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The maximum speed with which information can propagate in a quan-
tum many-body system directly affects how quickly disparate parts of
the system can become correlated1–4 and how difficult the system will be
to describe numerically5. For systems with only short-range interactions,
Lieb and Robinson derived a constant-velocity bound that limits corre-
lations to within a linear effective ‘light cone’6. However, little is known
about the propagation speed in systems with long-range interactions,
because analytic solutions rarely exist and because the best long-range
bound7 is too loose to accurately describe the relevant dynamical time-
scales for any known spin model. Here we apply a variable-range Ising
spin chain Hamiltonian and a variable-range XY spin chain Hamiltonian
to a far-from-equilibrium quantum many-body system and observe its
time evolution. For several different interaction ranges, we determine
the spatial and time-dependent correlations, extract the shape of the light
cone and measure the velocity with which correlations propagate through
the system. This work opens the possibility for studying a wide range of
many-body dynamics in quantum systems that are otherwise intractable.

Lieb–Robinson bounds6 have strongly influenced our understanding of
locally interacting, quantum many-body systems. They restrict the many-
body dynamics to a well-defined causal region outside of which correlations
are exponentially suppressed8, analogous to causal light cones that arise in
relativistic theories. These bounds have enabled a number of important
proofs in condensed-matter physics5,7,9–11, and also constrain the timescales
on which quantum systems might thermalize12–14 and the maximum speed
that information can be sent through a quantum channel15. Recent experi-
mental work has observed linear (that is, Lieb–Robinson-like) correlation
growth over six sites in a one-dimensional quantum gas16.

When interactions in a quantum system are long range, the speed with
which correlations build up between distant particles is no longer guaranteed
to obey the Lieb–Robinson prediction. Indeed, for sufficiently long-range
interactions, the notion of locality is expected to break down completely17.
Inapplicability of the Lieb–Robinson bound means that comparatively
little can be predicted about the growth and propagation of correlations
in long-range-interacting systems, although there have been several
recent theoretical and numerical advances2,3,7,17–20.

Here we report direct measurements of the shape of the causal region
and the speed at which correlations propagate in an Ising spin chain and
a newly implemented XY spin chain. The experiment is effectively deco-
herence free and serves as an initial probe of the many-body dynamics of
isolated quantum systems. Within this broad experimental framework,
studies of entanglement growth21, thermalization12,14 or other dynamical
processes—with or without controlled decoherence—can be realized. Scal-
ing such quantum simulations to larger system sizes is straightforward
(Methods), unlike ground-state or equilibrium studies that typically must
consider diabatic effects22,23.

To induce the spread of correlations, we perform a global quench by
suddenly switching on the spin–spin couplings across the entire chain and
allowing the system to evolve coherently. The dynamics following a global
quench can be highly non-intuitive; one picture is that entangled quasi-
particles created at each site propagate outwards, correlating distant parts

of the system through multiple interference pathways13. This process differs
substantially from local quenches21, where a single site emits quasiparticles
that may travel ballistically3,13, resulting in a different causal region and prop-
agation speed than in a global quench (even for the same spin model).

The effective spin-1/2 system is encoded into the 2S1/2jF 5 0, mF 5 0æ
and jF 5 1, mF 5 0æ hyperfine ‘clock’ states of trapped 171Yb1 ions, denoted
j#æz and j"æz, respectively24. We initialize a chain of 11 ions by optically pump-
ing to the product state j###…æz (Fig. 1). At time t 5 0, we quench the
system by applying phonon-mediated, laser-induced forces25–27 to yield an
Ising or XY model Hamiltonian (Methods)
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where sc
i (c 5 x, y, z) is the Pauli matrix acting on the ith spin, Ji,j (in cyclic

frequency) is the coupling strength between spins i and j, and we use units
in which Planck’s constant equals 1. For both model Hamiltonians, the
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Figure 1 | Sketch of experimental protocol. Step (1): the experiment is
initialized by optically pumping all 11 spins to the state |#æz. Step (2): after
initialization, the system is quenched by applying laser-induced forces on the
ions, yielding an effective Ising or XY spin chain (see text for details). Step (3):
after allowing dynamical evolution of the system, the projection of each spin
along the ẑ direction is imaged onto a charge-coupled device (CCD) camera.
Such measurements allow us to construct any possible correlation function Ci,j

along ẑ.
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spin–spin interaction matrix Ji,j contains tunable, long-range couplings
that fall off approximately algebraically as Ji,j / 1/ji 2 jja (ref. 26). We
vary the interaction range a by adjusting a combination of trap and laser
parameters22 (Methods), choosing a < 0.63, 0.83, 1.00 or 1.19 for these
experiments.

