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Quantum computing promises solutions to some of the world’s most important

problems that classical computers have failed to address. The trapped-ion-based

quantum computing platform has a lot of advantages for doing so: ions are per-

fectly identical and near-perfectly isolated, feature long coherent times, and allow

high-fidelity individual laser-controlled operations. One of the greatest remaining

obstacles in trapped-ion-based quantum computing is the issue of scalability. The

approach that we take to address this issue is a modular architecture: separate

ion traps, each with a manageable number of ions, are interconnected via photonic

links. To avoid photon-generated crosstalk between qubits and utilize advantages of

different kinds of ions for each role, we use two distinct species – 171Yb+ as memory

qubits and 138Ba+ as communication qubits. The qubits based on 171Yb+ are de-

fined within the hyperfine “clock” states characterized by a very long coherence time

while 138Ba+ ions feature visible-range wavelength emission lines. Current optical

and fiber technologies are more efficient in this range than at shorter wavelengths.



We present a theoretical description and experimental demonstration of the

key elements of a quantum network based on the mixed-species paradigm. The

first one is entanglement between an atomic qubit and the polarization degree of

freedom of a pure single photon. We observe a value of the second-order correlation

function g(2)(0) = (8:1 � 2:3) � 10�5 without background subtraction, which is

consistent with the lowest reported value in any system. Next, we show mixed-

species entangling gates with two ions using the Mølmer-Sørensen and Cirac-Zoller

protocols. Finally, we theoretically generalize mixed-species entangling gates to

long ion chains and characterize the roles of normal modes there. In addition,

we explore sympathetic cooling efficiency in such mixed-species crystals. Besides

these developments, we demonstrate new techniques for manipulating states within

the D3=2-manifold of zero-nuclear-spin ions – a part of a protected qubit scheme

promising seconds-long coherence times proposed by Aharon et al. in 2013. As a

next step, we provide a detailed description of the protocols for three- and four-

node networks with mixed species, along with a novel design for the third trap with

in-vacuum optics to optimize light collection.
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I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I {
I took the one less traveled by,
And that has made all the di�erence.

Robert Frost. The Road not Taken
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Chapter 1: Introduction

1.1 Classical and Quantum Computing

The impact of digital computing on practically all areas of our lives is enor-

mous. However, despite the immense success of classical computing, some problems

remain very di�cult or impossible to solve this way, despite the steady Moore's law

exponential growth of computing power. Some important problems in cryptogra-

phy, optimization, quantum chemistry, biochemistry, and many other areas scale

too quickly for any classical computer to tackle in a reasonable time.

With the enormous complexity that even tiny quantum systems of a few hun-

dred constituents possess, it quickly becomes impossible to describe them with the

help of classical computers [1]. However, one could instead leverage this complexity

in a controlled way to solve some very hard problems starting with quantum simula-

tions and going forward to more general kinds of complex problems [2, 3]. This was

the revolutionary idea that Yuri Manin [4], and then Paul Benio� [5], Richard Feyn-

man [6], and others suggested in the early 1980s. Shortly after, David Deutsch [7]

described a universal quantum computer. A few years later, David Deutsch and

Richard Jozsa [8] proposed the �rst example of a problem that could be solved ef-

�ciently with a deterministic quantum algorithm, but for which no deterministic
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classical algorithm existed. Then, Peter Shor [9] developed one of the most famous

algorithms that directly employ the advantage of quantum computers { quantum

superpositions and entanglement { to solve the large integer factorization problem

in polynomial time. Very soon after, a method for experimental realization of a

controlled-NOT quantum gate in trapped ions was suggested by Ignacio Cirac and

Peter Zoller [10] and implemented by Christopher Monroe and David Wineland [11].

The same year Peter Shor [12] and Andrew Steane [13] simultaneously proposed

quantum error correction, and Lov Grover developed the most e�cient database

search algorithm [14].

These early developments paved the way for the modern quantum-computing

boom that is growing by the day and is promising to revolutionize the world again,

just as its classical predecessor have. Some of the most important problems that

that may be solved with the help of quantum computers are novel drug development,

control and general optimization (starting with transportation and logistics), secure

communications and �nance, and, of course, further fundamental research in many

scienti�c disciplines. But as much as quantum computers can be powerful, they are

also di�cult to build and operate, and a multitude of discoveries and engineering

solutions have already contributed and will need to be developed before a full-scale

universal quantum computer becomes available. Many di�erent physical platforms

are being explored, but they all have their strengths and weaknesses.
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1.2 Quantum Computing with Ions

Tremendous progress has been made towards building a quantum computer

based both on atomic systems (such as ions [15] and neutral atoms [16]) and on

solid-state systems (such as NV centers [17], superconductors [18], and quantum

dots [19]).

There are set requirements for a system to be a quantum computer. In 2000,

DiVincenzo listed �ve key criteria for a quantum information processor [20] which

are:

1. A scalable physical system with well characterized qubits;

2. The ability to initialize the state of the qubits to a simple �ducial state, such

as j000: : : i ;

3. Long relevant decoherence times, much longer than the gate operation time;

4. A \universal" set of quantum gates;

5. A qubit-speci�c measurement capability.

Trapped ions are an extremely promising system that ful�lls all of the DiVincenzo's

original criteria with high �delity. In the case of trapped ions, internal electronic

states of the ion can be used to encode the qubit statesj0i and j1i . Since all ions

of a given species and isotope are fundamentally identical and well isolated from

the environment, the microwave or laser frequency used to manipulate each ion

will be the same, and each ion will have the same coherence time given the same
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electromagnetic conditions. That is not the case for many other candidates, such

as NV centers, quantum dots, or superconducting qubits, due to the presence of a

solid-state medium [21, 22, 23].

