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Abstract
In this article, we review several new approaches to scalable and robust quantum
communication, state engineering, and quantum computation. We consider the use
of atomic ensembles, linear optical elements, and trapped ions for this purpose, all
having significant experimental simplifications compared to conventional systems.
These new approaches are based on probabilistic entanglement of quantum bits,
where the dominant source of error is the (typically small) probability of entan-
glement success per attempt. By exploiting the properties of this particular noise
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process, we can design scalable quantum network schemes that are inherently in-
sensitive to the noise, resulting in error-correction thresholds that are much more
forgiving than any conventional threshold requirement. We review several such
types of schemes in different contexts, and show their close relations with the current
experimental implementations of scalable quantum information processing. Exper-
imental progress along these approaches will be briefly remarked, especially in a
system of trapped atomic ions.

1. Introduction

Quantum information systems hold great promise for superfast computation and
secure communication (Nielsen and Chuang, 2000). However, practical quantum
hardware can be highly susceptible to external noise and decoherence, leading
to quantum information errors. This is especially true during quantum logic op-
erations, where interactions between quantum bits must be controlled with great
precision. Quantum error correction of some form will therefore be essential for
reliable quantum information processing (Shor, 1995; Steane, 1997). The fun-
damental quantum error threshold theorem (Preskill, 1998) states that the error
per quantum operation must be less than a particular (small) threshold value for
effective error correction. However, noise levels in current experimental systems
are typically orders of magnitude larger than fault-tolerant thresholds for arbitrary
quantum errors. An alternative approach to general error correction is to exploit
the properties of the noise itself to design schemes that either automatically cor-
rect the dominant source of noise, or lead to specific types of errors that can be
more easily corrected later.

In this article, we review several schemes for reliable quantum communication,
state engineering, and quantum computation, that can tolerate very high levels
of experimental noise. The experimental systems in our consideration range from
atomic ensembles, to photonic systems (such as the spontaneous parametric down
conversion or cavity QED systems), and to individual trapped atoms or ions. The
precise physical sources of noise in these different systems can be quite different,
and there are a number of system-specific properties which are discussed. How-
ever, in spite of these differences, the dominant noise in these systems share very
similar properties. All of these schemes involve photons, and the dominant source
of noise is always some type of photon loss, related to “quantum leakage” errors,
where the state of the physical system continuously leaks outside of the logical
Hilbert space that carries the quantum information. Because of this similarity in
the noise properties, we can identify very efficient error-correction methods for
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all of these systems and achieve scalability in quantum communication, state en-
gineering, and quantum computation in the face of high noise levels.

In the next section, we review the scalable quantum communication scheme
using atomic ensembles first proposed in Duan et al. (2001). This scheme imple-
ments a quantum repeater architecture (Briegel et al., 1998), although does not
require the dominant noise to be below a stringent threshold value. The recent re-
markable experimental progress using this approach is discussed briefly (Kuzmich
et al., 2003; Van der Wal et al., 2003; Chou et al. 2004, 2005; Matsukevich and
Kuzmich, 2004; Blinov et al., 2004; Balic et al., 2005; Chaneliere et al., 2005;
Eisaman et al., 2005; Black et al., 2005; Manz et al., 2006; Riedmatten et al.,
2006; Matsukevich et al., 2006). In Section 3, we review a recent scheme for quan-
tum state engineering with linear optics (Bodiya and Duan, ?), where entangled
“graph states” can be created in a scalable fashion with realistic linear optical sys-
tems under current technology. Finally, in the last section, we review approaches
to scalable quantum computation and networking based on probabilistic entan-
gling gates (Duan et al., 2005; Barrett and Kok, 2005), and the implementation of
these types of gates using trapped ions (Duan et al., 2006) and cavity QED sys-
tems (Duan et al., 2005). Some recent trapped ion experiments are described that
represent an initial step in achieving such gate operations (Madsen et al., 2006;
Maunz et al., 2006).

2. Quantum Communication with Atomic Ensembles

2.1. QUANTUM REPEATERS FOR SCALABLE COMMUNICATION

The communication of quantum information over remote distances is essential for
realizing quantum networks and secretly transferring messages by means of quan-
tum cryptography. The key resource in quantum communication is the generation
of nearly perfect entangled states between distant sites. Such states can be used
then to implement secure quantum cryptography (Ekert, 1991) or to transfer ar-
bitrary quantum messages (Bennett et al., 1993). Realistic schemes for quantum
communication are based on photonic channels, as photons are the only viable
particles that can be transmitted with high speeds over long distances. To over-
come the inevitable signal attenuation in the channel, the concept of entanglement
purification was invented (Bennett et al., 1997). However, entanglement purifica-
tion does not fully solve the problem for long-distance quantum communication.
Due to the exponential decay of the entanglement with the channel length, one
needs an exponentially large number of partially entangled states to obtain one
highly entangled state, which means that for a sufficiently long distance the task
becomes nearly impossible.

The idea of a quantum repeater was proposed by Briegel et al. (1998) to
mitigate the exponential decay of fidelity with distance. In principle, quantum
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repeaters allow the overall communication fidelity to approach unity, with the
communication time growing only polynomially with the transmission distance.
In analogy with fault-tolerant quantum computing (Preskill, 1998), the quantum
repeater is a concatenated (nested) entanglement purification protocol for com-
munication systems. The idea is to divide the transmission channel into many
segments, with the length of each segment comparable to the channel attenua-
tion length. Entanglement is first generated and purified for each segment, then
the purified entanglement is extended to longer lengths by connecting two adja-
cent segments through the entanglement swapping protocol (Bennett et al., 1993).
Following this, the overall entanglement decreases and must be purified again.
These rounds of entanglement swapping and purification can be repeated until
nearly perfect entangled states are created between two distant sites. Similar to
fault tolerant quantum computation, the conventional quantum repeater protocol
requires the noise per quantum operation (such as a local gate operation for the
entanglement purification or a quantum transmission operation) to be below a cer-
tain threshold value. However, this threshold value is considerably less stringent
than qubit error-correction thresholds for quantum computing. Error thresholds
for quantum repeaters are typically estimated to be at the ∼1% level.

In this section, we review the implementation scheme of quantum repeaters
proposed by Duan, Lukin, Cirac, and Zoller (2001) (DLCZ). This scheme has
a nested architecture similar to the original quantum repeater protocol (Briegel
et al., 1998), but it uses a very different noise reduction method. Instead of ex-
plicit entanglement purifications at each step, the DLCZ scheme features inherent
fault tolerance. In this scheme, the dominant noise is first classified in the pro-
posed experimental system (e.g., atomic ensembles). Based on the properties of
this noise, the entanglement generation, connection (swapping), and application
schemes are designed so that each step of this protocol has some function of
built-in entanglement purification. Through this built-in entanglement purifica-
tion, each step partially removes the noise from all of the previous steps, and as a
result, the noise accumulates much more slowly. The effect of the remaining noise
is removed by the last step of entanglement application, and we can then prove
that one has an overall efficient scaling. Because there is no need for additional
steps of explicit entanglement purification, this scheme overcomes stringent error
threshold requirements, and can tolerate important experimental noise at much
higher levels. For instance, with the DLCZ scheme, photon detector efficiencies
can be around 50% or even lower without significantly influencing the overall
scaling of the protocol. In the conventional approach (Briegel et al., 1998), even
with a forgiving error-correction threshold at the percent level, photon detector
efficiencies (and any other sources of photon loss) must still be larger than 99%
which is still considered challenging with current technology. So, inherent fault
tolerance to high levels of noise is the essential feature of this DLCZ scheme.
Such a property is critical for the recent remarkable experimental progress using
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this approach (Kuzmich et al., 2003; Van der Wal et al., 2003; Chou et al., 2004,
2005; Matsukevich and Kuzmich, 2004; Blinov et al., 2004; Balic et al., 2005;
Chaneliere et al., 2005; Eisaman et al., 2005; Black et al., 2005; Manz et al., 2006;
Riedmatten et al., 2006; Matsukevich et al., 2006).

2.2. COLLECTIVE ENHANCEMENT IN INTERACTION BETWEEN LIGHT AND

ATOMIC ENSEMBLES

The DLCZ scheme proposes atomic ensembles as nodes for quantum repeaters.
The atomic ensemble contains a large number of identical neutral atoms, which
might consist of either laser-cooled atoms (Kuzmich et al., 2003; Chou et al.,
2004; Black et al., 2005; Manz et al., 2006; Matsukevich et al., 2006), or a
room-temperature vapor (Van der Wal et al., 2003; Julsgaard et al., 2001). The
motivation of using atomic ensembles instead of single-particles for quantum
information processing is two-fold: first, laser manipulation of atomic ensem-
bles without separate addressing of individual atoms is simpler than the laser
manipulation of single particles; and second, the use of the atomic ensembles
allows for collective effects resulting from many-atom coherences to enhance the
signal-to-noise ratio, which is critical for increasing efficiencies of some quantum
information protocols (Fleischhauer and Lukin, 2000; Duan et al., 2000, 2001;
Julsgaard et al., 2001). The collective enhancement in atomic ensembles and its
applications in quantum information has been reviewed in several recent articles
(Cirac et al., 2001; Lukin, 2003).

In the DLCZ scheme, a different level configuration is used, and the collective
enhancement effect for this configuration becomes more subtle, as shown in detail
in Duan et al. (2002). The atomic ensemble consists of a cloud of Na identical
atoms with the relevant level structure shown in Fig. 1A. A pair of stable lower
states |g〉 and |s〉 can correspond, for instance, to hyperfine or Zeeman sublevels
of electronic ground state of alkali atoms. The relevant coherence between the
levels |g〉 and |s〉 can be maintained for a sufficiently long time, which provides
the desired quantum memory. All the atoms are initially prepared in the ground
state |g〉 through optical pumping.

The ensemble is then illuminated by a weak pumping laser pulse which drives
the transition |g〉 → |e〉 with a large detuning Δ, and we look at the spontaneous
emission light from the transition |e〉 → |s〉, whose polarization and/or frequency
are assumed to be different from that of the pumping laser. The pumping laser is
directed onto all the atoms in the focusing area so that each atom has nearly the
same small probability to be excited into the state |s〉 through the Raman tran-
sition. (It is a simple matter to extend the analysis to inhomogeneous couplings
where different atoms have different excitation probabilities by appropriately re-
defining the collective atomic mode.)
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FIG. 1. (A) The relevant atomic level structure with ground and metastable states |g〉 and |s〉, and
excited state |e〉. (B) Correlations between the atomic modes of an atomic ensemble (left), and the
free-space optical modes (right). The symmetric atomic mode S is predominantly correlated with the
forward scattered optical mode a, with only weak correlations to other optical modes that account for
spontaneous emission noise. Likewise, the forward scattered mode a is only weakly correlated with
other (nonsymmetric) atomic modes (see Duan et al., 2002).

With the above Raman transition, the corresponding spontaneous photon from
each atom can be emitted in any direction given by the dipole emission pat-
tern, and without any selection on the photonic or atomic state, there will be no
collective enhancement effect that gives rise to directional emission. (In the weak-
pumping regime considered here, we neglect effects of superradiant emission.)
However, considering the atomic gas with many atoms, we can define collective
atomic modes. If we look at a particular atomic mode, it gets correlated with a
well-defined photon mode that is directional in space. For instance, the symmet-
ric atomic mode S (resulting from homogeneous excitation) is defined as

(1)S ≡ (
1/

√
Na

) Na∑
i=1

|g〉i〈s|.

