tab, we “Add Study,” and select “Stationary.” After pressing “Compute,”

the solution for the trap “sol1” is found. We can further define “Derived Values,”

which is where we define the specific numbers we want to find. In particular, we

calculate the secular frequencies in x, y, and z, the directions of the principal axes,

and the secular frequency in each of the principal axes.

When the radial frequencies in the simulation approximately match the mea-

sured trap frequencies, the calculated axial frequency is too low. This may be a

result of the setup of the simulation or discrepancies between the actual trap con-

struction and the design. As such, we only use these simulations for predictions in

the transverse or radial directions, and for relative comparisons in the axial direction.
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Figure 4.3: Dimensions of trap designs for which simulations are performed. All
figures are individually to scale, and (a) and (b) are to scale relative to each other.
(a) XY-plane cross section of trap design for our first two traps. (b) XY-plane cross
section for high numerical aperture trap design. (c) XZ-plane cross section of both
trap designs.

4.2.1 Simulation Results

First, we present the results of the simulation of the design for our first two

traps (Fig 4.3(a)). For these simulations, we use 200 V for the voltage on the needles

(approximately the value used in lab) and 470 V for the RF voltage. The RF voltage

is chosen such that the radial secular frequency from the simulation gives the same

result as we measure in the lab. No DC potential is applied to the rods. The

resulting potentials are shown in Fig. 4.4.

From these simulations or measured frequencies (see Sec. 4.3.1) and Eqs. 4.9

and 4.10, we can also estimate the approximate geometric scaling factors for our

trap. We do not have an independent measurement of the RF voltage, so we use the

simulation to determine the voltage that corresponds to a particular radial secular
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Figure 4.4: Simulated potentials for four rod trap with a square geometry. The
geometry is shown in Fig. 4.3 (a) and (c). The RF voltage is set to 470 V to match
the experimentally determined secular frequency, and the needle voltage is set to
200 V. (a) Pseudopotential and electric field in the XY plane. The pseudopotential
is shown in the colored surface plot, and the arrows represent the electric field. (b)
Axial potential (logarithmic scale). The blue curve shows the contribution from the
RF voltage, which should be negligible. The green curve shows the contribution
from the needles, which almost exactly matches the total potential, shown in red.

frequency. The measured axial frequency is 0.97 MHz (the simulated frequency is

0.32 MHz), and the measured radial frequency is 1.39 MHz with the simulation set

to give approximately the same result. First, from Eq. 4.11 and the measured axial

frequency, we obtain κ ∼ 0.2. We can then substitute this value into the equation

for the radial secular frequencies (Eq. 4.13) and we obtain a value for η of ∼ 0.8,

which as we expect is of order 1.

For the design of our third trap (Sec. 5.2), we needed to change the trap

dimensions in order to increase the amount of light we could collect from between

the rods in one direction. However, we also wanted to ensure that we would not

be sacrificing too much in terms of the efficacy of the trap, and in particular, that

our secular frequencies would still be comparable to our previous traps, since higher

secular frequencies assist in achieving higher gate fidelities [102]. Thus, we also

simulated the trap with the larger aspect ratio shown in Fig 4.3(b). The design for
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Figure 4.5: Simulated potentials for a four rod trap with rectangular geometry. The
trap geometry is shown in Fig 4.3 (b) and (c). The voltages are the same as for the
previous simulations, for the sake of comparison (470 V for the RF, 200 V for the
DC needle voltages). (a) Pseudopotential and electric field in the XY plane. The
pseudopotential is plotted as the colored surface plot, and the arrows represent the
electric field. Note that the color scale differs from the scale for the previous trap.
(b) Axial potential. The blue curve is the contribution from the RF voltage, the
green curve is the contribution from the needles, and the red is the total potential.
The green and red curves are essentially the same near the trap center.

confinement in the needle axis is the same. The results are shown in Fig 4.5.

These simulations predict radial frequencies of 1.24 MHz and 1.14 MHz in the

two radial principal axes and .33 MHz in the axial direction. Given the experimental

results observed in our first trap, we expect the axial frequency to be about a factor

of 3 higher. Again, we can predict the geometric scaling factors for this trap. For the

axial direction, since the geometry is the same and our simulations are unreliable,

we assume κ ∼ 0.2 as with Alice and Bob. We then obtain a radial geometric factor

η of 0.6, so this trap potential does deviate more from that of the ideal hyperbolic

trap. However, given the similar secular frequencies, we expect that for our purposes

this design will be adequate.

While we can estimate η from this method, a full calculation would require
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a more detailed analysis. To perform this analysis, we would need to calculate the

overlap integral of the pseudopotential with the ideal quadrupolar potential. For

this thesis, we did not perform this calculation; however, it should be possible by

exporting the potential from COMSOL and then numerically integrating or using

an alternate software.

4.3 Trap Parameter Optimization and Measurement

4.3.1 Measurement of Trap Secular Frequencies

Knowing the secular frequencies of a trap is important for determining the

Mathieu q parameters and deciding if changes need to be made to increase or de-

crease the secular frequencies. Another particular concern is the distance between

the needles since it is difficult to measure well and the needles can slide, so even if

we did get a solid measurement, it is possible for that to change after the vacuum

chamber is closed. The secular frequencies will also later be important for optimizing

local entangling gates.

4.3.1.1 Measurement of Trap Secular Frequencies using Raman Tran-

sitions

As discussed in Sec. 2.2.1, coherent operations can couple to the motional

modes of an ion. This coupling will be strongest for the resonance condition

δαβ = ω0 ± ωosci (4.14)
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where δαβ is the detuning between the two Raman beams and ω0 is the qubit split-

ting. Thus, by scanning δαβ, we can obtain a spectrum of the ion’s motion.

For this measurement, the Raman beams must be configured such that ∆~k has

a component along all of the principle axes whose frequencies we wish to measure.

We performed this measurement on Alice and configured the Raman beams so they

coupled to the axial motion and one of the radial modes. We assume the secular

frequency of the other radial mode will differ from the observed mode by tens of

kHz at most. The resulting measured frequencies were 1.39 MHz and 0.97 MHz for

the radial and axial modes respectively.

4.3.1.2 Measurement of Trap Secular Frequencies with “Tickle” Spec-

troscopy

For a new trap, setting up all the lasers and optimizing all the operations

necessary for performing motional spectroscopy using the Raman beams is time

intensive and may not be an immediate priority. A straightforward alternative

technique for measuring the secular frequencies consists of applying a “tickle” voltage

to the trap, as discussed, for example, in [103]. This applied voltage has a frequency

that is scanned through the expected range for secular frequencies (typically several

hundred kHz to a few MHz). When the frequency matches one of the secular

frequencies, the ion will rapidly heat. The primary difficulty with this technique

is the likelihood of heating the ion out of the trap entirely. Additionally, if the trap

has in-vacuum RF filters, it may not be possible to apply the needed tickle voltage.
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We performed this procedure on Cleo by applying a signal with amplitude

0.1 V to one of the DC rods. We scanned the frequency in 10 kHz increments

while observing an ion on the camera. We observed melting of the ion crystal at

1.34 MHz, 1.27 MHz, and 740 kHz. Based on the orientation of the chain when

multiple ions are trapped, the confinement is weaker along the axial direction, so

the lowest frequency must correspond to the axial secular frequency. From these

numbers, we can compute the Mathieu q parameter for each principle axis as well

as the distance between the needles. The RF frequency for these measurements was

about 26 MHz. We obtain an average q for the transverse modes of 0.17. If we

assume the simulated value of η (0.6, Sec. 4.2.1) is correct, this gives an RF voltage

of 878 V. We also obtain a needle-ion distance of 3.6 mm∗
√
κ, or 1.6 mm if κ = 0.2,

which is slightly larger than the design distance.

4.3.2 Micromotion Compensation

While the micromotion mentioned above is intrinsic to any RF Paul trap, ions

can also exhibit additional micromotion. Either a mismatch of the phase of the RF

on the two RF rods or a displacement of the ion from the RF null due to an imperfect

trap geometry or stray electric fields can result in this excess micromotion. In turn,

the excess micromotion can lead to heating of the ions [104] and cause infidelity in

our remote entanglement [105].

For example, the ion can experience a stray, static, homogeneous electric field
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~Edc. Then the equation of motion becomes [99]

r̈i + [di + 2qi cos (ΩT t)]
Ω2
T

4
ri =

e ~Edc · r̂i
m

. (4.15)

The solution is then

ri(t) ' [di + Ai cos (ωit+ φi)]
[
1 +

qi
2

cos (ΩT t)
]

(4.16)

where

di '
e ~Edc · r̂i
mω2

i

. (4.17)

Thus, the ion is pushed away from the RF null by ~d, and the micromotion in

the ith direction is increased by 1
2
qidi. As discussed in [99], micromotion can also

be caused by a phase difference between the two RF rods; however, we mitigate

this experimentally by placing a large capacitor between the wires for the inputs

for the two rods just before the vacuum feedthrough. This effectively shorts the RF

on the two rods, keeping the phase in sync. Our observed ability to compensate

the micromotion by applying DC potentials to our electrodes also indicates that the

micromotion is caused predominately by either trap misalignment or excess electric

fields. Micromotion usually occurs due to displacement from the RF null in a radial

direction but can also occur in the axial direction if the ion is located closer to

one needle than the other. Axial micromotion is typically much smaller than radial

micromotion.

We can find the correct micromotion compensation voltages using several tech-
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niques. A simple, but imprecise, method is to look at a camera image of the ion

and change the RF voltage. This change should not cause the ion to move, since

the RF null should remain in the same location. However, we sometimes see that

the ion does move, and we can attempt to minimize this distance. As currently

implemented, this approach is entirely qualitative. Thus, it is challenging to make

the small adjustments we typically require.

Instead, since the micromotion is at the frequency of the trap RF, we can

correlate a signal from the ion that depends on the phase of the micromotion with

the RF cycle and minimize the amplitude of the variation in the correlation to

compensate the micromotion. If we have a Doppler cooling laser beam interacting

with the ion, the fluorescence will depend on the direction and speed of the ion’s

motion, since the ion’s resonance frequency will be shifted relative to the frequency

of the laser beam due to the Doppler effect.

The ion scattering rate as a function of laser detuning for an approximately

two-level system is given above in Eq. 2.1. For a laser beam with wavevector ~k, and

an ion with velocity ~v, the ion will see the laser frequency shifted by ω′l = ωl−~k ·~v.

To find the velocity of the ion, we can simply take the derivative of the position of

the ion. The velocity of the ion due to the excess micromotion is [99]

~vµ(t) = −1

2

∑
i=x,y

diqiΩT sin (ΩT t+ φ) r̂i (4.18)

where we have assumed that the difference in phase between the RF on the two rods

is 0. The Doppler shift is then −~k · ~vµ. Assuming the laser is detuned for optimal
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Doppler cooling, such that ∆l = ω0 − ωl = −γ/2 where ω0 is the resonance of the

atom, the scattering rate is then

R =
I

Isat

γ

2

1

1 + I
Isat

+ 1
(γc)2

(
ω0 − γ

2

)2
[∑

i=x,y diqiΩT sin (ΩT t+ φ) cos θi

]2 . (4.19)
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Figure 4.6: Photons collected as a function of time relative to the RF cycle. The
green curve shows the approximately time-independent signal from an ion when the
micromotion is well compensated. The red curve shows the time dependence of the
scattering rate when one of the rod voltages is changed by 0.09 V.

The ion’s fluorescence then depends on the phase of the RF cycle. We are

able to observe this correlation using the PicoHarp 300,1 which is capable of a

resolution of 4 ps. We trigger on the start of the RF cycle, and then observe the

ion fluorescence as a function of time. By adjusting the DC voltages on the trap

electrodes, we are able to reduce the amplitude of the correlation between the ion’s

fluorescence and the RF signal, thus indicating an improvement in the stray field

1PicoQuant

97



compensation. The results of this test are shown in Fig. 4.6 for the case of well-

compensated micromotion and when one of the DC voltages has been changed by

0.09 V.

In general, for Doppler cooling, only one laser beam resonant with the ion’s

primary transition is necessary. However, the use of a single beam restricts the direc-

tions in which we are able to observe micromotion, since we will only see fluorescence

modulations from the direction along which the beam propagates. However, our ex-

perimental setup for barium already requires multiple Doppler cooling laser beams

(see Section 3.2), so we are already able to observe micromotion in two directions

as long as both beams contribute comparably to the ion fluorescence. Currently,

however, we are unable to observe micromotion in the remaining direction, which

is the direction along which we collect photons for our single photon experiments.

Micromotion in this direction can be especially problematic, since the frequency of

the emitted photons will be modulated at the trap RF frequency, and will therefore

make the photons from different traps not identical. Nonidentical photons will result

in reduced interference in a Hong-Ou-Mandel (HOM) setup (see Sec. 6.3.1), which,

in turn, causes reduced fidelity in our overall remote entanglement protocol [105].

Measuring micromotion using this current technique along the direction of

light collection is experimentally challenging, since it requires shining a beam either

into the photon detection setup or backwards along the same path. Either of these

setups can result in too much light hitting the sensitive single photon detectors and

damaging them. Furthermore, the second configuration is technically difficult to

implement. In the results in the similar experiment discussed in [32], no significant
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decrease in fidelity due to residual micromotion was observed; however, our systems

are not identical and their result does not necessarily indicate that micromotion

will not hurt our fidelity. In the case that we do decide to attempt to compensate

micromotion in this remaining direction, there is one proposed method in [105]; this

protocol, however, relies on collecting ion light through a fiber. When the necessary

changes to the trap electrode voltages are made to compensate micromotion, the

fiber coupling will inherently decrease, likely to the point where it would be impos-

sible to proceed with the micromotion compensation without realigning the fiber.

The process would then be prohibitively slow, as each adjustment step would likely

take tens of minutes rather than about ten seconds.

Here, we present an alternative approach utilizing the unique level structure

of the barium ion. As discussed in Sec. 3.2, barium has an unusually high branching

ratio between the primary 6P1/2 → 6S1/2 decay, which generates the photons we

collect, and the 6P1/2 → 5D3/2 decay. This structure allows us to cool on the

D ↔ P transition rather than the S ↔ P transition by adjusting the relative

optical powers

We configure the powers and polarizations of the laser beams such that we are

cooling as stated above on the 650 nm 5D3/2 ↔ 6P1/2 transition while still collecting

493 nm photons emitted from the ion. The 650 nm cooling beam is sent backward

through the objective lens that we use to collect the single photons as shown in

Fig. 4.7. The directionality of the light already will mostly solve the problem of

the possibility of intense laser beam light damaging the detector. However, we can

further suppress the chances of damage, and improve our signal to noise, by using
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lens Single photon
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Figure 4.7: Scheme for detection of micromotion in direction of light collection.
493 nm light is still sent in perpendicular to the light collection direction. A 650 nm
beam is sent in such that it is counterpropagating with the 493 nm photons collected
from the ion. The use of a dichroic mirror to send the 650 nm light into the trap
and an additional color filter to remove any back-scattered 650 nm photons ensures
that light from the 650 nm beam cannot damage the highly sensitive single photon
detector, and should also suppress any background to near zero levels.

spectral filtering. First, we send in the 650 nm light by reflecting it off a short-pass

dichroic mirror, allowing the 493 nm light to pass through to the detector. It is

possible, however, that light sent in could then scatter back to the detector, either

reflecting off of optics along the path or the trap itself. For additional filtering, we

can add a bandpass filter just before the single photon detector to block any residual

650 nm photons. This setup should result in a very clean detection signal without

the sensitivity to ion position that sending in a counterpropagating 493 nm beam

and collecting light through a fiber would introduce.

Another option, which we have previously implemented, is to use a Raman

beam sent in this direction to directly observe the micromotion sidebands. The

Raman spectrum includes peaks at the carrier frequency ω0 and ω0 ± ωosci (see

Sec. 4.3.1), but there are also sidebands on those peaks at ω0±ΩT and ω0±ωosci±ΩT
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Figure 4.8: Motional mode spectrum of an ion with micromotion with ωosc/2π =
1.5 MHz and ΩT/2π = 18.5 MHz. Amplitudes and widths of the peaks are not
to scale. The carrier transition is shown at ∆ω = 0. while the secular motion
sidebands are at ±1.5 MHz. The other peaks are the micromotion sidebands both
off the carrier peak and the secular peaks. Only one motional mode is shown for
simplicity.

(see Fig. 4.8). The orientation of the Raman beams must differ from our normal

setup in order to observe the micromotion along the direction of light collection. In

this Raman configuration, we couple to one of the radial modes along with the axial

mode.

The goal is then to minimize the amplitude of the micromotion sidebands by

adjusting the trap voltages. One difficulty of this method is that as the voltages are

changed, the alignment of the beam to the ion will also change. This problem is

exacerbated because we send one Raman beam through the Photon Gear objective

(Sec. 5.1.3), so one of the beams is very tightly focused. We can mitigate this issue

somewhat by purposely defocusing the beam going into the lens. However, the am-

plitude of the peak decreasing could still be an indication of an actual micromotion

improvement or simply the beam being misaligned. Thus, the π time must routinely

be checked to ensure a full π pulse is being driven with each scan. The method using
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650 nm light to detect micromotion in this direction would not have this issue.

Using the Raman procedure, along with the standard micromotion compen-

sation technique, we were able to significantly improve the micromotion in Alice.

However, setting this up is fairly invasive and prevents us from fiber coupling the

ion light well. The resulting lower photon number on the detector also makes state

readout much noisier. This technique, therefore, cannot be used routinely, and we

only chose to implement it because we were having difficulty compensating micro-

motion using the standard technique alone. So far, we have not had similar issues

with the other traps.

4.3.3 Application of a DC Radial Quadrupole

In a standard four rod trap, the two transverse modes are degenerate. When

the radial modes are degenerate, it is not possible for the ion to distinguish the

principle axes so the cooling will not affect motion in the direction perpendicular

to the beam [41, 106]. While it is still possible to trap in this case, and there is

typically some slight difference in the secular frequencies in the two principle axes

due to trap imperfections or the presence of the needles, we observe difficulties in

keeping the ions crystallized, especially at higher RF amplitudes.

This problem can be addressed by adding a DC quadrupolar potential to the

trap rods. As discussed previously, each rod can have a DC offset applied to it,

which we have used in the past primarily for compensating micromotion. To break

the degeneracy of our transverse modes, we apply a voltage of +4 V to the RF rods
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and -4 V to the DC rods. This significantly improves the cooling of our ion. After

applying these voltages, we are able to operate at higher RF amplitudes without the

ion crystal melting, we need <5 µs of cooling during an experimental cycle instead of

30 µs, and we were able to decrease the residual micromotion. Additionally, we were

able to observe the motional spectrum of an ion in Alice only with the quadrupole

potential applied.

Due to the rectangular geometry of our third trap, as opposed to the square

geometry of the first two, we expect that the splitting between the mode frequencies

is larger. We observe a splitting between the modes of 70 kHz without any DC

quadrupole, as discussed in Sec. 4.3.1.2. However, we still see an improvement in

the stability of the ion crystal when we apply a similar potential.

103



Chapter 5: Experimental Design and Testing

The experiment discussed in this thesis has stringent and complicated design

requirements, especially with regards to optical systems. In this chapter, we discuss

the imaging setups for the first two traps. We also describe the design and testing

of our third trap, which contains high numerical aperture aspheric lenses in vacuo

for single photon collection.

5.1 Imaging Systems for the First Two Traps

For every trap in our experiment, we have several light collection needs: (i)

collection of 370 nm photons for Yb state readout (free space), (ii) collection of 493

nm photons for Ba state readout (free space or in fiber), and (iii) collection of 493

nm photons into a fiber for remote entanglement. The last two can be combined, but

depending on the lenses used and the fiber coupling efficiency, it may be preferable

to have a free space imaging system for state readout. The free-space imaging can

also be useful for alignment and the ability to observe the ions on a camera. In this

section, we discuss the imaging systems we use for our first two traps.
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(a) (b) (c)

RMS radius: 4.626 μm RMS radius: 2.464 μm RMS radius: 103.959 μm 

Figure 5.1: Ray tracing spot diagrams at the image plane for the free space objective
used for Alice. These diagrams show the distribution of 30 rays in the image plane
traced from the object plane through the objective. The outermost ray at the object
plane has an angle to the optical axis corresponding to an NA of 0.39. The scale bars
are in µm. (a) Spot diagram for 493 nm light with the lens optimized accordingly.
The RMS radius of the image is 4.626 µm. (b) Spot diagram for 370 nm light in the
optimal configuration. The RMS radius of the image is 2.464 µm. (c) Spot diagram
for 370 nm light when the ion-lens distance is set for 493 nm light. This diagram is
at the focus of the 370 nm light; however, due to the different object-lens distance
from the configuration for (b), the spot size is much larger with an RMS radius of
103.959 mm.

5.1.1 Alice Free Space Imaging Setup

For imaging Ba and Yb in free space in Alice, we use a custom objective with

numerical aperture (NA) of 0.39 consisting of five spherical lenses.1 The properties

of these lenses are shown in Table 5.1. This objective is not corrected for chromatic

aberrations, so it cannot be optimized simultaneously for 493 nm and 370 nm pho-

tons. For 493 nm, the best object-lens distance is 21.888 mm in air and vacuum and

4 mm through the fused silica vacuum window and the back focal length (lens-image

distance) is 182.326 mm. For 370 nm, the equivalent optimal object-lens distance is

20.481 mm with the same window while the back focal length is 227.031 mm. If pho-

1Special Optics
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Surface description Radius of curvature (mm) Thickness (mm)

Object Infinity 8.976
Vacuum Window Infinity 4.000

- Infinity 12.912 (11.505)
CVI PLCX-25.4-25.8-UV Infinity 5.3

- -25.800 2.980
CVI PLCX-25.4-38.6-UV Infinity 3.600

- -38.600 0.500
CVI PLCX-25.4-38.6-UV Infinity 3.600

- -38.600 0.500
CVI BICX-25.4-76.6-UV 76.600 4.100

- -76.600 9.088
Newport SPC034 -22.950 2.500

- Infinity 182.326 (227.031)

Table 5.1: Design for the imaging objective used for free space light collection for
both Ba and Yb in Alice. The part numbers for the lenses are listed for the first
surface of the lens, and then the subsequent surface is the other side of the lens.
The thickness column indicates the distance between the center of the surface in
that row and that of the next surface. Where the ideal thickness differs for barium
and ytterbium, the thickness optimized for barium is listed without parentheses and
that for ytterbium is in parentheses. All glass surfaces (the vacuum window and all
lenses) are made of fused silica.

tons of both wavelengths are collected simultaneously and the object-lens distance

is optimized for 493 nm, there is still an image plane for 370 nm with a back focal

distance of 138.319 mm. However, the spot size is much larger in this configuration

(see Fig. 5.1).