After quenching to the Ising or XY model with our chosen value of a,
we allow coherent evolution for various lengths of time before resolving
the spin state of each ion using a charge-coupled device camera. The exper-
iments at each time step are repeated 4,000 times to collect statistics. To
observe the build-up of correlations, we use the measured spin states to
construct the connected correlation function
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between any pair of ions at any time. Because the system is initially in a
product state, Ci,j(0) 5 0 everywhere. As the system evolves away from a
product state, evaluating equation (3) at all points in space and time pro-
vides the shape of the light-cone boundary and the correlation propagation
velocity for our long-range spin models.

Figure 2 shows the results of globally quenching the system to a long-
range Ising model for four different interaction ranges. In each case, we
extract the light-cone boundary by measuring the time it takes a cor-
relation of fixed amplitude (here Ci,j~0:04<0:1Cmax

i,j , where Cmax
i,j is

the largest connected correlation between two ions) to travel an ion–ion
separationdistancer.Forstrongly long-range interactions(a# 1),weobserve
accelerating information transfer through the chain. This fast propagation
of correlations is not surprising, because even the direct long-range coup-
ling between distant spins produces correlations in a time t / 1/Ji,j < ra.
However, increasingpropagationvelocitiesquicklysurpass theLieb–Robinson
velocity for a system with equivalent nearest-neighbour-only interactions,
vLR 5 12eJmax, where e is Euler’s number and Jmax is the maximum Ising
coupling strength for a given spin–spin coupling matrix (Fig. 2c, f, i). This
serves as experimental confirmation that predictions based on the Lieb–
Robinson result—including those that bound the growth of entanglement
or set thermalization timescales— are no longer applicable when interac-
tions are sufficiently long range.

For the specific case of the pure Ising model, the correlations at any time
can be predicted by an exact analytic solution18,28:

Ci,j tð Þ~ 1
2
P

k=i,j
cos 2 Ji,kzJj,k

� �
t

� 	
z

1
2
P

k=i,j
cos 2 Ji,k{Jj,k

� �
t

� 	
{P

k=i
cos 2Ji,kt½ � P

k=j
cos 2Jj,kt
� 	

ð4Þ

In equation (4), correlations can only build up between sites i and j that
are coupled either directly or through a single intermediate spin k; pro-
cesses which couple through more than one intermediate site are pro-
hibited. For instance, if the Ji,j couplings are nearest-neighbour-only then
Ci,j(t) 5 0 for all ji 2 jj. 2. This property holds for any commuting
Hamiltonian (Methods) and explains why the spatial correlations shown
in Fig. 2 become weaker for shorter-range systems.

The products of cosines in equation (4) with many different oscillation
frequencies result in the observed decay of correlations when t >0:1=Jmax.
At later times, rephasing of these oscillations creates revivals in the spin–
spin correlation. One such partial revival occurs at t 5 2.44/Jmax for a 5

0.63 (Extended Data Fig. 1), verifying that our system remains coherent on
atimescalemuchlongerthanthatwhichdeterminesthelight-coneboundary.

We repeat the quench experiments for an XY model Hamiltonian
using the same set of interaction ranges a (Fig. 3). Dynamical evolution
and the spread of correlations in long-range-interacting XY models are
much more complex than in the Ising case because the Hamiltonian con-
tains non-commuting terms. As a result, there exists no exact analytic solu-
tion comparable to equation (4).