This atomic mode is correlated with a special optical spontaneous emission mode
a (called the signal mode) which is essentially collinear with the pumping laser.
The signal mode a can be written by expanding the spontaneous emission field in
plane wave modes:

(2)a =
∫

f ∗
k ak d3k,

where ak represents the plane wave mode with the wave vector k. The operators
ak satisfy the standard commutation relations [ak, a

†
k′ ] = δ(k − k′), and f ∗

k is the
normalized signal mode function whose explicit form depends on the pumping
laser profile and the geometry of the atomic ensemble, as specified in Duan et al.
(2002). The modes S and a are correlated with each other: if the atom collection
is excited into the symmetric collective mode S, the accompanying spontaneous
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emission photon is be emitted into the signal mode a, and vice versa. There are
many other atomic modes in the ensemble and optical modes in the spontaneous
emission field, and these background modes can be correlated with each other
in a complicated pattern that depends on details concerning the thermal motion
of the atoms. However, the correlation between the particular modes S and a is
maintained even with a large degree of atomic thermal motion. In experiments
with cold atomic ensembles, the correlation pattern between the atomic and the
optical modes gets simplified as the atomic thermal motional effect is minimized,
and correlations between other atomic and optical modes can be used, where the
spontaneous emission photon is non-collinear with the pumping pulse (Balic et
al., 2005). Due to density fluctuations in the atomic gas, the modes S and a can
still get weakly correlated with the other atomic and optical modes, inducing so-
called spontaneous emission noise. This noise vanishes as the atomic gas becomes
optically thick. The explicit characterization of the noise can be found in Duan et
al. (2002). The correlation picture between different atomic and optical modes is
shown schematically in Fig. 1B.

The application of this system to quantum communication comes from the cor-
relation between the modes S and a, which can both be selectively detected. The
mode a is directional in space with a well-defined mode structure, so it can be cou-
pled into a single-mode optical fiber and then detected by a single-photon detector.
The excitation in the atomic mode S can be subsequently transferred into a direc-
tional optical photon with a repumping laser pulse (Fleischhauer and Lukin, 2000;
Cirac et al., 2001; Liu et al., 2001; Phillips et al., 2001) and then can be similarly
detected by a single-photon detector coupled through a fiber. With this detection
method, we can neglect the other atomic and optical modes as they have no in-
fluence on the above measurements, and we are left with an effective two-mode
problem. The pure correlation between the modes S and a can then be used to
generate entanglement between two distant atomic ensembles, which eventually
leads to realization of quantum repeaters as described in the next section.

2.3. ENTANGLEMENT GENERATION, CONNECTION, AND

ENTANGLEMENT-BASED COMMUNICATION SCHEMES

To realize long-distance quantum communication, first we need to entangle two
atomic ensembles within the channel attenuation length, and then connect dif-
ferent segments of entanglement to generate a long-distance entangled state. We
follow the same approach as in Duan et al. (2001).

The entanglement generation scheme is based on photon interference at pho-
todetectors, which critically uses the fault-tolerance property of photon detection.
With a weak pumping laser pulse, the state of the atomic and the optical modes S

and a can be written in the form (Duan et al., 2002)

(3)|φ〉 = |0a〉|0p〉 + √
pcS

†a†|0a〉|0p〉 + O(pc),
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FIG. 2. Schematic setup for generating entanglement between the two atomic ensembles L and
R (see Duan et al., 2001). The two ensembles are pencil shaped and illuminated by the synchronized
classical laser pulses. The forward-scattered Stokes pulses are collected after the filters (polarization
and frequency selective) and interfered at a 50%–50% beam splitter (BS) after the transmission chan-
nels, with the outputs detected respectively by two single-photon detectors D1 and D2. If there is a
click in D1 or D2, the process is finished and we successfully generate entanglement between the
ensembles L and R. Otherwise, we first apply a repumping pulse to drive the transition |2〉 → |3〉 on
the ensembles L and R to reset the state of the ensembles back to the ground state |0〉La ⊗ |0〉Ra , then
the same classical laser pulses as the first round drive the transition |1〉 → |3〉 and we detect again the
forward-scattering Stokes pulses after the beam splitter. This process is repeated until finally we have
a click in the D1 or D2 detector.

where pc � 1 is a small excitation probability, and |0a〉 and |0p〉 denote the
vacuum (no excitation) state of the modes S and as , respectively.

Now we explain how to use this setup to generate entanglement between two
distant ensembles L and R using the configuration shown in Fig. 2. Here, two
laser pulses excite both ensembles simultaneously, and the whole system is de-
scribed by the state |φ〉L ⊗ |φ〉R , where |φ〉L and |φ〉R are given by Eq. (3) with
all the operators and states distinguished by the subscript L or R. The forward
scattered Stokes signal from both ensembles is combined at the beam splitter and
a photodetector click in either D1 or D2 measures the combined radiation from
two samples, a†

+a+ or a
†
−a− with a± = (aL ±eiϕaR)/

√
2. Here, ϕ denotes an un-

known difference of the phase shifts in the two-side channels. We can also assume
that ϕ has an imaginary part to account for the possible asymmetry of the setup,
which will also be corrected automatically in the scheme. But the setup asymme-
try can be easily made very small, and for simplicity of expressions we assume
that ϕ is real in the following. Conditional on the detector click, we should apply
a+ or a− to the whole state |φ〉L ⊗ |φ〉R , and the projected state of the ensembles
L and R is nearly maximally entangled with the form (neglecting the high-order
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terms of order pc),

(4)|Ψϕ〉±LR = (
S

†
L ± eiϕS

†
R

)/√
2 |0a〉L|0a〉R.

The probability for getting a click is given by pc for each round, so we need
repeat the process about 1/pc times for a successful entanglement preparation,
and the average preparation time is approximately given by tΔ/pc, where tΔ is
the duration of each pumping cycle. The states |Ψr 〉+LR and |Ψr 〉−LR can be easily
transformed to each other by a simple local phase shift. Without loss of generality,
we assume in the following that the entangled state |Ψr 〉+LR is generated.

The presence of noise modifies the projected state of the ensemble to

(5)ρLR(c0, ϕ) = 1

c0 + 1

(
c0|0a0a〉LR〈0a0a| + |Ψϕ〉+LR〈Ψϕ |),

where the “vacuum” coefficient c0 is determined by the dark count rates of the
photon detectors. It is seen below that any state in the form of Eq. (5) will be
purified automatically to a maximally entangled state in the entanglement-based
communication schemes. We therefore call this state an effective maximally en-
tangled (EME) state with the vacuum coefficient c0 determining the purification
efficiency.

After successful generation of entanglement within the attenuation length, we
now extend the quantum communication distance. This is done through entan-
glement swapping with the configuration shown in Fig. 3. Suppose that we start
with two pairs of the entangled ensembles described by the state ρLI1 ⊗ ρI2R ,
where ρLI1 and ρI2R are given by Eq. (5). In the ideal case, the setup shown
in Fig. 3 measures the quantities corresponding to operators S

†
±S± with S± =

(SI1 ± SI2)/
√

2. If the measurement is successful (i.e., one of the detectors regis-
ters one photon), we prepare the ensembles L and R into another EME state. The
new ϕ-parameter is given by ϕ1+ϕ2, where ϕ1 and ϕ2 denote the old ϕ-parameters
for the two segment EME states. Even in the presence of realistic noise such as
photon loss, an EME state is still created after a detector click. The noise only
influences the success probability to get a click and the new vacuum coefficient in
the EME state. The above method for connecting entanglement can be continued
to extend the communication over an arbitrary distance.

After an EME state has been established between two distant sites, we would
like to use it in the communication protocols, such as for quantum teleportation,
cryptography, or Bell inequality detection. It is not obvious that the EME state
[Eq. (5)], which is entangled in the Fock basis, is useful for these tasks since in
the Fock basis it is experimentally hard to do certain single-bit operations. In the
following we show how the EME states can indeed be used to realize all these
protocols with simple experimental configurations.

Quantum cryptography and the Bell inequality detection are achieved with the
setup shown by Fig. 4. The state of the two pairs of ensembles is expressed as
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FIG. 3. Illustration for the entanglement connection (swapping) (see Duan et al., 2001). We have
two pairs of ensembles L, I1 and I2, R distributed at three sites L, I and R. Each of the ensem-
ble-pairs L, I1 and I2, R is prepared in an EME state in the form of Eq. (3). The excitations in the
collective modes of the ensembles I1 and I2 are transferred simultaneously to the optical excitations
by the repumping pulses applied to the atomic transition |2〉 → |3〉, and the stimulated optical excita-
tions, after a 50%–50% beam splitter, are detected by single-photon detectors D1 and D2. If either D1
or D2 clicks, the protocol is successful and an EME state in the form of Eq. (3) is established between
the ensembles L and R with a doubled communication distance. Otherwise, the process fails, and we
need to repeat the previous entanglement generation and swapping until finally we have a click in D1
or D2, that is, until the protocol finally succeeds.

ρL1R1 ⊗ ρL2R2 , where ρLiRi
(i = 1, 2) denote the same EME state with the vac-

uum coefficient cn if we have carried out the entanglement connection n times.
The ϕ-parameters in ρL1R1 and ρL2R2 are the same provided that the two states
are established over the same stationary channels. We register only the coinci-
dences of the two-side detectors, so the protocol is successful only if there is a
click on each side. Under this condition, the vacuum components in the EME
states, together with the state components S

†
L1

S
†
L2

|vac〉 and S
†
R1

S
†
R2

|vac〉, where
|vac〉 denotes the ensemble state |0a0a0a0a〉L1R1L2R2 , have no contributions to
the experimental results. So, for the measurement scheme shown by Fig. 4, the

FIG. 4. Schematic setup for the realization of quantum cryptography and Bell inequality detection
(see Duan et al., 2001). Two pairs of ensembles L1, R1 and L2, R2 have been prepared in the EME
states. The collective atomic excitations on each side are transferred to the optical excitations, which,
respectively after a relative phase shift ϕL or ϕR and a 50%–50% beam splitter, are detected by the
single-photon detectors DL

1 ,DL
2 and DR

1 , DR
2 . We look at the four possible coincidences of DR

1 ,DR
2

with DL
1 , DL

2 , which are functions of the phase difference ϕL − ϕR . Depending on the choice of ϕL

and ϕR , this setup can realize both the quantum cryptography and the Bell inequality detection.
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ensemble state ρL1R1 ⊗ρL2R2 is effectively equivalent to the following “polariza-
tion” maximally entangled (PME) state (the terminology of “polarization” comes
from an analogy to the optical case)

(6)|Ψ 〉PME = (
S

†
L1

S
†
R2

+ S
†
L2

S
†
R1

)/√
2 |vac〉.

The success probability for the projection from ρL1R1 ⊗ ρL2R2 to |Ψ 〉PME (i.e.,
the probability to get a click on each side) is given by 1/[2(cn + 1)2]. One can
also check that in Fig. 4, the phase shift ϕΛ (Λ = L or R) together with the
corresponding beam splitter operation are equivalent to a single-bit rotation in the
basis {|0〉Λ ≡ S

†
Λ1

|0a0a〉Λ1Λ2, |1〉Λ ≡ S
†
Λ2

|0a0a〉Λ1Λ2} with the rotation angle
θ = ϕΛ/2. Since we have the effective PME state and we can perform the desired
single-bit rotations in the corresponding basis, it is clear how to use this facility to
realize quantum cryptography, Bell inequality detection, as well as teleportation
(see Duan et al., 2001 for details).

2.4. BUILT-IN ENTANGLEMENT PURIFICATION AND SCALING OF THE

COMMUNICATION EFFICIENCY

It is remarkable that all the steps of entanglement generation, connection, and
application schemes described above are robust to practical noise. Now we ana-
lyze the built-in entanglement purification in each step, which, combined together,
makes the whole scheme noise resilient.

