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Thermalizationis a ubiquitous process of statistical physics, in which a physical
system reaches an equilibrium state that is defined by a few global properties such as
temperature. Eveninisolated quantum many-body systems, limited to reversible

dynamics, thermalization typically prevails'. However, in these systems, there is
another possibility: many-body localization (MBL) canresult in preservation of a
non-thermal state®*. While disorder has long been considered an essential ingredient
for this phenomenon, recent theoretical work has suggested that a quantum
many-body system with a spatially increasing field—but no disorder—can also exhibit
MBL*, resulting in ‘Stark MBL®. Here we realize Stark MBL in a trapped-ion quantum
simulator and demonstrate its key properties: halting of thermalization and slow
propagation of correlations. Tailoring the interactions between ionic spinsinan
effective field gradient, we directly observe their microscopic equilibration fora
variety of initial states, and we apply single-site control to measure correlations
between separate regions of the spin chain. Furthermore, by engineering a varying
gradient, we create a disorder-free system with coexisting long-lived thermalized and
non-thermal regions. The results demonstrate the unexpected generality of MBL,
withimplications about the fundamental requirements for thermalization and with
potential uses in engineering long-lived non-equilibrium quantum matter.

MBL was first formulated as a generalization of the Anderson transi-
tion®”. Indisorder, non-interacting quantum particles can experience
destructive interference through multiple scattering, causing a tran-
sition to exponentially localized wavepackets. Over time, a cohesive
picture of MBL in interacting systems has also developed'®™. In this
description, the MBL regime has extensive local conserved quanti-
ties that generalize the particle occupanciesin Anderson localization.
However, interactions result in additional slow spreading of correla-
tions viaentanglement. Strikingly, MBL creates a phase of matter that
is non-ergodic: for a range of parameters, local features of the initial
state are preserved for all times, preventing thermalization?®.

In considering MBL, it is natural to ask whether random disorder is
arequirement. A partial answer has long been known: MBL is possible
with incommensurate periodic potentials'>. However, the question
of whether an MBL phase might exist which preserves translational
symmetry, for instance in a system with gauge invariance® or multi-
ple particle species'", has continued to generate extensive discus-
sion'. Recently, this problem has been approached from a different
starting point: the Bloch oscillations and Wannier-Stark localization
of non-interacting particles in a uniformly tilted lattice”. From this,
it has been predicted that interacting systems with a large linear tilt
can also display MBL-like behaviour*>. This effect, sometimes called
Stark MBL, has attracted considerable theoretical and experimental
interest’® 2%, However, clear experimental realization of Stark MBL has
been complicated by approximate Hilbert space fragmentation that

occurs in the limit of short-range interactions***?, The setting of a
trapped-ion quantum simulator with long-range spin-spin couplings
naturally overcomes this complication.

Experimental setup

Investigation of MBL has been driven in part by the development of
isolated quantum simulator platforms capable of single-site manipula-
tionand readout®*-33, Our experimental apparatus (Fig. 1a) consists of
achain (N =15-25) of "'Yb" ions, with pseudospin states | *,) and |V ,)
encoded in hyperfine levels. The Hamiltonian has two ingredients.
The first is an overall spin-spin interaction, mediated by global laser
beams coupling spinand motion using the Mglmer-Sgrensen scheme®.
The second is a programmable effective B> magnetic field at eachion,
generated using a tightly focused beam®. Together these resultina
versatile tool to study many-body physics. In addition to turning on
or off either Hamiltonian term, we use the tightly focused beam to
initialize spins in arbitrary product states, and we measure arbitrary
local observables with state-dependent fluorescence collected onto
acharge-coupled device (CCD) camera.

Combining these terms and choosing the local field to be alinear
gradient results in a tilted long-range Ising Hamiltonian (% = 1):
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Fig.1|Experimental setup. a, EachtrappedioninachainoflengthNencodesa
pseudospin. Global lasers controllably mediate along-range spin-spin
coupling (red), whichis parameterized by the nearest-neighbour rate /.
Atightly focused beam provides asite-resolved effective B> magnetic field
(blue) thatisused to engineer afield gradient with slope g. For clarity, we show
N=7.b, The parameter (r),ameasure of the level statistics of the experimental
Hamiltonian (N =15), shows a progression from statistics near the Wigner-
Dyson limit ((r)yp, red dotted line) at small g//,, characteristic of ageneric
ergodic system, to Poisson statistics ({r)y, blue dotted line) atlarge g//,,,

Here we have the long-range spin-spin couplingsJ;;, approximately
following a power-law: /., =/, /|j -’ |, with J, the nearest-neighbour
coupling and a =1.3. B is an overall bias field, and g the gradient
strength, with {J,, B°, g} > 0.In practice, we generate this Hamiltonian
stroboscopically, using a Trotterization scheme to reduce decoherence
(see Methods and Extended Data Fig. 2). The bias field B is set to be
large (B°/J, > 5), so that the total magnetization 2 <0§>is approximately
conserved. With this constraint, and neglecting edge effects, J; =/,
and the Hamiltonianis translationally invariant: the operationj > j + n
for integer n is equivalent to a shiftin B2, which has no effect in the
bulk.

Withadisordered B*field, this system has been used to study MBL*.
For aninitial state of definite total magnetization, the spin model can
be mapped to achain of hard-core bosons with long-range hoppingin
apotential (see Methods), indicating that it has similar ingredients to
models previously used to study Stark MBL*>,

A useful numeric diagnostic of whether a model exhibits an MBL
regime can be found in the level statistics, which feature similar behav-
iourinregular (disordered) MBL*® and Stark MBL**. The energy levels
ofageneric thermalizing ergodic system follow the Wigner-Dyson dis-
tribution characterizing random matrices, while ageneric many-body
localized system has a Poissonian level distribution®®. This difference
can be quantified by the average ratio of adjacent energy level gaps,
defined as
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The quantity <r) is 0.53 for a Wigner-Dyson distribution and 0.39
in the Poissonian case. Diagonalizing the Hamiltonian (equation (1))
for N=15, we find that (r) moves from 0.50 to 0.39 as the gradient g//,
isincreased, suggesting increasing localization (Fig. 1b). While Fig. 1b
shows the exact experimental Hamiltonian, including deviations from
uniform couplings near the edges of the chain, this behaviour persists
in a uniform Hamiltonian (see Methods and Extended Data Figs. 4,
5). Unlike previous studies of Stark MBL, in which a small amount of
disorder or curvature was required for Poissonian level statistics*?,
equation (1) exhibits them without any terms perturbing the transla-
tional symmetry.

We probe the degree of localization using a quench procedure,
shown schematically in Fig. 1c. The initial state, such as a Néel state of
staggered up and down spins, is typically highly excited and far from
equilibrium. Ifit thermalizes, the dynamics following the quench will
lead to a state in which each spin has a uniform probability of being
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characteristic of alocalized system (see Extended Data Fig. 3 for full
histograms of r). ¢, We probe the system using a quench from anon-equilibrium
initial state, such asthe Néel state shown here. At small g//,, aninitial spin
patternwill quickly relax to a uniform average magnetization, while at large g//,
theinitial pattern persists. The former is consistent with a thermal state, in
which uniformity is combined with entanglement (red links) reaching across
theentire chain, while the latteris consistent with MBL, in which the
magnetization remains non-uniformand entanglement spreads slowly.

up ordown. MBL will instead resultin persisting memory of the initial
configuration, breaking ergodicity.

Non-thermalization from Stark MBL

Performing the quench experiment, we see the expected signature
of localization: a small gradient results in quick equilibration of the
spins (Fig. 2a), while in a large gradient they remain near their initial
values over the experimental timeframe (Fig. 2b). The experimental
data correspond closely to exact numerical simulations.

