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We perform a quantum simulation of the Ising model with a transverse field using a collection of three
trapped atomic ion spins. By adiabatically manipulating the Hamiltonian, we directly probe the ground state for
a wide range of fields and form of the Ising couplings, leading to a phase diagram of magnetic order in this
microscopic system. The technique is scalable to much larger numbers of trapped ion spins, where phase
transitions approaching the thermodynamic limit can be studied in cases where theory becomes intractable.
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At the pinnacle of quantum information science is the full
scale quantum computer,1 where applications such as Shor’s
factoring algorithm2 can provide an exponential speedup
compared with any known classical approach. While large-
scale quantum computers may not be available for some
time,3 more restricted quantum computers known as quan-
tum simulators look promising right now.4 As first consid-
ered by Richard Feynman,5 a quantum simulator controls
interacting quantum bits �qubits� to implement evolution ac-
cording to a known Hamiltonian.6 Then, by performing par-
ticular correlation measurements on the qubits, properties of
certain Hamiltonians—such as their ground state—can be
extracted, often more efficiently than any classical simula-
tion of the underlying quantum system.7 A good example is a
collection of interacting magnetic spins, where the Hamil-
tonian can easily be written down, yet the ground state of
magnetic order cannot always be predicted, even with just a
few dozen spins.8

In this Rapid Communication we simulate the Ising model
with a transverse magnetic field and generate a phase dia-
gram, using a system of N=3 trapped atomic ions. By adia-
batically manipulating the Hamiltonian, we extract the
phases of magnetic order in the ground state as a function of
the transverse field and Ising couplings.9–11 While this sys-
tem admits an exact theoretical treatment, it also represents
the smallest possible system having multiple Ising couplings,
which give rise to interesting magnetic order in the phase
diagram. Furthermore, the experiment is scalable to larger
numbers of spins where theoretical predictions become in-
tractable.

The system is described by the Hamiltonian

H = �
i�j

Ji,j�x
�i��x

�j� + By�
i

�y
�i� �1�

with Ising couplings Ji,j between spins i and j and a uniform
transverse magnetic field By, where Planck’s constant, h is
set equal to one. For three spins along a symmetric one-
dimensional chain, we define J1�J1,2=J2,3 as the nearest-
neighbor interaction strength and J2�J1,3 as the next-
nearest-neighbor interaction, with ��

�i� the Pauli-spin operator

of the ith particle along the � direction. Figure 1 shows two
energy spectra as a function of the scaled transverse field
By / �J1� in the case of ferromagnetic �FM� nearest-neighbor
interactions �J1�0�. We prepare the system in the ground
state of the transverse field �By � �J1��, depicted by the solid
circle �Fig. 1�, and then adiabatically lower the field com-
pared to the Ising couplings. When By / �J1��1 the Ising in-
teractions determine both the form of the ground state and
the energy spacing �ge to the excited state�s�.

In Fig. 1�a�, the next-nearest-neighbor interaction is also
FM �J2�0�. There are no level crossings with the ground
state over the trajectory indicated by the arrow, thus if the
evolution of the Hamiltonian is slow enough, the system re-
mains in the ground state �solid black line�. We can also
change the sign of By and adiabatically follow the highest
excited level, as it exhibits the same structure as the ground
state. In Fig. 1�b�, J2�0 and the next-nearest-neighbor inter-
action is antiferromagnetic �AFM�. The gap at the crossover
to magnetic order defined by the Ising couplings is �15
times smaller than that of Fig. 1�a�, requiring a slower
change of By / �J1� to remain in the ground state.

The competition between different parameters in Eq. �1�
gives rise to a complex phase diagram. The 23 possible spin
configurations are defined as two FM states, �↑↑↑� and
�↓↓↓�, two symmetric AFM states, �↓↑↓� and �↑↓↑�, and
four asymmetric AFM states, �↑↑↓�, �↑↓↓�, �↓↑↑�, and
�↓↓↑�, all defined along the x axis of the Bloch sphere. In
Fig. 2, we plot a part of the theoretical phase diagram where
the nearest-neighbor interactions are always FM �J1�0�.
The order parameter is the probability of occupying a FM
state, P�FM�= P�↑↑↑�+ P�↓↓↓�. For regions where By / �J1��1,
the ground state is polarized along By with P�FM�=1 /2N−1

=1 /4. As By / �J1� decreases, different magnetic phases arise.
When the next-nearest-neighbor interaction is also FM
�J2�0�, and By / �J1��1 the ground states are the two degen-
erate FM states �Fig. 1�a�	. In the region where the next-
nearest-neighbor interaction is AFM �J2 / �J1��0� and J2
overpowers J1, the asymmetric AFM states are lowest in en-
ergy. A special point appears at J2 / �J1�=1 and By =0, where
all the contours of constant FM order meet. Here, the ground
state will be a superposition of the FM and asymmetric AFM
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states. This effect arises because the pairwise interaction en-
ergy cannot be minimized individually, leading to a highly
degenerate, or frustrated, ground state.11