In the entanglement generation, the dominant noise is photon loss, which in-
cludes the contributions from the channel attenuation, spontaneous emission in
the atomic ensembles (which results in the population of the collective atomic
mode correlated with the accompanying photon going to other directions), the
coupling inefficiency of the Stokes light into and out of the channel, and the
inefficiency of the single-photon detectors. The loss probability is denoted by
1 − ηp with the overall efficiency ηp = η′

pe−L0/Latt , where we have separated
the exponential channel attenuation factor (with channel attenuation length Latt)
from other noise contributions η′

p that are independent of the communication dis-
tance L0. The photon loss decreases the success probability for getting a detector
click from pc to ηppc, but it has no influence on the resulting EME state. Due to
this noise, the entanglement preparation time is now written as T0 ∼ tΔ/(ηppc).
The second source of noise comes from the dark counts of the single-photon
detectors. The dark count gives a detector click, but without population of the
collective atomic mode, so it contributes to the vacuum coefficient in the EME
state. If the dark count comes with a probability pdc over the time interval tΔ, the
vacuum coefficient is given by c0 = pdc/(ηppc), which is typically much smaller
than unity since the Raman transition rate is much larger than the dark count rate.
The final source of noise, which influences the fidelity to get the EME state, is

aamop55 v.2007/07/20 Prn:30/07/2007; 10:58 F:aamop55007.tex; VTEX/ELE p. 11
aid: 55007 pii: S1049-250X(07)55007-X docsubty: REV



430 L.-M. Duan and C. Monroe [2

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

caused by the event that more than one atom are excited to the collective mode
S whereas there is only one click in D1 or D2. The conditional probability for
that event is given by pc, so we can estimate the infidelity F̄0 ≡ 1 − F0 for the
entanglement generation by

(7)F̄0 ∼ pc.

Note that by decreasing the excitation probability pc, the infidelity can be made
closer to zero with the price of a longer entanglement preparation time T0. This is
the basic idea of the entanglement purification. So, in this scheme, the confirma-
tion of the click from the single-photon detector generates and purifies entangle-
ment at the same time.

In the entanglement swapping step, the dominant noise remains photon loss,
which include the contributions from the detector inefficiency, the inefficiency
of the excitation transfer from the collective atomic mode to the optical mode,
and the small decay of the atomic excitation during the storage. (Note that by
introducing the detector inefficiency, we have automatically taken into account
the imperfection that the detectors cannot distinguish between one and two pho-
tons.) With all these losses, the overall efficiency in the entanglement swapping
is denoted by ηs . The loss in the entanglement swapping gives contributions to
the vacuum coefficient in the connected EME state, since in the presence of loss a
single detector click might result from two collective excitations in the ensembles
I1 and I2, and in this case, the collective modes in the ensembles L and R have to
be in a vacuum state. After taking into account the realistic noise, we can specify
the success probability and the new vacuum coefficient for the ith entanglement
connection by the recursion relations

(8)pi ≡ f1(ci−1) =
ηs

[
1 − ηs

2(ci−1+1)

]
ci−1 + 1

,

(9)ci ≡ f2(ci−1) = 2ci−1 + 1 − ηs.

The coefficient c0 for the entanglement preparation is typically much smaller than
1−ηs , so ci ≈ (2i −1)(1−ηs) = (Li/L0−1)(1−ηs), where Li denotes the com-
munication distance after i entanglement connections. With this expression for
the ci , we can easily evaluate the probability pi and the communication time Tn

for establishing a EME state over the distance Ln = 2nL0. After the entanglement
connection, the fidelity of the EME state also decreases, and after n entanglement
connections, the overall fidelity imperfection F̄n ∼ 2nF̄0 ∼ (Ln/L0)F̄0. This in-
fidelity F̄n can be small by simply decreasing the excitation probability pc, from
Eq. (7).

It is important to point out that this entanglement connection scheme also has
built-in entanglement purification. This can be understood as follows: each time
we connect entanglement, the imperfections of the setup decrease the entangle-
ment fraction 1/(ci + 1) in the EME state. However, the entanglement fraction
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decays only linearly with the distance (the number of segments), which is in con-
trast to the exponential decay of the entanglement for the connection schemes
without entanglement purification. The reason for the slow decay is that in each
time of the entanglement connection, we need repeat the protocol only until there
is a detector click. The confirmation of a click removes part of the added vacuum
noise, since a larger vacuum component of the EME state results in more repeti-
tion. The built-in entanglement purification in the connection scheme is essential
for the polynomial scaling law of the communication efficiency.

As in the entanglement generation and connection schemes, the entanglement
application schemes also have built-in entanglement purification which makes
them resilient to practical noise. First, we have seen that the vacuum components
in the EME states are removed from the confirmation of the detector clicks and
thus have no influence on the fidelity of all the application schemes. Second, if
the single-photon detectors and the atom-to-light excitation transitions in the ap-
plication schemes are imperfect with the overall efficiency denoted by ηa , these
imperfections only influence the efficiency to get the detector clicks with the suc-
cess probability now given by pa = ηa/[2(cn + 1)2], and have no effects on
the communication fidelity. Finally, we have seen that the phase shifts in the sta-
tionary channels and the small asymmetry of the stationary setup are removed
automatically when we project the EME state to the PME state, and thus have no
influence on the communication fidelity.

As a result of the built-in entanglement purification in each step of the DLCZ
scheme, we can fix the communication fidelity to be nearly perfect, and at the
same time keep the communication time to increase only polynomially with the
distance. Assume that we want to communicate over a distance L = Ln = 2nL0.
By fixing the overall fidelity imperfection to be a desired small value F̄ , the en-
tanglement preparation time becomes T0 ∼ tΔ/(ηpF̄0) ∼ (Ln/L0)tΔ/(ηpF̄ ).
For an effective generation of the PME state (6), the total communication time is
Ttot ∼ Tn/pa , with Tn ∼ T0/

∏n
i=1 pi . So the total communication time scales

with the distance by

(10)Ttot ∼ 2tΔ

(
L

L0

)2 1

ηppaF̄
∏n

i=1 pi

,

where the success probabilities pi , pa for the ith entanglement connection and for
the entanglement application have been specified earlier. Equation (10) confirms
that the communication time Ttot increases with the distance L only polynomially,
with the understanding that the number of segments n itself depends logarithmi-
cally on L.

We illustrate this polynomial scaling explicitly in two limiting cases.
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• For high efficiency entanglement swapping (1 − ηs � 1), the communication
time in Eq. (10) is

(11)Ttot ∼ τC

(
L

L0

)2

eL0/Latt ,

with the prefactor τC ≡ 2tΔ/(η′
pηaF̄ ) independent of the segment and the

total distances L0 and L. In this case, the communication time Ttot increases
quadratically with L.

• For low efficiency entanglement swapping with a significant inefficiency 1−ηs ,
the communication time is approximated by

(12)Ttot ∼ τC

(
L

L0

) 1
2 log2

L
L0

+log2
( 1
ηs

−1
)+ 5

2

eL0/Latt ,

also exhibiting a polynomial increases with L. (More rigorously, this scaling
is considered sub-exponential, but there is no practical difference because the
polynomial order log2(L/L0) is well bounded from above for any reasonably
long distance.) In general, when Ttot increases with L/L0 by an mth-order
power law (L/L0)

m, choosing a segment length L0 = mLatt minimizes the
net communication time Ttot. As a simple estimate of the improvement in the
communication efficiency, we assume that the total distance L is about 100Latt,
for a choice of the parameter ηs ≈ 2/3, the communication time Ttot/τc ∼ 106,
using the optimal segment length L0 ∼ 5.7Latt. This result is a dramatic
improvement compared with the direct communication case, where the com-
munication time Ttot for getting a PME state increases with the distance L

exponentially: Ttot ∼ T0e
L/Latt . For the same distance L ∼ 100Latt, this re-

quires Ttot/T0 ∼ 1043 for direct communication, which implies that for this
example, the DLCZ scheme becomes 1037 times more efficient through imple-
mentation of the quantum repeater architecture.

2.5. EXPERIMENTAL QUANTUM COMMUNICATION WITH ATOMIC

ENSEMBLES

Remarkable experimental advances in implementing the DLCZ scheme have been
reported in recent years (Kuzmich et al., 2003; Van der Wal et al., 2003; Chou
et al., 2004, 2005; Matsukevich and Kuzmich, 2004; Blinov et al., 2004; Balic
et al., 2005; Chaneliere et al., 2005; Eisaman et al., 2005; Manz et al., 2006;
Riedmatten et al., 2006; Matsukevich et al., 2006), targeted to demonstration of
scalable quantum communication with atomic ensembles. The first two experi-
ments were reported in 2003 by the Caltech and the Harvard groups (Kuzmich et
al., 2003; Van der Wal et al., 2003), where the non-classical correlation between
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the symmetric atomic mode S and the signal light mode a was observed. Demon-
stration of this correlation is fundamental to the entanglement generation scheme
in the DLCZ approach, and also shows the collective enhancement effect in the
atomic ensemble for the associated level configuration.

In these initial demonstrations, the symmetric atomic mode S is transferred
to another photon mode b, and the correlation is actually measured between the
photonic modes a and b. The Caltech experiment (Kuzmich et al., 2003) operates
in the weak pumping region as assumed in the DLCZ scheme, and it introduces
a useful quantity from the Cauchy–Schwarz inequality to characterize the non-
classical correlation between the modes a and b (and thus S and a). From the
photon counting measurements of these two photonic modes, the self-correlation
functions g̃a,a , g̃b,b and the cross-correlation function g̃a,b can be defined. For
any two classical light fields (as in quantum optics, “classical” here means that the
fields can be described with a positive P-representation), these correlations satisfy
the so-called Cauchy–Schwarz inequality [g̃a,b]2 � g̃a,ag̃b,b, while this inequality
could be violated for fields with non-classical correlation. So, if one defines a
quantity η ≡ [g̃a,b]2/(g̃a,ag̃b,b), η > 1 is a clear experimental signature for non-
classical correlation. This quantity η has been measured to be about 1.84 in the
first experiment (Kuzmich et al., 2003), and now its value can be pushed above
hundreds (Riedmatten et al., 2006; Matsukevich et al., 2006), signaling a much
better signal-to-noise ratio. The Cauchy–Schwarz inequality and the associated
ratio η is widely used in experiments to characterize noise and quantify entry into
the quantum region.

More recently, several experiments have coherently manipulated two sepa-
rate atomic ensembles (Matsukevich and Kuzmich, 2004; Chou et al., 2005;
Chaneliere et al., 2005; Eisaman et al., 2005; Matsukevich et al., 2006). The
coherence or entanglement of the two ensembles using the above entangle-
ment generation scheme has been shown (Matsukevich and Kuzmich, 2004;
Chou et al., 2005; Matsukevich et al., 2006), and quantum states have been co-
herently transferred from one ensemble to the other (Chaneliere et al., 2005;
Eisaman et al., 2005).

The level configuration investigated in Duan et al. (2001) also provides a new
scheme to generate entangled photon pairs, with one photon of the pair able to
be stored in the atomic ensemble with a controllable delay time. This ability,
together with the projection measurements by the photon counts, have a number
of interesting applications for engineering the states of the photon pulses (Chou et
al., 2004) and for proof-of-principle demonstration of storage of the single photon
pulses (Chaneliere et al., 2005; Eisaman et al., 2005).

In addition to atomic ensembles, various other physical systems have been
proposed to replace the atomic ensembles in the DLCZ scheme. For instance,
ensembles of electron spins or nuclear spins in quantum dots (or other solid-state
systems) can be considered (Childress et al., 2006), given that the electron or
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nuclear spins are sufficiently identical (have a small inhomogeneous shift), and
exhibit a sufficiently long coherence time.