To quantify the amount of initial state memory, we define a general-
izedimbalance, Z(¢). This observable is similar to other previously used
measures of initial state memory, such as the imbalance® or the Ham-
ming distance®, but is advantageous for comparing different initial
states (see Methods). For an initial state with M spins that are up, and
N-Mdown, Z isequalto the subsequent difference between the aver-
age magnetizations of the two groups:
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wherej (j”) only sums over the spins that were initialized up (down). In
general, |Z(¢)| varies from two, for perfect memory of an initial state
composed of up and down spins, to zero, for auniformstate as at ther-
mal equilibrium.

The imbalance shows a clear trend as we increase the gradient
(Fig.2c). Atsmaller gradients, it relaxes to adecaying oscillation about
zero, indicating quick thermalization. However, as the gradient is
increased, theimbalance instead settles to a progressively higher value.
Compared to exact numerics, decoherence causes a slow decay of Z
over time, attributed primarily to residual excitation of ion-chain
motion. However, the separation between this decoherence time and
the fast relaxation dynamics allows us to characterize the late-time
imbalance.

Tostudy initial-state memory for different gradients, we average Z(t)
over a time window ¢/, from 5 to 7. This window is chosen to be late
enough that transient oscillations have largely decayed, while early
enough that decoherence is limited. This late-time imbalance, Z, cap-
tures the amount of initial-state memory remaining after any initial
relaxation, and thus the approximate degree of localization (Fig. 2d).
At the smallest gradient 7 is consistent with zero: averaging over the
initial states showninFig.2d we have Z = 0.017+£0.027 (1os.e.m.). With
alarger gradient, 7 becomes clearly distinct from zero and progressively
increases, reflecting increasing memory of the initial state. Crucially,
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Fig.2|Non-thermalization from Stark MBL. a, b, lon-resolved dynamics for
aninitial Néel state (N =15) atg//, = 0.24 (a) and g//, = 2.4 (b), corresponding to
thered andblue points on Fig.1b. While the state quickly relaxes to a uniform
magnetizationinthe smallgradient, thelarge gradient resultsina persisting
memory of theinitial state. Thetop rowis experimental data, averaged over 200
repetitions, and the bottom row is exact numerics. c, Memory of the initial
state, hereaNéel state (V=15), can be quantified by the generalized imbalance Z.
Forastate of frozen up and down spins, Z=2, and for complete relaxationto a
uniformstate, Z= 0. As the gradient isincreased (light to dark), the imbalance
crosses from quick relaxation towards zero to a persistent finite value. Points
areexperimental dataatg//,={0.24,1.2,1.8}, with statistical error bars smaller
thanthe symbolsize, and lines are exact numerics using the experimental

this memory does not show strong dependence on the specific initial
state: for states with different numbers of initial spin flips and different
symmetry properties, similar behaviour is observed. This initial state
insensitivity is consistent with MBL, which can have some energy
dependence® but is a robust mechanism for breaking ergodicity that
canspantheentire spectrum. This can be contrasted with other effects
that do cause thermalization to be strongly state-dependent, such as
quantum many-body scars*® and domain wall confinement®. However,
compared to disordered MBL, a key difference is also evident: a small
non-zero value of Z, and thus imperfect thermalization, persists at small
values of g//,. This is consistent with the expectation that even in this
regime thermalization is anomalously slow or incomplete®*°, which
progresses towards complete localization as the gradient increases.

Akey further test of Stark MBL is to characterize its dependence on
increasing system size. This is especially relevant to systems with
long-range terms, where finite-size effects may be particularly impor-
tant®**. Increasing the length to N = 25, we see a rise in the imbalance
at small g//, that is similar to the N =15 case (Fig. 2e). While we are
unable to reach the deeply localized regime for N=25 due to the scal-
ing of the experimentally achievable maximum gradient with N
(see Methods), the small non-zero value of Z that we observe indicates
the persistence of a Stark MBL regime.

Revealing the correlated Stark MBL state

Probes of the local magnetization, as in Fig. 2, can establish
non-thermalization over experimental timeframes, but they do not
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Hamiltonian. Numericsina-cincorporate experimental noise (see Methods
and Extended DataFig.1).d, For variousinitial states, shown at top, weseea
similar value of the late-time imbalance at large gradient, suggesting uniform
localization. Fromtop to bottom, the threeinitial states correspond to the
{triangle, square, round} points. e, Dependence of the late-time imbalance on
systemsizeis shown, using aninitial Néel state with N=15 (asubset of the data
inpaneld) and N=25. The overallincrease of late-time imbalance with gradient
isrobustto the systemsize increase. The pronounced dipinZ near g//,=1.0
may be partly due to afinite-time feature that appears near this value

(see Methods and Extended Data Fig. 6). Error bars throughout represent
statistical uncertainty of the meanvalue (1os.e.m.). Data are averaged over 200
repetitions.

reveal the correlations that characterize alocalized phase. The struc-
ture of the regular MBL phase is understood to be defined by emergent
local conserved quantities'®™. However, the resulting localized regions
still interact with one another, leading to spreading of correlations
via entanglement after a quench from a product state (typically loga-
rithmic spreading in time, but potentially faster for long-range sys-
tems***?). While the existence of these conserved quantities in Stark
MBL is debated®*?**, there are indications that it can display similar
entanglement dynamics>',

Some observables have been established to directly probe this corre-
lation spreading, such as quantum Fisher information®*° (see Methods
and Extended DataFig. 8) or techniques to measure subsystem entan-
glement entropy>***. We instead adopt alocal interferometric scheme,
the doubleelectron-electronresonance (DEER) protocol, toreveal the
spread of correlations'*>*, This protocol, shown in Fig. 3a, compares
two experimental sequences: one thatis astandard spin-echo sequence
onaprobespinwithinasystemofinterest, and one that combines this
withaset of t/2-pulse perturbations on a separate subregion, the ‘DEER
region’. The spin-echo sequence cancels out static influences on the
probespin, either from global external fields or from fixed configura-
tions of the surrounding spins. If this cancellationis perfect, the probe
spinwill returntoits initial magnetization. The DEER sequence, by con-
trast, removes this cancellation for any effect of the spinsin the DEER
regionontheprobe. As aresult, a differencein the final probe magneti-
zation between the two sequences reflects correlations between the
probe and DEER region generated by the dynamics. At sufficiently long
times, a difference between these signals will develop inan MBL phase,
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Fig.3 | DEER protocol. a, Inthe spin-echo procedure (dark green), asingle
probe spinundergoes aspin-echosequence, while the rest of the spins
experience normal evolution under Hfor total time¢.Inthe DEER procedure
(darkandlightgreen) there are additional perturbing t/2 pulsesonaregion,
here fixed atasize of three spins, thatis R spins away (with the case of R =2
shown). The difference in the probe magnetization following these procedures
reflects the ability of the DEER region to influence the dynamics at the probe
spin. We study this protocol using aninitial Néel state (N=15). b, At
intermediate times, before the spin-echo signal approaches zero due to
decoherence, adifference develops between the spin-echo (dark green) and
DEER (light green) signals. We quantify this by taking the average difference
(DEER-spinecho) betweent/,=2and 4 (shaded region) afterimbalance
dynamics have stabilized. These dataare forR=1and g//, = 0.71,and are
averaged over 2,000 repetitions.c, As Risincreased (atg//,=0.71), the
difference signal dropsto zero, reflecting the incomplete spread of
correlations through the systemat finite time.d, Asgisincreased (atR = 2), the
difference signal also decreases withincreasing gradient, consistent with the
expectation that within the Stark MBL phase, increasing localization leads to
progressively slower development of correlations. Pointsinc,d are the
experimental data, and solid lines are exact numericsincorporating
experimental noise (see Methods and Extended Data Fig.1). Error bars
throughoutrepresent statistical uncertainty of the mean value (1o s.e.m.).

butnotinathermal or non-interactinglocalized phase. This differential
measurement setup is also naturally robust against common-mode
non-idealities, including experimental noise. As this protocol requires
control of the Hamiltonian and single-site manipulation and readout,
it demonstrates how the capabilities of our experimental platform
can enable methods of characterizing many-body systems beyond
typical observables.