We experimentally simulate the transverse-field Ising
model of Eq. �1� using cold trapped 171Yb+ ions,12 with the
effective spin-1/2 system represented by the hyperfine
“clock” states 2S1/2 �F=1, mF=0� and �F=0, mF=0� de-
noted as �↑ �z and �↓ �z, respectively,13 where �↑ �z= �↑ �+ �↓ �
and �↓ �z= �↑ �− �↓ �. We confine N=3 atomic spins in a linear
radiofrequency ion trap and couple them through N collec-
tive transverse motional normal modes along one principal
axis. These vibrational normal modes, having frequencies
��1 ,�2 ,�3���4.334,4.074,3.674� MHz, are each cooled to
near the ground state and deeply within the Lamb-Dicke
limit.10,11

The effective magnetic field By, which produces Rabi os-
cillations between the two spin states, is generated by uni-
formly illuminating the ion chain with two Raman laser
beams having a difference frequency at the hyperfine split-
ting, �HF=12.642821 GHz. For an individual beam detuning
of �1.8 THz below the 2S1/2− 2P1/2 transition14 and a peak
intensity of 10 W /mm2 each ion undergoes Rabi oscillations
at a rate of 	�1 MHz and experiences a �20 kHz differ-
ential ac Stark shift.

The spin-spin interaction Ji,j is created by coupling the
ions’ spin states through the normal modes of motion of the
chain. The two Raman beams travel perpendicular to each
other to have a wavevector difference 
k along the transverse
direction. The laser frequency of one of the two pathways is
modulated to yield beatnotes �with respect to the nonmodu-
lated beam� at frequencies �HF��, imparting a spin-
dependent force at frequency �.15,16 By controlling the beat-
note detuning �, we tailor the Ising couplings according to10

Ji,j = 	i	 j�
m


i,m
 j,m�m

�2 − �m
2 . �2�

Here, 	i is the Rabi frequency of the ith ion. The Lamb-
Dicke parameter for the mth mode of the ith ion is

i,m=bi,m
k
� / �4�M�m�, where b is the normal-mode trans-
formation matrix and M the mass of a single ion. In the
above expression, we assume ��m−���
	i, so that phonons
are only virtually excited.

We initialize the spins along the By direction through op-
tical pumping ��1 �s� and a � /2 rotation about the −x axis
of the Bloch sphere. The simulation begins with a simulta-
neous and sudden application of both By and Ji,j, where By
overpowers Ji,j�By / �Ji,j��10�. A typical experimental ramp
of By decays as By =ae−t/�+b with a time constant of
��30 �s, varying from a�10 kHz to a final offset of
b�500 Hz after t=300 �s. By varying the power in only
one of the Raman beams, this procedure introduces a change
in the differential ac Stark shift of less than 2 Hz. We turn off
the Ising interactions and transverse field at different By / �Ji,j�
end points along the ramp. We then measure the magnetic
order along the x axis of the Bloch sphere by first rotating the
spins by � /2 about the y axis, and detecting the z component
of the spins through spin-dependent fluorescence.13 By re-
peating identical experiments �1000 times, we obtain the
probability for the system to be in a particular spin configu-
ration. We collect fluorescence with a photomultiplier tube,
exhibiting �97% detection efficiency per spin after 0.8 ms
exposure.

This procedure is performed for nine different combina-
tions of J1 and J2 set by the beatnote detuning � from Eq.

y
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FIG. 1. Energy level diagrams for Eq. �1� with two different
types of spin-spin interactions. For both panels, the nearest-
neighbor interactions are FM �J1�0�. �a� The next-nearest-
neighbor interaction is FM with J2 / �J1��−2 and �b� AFM with
J2 / �J1��0.9. The arrow in both diagrams indicates the trajectory in
the simulation, initialized at By / �J1��10. Under this condition, the
initial ground state is an eigenstate of the second term in Eq. �1�, a
polarized state along By. In both examples, at B��J1� some high-
energy states cross, but the ground state �black solid line� has no
level crossings with any excited state. Likewise, the highest energy
state does not cross any other levels, allowing one to also adiabati-
cally follow this state. The dotted lines represent excited states
which are coupled to the ground state along the path. In the large
field limit, the energy difference between ground and excited states
�ge �here, scaled by 
By

2+J1
2� is proportional to By but as By / �J1�

decreases the spin-spin couplings determine the energy difference
and the form of the ground state. In both �a� and �b�, the final
ground state is FM �defined along the x axis of the Bloch sphere�,
however in the case of �a�, the gap to the nearest allowed excited
state at the crossover is �15 times larger.