Single trapped atoms or ions can also replace the atomic ensemble (Duan et
al., 2004). In this case, there is of course no collective enhancement effect for the
coupling to light, so the entanglement connection efficiency can be significantly
reduced. However, for local ions at the same node, the Coulomb interaction can
be exploited to perform local quantum gates and entangle different segments of
the system. This provides an alternative way for efficient entanglement connec-
tions and the construction of quantum repeaters or quantum networks (Duan et
al., 2004). The advantage with the trapped ion system is that single ions behave
as near-ideal quantum memories, having coherence times far exceeding that of
atomic ensembles. Moreover, the ion trap system is a leading candidate for the
implementation of quantum computers (Monroe, 2002). In this context, it may
be desirable to wire together remotely-located ions through photons, an impor-
tant step towards distributed quantum computation and the “quantum internet”.
Along these lines, an initial experiment has been reported in 2004 (Blinov et al.,
2004), where entanglement was observed between a single trapped ion qubit and
a spontaneous emission photon, therefore demonstrating entanglement between
an ideal quantum memory and a flying qubit. Further experiment has confirmed
the violation of the Bell inequality corresponding to this entanglement (Moehring
et al., 2004). Similar entanglement has also been measured subsequently between
a single neutral atom and a photon (Volz et al., 2006).

3. Quantum State Engineering with Realistic Linear Optics

3.1. LINEAR OPTICS AND QUANTUM STATE ENGINEERING

In this section, we review some protocols to generate many-body entangled states
with linear optics elements. It is closely related to topics in the previous section in
that these schemes are inherently robust to the dominant noise in the correspond-
ing experimental system. For quantum communication, we would like to establish
an entangled EPR-like or Bell state over a long distance, and are interested in
the scaling of total communication time and the communication distance. For
quantum state engineering, we would like to generate more diverse and complex
quantum states of many qubits, and are interested in the scaling of total prepara-
tion time and the number of qubits.

Linear optics, combined with practical single-photon sources and detectors,
has provided a powerful tool to test a number of quantum information pro-
tocols (Kwiat et al., 1995; Bouwmeester et al., 1997; Boschi et al., 1998;
Pan et al., 2001; Walther et al., 2005). In linear optics implementations of
quantum information processing, the post-selection technique of photon de-
tection typically plays a critical role. However, as the system is scaled up,
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this post-selection naïvely leads to an exponential scaling of the overall effi-
ciency (or success probability) with the size of the system. A remarkable lin-
ear optics quantum computation scheme was proposed by Knill et al. (2001),
which in principle can be used to overcome this scaling problem. But the im-
plementation of the KLM scheme requires photon detectors with a very high
efficiency, far beyond than the efficiency of the state-of-the-art photon detec-
tors. In the past few years, there have been a number of proposals to improve
upon the original linear optics computation scheme (Yoran and Reznik, 2003;
Nielsen, 2004; Browne and Rudolph, 2005), some of which employ a graph state
approach to quantum computation (Raussendorf and Briegel, 2001; Hein et al.,
2006). The threshold efficiency for the photon detectors has also been improved
considerably, with the most recent estimate about 99.7% (Dawson et al., 2006)
(although it is still significantly beyond the efficiency of practical photon detec-
tors).

We now review quantum state engineering schemes that do not require a high
threshold efficiency on the photon detectors. Earlier, it was shown that GHZ
types of entangled states can be prepared with linear optical devices and low
efficiency photon detectors (Duan, 2002). Recently, this scheme has been ex-
tended to generate any “graph” state, which can be used for quantum information
protocols and universal quantum computation (Raussendorf and Briegel, 2001;
Hein et al., 2006). Moreover, a particular class of entangled states represent by
“tree” graphs can be prepared efficiently with photon detectors of any efficiency.
This approach overcomes the inefficient scaling through the “divide-and-conquer”
method, similar to the quantum repeater protocol. While tree graph states have
not yet been proven universal for quantum computation (Shi et al., 2006), they
can still be used for implementation of a number of other quantum information
protocols, including quantum communication, networking, and fundamental test
of quantum mechanics (Hein et al., 2006).

In this section, we review this scheme for engineering graph state entan-
glement following the approach in Bodiya and Duan (?). We analyze the ef-
fect of a polarization beam splitter (PBS) in the Hilbert subspace post-selected
by the photon detections, and show that a single PBS actually represents a
powerful gate for generating graph states of arbitrary shapes. This PBS gate
is more efficient than other linear optical quantum gates (Knill et al., 2001;
Nielsen, 2004; Browne and Rudolph, 2005), not wasting any ancilla photons
within each gate operation. Finally, we review a method for scalable generation
and detection of many-qubit entangled states represented by tree graph states.
Here, by “scalable”, we mean the overall efficiency for preparation of a large-
scale entanglement with a tree-graph structure scales nearly polynomially with
the number of qubits. This efficient scaling persists no matter how small the effi-
ciencies of the photon sources or detectors.
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3.2. PREPARATION OF ARBITRARY GRAPH STATES

We assume to have an imperfect source of entangled photon pairs, which gener-
ates states of the following form

(13)ρs = (1 − ηs)ρvac + ηs |Ψ 〉12〈Ψ |,
where |Ψ 〉12 = (|HH 〉12 +|V V 〉12)/

√
2 represents single photons in two distinct

(spatial) modes (1 and 2) entangled through their (internal) polarization states |H 〉
and |V 〉. The state ρvac represents the vacuum component with zero photons in
modes 1 and 2; and ηs is the source efficiency for producing the entangled photon
pair. In experiments, the entangled photon source is typically provided through the
process of spontaneous parametric down conversion (SPDC), where the source
efficiency ηs � 1 (Kwiat et al., 1995; Bouwmeester et al., 1997; Boschi et al.,
1998). The pair state of Eq. (13) can also be generated from other experimental
setups, such as from decay of a single dipole (which could be a single atom, ion,
or a quantum dot) in free space or in a cavity (Blinov et al., 2004), or from decay
of an collective excitation in an atomic ensemble (Duan et al., 2001; Chaneliere
et al., 2005; Eisaman et al., 2005). In these cases, one mode of the entangled pair
is typically represented by a matter qubit (see the previous section), which can be
transferred later to a photon qubit after a controllable delay.

Now we show any graph state in the Hilbert subspace post-selected by the pho-
ton detection can be generated from the pair states [Eq. (13)] through a series of
PBS gates. An n-qubit graph state is defined as the co-eigenstate of n independent
stabilizer operators Si = Xi

∏
j Zj , where i denotes qubit i (each qubit is associ-

ated with a vertex of the graph), j runs over all the neighbors of the qubit i, and Xi ,
Zi are the Pauli operators σx and σz for qubit i (Raussendorf and Briegel, 2001;
Hein et al., 2006). In a graph, the qubits i and j are called neighbors if they are
connected with an edge. The graph state reduces to a cluster state if the corre-
sponding graph is a periodic lattice (Hein et al., 2006).

To show construction of the graph states, first we must consider the effect of a
PBS in the subspace post-selected by the photon detection. For linear optics quan-
tum information, all the photon modes are measured eventually in an appropriate
polarization basis by a single-photon detector. We are interested only in the mea-
surement outcomes with one photon registered from each mode (its polarization
can be arbitrary). So, by this final measurement, one post-selects a Hilbert sub-
space, which we denote as S. We need only determine the state evolution in this
“physical” subspace S, as the state component outside S has no influence on the
final measurement of the polarization qubits.

A PBS lets the photon through if it is in the H polarization state, and reflects it
if it is in the V polarization state. After the PBS, photons from the two incoming
modes therefore emerge along different modes if and only if both photons have the
same polarization (either HH or V V ). Otherwise, the photons emerge from the
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PBS in the same spatial mode with the other mode in the vacuum state—outside
of the “physical” subspace S. So, within the subspace S, the effect of a PBS is to
perform a projection on the input state, described by the projector

(14)P = |HH 〉12〈HH | + |V V 〉12〈V V |.
This projection is equivalent to a measurement of the operator Z1Z2 on the two
input qubits 1 and 2, with the final state undisturbed only for measurement out-
come “+1” (|HH 〉12 and |V V 〉12 are eigenstates of Z1Z2 with an eigenvalue
“+1”). So in the physical subspace S, a single PBS performs an effective Z1Z2
measurement gate with a success probability of 1/2 (the probability to stay in the
“physical” space S after the PBS).

We start with two entangled pairs 1, 2 and 3, 4, each pair described by the state
of Eq. (13). In the subspace S, the effective state is then given by |Ψ 〉12, which can
be transferred to a two-bit graph state with a straightforward Hadamard gate on
one of the qubits. Consequently, for the pairs 1, 2 and 3, 4, we can assume them
to have the stabilizer operators X1Z2, X2Z1 and X3Z4, X4Z3, respectively. If the
qubits 2 and 3 pass through a PBS, the effective output state in the subspace S is
then stabilized by the operators Z2Z3, X2X3Z1Z4, X2Z1, and X4Z3. (The sec-
ond operator is just a product of the previous stabilizers X2Z1 and X3Z4, and it
remains unchanged after the PBS because it commutes with the effective measure-
ment gate Z2Z3.) With a straightforward Hadamard gate X3 ↔ Z3, implemented
with a half-wave plate, the above four stabilizers transform to the standard stabi-
lizers for the 4-bit star-shape graph state as shown in Fig. 5.

For convenience, we label the combination of the PBS and single-bit Hadamard
operation the PBS gate (see Fig. 5). An extension of the above construction yields
the following important result: the PBS gate always joins two pieces of graphs,
independent of the shapes of the initial pieces. This result can be proven generally
as follows. We start with two pieces of graph states G1 and G2, with n and m

qubits, respectively. The stabilizers associated with the qubits i1 and i2 are given
by Sil = Xil

∏
jl∈N(il)

Zjl
(l = 1, 2), where il is an arbitrary vertex of the graph

Gl and N(il) denotes all the neighbors of the qubit il in the graph Gl . After a PBS
gate on the qubits i1 and i2, the stabilizers Si2 and Si1 are replaced by

S′
i2

= Xi2Zi1 and S′
i1

= Xi1Zi2

∏
j1∈N(i1)

Zj1

∏
j2∈N(i2)

Zj2 .

All the other stabilizers of the initial graphs G1 and G2 remain unchanged after
the gate. One can immediately see that the effective output state of the PBS gate
is still a graph state which combines the two initial graphs G1 and G2, with i2
attached to i1, and i1 attached to i2 and all their initial neighbors in the graphs G1
and G2 [see Fig. 5(c)].

Given the above result, it becomes possible to construct graph states of any
shape with a series of PBS gates. In Figs. 5 and 6, we illustrate this by constructing
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FIG. 5. (a) Representation of the PBS gate, which consists of a polarization beam splitter and
a half-wave plate (for a Hadamard operation on one mode). (b) and (c): Illustration in which PBS
gates generate tree graph states. It is obvious that tree graphs of any shapes can be generated with this
method (see Bodiya and Duan, ?).

FIG. 6. (a) and (b): Illustration of using the PBS gates to generate 2-dimensional graphs states (see
Bodiya and Duan, ?).
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graph states representing a tree graph and a two-dimensional graph with many
loops. This construction method is efficient, as no photons are wasted during the
state preparation. Starting with n entangled pairs, we can build graph states of 2n

qubits with various shapes.