The laser beams used to control the ions that are at the same wavelengths

as the collected photons will scatter off the trap and contribute a large background

signal if we cannot spatially filter this light. Therefore, we do not detect the photons

at the first image plane but rather put an adjustable aperture at this plane and then

reimage the light using either another single finite conjugate lens or a telescope. The

single lens is simpler to align, but standard plano-convex lenses will typically give
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a much larger spot in this configuration. To decide which setup is preferable, we

must consider the detector we are using to observe the fluorescence. For Yb, we use

photomultiplier tubes (PMTs), which have active areas with a diameter of ∼5 mm.

Thus, a spot size of several hundred microns is sufficient for observation of the full

signal, and we can use a single reimaging lens. For Ba, on the other hand, we use

avalanche photodiodes (APDs) with active area diameters of only 100 µm. It is

therefore crucial for Ba that the spot size remain significantly smaller than 100 µm

in order not to lose photons unnecessarily. We thus utilize a telescope for Ba rather

than a single lens and use an aspheric lens as the final lens to focus onto the APD.

For detecting multiple wavelengths simultaneously, the aperture cannot be

closed all the way since the size of one of the colors at that plane will always be

much larger. Therefore, if an experiment is being performed that requires light

collection from both ion species, the wavelengths must be divided using a dichroic

beam splitter, and each path must then have its own aperture and reimaging stage.

5.1.2 Bob Free Space Imaging Setup

While the ultimate goal for this setup is similar to that for Alice, we had several

additional constraints in its design. First, while the vacuum window used for free

space imaging on Alice is reentrant, the one on Bob is not, and we therefore cannot

use the objective we used for Alice. Second, Bob is mounted with the window

we use for this imaging on the bottom of the chamber and there is only about

11.5 cm between the table and the window. This short distance imposes significant
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constraints on the imaging system setup.

Figure 5.2: Cross section of the ray trace for the Bob 493 nm free space imaging
system. The distances where the light is collimated are shown as being very small
for convenience, but can be made much larger in the lab.

With both of these constraints in mind, we decided to use a single aspheric

lens with NA 0.5.2 This lens is 50 mm in diameter and has an object to lens distance

of 29.665 mm in vacuum or air plus 6.782 mm through a fused silica window and is

infinite-conjugate for 493 nm but finite-conjugate for 370 nm at the same working

distance. The lens is made of fused silica. In general, an even asphere such as the

one used here is described by the equation [107]

z(r) =
r2/R

1 +
√

1− (1 + κ)
(
r
R

)2
+
∑
n

Anr
n (5.1)

where z is the distance along the optical axis, r is the distance from the optical axis,

R is the radius of curvature of the surface, and κ indicates the conic constant of

the lens. The sum is over even n. For the aspheric lens in this system, one surface

is planar and the other is described by this equation with the aspheric parameters

and the lens thickness shown in Table 5.2.

The entire imaging system for 493 nm light is detailed in Table 5.3, and a

cross sectional view of the ray trace is shown in Fig. 5.2. While we have not yet

2Thorlabs, custom design.
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Parameter Value
Thickness 28.637 mm

R 25.273 mm
κ -0.601
A4 −5.169× 10−7

A6 −3.081× 10−10

A8 −2.211× 10−16

A10 −1.242× 10−19

A12 3.471× 10−22

Table 5.2: Design parameters for the free space imaging aspheric lens on Bob. All
other coefficients for the sum of polynomials are zero. The thickness is the distance
from the vertex of the curved surface to the planar surface.

constructed the Yb imaging path, the 370 nm light would propagate through the

custom asphere and the next two lenses before it is separated from the 493 nm light.

The 493 nm light is collimated at this point, so the Ba imaging is not affected by

the dichroic beam splitter.

5.1.3 High Numerical Aperture Imaging System for Fiber Coupling

The third requirement for our light collection is the most difficult and also the

most crucial for our experiment. Here, we present the setup that we use for coupling

light from a barium ion into a single mode fiber and summarize its performance.

The objective we use for this purpose on both Alice and Bob is designed

and manufactured by Photon Gear, consists of multiple elements, and has a NA of

0.6. We are not informed of the constituent elements; however, we are still able

to calculate the performance of the lens using a “black box” design file that the

company provided. From this information, we can determine the optimal working

distance and back focal length for multiple wavelengths and determine the decrease
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Surface description Radius of curvature (mm) Thickness (mm)

Object Infinity 27.400
Vacuum Window Infinity 6.782

- Infinity 2.265
Custom asphere Infinity 28.637

- -25.273* 0.200
Thorlabs LA1399-A 90.130 6.650

- Infinity 245.776
Thorlabs LA1608-A Infinity 4.100

- -38.600 -
Thorlabs LA1708-A 103.000 2.800

- Infinity 291.000
Thorlabs LA1509-A Infinity 3.600

- -51.500 -
Thorlabs AL1225G-A 12.987* 3.800

- Infinity 22.569

Table 5.3: Bob free space imaging system design. The vacuum window and the
custom asphere are fused silica, while all other glass surfaces are made of N-BK7.
Asterisks on the radius of curvature indicate an aspheric lens, which cannot be com-
pletely described by the information in this table. The parameters describing the
first asphere are listed in Table 5.2, while the aspheric parameters for the standard
Thorlabs asphere are not listed here for simplicity. Dashes in the thickness col-
umn indicate the light is collimated at this point and therefore the distance is not
important for the construction of the system.

in performance from misalignment. For 493 nm, the total object-vertex distance is

23.027 mm, while the back focal distance is 132.023 mm. The lens is designed to

match the measured numerical aperture of the fiber we use of 0.0925.

The performance of this lens is diffraction limited with a calculated RMS

radius (ignoring diffraction) of 0.435 µm as shown in Fig. 5.4. In reality, diffraction

causes the beam size to closely match the mode field diameter of our fiber, and we

calculate a theoretical maximum fiber coupling of 0.76 (see Chapter 7).
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RMS Radius: 4.843 μm

Figure 5.3: Spot diagram for the Bob free space imaging system for 493 nm. The
scale is given in µm.

5.2 Design of an Ion Trap with In-Vacuum High Numerical Aperture

Imaging

As will be discussed in more detail in Chapter 6, one of the main limitations

of our remote entanglement generation success rate is the fact that a lens with an

NA of 0.6 collects only 10% of the light emitted from the ion. Additionally, in

our first two chambers, we only have enough optical access for a high NA lens on

one side of the trap. Having high NA objectives in multiple directions facilitates

connections with multiple other chambers. Finally, another significant reduction in

our entanglement generation rates comes from our fiber coupling efficiencies, which,

when we first started designing this system, were limited to about 25%. Since then,

we have switched to a different lens and seen improvements up to 40%; however,
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RMS radius: 0.435 μm

Figure 5.4: Spot diagram for 493 nm light through Alice and Bob fiber coupling
objective. This diagram does not account for diffractive effects. The scale bar is in
µm.

this is still significantly lower than the theoretical maximum of 76%. Some of this

discrepancy may be due to deformations in the vacuum chamber window. Together,

these limitations motivated us to design a new system that would hopefully improve

on all of these factors.

5.2.1 Imaging Systems Design

5.2.1.1 High Numerical Aperture Aspheres for Ba Light Collection

For this system, we put a custom aspheric lens3 on each side of the trap inside

the vacuum chamber. These lenses have a NA of 0.8, are placed 6 mm from the ion,

and are 1 inch in diameter. The glass for this lens is S-TIH53, which is a high-index

3Asphericon
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Total length: 184.968 mm

Figure 5.5: Cross section of high NA asphere system for Ba fluorescence collection.
The middle object is the vacuum window, through which the light is collimated.

glass with refractive index at 486 nm of 1.87 [108]. They collimate the light from

the ion through the window, which should reduce sensitivity to deformations in the

window since the angle of light going through the window will deviate less from

perpendicular to the surface than the light in a diverging beam. According to the

manufacturer, the RMS wavefront error is expected to be less than 0.1 waves, and

is limited by manufacturing tolerances.

Outside of the vacuum chamber, we use a second custom aspheric lens4 that

focuses the collimated light from the first asphere into a fiber with a numerical

aperture of 0.0925 to match the in-fiber beam splitter we use for remote entangle-

ment. This lens is also robust to a tilt angle of the incoming light of up to 0.5◦. A

cross section of this system is shown in Fig. 5.5. The performance of this system is

diffraction limited and has a theoretical maximum fiber coupling efficiency of 56%

for a uniform input apodization (the distribution of input rays) in Zemax.

4Asphericon
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Parameter Value

Thickness 11.000 mm

R 10.367 mm

κ -1.059

A4 5.598× 10−5

A6 −3.664× 10−9

A8 −5.966× 10−10

A10 −3.201× 10−13

A12 −3.700× 10−14

A14 3.644× 10−16

A16 −8.843× 10−19

Table 5.4: Parameters describing the in-vacuum Ba light collection high NA asphere.

Surface Radius of Curvature (mm) Thickness (mm) κ
1 68.592 10.0 -1
2 -291.000 - 0.000

Table 5.5: Parameters describing the out-of-vacuum asphere for focusing Ba light
into a fiber. Both sides of the lens are convex. All polynomial coefficients are zero.

A difficulty with the high NA aspheres is their small field of view and depth of

focus. As observed with the ion, moving the lens by 1 µm in the transverse directions

introduces significant comatic aberrations while a similar translation in the focal

direction causes significant defocus (see Sec. 5.3.1). These aberrations will decrease

our fiber coupling efficiency as will be discussed in more depth in Chapter 7. Thus,

we require the ability to make submicron adjustments of the in-vacuum aspheres.

Finding optomechanics capable of the necessary control is difficult due to the

strict ultra-high vacuum (UHV) requirements for trapped ions. We aim for our

chamber to have a pressure of order 10−11 Torr, and most translation stages with

the necessary precision will contribute far too much outgassing to a vacuum chamber
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RMS radius: 0.058 μm

Figure 5.6: Spot diagram showing distribution of light in the image plane for the
high NA asphere system. The spot size is much smaller than the diffraction limit.
Units are in µm.

to achieve these pressures. However, Smaract manufactures a stage5 that is specified

to pressures of < 1× 10−11 Torr. In addition, the stage has (closed loop) resolution

of 1 nm and repeatability of ±30 nm. This stage therefore allows sufficient control

of the asphere location.

Another important consideration is how the aspheres are mounted. Stress

on the glass could cause deviations from the ideal design, which, in turn, could

lead to worse fiber coupling. In day-to-day operation, if the asphere is fixed in

place only at a few points, those points will have greater stress. Thus, we want

cylindrically symmetric mounting. Furthermore, during the bake of the chamber

(see Appendix A), the changes in temperature can cause materials in the mount to

5SLC-1730-O20-W-S-UHV-NM
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Figure 5.7: CAD model of the in-vacuum asphere mounting setup.. The blue object
in the vertical center of the image is the ion trap holder, and the ion is located at
the approximate center of the opening between the screws. The green objects above
and below the trap are the aspheres, with a distance from the front surface of the
asphere to the ion of 6 mm. The retaining rings for the aspheres are not shown.
The piezo stages are located at the sides of the figure.

expand more or less than the lens itself. Lens holders are often manufactured from

a metal, typically aluminum or stainless steel, which have linear thermal expansion

coefficients of more than twice the coefficient for the glass [109]. Although the metal

would expand more when hot than the lens, and therefore it might seem that there
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would not be stress on the lens as a result, the subsequent cooling down and possible

shifts in position could still lead to deformation.

For the second consideration, we choose to minimize the stress induced from

temperature changes in a few ways. First, we had the main holder manufactured

from Macor, a material with a fairly similar thermal expansion coefficient to the glass

of the lens. S-TIH53 has a linear thermal expansion coefficient of 88 × 10−7/◦C in

the range −30-70 ◦C and 104×10−7/◦C in the range 100-300 ◦C [108]. Macor, which

is a machineable ceramic, has a linear thermal expansion coefficient of 90×10−7/◦C

in the range 25-300 ◦C [110]. This material is therefore preferable to the standard

metals discussed above. The lens holder consists of an internally threaded tube with

an inner diameter of 25.4 mm and a retaining ring that screws into the tube to hold

the lens in place, both of which are made from Macor. An image of the CAD model

for this mounting setup is shown in Figure 5.7. Additionally, we place a piece of

indium wire between the retaining ring and the lens so that any thermal expansion

will primarily affect this wire rather than the lens.

Another issue that could arise due to the presence of these lenses is exces-

sive heating of the nearby trapped ions. Charge buildup on insulators can cause

trapped ions to heat and the time-varying nature of such potentials leads to diffi-

culty compensating micromotion [111]. While the ions are relatively far from the

asphere surface compared to the length scales for some of the effects discussed in

[111], the large exposed surface area may still contribute to such effects. To reduce

the likelihood of this being an issue, we coated the front surface of the asphere with

indium tin oxide (ITO), a conductive coating that is transparent at 493 nm. A gold
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wire was then placed between the lens and the Macor holder and connected to the

chamber to ground the surface and remove any charges that may build up. For one

asphere, the resulting measured sheet resistance is 5 kOhm/square, while the other

is 3.9 kOhm/square.6The thickness of the deposited layer is about 10 nm.

ITO is not completely transparent at 493 nm. While the internal transmission

of the lens is expected to be about 96% and the surface away from the ion is coated

to have < 0.4% reflection, the measured transmission of both lenses after coating is

∼91%. Part of the loss may be due to reflection at the first surface, but depending

on the thickness of the layer, the transmissivity of a layer of ITO at 500 nm is

about 80-90%. This transmissivity depends on thickness, but can actually increase

or decrease with thicker layers due to interference effects [112], so it is difficult to

predict exactly what we expect for our lenses.

5.2.1.2 Imaging for Yb State Detection

While the design of this chamber is primarily focused on the imaging for Ba,

we do still need to be able to perform state readout on our memory qubit. However,

limitations due to beam delivery and the Ba imaging constrain us to detect light from

Yb from farther away than the working distance of any of our previously existing

lenses. We are also fairly limited in the NA that we can use for this lens due to

this relatively large distance, the trap geometry (Section 4.2), and the design of the

vacuum chamber (Section 5.2). The high-NA aspheres have poor transmission at

370 nm and will introduce large chromatic aberrations. For Yb detection, therefore,

6The unit Ohm/square indicates that that is the sheet resistivity for a square of any size.
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we observe from one of the sides of the trap with the more closely spaced rods as

shown in Fig. 4.3(b) because the sides with the larger rod distance are used only for

Ba imaging. The rod spacing limits the NA to roughly 0.3.

Parameter Value

Thickness 5.8 mm

R 13.163 mm

κ -0.693

A4 −3.519× 10−6

A6 −4.473× 10−9

A8 −3.282× 10−12

A10 5.578× 10−15

Table 5.6: Parameters for the asphere used for Yb fluorescence detection.

The distance from the lens to the ion is 27.701 mm including a 3.175 mm

thick fused silica window. For the back focal length, we wish to have a fairly long

path for convenience with optics mounting, so we semi-arbitrarily set the back focal

distance to 300 mm. While we attempted to design an objective using multiple

standard spherical lenses with these constraints, we were unable to achieve satisfac-

tory performance. Instead, we turned to another custom aspheric lens.7 The lens is

made of fused silica, and the parameters for this lens are listed in Table 5.6. The

performance of this lens as designed is diffraction limited.

7Thorlabs
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5.2.2 Vacuum Chamber Design

The design decisions for this chamber were made according to the following

priorities, although not necessarily in this order:

1. Accommodate and stably mount the asphere-piezo systems.

2. Make the system modular and replicable.

3. Allow imaging of Yb with an NA of 0.3.

4. Deliver all necessary laser beams with sufficient intensity.

5. Achieve a vacuum pressure of < 10−10 Torr.

The first priority mainly determined the size and orientation of the chamber.

In order to mount both piezos on the bottom of the chamber for maximum stability,

we needed a large flat surface as the bottom of the chamber. Furthermore, due to

the height of the mounts, a standard 4.5” spherical octagon would have been much

too short. Therefore, we used an 8” spherical octagon8 and oriented it so the large

openings were facing vertically. We were also able to increase the modularity of

the system by mounting the trap and making all electrical connections to a single

feedthrough (see Fig. 5.8). The flange is an off-the shelf part9 but with custom holes

for mounting screws.

For Yb imaging, we use a custom reentrant window10 that protrudes 84.4 mm

into the vacuum chamber. The inner diameter of the reentrant tube is 31.24 mm.
8Kimball Physics MCF800-SphOct-G2C8
9Kurt J. Lesker EFT0265063

10MPF Products
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Figure 5.8: CAD model of the trap and its holder mounted to a single flange. The
blue piece is the trap mount, which attaches to the flange. The actual trap is located
near the bottom of the figure, with the rectangular pattern of the rods visible in
the white circle at the edge of the holder. This gray circle is a Macor piece used to
hold the rods and one needle in place. The other side of the trap has an identical
piece that keeps the rods straight and holds the other needle. The side screws then
hold that Macor pieces in the trap holder. Not shown are the connections from the
rods to the feedthrough pins. In the actual setup, the barrel connectors shown in
the figure in gold simply screw directly onto the trap rods and needles.

The tube also narrows to a diameter of 24.6 mm for the 7 mm outside of the window.

This is too small to fit standard 1” optics and optomechanics, so the asphere has
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a diameter of 18 mm and we will use a custom lens tube. It is worth noting that

at the time of writing, we have not yet set up this imaging system, so unforeseen

issues may still arise and the design of the optics discussed above may need to be

modified as a result.

Laser beams are delivered to the trap as shown in Fig. 5.9. The needed beams

are discussed in Chapter 3. Beams that don’t need to be well focused are delivered

through the lower right window in the diagram because that window is farther from

the ion than the others or through the reentrant window for Yb detection since the

asphere used for fluorescence collection will not focus other wavelengths well. Raman

beams have ∆~k along the trap axis as required for driving axial motional gates. The

bottom left window is used for the beams that require pure σ polarizations so they

can be aligned with the magnetic field. Unlike the other windows, the bottom

window in the figure does not have an antireflection coating so future experiments

can use a 1762 nm laser (see Sec. 8.1) for shelving Ba if necessary. The remaining

sides on the octagon are for the electrical feedthrough for the trap (right) and

vacuum equipment (left).

Finally, we needed to consider how to achieve the best vacuum pressure pos-

sible. More details on what goes into such a design are discussed in Appendix A.

For now, there are several important points. First, the rate of gas flow in a vacuum

system and thus the pumping speed of that system is determined in part by the

property of conductance. For a circular tube (all of the elements of our chamber

except the spherical octagon), the conductance is proportional to the diameter of

the tube cubed [113]. Therefore, somewhat counterintuitively, tubes with larger di-
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Figure 5.9: Diagram of laser beams for the third trap. The magnetic field points
up and to the right, so beams propagating parallel or anti-parallel to that direction
have only σ polarizations. The trap axis is horizontal, and the reentrant window
for Yb imaging is at the top. Raman beams (355 nm and 532 nm) are delivered
through the upper left and upper right windows. The left and right sides do not
have optical access. The lower left shows the location of the atomic ovens.

ameters will lead to lower vacuum pressures. Additionally, our vacuum is primarily

limited by hydrogen from the steel chamber surfaces, so our primary concern for

selecting vacuum pumps is their pumping speed for hydrogen. For the first con-
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sideration, since our chamber is large, we use only vacuum nipples in our chamber

that are at least CF2.75 size, and much of the chamber is made from CF4.5 parts.

Second, we use both a StarCell ion pump11 with 20 L/s pumping speed for N2 and

a titanium sublimation pump12 (TSP) to achieve very high pumping speeds. The

StarCell pump is preferable to a more traditional diode ion pump since it can pump

higher volumes of hydrogen (as well as noble gases). The TSP adds even more pump-

ing capability. With just the ion pump, we achieved a pressure of ∼ 2× 10−10 Torr

on the ion gauge, and after firing the TSP for ∼10 minutes and waiting for several

days, we achieved a final pressure of 2× 10−11 Torr.

5.3 Testing of the Trap with In-Vacuum High Numerical Aperture

Imaging

5.3.1 Optics Testing

5.3.1.1 Out-of-Vacuum Testing of Lenses

Once the lenses are placed in the vacuum chamber, it becomes much more

difficult and time-consuming to replace them if there is a problem. To minimize

the chances that we would discover poor performance once the system was already

built, it was important that we test the lenses ahead of time.

This test is challenging because of the high NA (0.8) of the aspheres and

because our test source needed to fill the whole aperture to give reliable results.

11Agilent 9191145
12Agilent 9160050
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Figure 5.10: Partial CAD model of the chamber for the third ion trap in our experi-
ment. The aspheres and piezos are not shown for simplicity. The piezo feedthroughs
connect the piezo stages to their controllers. Also highlighted are the trap and the
ovens, as well as the vacuum pumps. The TSP shield prevents a direct line-of-sight
from the TSP to the ion pump as a precautionary measure against shorts in the ion
pump from titanium deposited from the TSP. There is another shield (not shown
here) between the TSP and the main body of the chamber as well to avoid depositing
titanium on the piezos and aspheres.

Often, the sources for such testing will be small pinholes. When light is sent through

such an opening, it diffracts and diverges with an angle inversely proportional to the

diameter of the aperture. For example, for a 1 µm aperture, the angle of divergence

corresponds to an NA of ∼0.6. It is not feasible to obtain a pinhole with a diameter

smaller than 1 µm, so we must come up with an alternative.
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(a) (b)

Figure 5.11: Image analysis of high-NA aspheres using an artificial point source. (a)
Camera image of the light after propagating through both the high-NA in-vacuum
asphere and the lower-NA fiber coupling lens. Both the horizontal and vertical axes
are pixel numbers. (b) Measurement of the spot size of the image. Fraction of the
enclosed light is plotted versus pixel distance from the ion (pixel size is 2.2×2.2 µm2).
The fraction of the total light in the image enclosed in a circle around the image
centroid is plotted versus the radius of that circle in pixels. Sec. 7.2 contains more
details about this technique.

Instead, we use an aluminum-coated tapered optical fiber tip as in [114]. These

fiber tips are commercially available, and we use tips with both 100 and 200 nm

diameters. Since these are smaller than the wavelength of light, they will emit like

a point source. We then carefully align the high NA asphere to the fiber tip and use

techniques discussed in Sec. 7.2 to assess the performance of the lens.