InFig.3b-d, we demonstrate the DEER protocol and apply it to char-
acterize the Stark MBL regime. Over time, a difference accumulatesin
the probe magnetization following the two procedures, reflecting the
spread of correlations (Fig. 3b). These correlations continue to move
through the system after the imbalance has stabilized (see Methods
and Extended Data Fig. 9), indicating that they are not solely due to
transient dynamics. Picking a time range after this initial evolution,
tJ, =2-4,wecharacterize the correlations by taking the average differ-
ence between the signals, A(o5). This time window is slightly earlier
than the window used for the steady-state imbalance, as the DEER sig-
nalis more sensitive to fluctuationsin the local effective B fields, which
arethe dominant source of experimental noise (see Methods). Varying
the DEER spin distance, R, we see that this difference signal decreases
foraDEERregion farther fromthe probe, reflecting the local nature of
correlation propagation (Fig. 3c). Similarly, at a fixed separation and
time window, we observe the reduction of the difference signal with
increasing gradient, confirming that the correlation spread is
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controlled by the degree of localization (Fig. 3d). The dependence of
the difference signal on both R and g/J, track exact numerics, with an
overallscaling difference due to decoherence reducing the experimen-
tal signal. Taken together, these probesidentify the Stark MBL regime
asoneinwhich correlations spread slowly through the system despite
persisting memory of the initial state, distinguishing it from
non-interacting localization.

Disorder-free MBL beyond alinear field

If many-body localized effects appear in a linearly increasing field,
might they also be seen in a more general class of smoothly varying
fields? Utilizing the tunability of this simulator, we investigate a natural
generalization: a quadratic, rather thanlinear, potential. We parameter-
ize the Hamiltonian as:

N
— 0
H=} J,0j05+ ) |B+ NC1 O

JJ’ J=1

)

Equation (4) describes a quadratic effective B*field witha minimum
inthe centre of the system and amaximumslope of g//, = +yattheends
of the chain. Similar models have been predicted to feature a spatial
separation into an ergodic core and many-body localized edges?.

We summarize theresultsin Fig. 4. Taking aninitial Néel state (N =15),
we observe a separation of the spins into thermalizing and localized
regions, which appear to evolve independently. We determine an
approximate dividing line between these regions as the innermost
spins thatare clearly distinct from the thermalizing region. For arange
of curvatures y < 3.6, thisoccurs at alocal slope of g//, = 0.5 (see Meth-
ods and Extended Data Fig.10), comparable to observations in Fig. 2.

The comparison between Stark MBL in a linear gradient and
disorder-free MBL in a quadratic field suggests similar localizing
mechanisms. While a large gradient results in a model with approxi-
mate centre-of-mass (or dipole) conservation, aquadratic field instead
results in a quadrupole constraint. Fractonic models in these limits
display dynamics determined by the type of conservation, suchas char-
acteristic subdiffusion®*°, However, our realizations of disorder-free
MBL are far from these limits of exactly conserved moments, and over
experimentally relevant times appear to exhibit dynamics that are
determined by the local potential landscape, rather than overall con-
straints™%,

The quadraticfieldis also anintriguing venue to explore the stability
of disorder-free MBL in proximity to a thermalizing region. Inregular
MBL, itis believed that athermalinclusion caninduce many-body ava-
lanches that slowly destabilize the MBL region***’. Disorder-free MBL,
which does not feature any resonances between sites, may evade this
instability. The observation of alocalized regionin a quadratic field is
alsodirectly relevant tolongstanding questions about the state of corre-
lated ultracold atomsinanoptical lattice with harmonic confinement*.

Discussion

We have seen the signatures of MBL ina system without disorder, sug-
gesting that the concept of MBL may be relevant in settings beyond
the original considerations®’. For all types of MBL, questions remain
about the conditions for asymptotic stability, particularly in systems
with long-range terms or more than one dimension****, To this end,
future work could study the dependence of Stark MBL on the coupling
range a, or explore connections between our observations and the
approximate Hilbert space fragmentation (or shattering) arising in
certain short-range tilted models®*?**% (see Methods).

Extension of Stark MBL to the thermodynamic limit poses several
challenges. Infinite energy differences appear between different
ends of the system, although this can be partially addressed through
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Fig.4|Relaxationinaquadraticfield.a, Wereconfigure the site-resolved
field fromalinear gradient to a quadratic, characterized by the maximumslope
y.For clarity, we show N =7.b, Dynamics are splitinto athermalizing region
nearthecentreof the systemandlocalized regions near the edges, with the
approximate boundariesindicated by the dashed lines. As the maximum
gradientisincreased, the fraction of the systemin the thermalizing regime

agauge transformation recasting the gradient as a time-dependent
drive (see Methods). Furthermore, slow state-dependent processes
canresultinincreasing delocalization with system size (see Methods
and Extended Data Fig. 7). However, localization can be extended to
arbitrarily long times by increasing the field gradient, adding gradient
curvature, or restriction to finite sizes.

Finally, from the perspective of near-term quantum devices our
results suggest that Stark MBL retains key aspects of the disordered
MBL phase while offering certain advantages, such as not requiring
afine-grained field or disorder averaging of observables. Stark MBL
may be auseful resource for such devices, serving asatool to stabilize
drivennon-equilibrium phases'®*!, or as ameans of making aquantum
memory> with each site spectroscopically resolved.
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Methods

Experimental apparatus

State preparation and readout. Our apparatus has been describedin
previous work®*>>, We employ a three-layer Paul trap to confine "'Yb*
ions in a harmonic pseudopotential with trapping frequencies
fvy=4.64 MHz and either f,= 0.51 MHz (N =15) or 0.35 MHz (N =25).
There is a 1% to 2% day-to-day variation in these frequencies. Pseu-
dospins are encoded in the two-clock ground hyperfine states, with
|IF=0,m=0)=1|y,)and |[F=1, m:=0)=|*)F, where Fand m; are the
quantum numbers for the total angular momentum and the component
alongz, respectively. We drive coherent global rotations between these
spinstates using stimulated Raman transitions. Long-range spin-spin
interactions are generated via a bichromatic beatnote that couples
these states via motional modes along the x direction. This is gener-
ated by three Raman beams from a pulsed 355 nm laser driving a sym-
metric pair of transitions, with average detunings of x/2m =200 kHz
from the red and blue sideband transitions of the highest frequency
(centre of mass) transverse motional mode along x. The resulting dis-
tribution of J; couplings has a best-fit power law of a =1.28 for N=15
and a=1.31 for N=25, and a best-fit /,/21 between 0.25 kHz and
0.33 kHz, depending on day-to-day variations in laser power. This
value of/,, calibrated for agiven day, is used to scale energies and times
in the main text.

Each experimental cycle begins with state initialization via optical
pumping and Doppler and resolved-sideband cooling, which prepares
the spin state |V,) with fidelity >0.99 and the ground motional state
with fidelity >0.9. Arbitrary product states are initialized using the
site-dependent a.c. Stark shift from the individual addressing beam (from
the same 355 nmlight generating the Ising interactions), combined with
overallrotations, withtypical preparation fidelities of >0.9 per spin. Read-
outis performed via state-dependent fluorescence using the 369.5 nm
|*,y > 2P, transition collected on a CCD camera, with typical detection
errors of 3%. All measurements presented in the main text, except for
the DEER measurements, are repeated at each setting 200 times for
statistics. For the DEER measurements, we instead average over 2,000
repetitions, which are taken alternating between DEER and spin-echo
sequences every 100 measurements so that to a very good approxima-
tionboth sample any noise profile equally. The data presented have not
been corrected for state preparation and measurement (SPAM) errors.