One way to hold ions is to trap them in RF Paul traps [24] inside a vacuum

chamber, and thus they are well isolated from the environment, which leads to very

long coherence times [25, 26]. Typically, the limitation on the coherence time comes

from magnetic �eld 
uctuations. With the help of dynamical decoupling, coherence

times in trapped ions have been extended up to 10 minutes [27]. Since a typical two-

qubit gate takes 1� s [28] to 200� s, the ratio of the coherence time to gate time is

about � 106. This is a much higher ratio than the one achieved in superconducting

qubits [29], NV centers [30, 31], or Rydberg atom qubits [32].

Also, ions can be trapped in an ion trap for many hours, or even days and

months (in the case of heavy ions in deep traps). The achieved lifetimes are much

longer than other candidates have, including Rydberg atoms in optical lattices.

Moreover, trapped ions feature near perfect state initialization and detec-

tion [33, 34]. A readout �delity higher than 99.99% was achieved [35] in trapped

ions in less than 150� s detection time. With a shorter detection time of 11� s, a

readout �delity of 99.93% was recorded [36]. The achieved initialization and readout

�delities in trapped ions are higher than in any other quantum platform [37, 38, 39].

Finally, one of the most important features of trapped-ion systems is the ability

to achieve high-�delity gates. Single-qubit gate �delities of 99.9999% [33] were

demonstrated with microwave-based operations, which exceeds �delities in any other

platform [40, 41, 42]. Two-qubit gates with �delities as high as 99.9% have been
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performed [43, 44].

Currently, the most challenging task in trapped-ion-based quantum computing

is to satisfy the �rst of DiVincenzo's criteria { the scalability of the system. As

the number of ions in an ion chain increases, spectral crowding of the motional-

mode structure leads to an increase in stray excitations and the decrease of the

�delity of entangling operations. In addition, with the increasing number of ions in a

chain, the resulting decrease in inter-ion spacing leads to crosstalk during individual

addressing [45]. Additionally, with a large number of ionsN , the motional coupling

parameter (Lamb-Dicke parameter)� /
1

p
N

decreases, leading to longer gate times.

Two approaches are mainly used to address this scalability problem with

trapped ions. One possible solution is to design a system in a quantum charge-

coupled device (QCCD) architecture [46], using ion traps which consist of many

trapping regions, and groups of ions can be shuttled to di�erent interaction zones

using dynamic control voltages [47, 48, 49]. In this approach, the main di�culty

comes from heating { or motional excitations { of the ions while they are being

transported, which leads to decreased �delities of coherent operations. A di�erent

way to scale the system up is via a modular architecture [50, 51], where single traps

can be considered as elementary logical units (ELU) or modules. These modules are

connected by photonic links, which are routed by anN � N optical cross-connect

switch [52] as shown in Fig. 1.1. Information is stored and manipulated using co-

herent interactions within each module, each of which has a manageable number of

qubits.
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Figure 1.1: Modular architecture of large-scale quantum information processing
systems. Each module represented as a red block has a manageable number of
trapped ions in it. In this architecture, within one module ions interact locally via
phonons, while di�erent ion-trap modules are connected via photonic buses shown
in yellow. The N � N optical cross-connect switch supports a pairwise connectivity
between arbitrary modules. Single photons emitted from communication qubits in
di�erent modules are sent into a photonic Bell state analyzer, which consists of
beamsplitters and photon detectors.

1.3 Quantum Networks with Mixed Species

In the previous section, we discussed approaches to scaling up ion-based quan-

tum information processing systems. In our work, we focus on the modular ar-

chitecture approach, where ion-trap modules are connected via photonic buses.

Such systems can also be used for quantum networks [53, 54, 55], quantum re-

peaters [56, 57, 58, 59], secure quantum key distribution [60, 61, 62], quantum ran-

dom number generation [63, 64, 65], cluster state computation [66, 67], and other

applications of quantum information processing and communication. All of these

applications require high �delity ion-photon entanglement operations and high pu-
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rity of single photons.

Optical photons are chosen as natural carriers of quantum information, since

they can traverse large distances in room-temperature optical �bers [68, 69, 70] and

through the atmosphere [71, 72]. A parent qubit can be entangled with various de-

grees of freedom of an emitted photon, such as photon number, frequency, or polar-

ization [73]. Moreover, polarization qubits can be converted to time-bin qubits [74]

that can be advantageous for long distance networks. Entanglement between parent

qubits and the corresponding emitted photons has been demonstrated in quan-

tum computing systems based on trapped ions [75], neutral atoms [76], quantum

dots [77], and NV centers [78]. This crucial feature of modular quantum computers

led to the demonstration of teleportation of quantum information between qubits

at a distance in various platforms such as trapped ions [55, 79], neutral atoms [80],

NV centers [30], and superconducting qubits [81].

Note that for a successful implementation of a modular quantum computer,

remote entanglement generation time has to be much shorter than the qubit coher-

ence time. Trapped ions then become an especially attractive candidate for quantum

networks, since they satisfy this requirement much better than any other platform

does [82, 83]. Moreover, identical atomic qubits guarantee indistinguishability of

emitted photons { a critical requirement for quantum computing applications.

To create remote entanglement between separate quantum nodes, we excite

ions in both traps simultaneously, collect the emitted photons into single-mode

�bers, and send them into a photonic Bell state analyzer. The details of the re-

mote entanglement process are given in Appendix A. Since all the processes that
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are relevant to the remote entanglement (photon emission into the correct mode,

photon collection, photon detection) are probabilistic, the success rate of this whole

procedure is low, and we have to initiate excitation events at a high rate. Resonant

light from a photonic entanglement process can destroy the information stored in

the nearby memory qubits. We resolve this crosstalk issue by using two distinct

atomic species.