3.3. EFFICIENT GENERATION AND SCALING OF TREE GRAPH STATES

If we assume both the photon sources and detectors have large inefficiencies, we
still have inefficient (exponential) scaling for construction of large-scale graph
states even with the above PBS gate. In order to generate an n-qubit entangled
graph-state, we must consume n/2 imperfect entangled pairs represented by the
state [Eq. (13)] and detect n photon modes at the end. So, there is a factor of
ηn

dη
n/2
s in the preparation efficiency, where ηd is the efficiency for each indi-

vidual detector. If we require m � n/2 PBS gates to arrive at such a graph
state, there is an additional factor of (1/2)m in the preparation efficiency as-
sociated with the intrinsic gate success probability to stay in the subspace S.
In the case of a small source efficiency ηs (such as for the SPDC experi-
ments), the preparation efficiency degrades rapidly with the size of the state,
limiting the current implementation to only a few qubits (Kwiat et al., 1995;
Bouwmeester et al., 1997; Boschi et al., 1998; Pan et al., 2001; Walther et al.,
2005). In the following, we show that an important subclass of graph states—
“tree” states—can be prepared and detected efficiently with a number of opera-
tions that scales polynomially in the state size. As the name implies, tree states
are defined as graph states where any two vertices are connected by exactly one
path.

This efficient scaling method is based on a combination of the ideas of the
divide-and-conquer (quantum repeater) protocol and the post-selection measure-
ments. We note that for applications of graph states in linear optics quantum
information, each photon mode needs to be eventually measured in some po-
larization basis. This suggests that the whole protocol can be divided into two
logical steps: the graph state preparation and the application measurement. For
the second step, measurement of each photon mode has a finite failure proba-
bility, where instead of getting the photon’s polarization, one does not register
any photon. To boost the efficiency of the whole protocol, it is better to sort
out and discard these failure events as soon as possible. In this spirit, we can
try to apply the application measurements on some individual qubits before we
finish the first logic step of the graph-state preparation. We measure the qubits
as soon as we do not need to apply the PBS gates on those qubits any more.
When we register a failure event, we immediately discard the qubits that are
influenced by the failure event, and restart the state preparation for that seg-
ment.
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FIG. 7. Efficient construction of tree-graph states. White circles represent qubits that have been
measured in appropriate polarization bases, and black circles represent the connection qubits (unmea-
sured) that enable the next-step connection. (a) Before connection of the two center qubits, the two
edge qubits have been measured. (b) After connection, we immediately measure one of the connection
qubits, and leave the other one for the next step connection as shown in (c). (c) and (d): Repetition of
the process of connection/measurement for construction of larger graphs (see Bodiya and Duan, ?).

Figure 7 illustrates how such an idea works for preparation and detection of
a tree-graph state. We start with two pairs (1, 2) and (3, 4), with the pair state
described by Eq. (13). As we do not need to apply the PBS gates on the qubits
1 and 4 in the following steps, we immediately measure them in the polarization
basis chosen according to the targeted application protocol. The measurement on
the qubit 1 (or 4) succeeds with a probability p0 = ηsηd , and upon success, the
vacuum component in the imperfect state [Eq. (13)] is eliminated. If we fail in the
measurement of qubit 1, we simply prepare the state for the pair (1, 2) once again,
with the pair (3, 4) intact. After an average number of trials ∼1/p0, we succeed
in entangling the qubit pair (1, 2) and eliminating their vacuum component. Si-
multaneously, we can do the same to qubit pair (3, 4) after ∼1/p0 trials. Then, we
continue with the connection of the qubits 2 and 3 through a PBS gate, and after
the connection, we immediately measure the qubit 2 as we only need keep qubit 3
for the next step of connection. This process is continued until we get an effective
tree-graph state with a desired number of qubits, as outlined in the figure.

To determine the overall efficiency for generation of this graph-state entan-
glement, we specify recursion relations for each step of connection. For each
connection, the number of qubits is doubled. For the mth connection, the effective
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state before connection can be written as ρa
2n = ρn ⊗ ρn, where ρn is the state

of a segment which has n = 2m qubits. The segment state can be expressed as
ρn = am−1ρg + (1−am−1)ρvac, where ρg denotes the effective n-qubit tree graph
state and ρvac represents the vacuum component where the connection qubit of the
graph is in the vacuum state. For the 1st connection [of pairs (1, 2) with (3, 4)],
a0 = 1 because the vacuum component has been eliminated by the measurement
on qubits 1 and 4. After the mth connection, we immediately measure one of the
two connection qubits (the other one is kept as the connection qubit for the next
step). The success probability for this measurement is given by

(15)pm = ηd

[
a2
m−1

2
+ a2

m−1(2 − ηd)

4
+ am−1(1 − am−1)

]
,

where we have assumed the detector cannot distinguish the single-photon and
two-photon counts, as is the case in practice. Upon a success of this measurement,
the effective state for the 2n qubits becomes ρ2n = amρg + (1 − am)ρvac, where
ρg and ρvac have the same meaning as before except that they are for 2n qubits
now, and the coefficient am is given by the recursion relation am = 2am−1/(4 −
ηdam−1). Together with a0 = 1, this recursion relation yields

(16)am = 2

2m(2 − ηd) + ηd

.

To prepare and confirm an n = 2m qubit entanglement represented by the tree
graph state, the overall efficiency of the scheme can be characterized by the total
preparation time T . From the above recursion relations, we find that

T = t0

ηdam−1

m−1∏
i=0

1

pi

(17)≈
(

t0

ηsηd

)
n

1
2 (log2 n−1)+log2

( 1
ηd

− 1
2
)
,

where the approximation is valid when ηd/2 � n, and we have assumed that the
two segments of graphs states before each connection can be prepared in parallel
simultaneously. Note that overall preparation time scales linearly with t0, the time
to generate an imperfect pair [Eq. (13)]. In the case of SPDC photon sources, this
is roughly the inverse of the pulse repetition rate in these systems (Kwiat et al.,
1995; Bouwmeester et al., 1997; Boschi et al., 1998; Pan et al., 2001; Walther et
al., 2005). We find that T also scales nearly polynomially with the size n of the
final graph state, and such a scaling holds for any source efficiency ηs and detector
efficiency ηd .

The following example illustrates the dramatic improvement in scaling com-
pared with conventional (sequential) entanglement techniques. If we take the
source efficiency ηs ∼ 1% and the detector efficiency ηd ∼ 33%, we find
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T/t0 ∼ 3.0 × 107 (3.6 × 104) for preparation of a graph state of 32 (8) qubits.
If the pulse repetition rate is 80 MHz, typical for mode-locked laser sources
(Kwiat et al., 1995; Bouwmeester et al., 1997), the total preparation time is
T ∼ 0.37 s (0.45 ms), which is still reasonable. If we do not use this divide-
and-conquer technique, the total time required to produce a 32-qubit graph state
is T/t0 = η

−32/2
s η−32

d 232/2−1 ∼ 1052, or T ∼ 1044 s.
We point out that a very recent experiment has reported demonstration of six

photon graph states (Lu et al., 2006), using exactly the above PBS gate.

4. Quantum Computation through Probabilistic Atom–Photon
Operations

4.1. ROBUST PROBABILISTIC GATES

In this section, we review some schemes and experimental progress towards scal-
able quantum computing with probabilistic type of gates on atoms or ions. In
the previous two sections, we have reviewed methods to achieve inherently ro-
bust quantum communication and state engineering. Similarly, we also strive to
achieve inherent fault tolerance to the dominant experimental noise in quantum
computing applications. This is the main motivation for using probabilistic quan-
tum gates, where the dominant noise merely contributes to the gate inefficiency
and does not necessarily lead to infidelity of quantum gates. With noise, the en-
tangling gate succeeds with a finite (even small) probability, but we know with
near-certainty when it does succeed. It becomes much easier to correct these
probabilistic type of errors. We show that universal quantum computers can be
constructed efficiently even if the entangling gate only succeeds with an arbitrar-
ily small probability. Thus, through design of probabilistic gates, we can tolerate
the dominant experimental noise at very high levels.

The probabilistic gate covered in this section is different from the probabilistic
entangling operations and the post-selected PBS gate that we have reviewed in
the last two sections. Although all of these operations share the property of inher-
ent insensitivity to noise, only the probabilistic gate can lead to scalable quantum
computation. Compared with deterministic gates, the additional overhead in re-
sources (such as the number of qubit manipulations) for quantum computing with
probabilistic gates scales only polynomially with both the size of the computation
and the inverse of the gate success probability.

In the next section, following the approach in Duan et al. (2006), we review
a scheme for probabilistic gates on remote ions or atoms through interference of
photonic qubits stored in the frequency (color) of the photons. There are other pro-
posals for implementation of probabilistic gates using atomic qubits (Barrett and
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Kok, 2005; Duan et al., 2005; Lim et al., 2006). However, the scheme reviewed
here is considerably simpler with regard to experimental requirements:

• The gate operates on atoms in free space without the need for optical cavities,
and uses ideal atomic ground state hyperfine energy levels as matter qubits.

• Optical frequency qubits are used to connect and entangle matter qubits at
distant locations. The two states comprising this optical qubit have the same
polarization, but differ in frequency by the atomic hyperfine splitting (typi-
cally in the microwave region). These closely-spaced frequency components
have basically zero dispersion in typical optical paths, thus this optical qubit is
highly insensitive to phase jitter inherent in optical interferometers.

• The gate scheme does not require interferometric stabilization of the optical
path lengths to near or within an optical wavelength.

• The motion of the atomic qubits need not be confined to within an optical wave-
length (the Lamb–Dicke regime).

After a review of this probabilistic gate scheme, we then show how efficient
universal quantum computation can be accomplished with probabilistic entan-
gling quantum gates, following the approach in Duan and Raussendorf (2005).
Finally, we review recent experimental progress towards demonstration of the
probabilistic quantum gates in the trapped ion system (Madsen et al., 2006;
Maunz et al., 2006).

4.2. PROBABILISTIC GATES FROM FREE-SPACE ATOM–PHOTON COUPLING

The scheme for probabilistic gates between remote atoms is illustrated in Fig. 8.
The qubit is represented by two S1/2 ground state hyperfine levels of an alkali-
like atom (ion), with |0〉 ≡ |F,m = 0〉, and |1〉 ≡ |F + 1,m = 0〉. These
“clock” states are particularly insensitive to stray magnetic fields. In the figure,
for simplicity, we take F = 0, which is the case for ions such as 111Cd+, but the
scheme works for any value of F . To perform a probabilistic gate on two remote
atoms 1 and 2, we first excite both of the atoms to the P1/2 excited electronic state
with a π-polarized ultrafast laser pulse. We assume the laser has a bandwidth
which is larger than the ground state hyperfine splitting (14 GHz for 111Cd+),
but smaller than the fine structure splitting between P1/2 and P3/2 (74 THz for
111Cd+). Typical picosecond pulses used in experiments (bandwidth ∼ 500 GHz)
satisfy these requirements (Madsen et al., 2006). Under the above condition, we
can assume the pulse drives only the D1 transition from the ground state S1/2
to the excited state P1/2. [For any atoms with nuclear spin I = 1/2 such as
111Cd+, one can also drive the D2 line S1/2 → P3/2, where the two corresponding
hyperfine transitions are given by |F,m = 0〉 → |F ′,m = 0〉 and |F + 1,

m = 0〉 → |F ′ + 1,m = 0〉 with F ′ = F + 1, see Madsen et al. (2006).] Due
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FIG. 8. The atomic level configuration and the laser excitation scheme. (A) An ultrafast laser
pulse transfers the atomic qubit state from the ground levels to the excited levels. (B) The atom decays
back to the ground levels, with the frequency of the spontaneously emitted photon correlated with the
atomic qubit state (marked as the signal mode ν0 and ν1 in the figure). The photon from the σ± decay
channels is filtered through polarization selection (see Duan et al., 2006).

to dipole selection rules, for a π-polarized pulse, only the hyperfine transitions
|F,m = 0〉 → |F ′ + 1,m = 0〉 and |F + 1,m = 0〉 → |F ′,m = 0〉 are
allowed, where the upper hyperfine spin F ′ = F . Thanks to the selection rules,
each qubit state is transferred to a unique excited hyperfine level after the pulsed
laser excitation. This point is critical for successful gate operation.