Compared with the correlations observed for the Ising Hamiltonian,
correlations in the XY model are much stronger at longer distances (for
example, compare Fig. 2j with Fig. 3j). Processes coupling through mul-
tiple intermediate sites (which were disallowed in the commuting Ising
Hamiltonian) now have a critical role in building correlations between
distant spins. These processes may also explain our observation of a steeper

0.00

0.17

0.35

0.52

Correlation
C1,1+r

a

α = 0.63

r ∝ t1.70±0.11

1 4 7 10
0.00

0.05

0.10

0.15

0.20

0.25

Ti
m

e 
(1

/J
m

ax
)

Ion separation, r

t1.70±0.11

b

1

4

7

10

S
ep

ar
at

io
n,

 r

c

0 0.03 0.06
0

0.5
1.0
1.5
2.0
2.5

v/
v LR

d

α = 0.83

r ∝ t1.55±0.07

1 4 7 10
0.00

0.05

0.10

0.15

0.20

0.25

t1.55±0.07

e

1

4

7

10

f

0 0.03 0.06
0

0.5
1.0
1.5
2.0

g

α = 1.00

r ∝ t1.57±0.07

1 4 7 10
0.00

0.05

0.10

0.15

0.20

0.25

t1.57±0.07

h

1

4

7

10

i

0 0.03 0.06
0

0.5
1.0
1.5
2.0

j

α = 1.19

r ∝ t0.97±0.17

1 4 7 10
0.00

0.05

0.10

0.15

0.20

0.25
t0.97±0.17

k

1

4

7

10

l

0 0.03 0.06
0

0.5
1.0
1.5
2.0

m

α = 0.63

α = 1.19

0 0.05 0.10 0.15 0.20

0

0.1

0.2

0.3

0.4

0.5

0.6
Nearest-neighbour correlations

C
or

re
la

tio
n 

C
1,

2

n

α = 0.63

α = 1.19

0 0.05 0.10 0.15 0.20

0

0.1

0.2
Tenth-nearest-neighbour correlations

Ti
m

e 
(1

/J
m

ax
)

Ion separation, r

Time (1/Jmax)

S
ep

ar
at

io
n,

 r
v/

v LR

Time (1/Jmax)

Ti
m

e 
(1

/J
m

ax
)

Ti
m

e 
(1

/J
m

ax
)

Ion separation, r

Ion separation, r

S
ep

ar
at

io
n,

 r
v/

v LR

Time (1/Jmax)

Time (1/Jmax)

S
ep

ar
at

io
n,

 r
v/

v LR

Time (1/Jmax)

C
or

re
la

tio
n 

C
1,

1

Time (1/Jmax)

Figure 2 | Measured quench dynamics in a long-range Ising model.
a–c, Spatial and time-dependent correlations (a), extracted light-cone
boundary (b) and correlation propagation velocity (c) following a global
quench of a long-range Ising model with a 5 0.63. The curvature of the
boundary shows an increasing propagation velocity (b), quickly exceeding the
short-range Lieb–Robinson velocity bound, vLR (c). Solid lines give a power-law
fit to the data, which slightly depends on the choice of fixed contour Ci,j.
d–l, Complementary plots for a 5 0.83 (d–f), a 5 1.00 (g–i) and a 5 1.19 (j–l).
As the range of the interactions decreases, correlations do not

propagate as far or as quickly through the chain; the short-range velocity
bound vLR is not exceeded for our shortest-range interaction. m, n, Nearest-
neighbour (m) and tenth-nearest-neighbour (n) correlations for our shortest-
and longest-range interactions show excellent agreement with the
decoherence-free exact solution (with no adjustable parameters)
from equation (4) (solid). The dashed blue curves show an improved
long-range bound valid for any commuting Hamiltonian (Methods). Error
bars, 1 s.d.
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power-law scaling of the light-cone boundary in the XY model. However,
without an exact solution there is no a-priori reason to assume a power-law
light-cone edge (used for the fits in Fig. 3); deviations from power-law
behaviour might reveal themselves for larger system sizes.

An important observation in Fig. 3j–l is that of faster-than-linear light-
cone growth for our shortest-range interaction, with a 5 1.19. Although
faster-than-linear growth is expected for a , 1 (see discussion of Ising
model), there is no consensus on whether such behaviour is generically
expected for a . 1. Our experimental observation has prompted us to nu-
merically check the light-cone shape for a 5 1.19; we find that faster-than-
linear scaling persists in systems of up to 22 spins before our calculations
break down (Extended Data Fig. 2).

Whether such scaling continues beyond ,30 spins is a question that,
at present, quantum simulators are best positioned to answer. In Figs 2m,
n and 3m, n, the excellent agreement between data and theory demon-
strates that experiments produce the correct results in a regime still solv-
able by classical computers. For larger systems, where numerical evolution
of the Schrödinger equation fails, the quality of quantum simulations
could still be benchmarked against the exact Ising solution of equation (4).
Finding close agreement in the Ising case would then build confidence in
an XY model simulation, which cannot be validated by any other known
method.