It is advantageous to use speci�c properties of each species for certain corre-

sponding tasks. In our experiments, we use171Yb+ as quantum memory and pro-

cessing qubits because they are insensitive to magnetic �eld and have long coherence

times [26, 27], while138Ba+ ions are used as communication qubits since their visi-

ble photon-emission lines at 493 nm are more e�cient with current �ber-optics and

detector technologies [84, 85, 86, 87].

In addition to network interconnections, a multi-species setup has another

advantage { the communication ions can also serve for sympathetic cooling of the

memory qubits in the long ion chains [88, 89, 90, 91, 92]. Usually, ions experience

heating caused by 
uctuations in the electric potential at the ion positions [93, 94],

or by the shuttling, separation, and recombination of ion strings [95, 96]. The ability

to cool down memory qubits e�ciently allows for longer computational times and for

operations with higher �delity, leading to a wider range of applications for quantum

information processing.

Moreover, a combination of two di�erent ion species can be necessary for

quantum logic spectroscopy [97]. Some atomic and molecular ions lack suitable

transitions for e�cient laser cooling, internal state preparation, and detection. An
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auxiliary \logic" ion can allow not just sympathetic laser cooling, but also state

initialization and detection for a simultaneously trapped \spectroscopy" ion.

1.4 Thesis outline

In this thesis, we present a theoretical description and experimental demon-

stration of the key elements of a quantum network based on mixed-species ion-trap

nodes: (i) entanglement between an atomic qubit and a polarization degree of free-

dom of a pure single photon; (ii) mixed-species entangling gates with two ions; and

(iii) generalization of mixed-species entangling gates to long ion chains.

� Chapter 2 gives a description of the atomic ions that we use in the experiments:

171Yb+ memory/processing ions and138Ba+ communication ions. We start this

discussion with solving the optical Bloch equations for both systems of interest

and then describe the basic operations with171Yb+ ions. Next, we show the

basicS1=2-manifold qubit manipulation in 138Ba+ and its generalization to the

D3=2 manifold. We provide a scheme to create a protected qubit de�ned in

the D3=2 manifold with long coherence times and present our experimental

progress in this direction.

� Chapter 3 discusses mixed-species entangling gates { gates between171Yb+ and

138Ba+ ions. We start with entangling gates in two-ion chains and show the

experimental results for M�lmer-S�rensen and Cirac-Zoller operations. Next,

we characterize the role of normal modes in long ion chains and carry out

simulations of the entangling gates in long ion crystals. We �nish this chapter

9



with discussion of sympathetic cooling and re-ordering techniques.

� Chapter 4 gives an overview of network experiments with138Ba+ ions. We

begin with pure single photon generation and the corresponding experimental

results on the second-order correlation functiong(2) (0). Then we demonstrate

entanglement between the state of a138Ba+ ion and a polarization of its emit-

ted photon.

� Chapter 5 concludes this thesis with outlook and future directions. We provide

a detailed description of the protocols for three- and four-node networks with

mixed species, along with a novel design for the third trap. In addition, we

discuss a possibility of using133Ba+ as memory ions and potential crosstalk

channels.
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Chapter 2: Ytterbium and Barium Atomic Ions

Trapped ions are a leading platform for quantum computing and quantum

communication networks, featuring long coherence times and high-�delity opera-

tions [98, 99, 100, 101]. To address the challenges of scaling up such systems, we

utilize a modular architecture consisting of separate traps with memory/processing

qubits and communication qubits that support photonic links for remote entangle-

ment [51, 102]. In our experiments,171Yb+ ions are used for quantum memory and

processing, while138Ba+ ions are used as communication qubits.

2.1 Optical Bloch Equations

In this section, we discuss, model and characterize the laser-matter interaction

for the systems of our interest {171Yb+ and 138Ba+ ions. The evolution of these

systems under laser excitation is described by optical Bloch equations. We show

how to construct the optical Bloch equations and solve them for time evolution of

the system subject to arbitrary interaction, as well as for excitation spectrum with

the corresponding dark resonances.

First, in this subsection, we write optical Bloch equations for an atomic system

described by HamiltonianH = Hatom + H int , whereHatom is the atomic Hamiltonian
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and H int is the laser-matter interaction Hamiltonian. We also take into account

damping terms Ldamp due to spontaneous emission and the �nite laser linewidth.

As a result, the system is no longer in a pure state and is described by a density

operator ^� .

In the basis fj i ig of the eigenstatesji i of Hatom , the density operator ^� is

conventionally written down as:

�̂ =
X

i;j

� ij ji ihj j: (2.1)

The time evolution of the density operator is described by the optical Bloch equa-

tions:

d�̂
dt

= �
_{
~

h
Ĥ; �̂

i
+ Ldamp (�̂ ); (2.2)

whereĤ is the Hamiltonian of the system including interaction, andLdamp describes

the damping terms:

Ldamp (�̂ ) = �
1
2

X

k

�
Ĉy

kĈk �̂ + �̂ Ĉy
kĈk � 2Ĉk �̂ Ĉy

k

�
: (2.3)

Here, the operatorsĈk govern various dissipative processes, andk enumerates them.

The processes of decay from a leveli to a level j with the corresponding decay rate

� ij are described as:

Ĉk =
p

� ij jj ihi j: (2.4)

The dissipataion due to the �nite laser linewidths � las is accounted for via the
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operators in the form:

Ĉk =
p

2� lasji ihi j: (2.5)

We can rewrite Eq. (2.2) as:

d�̂
dt

= �
_{
~

" 

Ĥ �
_{~
2

X

k

Ĉy
kĈk

!