After this laser excitation, the atoms eventually decay back to their ground
S1/2 states. There are several decay channels, denoted as π or σ± in Fig. 8. The
spontaneous emission photons from the π and the σ± decay channels have or-
thogonal polarizations along the observation direction. We can distinguish them
and can block any photon from the σ± decay channels through a polarization
filter. We then consider the π decay channels. In this case, the excited levels
|F ′ + 1,m = 0〉 and |F ′,m = 0〉 can only decay back to the ground states
|F,m = 0〉 and |F + 1,m = 0〉, respectively. While photons from these two
decay channels have the same polarization, they have slightly different frequen-
cies. The frequency difference is given by ΔS

HF + ΔP
HF , the sum of the hyperfine

splittings of the ground S1/2 and excited P1/2 states. This frequency difference
is typically much larger than the natural linewidth of the excited level. For in-
stance, for 133Cs atoms or 111Cd+ ions, the hyperfine splitting is about 9 GHz
(14 GHz), while the natural linewidth of the excited level (the inverse of the life-
time) is around 5 MHz (60 MHz). In both cases, the condition is well satisfied.
So the corresponding photons from the two π-decay channels are well resolved in
frequency. This defines two frequency modes for the emitted photon field, and we
call them ν0 and ν1 modes, respectively. If the atom is initially in the qubit state
|Ψa〉 = c0|0〉 + c1|1〉, then after this excitation-decay process the atom–photon
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system evolves to an entangled state

(18)|Ψap〉 = c0|0〉|ν0〉 + c1|1〉|ν1〉
if we only collect the photon from the π decay channels, where |ν0〉 and |ν1〉
represent a single photon state in the frequency modes ν0 and ν1, respectively.
This result is somewhat similar to the experiment of the atom–photon entangle-
ment (Blinov et al., 2004), but there are important differences. First, the final state
|Ψap〉 keeps track of the information c0, c1 of the initial qubit state. Thus, the
scheme here is not just an entangling protocol, but is instead an entangling gate
with the final quantum state depending on the initial state. As we see later, this
type of gate can form the basis for scalable quantum computation, and is there-
fore more powerful than merely an entangling operation. Second, the spontaneous
emission photon with either frequency ν0 or ν1 has the same spatial mode, so good
spatial mode-matching of this photonic qubit is possible even if we increase the
solid angle of collection. In the previous entangling protocol (Duan et al., 2004;
Blinov et al., 2004), the quantum information is carried by different polarization
modes of the photon, which have different spatial emission patterns. This requires
small collection solid angles in order to both maintain orthogonality and ensure
adequate spatial matching of the photonic qubit states.

To perform a gate on two remote atoms, the spontaneous emission photons
from the decay channels in each atom are collected in a certain solid angle, and
directed onto a beam splitter for interference (see Fig. 9). The output of the beam
splitter is measured by two single-photon detectors. We keep the resulting out-
come atomic state only when we register a photon from each detector. In this
case, what we have performed is a “measurement gate” on the atoms 1 and 2.
It corresponds to a quantum non-demolition measurement of the operator Z1Z2,
where Zi (or Xi) stands for the z (or x) component of the Pauli matrix associated
with atomic qubit i. After the coincidence measurement of photons on both detec-
tors, the atomic state is projected to the eigenspace of Z1Z2 with −1 eigenvalue.
To see this, we note that before the measurement, the state of both atom–photon
systems can be written as |Ψap〉1 ⊗|Ψap〉2, where |Ψap〉1 has the form of Eq. (14),
and |Ψap〉2 can be written as |Ψap〉2 = d0|0〉2|ν0〉2 + d1|1〉2|ν1〉2. To register a
photon from each detector, the two photons before the beam splitter need to go
to different sides, which means they should be in the anti-symmetric component
|ΦAS〉 = (|ν0〉1|ν1〉2 − |ν1〉1|ν0〉2)/

√
2 (for photons in the symmetric states, they

always go to the same detector). So, given that the photons take separate paths
after the beam splitter, the state of the atoms 1, 2 is given by the projection

|Ψ12〉 ∝ 〈ΦAS ||Ψap〉1 ⊗ |Ψap〉2

∝ c0d1|0〉1|1〉2 − c1d0|1〉1|0〉2

(19)∝ Z1(I − Z1Z2)|Ψa〉1 ⊗ |Ψa〉2,

aamop55 v.2007/07/20 Prn:30/07/2007; 10:58 F:aamop55007.tex; VTEX/ELE p. 27
aid: 55007 pii: S1049-250X(07)55007-X docsubty: REV



446 L.-M. Duan and C. Monroe [4

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

FIG. 9. The ZZ measurement gate on the atoms i and j . The spontaneous emission photons from
the π decay channels of these two atoms are collected, interfered at the beam splitter (BS), and then
detected by two single-photon detectors (D1 and D2). If each detector registers a photon, the atomic
state is projected onto the eigenspace of the ZiZj operator (see Duan et al., 2006).

where I − Z1Z2 is the corresponding projector, and Z1 is a trivial additional
single-bit gate on atom 1 which we neglect in the following. This measurement
gate, of course, only succeeds with a finite probability. The overall success prob-
ability is given by ps = η2

dη2
cη

2
b/4, where ηd is the quantum efficiency of each

detector, ηc is the photon collection efficiency (proportional to the solid angle),
and ηb is the branching ratio for the atom to decay along the π channel. We have
an additional factor of 1/4 in ps describing the average probability for the two
spontaneous emission photons to go to different detectors (averaged over all the
possible initial atomic states). In the above contributions to the success proba-
bility, the collection efficiency is typically the smallest and thus dominates the
overall efficiency. That is why it is important to increase the collection solid angle
as much as possible. Alternatively, one can also increase this efficiency with the
use of optical cavities surrounding the atoms (McKeever et al., 2003). The overall
success probability ps is typically small. For instance, for a 111Cd+ ion decaying
from the P3/2 state, the branching ratio into the π-channel ηb = 2/3, the photon
collection efficiency ηc ∼ 2% in free space (Blinov et al., 2004), and the detector
efficiency ηd ∼ 20%. This leads to an overall success probability ps ∼ 2 × 10−6.
If the collection efficiency is increased by a factor of 10 with a larger collection
solid angle or with a surrounding cavity (not necessarily high-finesse), the success
probability will be significantly increased with a factor of 100.

The above measurement gate is robust to noise. We do not require that the
atoms be localized to the Lamb–Dicke limit. In general, atomic motion occurs
with a time scale of the trap frequency νt , typically much smaller than the decay
rate γ of the excited atomic level. Thus, for each spontaneous emission pulse, we
can safely assume the atom to be in a fixed but random position r. In this case,
both of the frequency components |ν0〉 and |ν1〉 will acquire the same random
phase factor proportional to eik·r, where k is the wave vector associated with the
spontaneous emission photon. This overall phase therefore has no effect on the re-
sultant measurement gate as shown in Eq. (19). If we take into account the motion
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of the atom within the pulse duration, the pulse from this moving atom also has a
slight Doppler shift δω = k · v ∼ |k|νt ls in its frequency, where v is the random
atom velocity at that moment, and ls is the characteristic length scale for the atom
oscillation. We need this random Doppler shift to be significantly smaller than
the bandwidth of the pulse in order to have a good shape matching of the spon-
taneous emission pulses from different atoms. So, there is a further requirement
|k|νt ls � γ , which is consistent with the assumption νt � γ . Finally, this gate is
also very insensitive to the birefringence and the phase drift in the optical inter-
ferometer. Both of the components |ν0〉 and |ν1〉 have the same polarization, and
they are very close in frequency. So, they essentially experience the same noisy
phase shift under fluctuation of the optical path length, again canceling.

4.3. SCALABLE QUANTUM COMPUTATION WITH PROBABILISTIC GATES

In the previous section, we have shown how to perform probabilistic entangling
gates on remote atoms. Such gates only succeed with a small probability, but they
are very robust to noise. Naively, if the entangling gates only succeed with a cer-
tain probability p, one cannot have efficient computation as the overall success
probability (efficiency) scales down exponentially as pn with the number n of
gates. However, in this section we review a method which shows that efficient
quantum computation can be constructed with the required computational over-
head (such as the computation time or the repetition number of the entangling
gates) scaling up slowly (polynomially) with both n and 1/p. We will follow
the approach in Duan and Raussendorf (2005). (Another method was proposed in
Barrett and Kok (2005), which applies to a more restricted noise model, where one
assumes that the qubits are subject only to Z type of errors when the gate fails. The
implementation scheme we reviewed in the previous section does not satisfy this
restriction.) The demonstration of this result combines the ideas from the divide-
and-conquer method used in the DLCZ scheme (Duan et al., 2001), the cluster
state approach to quantum computation (Raussendorf and Briegel, 2001), and the
repetitive error correction important for construction of the two-dimensional clus-
ters.

To be more specific, we assume that one can reliably perform the above ZZ
measurement gates with a small success probability p. We neglect the noise for
all the single-bit operations, which is well justified for typical atomic or optical
experiments. Then, to realize efficient quantum computation, our task reduces to
how to efficiently construct large scale two-dimensional (2D) cluster states, as 2D
clusters, combined with free single-bit operations, realize universal quantum com-
putation. Our basic steps are: first we show how to efficiently prepare a 1D cluster
state from the probabilistic ZZ gates using the divide-and-conquer method, then
we give a construction to efficiently generate 2D cluster states from 1D chains.
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FIG. 10. Illustration of the three properties of the cluster states which are important for our con-
struction of such states with the probabilistic entangling gates: (A) extend cluster states with ZZ
measurement gates; (B) recover cluster states by removing bad qubits; (C) shrink cluster states for
more complicated links (see Duan and Raussendorf, 2005).