Calibration of Hamiltonian parameters
The experimental/;; matrix is determined by measurements of motional
sideband Rabi frequencies and trap parameters. Past work has validated
this model against direct measurements of the matrix elements™.
We directly measure and calibrate the linear field for each spinindi-
vidually. As this calibration process isimperfect, each spin has afinite
amount of deviation from the ideal linear gradient and thus thereis a
finite amount of effective site-by-site disorder in the experimental
realization, with 6(Bj/(gj)) ~0.02. While a small amount of disorder
can be crucial in simulations of Stark MBL with short-range terms,
because it breaks the exact degeneracies of that problem?, in the con-
text of long-range couplings the level statistics are already generic,
and this disorder does not have a substantial effect on the system in
numerics over experimental timeframes. As such, we call our system
‘disorder-free’ in the sense that we only have small, technical and
well-understood imperfections limiting our realization of the ideal
disorder-free Hamiltonian. Any real quantum simulator can only hope
to asymptotically approach a perfectly uniform environment, just as
any quantum simulator can only hope to approximately realize MBL
because there will always be some residual coupling to the environment
thatrestores ergodicity at sufficiently long times.

Generalized imbalance
The generalized imbalance used in the main text is defined as:
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For aninitial state that is a product of up and down spins along z,
this reduces to a simple form: the average magnetization of the spins
initialized up minus the average magnetization of the spins initial-
ized down. For an initial state that is fully polarized this imbalance is
undefined, which may be considered as a drawback to this measure,
but such a state is already near equilibrium and thus is not useful for
quantifying equilibration.

This definitionis similar to many other variations of the imbalance.
For aninitial Néel state with an even number of spins it is identical up
to scaling factors to both the imbalance and the Hamming distance,
while for a general initial state of up and down spins it reduces to
an alternate ‘generalized imbalance’ that has been used in previous
studies®**>’, However, in general this definition offers a few advantages:
« Unlike theimbalance, itis exactly zero for athermalized system with
an odd number of spins.

It does not require any knowledge of the initial state to be added in
by hand, unlike alternative observables in which the initially flipped
spins are tracked.
Unlike the Hamming distance, this generalized imbalance is zero
for athermalized system, and has units of magnetization difference
(therefore ranging from -2to 2).
Finally, this generalized imbalance s less sensitive to some noise terms
than the Hamming distance, such as spurious processes that do not
conserve the overall magnetization. An example is useful: consider
aninitial state of one flipped spin ({(¢°) =1), with N=10, and a back-
ground of spin-down ({¢o°) = -1). Then, suppose that after some time
this system has either evolved to a completely uniform system with
anaverage magnetization of -1, or astate where each spin relaxes by
0.2towards zero magnetization, leaving the initially flipped spinata
magnetization of +0.8 and the remaining spins at —0.8. Both of these
final states have the same Hamming distance from the initial state of
0.1, because they bothrepresent asystemthatis an average of one spin
flip from the initial state. However, the first final state is completely
equilibrated, while the second has a strong memory of the initial
state. The Hamming distance, therefore, is not an optimal measure of
initial state memoryin asituation where afew flipped spins give you
moreinformation about the initial state than the background spins.
While the Hamming distance is always zero at time zero, this general-
ized imbalance only starts at 2 for an initial state in which each spinis
in a definite state of ¢°. In Fig. 2c the experimental imbalances do not
start exactly at 2, reflecting SPAM errors.

Numerics

Studies of Hamiltonian level statistics with {r) use exact diagonaliza-
tion of the Hamiltonian. For simulations of dynamics when the chain
lengthdoes notexceed L =23 we solve the Schrodinger equation using
theKrylov space technique®*’, For simulation of dynamics with L =25,
we use the fourth-order Suzuki-Trotter expansion to decompose the
Hamiltonianinto two pieces, and use aglobal Hadamard transformation
to rotate the basis of operators®. This reduces the memory required
inthe simulation since the Hamiltonianis diagonal (with the rotation)
and does not need to be stored as a matrix form.

For all numerics, except those shown in the subsequent Methods
section ‘Numerical studies of the ideal power-law Hamiltonian’, we
use the experimentally determined J;; matrix. These couplings show
some inhomogeneity across the chain, with the nearest-neighbour
hopping varying 7% for N =15. At large ion-ion separation they also
show deviations from power-law behaviour, with the couplings falling
off faster than the best-fit power law>. The comparison to power-law
numerics shows that each of these effects does not strongly alter the
dynamics.
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Experimental noise model

For numericsthat are compared directly to experimental datain Figs. 2

and 3 of the main text, we take the effects of experimental noise into

account. Weincorporate noise of the following types:

« An error in the initial state, roughly accounting for the combined
SPAM errors, consisting of a uniform rotation of the Néel state by
0.075mt radians in the Z-Xplane.

+ Ashot-to-shot random variation of the overall field offset B, with
Gaussian variance of 21 x 0.6 kHz.

« Ashot-to-shotrandom variation of the gradient slope g, with astand-
ard deviation of 6.25%.

« Ashot-to-shotrandom variation of theindividual local field terms, devi-
ating fromtheideal linear gradient, withastandard deviation of 3.125%.

Eachnumericslinein Figs.2 and 3 show the result of averaging over
50 randominstances, drawn from Gaussian distributions of each param-
eter. In general, these error sources and magnitudes are consistent
with independent estimations of our SPAM errors and laser intensity
fluctuations. Notably, asthe gradientis generated froma fourth-order
Stark shift, the associated fractional noise is double that of the laser
intensity fluctuations®. However, the precise values of the four error
terms are chosen to match experiment. Owing to the large amount of
data available, and the subtle differences in the effects of each term,
these terms can be optimized fairly independently. For example, the
noiseingand the noise in the variation about g forindividual spins each
givesslightly different effectsin the damping of the imbalance and the
degree of asymmetry between small and large gradient.

Extended Data Figure 1shows aside-by-side comparison of the noise-
less and noisy numerics for the imbalances shown in Fig. 2, examples
oftheindividual realizations thatare averaged, and an example of the
DEER signal.

Twoerror sources thatare notincludedinthe modelare couplingto
phonons and fluctuations of the local B*fields that occur during asingle
experimental runrather than fromshot to shot. These are believed to
dominate the remaining differences between experiment and theory,
such asthe slow decay of the experimental imbalance and the decay of
the experimental DEER signal after ¢/, = 2. However, the broad agree-
ment observed in Figs. 2 and 3 indicates that we have captured the
main noise effects.

Trotterization scheme

We generate two types of Hamiltonian terms in this work. The firstisthe
Mglmer-Sgrensen Hamiltonian in the resolved sideband and Lamb-
Dicke limits®, created with a pair of detuned bichromatic beatnotes:
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Herejistheionindexand vis the normalmodeindex, a, is the destruc-
tion operator of a phonon of motion for a given normal mode of the
ion chain, Qis the carrier Rabi rate, i, is the Lamb-Dicke parameter,
b/"is the mode amplitude for ionj, w, is the mode frequency, and dp,
istheblue(red) detuning. This term generates spin-motion entangle-
ment, and in the limit 7,Q < |6 ; - w,| the motion can be adiabatically
eliminated for an effective spin-spin interaction.