�̂ � �̂
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_{~
2

X
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Ĉy
kĈk

!#

+
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Ĉk �̂ Ĉy
k

= �
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~

h
~H �̂ � �̂ ~H y

i
+

X

k

Ĉk �̂ Ĉy
k ; (2.6)

where

~H = Ĥ �
_{~
2

X

k

Ĉy
kĈk : (2.7)

Also we take into account the normalization condition:

X

i

� ii = 1: (2.8)

The Bloch equation in components has the following form:

d� rs

dt
= �

_{
~

D
r

�
�
�
h

~H� � � ~H y
i �
�
� s

E
+

*

r

�
�
�
�
�

X

k

Ĉk � Ĉy
k

�
�
�
�
�
s

+

=
X

mj

L rs;mj � mj ; (2.9)

where

L rs;mj = �
_{
~

h
~H rm � js � ~H y

js � rm

i
+

X

k

Ĉkrm Ĉy
k js

: (2.10)

Now we apply the optical Bloch equations for various atomic systems such as171Yb+

(a memory ion) and138Ba+ (a communication ion), to �nd excitation spectra with
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the corresponding dark resonances. Also we consider174Yb+ system, since174Yb+

isotope was explored in our group before [103, 104], and it might turn out to be

useful in the future experiments. For example, in Section 3.2.4, we will discuss a

possibility of using 174Yb+ ions to sympathetically cool171Yb+ ones.

2.1.1 Four-level system.171Yb+

a. Atomic Hamiltonian

171Yb+ has non-zero nuclear spin
�
Sn = 1

2

�
, and in a magnetic �eld, the splitting of

the energy levels is given by:

� E = mF gF � B

�
�
� ~B

�
�
� = mF gF u; (2.11)

where u = � B

�
�
� ~B

�
�
�, � B is the Bohr magneton, ~B is the magnetic �eld, and mF is

the projection of the full angular momentum ~F = ~J + ~Sn . In the case of non-zero

nuclear spin, the Lande factors [105] are given by the following formula:

gF = gJ
F (F + 1) + J (J + 1) � Sn (Sn + 1)

2F (F + 1)
; (2.12)

where

gJ = 1 +
J (J + 1) � L(L + 1) + S(S + 1)

2J (J + 1)
; (2.13)

with the total angular momentum ~J = ~L + ~S.

In Fig. 2.1, the diagram of171Yb+ energy levels is shown. The main transition

at 369 nm, between theS1=2 and P1=2 states, is utilized to perform Doppler cooling,

14



Figure 2.1: Energy level diagram for171Yb+ . The qubit is de�ned in the S1=2

ground state hyper�ne \clock" levels denotedj0i and j1i . The main transition at
369 nm shown in purple, betweenS1=2 and P1=2, is nearly a cycling transition. When
the ion decays toD3=2 manifold (0.5% of the time), it is repumped by 935 nm laser
to the 3[3=2]1=2 state, which quickly decays back to theS1=2 manifold.

state initialization, and state readout using state-dependent 
uorescence technique

that we will discuss in Section 2.2.

The scheme of the171Yb+ levels relevant for these calculations { these levels

nearly form a cycling transition { is presented in Fig. 2.2. According to this scheme,

gF = 1.

Then gF � mF (j1i ) = � 1, gF � mF (j2i ) = 0, and gF � mF (j3i ) = 1.
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mF = � 1

mF = 0

mF = 1

2S1=2

2P1=2

F = 1

F = 0

j1i

j2i

j3i

j4i

Figure 2.2: Hyper�ne structure level scheme of171Yb+ with Zeeman splitting rele-
vant for calculations.

The atomic Hamiltonian is given by:

Ĥatom =
4X

a=1

~! ajaihaj

= ~(! s � ! p � u)j1ih1j + ~(! s � ! p)j2ih2j + ~(! s � ! p + u)j3ih3j; (2.14)

where ~! s and ~! p represent energy levels of theS1=2 and P1=2 states. Here we

assign zero energy to the statej4i .

b. Interaction Hamiltonian

Let us choose thez-axis to be along the magnetic �eld, and they-axis to be along

the light propagation direction. Then the polarization vector lies in the (x-z)-plane:

~� =

0

B
B
B
B
B
B
@

sin(� )

0

cos(� )

1

C
C
C
C
C
C
A

: (2.15)
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The dipole moment operator is written as:

~̂D = ~D14j1ih4j + ~D24j2ih4j + ~D34j3ih4j + H :c:; (2.16)

~Dab = haje~rjbi :

We express the position operator in terms of the spherical harmonics:

~r =

0

B
B
B
B
B
B
@

x

y

z

1

C
C
C
C
C
C
A

=

0

B
B
B
B
B
B
B
B
B
@

1
p

2

�
Q� 1

1 � Q1
1

�

_{
p

2

�
Q� 1

1 + Q1
1

�

Q0
1

1

C
C
C
C
C
C
C
C
C
A

; (2.17)

where

Qm
l =

r
4�

2l + 1
r l Y m

l (�; � ): (2.18)

The corresponding matrix element is given by:

hajQm
1 jbi = hnaLaSaSna FamF a

j Qm
1 j nbLbSbSnbFbmF b

i : (2.19)

First, we consider the coupling between the orbital momentum~L and electron spin

~S that is described by a Clebsch-Gordan coe�cientC jm j
lm l sms

, and after that the

coupling between the total momentum ~J and the nuclear spin ~Sn described by
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CF m F
jm j sn msn

[106].

hajQm
1 jbi =

X

m l a msa msn a

X

m l b
msbmsn b

CFa mF a
j a m j a sn a msn a

C j a m j a
la m l a sa msa

C
FbmF b
j bm j bsn bmsn b

C
j bm j b
lbm l b

sbmsb

� h Lamla jQm
1 jLbmlb i � msa msb

� msn a msn b
: (2.20)