We are able to align the apparatus well enough that the aberrations are mini-

mal, and we can just look at the spot size of the image. These results are shown in

Fig. 5.11 with both the image and analysis plot. The results are much better than

those obtained with the Photon Gear objective when looking at an actual ion. We

thus had reasonable confidence that the asphere was performing approximately as

expected before we placed it in the vacuum chamber.
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(a) (b) (c) (d)

Figure 5.12: Ion images with high-NA aspheres. (a) Approximately optimized im-
age of ion, with a small amount of residual astigmatism. (b) Image with asphere
translated by 8 µm to induce coma. (c) Ion image when the asphere is 2 µm too
close to the ion. (d) Ion image when the asphere is 2 µm too far from the ion.

5.3.1.2 Testing Lenses with a Trapped Ion

The ultimate test for the lenses is of course their performance when integrated

into the system. The performance in the system may not be exactly the same due

to the presence of the vacuum window, for example. In these tests, we look at both

how sensitive the lenses are to misalignment and how well they perform when the

alignment is optimized.

Images of a trapped Ba ion with the asphere at different positions are shown in

Fig. 5.12. The first image shows a nearly optimized image. Note that in comparison

to the image in Fig. 5.11(a), this image is saturated making the spot size look arti-

ficially large. Translating the lens by just a few µm so the ion is not centered on the

lens introduces significant coma, as shown in Fig. 5.12. Even with a displacement of

1 µm there is a noticeable difference in coma, so we require submicron adjustability.

We can easily accomplish this with the in-vacuum piezo stages (Sec. 5.2.1). The

focusing of the asphere is also extremely sensitive as can be seen in Fig. 5.12(c) and

(d). A two micron change in the distance from the ion to the lens is enough to in-
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Figure 5.13: Spot size analysis of the image of an ion through a high-NA asphere.

duce large amounts of defocus although that can be compensated to some extent by

changing the distance from the out-of-vacuum asphere to the camera. In the third

image, it is also apparent that there is some clipping on the trap rods as evidenced

by the dark spots in the upper right and bottom left of the outer ring. We noticed

some asymmetry in these dark spots which could not be corrected without moving

the middle spot away from the center of the outer ring. We believe this is likely due

to the asphere being mounted at a slight tilt relative to the trap, which causes one

of the rods to clip more than the other.

Once the aberrations are minimized, we analyze the spot size and observe the

light transmitted through progressively smaller pinholes as steps toward fiber cou-

pling the ion light. The results of the spot size analysis using the same method

discussed in Sec. 7.2 are shown in Fig. 5.13. Note that the results here are signifi-

cantly worse than those from before we put the asphere in the vacuum chamber (see

Fig. 5.11). We think this discrepancy is likely due to curvature in the vacuum win-

dow which effectively introduces defocus to the image that cannot be compensated.
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This result is still comparable with the results in Alice and Bob, however.

Pinhole Diameter (µm)
Light lost compared
with 100 µm pinhole
Cleo Alice Bob

50 µm 3% 4% 7%
25 µm 11.7% 11.7% 11.2%

Table 5.7: Comparison of loss of ion light through various pinholes on each trap.
The results in Cleo are comparable to those in Alice and Bob. The numbers in Cleo
are preliminary and it is possible they could be further optimized.

The fraction of light that is transmitted through the pinholes of various sizes

is listed in Table 5.7. The numbers listed here are the percentage of photons lost

when the light is sent through the pinholes listed on the left compared with the

photons through a pinhole with a diameter of 100 µm. This result confirms that the

focusing performance of the aspheres in Cleo, even with the observed degradation

from the measurement before placing the lenses in the vacuum chamber, is similar

to that of the objectives for Alice and Bob. The ultimate test, of course, will be the

fiber coupling efficiency but at the time of writing we have not yet performed that

measurement.

5.3.1.3 Vacuum Window Birefringence Testing

One possible cause for infidelity in our remote entanglement is inhomogeneous

birefringence in the window of the vacuum chamber. In previous works, we have

attributed an error of order 1% to this issue [33, 52]. This birefringence is due to

stress on the glass [115], largely from the glass to metal seal [116]. There may also

be some stress on the glass due to the pressure differential and the bolts holding the
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Figure 5.14: Setup for testing vacuum window birefringence. Light from a fiber
passes through a polarizer, then is magnified to fill the vacuum window. It is then
demagnified to fit through a crossed polarizer and onto a camera.

window in place once it is mounted. However, since measuring the birefringence of

a single window becomes much more difficult once it is mounted to the chamber,

and because the uncertainty about the performance of the windows in our first two

chambers limits our ability to determine error sources accurately, we decided to

measure the windows used for light collection for the third trap before mounting

them on the chamber.

The most basic version of our setup consists of light propagating through

crossed polarizers with the window in between. Additional lenses are added to

change the beam size to fill the window, and the result is imaged with a camera.

Before inserting the window, we take a baseline image and then take images with the

window rotated at various angles about its center. Based on the differences between

these images and the original, we can obtain a measurement of the birefringence.
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The birefriengence of the window can be written as the Jones matrix [117]

e−
iη
2

 cos2 θ + eiη sin2 θ (1− eiη) e−iφ cos θ sin θ

(1− eiη) eiφ cos θ sin θ sin2 θ + eiηcos2θ

 (5.2)

where η is the phase retardation, θ is the fast axis, and φ is the circularity of the

material. The values can be the same for the whole window, in which case it will

not affect the fidelity of our ion-photon entangled state, or they can vary across the

window. If, for example, the input light is horizontally polarized, the electric field

after the window will be

E = E0

 e−
Iη
2

(
cos2 θ + eiη sin2 θ

)
e−

iη
2

+iφ (1− eiη) cos θ sin θ

 . (5.3)

Passing this field through a vertical polarizer and taking a camera image gives the

spatial distribution of the intensity

I = I0 sin2
(η

2

)
sin2 (2θ) (5.4)

where η and θ can depend on the spatial coordinates.

The results of this measurement are shown in Fig. 5.15. Again, note that

overall birefringence is not a problem, but spatial variation is. Near the centers of

the windows the retardance is more uniform while the largest variations are near

the edges of the window. We find overall that window 1 has a standard deviation in

retardance of 0.60 degrees and window 2 has a standard deviation of 0.52 degrees.
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Figure 5.15: Measurement of the retardance on the two windows for single photon
collection in Cleo. The vertical and horizontal axes are pixels.

This number, however, is including the edges of the windows so is an upper limit on

the actual birefringence variation seen by the photons, which mostly pass through

the window near the center.

5.3.2 Testing of Trap Properties

The presence of insulating surfaces near the ions can lead to heating and excess

micromotion due to charging of the surface varying in time [118]. We attempted

to mitigate any such effects by coating the surface of the aspheres with ITO, but if

the coating was not performed correctly or the connection to ground is poor, there

could still be residual issues.

When we measured the micromotion of the ion using the correlation technique

presented in Sec. 4.3.2 with one of the aspheres 6 mm from the ion, we found that

there was minimal micromotion to start and what was there was easily compensated.

Preliminary data seems to indicate, however, that there is some charging that varies

in time after the RF is temporarily turned off and then turned back on. We observe
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Figure 5.16: Dependence of micromotion in Cleo on bottom asphere position. Mi-
cromotion is measured using the technique of correlating photon arrivals with the
trap RF cycle (see Sec. 4.3.2 and Fig. 4.6) for two asphere positions. The black curve
shows the micromotion when the bottom asphere is at approximately the correct
focus. The red curve was taken with the asphere moved away from the ion by 1 mm.

a shift in the position of the ion relative to the asphere, which induces significant

coma and will likely hurt our fiber coupling if the charging is not compensated

with the trap electrodes. It may therefore be necessary to implement some form of

feedback with the trap voltages to maintain our optimal fiber coupling.

Since there are two aspheres, a further test of the charging that we can perform

is to adjust the distance between the ion and the asphere we are not using to image

the ion (the bottom asphere) and observe if the micromotion changes with distance.

If the micromotion remains unchanged, this test provides convincing evidence that

the asphere surface is not affecting the behavior of the ion. However, when we

performed this test, we observed a significant increase in the micromotion when the

bottom asphere was moved away from the ion by 1 mm (see Fig. 5.16). This result

does not confirm that there is time-dependent charging on the asphere but does

indicate that the aspheres contribute to the electric field at the ion.
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We can further explore the time dependence of this charging by turning the RF

voltage on and off and observing the subsequent time-dependence of the micromotion

for different asphere locations. Eventually, it will also be important to measure the

heating rate of the trap and ensure that it is as low as desired (.100 quanta/s),

since this can also be affected by the charging. This test requires Raman operations,

however, which we have not yet implemented on Cleo.
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Chapter 6: Remote Entanglement of 138Ba+ Ions

A primary building block of a quantum network in the architecture we are

using is the photonic link between two ion traps. This link serves to generate the

entanglement between multiple nodes, which is necessary for utilizing all of the

ions in a quantum computation. As discussed previously, we use 138Ba+ as our

communication qubit because of the visible wavelength of its primary transition

and its (relatively) similar mass to 171Yb+.

Entanglement using photons can take advantage of their many different quan-

tum properties, such as number of photons [51], polarization of the photons [119],

frequency [120, 121], time-bin of a photon arrival [122, 123], and others [124, 125].

Unlike the previous results in [120] in Yb+, however, Ba+ does not lend itself nat-

urally to a frequency qubit. In addition, the use of polarization allows for more

straightforward manipulation and control, as will be discussed in Secs. 6.2 and 6.3.2.

The disadvantage of polarization as a qubit relates to how easily it can be controlled–

while this can be advantageous for rotations of the qubit, for example, it also means

error can easily be introduced. Additional steps to stabilize the polarization may be

required [126, 127] for longer distance transmission as would be desired in a quan-

tum repeater [128] or a quantum network with nodes that are further separated
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than in our system. For the short distances in our lab, however, any errors due

to polarization are fairly stable and can be characterized. Much of this chapter is

devoted to discussing these sources of error.

Using photons as an intermediary also requires that the degree of freedom

we choose as our photon qubit must be entangled with the qubit states of the ion.

As mentioned above, the polarization degree of freedom is a natural choice for Ba

given its atomic structure. The details of generating this entanglement will be

discussed in the first two sections of this chapter. From there, we will proceed with

presenting how we establish the photonic connection and verify entanglement, as

well as discussing some experimental details.

6.1 Generating Single Photons from 138Ba+

Preparation in a pure state in the 6P1/2 manifold is the primary requirement

for generating a single photon entangled with the ion. For example, the excitation

of the ion only to the
∣∣6P1/2,mJ = +1/2

〉
state will result in a photon with a po-

larization entangled with the state of the ion. One scheme that has previously been

used is weak excitation with a 493 nm laser [49]. This scheme, however, has an

inherent trade-off between rate and fidelity–the larger the probability of excitation,

and thus successful entanglement generation, the lower the fidelity. Another option

is excitation on the S ↔ P transition with a pulsed laser with pulse length of order

10-100 ps. Previous attempts at this scheme have been unsuccessful because of the

difficulty of obtaining high power pulses at 493 nm [48]. In the future, however, this
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Figure 6.1: Single photon generation scheme for 138Ba+. 650 nm σ− polarized light
excites population in the D3/2,mJ = +3/2 state to the 6P1/2,mJ = +1/2 state.
The decay to the S manifold results in a photon which has a polarization entangled
with the state of the ion.

may be a promising direction.

For this work, we instead excite using 650 nm light to drive the D3/2 → P1/2

transition, as discussed in [52]. Exciting on this line is advantageous because of the

easy filtering of scattered excitation light, reduced rate of double excitations, and

increased availability of optical technology at this wavelength. Similar schemes had

previously been used in [129, 130]; however, these either left the light on continuously

or did not prepare a pure state in the D manifold, and thus did not obtain an

entangled state between the ion and photon. In our scheme, we optically pump to

the
∣∣D3/2, mJ = +3/2

〉
state using the method described in Sec. 3.2.4. Once the

state is successfully prepared, we excite with a 10 ns pulse of σ− polarized 650 nm

light (Fig. 6.1). Because of the relatively long pulse length, we do not need a pulsed
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laser for this excitation and can switch the light instead using a standard acousto-

optic modulator (AOM),1 which has a rise time of 5.1 ns. If we wish to drive a

shorter pulse, we also have a 1 ns in-fiber electro-optic modulator (EOM)-based

optical switch2 that we could insert in place of the fast AOM.

We need to be able to operate this AOM in both a “pulse mode” for generating

the excitation pulses and a “CW mode” for the other parts of the experiment (see

Sec. 6.4.1 and Table 6.4.1.2). A schematic of the necessary electronics for both

modes is shown in Fig. 6.2. We cannot generate sufficiently short RF pulses directly

with our RF source, so we instead use an external pulse generator3 that is triggered

by TTL A. The pulse generator puts out a 10 ns pulse upon arrival of a signal of

arbitrary length from TTL A. TTL B is used for the CW mode, and the two are

combined on an RF combiner, so there will be a signal if either is on. The combined

signal is then fed into an RF switch, which outputs a signal to the AOM via an

amplifier if the TTL is on. Thus, we are able to either generate a fast pulse or turn

on a longer signal on demand.

When the ion decays from the
∣∣P1/2,mJ = +1/2

〉
state, if it decays to |0〉, the

polarization of the photon will be σ+, whereas if it decays to |1〉, the polarization

of the photon will be π. Although the decay from the ion results in the state

|ψ〉 =

√
2

3
|0〉
∣∣σ+
〉

+

√
1

3
|1〉 |π〉 , (6.1)

1Brimrose GPM-400-100-650
2Jenoptik AM660, with two modulators used in an interferometric setup
3SRS DG535
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Figure 6.2: Setup for the electronics for generating 10 ns 650 nm pulses. TTL A
triggers a pulse, while TTL B is left on continuously for the CW mode. If the TTL
input to the RF switch is on, the RF switch outputs the RF signal for the AOM.

when collected, the angular dependence of the polarizations ensures that there are

an approximately equal number of σ and π photons collected. We then obtain the

state

|ψ〉 =
1√
2

(
|0〉
∣∣σ+
〉

+ |1〉 |π〉
)
. (6.2)

When we collect light perpendicular to the magnetic field with an infinitely small

angle of light collection, σ+ and π polarizations project onto H and V polarizations

respectively. This projection then leads us to the final ion-photon state

|ψ〉 =
1√
2

(|0〉 |H〉+ |1〉 |V 〉) . (6.3)

For a finite angle, the resulting state will vary slightly from the ideal. This effect

is thoroughly examined in [75], and we discuss how this discrepancy will effect the

fidelity of our ion-photon entangled state in Sec. 6.2.1.
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6.1.1 Double Excitations

This pulse length can be much longer than what would be required for a 493 nm

pulse because of several factors that conspire in our favor. The first is simply

that if a 493 nm photon has already been emitted, a second 650 nm excitation

can never happen. The first factor is aided by the branching ratio and the fact

that the majority of the time the ion will indeed decay on the S ↔ P line and

emit a 493 nm photon. Additionally, the Clebsch-Gordan coefficients of the various

D ↔ P transitions and the suppression of excitations that are not driven with σ−

polarized light assist in reducing the error rate further. In particular, assuming the

polarization of our light is pure, we have only one possible excitation that can hurt

our fidelity–if the ion decays to the
∣∣D3/2,mJ = +1/2

〉
state and then is reexcited

to the
∣∣P1/2,mJ = −1/2

〉
state and then decays to the S manifold. If this sequence

of events happens, the resulting state, in contrast to Eq. 6.3, will be

|ψ′〉 =
1√
2

(
|0〉 |π〉+ |1〉

∣∣σ−〉)
⇒ 1√

2
(|0〉 |V 〉+ |1〉 |H〉) . (6.4)

We can quantify the impact of all of these factors using the optical Bloch

equations discussed in Sec. 2.4.2. For this configuration, the Rabi frequencies of all

493 nm transitions and the 650 nm π and σ+ transitions are set to 0, and we use

a time dependent calculation to account for the finite duration of the pulse. This

time dependence can also accommodate different pulse shapes (square, Gaussian,
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Figure 6.3: Plot of error from double excitations versus pulse length.

hyperbolic secant, for example), but the differences in the results are small, so for

simplicity, I present only the results for the square pulse.

To track decays from the
∣∣P1/2,mJ = −1/2

〉
state, we add a ninth artificial

level to our simulation and modify the effective Hamiltonian so decays from the

incorrect P level only go to this state or the D manifold and not to the actual S

states. We assume that we always drive a full π pulse, so as much population is

transferred as possible. Then by scanning the pulse time and counting the number

of decays to the artificial state as opposed to the correct decays, we can determine

the fidelity loss due to double excitations. The results are plotted in Fig. 6.3. For

a 10 ns pulse, the error is about 0.36%, while for a 1 ns pulse, the error is < 0.1%.

For other pulse shapes, the error is slightly lower [55], so this is an upper limit.

We can also verify the purity of the single photon (although not check for
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Figure 6.4: Hanbury Brown Twiss setup for measuring g(2)(τ) for photons from the
ion.

multiple excitations from the D manifold) by measuring the autocorrelation function

g(2)(τ). The expression for g(2)(τ) can be written as [55]

g(2)(τ) =
〈n(t)n(t+ τ)〉
〈n(t)〉2

(6.5)

where n(t) is the number of photons detected at time t. If a photon is detected at

t = 0 and the source is a true single photon source, n(t+ τ) for τ = 0 should be 0.

Thus, by measuring the g(2) value, we can measure how pure the single photon is.

We use a Hanbury Brown Twiss type setup [131] as shown in Fig. 6.4. When

a photon is detected on APD 1, that event serves as a trigger, and the delay until

a photon arrival event on APD 2 is measured. Details of both the experiments

and results have been discussed in [52, 55], so here we will simply summarize the

results. We obtain a g(2)(0) value of (8.1± 2.3)× 10−5 [52], which is consistent with

the previously reported lowest value from any system [132] and improves upon the

previous best trapped ion result by over an order of magnitude [129]. The data for

this experiment are shown in Fig. 6.5. In Fig. 6.5(a) the normalized autocorrelation

function is plotted as a function of delay from the arrival time of a photon on APD
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(a) (b)

Figure 6.5: Results from the measurement of the g(2) autocorrelation function of
our single photon source. (a) Photon arrival incidents on APD 2 vs. time since a
photon arrival incident on APD 1. While the peaks look infinitely narrow, they do
in fact have finite widths. The presence of peaks as opposed to a continuous signal
is due to the pulsed excitation, and the spacing is equal to the repetition rate of
our experiment. The peak at τ = 0 is strongly suppressed compared to the other
peaks, resulting in the low value of our g(2)(0). (b) Plot of g(2) value vs. integration
window in terms of the fraction of light included in the analysis. The blue points
are the measured value. The jumps in the blue curve arise because of the inclusion
of another photon in the t = 0 peak within the integration window. For instance,
before the blue curve starts, the integration window around t = 0 is small enough
that no photons have been counted. As the integration window is expanded, we
begin to see more photons in the t = 0 peak. The green curve shows what our g(2)

would be if we were entirely limited by dark counts on our APDs, and the red curve
is a fit to our data assuming a constant background rate. The yellow represents a
1σ error bar on the blue points.

1. The peak centered at τ = 0 is strongly suppressed compared with the others.

Each of those peaks has a finite width, so the choice of integration window effects

the number we obtain as our result. In Fig. 6.5(b), we plot this dependence. As

we increase the limits of integration, we include a larger fraction of the photons

detected, but the value of our g(2) also increases. For our final reported value, we

choose to use an integration window of 30 ns. This window encapsulates more than

97% of the photons collected, and for longer integration times, we reach a point

of diminishing returns. In this plot, we also explore why our g(2) is not exactly 0.
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The APDs we use4 have a very low but nonzero intrinsic dark count rate of 10 s−1.

For a 30 ns integration window, this alone would give a g(2) value of ∼ 3 × 10−5.

However, the value we obtain is not limited by this alone, as shown in the red curve.

This curve is a fit to our data assuming a constant background count rate, and

which yields a rate of 22 s−1. As discussed in [55], we determined that this residual

background is due to leakage through the 493 nm AOMs.

6.2 Ion-Photon Entanglement

A crucial first step in demonstrating remote ion-ion entanglement via photonic

interconnects is verifying the entanglement of the ion’s electronic state and the

photon’s polarization. This step is useful for finding any sources of fidelity loss

on the individual traps and ensuring everything is working as expected before we

perform the final experiment.

Ba atom

NA 0.6
objective APD 1

APD 2PBS

Figure 6.6: Experimental setup for ion-photon entanglement verification experi-
ments. The APDS are colored in accordance with the data shown in Fig. 6.7.

Previously, our lab has demonstrated ion-photon entanglement with Ba ions

in free space using our current photon generation scheme, as presented in [52]. The

4Laser Components CountBlue
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Figure 6.7: Ion-photon entanglement data when the light is not fiber coupled. In
both plots, the red curve indicates the probability of the ion being in |1〉 when a
photon is detected on APD 1, while the blue curve shows the probability of the ion
being in |1〉 when a photon is detected on APD 2. (a) Ion-photon correlations in
the z basis. The probability of being in |1〉 for a photon detected on each APD is
plotted versus the angle of the half wave plate. (b) Ion-photon correlations in the x
basis. The wave plate is set to perform a π/2 rotation on the photon polarization.
The ion state is then coherently rotated to recover the contrast when the phase of
the rotation is scanned.

setup for these experiments is shown in Fig. 6.6. It is similar to that used for the

g(2) experiments except the 50:50 beam splitter is replaced with a polarizing beam

splitter and a half wave plate is placed before that to control the polarizations.

To verify entanglement, we first will measure the correlation between photon

polarization and the ion state in the z basis. An experimental cycle consists of the

following steps:

1. Optically pump to
∣∣D3/2,mJ = +3/2

〉
(Sec. 3.2.4).

2. Excite with 10 ns 650 nm pulse (Sec. 6.1).

3. If a photon is detected on one of the APDs, measure the state of the ion

(Sec. 3.2.3.2).
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These steps are performed repeatedly while scanning the angle of the half wave plate

to rotate the photon polarization. The results are plotted in Fig. 6.7(a). The red

curve shows the probability that the ion is in |1〉 if a photon is detected on APD

1, while the blue curve shows the same, but if the photon is detected on APD 2.

Ideally, when the wave plate is at an angle of zero, a detection on APD 1 should

correspond perfectly to the ion being state |1〉.