With respect to a given lattice geometry, the cluster state is defined as co-
eigenstates of all the operators Ai = Xi

∏
j Zj , where i denotes an arbitrary

lattice site and j runs over all the nearest neighbors of the site i. The Xi and Zj

denote respectively the Pauli spin and phase flip operators on the qubits at the
sites i, j . In our construction of lattice cluster states with probabilistic ZZ gates,
we will make use of the following properties of the ZZ gate or the cluster states:
(1) If one starts with two qubits (atoms) in the co-eigenstate of X1 and X2 (a prod-
uct state), the final state after a ZZ measurement is projected to a co-eigenstate
of the stabilizer operators Z1Z2 and X1X2, which is equivalent to the two-qubit
cluster state under single-bit rotations (Barrett and Kok, 2005); (2) Assume that
one has prepared two 1D cluster chains, each of n qubits. The stabilizer operators
for the boundary qubits n and n + 1 of the two chains are denoted by XnZn−1

and Xn+1Zn+2, respectively. A ZZ measurement of these two boundary qubits
generates the new stabilizer operators ZnZn+1 and XnXn+1Zn−1Zn+2. This op-
eration actually connects the two chains into a cluster state of 2n − 1 qubits (the
central qubits n and n + 1 together represent one logic qubit with the encoded
XL = XnXn+1 and ZL = Zn or Zn+1. One can also measure the single-bit op-
erator Xn+1 to reduce the encode operators XL and ZL to Xn and Zn); (3) If we
destroy the state of an end qubit of an n-qubit cluster chain, for instance, through
an unsuccessful attempt of the ZZ gate, we can remove this bad qubit by perform-
ing a Z measurement on its neighboring qubit, and recover a cluster state of n− 2
qubits. (4) We can shrink a cluster state by performing X measurements on all
the connecting qubits. The last three properties of the cluster states, illustrated in
Fig. 10, can be conveniently explained from their above definition (Hein et al.,
2006).
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If we have generated two sufficiently long cluster chains each of n0 qubits,
we can just try to connect them through a probabilistic ZZ gate. If this attempt
fails, through the property (ii), we can recover two (n0 − 2)-qubit cluster chains
through a Z measurement, and try to connect them again. As one continues with
this process, the average number of qubits in the connected chain is then given by

n1 =
n0/2∑
i=0

(2n0 − 1 − 4i)p(1 − p)i � 2n0 − 1 − 4(1 − p)/p,

where the last approximation is valid when e−n0p/2 � 1. As a result the average
chain length goes up if n0 > nc ≡ 4(1 − p)/p + 1. We can iterate these connec-
tions to see how the computation overhead scales with the qubit number n. We
measure the computation overhead in terms of the total computation time and the
total number of attempts for the ZZ gates. For the rth (r � 1) round of success-
ful connections, the chain length nr , the total preparation time Tr , and the total
number of attempts Mr scale in a manner that can be obtained from the recursion
relations

nr = 2nr−1 − nc, Tr = Tr−1 + ta/p, and Mr = 2Mr−1 + 1/p,

respectively. In writing the recursion relation for Tr , we have assumed that two
cluster chains for each connection are prepared in parallel, and we neglect the time
for single-bit operations (ta denotes the time for each attempt of the ZZ gate).
From the above recursion relations, we conclude that if we can prepare cluster
chains of n0 (n0 > nc) qubits in time T0 with M0 attempts of the probabilistic
gates, for a large cluster state, the preparation time T and the number of attempts
M scale with the chain length n as

T (n) = T0 + (ta/p) log2

[
(n − nc)/(n0 − nc)

]
, and

M(n) = (M0 + 1/p)(n − nc)/(n0 − nc) − 1/p.

In the above, we have shown that if one can prepare cluster chains longer than
some critical length nc, one can generate large scale 1D cluster states very effi-
ciently. The problem then reduces to how to efficiently prepare cluster chains up
to the critical length nc. If one wants to prepare an n-qubit cluster chain, we pro-
pose to use a repeater protocol which divides the task into m = log2 n steps: for
the ith (i = 1, 2, . . . , m) step we attempt to build a 2i-bit cluster state by connect-
ing two 2i−1-bit cluster chains through a probabilistic ZZ gate. If such an attempt
fails, we discard all the qubits and restart from the beginning. For the ith step, the
recursion relations for the preparation time Ti and the number of attempts Mi are
given by Ti = (1/p)(Ti−1 + ta) and Mi = (1/p)(2Mi−1 + 1), which, together
with T1 = ta/p and M1 = 1/p, give the scaling rules T (n) � ta(1/p)log2 n

and M(n) � (2/p)log2 n/2. The cost is more significant, but it is still a polyno-
mial function of n. To construct a n-qubit cluster chain, in total we need n − 1
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successful ZZ gates. In a direct protocol, we need all these attempts succeed si-
multaneously, which gives the scaling T (n) ∝ M(n) ∝ (1/p)n−1. By dividing
the task into a series of independent pieces, we improve the scaling with n from
exponential to polynomial (for n � nc).

To generate a cluster chain of a length n > nc, we simply combine the above
two protocols. First, we use the repeater protocol to generate n0-qubit chains with
n0 > nc. Then it is straightforward to use the connect-and-repair protocol to
further increase its length. For instance, with n0 = nc + 1 (which is a reasonable
close-to-optimal choice), the overall scaling rules for T and M are (for n > nc),

(20)T (n) � ta(1/p)log2(nc+1) + (ta/p) log2(n − nc),

(21)M(n) � (2/p)log2(nc+1)(n − nc)/2.

As the critical length is nc � 4/p, T and M in our protocol scale with 1/p as
(1/p)log2(4/p), which is much more efficient than the super-exponential scaling
(1/p)4/p in the previous work.

We have shown that for any success probability p of the probabilistic entan-
gling gate, 1D cluster states of arbitrary length can be created efficiently. For
universal quantum computation, however, such 1D cluster states are not suffi-
cient. They need to be first connected and transformed into 2D cluster states (for
instance, with a square lattice geometry). It is not obvious that such a connection
can be done efficiently. First, in the connect-and-repair protocol, when an attempt
fails, we need to remove the end qubits and all of their neighbors. This means that
in a 2D geometry, the lattice shrinks much faster to an irregular shape in the events
of failure. Furthermore, a more important obstacle is that we need to connect many
more boundary qubits if we want to join two 2D cluster states. For instance, for a
square lattice of n qubits, the number of boundary qubits scales as

√
n (which is

distinct from a 1D chain). If we need to connect all the corresponding boundary
qubits of the two parts, the overall success probability is exponentially small.

To overcome this problem, we introduce a method which enables efficient con-
nection by attaching a long leg (a 1D cluster chain) to each boundary qubit of the
2D lattice. The protocol is divided into the following steps: First, we try to build
a “+” shape cluster state by probabilistically connecting two cluster chains each
of length 2nl + 1 (the value of nl is specified below). This can be done through
the probabilistic ZZ gate together with a simple Hadamard gate H and an X mea-
surement, as shown in Fig. 2A and explained in its caption. With on average 1/p

repetitions, we get a “+” shape state with the length of each of the four legs given
by nl . We use the “+” shape state as the basic building blocks of large scale 2D
cluster states. In the “+” shape state, we have attached four long legs to the cen-
ter qubit. The leg qubits serve as ancilla to generate near-deterministic connection
from the probabilistic ZZ gates. The critical idea here is that if we want to connect
two center qubits, we always start the connection along the end qubits of one of
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FIG. 11. Illustration of the steps for construction of the two-dimensional square lattice cluster
states from a set of cluster chains. (A) Construction of the basic “+” shape states from cluster chains
by applying a ZZ gate to connect the two middle qubits, and a X measurement on one middle qubit
to remove it. (B) and (C): Construction of the square lattice cluster state from the “+” shape states
through probabilistic ZZ gates along the legs and X measurements to remove the remaining redundant
qubits. See Duan and Raussendorf (2005) for a similar construction with the controlled phase flip
gates.

the legs (see illustration in Fig. 11). If such an attempt fails, we can delete two end
qubits and try the connection again along the same legs. If the leg is sufficiently
long, we can almost certainly succeed before we reach (destroy) the center qubits.
When we succeed, and if there are still redundant leg qubits between the two cen-
ter ones, we can delete the intermediate leg qubits by performing simple single-bit
X measurements on all of them (see Figs. 11 and 10C for the third property of
the cluster state). With such a procedure, we can continuously connect the center
qubits and form any complex lattice geometry (see the illustration for construction
of the square lattice state in Figs. 11B and C). What is important here is that after
each time of connection of the center qubits, in the formed new shape, we still
have the same length of ancillary legs on all the boundary qubits, which enables
the succeeding near-deterministic connection of these new shapes.

Now we investigate for the 2D case how the computational overhead scales
with the size of the cluster state. If the ancillary legs have length nl , for each
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connection of two center qubits, we can try at most nl/2 times of the probabilistic
ZZ gates, and the overall success probability is given by pc = 1−(1−p)nl/2. If we
want to build a square lattice cluster state of N qubits, we need about 2N times of
connections of the center qubits (there are about 2N edges in an N -vertex square
lattice). The probability for all these connections to be successful is given by p2N

c .
We require this overall success probability is sufficiently large with p2N

c � 1 − ε,
where ε is a small number characterizing the overall failure probability. From
that requirement, we find nl � (2/p) ln(2N/ε). To construct a square lattice
cluster state of N qubits, we need to consume N “+” shape states, and each of
the latter requires on average 2/p cluster chains with a length of 2nl + 1 qubits.
So we need in total 2N/p (2nl + 1)-bit cluster chains, which can be prepared in
parallel with (2N/p)M(2nl +1) ZZ attempts within a time period T (2nl +1) [see
Eqs. (1) and (2) for expressions of the M(n) and T (n)]. This gives the resources
for preparation of all the basic building blocks (the chains). Then we need to
connect these blocks to form the square lattice. We assume that the connection of
all the building blocks are done in parallel. The whole connection takes on average
2N/p CPF attempts, and consumes a time at most ta/p ln(2N/ε). Summarizing
these results, the temporal and the operational resources for preparation of an N -
bit square lattice cluster state are approximately given by

(22)

T (N) � ta(1/p)log2(4/p−3) + ta

p
ln(2N/ε)

+ ta

p
log2

(
4

p

[
ln(2N/ε) − 1

])
,

(23)M(N) � (2/p)2+log2(4/p−3)N
[
ln(2N/ε) − 1

] + 2N/p.

In the 2D case, the temporal and the operational overhead still have very effi-
cient scaling with the qubit number N , logarithmically for T (N) and N ln(N) for
M(N). Their scalings with 1/p are almost the same as in the 1D case except for
an additional factor of 1/p2 for M(N). Through some straightforward variations
of the above method, it is also possible to efficiently prepare any complicated
graph state using probabilistic ZZ gates. This shows that in principle we do not
need to impose any threshold on the success probability of the ZZ gates for con-
struction of efficient quantum computation. Although the probabilistic gate that
we mentioned in the previous section succeeds only with a small probability in
practice, it still provides a way to scalable quantum computation.

4.4. EXPERIMENTS TOWARDS PROBABILISTIC ION GATES

4.4.1. Ion–Photon Entanglement

While matter–light entanglement has been implicit in many experimental sys-
tems over the past few decades (Haroche et al., 2002; Kuhn and Rempe, 2002;
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McKeever et al., 2003; Freedman and Clauser, 1972; Aspect et al., 1982;
Eichmann et al., 1993; DeVoe and Brewer, 1996; Kuzmich et al., 2000, 2003;
Julsgaard et al., 2001; Van der Wal et al., 2003; Blinov et al., 2004; Moehring
et al., 2004; Matsukevich and Kuzmich, 2004; Chou et al., 2005; Volz et al.,
2006), atom–light entanglement is particularly clean in the ion trap system, where
both atomic and photonic qubits are under great control. Early experiments in-
volved the entanglement between the polarization of the photon with the hyperfine
ground state of a trapped ion (Blinov et al., 2004; Moehring et al., 2004). Polar-
ization qubits are more sensitive to decoherence from birefringence, and typically
are useful only along certain directions of atomic emission. We therefore concen-
trate on the use of photonic frequency qubits, where the central frequency of the
photon is entangled with the internal qubits state, as described above.

In a recent experiment, indirect evidence of the entanglement between an
atomic qubit and a photon frequency qubit was demonstrated in the 111Cd+
system (Madsen et al., 2006). A diagram of the relevant energy levels and a de-
scription of the experiment are given in Fig. 12. First, the ion is optically pumped
to |0, 0〉 ≡ |↑〉, and a microwave pulse prepares the ion in the state (|↓〉+|↑〉)/√2
[Fig. 12(a)]. Next, a single π-polarized ultrafast laser pulse coherently drives the
superposition to the clock states in the 2P3/2 manifold with near unit probability.
The coherence in this excitation scheme is demonstrated using a microwave Ram-
sey experiment. In the absence of ultrafast laser pulses, the Ramsey contrast is
essentially perfect. Following the application of the ultrafast laser pulse the atom
is driven to the excited state. The excited atom then spontaneously decays, and
without precise measurement of the photon polarization, frequency, and emission
time, the coherence is lost, as seen in Fig. 12(e). The uncontrolled measurement
of the photon results in tracing over the photon portion of the density matrix and
the resulting loss in contrast is consistent with prior ion–photon entanglement.