According to the Eckart-Wigner theorem,

hLamla j Qm
1 j Lbmlb i =

1
p

2La + 1
C la m l a

lbm l b
1mhnaLa jj Q1 jj nbLbi ; (2.21)

wherehnaLa jj Q1 jj nbLbi = d is the reduced matrix element that does not depend

on mF . Calculating the matrix elements using the Clebsch-Gordan coe�cients, we

get:

~D41 = d

0

B
B
B
B
B
B
B
B
B
@

�
1

p
6

1
p

6

0

1

C
C
C
C
C
C
C
C
C
A

; ~D42 = d

0

B
B
B
B
B
B
B
B
B
@

0

0

�
1

p
3

1

C
C
C
C
C
C
C
C
C
A

; ~D43 = d

0

B
B
B
B
B
B
B
B
B
@

1
p

6

1
p

6

0

1

C
C
C
C
C
C
C
C
C
A

: (2.22)

Since the interaction Hamiltonian

Ĥ int � � ~̂D � ~�; (2.23)
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then

(H int )14 = � 

1

p
6

sin� e _{!t ;

(H int )24 = � 

1

p
3

cos� e _{!t ; (2.24)

(H int )34 = 

1

p
6

sin� e _{!t ;

where 
 is a Rabi frequency, and! is a frequency of the laser �eld.

The total Hamiltonian has the following form:

H =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

! s � ! p � u 0 0 � 

1

p
6

sin� e _{!t

0 ! s � ! p 0 � 

1

p
3

cos� e _{!t

0 0 ! s � ! p + u 

1

p
6

sin� e _{!t

� 

1

p
6

sin� e � _{!t � 

1

p
3

cos� e � _{!t 

1

p
6

sin� e � _{!t 0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

(2.25)

Going to the rotating frame and applying the rotating wave approximation (RWA),

we get

H =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

� � u 0 0 � 

1

p
6

sin�

0 � 0 � 

1

p
3

cos�

0 0 � + u 

1

p
6

sin�

� 

1

p
6

sin� � 

1

p
3

cos� 

1

p
6

sin� 0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

; (2.26)
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where � = ! � ! s + ! p is the laser detuning.

c. Damping terms

Now, let us consider the dissipative processes.

If the total decay rate from the state j4i is equal to �, then using Eq. (2.22), we

�nd

� 14 = � 24 = � 34 =
1
3

� : (2.27)

Consequently, the corresponding operators have the following form:

C1 =

r
�
3

j1ih4j;

C2 =

r
�
3

j2ih4j;

C3 =

r
�
3

j3ih4j; (2.28)

C4 =
p

2� las (j1ih1j + j2ih2j + j3ih3j) :

d. Results

In order to verify the calculation results, we compare the excited-state population

� 44 with the analytic steady-state solution (assuming the laser linewidth is equal to

zero) from Ref. [107]:

� 44 =
3
4


 2 cos2 � sin2 �
1 + 3 cos2 �

1
(
 0=2)2 + � 2

; (2.29)
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where

�

 0

2

� 2

=
�

�
2

� 2

+ 
 2 cos2 �
1 � 3 cos2 �
1 + 3 cos2 �

+
cos2 �

1 + 3 cos2 �

�

 4

4u2
+ 4u2

�
: (2.30)

Figure 2.3: Excitation spectrum of a four-level171Yb+ . Parameters: �las = 0,
u = 11:35 MHz, � = arccos(1=

p
3), saturation parameter s = 
 =� = 1. Red

dots represent our solutions of the optical Bloch equations for a four-level model of
171Yb+ ; black solid curve is obtained from Eq. (2.29).

In Fig. 2.3, we demonstrate a comparison between our solutions of the optical

Bloch equations for a four-level model of171Yb+ { shown by red dots { and the

analytic steady-state solution given by Eq. (2.29) { shown by black curve. We �nd

a perfect agreement between the two. The parameters of the magnetic �eldu and
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the laser-polarization angle� are chosen to maximize the excited-state population

� e = � 44, or in other words, the scattering rateS, sinceS = 
� e. To maximize � 44,

we need to minimize (
 0=2)2 from Eqs. (2.29) and (2.30), and that means that for a

given Rabi frequency 
 the magnetic-�eld strength u is chosen to beu = 
 =2 and

the angle is� = arccos(1=
p

3). This particular laser-polarization angle makes the

three transition Rabi frequencies equal.

Moreover, when we choose� = 0, in our calculations we achieve zero scattering

rate, which matches with Eq. (2.29) and� 44 = 0. In this case, the laser light has

only � polarization, and the ion quickly decays to a dark state { a combination of

the edge statesj1i and j3i from Fig. 2.2. Similarly, when� = �= 2, our calculations

and Eq. (2.29) give us� 44 = 0. Here, the laser light has only� polarization, and

the ion quickly decays to a dark statej2i .

Furthermore, when the magnetic �eld B = 0, in 171Yb+ level con�guration,

there are always two dark states for any laser polarization according to Ref. [107],

and the ion does not 
uoresce at all. In our calculations, zero excited-state popula-

tion was obtained in accordance with this analytic �nding.

2.1.2 Four-level system.174Yb+

a. Atomic Hamiltonian

174Yb+ has zero nuclear spin, and in a magnetic �eld, the splitting of the energy

levels is given by:

� E = mJ gJ � B

�
�
� ~B

�
�
� = mJ gJ u: (2.31)
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Fine structure level scheme of174Yb+ is presented in Fig. 2.4.

mJ = � 1=2

mJ = 1=2

mJ = � 1=2

mJ = 1=2

2S1=2

2P1=2

j1i

j2i

j3i

j4i

Figure 2.4: Fine structure level scheme of174Yb+ with Zeeman splitting.