To ensure that the ion and photon are indeed entangled and are not simply

classically correlated, we must also make a similar measurement in an alternative

basis [133]. For this measurement, we set the wave plate to perform a π/2 rotation

on the photon polarization, and then perform the following steps:

1. Prepare the ion in |D3,2,mJ = +3/2〉.

2. Perform the 650 nm excitation.

3. When a photon is detected, perform a Raman π/2 rotation on the qubit with

variable phase (Sec. 3.2.5).

4. Detect the state of the ion.

More details on this process are available in [55, 119]. The results of these

experiments are shown in Fig. 6.7(b). In this case, the plot still shows the probability

of the ion being in a certain state given detection of a photon on a particular APD,

but the horizontal axis now is the phase of the Raman rotation. As expected, for

certain phases, we recover contrast, thus verifying that we do indeed see quantum

entanglement [133].
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Figure 6.8: Coordinates for fiber coupling and polarization analysis. (a) Spherical
coordinates used for the discussion of polarization mixing and lens alignment. (b)
Diagram showing fiber and magnetic field relative to the coordinates used for the
discussion of polarization mixing and lens alignment.

6.2.1 Ion-Photon Entanglement Fidelity and Sources of Error

The fidelity is obtained by fitting the points in all four curves to a squared

sinusoidal function and averaging the amplitudes of all four fits. For the free space

experimental data shown in Fig. 6.7, we obtain a fidelity of 0.884(4) [52]. In large

part, this is limited by the imperfect projections of the atomic polarizations σ and

π onto the lab polarizations H and V . In [52], we explored the spatial dependence

of this infidelity. In free space, the fidelity can be improved by trading off collection

efficiency for fidelity by reducing the collection angle in θ but not in φ where θ is the

polar angular coordinate and φ is the azimuthal coordinate as shown in Fig. 6.8.

It turns out, however, that fiber coupling the light solves this problem alto-

gether [134, 135]. Specifically, the θ̂ component of the σ polarized light does not

couple at all into the fiber. Intuitively, this can be visualized by noting that the
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Ion Rota�on Phase(deg)

Figure 6.9: Ion-photon entanglement data when the light is fiber coupled. As in
Fig. 6.7, the red curve shows the probability of the ion state being |1〉 when there is a
photon detected on APD 1, while blue is the same but for APD 2. (a) Measurement
in the z basis. (b) Measurement in the x basis.

cos θ spatial dependence is odd about θ = π/2, and therefore, when integrated over

a symmetric interval, will yield zero. Thus, all of the σ polarized light that couples

into the fiber will be H polarized as desired.

Indeed, in preliminary data taken with the light fiber coupled (Fig. 6.9), we

see significant improvements in the fidelity. Using the same measure of fidelity as

was previously used, we now obtain an average fidelity of 0.968 for z-basis correla-

tions. For x-basis correlations, we measure a lower fidelity of 0.892. The primary

reason for this decrease is timing jitter in the delay between the photon arrival and

the beginning of the Raman rotations. The evidence that this effect contributes the

vast majority of the decrease in fidelity consists of the facts that our Raman opera-

tions otherwise introduce no observable decrease in fidelity, and that narrowing the

window during which we look for photon events from 50 ns to 2 ns increased the

fidelity from 0.78 to 0.88. To eliminate this infidelity completely, we would either
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need to time-tag the arrival of the photons and adjust the data in post-processing or

trigger the Raman directly on the photon arrival [75]. We currently cannot do either

of these because of software limitations, but this timing issue will not be relevant

for ion-ion entanglement.

As discussed in Sec. 6.1.1, another 0.5% error is due to double excitations on

the fast 650 nm pulse. However, there still remains some further infidelity. At least

part of this is likely due to spatially inhomogeneous birefringence on the vacuum

window; however, before attributing the error to that source we should consider

other possibilities as well.

6.2.1.1 State Preparation and Measurement Errors

Some of the residual error (∼ 2%) is due to state preparation and measurement

(SPAM) errors. This error is a bit difficult to characterize because the preparation

and measurement parts of the error cannot easily be separated. This is especially

true since we prepare and perform state detection using different processes–state

preparation is in the D manifold (Sec. 3.2.4) while detection is in the S manifold

(Sec. 3.2.3). Additionally, determining the fidelity from theD manifold state readout

is difficult because our method gives nonphysical results (populations less than 0 or

greater than 1) when the experimental conditions do not match the ideal conditions.

To obtain the estimate of 2%, we assume equal contributions to the overall errors

from state preparation and measurement when state preparation is performed until

the percentange in
∣∣D3/2,mJ = +3/2

〉
stabilizes. For example, if the measured
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fidelity on S state SPAM is 0.98, we assume the fidelity of state preparation is

0.99 =
√

0.98. We would not make this assumption if there was a high background

or if the purities of the various polarizations clearly differed significantly. If we

ultimately wish to spend less on time pumping (see Sec. 6.4.1.1), we may choose

to do so at the cost of an increase in infidelity because of incomplete population

transfer. These excess errors would clearly then be due to state preparation and not

measurement.

Furthermore, while readout of the resulting qubit state will directly contribute

to the error in the result, an error in state preparation (population in the incorrect

Zeeman sublevel in the D manifold) does not have a one-to-one correspondence to

error in the final entangled state. If the ion is prepared in the
∣∣5D3/2,mJ = −3/2

〉
or∣∣5D3/2,mJ = −1/2

〉
states, for instance, and the light polarization is in fact purely

σ− polarized, those populations will not contribute losses in fidelity, but rather rate,

as there is no available transition. On the other hand, if there is population in the∣∣5D3/2,mJ = +1/2
〉

state, then there is an available transition, and the resulting

decay will lead to swapped polarization-ion state correlations. This excitation will

only occur at 1
3

the rate of the desired excitation, however, so the probability of an

error will be approximately

P (error) ≈ 1

3
P

(∣∣∣∣+1

2

〉)
(6.6)

where P
(∣∣+1

2

〉)
is the population in

∣∣D3/2,mJ = +3/2
〉
.
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6.2.1.2 Unequal Numbers of Photons with Each Polarization

While we already mentioned that collecting light over a finite angle will lead

to polarization mixing errors in free space, it also means that there will be slightly

unequal numbers of σ+ and π photons collected from the ion. This difference will

result in the decay not resulting in a perfect Bell state as desired. We can calculate

the size of this effect by integrating over the spherical harmonic for each polarization

with an aperture corresponding to the lens we use.

The most difficult part of this calculation is determining the limits of integra-

tion, so we will briefly discuss how we determined these. First, we note that we

want to take the section of the unit sphere subtended by a cone with half-angle

α = arcsin(NA). In θ, the limits can be set to π/2 ± α. The limits in φ, however,

are more complicated, as they must depend on θ. We can think of the bounds as

the set of points with unit position vectors at angle α relative to the x axis (chosen

arbitrarily–y would work equally well). The dot product of any of these position

vectors with the unit vector defining the x axis then must equal cosα. Using these

expressions along with basic coordinate transformations, we can determine that the

limits for φ are

φ± = ± arctan

[√
1− (cos2 α + cos2 θ)

cosα

]
. (6.7)

In the basis {|0H〉 , |0V 〉 , |1H〉 , |1V 〉}, the ideal state is

|ψ0〉 =
1√
2

(1, 0, 0, 1), (6.8)
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Figure 6.10: Plot of fidelity vs. light collection angle (α = arcsin(NA)) accounting
for unequal numbers of H and V photons. The blue curve shows the calculation
results in free space, while the red dashed curve shows the result when the light is
fiber coupled (only including the φ component of the σ polarized light).

while the actual state is

|ψ〉 = (
√
P (H), 0, 0,

√
P (V )) (6.9)

where P (H) and P (V ) are the relative probabilities of detecting a H or V polarized

photon respectively and P (H) + P (V ) = 1. Note that we are not accounting here

for any polarization mixing effects and just assuming that there is a one-to-one

correspondence of σ ↔ H. We plot the resulting fidelity F = |〈ψ0|ψ〉|2 in Fig. 6.10.

Of particular note are the values corresponding to the numerical apertures of our

lenses. When only the φ component of the σ light is considered, the fidelity losses

for NA=0.6 and NA=0.8 are 0.06% and 0.23% respectively.

These errors are already small, but the fact that we herald entanglement means

that this loss cannot actually decrease the ion-photon entanglement fidelity. We
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Figure 6.11: Plot of ion-photon entanglement fidelity versus angle from the quanti-
zation axis (θ0). This plot includes the effects from both unequal numbers of σ and
π polarized photons and polarization mixing. The blue, solid curve is the fidelity
for NA 0.6, and the red, dashed curve is that for NA 0.8.

include it here, however, because we will discuss later how and if it impacts remote

ion-ion entanglement fidelity. This effect can be understood similarly to polarization-

dependent loss in the fiber, which for ion-photon entanglement is also not an issue.

6.2.1.3 Off-Axis Light Collection

If the light collection lens is not aligned perfectly perpendicular to the quan-

tization axis, the polarizations of the light collected may deviate further from the

ideal. In particular, the θ̂ component of the σ polarization will make up a larger

portion of the light, and because the distribution is now asymmetric, will not cancel

when fiber coupled.

We now write the axis for light collection as a unit vector with angle θ0 relative

to the z axis (θ0 = π/2 corresponds to the x axis):

~r0 = (sin θ0, 0, cos θ0) , (6.10)
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and the limits of our integration are the set of points with vectors at angle α relative

to ~r0. We then obtain the integration limits φ± = ± arctan
(
y
x

)
where:

y =

√√√√1−

[(
cosα− cos θ cos θ0

sin θ0

)2

+ cos2 θ

]

x =
cosα− cos θ cos θ0

sin θ0

. (6.11)

We perform these calculations for both NA=0.6 and NA=0.8, and the results

are plotted in Fig. 6.11. The maximum fidelities for both are lower because of the

polarization mixing discussed in detail in [52]. The dependence on angle from the

quantization axis is gradual, especially for the higher numerical aperture. We should

be able to align the lens much closer to perpendicular the field than the 10 degrees

deviation shown as the maximum in the figure.

When the lens is not exactly perpendicular to the magnetic field, there will

be some residual polarization mixing through the fiber. However, because the angle

subtended by the lens is so much smaller than the likely deviation from the correct

angle, we expect the fraction of the light that exhibits this asymmetry to be very

small. As an aside, asymmetric aberrations in the ion image (see Chapter 7) may

have similar effects [135]. However, since we optimize the lens alignment carefully

to minimize the aberrations, we expect any resulting asymmetry from misalignment

to be small as well.
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6.2.1.4 Other Polarization Errors

Any other polarization errors would not be intrinsic to the ion or atomic

physics, but rather a function of the optics through which the ion light propagates.

For example, in general, glass itself is not birefringent, but when stress is applied, it

can become birefringent. If the birefringence is uniform across the surface, we can

easily undo its effect with wave plates, but if it varies in space, it becomes more

complicated to correct. We have long suspected this as a significant, although not

fundamental, source of error in our ion-photon entanglement experiments [105]. We

discuss the birefringence of our vacuum windows for our third trap in more detail

in Sec. 5.3.1.3, but there is no simple way to characterize the birefringence of the

windows on our already existing traps without significantly disrupting our setup.

Other optics in the system could also contribute in a similar manner, although the

stresses are likely highest on the windows because of the glass to metal seal.

The results of the free space experiments combined with the experiments with

the light fiber coupled suggest that the residual few percent of error is present with-

out the fiber. However, since the fiber is a new element it merits a brief discussion.

In general, strain on a non-polarization maintaining fiber will impart birefringence,

and thus affect the polarization of the light propagating through the fiber. However,

this effect is unitary and can be undone either with wave plates or purposeful ap-

plication of strain to the fiber [105]. The major concern with this effect is thermal

drifts that result in changes in the birefringence. We do in fact observe these drifts;

however, they are on the time scale of hours to a day and can be compensated with
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occasional adjustment of the wave plates in the optical path.

The final possible source of polarization errors is the polarizers we use to filter

H and V light. Depending on the type of polarizing beam splitter, significant errors

may be introduced because of the impurity of polarization filtering in one or more

directions. To minimize this effect, we use a Wollaston prism5 instead of a standard

polarizing beam splitter cube. These have extinction ratios of > 100, 000 : 1, so

should have a completely negligible impact on our fidelity.

6.2.1.5 Time Decay of Ion Coherence

Our experimental control software (see Sec. 6.4.2) imposes significant limita-

tions on how quickly we can progress from generating entanglement of the photon

and ion to measuring that entanglement. We can perform a Ramsey-type experi-

ment to measure the coherence time of our qubit. On Alice, we obtain a value for

τ of 200 µs, and on Bob, we find τ ≈ 400 µs. The fidelity of a state that started as

a pure state but is observed a time t later is given by [135]

F =
2

3
+

1

3
e−

1
2
t2

τ2 . (6.12)

Typical times between entanglement generation and state readout for us are ∼

50 µs,which would result in a decrease of fidelity of 0.99 for a 200 µs coherence time.

5Thorlabs WP10-A
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6.3 Ion-Ion Entanglement

Once we have a photon entangled with the ions in each trap, we need to

establish a connection between the two ions. Remote entanglement can be generated

with a photon from only one of the traps [136]; however, without further efforts,

the fidelities of this type of protocol are typically lower [42]. Instead, we choose to

use a protocol that relies on collecting a photon from each ion and interfering the

photons on a beam splitter.

The entanglement process is probabilistic since the majority of the photons

are lost before they arrive at the detectors. However, this does not hurt our fi-

delity since we herald entanglement only when we detect the arrival of two photons

simultaneously, which guarantees no loss occurred.

6.3.1 Hong-Ou-Mandel Effect

The entanglement generated from the two photon scheme we use relies on the

Hong-Ou-Mandel effect. This result demonstrated that when two identical photons

are incident on a 50:50 beam splitter, they will always exit from the same port

[137]. Mathematically, we can understand this result by examining the effect of a

50:50 beam splitter on a photon. We can think of the effect of a beam splitter as

a unitary matrix constrained so that both outputs will have an equal probability of

a photon exiting. Additionally, accounting for the bosonic nature of photons [138],

we obtain the following relationship between the output and input ports (which can
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be modified by an overall phase) [55]

a†3
a†4

 =
1√
2

1 1

1 −1


a†1
a†2

 (6.13)

where a†i is the photon raising operator for the ith port of the beam splitter, and

i = {1, 2} are the input ports while i = {3, 4} correspond to the output ports. This

matrix equation can be inverted to find a†1 and a†2 in terms of a†3 and a†4.

To illustrate the effect of the beam splitter, we first consider the case of the

arrival of a single photon at port 1, which can be written as a†1 |0102〉. Then, the

output result will be given by

a†1 |0102〉 =
1√
2

(
a†3 + a†4

)
|0304〉 =

1√
2

(|1304〉+ |0314〉) . (6.14)

Next, we consider the arrival of a photon on both ports simultaneously a†1a
†
2 |0102〉

a†1a
†
2 |0102〉 =

1

2

(
a†3 + a†4

)(
a†3 − a

†
4

)
|0304〉

=
1

2
(|2304〉+ |0324〉) (6.15)

where we have made use of the fact that a†1 and a†2 commute since they do not

operate on the same state. This result is known as the Hong-Ou-Mandel (HOM)

effect.

Now, we expand this theory to the case of non-identical photons. We consider

only two photon states, and in the context of this thesis it makes sense to consider H
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and V polarizations as the two possibilities. We define a†i as the creation operator

for an H polarized photon at the ith port and b†i as the creation operator for a

V polarized photon at the corresponding port. Note that a†i and b†i commute and

do not act on photons without the correct polarization. Also, both sets of raising

operators are related as described by Eq. 6.13. If an H photon arrives at port 1 and

a V photon at port 2 (a†1b
†
2 |0102〉), we obtain the following

a†1b
†
2 |0102〉 =

1

2

(
a†3 + a†4

)(
b†3 − b

†
4

)
|0304〉

=
1

2
(|(HV )304〉 − |H3V4〉+ |V3H4〉 − |03(HV )4〉) . (6.16)

We have modified our notation slightly here to indicate the polarizations of the out-

put photons, so |(HV )304〉 would correspond to 2 photons at port 3, but one with

each polarization. This equation shows the lack of interference between distinguish-

able photons, and the resulting possibility of one photon at each output port or two

photons at one port.
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6.3.2 Bell State Measurements and Ion Entanglement

Assume photons from each ion arrive at the beam splitter simultaneously. We

then have the following possibilities:

|H1H2〉 → |ψ1〉 ≡
1√
2

(|(HH)304〉 − |03(HH)4〉)

|V1V2〉 → |ψ2〉 ≡
1√
2

(|(V V )304〉 − |03(V V )4〉)

|H1V2〉 → |ψ3〉 ≡
1

2
(|(HV )304〉 − |H3V4〉+ |V3H4〉 − |03(HV )4〉)

|V1H2〉 → |ψ4〉 ≡
1

2
(|(HV )304〉 − |V3H4〉+ |H3V4〉 − |03(HV )4〉) . (6.17)

If we have one detector at each output of the beam splitter, we would only

herald entanglement if the two input photons have different polarizations and the

output photons leave from different ports. In this setup, therefore, we only success-

fully generate entanglement 1/4 of the time that two photons successfully propa-

gate through the fiber system. We can double the rate by using the setup shown in

Fig. 6.12. Here, we place a polarizing beam splitter at the output of each exit port

of the in-fiber beam splitter. This configuration allows us to detect when the two

incident photons have different polarizations but exit through the same output of

the 50:50 beam splitter, which will increase this factor in our efficiency to 1/2.

Ultimately, we wish to end up with the ions in a maximally entangled state,

which, for two qubits, entails a Bell state. Thus, we perform our measurement in
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Figure 6.12: Experimental setup for remote entanglement experiments. Light from
an ion in each chamber is fiber coupled and sent through an in-fiber beam splitter.
The output light of each port of the beam splitter is then sent through a polarizing
beam splitter. Each of the four possible final outputs has its own single photon
detector. The optical elements in the bottom path are the same as those in the top
path.

the basis defined by the Bell states

∣∣Φ±〉 =
1√
2

(|00〉 ± |11〉)

∣∣Ψ±〉 =
1√
2

(|01〉 ± |10〉) . (6.18)

At this point, we must also remember that the ions are in fact entangled with the

states of the photons with an overall state at the inputs of the beam splitter

|ψ0〉 =
1

2
(|0AH1〉+ |1AV1〉)⊗ (|0BH2〉+ |1BV2〉) (6.19)

where an A (B) subscript on the ion state indicates the ion in Alice (Bob). This
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joint state can be written in terms of the Bell states

|ψ0〉 =
1

2

(∣∣Ψ+
i

〉 ∣∣Ψ+
p

〉
+
∣∣Ψ−i 〉 ∣∣Ψ−p 〉+

∣∣Φ+
i

〉 ∣∣Φ+
p

〉
+
∣∣Φ−i 〉 ∣∣Φ−p 〉) (6.20)

where the subscripts i and p indicate the ion and photon states respectively. For the

photonic Bell states, we will let H ↔ 0 and V ↔ 1 for the sake of the definitions in

Eq. 6.18. For both ion and photon states, the first qubit state in each term will be

the one corresponding to Alice (or port 1 on the beam splitter for the photon) and

the second will be the state of the qubits from Bob (or port 2 on the beam splitter).

Next, following [55], we find the effect of the beam splitter on each of the

photonic Bell states using Eq. 6.13. We find that for the input states |Φ±〉 and |Ψ±〉

we obtain the following outputs

∣∣Φ±〉→ 1

2
(|(HH)304〉 − |03(HH)4〉 ± |(V V )304〉 ∓ |03(V V )4〉)∣∣Ψ+

〉
→ 1√

2
(|(HV )304〉 − |03(HV )4〉)

∣∣Ψ−〉→ 1√
2

(|H3V4〉 − |V3H4〉) . (6.21)

We note that since there is a direct correspondence between a given photonic Bell

state and an ion Bell state as shown in Eq. 6.20, if the photon is determined to

be in a particular Bell state, the ions must be in that same state. Furthermore,

from Eq. 6.21, we can see that if the ions (or photons) are in either of the |Φ〉 Bell

states, the photons will always end up on the same APD, and thus we will never

observe these states. On the other hand, for |Ψ−〉, we would have been able to
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detect this state even without the polarizing beam splitters. |Ψ+〉 is also observable

with the setup with the polarizing beam splitters. This result is consistent with the

conclusion that it is not possible to measure all four Bell states using only linear

optics [139, 140].

The result of this measurement, then, is clearly an ion-ion entangled state of

either |Ψ+〉 or |Ψ−〉. Which state the ion is in can be distinguished based on which

APDs receive photons. In particular, the possible results for simultaneous detection

events are

APD 1 and APD 2→
∣∣Ψ+

〉
APD 3 and APD 4→

∣∣Ψ+
〉

APD 1 and APD 3→
∣∣Ψ−〉

APD 2 and APD 4→
∣∣Ψ−〉

APD 1 and APD 4→ Error

APD 2 and APD 3→ Error.

We include the last two to emphasize that coincident photon arrivals on these two

detectors do not herald entanglement. Such coincidences do not affect the fidelity

of our results as we do not treat those cases as a successful entanglement generation

event.

It is always possible to rotate from one Bell state to another using only local

(non-entangling) operations, so we can easily change the resulting ion state from
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|Ψ+〉 to |Ψ−〉 or vice versa if so desired using separate Raman operations in Alice

and Bob. This ability to rotate between the states and knowing we generate the

same entangled state after every successful entanglement attempt may be important

for subsequent quantum operations.

6.4 Experimental Procedure

In the previous sections, we have discussed the theory underlying the entan-

glement of two ions that are each entangled with a photon. We now proceed to

discuss the details of our experimental implementation.

6.4.1 Experimental Sequence

The overarching structure of our experiment consists of two primary phases–(i)

the fast loop and (ii) the slow loop. The fast loop consists of all remote entanglement

generation attempts and the subsequent decision about how to proceed based on any

photons that arrive on the APDs. The slow loop, on the other hand, encompasses

many cycles of the fast loop as well as periodic cooling of the ion and entanglement

verification. Understanding the role of these two phases is primarily important for

determining the rates with which we successfully generate entanglement, but also

provides a useful framework for discussing the steps of the experiment.
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6.4.1.1 The Fast Loop

The steps in the fast loop are very similar to those for the ion-photon entangle-

ment experiment discussed in Sec. 6.2 but performed on both traps simultaneously.

Specifically, the steps are:

1. Prepare ions in both Alice and Bob in either
∣∣D3/2,mJ = +3/2

〉
or
∣∣D3/2,mJ = −3/2

〉
.