For the XY model, we additionally study the spatial decay of correla-
tions outside the light-cone boundary. The data (Fig. 4) is well described
by fits to exponentially decaying functions. Recent theoretical work20

predicts an initial decay of spatial correlations bounded by an expo-
nential, followed by a power-law decay; we speculate that much larger
system sizes and several hundred thousand repetitions of each data point
(to reduce the shot-noise uncertainty sufficiently) would be necessary to
see this effect.

A perturbative treatment of time evolution under the XY Hamiltonian
yields the short-time approximation for the correlation function Ci,j(t) <
(Ji,jt)

2. These values are plotted as dashed lines along with the data in
Fig. 4. Although the perturbative result matches the data early on, it fails
to describe the dynamics at longer evolution times. The discrepancies
indicate that the light-cone shapes observed in the XY model are fun-
damentally non-perturbative; rather, they result from the build-up of
correlations through multiple intermediate sites and cannot be described
by any known analytical method.
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Figure 3 | Measured quench dynamics in a long-range XY model. Global
quench of a long-range XY model with four different interaction ranges.
a–l, Panel descriptions match those in Fig. 2. In each case, when compared
with the Ising model, correlations between distant sites in the XY model are
stronger and build up more quickly. For the shortest-range interaction (j–l),
we observe a faster-than-linear growth of the light-cone boundary,

despite having a . 1; no known analytic theory predicts this effect.
m, n, Measured nearest-neighbour and tenth-nearest-neighbour correlations
closely match the numerical solution found by evolving the Schrödinger
equation of an XY model (equation (2)) with no free parameters and no
decoherence. Error bars, 1 s.d.
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Figure 4 | Correlations and dynamics beyond the perturbative regime.
Decay of spatial correlations outside the light-cone boundaries for a long-range XY
model with a 5 0.63, 0.83, 1.00 or 1.19. The hatched region indicates the area inside
the light-cone boundary Ci,j 5 0.15. The data corresponds to times indicated by
tickmarks on the left axis. Solid lines give an exponential fit to the data and dashed
lines show the predictions from a perturbative calculation. Perturbation theory
does not accurately describe the dynamics at later times. Associated data and
theoretical results are similarly coloured to guide the eye. Error bars, 1 s.d.
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We have presented experimental observations of the causal region
and propagation velocities for correlations following global quenches
in Ising and XY spin models. The long-range interactions in our system
lead to a breakdown of the locality associated with Lieb–Robinson bounds,
and dynamical evolution in the XY model leads to results that cannot be
described by analytic or perturbative theory. Our work demonstrates that
quantum simulators with only a few tens of spins can be an important tool
for investigating and enriching our understanding of dynamics in com-
plex many-body systems.

METHODS SUMMARY
We generate spin–spin interactions by applying spin-dependent optical dipole
forces to ions confined in a three-layer linear Paul trap with a 4.8 MHz radial fre-
quency. Two off-resonance laser beams with a wavevector difference Dk along a
principal axis of transverse motion globally address the ions and drive stimulated
Raman transitions. The two beams contain a pair of beat-note frequencies symmet-
rically detuned from the resonant transition at n0 5 12.642819 GHz by a frequency
m, comparable to the transverse motional mode frequencies. In the Lamb–Dicke
regime, this results in the Ising-type Hamiltonian in equation (1)25,26 with

Ji,j~V2vR

XN

m~1

bi,mbj,m

m2{v2
m

where V is the global Rabi frequency, vR 5BDk2/2M (B, Planck’s constant divided by
2p) is the recoil frequency, bi,m is the normal-mode matrix29 and vm are the transverse
mode frequencies. The coupling profile may be approximated as a power-law decay
Ji,j < J0/ji 2 jja, where in principle a can be tuned between 0 and 3 by varying the laser
detuning m or the trap frequencies vm (refs 22, 26).

We implement a tunable-range XY model by adding an effective transverse mag-
netic field B

P
is

y
i to the pure Ising Hamiltonian with an additional laser beat-note

frequency at n0. In the limit B?J , processes governed by the sx
i sx

j coupling which flip
two spins along y (for example s1s1, where here s6 5 sz 6 isx) are energetically
forbidden, leaving only the energy-conserving flip-flop terms (s1s2 1 s2s1). At
times t 5 n/B (with integer n), the dynamics of the transverse field rephases and leaves
only the pure XY Hamiltonian of equation (2).