According to this scheme,gJ (2S1=2) = 2 and gJ (2P1=2) = 2 =3, thus we get

gJ � mJ (j1i ) = � 1, gJ � mJ (j2i ) = 1, gJ � mJ (j3i ) = � 1=3, and gJ � mJ (j4i ) = 1 =3.

The atomic Hamiltonian is given by:

Ĥatom =
4X

a=1

~! ajaihaj (2.32)

= ~(! s � ! p � u)j1ih1j + ~(! s � ! p + u)j2ih2j �
1
3

~uj3ih3j +
1
3

~uj4ih4j;

here we assign zero energy to the middle between the statesj3i and j4i .

b. Interaction Hamiltonian

Similar to the case of171Yb+ , we choosez-axis along the magnetic �eld, andy-

axis along the light propagation direction, so that the polarization vector lies in the
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x-z-plane:

~� =

0

B
B
B
B
B
B
@

sin(� )

0

cos(� )

1

C
C
C
C
C
C
A

; (2.33)

The dipole moment operator is:

~̂D = ~D13j1ih3j + ~D14j1ih4j + ~D23j2ih3j + ~D24j2ih4j + H :c:; (2.34)

~Dab = haje~rjbi :

174Yb+ has zero nuclear spin. Therefore, in contrast to Eq. (2.20), the corresponding

matrix elements are given by:

hajQm
1 jbi =

X

m l a msa

X

m l b
msb

C j a m j a
la m l a sa msa

C
j bm j b
lbm l b

sbmsb
hLamla j Qm

1 j Lbmlb i � msa msb
: (2.35)

According to the Eckhart-Wigner theorem,

hLamla j Qm
1 j Lbmlb i =

1
p

2La + 1
C la m l a

lbm l b
1mhnaLa jj Q1 jj nbLbi ; (2.36)

wherehnaLa jj Q1 jj nbLbi = d is the reduced matrix element that does not depend

on mJ .
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Performing the calculations with the Clebsch-Gordan coe�cients, we get:

~D31 = d

0

B
B
B
B
B
B
B
B
B
@

0

0

1
p

3

1

C
C
C
C
C
C
C
C
C
A

; ~D41 = d

0

B
B
B
B
B
B
B
B
B
@

�
1

p
3

_{
p

3

0

1

C
C
C
C
C
C
C
C
C
A

; ~D32 = d

0

B
B
B
B
B
B
B
B
B
@

�
1

p
3

�
_{

p
3

0

1

C
C
C
C
C
C
C
C
C
A

; ~D42 = d

0

B
B
B
B
B
B
@

0

0

�
1

p
3

1

C
C
C
C
C
C
A

:

(2.37)

And the total Hamiltonian in the rotating wave approximation is:

H =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

� � u 0 

1

p
3

cos� � 

1

p
3

sin�

0 � + u � 

1

p
3

sin� � 

1

p
3

cos�



1

p
3

cos� � 

1

p
3

sin� �
1
3

u 0

� 

1

p
3

sin� � 

1

p
3

cos� 0
1
3

u

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

; (2.38)

where � = ! � ! s + ! p is the laser detuning.

c. Damping terms

Now, let us consider the dissipative processes.

If the total decay rate from the statej3i is equal to �, and similarly the total decay

rate from the state j4i is equal to �, then, using Eq. (2.37), we �nd

� 13 = � 24 =
1
3

� ; � 23 = � 14 =
2
3

� : (2.39)
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Consequently, the corresponding operators are:

C1 =

r
2�
3

j1ih4j;

C2 =

r
2�
3

j2ih3j;

C3 =

r
�
3

(j1ih3j � j 2ih4j) ; (2.40)

C4 =
p

2� las (j1ih1j + j2ih2j) :

d. Results

The results of this calculation are given in Fig. 2.5. In order to verify them, we

compare the excited-state population as a solution to the optical Bloch equations

with the analytic steady-state solution (assuming the laser linewidth is equal to zero)

in a zero magnetic �eld. In this case, the ion is described as a two-level system:

� exc =

1
2

�
I

I sat

1 +
I

I sat
+ 4

�
�
�

� 2 : (2.41)

The calculations that we perform and the analytical solution are again in a

perfect agreement with each other.

The maximum possible scattering rate can be achieved with the laser inten-

sities much higher than the saturation intensityI sat. Thus, with
I

I sat
� 1, we get

S =
�
2

, and our calculations match this result. Additionally, for I = I sat, and

S = � =4, our calculations again agree with the analytical result.

At this point we have only discussed the case of zero magnetic �eldB = 0 for a

four-level model of174Yb+ . When the magnetic �eld is non-zero,B 6= 0, the highest
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Figure 2.5: Excitation spectrum of174Yb+ . Parameters: �las = 0, u = 0, � = 0,
saturation parameters = 
 =� = 1. Red dots represent our calculations of the Bloch
equations for a four-level model of174Yb+ ; black solid curve describes a two-level
model solution, which is identical to the four-level one at zero magnetic �eld.

scattering rate can be achieved with the laser-polarization angle� = 0 according to

our calculations. This angle� corresponds to the� polarization of the laser light.

According to Ref. [107], when circularly polarized light is applied, there is always

a dark state in the case of174Yb+ system. Therefore, this dark state decreases the

brightness of the ion when the light is not perfectly� polarized.
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2.1.3 Eight-level system.138Ba+

The following calculations are based in part on Refs. [108, 109].

a. Atomic Hamiltonian

138Ba+ also has zero nuclear spin, as well as174Yb+ , and in a magnetic �eld, the

splitting of the energy levels is given by:

� E = mJ gJ � B

�
�
� ~B

�
�
� = mJ gJ u: (2.42)

Fine structure level scheme of138Ba+ is presented in Fig. 2.6.