For simplicity, we assume we prepare in
∣∣D3/2,mJ = +3/2

〉
. The other steps

would be the same but with σ+ and σ− 650 polarizations switched.

2. Excite both ions with a 10 ns 650 nm pulse.

3. Look for coincident photon arrivals.

4. If there is a coincidence, decide to end the fast loop. If there is not a coin-

cidence, either repeat the fast loop or break out of the fast loop to cool the

ion.

We have already discussed in detail the processes for both of the first two

steps in Secs. 3.2.4.1 and 6.1 respectively. For the third step we set a detection

window of ∼30 ns starting with the 650 nm pulse. This timing is optimized by

looking for the maximum rate of photon arrivals to compensate for any delays in

the APDs or in the control software or hardware. If, during this window, we observe

no photons or a single photon arrival, we do not herald entanglement. In addition,

as we explained in Sec. 6.3.2, certain apparent coincidences do not correspond to

physically possible entangled states. Therefore, we do not consider those events as
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successful entanglements since they would inherently increase the error in our results.

If, however, there is a coincidence event on a correct combination of photons we must

immediately stop the entanglement attempts and break out of the fast loop.

In Fig. 6.13, we show the timings for each laser beam being turned on. Each

beam is controlled by at least one AOM. For the 650 nm σ beams, there are two

AOMs–one fast one (rise time ∼5 ns) with the primary purpose of generating the

excitation pulse, and one for each polarization to be able to switch them indepen-

dently. In the figure, the line for “Fast 650 σ” shows the control sequence for the fast

AOM, where the optical signal is that between the fast AOM and the slow AOMs.

The lines for the slow AOMs show the optical signals at their outputs. However,

even if the RF is on for the slow AOMs, if the RF for the fast AOM is off, there will

not be any light transmitted. As a result, for example, the optical pulse for “Slow

650 σ−” is much shorter than the RF pulse and than the rise time of the slow AOM.

The time that the fast loop takes is dominated by optical pumping. While we

generally want to be limited by the atomic physics as we currently are, pumping

times to achieve full population transfer were initially much longer than desired. The

details of this timing are discussed in Sec. 3.2.4.1. We were, however, able to improve

the speed somewhat by lowering the 650 σ powers while pumping compared with

the power used for excitation. We also examined the trade-off between complete

pumping and fidelity of ion-photon entanglement and found that we could reduce

the pumping time from almost 3 µs to ∼ 1 µs without a significant decrease in the

fidelity of the resulting entangled state (see Sec. 6.2.1.1).

To change the power of a given beam, we change the RF power used to drive
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the AOM. We cannot make this change with a single RF source during the entangler

core, the part of the experimental control software that runs the “fast loop” phase

of the experiment (see Sec. 6.4.2 for details on the entangler core). We work around

this limitation by using multiple RF sources and switching them separately. We use

a similar approach for our other laser beams as well. After discussing the details of

the slow loop, we will summarize all of the laser control requirements (Table 6.4.1.2).

In addition to the pumping time, the other primary contributor to the length

of the fast loop is the delay between when the RF signal is sent from the FPGA to

the AOM and when the AOM actually puts out the optical signal. While there is a

short delay intrinsic to the FPGA and some additional time from the propagation

of the signal in cables (. 10 ns), this latency is primarily due to the distance the

sound wave in the AOM must travel from the transducer to the beam. The speed of

sound in our modulators is typically about 5000 m/s, so sound propagation over a

distance of 1 mm takes about 200 ns. We adjust the alignment of the AOMs to place

the beams as close to the transducers as possible without clipping on the transducer

or the AOM cover, but the minimum time until the pulse reaches the beam is still of

order hundreds of nanoseconds. Some of this time is also comprised of the acoustic

wave travelling across the laser beam, which typically has a waist about 1 mm, so we

could improve this time somewhat by focusing the beams through the AOM more

tightly. However, tight focusing through an AOM results in a significant decrease

in the diffraction efficiency of the beam [141], so there is somewhat of a trade-off if

we are power limited.

Finally, after the detection window, there is a small amount of time (∼60 ns)
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Figure 6.13: Timing of optical control events in the remote entanglement fast loop.
We show when each relevant laser beam is turned on (solid lines) and when the RF
signal to turn on the AOM that controls the laser beam is sent (dashed lines). The
event where the majority of the laser beams are turned on for a few microseconds
corresponds to optical pumping. The subsequent small peaks show the excitation
pulse. Finally, the black line at the bottom shows the window when the APDs are
allowed to look for photons, the beginning of which coincides with the excitation
pulse. Note also the direct correspondence in general of the length of the RF signal
to the length of the optical pulse does not apply to the light for the excitation pulse
(slow 650 σ−) because the pulse length is limited not by the RF on the slow AOM
but on the fast AOM. Timings are shown to scale.

for the decision about how to proceed. The brevity of this step was the main

challenge in implementing the control software of this experiment. Our approach

for achieving this time will be discussed further in Sec. 6.4.2.
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6.4.1.2 The Slow Loop

The slow loop encompasses cooling of the ion, repetitions of the fast loop,

and entanglement verification. This part of the experiment is not controlled by the

entangler core (Sec. 6.4.2), so there is much more software overhead time for each

step. However, because most of the time in the experiment is spent running the fast

loop repeatedly, the length of these operations has a minimal impact on the rate of

our experiment.

The basic steps of the slow loop consist of the following:

1. Cool the ion for ∼100 µs.

2. Run the fast loop until a successful entanglement herald event or until ∼500 µs

have lapsed (approximately 170 attempts).

3. If we stopped the fast loop because too much time had passed, return to step

1.

4. Otherwise, perform any necessary local coherent operations (Raman rota-

tions).

5. Perform state detection to verify entanglement.

At the time of writing, we were still in the early phases of conducting these

experiments so these timings are not necessarily optimized. For the first step, we

perform Doppler cooling as described in Sec. 3.2.2. The exact length of both of the

first two steps will be optimized to minimize the cooling time and maximize the fast
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RF source Cooling
State

Preparation
Excitation

Qubit State
Readout

Optical Power

493 σ+

High Power
× X × × 40 µW

493 σ+

Low Power
X × × X 8 µW

493 σ−

High Power
× X × × 40 µW

493 σ+

Low Power
X × × X 8 µW

650 π
High Power

× X × × 195 µW

650 π
Low Power

X × × X 118 µW

650 σ+

High Power
X × × X 36.5 µW

650 σ−

Low Power
× X × × 13 µW

650 σ+

High Power
× × X × 47 µW

650 σ+

Low Power
X × × X 33 µW

650 fast AOM
pulsed mode

× × X × -

650 fast AOM
CW mode

X X × X -

Table 6.1: Phases of the experiment when each high or low power RF control is
turned on. Alice and Bob have the same beams on for the same sections, but may
have different powers because the focusing is different. For the 650 σ beams, the high
power σ+ beam and the low power σ− beam actually have similar optical powers,
because of their different purposes. Measured optical powers for Alice are included
to show of the relative powers in each beam. Powers for the 650 fast AOM are the
same in both modes and also do not correspond to the optical power at the ion for
any beam so are not included.

loop repetitions without excessive ion heating.

Raman rotations may be necessary if we want to rotate from one Bell state to

the other, if we account for differing phases on the two ions (for more on this issue see

Sec. 6.4.4.2, for example), or for rotating the ion state to perform measurements in

different bases. For both this experiment and the ion-photon experiments discussed

above, Raman rotations must be performed using an arbitrary waveform generator
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(AWG) to maintain a consistent phase from shot to shot. For the more recent

experiments we use an AWG from Keysight6. Using an AWG as opposed to a free-

running DDS or other RF source guarantees control over the starting phase of the

Raman rotation.

There are multiple options for entanglement verification (Sec. 6.4.1.3), but all

have in common the need to be able to read out the states of both ions. As discussed

in Sec. 3.2.3.2, our current detection scheme is probabilistic, but by repeating trials

enough we should eventually be able to build up the necessary statistics to perform

the required measurements.

We read out the state of the ion using the technique described in Sec. 3.2.3.2.

We use the same APDs for state readout on Alice as for entanglement heralding

because of the high background in the free space detection setup. Bob, on the other

hand, has a much lower background count rate on its free space imaging setup, so

we are able to perform readout using another APD located after this setup. Because

of the need to perform state detection on Alice on the fiber coupled APDs, we must

perform the detections sequentially. However, the length of detection is only a few

hundred ns so this does not impose significant delays on the experiment.

The optimal optical powers for each beam for Doppler cooling and state read-

out differ from those for state preparation and excitation. To address this issue, we

choose to increase our experimental complexity in order to optimize each segment

of our experiment. Each AOM, aside from the fast 650 AOM, therefore actually

has two RF sources that can provide the necessary power. One of these sources is

6M3202A
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set to output a lower power than the other. The powers of each of the beams and

the parts of the experiment for which they are used are shown in Table 6.4.1.2. For

cooling and state readout, the 493, 650 π, and 650 σ− beams operate in their lower

power configurations, while the power is the higher setting for 650 σ+ beam, since

it needs to be very low for optimal pumping. Conversely, for state preparation, we

use the high power settings of all of the beams that are on except for the 650 σ+

beam.

6.4.1.3 Entanglement Verification

The simplest option to verify entanglement is one analogous to our method for

verifying ion-photon entanglement. For this method, we would perform rotations of

varying angles on the ion in one of the traps, measure the qubit state populations

on that ion, and correlate those results with the populations in each qubit state on

the other ion. This measurement would comprise our z basis measurement. We

could then perform an x basis measurement by performing a π/2 rotation on one of

the ions, and then performing π/2 rotations with varying phase on the other. This

method was used in the first demonstration of remote entanglement in our group

[142].

Another option is to perform full state tomography using maximum likelihood

estimation as in [32]. For this process, we would need to make 16 different measure-

ments with various combinations of rotations of the ion states. The requirements

for these measurements are detailed in [143]. From there, these data are numeri-
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cally compared with the possible physical density matrices, until the one that best

matches the experimental data is found. Once the density matrix ρ̂ is obtained, we

would compare it to the ideal state |Ψ+〉 as defined in Eq. 6.18. Note that, while

some trials will result in the state |Ψ−〉, we can easily rotate between the states

with local operations, so we can always compare to a single state. The fidelity is

then given by F = 〈Ψ+| ρ̂ |Ψ+〉. Alternatively, we can treat the two Bell states |Ψ+〉

and |Ψ−〉 separately and adjust our tomography steps depending on which state is

heralded. The advantage of full tomography compared with the first is that it more

completely determines the entire density matrix at the cost of significantly more

elaborate data analysis needs.

6.4.2 Experimental Control System

The control requirements for this experiment are fairly complex and the timing

needs are extremely demanding. For instance, as will be discussed in Sec. 6.4.3, we

must have software overhead in the fast loop of �1 µs. We use the ARTIQ control

system, which provides an interface between Python-based software control and an

FPGA and associated hardware.

In its standard form, ARTIQ provides deterministic control with very precise

timing, and allows for relatively straightforward integration of the required hard-

ware. However, it does not have the inherent capability of performing fast (< 1 µs)

non-deterministic operations. The ion trapping group at the University of Oxford,

however, has demonstrated a workaround to this issue that we adapted for this
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experiment (discussed in [135]).

The basic features of our system are the same as the one described in [135],

and the part of the control system that handles the most challenging aspects is

referred to as the “entangler core.” This part of the control program takes inputs

that determine the timing of various events and then runs a sequence of events from

the FPGA without communicating with the CPU. It also encompasses the branching

decision discussed in Sec. 6.4.1.1 about how to proceed based on photon arrivals (or

lack thereof) on the APD. Using this program, we have been able to improve our

software overhead from of order 100 µs to about 60 ns. The main difference between

our control system and that of the Oxford group is that we use a single FPGA to

control both traps, whereas they use a primary FPGA that controls one of their

traps as well as another, secondary FPGA, which controls the other trap.

In the slow loop, we do not worry as much about the rate, because the overall

entanglement rate is not as heavily dependent on this part of the experiment. How-

ever, if we naively output signals in the default ARTIQ mode, we have hundreds of

microseconds of overhead, which is unacceptable even for the slow loop. Another

mode in ARTIQ is “Direct Memory Access” (DMA), which allows pre-programming

of a sequence of certain real time input/output (RTIO) events. This sequence can

then be recalled and carried out with much less overhead. For DMA, the overhead is

primarily a one time occurrence to record the sequence and takes about 10-100 µs,

but because it is a single event, is much faster than having that lag every cycle.

Therefore, we take advantage of this mode as much as possible in the slow loop

to further minimize the software overhead. Since it can only perform deterministic
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events, this mode cannot be used for the fast loop, however.

6.4.3 Entanglement Generation Rate

For the remote entanglement generation link to be a useful part of a modular

quantum computing architecture, the time it takes to generate remote entanglement

should be as short as possible. Additionally, with higher rates, the current fidelity

limitations on photonic entanglement will not be so severe because entanglement

distillation can be used to purify the remotely entangled states [144]. While the

atomic physics in principle allows for very fast generation of single photons, current

rates are limited by technical challenges in efficient light collection, primarily the

finite light collection angle and fiber coupling efficiencies.

One option for increasing photon collection efficiency consists of placing the

ion in an optical cavity, preferably in the strong coupling regime for maximum

effect. There has been a lot of work in this direction [145–152], and especially in

[151], shows promising results for the rate of photon collection. However, cavities

inherently require dielectric surfaces located in close proximity to the ion, which

can dramatically increase heating rates [153]. If local entangling operations are not

needed, then the rapid heating may not have much of an impact. However, we must

connect our communication qubit to the memory qubit, which will ultimately make

this consideration important for us. The rates of photon generation with cavities

in the weak-coupling regime have not been significantly higher than those in free

space.
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Because of these difficulties with optical cavities, we are limited by the lenses

that we use. The probability for generating, collecting, and detecting photons from

a single trap is given by:

p1 = rbrpcpfηd (6.22)

where rbr is the branching ratio of the atom, pc is the probability of collecting the

photon through the lens, pf is the probability of coupling the light into the fiber, and

ηd is the detector efficiency. pc can further be broken down into the fraction of light

collected by the lens without the trap Ω
4π

and the probability of the light making

it through the trap rods ptrap (see Secs. 4.2 and 7.2). The rate for a coincidence

detection is then:

Rtot =
1

2
Rrepp1Ap1B (6.23)

Here, p1A and p1B are the probabilities for Alice and Bob, respectively, which can

differ because of the fiber coupling efficiencies. Rrep is the rate at which we attempt

remote entanglement generation, which is approximately equal to 1/τfast where τfast

is the length of the fast loop. In practice, the rate will be slightly lower due to the

operations in the slow loop. The factor of 1/2 results from the fact that we only

can detect half of the Bell states.

In Table 6.4.3, we present the values for the factors that determine our current

rate as outlined in Eqs. 6.22 and 6.23. We implement some of the improvements

listed in this table in Cleo (Sec. 5.2). We have already pushed the state preparation

time for full population transfer close to the simulated minimum of ∼ 2 µs (see

Sec. 3.2.4.1), so we likely cannot improve it much further as long as we continue
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preparing in the D manifold. We have shortened the time we spend pumping to

about 1 µs, however. At this pumping time, the fidelity loss due to incomplete

population transfer is much smaller than our other errors. Furthermore, even with

the decreased rate of excitation as a result of incomplete pumping, the overall en-

tanglement rate is higher because we can cycle through the fast loop more rapidly.

Variable Current Value Limitations Possible Improvements

Rrep 0.7 MHz State preparation time
Increase magnetic field and powers

Different excitation scheme

Ω
4π

0.1 Objective NA Larger NA lenses (Cleo)

ptrap 0.85 Trap geometry Modified trap structure (Cleo)

pfiberA (pfiberB) 0.4 (0.25-0.40) Possibly vacuum window
Collimating light through window

may help (Cleo)

rbr 0.75 Atomic structure
Use cavities

Different atomic species

ηd .71 Quantum efficiency of APDs Use SNSPDs

Table 6.2: Factors determining the rate of remote entanglement generation success,
along with their current values, limitations, and possible improvements. If (Cleo) is
listed in the possible improvements, we attempted to implement these improvements
in the third trap.

The branching ratio is an intrinsic property of the barium ion and can not

easily be modified. Placing the ion in a cavity could accomplish this effect [154],

but as discussed previously, imposes significant technical difficulties. Therefore, we

choose to accept the branching ratio as is, and the resulting rate loss. The detector

efficiency could be improved using superconducting nanowire single photon detectors

(SNSPDs), but because of the much higher cost and relatively marginal gains, we

have decided that they are not a worthwhile upgrade.

With all of these factors combined, we end up with a predicted entanglement

generation rate of 70-110 s−1 depending on the fiber coupling we ultimately achieve

in Bob, which still needs to be determined. This is more than an order of magnitude
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higher than the previous results from our group [33], but is significantly slower than

the results reported in [32], largely due to the long pumping times. However, this

result will be the first result where the entire path from the ion to the Bell state

analyzer, including the 50:50 beam splitter, is in fiber.

6.4.4 Sources of Fidelity Loss in Remote Entanglement

6.4.4.1 Photon Arrival Timing

Many of the possible sources of error contribute to the fidelity of the ion-

photon entanglement, and therefore, were already examined in Sec. 6.2.1. However,

there are a few additional possible factors that could further decrease the fidelity of

the remote entanglement.

Perhaps the most obvious possible issue is that of the timing between the

photons generated from the two traps. In the extreme case that the wave packet

of the first photon to arrive passes through the beam splitter completely before

that of the second, it is clear, for instance, that no interference will occur. In this

case, two photons that have the same polarization could arrive at different detectors

and appear to herald entanglement. This effect can be mitigated by narrowing the

window over which photon arrival events are counted toward possible entanglement.

What is important, however, is not the specific time that the photon hits the detector

but that the distribution of photons from the two traps match [135]. We use the

same pulse to excite both ions, and their decay profiles are equivalent, so the timing

depends only on the path lengths. The path lengths after the ion are very close to
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identical because they propagate through the same lens and in-fiber beam splitter.

On the other hand, the beam delivery paths must be adjusted to approximately the

same length. To have < 1% error, the difference should be on the order of 1 mm

[42].

We can directly observe the timing of the photon arrival distributions from

each trap using the PicoHarp that we use for micromotion compensation. Since this

instrument has timing down to 4 ps, we can observe the path length difference down

to ∼1 mm as desired and adjust the path lengths accordingly.

6.4.4.2 Qubit Phase Evolution

The terms in the phase evolution of the qubit after detection of the photons

that could affect our fidelity are primarily 1
2
∆ω∆t, ∆kz, and 1

2
(kA + kB) ∆z where

∆ω is the difference in Zeeman frequencies between Alice and Bob, kA(B) is the

wavenumber of the photon emitted from Alice (Bob), z is the average path length of

both traps, and ∆z = zA − zB [135]. If the qubit splitting is identical, the first and

second terms will not contribute. However, if the splittings differ, we can still observe

the interference of the photons [155]. Nonetheless, in practice, it is simplest to get

∆ω as close to 0 as possible. Futhermore, this splitting will in general fluctuate due

to changes in the magnetic field, as discussed in Sec. 6.2.1.5, and these fluctuations

will impact our fidelity as discussed in that section

For the other two terms, we must consider the contributions from both noise on

the qubit splitting and path length fluctuations. We estimate that we can measure
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the average qubit splitting to better than 10 kHz using Raman spectroscopy, so we

use a splitting of 10 kHz to calculate an upper bound on our infidelity. Also, we note

we are less interested in the static offset than the fluctuations. With this in mind,

we see that fluctuations of at least several meters would be needed to introduce an

error of 10−3 in the ∆kz term. For the other term, the relevant length scale is about

15 m rather than tens of km, so much shorter path length fluctuations could affect

the fidelity. However, these fluctuations would still need to be several mm and not

in the part of the path where both beams propagate, so any observable effect is

unlikely.

6.4.5 Beam Splitter and Fiber Errors

In [135], they provide a thorough examination of the effects of a beam splitter

that does not have perfect 50:50 splitting. The splitter we use in practice has

splitting closer to 47:53. From [135], the fidelity for arbitrary transmissivity and

reflectivity is:

1

2
+

r2t2

r4 + t4
(6.24)

where r is the reflection coefficient and t is the transmission coefficient. For our

beam splitter, this gives a fidelity of 0.996.

Because we encode our photonic qubit in polarization, we must also con-

sider the possibility of polarization-dependent splitting in the beam splitter and

polarization-dependent loss in the fiber and beam splitter and how this would affect

our fidelity. This consideration is especially important because of the fact the beam
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splitter is in fiber, so its behavior is not quite as predictable as free space beam

splitters.

We first consider the case of polarization-dependent beam splitting. For both

H and V polarized light, we must modify the beam splitter operator to account for

this effect. In general, we have:

a†3
a†4

 =

t r

r −t


a†1
a†2

 (6.25)

where t2 + r2 = 1. For a 50:50 beam splitter t = r = 1√
2
. For a polarization-

dependent beam splitter, we modify both the matrix for a† (horizontal polarization

raising operators) and b† (vertical polarization raising oprators) to have coefficients

of transmission and reflection (ta, ra) and (tb, rb) respectively. The calculation is

conceptually simple, but somewhat heavy on algebra, so we simply state the results.

The fidelities for the case of |Ψ+〉 and |Ψ−〉 differ, and are, respectively

F+ =
1

2
+

rarb
√

(1− r2
a) (1− r2

b )

r2
a (1− r2

b ) + r2
b (1− r2

a)
(6.26)

F− =
1

2
+

rarb
√

(1− r2
a) (1− r2

b )

(rarb)
2 + (1− r2

a) (1− r2
b )
. (6.27)

To find the overall fidelity, we average F+ and F−, and we plot the results

in Fig. 6.14. In this figure, we plot the fidelity versus rb for various values of ra.

Note that these two are interchangeable, but the ratio alone does not determine the

fidelity. For a polarization dependence of . 5%, the error is < 1%, but could still
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Figure 6.14: Plot of the fidelity of the final entangled state as a function of polariza-
tion dependence in the beam splitter. The horizontal axis is the fraction of vertically
polarized light reflected. Curves for various values of the reflection coefficient for
horizontally polarized light are plotted.

contribute somewhat to our final error budget.

If loss in the photon path is polarization-dependent it can actually impact

the final state we obtain because of the relative prevalence of H and V polarized

photons. There are six possible cases for polarization-dependent loss: (i) symmetric

before the beam splitter, (ii) asymmetric before the beam splitter, (iii) symmetric

after the beam splitter, (iv) asymmetric after the beam splitter, (v) symmetric in

the beam splitter, and (vi) asymmetric in the beam splitter. By symmetric and

asymmetric, we mean that either the loss is the same in all possible paths, or the

loss is different in the different paths.