The second Hamiltoniantermis thelocal field generated by the indi-
vidual addressing beam. This beam only addresses one ion at atime,
and is rastered across the chain to create an overall field landscape.
Asingle cycle of this term can be written as:
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with O(¢) as the Heaviside thetaand ¢, the time for a pulse of the beam
on oneion, which we experimentally fix at £, = 0.5 ps.

When these terms are applied simultaneously, in the limit
|65 5~ w,|>> 17,Q > B, thetransverse Ising Hamiltonianis approximately
realized:

Z
Hrpm= Zjﬂ,o +2 ﬁj (8)
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However, the validity of this Hamiltonian is limited to smallBj. There-
fore, when realizing a linear field gradient, B = gNjj, this results in the
constraint gN* < n,Q, which prevents the simultaneous attainment of
long chains and large linear field gradients. For example, for typical
experimental parameters of N=15,70Q =21 x 30 kHz,and/, = 2mt x 250 Hz,
thiswould require that g//, < 0.5. When this is not satisfied, additional
phonon terms are present in the Hamiltonian that result in undesired
spin-motion entanglement, or effective decoherence of the dynamics
when measuring only spin.

We can reduce these constraints by applying a Trotterized Ham-
iltonian®2, The evolution under this time-varying Hamiltonian can
be analysed using the Magnus expansion, to find the dominant con-
tributions to time-averaged dynamics®. Within this framework, the
undesired effects arise from the commutator [H,(¢), H,(¢)]. Intuitively,
when these terms are no longer applied simultaneously the effect of
this commutator is reduced.

Consider unitary evolution of a single Trotter cycle, using the
lowest-order symmetrized sequence:

Aty +Atp/2
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The Hamiltonians governing each part of the unitary evolution may

be approximately replaced by their time-averaged values, simplifying
both. For H,we have
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an exact identity since each of the terms in H,(f) commute with one
another. For H,(t) we have
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However, this s just the usual Mglmer-Sgrensen Hamiltonian, and
in the limit that |6  — w,/¢t > 1 the dominant contributing terms are
the stationary ones. When 6; = -8 this results in the pure o*¢* interac-
tion. Wheninstead a small rotating frame transformationis applied we
generate the Ising Hamiltonian with a small overall transverse field>:

12)
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The combined evolution of the full Trotter cycle is then, to lowest
order, described by the Hamiltonian

_ Ay, Bj 3
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We program B3 to the desired functional formand absorb the factors
with At; and At, into redefinitions of /,and gor y, leading to equations
(1) and (4) of the main text. The constant term B does not depend on
these times, becauseitis created by movinginto arotating frame that
is applied to the entire time evolution. This approximation requires
that |65 — w,|At; > 1 (for equation (12)), which is satisfied in the



experiment: |6y g — @, |min = # = 21 x 200 kHz and A¢, =18 ps, whose prod-
uctis22.6. Additionally, A¢;and A¢, must not be so long that the Trotter
approximation (equation (13)) breaks down. However, the low energy
scale of J,and the use of the symmetrized Trotter form make this limit
less constraining than the limit for continuous evolution, allowing us
toreachg//,=2.5(1.5) for 15 (25) spins. Because the Trotter error con-
sists of undesired spin terms, rather than spin-phonon terms, it can
also be easily simulated numerically. Extended Data Figure 2 shows
comparisons of the Trotterized and ideal evolution in the case of the
strongest gradient, showing that the Trotter error is negligible over
the experimental timescale and that the Trotterization resultsin a
substantial improvement in the simulation fidelity.

Inadditiontoreducing phonon errors, this scheme has the advantage
of allowing us to tune the average Hamiltonian (equation (13)) simply
by varying At, and At,, because [g//o].., = (At,/At))g/),. This capability
allows usto scan over arange of gradient values with asingle calibration,
anditmakes any errors onthe gradient calibrationcommonto all these
scans. Inthe data presented here, we fix the instantaneous values of g
and/, and vary At, (see subsequent section, ‘Trotterized Hamiltonian
parameters’). In addition, we ramp the spin-spininteractions up and
down over 9 ps with a shaped Tukey profile to reduce adiabatic crea-
tion of phonons®.

This implementation of Trotterized Stark MBL dynamics would
be difficult to extend to more than tens of spins, as the maximum
instantaneous shift required on the edge ion scales as N, leading
to the requirement of an increasingly fast drive. However, given the
unbounded nature of a linear gradient, any large-scale simulation of
Stark MBL is likely to be challenged by the required field difference
between the two ends.

Throughout this discussion, we have taken the perspective of a
Trotterized quantum simulation of a desired Hamiltonian. We could
also understand this experiment in terms of Floquet theory. From
this perspective, this driven system is described stroboscopically
by a Floquet Hamiltonian, which to lowest order is the Hamiltonian
(equation (13)), and the steady-state equilibration that we see repre-
sents prethermal evolution under this effective Hamiltonian that is
expected to be altered at long times by Floquet heating arising from
the higher-order terms. While this picture offers acomplementary way
to understand these results, and interesting connections to studies
of driven localization®, for simplicity we focus on the Trotterized
perspective.

Trotterized Hamiltonian parameters

For imbalance measurements at N =15, we calibrate to g/J, of 2.5 for
At, = At,. To scan the gradient strength, At, is fixed at 18 ps and A¢, is
varied from 18 psto 180 ps. In addition, thereis anextra9 ps of effective
dead time per Trotter step associated with the Tukey pulse shaping.
We fix B at 21 x 1.25 kHz. For data in a quadratic field, we set y = 2.0
for At, = At,, and vary At, from 10 ps to 180 ps, with all other settings
kept the same as in the linear gradient.

For N=25,weinstead set g//,to1.25for At, = At,. At,is fixed at 30 ps,
and At, is varied between 25 s and 190 ps, again with an extra 9 ps of
effective dead time per cycle due to pulse shaping. B is again fixed
at2m x 1.25kHz.

For DEER measurements, we calibrate to g//, of 2.0. At, is fixed at
18 ps and A¢, is varied from 18 ps to 180 s, plus an extra 9 ps of dead
time associated with Tukey pulse shaping. We fix B at values varying
for different datasets between 21 x 0.9 kHz and 21 x 1.25 kHz.

Analysis of the Hamiltonian
Mapping to boson model. Our experimental Hamiltonian, from equa-
tion (1) of the main text, is:

N
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(14)

Inthe limit of B » J,, and assuming that B and g have the same sign,
the total magnetization % (0;’.) is conserved. For an initial state of
definite total magnetization, the systemthenreduces tothe long-range
tilted XY Hamiltonian®*:
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This can be mapped to asystem of hard-core bosons taking o;”) > a&”
andn;= a}aj =(0%+1)/2, resulting in the Hamiltonian:
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with uy = 2B%, taking the limit U > «, and dropping a constant energy
contribution.

This model clarifies the connection between our system and work
studying Stark MBL in the context of hopping particles with interac-
tions*>. It also illustrates the translational symmetry in our system.
Ifjis shifted by aninteger, this is equivalent to changing the chemical
potential term }; u n;, which has no effect in a closed system with
particle conservation.

Gauge transformation of the Hamiltonian
Thelinear potential in thismodel canbe removed using agauge trans-
formation U(refs. **):

ity (un+2G-Dg)ny
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After this transformation, which is equivalent to moving into the
interaction picture with respect tothelocal field term, the transformed
Hamiltonianis:
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In the limit of short-range terms, the time dependence of this trans-
formed Hamiltonian has abounded set of frequencies, and going to the
thermodynamiclimitisstraightforward. However, long-range termsresult
intime dependence thatbecomesarbitrarily fast for termswith arbitrarily
large [j —j’|. This points to a fundamental difference between short-and
long-range Hamiltoniansin the presence of superextensive potential terms.