Figure 2.6: Fine structure level scheme of138Ba+ with Zeeman splitting.
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The atomic Hamiltonian has the following form:

Ĥatom =
8X

a=1

~! ajaihaj = ~(! s � ! p � u)j1ih1j + ~(! s � ! p + u)j2ih2j (2.43)

�
1
3

~uj3ih3j +
1
3

~uj4ih4j + ~(! D � ! p �
6
5

u)j5ih5j + ~(! D � ! p �
2
5

u)j6ih6j

+ ~(! D � ! p +
2
5

u)j7ih7j + ~(! D � ! p +
6
5

u)j8ih8j;

where we assign zero energy to the middle between the energies of the statesj3i and

j4i .

b. Interaction Hamiltonian

Similar to the previous cases, the dipole moment operator is given by:

~̂D = ~D13j1ih3j + ~D14j1ih4j + ~D23j2ih3j + ~D24j2ih4j + ~D53j5ih3j + ~D54j5ih4j (2.44)

+ ~D63j6ih3j + ~D64j6ih4j + ~D73j7ih3j + ~D74j7ih4j + ~D83j8ih3j + ~D84j8ih4j + H :c:;

~D ij = haje~rjbi :
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Performing the calculations with the Clebsch-Gordan coe�cients, we get:

~D31 = dg

0

B
B
B
B
B
B
B
B
B
@

0

0

1
p

3

1

C
C
C
C
C
C
C
C
C
A

; ~D41 = dg

0

B
B
B
B
B
B
B
B
B
@

�
1

p
3

_{
p

3

0

1

C
C
C
C
C
C
C
C
C
A

; ~D32 = dg

0

B
B
B
B
B
B
B
B
B
@

�
1

p
3

�
_{

p
3

0

1

C
C
C
C
C
C
C
C
C
A

; ~D31 = dg

0

B
B
B
B
B
B
B
B
B
@

0

0

�
1

p
3

1

C
C
C
C
C
C
C
C
C
A

;

~D35 = dr

0

B
B
B
B
B
B
B
B
B
@

�
1
2

�
_{
2

0

1

C
C
C
C
C
C
C
C
C
A

; ~D45 = dr

0

B
B
B
B
B
B
B
B
B
@

0

0

0

1

C
C
C
C
C
C
C
C
C
A

; ~D36 = dr

0

B
B
B
B
B
B
B
B
B
@

0

0

�
1

p
3

1

C
C
C
C
C
C
C
C
C
A

; ~D46 = dr

0

B
B
B
B
B
B
B
B
B
@

�
1

2
p

3

_{

2
p

3

0

1

C
C
C
C
C
C
C
C
C
A

;

(2.45)

~D37 = dr

0

B
B
B
B
B
B
B
B
B
@

1

2
p

3

_{

2
p

3

0

1

C
C
C
C
C
C
C
C
C
A

; ~D47 = dr

0

B
B
B
B
B
B
B
B
B
@

0

0

�
1

p
3

1

C
C
C
C
C
C
C
C
C
A

; ~D38 = dr

0

B
B
B
B
B
B
B
B
B
@

0

0

0

1

C
C
C
C
C
C
C
C
C
A

; ~D48 = dr

0

B
B
B
B
B
B
B
B
B
@

�
1
2

_{
2

0

1

C
C
C
C
C
C
C
C
C
A

:

And the total Hamiltonian in the rotating wave approximation (RWA) is pre-
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sented in the matrix form:

H =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

� g � u 0

 gp

3
cos� �


 gp
3

sin� 0 0 0 0

0 � g + u �

 gp

3
sin� �


 gp
3

cos� 0 0 0 0


 gp
3

cos� �

 gp

3
sin� �

1
3

u 0 �

 r

2
sin� �


 rp
3

cos�

 r

2
p

3
sin� 0

�

 gp

3
sin� �


 gp
3

cos� 0
1
3

u 0 �

 r

2
p

3
sin� �


 rp
3

cos�

 r

2
sin�

0 0 �

 r

2
sin� 0 � r �

6
5

u 0 0 0

0 0 �

 rp

3
cos� �


 r

2
p

3
sin� 0 � r �

2
5

u 0 0

0 0

 r

2
p

3
sin� �


 rp
3

cos� 0 0 � r +
2
5

u 0

0 0 0

 r

2
sin� 0 0 0 � r +

6
5

u

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

;

(2.46)

where the corresponding detunings �g = ! g � ! s + ! p and � r = ! r � ! s + ! p .

c. Damping terms

Now, let us consider the dissipative processes such as spontaneous emission and the

�nite laser linewidth.
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In this case, there are two decay rates �g and � r . Using Eq. (2.45), we �nd

� 13 = � 24 =
1
3

� g; � 23 = � 14 =
2
3

� g;

� 35 = � 48 =
1
2

� r ; � 36 = � 47 =
1
3

� r ; (2.47)

� 37 = � 46 =
1
6

� r ; � 38 = � 45 = 0:

Consequently, the corresponding operators are:

C1 =

r
2� g

3
j1ih4j;

C2 =

r
2� g

3
j2ih3j;

C3 =

r
� g

3
(j1ih3j � j 2ih4j) ;

C4 =

r
� r

2
j5ih3j +

r
� r

6
j6ih4j;

C5 =

r
� r

2
j8ih4j +

r
� r

6
j7ih3j; (2.48)

C6 =

r
� r

3
(j6ih3j + j7ih4j) ;

C7 =
q

2� lasg (j1ih1j + j2ih2j) ;

C8 =
p

2� las r (j5ih5j + j6ih6j + j7ih7j + j8ih8j) ;

d. Results

In Figs. 2.7 { 2.8, we show the excitation spectrum of an eight-level model of138Ba+

as a function of 493 nm and 650 nm laser frequencies (see Fig. 2.6), respectively. The

experimental data shown in solid black dots is obtained by counting a photon number

on a detector { on an APD in our case. The solid line is a �t to the experimental
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data calculated with the eight-level Bloch equations. The disagreement between the

�t and the experimental data can be caused by a frequency drift in the lock or larger

laser linewidth than assumed.