For fiber losses, we define a transmission coefficient 1
αi

for one of the polar-

izations on the ith path. Of course, both polarizations will have some loss, but any

common loss can be factored out. For cases (i), (iii), and (iv), we find that there is
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Figure 6.15: Fidelity loss due to polarization-dependent loss before the beam splitter.
Fidelity is plotted versus the ratio of loss in the two input paths.

no effect on our resulting fidelity. We will consider the other cases in more detail.

For case (ii), the state at the beam splitter is:

|ψ〉 =

(
|0H〉1 +

1

α1

|1V 〉1
)
⊗
(
|0H〉2 +

1

α2

|1V 〉2
)

(6.28)

where the states |0〉 and |1〉 correspond to the ion states and the index 1 (2) indicates

the ion from Alice or Bob respectively and correspondingly, the photon at port 1

or 2 of the beam splitter. Also, for now, we ignore normalization and renormalize

at the end, which is acceptable because of the heralding. After applying the beam

splitter operators defined in Sec. 6.3.1 and ignoring the terms that will only result

in photons impinging on the same detector, we obtain the state:

|ψ′〉 =

[
1

α2

|01〉 (|(HV )304〉 − |H3V4〉+ |V3H4〉 − |03(HV )4〉)

+
1

α1

|10〉 (|(HV )304〉 − |V3H4〉+ |H3V4〉 − |03(HV )4〉)
]
. (6.29)

We can break this state down into the four possible heralding coincidences:
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(1) APD 1 and APD 2, (2) APD 3 and APD 4, (3) APD 1 and APD 3, and (4) APD

2 and APD 4, where APD 1 and APD 2 are after port 3 of the beam splitter and

APD 3 and APD 4 are after port 4 of the beam splitter. We then end up with the

following ion states for each detection case (indices on ψ indicate the corresponding

coincidence case):

∣∣ψ(1,2)

〉
=

α1α2√
α2

1 + α2
2

(
1

α2

|01〉+
1

α1

|10〉
)

∣∣ψ(3,4)

〉
=

α1α2√
α2

1 + α2
2

(
1

α2

|01〉 − 1

α1

|10〉
)

(6.30)

The fidelity of both of these states to the corresponding Bell states |Ψ+〉 and |Ψ−〉

in terms of the ratio α′ ≡ α1

α2
is:

F =
∣∣〈Ψ±

∣∣ψ(1,2,3,4)

〉∣∣2 =
1

2 (1 + α′2)
(1 + α′)

2
(6.31)

We plot the fidelity as a function of α′ in Fig. 6.15. From this plot we see that

the dependence is very gradual, and the asymmetry must be quite large in order

to impact the fidelity at even the 10−2 level. It is difficult to characterize the

polarization-dependent loss, because it may change due to varying birefringence

on the fiber, and the resulting different polarizations at different fiber locations.

However, preliminary measurements indicate that this effect is minimal. Note that

these results will also apply to diiffering numbers of H and V photons from each ion.

If the discrepancy is the same from each trap, it will not affect the fidelity. On the

other hand, if the ratio of H photons to V photons differs in Alice and Bob, perhaps
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due to misalignment of the lens to the magnetic field for example, the fidelity will

decrease.

Now, we turn to cases (v) and (vi). For these situations, rather than modifying

the transmission, we adjust the beam splitter operator. First, we consider the

symmetric case. The operation on |H〉 is still the same, but for |V 〉, the operator

now is b†3
b†4

 =
α√
2

1 1

1 −1


b†1
b†2

 (6.32)

with α > 1. When we write out the resulting algebra, we find that the final state

will be unaffected up to a normalization constant, which is then removed due to the

heralding anyway.

For the asymmetric beam splitter case, we allow the coefficients for each of

the four possible paths for vertically polarized light to differ

b†3
b†4

 =
1√
2

α13 α23

α14 −α24


b†1
b†2

 . (6.33)

Note that this operator is explicitly not unitary. For the sake of simplicity, we

assume the beam splitter is a perfect 50:50 lossless beam splitter for horizontally

polarized light, but calculations similar to the previous ones could account for this

effect as well. We then use this operator as well as the standard beam splitter

operator to find the final state. We list the ion states for the four possible heralding
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coincidences

∣∣ψ(1)

〉
=

1√
α2

14 + α2
24

(α14 |01〉+ α24 |10〉)

∣∣ψ(2)

〉
=

1√
α2

13 + α2
23

(α13 |01〉+ α23 |10〉)

∣∣ψ(3)

〉
=

1√
α2

13 + α2
23

(α13 |01〉 − α23 |10〉)

∣∣ψ(4)

〉
=

1√
α2

14 + α2
24

(α14 |01〉 − α24 |10〉) . (6.34)

For all of these, the fidelity compared to the appropriate Bell state is

F =
1

2 (1 + α′2)
(1 + α′)

2
(6.35)

where α′ depends on which coincidence is detected:

α′(1) =
α14

α24

α′(2) =
α13

α23

α′(3) =
α23

α13

α′(4) =
α24

α14

. (6.36)

This is the same functional form as the result for asymmetric polarization-dependent

loss in the input fibers, so we can see from the same plot (Fig. 6.15) how the fidelity

will decrease as a function of the ratio α′, although the resulting number will be

different depending on the path of the photon.
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The polarization-dependent loss can be characterized to some extent using

polarized classical light. It is difficult, however, to determine the contributions of

losses in different parts of the fiber. However, assuming as a worst-case scenario

that all polarization-dependent loss is in the inputs or in the beam splitter itself, we

can still bound the fidelity loss to . 1%.
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Chapter 7: Optics Considerations for Fiber Coupling Ion Light

One of the main limitations for the rate with which we can generate remote

entanglement is how much light is lost trying to couple photons emitted from an

ion into a fiber. This efficiency is determined by how well the spatial mode of the

collected ion light is matched to the spatial mode of the single mode fiber. Here, we

explore in depth what affects this mode matching and how we can experimentally

improve it.

7.1 Theoretical Calculations of Fiber Coupling Efficiencies

We can approximate the spatial mode of a single mode fiber as a Gaussian

beam with an ideal, normalized electric field [156]

E0(r) =

√
2

πw2
0

e−r
2/w2

0 (7.1)

where w0, the beam waist, is equivalent to half the mode field diameter of the fiber.

The mode field diameter can be easily measured in the lab and is also often provided

by the manufacturer.

The condition of coupling light into a single mode fiber can then be expressed
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as an overlap integral between the ideal fiber mode (Eq. 7.1) and the mode of the

input light

ε =

∣∣∫ E∗i (r, θ)E0(r)dA
∣∣2∫

|Ei(r, θ)|2 dA
∫
|E0(r)|2 dA

(7.2)

where Ei(r, θ) is the field of the input light. We have assumed here that the fiber is

in fact at the focus of the input light so there is no dependence on z, the direction

of propagation. The denominator is simply a normalization factor and does not

include an integral over E0 since, by definition, E0 is already normalized.

This integral will allow us to account for multiple effects that can decrease

our coupling efficiency: the effect of differences in beam waist between the input

beam and the ideal fiber mode and misalignment of the imaging system that can

introduce aberrations.

7.1.1 Waist Measurement and Mismatch

Even if an imaging system is perfectly aligned, if the beam waist at the fiber

and the mode field diameter of the fiber do not correspond, light will not be able

to be coupled as efficiently. We therefore must use a lens designed to match this

parameter.

To measure the mode field diameter of the fiber, we note that for a Gaussian

beam, the angle of divergence far from the waist will uniquely determine the waist

at the focus. The full equation for the intensity of a Gaussian beam at any location

is given by [157]

I(r, z) = I0

(
w0

w(z)

)2

e
− 2r2

w(z)2 (7.3)
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where I0 is the peak intensity at z = 0 and

w(z) = w0

√
1 +

(
z

zR

)2

. (7.4)

In these equations we have introduced the parameter zR, which is called the Rayleigh

range, and is defined as

zR =
πw2

0

λ
. (7.5)

For z � zR, the beam waist will diverge approximately linearly as can be seen

from Eq. 7.4. For the output beam of a fiber, the angle of this divergence determines

the effective NA of the fiber. By taking images of a beam coming out of the fiber

and fitting them to a Gaussian intensity profile, we can extract the waist at the

location of the camera. When we take several of these images at multiple locations

and measure the distance between the locations, we can obtain a divergence angle

as long as the location is far from the fiber on the scale of its Rayleigh range. For

a typical fiber with a mode field diameter of about 2 µm, the Rayleigh range is

only of order 10 µm, so any measurement will satisfy this criterion. For the first

in-fiber beam splitter that we used, we measured an average NA of 0.0925 (the input

ports differ slightly). We have not yet measured our newer in-fiber beam splitters;

however, we performed this measurement on several different fibers and obtained

similar results.

We can calculate how much a deviation in the NA of the input beam from the

NA of the fiber will degrade the coupling both in the case of an ideal beam and for
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Figure 7.1: Plots showing the dependence of fiber coupling efficiency on the NA of
the fiber. For (b) and (c) the curves are interpolated between points. (a) Fiber
coupling efficiency vs. fiber NA for an ideal Gaussian beam. When the NA of the
Gaussian beam equals the NA of the fiber, the coupling efficiency is 1. The NA
of the input beam is set to 0.0925 to match the measured NA of the first in-fiber
beam splitter we used, and the NA of the fiber is scanned to account for possible
discrepancies in newer fibers. (b) Fiber coupling efficiency vs. fiber NA for the
Photon Gear lens used for fiber coupling light from our first two traps (see Sec. 5.1.3).
The lens is nominally designed to match the NA of our fiber, but the computations
show the peak coupling is actually at a slightly lower NA. The maximum efficiency is
lower because the lens does not produce an ideal beam even when optimally aligned.
(c) Coupling efficiency vs. fiber NA for the system of aspheric lenses used in our
third trap (Sec. 5.2.1.1). The NA for peak coupling corresponds very closely to the
measured NA of our fiber and sharply falls off for lower NAs while more gradually
decreasing for higher NAs. The maximum efficiency is again lower because of the
deviation from the ideal fiber mode.

our specific lens. For an ideal beam, we use the overlap integral defined in Eq. 7.2.

There is a direct correspondence between the waist at z = 0 of a Gaussian beam

and the NA of the beam in the far-field, so we calculate what the waist would be at

z = 0 as a function of NA. Specifically, the angle will be equal to the large z limit

of the derivative of w(z)

θ ≡ arcsin(NA) =
dw

dz
≈ λ

πw0

. (7.6)

We can then solve for w0 in terms of the NA, and substitute that into the

equation for a Gaussian beam electric field (Eq. 7.1) for both the fiber and the
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input beam to compute the efficiency integral (Eq. 7.2). In this case, the electric

field of the input beam also has the form of an ideal Gaussian, but the waist may

differ. Evaluating the efficiency integral for an angle of divergence of the input beam

θi and for the fiber θf gives the analytical expression for the efficiency:

ε =
4θ2

i θ
2
f(

θ2
i + θ2

f

)2 , (7.7)

which, as expected, equals 1 when θi = θf . This function is plotted in Fig. 7.1(a).

The function is asymmetric about the peak because the ideal divergence angle is

nonzero. Over even fairly large variations in NA, the loss in efficiency is < 15%.

This calculation, however, does not account for the deviations from an ideal

Gaussian beam that our imaging systems inherently introduce. The computations

accounting for the effects of the lenses are significantly more complicated, so we

rely on Zemax OpticStudio to perform these calculations. After the lens data is

entered and the system is optimized, we can compute the predicted single mode fiber

coupling. This information is found in the “Analyze” tab under “Fiber Coupling”

→ “Single Mode Coupling.” In “Settings,” we then set “Sampling” to 128×128 and

select “Ignore Source Fiber” and “Use Huygens Integral.” “Ignore Source Fiber”

ensures that the input is defined externally to the fiber coupling computation, since

we will have already set up the input separately. “Use Huygens Integral” sets the

computation to be performed using the Huygens wavelets method (see [158] for

example), which accounts for diffraction. If this is not checked, diffraction will not

be accounted for and the fiber coupling efficiency may be inaccurate. The sampling
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is a tradeoff between speed and accuracy; typically the result does not change much

with samplings higher than 128 × 128. The computation, however, does become

frustratingly slow. Finally, the NA of the receiving fiber must be set to that of the

fiber in the lab.

Once all of the settings are correct, it is straightforward to read off the cou-

pling efficiency. In the “Single-Mode Fiber Coupling” window, three efficiencies are

listed–“System Efficiency,” “Receiver Efficiency,” and “Coupling Efficiency.” “Sys-

tem Efficiency” accounts for loss in the imaging system before the fiber and will

typically be equal to 1. “Receiver Efficiency” is the efficiency solely of the fiber

coupling, and then “Coupling Efficiency” computes the total loss. If “System Effi-

ciency” equals 1, “Coupling Efficiency” and “Receiver Efficiency” will give the same

result, which is the number we use as our theoretical fiber coupling efficiency.

The results for both the lens used on our first two traps and the aspheres

used on our third trap are shown in Fig. 7.1(b) and (c). These lenses have signifi-

cantly different dependences on NA. For the Photon Gear lens performance shown

in Fig. 7.1(b), the coupling falls off more quickly for higher numerical apertures.

This is not ideal because the specified range of the fibers we use has a measured

NA on the lower end of the range, so for future fibers, this may be more of an issue.

However, as discussed in Sec. 5.2.1.1, the maximum fiber coupling efficiency for the

aspheric lens system is lower to begin with. As long as the NA of the fiber is not

significantly lower than the design NA we do not expect much of a decrease in the

fiber coupling efficiency in this system.

If there is a significant mismatch between the NA of the fiber and the design
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NA of the lens, we can compensate using additional lenses. By collimating the light

from the ion after the first image plane and reimaging with a lens of a different focal

length, we can adjust the NA to better match the fiber and recover at least some

of the loss in efficiency. However, the introduction of additional lenses also always

poses the risk of additional aberrations, so the improvement in performance may be

limited. We have tried this compensation previously with objectives not discussed

in this thesis and where the deviation from the fiber NA was unknown and have

seen improvements of only ∼ 2% in coupling efficiencies.

7.2 Experimental Characterization of Beam Aberrations

When an ion is first observed with an imaging system, the alignment of the

lens to the ion will typically be incorrect. While this misalignment will in general

not completely prevent observation of the ion, it will certainly decrease the fiber

coupling efficiency. In this section, we discuss various facets of our approach to

optimizing this alignment.

7.2.1 Defocus

When the ion-lens distance in a setup differs from the design distance, the

resulting waist at the image plane will be too large, and the fiber coupling efficiency

will decrease as a result. We measure the beam waist by placing a camera in the

image plane, ensuring that it is indeed at the focus by minimizing the spot size on

the camera. Then, we take several images and add them together in post-processing.
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Figure 7.2: Plot of the fraction of light enclosed vs. radius in pixels (2.2 µm×2.2 µm
size) for a well aligned lens.

We subtract the background by taking an image while blocking the 650 nm light

and subtracting this image from the images we are analyzing. We crop the image

close to the ion, while ensuring all ion light is still included and find the total light

in the image by summing over all pixels. Finally, we compute the fraction of light

in a circle of various pixel sizes around the image centroid and plot the results (see

Fig. 7.2). The camera1 we use for this measurement has a pixel size of 2.2 µm ×

2.2 µm, and we expect > 90% of the light to be within 5 pixels when the lens is well

aligned for the Photon Gear lens used for Alice and Bob (Sec. 5.1.3).

7.2.1.1 Defocus in Alice and Bob

The rods in Alice and Bob are too closely spaced to allow the full NA of the

imaging objective in one direction. While this is unfortunate in terms of our remote

entanglement generation rate, it does provide useful information for the alignment

1FLIR BFLY-PGE-50A2M-C
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Figure 7.3: Spot diagrams showing the effect of the rod clipping on the light from
the ion. In each row, the spot diagram is shown at a different distance from the
image plane (-200 µm to +200 µm in 100 µm increments). The top row shows the
spot diagrams when the ion-lens distance is correct; the bottom is when the lens is
50 µm too far from the ion.

of our lens in the focus direction. In particular, the rectangular aperture creates

a characteristic shape that varies depending on if the lens is at its ideal location

or whether it is too close or too far. In Fig 7.3, we show the spot diagram when

a ray trace is performed including the rectangular aperture representing the rods.

When the lens is too far from the ion, as the camera is moved from the image plane,

we expect to see more dramatically differing shapes on each side of the focus. In

particular, when the camera is also too far from the lens, the middle of the ion

image will be very narrow, while the lower and upper portions will be much wider,

somewhat like a bow tie shape. When the camera is too close to the lens on the

other hand, we expect to see a ring with two dark spots with a bright spot in the

middle. Fig. 7.4 shows actual ion images with these patterns.

When the lens is too close to the ion, the sides of the image plane on which
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Figure 7.4: Ion images showing effect of rectangular aperture. The image on the left
shows the pattern with an exterior bright ring, central bright spot, and dark spots
on the sides. The image on the right shows the bow tie shape on the other side of
the focus.

these patterns appear is reversed. In this case, the bow tie shape appears when

the camera is too close to the lens while the opposite pattern appears when the

camera is too far. This reversal allows us not only to determine when the lens is the

wrong distance from the ion, but also in which direction we need to move it. We

can therefore typically find the correct focus much more quickly than we would be

able to otherwise.

7.2.2 Zernike Polynomials for Describing Aberrations

Other aberrations are not quite as simple to characterize, and, especially when

multiple aberrations are present, it can be difficult to determine what the contribut-

ing issues are. The two other primary aberrations we deal with are coma and

astigmatism, since they arise directly from misalignment of the lens. We can in
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general qualitatively distinguish astigmatism and coma to some extent by looking

at how many axes of symmetry there are in the image. First order astigmatism

will generally have reflective symmetry about two axes while coma will only have

one such axis. However, it can be useful at times to obtain a more quantitative

description.

It is convenient to be able to mathematically represent the aberrations using

a set of orthonormal polynomials. A common choice is the Zernike polynomials,

which are orthonormal when the domain is limited to a unit circle [159]. There

are limitations to their use, however, and in particular, they cannot reproduce the

result of manufacturing errors from diamond polishing with linear combinations to

a reasonable order [159]. This process is relevant to our work because it is often

used for fabricating aspheric lenses. Nevertheless, the Zernike polynomials can be

useful for describing the aberrations resulting from misalignment of a lens.

The Zernike polynomials are defined in terms of a radial and angular part as

[160]

Zm
n (ρ, θ) =


Nm
n R

|m|
n (ρ) cos(mθ), m ≥ 0

Nm
n R

|m|
n (ρ) sin(mθ), m < 0

(7.8)

where

Nm
n =

√
2(n+ 1)

1 + δm0

R|m|n =

(n−|m|)/2∑
j=0

(−1)j(n− j)!

j!
(
n+|m|

2
− j
)

!
(
n−|m|

2
− j
)

!
ρn−2j (7.9)
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for integer n and with m = −n,−n+ 2, . . . , n− 2, n and 0 ≤ ρ ≤ 1. Here, we have

scaled ρ to be in the unit circle by dividing by the exit pupil diameter.

7.2.2.1 Analysis of Images of Ion Light Intensity

We can then fit images of the atoms to determine in part their aberrations.

We use a similar method to [161] and note that the intensity image can be described

by a point spread function (PSF)

PSF(ρ, θ) =

∣∣∣∣∣F
[
A exp

(
− r

2

w2
0

)
exp

(
−ik

∑
m,n

cmn Z
m
n (ρ, θ)

)]∣∣∣∣∣
2

. (7.10)

This equation differs slightly from that in [161] because of the inclusion of a Gaussian

envelope, which we found slightly improves the fit results. The actual fitting is

performed using the SciPy function optimize.curve fit and returns an amplitude,

exit pupil diameter, Gaussian waist, and the set of cmn for however many polynomials

we choose to fit.

This procedure is not well suited, however, to fitting the images of ions that

have passed through a rectangular aperture. If we know the lens data, we can

calculate an approximate result using ray tracing. Ignoring the effects of diffraction,

we trace the rays through the whole system then numerically perform an inverse

fast Fourier transform. It is important to note that, given the high NA of our

system, the paraxial (small angle) approximation is not valid and the tracing must

be performed exactly. The result of this calculation then becomes a multiplicative

factor in the PSF. We do lose phase information in this calculation; however, we
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have verified that this computation results in much better fits than without the ray

tracing. The major difficulty with this protocol is that it requires knowing all of the

lens surfaces in the imaging system. At the time we initially implemented it, we did

have all of this information. However, for the new Photon Gear lens, we were only

provided with a black box file and therefore can no longer use this technique as is.

Additionally, the technique of analytically performing a ray trace through a high

numerical aperture asphere is infeasible because it requires inverting polynomials of

degree > 10. However, all that would be required to obtain fits for images with the

newer lenses would be figuring out a way to export the calculated PSF from Zemax.

In practice, recently, we have been able to rely on the qualitative visual assessment,

which also is much faster when the aberrations are sufficiently simple.

Based on the aberrations we see, we can use this information to adjust the

alignment of the lens. In general, astigmatism arises from the ion being off-center

on the lens (translation) or mounting of the lens that breaks its cylindrical symme-

try. Coma is a bit more complicated, as it can be a result of either a translation

misalignment or tilt misalignment.

When coma is visible without astigmatism, we typically start by adjusting

the tilt of the lens. The mount often will introduce translation when the tilt is

adjusted, which needs to be compensated afterwards. If the tilt does not improve

the aberrations, we turn to adjusting translation instead. This process of course

requires significant iteration, but typically eventually converges on an image that

is nearly aberration-free. We also check the aberrations with the image defocused,

as aberrations are often not visible at the image plane, but will show up at other
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locations.

7.2.2.2 Use of a Shack-Hartmann Wavefront Sensor

The intensity image analysis discussed in the previous section is easy to use

but necessarily gives incomplete information because the PSF takes the magnitude

squared of the function. A method for obtaining complementary information is using

a Shack-Hartmann wavefront sensor, which provides a measurement of the phase of

the wavefront [162].

CCD

Microlens
Array

Figure 7.5: Cross section of a Shack-Hartmann wavefront sensor. Collimated light
hits an array of small lenses (microlens or lenslet array) and is focused in multiple
spots onto a detector. We use a CCD camera for this purpose in our setup.