Hamiltonian in large-gradient limit

To understand the mechanism of Stark MBL, it is useful to derive the
effective Hamiltonian in the limit of a large tilt. To do this, we apply
degenerate perturbation theory in the small parameter J,/g to equa-
tion (15), in a variation of the Schrieffer-Wolff transformation®¢®,
The goalis to construct a unitary transformation:

Heff=es H eis

1 1
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()
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Here we have the Schrieffer-Wolff generator, S, which is
anti-Hermitian, and H% of order (J,/g)". The form for S is determined
by separating the Hamiltonian into diagonal and off-diagonal contribu-
tions in the o basis:

H=Hy+V, (20)
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Then, Sis chosen to eliminate block-off-diagonal contributions to
H,gateach order, leading to the condition that [HY, H,] = Ofor each .
This enforces centre-of-mass (or dipole moment) conservation at each
order. Asaresult, S has the following form:

5= 3 s,

n=1

(23)

with §® of order (J,/g)". Applying this form to equation (19) and organ-
izing the terms by powers of J,/g results in:

Hegr=Ho+ (IS, Hol + V)
1
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With this form, S” must then be chosen to make [S®, H,] cancel all
block-off-diagonal (that is, non-dipole-conserving) terms at order n.
While the resulting expression is inconvenient to write out explicitly,
this approach can be applied algorithmically to find arbitrarily high
orders.

Alternatively, one may set S® = 0 for all n > 2 and manually project
out non-dipole-conserving terms order by order. S must still obey
the constraint [S?, H,] + V=0, which can be achieved by taking the
form
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The resulting leading-order effective Hamiltonian is
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(where we have omitted lower-order energy correction terms that
are diagonal in the H, basis). Starting from an initial state that is an
eigenstate of H,, the effective Hamiltonian couples this state to other
eigenstates of H, with the same energy. This directly translates to the
dipole conservation constraint i + k= +/in equation (26). Although
the above process comes from the third-order contribution to H°%, the
effective Hamiltonian contains only four-body terms that conserve
the dipole moment. Note that the above effective Hamiltonian does
not vanish even for translationally invariant long-range couplings. For
the case of long-range couplings that can approximated by power-law
decay/;;=Jo/li —j|% the above equation can be written as

Heff = 6/ (0/07030; +H.c.) X{ 1 1
off =
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This is in contrast with a short-range XY Hamiltonian with
nearest-neighbour interactions, where the above term vanishes in
the limit of a = c.

The effective Hamiltonian in equation (27) shows that dipole-
conserving terms with arbitrarily long range exist in this system even
in the lowest nontrivial order of the perturbative expansion. The
strengths of these long-range coupling terms decrease monotonically
with the power-law exponent a. This result can be contrasted with
two other cases. A short-range Hamiltonian with dipole and spin-flip
conservation can result in Hilbert space fragmentation (or shatter-
ing)**18242950 while in this long-range model fragmentation is not
present in the thermodynamic limit®. On the other hand, a similar
perturbative expansion beginning with a short-range tilted model
willalso give long-range dipole-conserving terms, but only at higher
powers of the tilt?"*,

Despite the lack of fragmentation, this Hamiltonian does result in
state-dependent relaxation. One reason for this is that the dipole con-
servationtermin equation (26) depends onthe distances between the
fouroperators. Specifically,/;decays as afunction of distance between
the pair of ions. Additionally, the denominator in the above expres-
sion contains the factors (j — i) and (k - i). The distance dependence
comes fromthe energy differences betweenintermediate states of the
perturbation theory. This combination of distance-dependent factors
can result in different slow delocalization dynamics for the different
initial states showninFig. 2 (see Methods section ‘Long-term stability
of Stark MBL’).

Histograms of r

Atypical ergodic system has a reduced single-particle density matrix
with supportthroughout the bulk, and thus has a high degree of over-
lap between particles. This results in level repulsion in the many-body
spectrum, leading to a Wigner-Dyson energy level distribution charac-
teristic of random matrices. A typical localized system, on the other
hand, has single particles that are spatially confined, and thus have
little overlap, resulting in a Poissonian distribution of the many-body
spectrum. In Extended Data Fig. 3 we show the full distribution of
r, the ratio of adjacent energy level spacings, for the experimental
Hamiltonian at selected values of g//,. We compare it to the probabil-
ity density distributions resulting from Poisson and Wigner-Dyson
statistics™

%(Poisson),

Pyr) = 1+n (28)
2
Pup(r) = %(Wigner—mson), (29)

where equation (29) is an analytic approximation to the Gaussian
orthogonal ensemble based on the Wigner surmise®.

While asmallfield gradientisneeded to break the approximate inte-
grability of the Hamiltonian®®in the limits of g = 0 and B > J,,, over the
range of tilts studied experimentally the level statistics cross frombeing
closetothe Wigner-Dyson limit, withanevident dip atlow rdue to the
proliferation of avoided crossings, to very close to the Poisson limit at
large gradients. This should be contrasted with the case of short-range
hopping, in which the level statistics may be highly non-generic due
to exact degeneracies associated with dipole conservation, making
concepts of Hilbert space fragmentation (or shattering) especially
relevant*>182+2729506669_Although the level statistics shown here are
for an experimentally measured Hamiltonian, featuring small devia-
tions fromaperfectly linear gradient, these deviations do not substan-
tially affect the level statistics, as the long-range terms already lift the
degeneracies. In the next section we show this explicitly, using the ideal
power-law Hamiltonian to study more general features of Stark MBL
with long-range couplings such as the scaling behaviour.



Numerics for ideal power-law Hamiltonian
The experimental systemis approximately described by aHamiltonian
with a power-law hopping:

H=Y .j‘?,a

j<j' U_./ |

N
ojos+ Y (B +(j-1g)o3. (30)
j

However, as the exact experimental couplings featureinhomogeneity
across the chain and deviations from power-law scaling for large ion
separations, all numerics shown in the main text (as well as the previ-
oussections) use the exact Hamiltonian as determined by experimen-
tal measurements of mode structure and detuning. Nonetheless, to
study the general behaviour of the systemitis useful to also look at the
power-law Hamiltonian, which captures the dominant behaviour while
beingtranslation-invariantand therefore having amore natural scaling
with size. We study this numerically to characterize the behaviour of
(rywithrespect to a and g//,, and to study the finite-size dependence.

Dependence of (r) on a and g//,
Extended DataFigure 4 shows the dependence of the level statistics (r)
onthe Hamiltonian parameters a and g//,. The primary features of the
experimental Hamiltonian statistics are retained, such as non-generic
statistics for very small gradient values and a crossover from(r) = 0.5to
0.39 for g/J, between 0.1and 2.0. For a <1, the concept of Stark MBL may
break down entirely, as the spin-spin coupling energy is superexten-
sive. While we see some signature of this in Extended Data Fig. 4, such
astheincreaseinthegradient needed to reach Poissonian statistics as
isdecreased, near a = 1the divergence of the spin-spin energy with sys-
temsizeislogarithmically slow, making finite-size effects substantial.
For large a, (r) generally decreases, which reflects the approach to
the limit of Wannier-Stark localization because the short-range model
maps to achain of free fermions with atilt under aJordan-Wigner trans-
formation. The general features observed are consistent with arecent
study of long-range hopping in a tilt* that also found persistence of a
crossoverin{ryuptoN=18and fora >1.