In the limit B . gmV, where gm~Dk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B=2Mvm

p
, phonon contributions from the

large, non-commuting transverse field can lead to unwanted spin–motion entangle-
ment at the end of an experiment30. Therefore, this method of generating an XY
model requires the hierarchy J=B=gmV for all m. For our typical trap parameters,
Jmax < 400 Hz, B < 4 kHz and gmV < 20 kHz.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS
Generating spin–spin couplings. We generate spin–spin interactions by applying
spin-dependent optical dipole forces to ions confined in a three-layer linear Paul trap
with a 4.8 MHz radial frequency. Two off-resonance laser beams with a wavevector
differenceDk along a principal axis of transverse motion globally address the ions and
drive stimulated Raman transitions. The two beams contain a pair of beat-note fre-
quencies symmetrically detuned from the resonant transition at n0 5 12.642819 GHz
by a frequency m, comparable to the transverse motional mode frequencies. In the
Lamb–Dicke regime, this results in the Ising-type Hamiltonian in equation (1)25,26 with

Ji,j~V2vR

XN

m~1

bi,mbj,m

m2{v2
m

ð5Þ

where V is the global Rabi frequency, vR 5BDk2/2M is the recoil frequency, bi,m is the
normal-mode matrix29 and vm are the transverse mode frequencies. The coupling
profile may be approximated as a power-law decay Ji,j < J0/ji 2 jja, where in principle a
can be tuned between 0 and 3 by varying the laser detuning m or the trap frequencies
vm (refs 22, 26).

We implement a tunable-range XY model by adding an effective transverse mag-
netic field B

P
i s

y
i to the pure Ising Hamiltonian with an additional laser beat-note

frequency at n0. In the limit B?J , processes in the sx
i sx

j coupling which flip two spins
along y (for example s1s1, where here s6 5 sz 6 isx) are energetically forbidden,
leaving only the energy-conserving flip-flop terms (s1s2 1 s2s1). At times t 5 n/B
(with integer n), the dynamics of the transverse field rephases and leaves only the pure
XY Hamiltonian of equation (2).

In the limit B . gmV, where gm~Dk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B=2Mvm

p
, phonon contributions from the

large, non-commuting transverse field can lead to unwanted spin–motion entangle-
ment at the end of an experiment30. Therefore, this method of generating an XY model
requires the hierarchy J=B=gmV for all m. For our typical trap parameters, Jmax <
400 Hz, B < 4 kHz and gmV < 20 kHz.
State detection and readout. After quenching to, and allowing time evolution under,
our spin Hamiltonian, we measure the spin projections of each ion along the z direc-
tion of the Bloch sphere. For 3 ms, we expose the ions to a laser beam that addresses
the cycling transition 2S1/2jF 5 1æ to 2P1/2jF 5 0æ. Ions fluoresce only if they are in the
state j"æz. This fluorescence is collected through an objective with a numerical aper-
ture of 0.23 and imaged using an intensified CCD camera with single-site resolution.

To discriminate between ‘bright’ and ‘dark’ states (j"æz and j#æz, respectively), we
begin by calibrating the camera with 1,000 cycles each of all-bright and all-dark states.
For the bright states, the projection of the two-dimensional CCD image onto a one-
dimensional (1D) row gives a profile comprised of Gaussians at each ion location. We
perform fits to locate the centre and fluorescence width of each ion on our CCD.

We achieve single-shot discrimination of individual ion states in the experimental
data by fitting the captured 1D profile to a series of Gaussians with calibrated widths
and positions but freely varying amplitudes. The extracted amplitudes for each ion are
then compared with a threshold found by Monte Carlo simulation to determine whether
the measured state was bright or dark. Our discrimination protocol also gives an estimate
of the detection error (for example, misidentifying a bright ion as dark), which is typically
of order 5%. Corrected state probabilities (along with their respective errors) are found
following the method outlined in ref. 31, which also takes into account errors due to
quantum projection noise.
Quantum coherence and scaling. For the data presented in Figs 2 and 3 for the Ising
and XY models, correlations propagate across the entire chain in a time t < 0.1/Jmax.
During this time, we find excellent agreement between the data and decoherence-free
numerical simulations. This indicates that the experiment remains coherent on the time-
scales needed to measure the light-cone shape and correlation propagation velocity.