This wavefront sensor consists of a microlens array followed by a detector with

spatial resolution. In our setup, we use a CCD. If the light is collimated going

into the lenslet array, a spot of light will be observed at the locations on the CCD

corresponding to the center of each lens. If, however, the light entering one of the
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lenses is tilted, there will be a resulting displacement on the camera. While this

tilt may result from the entire beam entering at an angle, if the beam is aberrated,

different parts of the beam will have different tilts. We can use this information to

determine the aberrations.

We define the location of the spot corresponding to the ith lenslet for an ideal

beam as (x0i , y0i). The electric field of the incoming beam can be written as

E(x, y, z) = |E(x, y, z)| eiφ(x,y,z). (7.11)

Then, a displacement on the camera in x (or y) indicates the following [162]

δxi
f

=
xi − x0i

f
=
∂φ

∂x
(7.12)

where f is the focal length of the lenses in the microlens array. We can also write

an equivalent expression for y.

We can also write φ in terms of the Zernike polynomials

φ(x, y)|z=z0 =
M∑
n,m

cmn Z
m
n (x, y) =

∑
j

cjZj(x, y) (7.13)

where z0 is the plane of the microlens array and we have written the Zernike poly-

nomials in terms of Cartesian coordinates and with a single index that accounts for

both n and m. Then, the displacements of the spots on the camera can be written
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in terms of the Zernike polynomials:

δxi,j (xi, yj)

f
=

∂

∂x

∑
n,m

cmn Z
m
n (x, y)

∣∣∣∣∣
x=xi,y=yj

(7.14)

where (xi, yj) are the coordinates of the center of the pixel in the ith column and jth

row.

The displacements in x and y for each spot can be written as a vector, and the

derivatives of the Zernike polynomials at each location can be written as a matrix.

We can then obtain a matrix equation relating the aberrations to the measured

displacements

1

f



δx0,0

δx0,1

...

δxN,N

δy0,0

δy0,1

...

δyN,N



=



∂xZ0 (x0, y0) ∂xZ1 (x0, y0) . . . ZM (x0, y0)

∂xZ0 (x0, y1) ∂xZ1 (x0, y1) . . . ∂xZM (x0, y1)

...
. . .

∂xZ0 (xN , yN) ∂xZ1 (xN , yN) . . . ∂xZM (xN , yN)

∂yZ0 (x0, y0) ∂yZ1 (x0, y0) . . . ∂yZM (x0, y0)

∂yZ0 (x0, y1) ∂yZ1 (x0, y1) . . . ∂yZM (x0, y1)

...
. . .

∂yZ0 (xN , yN) ∂yZ1 (xN , yN) . . . ∂yZM (xN , yN)





c0

c1

...

cM


.

(7.15)

This system of equations can then be solved for the coefficients ci using a least-

squares fit. From this fit, we can determine the aberrations in our phase.

There are, however, several practical disadvantages to this method of deter-

mining aberrations. The first challenge is obtaining a reference image to which we
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can compare to find the displacements. We can achieve this to some extent, how-

ever, in software if we know the lens spacing by making a grid of evenly spaced

points and then aligning that with the actual image. This method would make it so

we cannot determine tilt, but since tilt in general will not affect our fiber coupling

this is a nonissue. The bigger challenge is the fact that in order to use a wavefront

sensor, the light must be spread out over a large area–our microlens array, for ex-

ample, is 10 mm×10 mm. Even if we only use a portion of this area, spreading the

light collected from an ion over even 5 mm will result in a very dim signal on the

camera. However, this method can be used for characterizing aberrations in test

setups where the source light is much brighter than that from an ion.

7.3 Adding Optics for Improving Fiber Coupling

Previously, we discussed improving the alignment of the lens to minimize the

aberrations. However, sometimes it is not possible to completely eliminate aberra-

tions purely from alignment. We have considered several options for improving the

image further.

As mentioned in Sec. 7.1.1, for example, we can reimage the light to improve

the matching of the NA of the input light to the NA of the fiber. There are several

other options for correcting other aberrations. One option, which was used in [161],

is to add a cylindrical lens to correct astigmatism. A cylindrical lens will not correct

astigmatism due to misalignment, but will correct astigmatism which results from

asymmetry in the mounting system. For example, if the lens is mounted in such a
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way that it is compressed in one direction, a cylindrical lens could fix the resulting

astigmatism. We have tried compensating the small amount of residual astigmatism

in our image with a cylindrical lens without success. The reason behind this may

be that the astigmatism is in fact due to a small amount of residual misalignment

or because the cylindrical lenses we tried had focal lengths that were too short and

thus introduced more astigmatism than they compensated.

A more general option is the use of a deformable mirror. We use a piezoelectric

based deformable mirror with 40 piezo actuators, plus tip and tilt controls.2 The

software that accompanies this mirror conveniently translates Zernike polynomial

amplitude to an actuator displacement pattern, so we can directly compensate the

aberrations that one of our analysis methods determine are present.

In order to integrate the mirror into our setup, we collimate the ion light be-

fore the mirror. The mirror works best at small angles of incidence, so we angle it

only slightly from the normal to accommodate our optics. We then fiber coupled

the light and attempted to adjust the mirror to improve the coupling efficiency. We

attempted this both manually and with a gradient descent optimization algorithm.

Neither method resulted in significant improvements in efficiency. For the optimiza-

tion algorithm, part of the problem may be the hysteresis intrinsic in piezoelectric

materials. We attempted to mitigate this effect by “relaxing” the mirror, which

rapidly moved the actuators in all directions to minimize the directional depen-

dence. We did this at each optimization step. However, each step then took several

seconds, so the optimizer ran very slowly. Additionally, the fiber coupling naturally

2Thorlabs DMP40-P01
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decays over time and the signal was noisy, so the feedback on the optimizer was not

of a high quality. Another issue may be that the aberrations that are limiting our

fiber coupling efficiencies are too high order to have been corrected with this mirror,

which is only capable of applying up to fifth order Zernike polynomials.
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Chapter 8: Outlook

In the previous chapters, we have discussed work leading up to the preliminary

demonstration of a two-node Ba+ network and the construction of a third, upgraded

node. In addition to the obvious immediate steps of finishing the demonstration of

the two node network and the testing of the third node, there are several other

directions we can go with this and related systems in the medium to long term. We

now turn to discussion of some future possible experiments and improvements. This

chapter is by no means an attempt to explore all possible directions but contains

some ideas we have considered over the course of this work.

8.1 Deterministic State Readout of Barium Ions

Our current detection scheme on Ba (Sec. 3.2.3.2) is probabilistic. So far,

this scheme has not prevented us from obtaining results, and ultimately we hope to

perform most readout on Yb+ rather than Ba+ anyway, so we have not put much

effort into an improved detection protocol for Ba. However, it has become apparent

that for certain experiments it would be useful to have the option of reliable and

efficient state readout on barium. For example, in the three trap entanglement

protocol (see Sec. 8.3), we can reduce the number of local entangling gates required
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if we are able to measure the communication qubit rather than the memory qubit.

Additionally, as we will discuss in Sec. 8.4, we may ultimately turn to a network

with all barium ions using different isotopes. For this configuration, we would also

need to be able to perform deterministic state readout on Ba.

We use the current detection scheme for 138Ba+ because there is no frequency-

resolved, electric dipole, cycling transition involving only one of the qubit states like

there is for 171Yb+ (Sec. 3.1.3). The fact that our qubit states are not frequency-

resolved also forces us to rely on polarization purity. An alternative scheme that

resolves both of these issues is shelving to the 5D5/2 state (see Fig. 3.7) using a

narrow linewidth 1762 nm laser [163]. After transferring the population in one of

the qubit levels, |1〉 for example, the Doppler cooling beams can be turned on and

any resulting photons will indicate population in |0〉. Since the Doppler cooling

beams together create a closed cycle, the lack of a detected photon definitively

indicates the qubit was in |1〉.

The linewidth of the S1/2 ↔ D5/2 transition is only 6.1 mHz, so driving it

directly is possible but requires significant effort to reduce the linewidth of a laser.

Additionally, the frequency and optical power must be well-stabilized to avoid fluc-

tuations in the time it takes to fully transfer population from the S1/2 manifold to

the D5/2 manifold. An alternative is adiabatic rapid passage [88, 163, 164], where

the frequency of the laser is scanned from some detuning far from resonance on

one side of the transition to a detuning far from resonance on the other side of the

transition. The fidelity of this technique is determined by the ratio of the laser

linewidth to the Rabi frequency with which the transition is driven and the sweep
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rate across resonance [88]. Fidelities have been demonstrated of at least 98% using

this technique, but results using the same technique in other ions have achieved

fidelities of over 99% [165, 166]. For comparison, our current detection fidelities are

98-99% as well.

Implementing this shelving scheme in our lab, with either direct excitation

or adiabatic rapid passage, will require the purchase of two new lasers and a high-

finesse ultra-stable optical cavity. We of course require the 1762 nm laser, but

we will also need a 614 nm laser to depopulate the 5D5/2 manifold when we have

finished reading out the state. Currently, we occasionally have population decay

to this manifold from off-resonant excitations during Raman operations but use an

LED to repump to the levels involved in the cooling cycle. This setup is feasible

because of the infrequency of populating the D5/2 manifold, but a laser would be

required if we needed to utilize this state every experimental cycle. The cavity is

necessary for locking and narrowing the frequency of the laser. Delivering sufficient

power to the ions in Alice and Bob may also be challenging because none of the

vacuum windows are coated for a wavelength so far into the infrared, and we expect

there will be large losses at the window (∼ 30%). Cleo, however, was designed with

the possibility of adding a 1762 nm laser, and therefore has one uncoated window

that should cause losses of only a few percent.
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8.2 Two-Trap Entanglement Experiments

The first step after demonstrating remote entanglement between two traps will

be the reintroduction of the memory (171Yb+) qubits. While the work presented

in this thesis has relied solely on 138Ba+, the limitations imposed by the short

coherence times of Zeeman qubits will pose more of an issue for performing quantum

computations. While the coherence time of these qubits can be increased to seconds

[167], this involves a considerable amount of work and experimental complexity.

Hyperfine qubits, on the other hand, can have coherence times of order 1 s without

much effort and can be improved up to thousands of seconds [14].

After we establish the remote entanglement discussed in Chapter 6, we can

swap the entanglement to neighboring memory qubits using local XX gates, as

discussed in [48, 49]. The previous demonstrations of these interspecies gates had

very low fidelities due to extremely high heating rates in the trap in which they were

performed. Since then, we have replaced that trap with two new traps (Alice and

Bob), which hopefully will have much less heating.

8.2.1 Entanglement Distillation

The state we generate via remote entanglement will likely have a fidelity of not

more than ∼ 95%. If we wish to achieve higher fidelities, we can utilize the memory

qubits to purify the fidelity using an entanglement distillation procedure along the

lines of the one described in [168]. This procedure allows for the creation of a single,

purified Bell state from multiple lower-fidelity pure states using only LOCC. There-
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fore, we could generate remote entanglement once on the communication qubits,

swap it to the memory qubits, and then regenerate remote entanglement on the

communication qubits. We would then have two lower fidelity Bell states that we

could use as a resource for entanglement distillation resulting in a single, higher-

fidelity Bell state on the memory qubits. Entanglement distillation has previously

been demonstrated on locally entangled trapped ions [169] and in a network with

NV centers in diamonds [170]. The interspecies nature of our setup and the long

coherence times of the memory qubits will ensure that there is minimal decoherence

during the attempts at generating the second remotely entangled pair.

8.3 Protocols for Networks with More Than Two Traps

Bell state
analyzer

Bell state
analyzer

In-vacuum
NA 0.8 aspheres

NA 0.6 
objective

NA 0.6
objective

Alice Bob

Cleo

Figure 8.1: Schematic for a three trap network. One central trap with two high NA
objectives (Cleo) is connected via photonic links with Alice and Bob separately. Yb
ions are shown in purple and Ba in teal.

In this thesis, we have described nearly all of the necessary building blocks
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for a three trap network with the exception of interspecies gates, which have been

previously demonstrated. We have not yet discussed, however, our plans for linking

them all together. The setup is shown in Fig. 8.1. Cleo serves as a central node

with links to both Alice and Bob. A direct connection between Alice and Bob is

not necessary for the protocol we will use. Between each trap, there is a Bell state

analyzer with the same setup shown in Fig. 6.12. Each trap contains a single Ba

ion and a single Yb ion. Not shown in the figure but present on each trap is a lens

for collecting photons emitted from the Yb ion for state readout.

The specific application on which we focus here is the generation of a GHZ

state. There are certainly other possible directions to explore with this system,

but the generation of a GHZ state demonstrates that we can maximally entangle

Yb ions in the three traps. These states can serve as a starting point for various

quantum information applications and are a necessary fundamental building block

for a quantum network with memory [171]. We first provide an overview of the steps

required for generating such a state and then delve into the specifics of some of the

steps. We also consider the rate with which we can generate a GHZ state and the

required fidelities for each component of the protocol.

For convenience, we label the ions in each trap with the first letter of the trap

name–for example BaA is the barium ion in Alice. After each step in the below

protocol, we note the state of the ions, including only those that are entangled with

another ion at that point in the procedure. The steps in the entanglement generation

procedure are:
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1. Generate remote entanglement of either BaA and BaC or BaB and BaC using

the same procedure described in Sec. 6.3. To simplify the discussion, we

assume BaA is the ion entangled with BaC. If it is instead BaB, the subsequent

steps remain the same but with Alice and Bob switched. The resulting state

is either |Ψ+〉 or |Ψ−〉. For the sake of simple discuss, we include a rotation to

|Ψ+〉 in this step if necessary. With the ordering of the ions |BaA〉 |BaC〉, the

state is then

|ψ1〉 =
1√
2

(|01〉+ |10〉) (8.1)

2. Upon successful entanglement generation between Alice and Cleo, perform a

local SWAP operation in both Alice and Cleo. This step results in an entangled

state between YbA and YbC. The state is the same as that after the first step,

but with the respective Yb ions instead of Ba.

3. Generate remote entanglement between BaC and BaB. Again, we assume we

end in |Ψ+〉 and obtain the overall state (order |YbA〉 |YbC〉 |BaB〉 |BaC〉)

|ψ3〉 =
1

2
(|01〉+ |10〉)⊗ (|01〉+ |10〉) (8.2)

4. Perform a SWAP operation in Bob, which leaves BaC entangled with YbB.

The state is the same as after step 3 but with BaB → YbB.

5. Perform a CNOT gate in Cleo with BaC as the control and YbC as the target.
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With the ordering |YbA〉 |YbB〉 |YbC〉 |BaC〉, the state becomes

|ψ5〉 =
1

2
(|0001〉+ |0110〉+ |1011〉+ |1100〉) (8.3)

6. Read out the state of YbC. If YbC is in |0〉, perform a π rotation on BaC. If

YbC is in |1〉 perform a π rotation on YbB. Either way, the resulting state will

be the GHZ state (with the ion state ordering |YbA〉 |YbB〉 |BaC〉):

|ψ6〉 =
1√
2

(|000〉+ |111〉) (8.4)

The π rotations serve only to end up with the same GHZ state for the sake of

convenience. Even without those, the state at the end of this step will be a

maximally entangled tripartite state.

7. Finally, perform another SWAP operation in Cleo so BaC is no longer part of

the entangled state and YbC is instead.

A SWAP gate can be performed by preparing one of the qubits, in our case Yb,

in |0〉 and then performing two Mølmer-Sørensen (MS) gates with a phase difference

of π between the two gates [105]. A CNOT gate can be broken down into a single

MS gate and local operations [172]. Thus, overall, this procedure requires nine

MS gates. This number can be reduced to seven if we are willing to perform the

detection in step 6 on BaC instead of YbC, perhaps using the shelving described in

Sec. 8.1. In this case, the CNOT must be performed with Yb as the control, and

there are a different set of π rotations depending on the result. The last SWAP
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operation (step 7) is then unnecessary as we will be left with an entangled state of

just the three Yb ions after step 6.

The fidelity requirements for this protocol are quite strict because of the overall

number of operations. To generate the final state, we require two remote entangle-

ment generations, up to three single-qubit Raman rotations, 2-3 state preparations

of Yb, one state readout, and 7-9 MS gates. If we assume perfect state preparation

and readout and local single-qubit operations and estimate a remote entanglement

fidelity of 93% for both pairs of traps, a fidelity of 95% on the MS gates still gives us

only a resulting fidelity of 0.55 for the nine MS gate version of the protocol, which is

barely sufficient to verify the quantum nature of the state. With slightly imperfect

SPAM and single qubit operations, this fidelity will be a few percent lower. This

is also not accounting for any decoherence of the Ba qubit due to magnetic field

fluctuations. We should be able to achieve coherence times of about 4 ms, so the

sequences during which Ba is entangled with other qubits must be kept to less than

∼1 ms. All of these numbers are certainly achievable, and individual operations of

each type with sufficiently high fidelities have been demonstrated, but it will require

a fair amount of work to get to this point.

It is important to note, however, that the scaling of the rate of this protocol

compared with our two trap protocol is quite favorable. In particular, for step 1,

the rate will be twice as high as for the two trap network because entanglement

can be heralded between either pair of traps. Step 3 will be the same rate as

remote entanglement in the two trap network because it has to be between Cleo

and whichever trap was not successfully entangled in step 1. If we just consider the
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time for these two steps, the time for success will be:

T =
1

2R
+

1

R
=

3

2R
, (8.5)

so the scaling in time taken is better than linear with the number of traps.

8.3.1 Four Trap Protocol

Although experimentally we have a fair amount of work before we can demon-

strate a three node network, let alone four, we are interested in how our entangle-

ment generation protocol would scale to more traps. The extension of the previous

scheme to four traps is fairly straightforward and could be determined for five or

more as well. For four traps, we still consider the case where the traps are arranged

in a line. We let traps 1 and 4 be the end traps and 2 and 3 be the intermediate

traps (1 is connected to 2, 2 is connected to 3, and 3 is connected to 4). For this

protocol, we do not write out the state at every step but just provide an overview of

the procedure and results and consider the final number of operations needed. We

choose to present the variation of the protocol where we measure Ba since it has

fewer operations and we will likely have implemented shelving by the time we have

a four trap network.

The steps are as follows:

1. Generate remote entanglement between traps 1 and 2 and between traps 3

and 4 on Ba.
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2. Perform SWAP operations on all traps, so the Yb ions in traps 1 and 2 are

entangled, and those in traps 3 and 4 are entangled.

3. Generate remote entanglement between traps 2 and 3.

4. Perform CNOTs on traps 2 and 3 with the Yb as the control and Ba as the

target in each trap.

5. Measure Ba2 and Ba3. There are four possible outcomes (the states of Ba2 and

Ba3 respectively being |00〉, |01〉, |10〉, and |11〉. After these measurements,

the possible states of the Yb ions (|Yb1Yb2Yb3Yb4〉) are:

|ψ00〉 = |ψ11〉 =
1√
2

(|0101〉+ |1010〉)

|ψ01〉 = |ψ10〉 =
1√
2

(|0110〉+ |1001〉) (8.6)

These states can obviously both be rotated to the GHZ state 1√
2
(|0000〉 +

|1111〉) using only local, single-qubit operations if desired.

A similar sequence will also work if remote entanglement is heralded on traps 2 and

3 first.

The required resources for this procedure are three remote entanglement gen-

erations, up to 5 single-qubit rotations, 4 state preparations of Yb, 2 state readouts

(barium), and 10 MS gates. For remote entanglement time, the overall rate is still

proportional to p2 as desired. Because the remote entanglement between traps 1

and 2 can be established in parallel with that in traps 3 and 4, on average, the time

spent generating remote entanglement will in fact be the same as for the three trap
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protocol. This statement has a slight caveat, since if remote entanglement is first

generated between the middle traps, SWAP operations that are in parallel in the

above steps must be split into two separate steps, so there will be a slight increase

in the time spent in the slow loop. It is clear, however, that the scaling in fidelity

will be more prohibitive than the scaling in time.

8.4 Other Ion Combinations for an Interspecies Quantum Network

8.4.1 Motivation for a Different Ion Combination

Currently, we utilize 171Yb+ as our memory qubit and 138Ba+ as our com-

munication qubit. For swapping information from the communication qubit to the

memory qubit, it is important to be able to perform high-fidelity local entangling

operations via the motional modes of the ion trap. MS gates can be performed

using either the transverse (radial) modes of the trap or the axial (longitudinal)

modes, but the transverse modes are generally preferable. The advantage of the

transverse modes is their lower heating due to the fact that RF Paul traps are typ-

ically operated with stronger confinement in the radial direction than in the axial

direction.

Nonetheless, for ions of significantly different masses, including Yb and Ba,

entangling gates have only been performed on the axial modes [49, 173, 174]. The

reason for choosing this apparently disadvantageous method is the importance of

the participation of each ion in the motional modes for the success of the gate [175,

176] and the fact that ions with different masses have dramatically different mode
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(a) (b)

Figure 8.2: Plot of mode participation for different mass ratios α = m2/m1 where
m2 is the lighter ion (Ba in our case). The ratio of the participation of the heavier
ion to the lighter ion is plotted on the vertical axis, while the horizontal axis is
the ratio of the lighter ion mass to the heavier ion mass. Both plots show the “in-
phase” and “out-of-phase” modes where the ions move in the same and opposite
directions respectively. The dashed vertical lines show the Ba-Yb mass ratio. (a)
Axial mode participation ratios. (b) Transverse mode participation ratios. We
assume a transverse mode frequency that is about 2.5 times higher than the axial
frequency for a single ion as in [48].

participation especially in the radial modes [48]. The larger the mass discrepancy,

the larger the discrepancy in participation, as shown in Fig. 8.2.

In [177], we examined this dependence for more than two ions and considered

how gate fidelity would be affected. Longer chains will ultimately be an integral part

of our modular quantum architecture, so it is important that our building blocks

can be expanded. We found that the effect of the mass discrepancy on the radial

modes becomes even more extreme for longer chains, eventually reaching the point

where the motion of the Ba ion is nearly completely decoupled from the motion

of the Yb ions, as shown in Fig. 8.3. In addition to the decoupling in the radial

modes, as the chain increases in length the heating rate scales dramatically with the

number of ions in the chain because the confinement must be loosened [21], further

disincentivizing axial gates.
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Figure 8.3: Mode participation in a five ion chain with 4 171Yb+ ions and 1 138Ba+

ion at the end of the chain. The eigenvector components for the Yb ions are shown
in blue, and those for Ba are shown in red. The rows correspond to the five mo-
tional modes for one of the trap principle axes. (a) Axial mode participation. The
participation of the Ba ion is fairly similar to that of the Yb ions. (b) Radial mode
participation. The motion of the Ba ion is nearly completely decoupled from the
motion of the Yb ions.