Dependence of (r) on system size

Using the power-law Hamiltonian, we can study the dependence of the
level statistics on system size. Extended Data Figure 5 shows this for
Nranging from 9 to 15. In general, the curves do not exhibit a simple
finite-size scaling. This may be due to the long-range couplings, which
are known to cause a system size-dependent shift in the transitionin
numerics for the disordered MBL case*’. The progressive shift away
from the Wigner-Dyson limit at small gradient may indicate that this
regime is ‘quasi-ergodic’ due to finite-size effects?, or reflect anoma-
lous thermalization*°, or may instead reflect an increasing effect of
the non-generic statistics observed near zero gradientin the previous
section (‘Dependence of (r) on @ and g/J,). Crucially, we see that the
trend of gradient-driven localization persists up to thelargest systems
we can diagonalize, coinciding with the size used for most of the data
presented in the main text, with a full study of the scaling left as an
interesting subject for future work.

Dependence of Z on system size and time

Extended Data Figure 6 shows a comparison of our data for 7 varying
system size (Fig. 2e) with numerics. We present datafor N=9, N=15
and N =25, corresponding to size increases by a factor of 5/3.

Forthe most part, Z only shows aslight shift withincreasing N. How-
ever, thereisasharp feature near g//, =1.0 that grows more prominent
with increasing size, and appears similar to the experimental dip
observed for N=25. This feature is a finite-time effect, as seen in
Extended Data Fig. 6, and also depends on the initial state. It reflects
the complex dynamical possibilities for g/J, <1, in which various tun-
nelling processes are energetically permitted. However, interpretation

of this feature in experimental data is complicated by decoherence
thatincreases both with g//, and with N.

In general, these initial-state dependent dynamics for g//, <1 may
display rich possibilities such as subdiffusion®**°, complicating any
determination of a critical transition value from quench dynamics®.
However, for g/J, > 1the transient dynamics are simpler, and the imbal-
ance comes closetoits long-lived steady-state value within the experi-
mental window.

Long-time stability of Stark MBL

A subject of much debate in the study of localization is the stabil-
ity of the localized state to various slow delocalization processes.
In the context of Stark MBL, these might include coupling between
many-body states with the same spin and dipole quantum numbers,
or slow dipole-moment changing processes*?**°. These questions
are most relevant for the ideal power-law Hamiltonian, as such slow
processes could conceivably be halted by even the small amount of
residual disorder or inhomogeneity in our experimental realization.
To study this possibility, Extended Data Fig. 7 shows the dynamics for
very long times of the quenched initial states studied in Fig. 2, using
theideal disorder-free power-law Hamiltonian.

We find several noteworthy results. First, in a finite system such as
thoserealized in our experiment, some Stark MBL localization appears
to persistindefinitely. Thisis striking, as relaxationis not forbidden by
energetics, nor by any other conservation law.

Second, in a finite-size numerical analysis, we see increasing
amounts of slow, state-dependent relaxation, which may make Stark
MBL unstable in the thermodynamic limit. This relaxation can be
understood via the effective Hamiltonian (equation (26)) in the
large-gradient limit. For the two-block state with the configuration
01100110011 (where 0 and 1represent down and up spins, respectively),
the largest contribution from this effective Hamiltonianis the process
1001 < 0110. Thisisalso the largest termin the effective Hamiltonian,
making the stability of this state the most restrictive condition for
localization. However, for the Néel state with the configuration
0101010101, the largest contribution is 01010 « 10001. Both processes
appear at the same order of the Hamiltonian, but with different
strengths. When a = 1.3, the process 1001 < 0110 has an amplitude of
0.96 /3 /g%, while the process 01010 « 10001 has an amplitude of
0.22j0§)/g2. This explains in part why we see faster relaxation for the
two-block state, although, as we are not deep inthe g > J, limit, higher
terms are expected to contribute as well. These observations are also
consistent with previous work showing that for cases in which the
effective Hamiltonian has multiple dipole-conserving terms with dif-
ferentranges and strengths, thermalization can be very slow or absent
entirely for finite-sized systems'®. We emphasize that although
state-dependent relaxation has been proposed as an experimental
signature of (exact or approximate) Hilbert space fragmentation®*?,
we realize a similar phenomenon here, with less separation between
the timescales of the different decay processes, without true fragmen-
tation due to our long-range couplings.

Thisstate-dependent relaxationis evident experimentally as a small
butrobust state-dependent differencein the rate of decay of the imbal-
ance.Asasimpletest, an exponential fit to the Néel state decay shown
in Extended Data Fig. 7d, excluding points before ¢/, = 2, gives a time
constant of Ty../, = 8.6 + 0.46, while the fit decay for the two-block state
is 1,5/, = 7.1 £ 0.24. These datasets were taken consecutively to avoid any
experimental drift, and the differential decay shownis representative
of other datasets at similar parameters.

Because this delocalization is highly dependent on the linear form
of the Stark MBL gradient, which enforces approximate dipole con-
servation, we may expect very different behaviourin a quadraticfield.
Thisis confirmed in the right panel of Fig. 7. After the initial dynam-
ics of order t =1/J,, no additional relaxation is observed for either
state. While higher-order processes may still lead to relaxation in the
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thermodynamic limit, for relatively small systems this localization
appears quite robust.

Summarizing, Stark MBL appears to be arelevant concept under any
of several conditions: first, for finite-sized systems, in which thermal-
ization can be postponed seemingly indefinitely. Second, inarbitrarily
large systems over timescales that are short compared to (gz/jg)
(or possibly longer in systems without native long-range terms).
And finally, in systems that have more constraints than a linear field,
suchasalinearfield with non-zero curvature®** or disorder* (asmall
amount of whichis present in our experimental realization).

Quantum Fisher information
Quantum Fisher information (QFI) has gained attention as a scalable
entanglementwitness*’. For a pure state, itis nothing more than the
variance of the witness operator A: f(2 =4((A% - (/N . Forfy>1,
entanglement is guaranteed to be present within the system”. As a
correlator that carries some information about entanglement, QFl is
similarinspirit to measures such as the quantum mutual information'®
and the configurational correlator*.

In the context of the Néel state we measure the QFI for a staggered
magnetization operator, which reduces to:

2

1 it ( v Z 2 j{ 2
5=N§(—1)“<a,~a,>— %(—l)f<0,-> (31)

The results are shown in Extended Data Fig. 8. We see a difference
between f, with weak and strong field gradients. In a weak gradi-
ent, entanglement builds up rapidly before slowly tapering off.In a
strong gradient f, instead grows slowly, exhibiting similar behaviour
as expected for entanglement in an MBL phase and in Stark MBL®.

A few shortcomings limit the value of the QFI. First, it is only easily
calculated when assuming a pure state. Second, it can only be inter-
preted as an entanglement witness when it exceeds one, challenging
inastrongly localized phase. Third, unlike the DEER protocol it does
notgive spatially resolved information. Finally, in along-range system
it can exhibit different scaling than the entanglement entropy*. Still,
within these limits the QFI behaviour is consistent with the expectations
for an MBL phase. The QFI dynamics also closely resemble previous
observations for disordered MBL*, consistent with expectations that
disorder or strong gradients resultin similar entanglement spreading.

Additional DEER data

Additional data for the DEER protocol difference signal(A{g7)) is shown
in Extended Data Fig. 9. Looking at the DEER difference signal, we see
that correlations develop more slowly as the DEER region R is moved
progressively away from the source. For R=2, these correlations are
only visible after theimbalance dynamics have reached asteady state.
This rules out attribution of the correlations to the transient population
dynamics, and instead resembles the slow correlation dynamics that
occur in a disordered MBL system after populations have reached a
steady state'®1*4,

Critical slope in quadraticfield

Extended Data Figure 10 presents the dependence of the critical value
of g/J, for a quadratic field with different values of the curvature y.
Thecritical value is determined by the innermost pair of spins that are
both separated from the centre spin by more than their mutual error
bars, judged by taking the mean and standard deviation of the average
magnetizations for the last five time points.