To investigate coherences at longer times, we look for partial revivals of correla-
tions as predicted by equation (4), with a 5 0.63. (Other values of a are not predicted
to show partial revivals of measurable size within experimentally accessible timescales.)
Extended Data Fig. 1 shows evidence that the system remains coherent until at least
t < 2.5/Jmax, substantially longer than is needed to extract the light-cone boundary for
an 11-spin system.

A natural question to ask is how long it takes to observe the full light-cone boundary
in an N-spin system. We may then estimate the potential for scaling to larger numbers
while keeping the demonstrated coherence time and all other experimental para-
meters fixed. In the worst case, an Ising model with a 5 1.19, the light-cone boundary
spreads across five sites in a time t 5 0.07/Jmax, and grows as r / t0.97. If correlations
were to continue spreading at this rate, they would reach nearly 100 sites away within
our demonstrated t 5 2.5/Jmax coherence time. If one is instead interested in seeing
whether faster-than-linear growth persists at the same rate for an XY model with a 5

1.19, correlations could potentially spread over 700 sites within t 5 2.5/Jmax. Although
technical challenges certainly must be addressed before scaling to these large sizes, we
note that the state initialization, evolution, and measurement procedures implemen-
ted here would remain unchanged even for hundreds of ions.

Lieb–Robinson velocity for nearest-neighbour interactions. Here we justify our
claim that the Lieb–Robinson velocity6 for the spread of correlation functions from
an initial product state, evolving under a 1D spin Hamiltonian with only nearest-
neighbour interactions, is bounded above by vLR 5 12eJ. In particular, we consider
a Hamiltonian

H~
X

j

hj,jz1

with interaction strength jjhj,j11jj5 J. Note that both the Ising and XY Hamiltonians
defined in the manuscript satisfy these assumptions in the a R ‘ limit, where Jij 5

Jdj,i11, as can easily be checked by calculating sx
i sx

j

��� ���~ sx
i sx

j zsz
i sz

j

��� ���.2~1. For

operators evolving in the Heisenberg picture under H (such that A(t) ; eiHtA(0)e2iHt),
we would like to compute the connected correlation function

Ci,j tð Þ~ Ai tð ÞBj tð Þ
� �

c

: Ai tð ÞBj tð Þ
� �

{ Ai tð Þh i Bj tð Þ
� �

where Ai and Bj are supported on sites i and j, respectively.
A bound on these correlation functions follows immediately from results in ref.

8, which relate a Lieb–Robinson bound on unequal-time commutators to a bound
on connected correlation functions. In particular, for a Lieb–Robinson commutator
bound of the form

Ai tð Þ,Bj 0ð Þ
� 	�� ��ƒc Aik k Bj

�� ��e vt{rð Þ=j

we have

Ci,j tð Þƒ4c Aik k Bj

�� ��e vt{r=2ð Þ=j ð6Þ

where r is the distance between the two sites i and j.
The Lieb–Robinson commutator bound for a nearest-neighbour Hamiltonian

on a D-dimensional square lattice is given by8

Ai tð Þ,Bj 0ð Þ
� 	�� ��ƒ2 Aik k Bj

�� ��X?
k~r

2Jt 4D{1ð Þð Þk

k!

which in 1D gives

Ai tð Þ,Bj 0ð Þ
� 	�� ��ƒ2 Aik k Bj

�� ��e{r
X?
k~r

6eJtð Þk

k!

ƒ2 Aik k Bj

�� ��e6eJt{r

and, hence, v 5 6eJ. The velocity bound for the spreading of correlations is obtained
by setting the bound on Ci,j(t) (the right-hand side of equation (6)) to a constant value
and solving r 5 vLRt, which yields vLR 5 2v 5 12eJ.
Bound for commuting Hamiltonians. Motivated by applications to the Ising model
studied in the manuscript, here we derive a bound applicable to 1D Hamiltonians

H~
X
kvl

hkl

where [hkl, hk9l9] 5 0 for any k, l, k9, l9. As above, we are interested in bounding the
connected correlation function Ci,j(t), and without loss of generality we take i , j. For
convenience in what follows, we define hkk 5 0, and take hkj 5 hjk (even though only
one of the two appears in the Hamiltonian).