Figure 2.7: Excitation spectrum of an eight-level model of138Ba+ as a function of
493 nm laser frequency. Parameters:! r = 461:311845 THz,u = 11:35 MHz, � =
15� , saturation parameterssg = 
 g=� = 1 and sr = 
 r =� = 3 :8. The experimental
data is presented in black dots; the solid black curve represents our solution of the
optical Bloch equations �tted to the data over the saturation parameterssg and sr

and the angle� .
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Figure 2.8: Excitation spectrum of an eight-level model of138Ba+ as a function of
650 nm laser frequency. Parameters:! g = 607:42614THz,u = 11:35 MHz, � = 80� ,
saturation parameterssg = 
 g=� = 1 :6 and sr = 
 r =� = 1 :4. The experimental
data is presented in solid black dots; the solid black curve represents our solution
of the optical Bloch equations �tted to the data over the saturation parameterssg

and sr and the angle� .
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2.2 Ytterbium operations

In the network experiments,171Yb+ ions are used for quantum memory and

processing. The qubits are based on the hyper�ne \clock" sublevels of theS1=2

ground manifold:

jF = 0; mF = 0i � j 0i and jF = 1; mF = 0i � j 1i ,

and they are insensitive to magnetic �eld 
uctuations and hence have long coherence

times [26, 27]. In reality, the qubit splitting is magnetically insensitive only to the

second order and is given by: 12642812118:5 Hz + �, where � = 310 :8 B 2 Hz with

the magnetic �eld B in Gauss. In our experiments,B � 5 G making this sensitivity

negligible.

In Fig. 2.1, the diagram of the most relevant171Yb+ energy levels is shown.

The main transition at 369 nm, between theS1=2 and P1=2 states, is utilized to per-

form Doppler cooling, state initialization, and state readout using state-dependent


uorescence technique. 0.5% of the time the ion decays toD3=2 manifold, and { by

sending 935 nm light with 3.07 GHz sidebands produced by an electro-optic mod-

ulator (EOM) { we can repump the ion to the 3[3=2]1=2 state, which then quickly

decays back to theS1=2 manifold [110, 111].

2.2.1 State initialization and readout

To perform Doppler cooling on171Yb+ ions, we apply a 369 nm laser light

which is red-detuned [111, 112] from theS1=2 jF = 1i $ P1=2 jF = 0i transition.
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The most e�cient cooling can be achieved when the laser is detuned by half of the 20

MHz transition linewidth away from the resonance. In order to cool motional modes

in all three dimensions, the 369 nm laser beam should form an acute angle with the

principal axes of the trap [113]. Due to o�-resonant coupling to theP1=2 jF = 1i

manifold, the ion might be trapped in the statej0i . To avoid this issue, we add

14.7 GHz = (12:6 + 2:1) GHz sidebands that return the ion to the main cooling

cycle via theS1=2 jF = 0i $ P1=2 jF = 1i transition as shown in Fig. 2.9(a).

Optical pumping to the j0i state is an important step at the beginning of each

experiment. In Fig. 2.9(b), the scheme of the qubit initialization is presented. By

adding 2.1 GHz sidebands to the resonant 369 nm beam, we can excite the ion from

the state S1=2 jF = 1i to P1=2 jF = 1i . Then, with a probability 1/3 the ion decays

to the j0i state, where it is trapped within a few� s. Since theP1=2 states also

decay to theD3=2 manifold, we keep the 935 nm repump laser beam on during the

initialization step.

In the case of171Yb+ , the qubit state detection is performed with the help of

the standard ion 
uorescence techniques [114, 115] as illustrated in Fig. 2.9(c). Dur-

ing the detection, we send 369 nm laser beam resonant withS1=2 jF = 1i $ P1=2 jF = 0i

transition. If the ion is prepared in the j0i state, then it will not scatter any light,

since the laser is detuned by 14.7 GHz from the closest allowed transition. On the

other hand, if the ion is prepared in thej1i state, then many scattered photons are

observed, since the laser is nearly on resonance. High �delity above 99.9% [36, 116]

can be achieved with this detection scheme. Additionally, in contrast to the138Ba+

detection scheme discussed in Section 2.3.1.1, this detection is deterministic. We
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Figure 2.9: 171Yb+ processes when 369 nm laser light is applied. (a) Doppler
cooling with 369 nm laser beam detuned from the resonance by 10 MHz. Since due
to o�-resonant coupling to the P1=2 jF = 1i manifold, the ion can decay to the state
j0i , 14.7 GHz sidebands are applied to return the ion in the main cooling cycle.
(b) Optical pumping. We add 2.1 GHz sidebands to the resonant beam to excite
the ion from the state S1=2 jF = 1i to P1=2 jF = 1i . Then, with a probability 1/3
the ion decays to thej0i state, where it is trapped. (c) Qubit state detection. The
369 nm light resonant toS1=2 jF = 1i $ P1=2 jF = 0i transition is applied. The ion
prepared in the statej1i emits a lot of photons, while in the statej0i , it does not,
because the laser is detuned by 14.7 GHz from the closest allowed transition.

determine the state of the ion by the number of photons detected by the PMT or

APD during the detection interval. The ion is de�ned to be in the statej1i , if we

observe more than one photon during detection, and in the statej0i , if we observe

one or zero photons. The main error source is due to o�-resonant excitation to the

P1=2 jF = 1i state if the ion being detected is in the statej1i [26, 117], because from

the excited P1=2 jF = 1i state, the electron can decay to the groundS1=2 jF = 0i

state and remains there.
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