Thedataarelargely consistentinsuggesting a critical gradient value
ontheorder of g//, = 0.5. However, the strongest curvature is notably
different, possibly reflecting abreakdown of the local gradient approxi-
mation for this case. For curvatures less than this, we conclude that the

system seems roughly consistent with a picture of localization that is
determined by the local Stark MBL field slope at any given spin.
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Extended DataFig.1|Experimental noise model.a, b, Noiseless (a) andnoisy ~ B*fields. However, these noise sources do not strongly affect the stability of the
(b) numerics for aninitial Néel state with g//, = {0.24,1.2,1.8} (light to dark), imbalance. ¢, Individual noisy realizations corresponding to the highest
corresponding tothe datain Fig.2c. Compared to theideal numerics, thenoisy =~ gradientshownabove.d, Noise-averaged DEER simulations corresponding to
numerics show overalllowerimbalances, primarily due tothe SPAMerrors,and  Fig.3b.

damped oscillations, primarily due to variations in the individual local effective
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Extended DataFig.2| Trotterizationscheme. a, Numericscomparisonofthe  usingthe (slightly different) parameters of the individual experimental

imbalance dynamics for the averaged Hamiltonian of equation (13) (solid blue realizations. Although the Trotterized evolution lasts nearly twice as much
line) with the full Trotter evolution (dashed orange), for the case of aninitial timeinabsolute units, since the averaged/,is roughly halfaslarge,

Néelstate (NV=15) and parameters corresponding to the strongest itnonetheless shows asubstantial reductionin decoherence and improvement
experimental field gradient. b, Difference (averaged - Trotter) between the infidelity to the desired Hamiltonian. Aninitial state with one spin flipis
plotsina,showingthat the Trotter error over experimental timescalesisonthe  chosen for this comparison, asit makes the effect of decoherence due to

order of one percent. ¢, Experimental examples (top row) of continuous and phonons more pronounced compared with astate near zero net

Trotterized evolution, bothatg//,=1.5, compared tosimulations (bottomrow) = magnetization.
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Extended DataFig. 3 | Histograms of r. Probability density distributions of r,
theratio of adjacent energy level spacings, for the experimental Hamiltonian
(equation (1) of the main text) at various values of g//,and N=15. Numerics are
compared with the distribution expected for either a Poisson level distribution
(bluelinesinaandd) oraWigner-Dysondistribution (red linesinb, c).
Thelevelstatisticsinthe absence of afield gradientare near the Poissonian
limit, whichmay reflect the proximity to anintegrable limit for the low-energy
sector®®, Asmallgradient resultsinstatistics near the Wigner-Dyson limit,
followed by an approach to Poisson statistics asthe gradientisincreased.
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Extended DataFig.4|Dependence of (r) on aand g/J,. Dependence of (r) on
aandg//, (N=13,B*°/J,=5), for the power-law Hamiltonian (equation (30)).
Inthe experiments presented in the main texta =1.3.
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Extended DataFig. 5| Dependence of (r) onsystemsize. Level statistics for
N=19,11,13,15} (light to dark), for @ =1.3 and B*//, = 5 and for the power-law
Hamiltonian (equation (30)).
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Extended DataFig. 6 | Dependence of Z onsystemsize and time. a, Numerics
showingZ for the Néel state with N = {9, 15, 25} (light to dark). As the system
increasesfromN=9toN=25,thelargest changeisinasharpeningfeature near
g/Jo=1. Thesenumerics donotinclude experimental noise. b, Experimental
datafor N=15and N=25, reproduced fromFig. 2, shows asimilar dip for the
largersize. ¢, Expanded view of numerics from a. Especially for gradient values
aboveg//,=1,theimbalance showslittle finite-size dependence. d, Numerical
comparison of Z (N=15) for the experimental time and for an extended time of
100¢/, (dashed). While at small gradients the finite-time effectson the
imbalance are substantial, including the dip feature in the left plots, asteady
stateislargely achieved in the experimental window for gradients g//, > 1. For
allnumerics shown, B/, = 4.4(1+3g/(5/,)) (the experimental scaling resulting
fromequation (13) with A¢, varied) and a =1.3.



Extended DataFig.7|Long-termstability of Stark MBL. a, b, Numerical
study of the long-time dynamics of the initial states realized in Fig. 2, using
exact diagonalization. For this finite-size realization, in astrong gradient
(g/Jo=2,solid lines), theimbalance and bipartite entanglement entropy show
some slow dynamics butapparently never approach the thermal value, in
contrast with aweak gradient (g//,=0.25, dashed line). c, Numerical study of
thefinite-size andinitial-state dependence of Stark MBL imbalance dynamics.
States with one-block (Néel) and two-block domain walls are shown for g//, =2
andN=12,N=16,and N=20 (light to dark solid lines, N = 20 for the two-block
stateonly). The two-blockinitial state shows faster decay and greater
finite-size effects, asis expected from the effective Hamiltonianinalarge tilt
(equation (26)). Witha stronger gradient (dashed line, g//, = 5and N=12), this
instability canbe arbitrarily postponed. To show the long-term trend clearly,
amovingaverage withawindow of 5/, hasbeen applied to these numerics.
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d, Experimental data for the one and two-block domains. Consistent with
numerics, state-dependentinstability is manifested as a slow differential
increase inthe decay of the two-block state compared to the Néel state. These
datawere taken consecutively to ensure identical experimental parameters
and decoherencerates. Each pointisanaverage over 200 experimental
repetitions, with error bars smaller than the symbol size. e, Numerical studies
of stability inaquadratic field (N=16, y =2) do not show this state-dependent
instability over the same timescale. To show the long-term trend clearly,
amovingaverage withawindow of 5/, hasbeen applied to these numerics.

f, Cartoon of the setup for numericsin e (shownwith N =8 for clarity).

The quadratic potential is chosen to have aminimum shifted away from the
system centre by one-quarter site to avoid a fine-tuned reflection symmetry.
Forallnumerics shown, B%//,=4.5and a=1.3.
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Extended DataFig. 8| QFI. Normalized QFIfor aNéelstate (N=15) with
g/Jo=0.24 (white) and g//, = 2.4 (blue), corresponding to the lowest-and
highest-gradient datain Fig. 2d. Points are experimental

observations, averaged over 200 repetitions, with lines as guides to the eye.
Avaluegreater thanone (dashedline) isan entanglement witness. After the
initial fast dynamics up to ¢/, = 1, the QFlis consistent with saturation for the
smallgradient, and with slow entanglement growth for the large gradient, with
behaviour very similar to that previously observed in disordered MBL*.
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Extended DataFig.9|Additional DEER data. DEER Difference signal for
R=1{1,2,3} (lightto dark), compared with theimbalance Z(¢) for the same
parameters. Dataare offset for clarity but otherwise share thesame axes. Z is
taken from the same dataset as the R =1spin-echo data, with the probe spin
excluded from theimbalance calculation. After ¢/, = 2, theimbalance is
essentially constantat the low but finite steady-state value corresponding to
thisgradient strength. However, correlation dynamics are still progressing—in
particular, correlations as measured by the difference signal only begin to
develop for R=2 after this point. Thisis similar to the disordered MBL state,
inwhich slow entanglement dynamics continue after the locally conserved
populations have reached a steady state'®'"*4, Points are averaged over 2,000
repetitions, with error bars representing statistical uncertainty of the mean
(los.e.m.).
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Extended DataFig.10|Critical slope in quadraticfield. As the quadratic
curvatureisvaried, the divisionbetween thermalizing and nonthermal regions
islargely consistent withacritical slope near g//, = 0.5. However, the strongest
curvature of y = 3.6 deviates from this rule. For the lowest two values of y the
systemwas completely delocalized, and thus only the lower bound is
meaningful. Points are averaged over 200 experimental repetitions. Error bars
(aside from the first two points) denote a variation of +t1spinlocation.
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