To compute Ai(t), let us first define Hi~
P

k hik as the part of H that (in general)
does not commute with Ai, so that Ai tð Þ~eiHitAie{iHit . We can further separate Hi

into two parts by choosing a site index k0 satisfying i # k0 , j and writing

H0i~
X
kƒk0

hik

H00i ~
X
kwk0

hik

As a result

Ai tð Þ~eiH0i t eiH00i tAie
{iH00i t e{iH0i t

~eiH0i t Aiz

ðt

0
dt eiH00i tAie

{iH00i t,H00i

h i� 
e{iH0i t

:A0i tð Þzfi tð Þ

where A0i tð Þ~eiH0i tAie
{iH0i t and

fi tð Þk kƒ2t Aik k H00i
�� ��
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Similarly, we can define

H0j ~
X
kwk0

hjk

H00j ~
X
kƒk0

hjk

and A0j tð Þ~eiH0j t Aje
{iH0j t , such that Aj tð Þ~A0j tð Þzfj tð Þ and

fj tð Þ
�� ��ƒ2t Aj

�� �� H00j

��� ���
In terms of these newly defined quantities, we can write

Ci,j tð Þ~ A0i tð ÞA0j tð Þ
D E

c
z fi tð ÞAj tð Þ
� �

cz A0i tð Þfj tð Þ
� �

c

where we note that the second term contains Aj(t) (rather than A0j tð Þ). By inspec-

tion, A0i tð ÞA0j tð Þ
D E

c
~0. Using the bounds on jjfi(t)jj and jjfj(t)jj, together with the

inequality jÆABæcj# 2jjAjjjjBjj, we find that

Ci,j tð Þ
�� ��ƒ4t Aik k Aj

�� �� H00i
�� ��z H00j

��� ���� �
Noting that jJklj5 jjhkljj, we then have

Ci,j tð Þ
�� ��ƒ4t Aik k Aj

�� �� X
kwk0

Jikj jz
X
kƒk0

Jjk

�� �� !

One can optimize the value of k0 to give the tightest bound. For power-law couplings
Jkl < jk 2 lj2a (a . 0) in 1D, choosing k0 right in the middle of i and j will generally
give the tightest bound.
Multi-hop processes are forbidden for commuting Hamiltonians. Here we prove
the claim that, given an initial product state evolving under a commuting Hamiltonian,
distant spins can only become correlated if they are either directly coupled or if they
share an intermediate spin to which they both couple; multi-hop processes (for example
site A coupling to site D through sites B and C) do not occur.

We consider the time evolution of the operators Ai and Aj, residing on sites i and
j of the lattice. As discussed in the previous section, the time evolution of Ai and Aj

can be written as

Ai tð Þ~eiHitAie
{iHit

Aj tð Þ~eiHjtAje
{iHjt

where

Hi~
X

p

hip

Hj~
X

q

hjq

We can expand the time-evolution operator to obtain

Ai tð Þ~Aizih Hi,Ai½ �{ t2

2!
Hi, Hi,Ai½ �½ �z . . .

~Aizit
X

p1

hip1,Ai
� 	

{
t2

2!

X
p1,p2

hip2, hip1,Ai
� 	� 	

z . . .

ð7Þ

It follows from equation (7) that Ai(t) is supported on (that is, can be written in terms
of operators belonging to) site i and any site p for which jjhipjj? 0; we denote the set
of such points by Li, and define an equivalent set Lj containing all sites supporting
the operator Aj(t). If jjhijjj5 0 and there are no sites p that simultaneously satisfy
jjhipjj? 0 and jjhjpjj? 0, then Li\Lj~1. In this case, it is clear that an initial
product state must satisfy ÆAi(t)Aj(t)æ 5 ÆAi(t)æÆAj(t)æ, and therefore any connected
correlation function Ci,j(t) must vanish.
Numerical solutions. Because no analytic solution exists for the XY model, exact
long-time dynamics (where the perturbative results derived above break down) must
be obtained by numerical solution of the Schrödinger equation. The curves presented
in Fig. 3m, n are calculated using a standard numerical integration routine. With our
experimental spin–spin couplings Jij as inputs (equation (5)), we construct the full XY
Hamiltonian (equation (2)) using sparse matrices. After evolving the initial product
state jy(0)æunder the Hamiltonian HXY for a time t, we construct the desired correlation
functions by calculating