To show that the excitation pulse is indeed coherently driving the superposition
to the excited state, the Ramsey coherence is recovered by driving the ion back
down to the ground state before spontaneous emission occurs [Fig. 12(c)]. With a
pair of picosecond laser pulses incident on the ion between the microwave pulses,
the contrast reappears with a phase shift proportional to the time Δt spent in
the excited state and the hyperfine frequency difference between the ground and
excited state levels: Δt(ν0 − ν1) = (680 ps)(13.9 GHz) = 18.9π [Fig. 12(e)].
The observed contrast is only 40% of the contrast without ultrafast laser pulses
due to limited laser power in the second pulse and spontaneous decay (∼23%)
during the delay time between the ultrafast pulses.

4.4.2. Two Photon Interference

As mentioned previously, once two atoms are entangled with their respective pho-
tons, the next step for remote atom entanglement is the interference of the photon
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FIG. 12. Experimental procedure for atom–photon entanglement with photon frequency qubits (Madsen et al., 2006). (a) The ion is initialized in the state (|↓〉 + |↑〉)/√2 via
optical pumping to the |0, 0〉 state and a microwave π/2 pulse. (b) The superposition of atomic qubit states is coherently driven to the 2P3/2 excited state via a resonantly tuned
π-polarized ultrafast laser pulse. (c) A second pulse drives the qubit back to the ground state a short time later. (d) A second π/2 microwave pulse with variable phase completes the
Ramsey experiment and the atomic state is measured using a resonance fluorescence technique. (e) Results from the microwave Ramsey experiment. Circles show the near perfect
Ramsey fringes for the case with no ultrafast laser pulse. With a single ultrafast laser pulse, the coherence is lost due to the spontaneous emission of a photon that is not measured
in a controlled, precisely timed fashion (squares). The average population in the bright state is above 0.5 due to the fluorescence branching ratios [Fig. 16(inset)]. Upon application
of a second ultrafast laser pulse, the coherence in the ion is maintained by driving the qubit states back down to the ground states (triangles).
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FIG. 13. Detection system for the two-photon interference experiment. The light from the two ions
is separated on a beam splitter (BS) and mode-matched on the second BS. The photons are detected
on single photon sensitive photomultiplier tubes (PMTs). A camera is used for coarse alignment, and
the non-overlapping photon modes are blocked by irises.

modes from each atom on a beam splitter. Progress toward this end has been re-
cently demonstrated (Beugnon et al., 2006; Maunz et al., 2006). In the cadmium
ion system, two ions are placed in a trap and a beam-splitter setup is used to inter-
fere the emitted photons (Fig. 13). In this setup, light scattered by the two ions is
collected using an f/2.1 objective lens with a working distance of 13 mm. A pin-
hole is placed at the intermediate image for suppression of background photons
and the intermediate image is re-imaged by a doublet lens. The image is then bro-
ken up into two paths by a beam splitter, and the transmitted and reflected beam
pairs are directed to a second beam splitter where the light from each ion is super-
imposed. Irises are used to block the unwanted beams and the overlapping beams
are directed to photomultiplier tubes (PMTs) with a time resolution of about 1 ns
(Moehring et al., 2006). The equal path lengths of the transmitted and reflected
beams ensure that the photons emitted by two ions are mode-matched in size and
divergence. Coarse alignment is performed by imaging the light after the second
beam splitter on a single photon sensitive camera, where the overall magnification
of the imaging system is about 1000 and the diffraction-limited image of the two
ions are separated by 2 mm, each with a spot size of 0.5 mm.

To demonstrate two photon interference, first the photon statistics of a single
ion excited by a σ+-polarized cw laser is investigated (dashed line in Fig. 14). In
this case, the g(2) autocorrelation function shows the expected damped Rabi os-
cillations (Diedrich and Walther, 1987; Itano et al., 1988) between the 2S1/2|1, 1〉
and 2P3/2|2, 2〉 levels. It is unlikely that two photons are emitted from one ion
in close proximity since after emission of a single photon, the ion is assured to
be in the ground state. The maximum observed antibunching for the single ion
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FIG. 14. Intensity autocorrelation for cw-excitation. The dashed line shows strong antibunching
for a single ion with g

(2)
1 (0) = 0.18, limited by the resolution of the detection system. With this value,

the expected antibunching of light from two non-overlapping ions is expected to be g
(2)
2,um

(0) = 0.59
in good agreement with the experimental value (dotted line). If the two photon modes are matched,
the interference leads to a significant reduction of coincidence detections (solid line). The measured
antibunching was g

(2)
2,m

(0) = 0.31, corresponding to a mode overlap of about 57%.

is g
(2)
1 (0) = 0.18 as expected for the time resolution of the PMTs (Maunz et al.,

2006).
Next, two ions are illuminated equally and purposefully not mode-matched on

the beam splitter. In this case, half of the signal results from two photons from
the same ion, and the other half result from one photon from each ion. Since
these photon modes are not matched on the beam splitter, the detected photons
are uncorrelated. We therefore expect a reduced antibunching,

g
(2)
2,um(0) = 1

2

(
1 + g

(2)
1 (0)

) ≈ 0.59,

in agreement with the measurement (dotted line in Fig. 14).
If the photon modes from each ion are matched on the beam splitter, then

the photons always leave on the same output port, and thus no coincident de-
tections are observed (Mandel, 1999). The suppression of coincidence events is
clearly visible in the autocorrelation signal of the mode-matched ions (solid line
in Fig. 14) and has a measured g

(2)
2,m(0) of 0.31. This corresponds to an interfer-

ence signal of about 57% (amplitude matching of 75%), and compares well to
the results observed in reference (Beugnon et al., 2006). This mode overlap is not
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ideal and is likely due to phase front distortions from the two atomic sources as
they sample different parts of many optical surfaces before finally interfering on
the beam splitter.

In order to entangle two remotely located atoms, it is likely necessary to use
single mode optical fibers. This is because interfering the two photon modes re-
quires very high stability of the atom and collection optics with respect to the
beam splitter, as well as good spatial mode matching from the two imaging sys-
tems. With free-space mode-matching, any relative motion of the trapped atoms
and the imaging optics can ruin the entanglement fidelity by producing false pos-
itive detection events, while in the fiber coupled case, effects such as mechanical
vibrations and thermal drifts simply lower the rate of coincidence counts (ignor-
ing dark counts). In the cadmium system, however, the spontaneously emitted
photons are deep in the ultraviolet at 214.5 nm where it is very difficult to use op-
tical fibers. Very recently, single photons emitted from two remotely-located Yb+
ions have been interfered using optical fiber, resulting in better than 80% contrast
in the two-photon coincidence rate.

4.4.3. Single Photon Sources

It is important for the atoms to emit only a single photon during an entanglement
trial, especially with remote-atom entanglement. Such a single photon source was
demonstrated recently using optical excitation of a single cadmium ion with a
picosecond mode-locked Ti:sapphire laser (Maunz et al., 2006). This laser is tuned
to 858 nm and is sent through a pulse picker to reduce the repetition rate from
81 MHz to 27 MHz with an extinction ratio of better than 100:1 in the infrared.
The pulses are frequency quadrupled through single pass nonlinear crystals and
the resulting 214.5 nm laser pulses have a pulse extinction ratio near 10−8 and a
transform-limited pulse width of about 1 ps. This allows excitation of the ion on
a timescale much faster than the 2.65 ns excited state lifetime.

The single ion is repeatedly excited with the pulsed laser resulting in a periodic
emission of photons at the laser pulse separation time of 37.5 ns, and the intensity
autocorrelation function of the photons is recorded using a multi-channel scaler
(Fig. 15). The half width of each peak is given by the excited state lifetime and
the peak at zero time delay corresponding to coincidentally detected photons is
almost entirely suppressed. This near-perfect antibunching is highly non-classical
and demonstrates that at most one photon is emitted from the ion following an
excitation pulse (limited by the possibility of emitting and detecting a photon
during the excitation pulse ≈10−6). The residual peak at zero time delay has a
height of about 2% of the other peaks, originating from diffuse scattered light
from the pulsed laser. With fast electronics, this residual peak could be identically
zero by vetoing photons emitted during the picosecond laser pulse.

The use of ultrafast lasers also allows unit-probability excitation (pe ∼ 1) while
maintaining a single photon source. This corresponds to performing a Rabi π
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FIG. 15. Intensity autocorrelation of the light emitted by a single ion excited by an ultrafast laser.
The near perfect antibunching at t = 0 shows that at most one photon is emitted from an excitation
pulse.

pulse on the optical S–P transition. In a recent experiment, the Rabi angle was
measured by preparing the ion in a known initial ground state and applying a sin-
gle excitation pulse of known polarization (Madsen et al., 2006). With knowledge
of the fluorescence branching ratios and the ability to perform efficient state de-
tection, Rabi flopping with the pulsed laser can be detected using every laser pulse
with a high signal to noise ratio (Fig. 16). An alternative method would be to de-
tect the photon scattering rate from an ion as a function of the pulse energy where
Rabi angles with an odd (even) multiple of π would have a maximum (minimum)
of scattered photons as the ion would be left in the excited (ground) state at the
end of each pulse (Darquie et al., 2005).

In the experiment, the ion is prepared in the |0, 0〉 ground state through optical
pumping (Lee et al., 2003). A single linearly polarized ps laser pulse excites the
ion to the P3/2|1, 0〉 state. After a time (10 µs) much longer than the excited state
lifetime, the ion has decayed back to the S1/2 ground state levels via spontaneous
emission following the fluorescence branching ratios. The atomic ground states
are then measured using resonance fluorescence detection where all three F = 1
states are equally bright, while the F = 0 state is dark (Blatt and Zoller, 1988; Lee
et al., 2005; Acton et al., 2006), with the results shown in Fig. 16. The available
power from the pulsed laser limits the Rabi rotation angle to roughly π , and the
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FIG. 16. The ion bright state population as a function of pulse energy. Each point represents a
collection of 60,000 runs. As the population in the excited P state is driven to unity, the bright state
population approaches 1/3 (horizontal dashed line), determined by the spontaneous emission branch-
ing ratio. The data are fit to a single parameter giving a value a = 0.42 pJ−1/2. Inset: Relevant energy
levels for the S–P Rabi oscillation experiment. A π -polarized ultrafast laser pulse excited the ion from
the ground state to the excited state with variable energy. The three possible decay channels are shown
with their respective fluorescence branching ratios. After a time (10 µs) following the excitation pulse,
the bright state population of the ion was measured using resonance fluorescence detection.

data agree well with the estimates based on the beam waist, pulse length and
pulse shape (Madsen et al., 2006). The probability of measuring the bright state
is equal to 1/3 the probability of excitation to the excited state, as follows from
the Clebsch–Gordan coefficients [Fig. 16(inset)]. Hence, we have shown that unit
excitation and single photon emission can be achieved with ultrafast laser pulses.

5. Summary

In this article, we have reviewed several schemes towards the goal to realize scal-
able quantum communication, state engineering, and quantum computation with
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different physical systems, including atomic ensembles, photons under linear op-
tical devices, and trapped atoms or ions. For all of these schemes, we can reduce
the dominant experimental noise to particular types of errors, and then correct
such errors at a arbitrarily high level. As a result, these schemes are inherently im-
mune to these special sources of error. This inherent insensitivity to noise opens
up a practical route for realization of scalable quantum information with realistic
physical devices. Examples of experimental progress along these lines have been
described.
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