8.4.2 Use of 133Ba+ as a Memory Qubit

We thus decided to consider other combinations of ions for our architecture.

We wish to continue using 138Ba+ as our communication qubit because of its rela-

tively red wavelength and the resulting increased fiber compatibility. Our preference

for a memory qubit is an atom with nuclear spin 1/2 like 171Yb+ because of the sim-

ple hyperfine structure of such an atom. Among ions that have commonly been

trapped, there are none that satisfy this criterion and have a closer mass to 138Ba+.

However, recent work has demonstrated trapping of and basic operations with a

synthetic radioactive isotope of barium, 133Ba+, that does have a nuclear spin of
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1/2 [18, 178].

This choice of qubit would have several advantages. The first and most obvious

is that it addresses the issues of motional mode participation mismatch to a large

extent. The second is that much of the experimental complexity due to our current

ion combination could be significantly reduced because the same lasers, with the ad-

dition of frequency sidebands, could be used to control both the communication and

memory qubits. This factor would be especially advantageous for Raman operations

as it would completely eliminate the need for high-power UV light, which is difficult

to fiber couple and can cause charging of the trap or nearby insulating surfaces.

A third factor is the extremely high SPAM fidelity that has been demonstrated in

133Ba+ [18], which is even better than the best reported result in 171Yb+ [72].

There are, however, additional considerations and possible disadvantages as

well. Perhaps the most glaring is the issue of the radioactivity of this isotope. The

half-life of 133Ba is 10.5 years [179], so depletion of our atomic source is not much

of a concern. However, for safety purposes, there would have to be considerable

thought put into minimizing the quantities that would be used and thus the efficiency

of loading ions. We would need to use an ablation source rather than a thermal

source and operate in a regime releasing as few atoms as possible. Additionally, we

may want to switch to one of the alternative photoionization schemes discussed in

Sec. 3.2.1, which should be more efficient than the present scheme used for 138Ba+.

This consideration is certainly not a scientific limitation to this proposal, however.

Other considerations include how we will perform state readout in 133Ba+ and,

most importantly, if it is even feasible to use it as a memory qubit. The main concern
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Figure 8.4: Comparison of the atomic structures of 138Ba+ and 133Ba+ showing
isotope shifts and hyperfine splitting. Zeeman levels are not shown. All values are
from [178].

for this second point is the relative proximity of its resonance to the resonance in

138Ba+ on the S ↔ P transition and the resulting possibility of crosstalk between

the ions during repeated remote entanglement attempts.

Unlike 171Yb+, 133Ba+ does not have a set of transitions that as closely approx-

imate a cycling transition and that includes only one qubit state, assuming we define

the qubit as in Yb as |0〉 ≡
∣∣6S1/2, F = 0,mF = 0

〉
and |1〉 ≡

∣∣6S1/2, F = 1,mF = 0
〉
.

As discussed in Sec. 8.1, in 138Ba+ we can transfer population in one or both of the

qubit states to the 5D5/2 manifold using 1762 nm light. The same can be done

in 133Ba+ using a similar approach or the non-coherent approach described in [18],

which consists of optically pumping to the 5D5/2 manifold via the 6P3/2 manifold.

This second scheme requires a 455 nm laser, a 585 nm laser, and a 614 nm laser in

addition to the standard Ba lasers, but none of the lasers need to have a narrow

linewidth since all of the transitions involved are electric dipole transitions. The
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Figure 8.5: Operations with possible associated crosstalk. Optical pumping and
single photon generation both could cause a neighboring memory qubit to decohere if
enough slightly off-resonant photons interact with the memory qubit. These photons
could come from the 493 nm pumping beam or photons that are scattered by the
ion. σ represents the scattering cross-section of the neighboring memory ion.

1762 nm approach on the other hand requires only a 1762 nm laser and a 614 nm

laser, but the 1762 nm laser must have a high finesse cavity lock to narrow its

linewidth. Either way, we can then read out the qubit state as described in Sec. 8.1.

8.4.2.1 Crosstalk in an All-Barium Network

The resonance frequency of the S ↔ P transition in 138Ba+ is much closer to

that in 133Ba+ than the corresponding value in Yb. Therefore, there is an increased

probability that photons from either the optical pumping beam or the communi-

cation ion itself could affect the memory qubit (Fig. 8.5). We now examine these

probabilities to determine if they are acceptably small for an all-barium quantum

network.

We first consider the probability of crosstalk due only to the pumping beam.
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We assume the beam has a Gaussian intensity profile

I(r) = I0e
− 2r2

w2
0 (8.7)

where I0 is the peak intensity, r is the distance from the ion and w0 is the beam waist

at the focal plane, which we assume is the ion location. The crosstalk probability is

the ratio of the scattering rate of the memory ion to that of the communication ion,

where the scattering rate is given in Eq. 2.1 and the Doppler shift ωD is of course 0.

If the memory qubit is a distance r from the communication qubit, the probability

of crosstalk is

Pct(r) =
Γsc(r,∆)

Γ(r, 0)
=
s(r)/

(
1 + s(r) + 4∆2

γ2

)
s(0)/ (1 + s(0))

(8.8)

where s(r) is the saturation parameter I(r)
Isat

. If we assume s(0) = 1, the crosstalk

probability is

Pct(r) =
2e
− 2r2

w2
0

1 + e
− 2r2

w2
0 + 4∆2

γ2

. (8.9)

The detuning will depend on the state of the memory qubit. For population in

|0〉, only transitions to the |F = 1〉 manifold can occur because of atomic selection

rules. The detuning of these transitions from the 138Ba+ resonance is 7.55 GHz

[178]. Population in |1〉, on the other hand, can be driven to
∣∣6P1/2, F = 0

〉
or∣∣6P1/2, F = 1,mF = ±1

〉
. The detuning of the first transition from the 138Ba+ res-

onance is 4.21 GHz, and the detuning of the second set of transitions is 2.38 GHz

[178]. The probability with which each transition occurs depends on the polarization

of the pumping beam, but for simplicity, we will assume the chances of a transition
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Figure 8.6: Crosstalk as a function of the ratio of beam waist to ion distance for
population in both qubit states. The left vertical axis shows the probability of
a photon being scattered by the memory qubit for each photon scattered from the
communication qubit, and the right axis shows the total number of expected photons
scattered for 104 repetitions with 10 photons scattered per repetition. The black
dotted lines indicate an error of 1%.

to the |F = 0〉 state is equal to that for a transition to the |F = 1〉 manifold. We

calculate the crosstalk for each memory qubit state separately, noting that there is

only one allowed transition from |0〉 and two from |1〉. For |1〉, we take the aver-

age of the crosstalk from each possible transition, weighting them appropriately by

transition probability. The results of this calculation are plotted in Fig. 8.6.

Our current probability of generating remote entanglement is approximately

10−4, so we are interested in the probability of a photon being scattered in 104

entanglement attempts. To maintain an error of < 1% with population in |0〉 in

the memory qubit, the optical pumping beam waist must be about 0.6 times the

ion separation, which is typically about ∼5 µm. Since we cannot easily send this

beam through our high numerical aperture lenses without blinding our single photon
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detectors, the NA of this beam is likely limited to about 0.1. A Gaussian beam with

this effective NA would have a waist of 1.5 µm, which would be sufficiently small.

The effort to implement the optics for this would be significant but possible. If we

can further improve our remote entanglement probability, the requirement for beam

size can be relaxed. Additionally, if we pump with only π polarized 493 nm light,

we will significantly suppress the probability of excitation of population in |1〉 since

the detuning is smaller on the transitions to the |F = 1,mF = ±1〉 states and these

transitions can only be driven with σ polarization.

Errors due to photons scattered from the communication ion are determined

by the fraction of the 4π total solid angle into which the ion emits subtended by the

scattering cross section of the memory qubit. This fraction is given by [48]

Ω

4π
=

2π
∫ θ

0
sin θ′dθ′

4π
=

1− cos[θ(r)]
2

(8.10)

where

θ(r) = arctan

(√
3λ2/ (2π2)

r

)
. (8.11)

As discussed above, the detunings further decrease the probability of exciting the

memory qubit by a factor of ∼
(
γ
∆

)2
.

We must also consider the effect of the emitted photon polarization. Popula-

tion in |0〉 is affected with equal probabilities by any polarization, since all of the

Clebsch-Gordan coefficients are equal, and there are allowed transitions for each

polarization. For population in |1〉, the detuning is larger for the allowed transi-
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Figure 8.7: Probability of crosstalk due to light scattered from the communication
qubit versus ion separation. Black dashed lines indicate 1% probability of a photon
absorption event on the memory qubit. For population in |0〉, the distance corre-
sponding to 1% error is shorter than the smallest distance shown on the plot, so
that line is not shown.

tion with π polarized light than for the allowed transition with σ polarized light.

However, the numbers of photons emitted that have π polarization and that have

σ polarization will be, on average, approximately the same. At least for pumping,

which scatters 10 times more photons than single photon generation, both excited

states will be equally populated. We therefore conclude that the polarization of the

emitted photons will have a small effect, if any. The probability of any excitation

occurring is reduced by a factor of 0.54 because of the mismatch in the temporal

profile between the exponentially decaying emitted photon and the desired temporal

profile of a photon for exciting the ion [180].

From Fig. 8.7, we can see that for typical ion distances of 5 µm, the error due

to scattering is very low (< 10−3). Therefore, the error will primarily be a result

of optical pumping. Overall, these calculations show that an all barium network is
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certainly within the realm of possibility, although individual addressing for optical

pumping beams will be needed. A further order of magnitude improvement in

remote entanglement rate would also make such a network more feasible.
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Appendix A: UHV Processing

A crucial component of any ion trapping system is the vacuum chamber. Col-

lisions with background gas particles can cause ions to heat or even escape the trap

and are a limiting factor for working with long chains of ions. During the course

of this work, we have successfully constructed two vacuum chambers with pressures

� 10−10 Torr. In this appendix, we provide some technical details about the design

and processing of these systems and vacuum systems in general.

A.1 Materials and Vacuum Pumping

Different materials will have different rates of outgassing and the gases they

release will vary. It is therefore important to use only materials that outgas relatively

slowly and only emit gases that can be adequately removed by the vacuum pumps

we select. A long list of acceptable materials is available in [181]. We use only a

small subset of these. The materials included in our chambers are:

• Stainless steel 304 and 316

• Aluminum

• Titanium
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• Tungsten

• Macor (a ceramic)

• Beryllium copper alloy

• Alumel

• Kapton

• Copper

• Steatite (a ceramic)

• Gold

• Silver

• Indium

• Glass (fused silica and S-TIH53)

There may also be other materials in the ion pump, pressure gauge, TSP, vacuum

windows, and piezo stages. In general, if parts are specified to pressures of 10−11

Torr especially by a company whose products we have previously used, we consider

those parts acceptable.

Steel will outgas relatively large quantities of hydrogen. The other gases in a

clean chamber containing only acceptable vacuum materials typically are the con-

stituents of air. Water vapor is prevalent after first closing the chamber, and since

we fill the chamber with argon, there are often significant quantities of that as well.
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Parts that have not been air baked will also have residue from the solvents used for

cleaning (Sec. A.2). Much of the pumping after first closing the chamber will use

the pump station described in Sec. A.3, but the pumps on the chamber will need to

work well for gases that remain after the bake. Additionally, the ion pump on the

pump station is not one of the types of ion pumps that can pump noble gases [182].

Therefore, any pumping at UHV of argon must come from the chamber pumps.

As discussed in Sec. 5.2.2, we use a StarCell ion pump and titanium subli-

mation pump in Cleo for their complementary pumping properties. In Bob, the

main chamber body was already constructed when we adapted it, and we chose not

to modify the pumping, which consists of the same ion pump as Cleo and a non-

evaporable getter (NEG).1 We did not activate the NEG after opening the chamber,

so the pumping is likely primarily from the ion pump.

A.2 Cleaning Procedure

With the exception of certain components that either cannot be cleaned or are

from companies we trust to provide parts that have already been cleaned, all parts

must be thoroughly cleaned to remove contaminants, especially organic substances.

We did not clean parts from VAT, UC components, UKAEA, Smaract, and Agilent.

The standard cleaning procedure consists of the following steps. For each

solvent, unless otherwise noted, the part must be placed in an ultrasonic bath for

15 minutes.

1SAES Getters
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1. Alconox solution (10 g of soap/1 L of water) at 50 ◦C.

2. Rinse off soap either with running tap water for ∼3 minutes or sonicate in

50 ◦C deionized (DI) water for 15 minutes. For the second option, the water

must then be changed and the step repeated.

3. Sonicate in DI water at 50 ◦C. This step is in addition to the rinsing in step

2, regardless of the method.

4. Allow parts to dry completely. This typically requires waiting overnight or

blowing off the parts with clean, high-pressure air.

5. Sonicate in HPLC-grade hexane (room temperature).

6. Allow parts to dry.

7. Sonicate in ACS-grade acetone (room temperature)

8. Without allowing the acetone to evaporate, transfer parts to HPLC-grade

methanol or HPLC-grade isopropyl alcohol (IPA) and sonicate.

If necessary, parts can subsequently be etched in an acid or base solution using

distilled water to remove an oxide layer, smooth the surface, and possibly shape the

part. We use this technique for the trap rods and needles.

In general, it is important that vacuum parts only come in contact with parts

that are equally clean. Standard nitrile gloves are not sufficiently clean to handle

vacuum parts, but cleanroom grade nitrile gloves are acceptable for dry parts. For

transferring pieces into and out of beakers for cleaning, aluminum wire can be looped
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around bigger parts and serve as a handle. Smaller parts can be handled with tools

that are at least as far in the cleaning procedure. For example, a hemostat that

has been cleaned with Alconox, DI water, and hexane may be used to remove a

component from hexane after step 5.

The standard procedure leaves white residue on the surface of windows. We

also worried that sonicating them would damage the quality of the optical surfaces,

so we simply soaked the windows in HPLC-grade acetone and then HPLC-grade

IPA for 15 minutes each. The window must not be allowed to dry in between the

two solvents. After removing the window from the IPA, the window is tilted slightly

to allow the IPA to peel off towards the edges. A cleanroom wipe or swab is used

to wick residual IPA from the edges, and the window is left to dry with the glass

surface vertical. Any residue on the glass surface can be removed using cleanroom

swabs and a small quantity of solvent.

After cleaning the parts, any all-metal parts are baked in air at 400 ◦C for 1-3

days. This bake removes solvent residue that is left from the cleaning. On stainless

steel parts, it also causes the formation of an oxide layer, which reduces the rate of

hydrogen outgassing.

A.3 Baking the Chamber

The next step in preparing a chamber is to bake it under vacuum for at least

2 weeks to remove water vapor, hydrogen, solvent residue, and any other gases

present. All of our chambers are built with a valve that can be opened to connect
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to an external pumping system or closed off to seal the chamber.

We use an external pumping station that contains a turbo pump,2 which can

pump from atmospheric pressure down to about 10−8 Torr, and an ion pump,3 which

can be used at pressures . 10−6 Torr. This ion pump has much higher pumping

speeds than the turbo pump and the ion pumps on our chambers but cannot pump

noble gases. Both the turbo pump and large ion pump have associated valves so we

can control which is pumping the chamber. A bellows connects the pump station

to the chamber through an opening in the side of the industrial oven in which the

chamber is placed for the bake. The pump station also contains a residual gas

analyzer (RGA) that measures the background gas partial pressures in the vacuum

system.

At the beginning of the bake, the pump station must be exposed to air to

connect it to the chamber. During this phase, the ion pump valve is closed so the

pump is not exposed to air. The valve to the turbo pump is opened and the chamber

valve is closed. At this point, we generally will have loaded the barium atoms into

our chamber, and therefore, air must not enter the chamber to avoid oxidation of the

barium. The turbo pump and bellows then pump down the system to < 10−4 Torr,

and we open the chamber valve. Once the pressure has reached < 10−6 Torr we can

leak check using helium and the RGA (see Sec. A.4). If no leaks are detected, we

can proceed with the bake.

We increase the temperature of the chamber gradually (10 ◦C/hour) to en-

2Pfeiffer
3Duniway
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sure minimal temperature gradients, which could lead to windows breaking due to

different chamber components expanding at different rates. During this time, only

the turbo pump should be used because the chamber pressure will increase dramat-

ically. As long as the pressure remains < 10−5, we monitor the system with the

RGA. If the power supply to the turbo is shut off, the system will vent to air after

a few minutes, which would be catastrophic at high temperatures. To avoid this

possibility, the turbo is powered with a uninterruptible power supply (UPS) and a

person remains in the building at all times.

After the temperature has reached its maximum value and the pressure has

stabilized, we switch to the ion pump on the pump station by closing the valve to

the turbo and opening the valve to the ion pump. This should immediately result in

a large pressure drop because of the much greater pumping speed of the ion pump

compared with the turbo pump. The ion pump will not vent to air in case of a

power outage, so the chamber will be much safer at this point and will no longer

require nearly constant observation. The system is monitored primarily using the

RGA to ensure the partial pressures of all gases are decreasing and that no leaks

appear for the remainder of the bake. A few days into the bake we attempt to turn

on the chamber ion pump as well. On Cleo, however, the ion pump would have

dramatic pressure spikes and shut itself off at temperatures &130 ◦C, so we left it

off at least until the temperature was below this limit.

The chamber is baked until the hydrogen partial pressure is no longer decreas-

ing significantly on the timescale of days. We then cool down at 10 ◦C/hour. At

some point during the cool down when the temperature is still & 100 ◦C the valve
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to the chamber is closed, to minimize the flow of gases from the cooler pumping

station into the chamber. For Bob, the maximum temperature we used was 200 ◦C

and was limited by the windows and electrical feedthroughs. Bob was baked for

about three weeks. For Cleo, the piezos could only be baked to 130 ◦C, which is

too low to remove the hydrogen in a new chamber in a reasonable amount of time.

We therefore first baked Cleo without the piezos to 200 ◦C for three weeks. We

then reopened the chamber and added the piezos, aspheres, and atomic sources and

performed a subsequent bake to 120 ◦C for a month.

After the first bake of Cleo, we fired the TSP for 5 minutes, which caused the

pressure to drop from 2×10−10 Torr to 2.5×10−11 Torr over the course of a few days.

After the second bake, we fired the TSP again, since it needs to be fired every time

the chamber is opened. The second time we fired it for 12 minutes (4 minutes from

each of the three filaments). The chamber was at a slightly elevated temperature

when we first fired it (∼ 35 ◦C), so the pressure was slightly higher than after the

first bake (3.7×10−10 Torr). Several days after firing the TSP and with the chamber

at room temperature, the final pressure was 2.1× 10−11 Torr. The pressure gauge4

readings must be multiplied by a factor of about 2 to obtain an accurate value for a

pressure dominated by hydrogen. At pressures below 2×10−10 Torr, however, these

readings are not accurate and are likely higher than the actual value. Regardless,

these results indicate a chamber with a pressure well within the desired range.

4Agilent 9715007
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A.4 Use of a Residual Gas Analyzer

An RGA is an important tool for characterizing vacuum systems because it

can identify not only the overall pressure but also which gases are contributing.

For example, we expect hydrogen to be prominent in our baked chambers but the

presence of oxygen would strongly indicate a leak. It is also important to identify

organic compounds since they are a primary contaminant and can be difficult to

remove from the system. The RGA we use5 can be operated either in a pressure

versus mass mode, which scans across a range of mass to charge ratios and plots the

result, or a pressure versus time mode for individual mass to charge ratios. Some

fraction of the partial pressure reading at a certain mass may result from particles

with twice the mass that have been doubly ionized.

RGAs can be operated with or without a continuous-dynode electron multiplier

(CDEM), which allows detection of signals below 10−11 Torr. The CDEM can easily

be destroyed by pressures over 10−6 Torr, however, so it is important to only use it

when confident that the pressures will remain sufficiently low or when the risk of it

breaking is acceptable.

Additionally, RGAs can be used to detect leaks in a vacuum system directly.

Helium is sprayed around any possible sources of leaks on the chamber such as flange

connections and electrical feedthroughs. Helium is the standard choice because the

background is extremely low. The partial pressure of helium is then monitored in

time. Using the CDEM for this function is highly preferable for detecting very small

5SRS RGA100 or SRS RGA200
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Figure A.1: RGA scans of partial pressure vs. mass. The top scan is in a clean
system and has important peaks labeled. The bottom scan is of a dirtier system and
shows prominent signatures of organics. The horizontal axis is the mass to charge
ratio in atomic mass units (AMU) and the vertical axis is partial pressure in Torr.

leaks.

The other use of an RGA is to monitor the partial pressures of various gases.

The discussion that follows is not meant to be a comprehensive review of interpreting

RGA scans but does cover the most relevant information for our systems. Examples

of scans across a range of masses are shown in Fig. A.1. The first scan is of Cleo and

the pump station after Cleo was baked, so most of the contaminants were removed,

and H2 is by far the most prominent gas remaining. The fact that the pump station
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had not been baked and had a small leak likely resulted in the presence of H2O,

O2, N, N2 CH4 and Ar. In particular, the fact that there is a peak at 32 AMU is a

strong indicator of a leak in the system since UHV systems should not contain any

oxygen. The peak at 28 AMU can come from both N2 and CO. We can determine

the relative prevalence by comparing with the height of the peak at 14 AMU, which,

for pure nitrogen, would be about 14 times lower than the peak at 28 AMU. In the

top scan in this figure, it is about 24 times lower. This discrepancy indicates the

presence of CO, which is produced by RGAs, the pressure gauge, and ion pumps,

so it is not surprising that it is prevalent.

The bottom scan, on the other hand, was from the beginning of the bake of

Cleo while the chamber was at 200 ◦C. The collections of peaks with one center

tall peak and other surrounding smaller peaks are signatures of organic compounds,

because some of the hydrogen atoms in the organic chain will be removed by the

RGA ionizer and result in changes of 1 AMU. Some of this contamination is from

residual solvents after the cleaning process, but the heaviest solvent we used was

acetone, which has a peak at 58 AMU. All of the higher masses, therefore, were

from other sources of contamination. While we did not determine what caused this,

by the end of the bake this contamination had been removed nearly completely.

During the bake, we select prominent peaks and monitor the change in their

pressures with time. A plateau in the partial pressure of hydrogen mostly determines

when we stop the bake. An observed increase in oxygen indicates a leak, and

corresponding increases in nitrogen and argon can confirm this assessment.
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