Ci,j tð Þ~ y tð Þ sz
i sz

j

��� ���y tð Þ
D E
{ y tð Þ sz

i

�� ��y tð Þ
� �

y tð Þ sz
j

��� ���y tð Þ
D E

To numerically check the light-cone shape when a 5 1.19 in a system of 22 spins,
we follow a similar procedure to calculate the time-evolved state jy(t)æ. The results
of this calculation are shown in Extended Data Fig. 2. Note that faster-than-linear
growth of the light-cone boundary persists in this larger system of 22 spins.
Short-time perturbation theory for the XY model. Unlike in the Ising model, no
exact analytic solution exists for the XY model (even in 1D, owing to the long-range
couplings). However, we can nevertheless expand the time-evolution operator to
low order and thereby recover the dynamics at short times. At sufficiently long times,
this perturbative expansion (carried out here to second order) becomes a poor approxi-
mation. This failure, which is observed in the experimental dynamics (Fig. 4), suggests
that the growth of correlations at long distances is not the result of direct spin–spin
interactions; instead those correlations originate from the repeated propagation of
information through intermediate spins.

We are interested in the time evolution of a connected correlation function
Ci,j(t) 5 ÆAi(t)Aj(t)æc of observables Ai and Aj located at different sites i and j. To
second order in time, we have

Ai tð Þ~Aizit H,Ai½ �{ t2

2!
H, H,Ai½ �½ �zO t3

� �
which yields

Ai tð ÞAj tð Þ
� �

c

~ AiAj
� �

czit Ai H,Aj
� 	� �

cz H,Ai½ �Aj
� �

c

� �

{
t2

2
Ai H, H,Aj

� 	� 	� �
cz H, H,Ai½ �½ �Aj
� �

c

� �
{t2 H,Ai½ � H,Aj

� 	� �
czO t3

� �
ð8Þ

Note that in equation (8) we use the notation

ÆAi[H, Aj]æc 5 ÆAi[H, Aj]æ 2 ÆAiæÆ[H, Aj]æ

In the experiment, where Ai corresponds to the Pauli spin operator sz
i , the initial

state is (1) a product state ; � � � ;j iz and (2) a simultaneous eigenstate of each Ai. As
a result of (1), the connected correlation at t 5 0 vanishes (ÆAiAjæc 5 0). As a result
of (2), the third and fourth lines in equation (8) vanish. Therefore, we have

sz
i tð Þsz

j tð Þ
D E

c
~{t2 H,sz

i

� 	
H,sz

j

h iD E
c
zO t3

� �

For the XY Hamiltonians we find

H,sz
i

� 	
~{i

X
k=i

Jiks
y
i sx

k

and so

sz
i tð Þsz

j tð Þ
D E

c

~t2
X

k=i,l=j

JikJjl s
y
i sx

ks
y
j sx

l

D E
{ s

y
i sx

k

� �
sk

j sx
l

D E� �

zO t3
� �

ð9Þ

Because the initial state is polarized along z, the only term that has a non-zero
expectation value on the right-hand side of equation (9) is the one with k 5 j and
l 5 i. Therefore

sz
i tð Þsz

j tð Þ
D E

c
~t2J2

ij s
y
i sx

j s
y
j sx

i

D E
zO t3

� �
~t2J2

ij sz
i sz

j

D E
zO t3

� �
~ Jijt
� �2

zO t3
� �

which is the short-time result used in the main text.

31. Shen, C. & Duan, L.-M. Correcting detection errors in quantum state engineering
through data processing. New J. Phys. 14, 053053 (2012).
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Extended Data Figure 1 | A long-time partial revival in the long-range Ising
model. a, Spatial correlations measured at long times after a global quench of
an Ising model with a 5 0.63. b, A small partial revival in correlation between

sites 1 and 2 is evident, showing quantum coherence at long times. The black
line shows the exact solution predicted from equation (4). Error bars, 1 s.d.
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Extended Data Figure 2 | Numeric calculation of XY model correlations.
Calculated spatial and time-dependent correlations for an N 5 22-spin XY
model with spin–spin couplings Jij < J0/ | i 2 j | 1.19, found by numerically
evolving the Schrödinger equation.
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