J1<0 (FM), J2<0 (FM) J1<0 (FM), J2>0 (AFM)

Special Point
(frustration)

P(FM)

B
y/
|J
1|

J2/|J1|
-4 -2 0 2 4

FIG. 2. �Color online� Theoretical phase diagram for Eq. �1�.
The color scale indicates the amplitude of the FM order parameter,
P�FM�= P�↑↑↑�+ P�↓↓↓�. Here, J1 is always negative, yielding FM or-
der in that coupling. In the region where J2 / �J1��0, there is a
crossover to FM order as By / �J1� is lowered �corresponds to Fig.
1�a�	. When J2 / �J1��0, the AFM and FM interactions compete
�also shown in Fig. 1�b�	. This gives rise to a special sharpened
point at J2 / �J1�=1 and By =0. Here, the ground state is comprised of
six states: four asymmetric AFM and two FM states.
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�2�. In Fig. 3 we present the results as a three-dimensional
plot of the FM order parameter with the theoretical phase
diagram �surface� in Fig. 2 superimposed on the data. The
data are in good agreement with the theory �average devia-
tion per trace is �0.09� and shows many of the essential
features of the phase diagram. As By / �J1� decreases, a smooth
crossover from a nonordered state to FM order occurs in the
region where J2 / �J1��0 �Fig. 3�b�	. As the number of spins
increases, this is an example of a quantum phase transition.
A first-order transition due to an energy level crossing is
apparent �Fig. 3�c�	 when changing J2 for a fixed and small
value of By / �J1�=0.57. This transition is sharp, even in the
case of three spins. The data �e.g., Fig. 3�b�	 show small
amplitude oscillations in the initial evolution due to the sud-
den application of the spin-spin interaction, which is held
constant during the simulation to minimize variation in the
differential ac Stark shifts. This limitation can be removed by
choosing the Raman laser detuning such that contributions
from the 2P3/2 energy level lead to a minimum in the ratio of
the differential ac Stark shift to the resonant Rabi
frequency.17

We now investigate adiabaticity of the Hamiltonian trajec-
tory H�t�, characterized by the condition18

Ḃy�t��
�ge

2 � 1. �3�

In this expression, the dimensionless quantity
����g�t�� dH�t�

dBy
�e�t��� characterizes coupling from the ground

state �g�t�� to any excited state �e�t�� with energy gap �ge.
This parameter is small, of order unity for this simulation,
but is peaked at a crossover in magnetic order, where the
instantaneous eigenstates are most rapidly varying. There-
fore, Eq. �3� states that to remain adiabatic, the slope of the
time-dependent By-field profile must be shallow when the
gaps in the energy spectrum are small �as in Fig. 1�b�	, in
particular, near a crossover �phase transition for large N�.

In Fig. 4, we investigate this adiabatic criteria for two
different types of next-nearest-neighbor coupling. In Fig.
4�a� all interactions are FM and J2 / �J1��−2 �as in Fig. 1�a�	.
The dashed lines in the top panel are the adiabaticity param-
eter from Eq. �3� calculated over the trajectory for the two
coupled excited states �recall Fig. 1�. Due to the 500 Hz final
offset of By, the simulation stops at By / �J1��0.5. To examine

5
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FIG. 3. �Color online� Experimental measurements of the phase
diagram for Eq. �1� �solid bars� compared to the theoretical predic-
tion from Fig. 2 �surface�. The vertical amplitude is the FM order
parameter P�FM�= P�↑↑↑�+ P�↓↓↓�. The ratio of By / �J1� was varied
from �10 to �0.1 for J2 / �J1� values of −1.3, −2.0, −3.6, 4.2, 2.0,
1.3, 0.92, 0.74, and 0.62. J1�0 for all traces. �b� As By / �J1�→0 in
the region where J2 / �J1��−1, we observe a smooth crossover to
FM order. The filled circles and solid line are the data and theory
for J2 / �J1�=−1.3, respectively. �c� When changing J2 for a fixed and
small value of By / �J1� the system undergoes a sharp transition. The
data �filled circles� shown is for a scan of By /Jy =0.57. The average
deviation per scan of By / �J1� from the exact ground state is �0.09.
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FIG. 4. Adiabaticity for two cuts in the phase diagram, where
�a� J2 / �J1�=−2 and �b� J2 / �J1�=0.9. The upper plots show the the-

oretical ground-state adiabaticity parameter Ḃy�t�� /�ge
2 of Eq. �3�

�dashed lines� for each of the two coupled excited states �see Fig.
1�. We use a pure exponential decay ramp for the field By with time
constant 100 �s in order to match the experiment for large values
of By /J1 while also extending the theory curves below the mini-
mum value of By reached in the experiment. At every point in the
trajectory of �a�, we find that the adiabatic condition �Eq. �3�	 is
satisfied for typical experimental times �300 �s�. On the other
hand, in �b�, there is a significant probability of diabatic transitions
to excited states for By /J1�1. In the lower plots, we compare the
observed FM order parameter �points� with theory. In �a�, the the-
oretical order from the exact experimental ramp with a 35 �s time
constant and final offset value given in the text �gray solid line� is in
reasonable agreement with the order in the true ground state �black
solid line� for By /J1�0.5. The dotted line is the expected state
evolution for a pure exponential decay ramp with a 100 �s time
constant, allowing By→0. In �b�, the data also matches well to
theory, as we avoided the regions where diabatic transitions are
expected for By /J1�1. According to the calculations, the duration
of three-spin experiments near the special point should be on the
order of milliseconds.
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the behavior extended below this value, we calculate the cri-
teria for an exponential ramp with a 100 �s time constant.
This profile was chosen to overlap with experimental param-
eters for large By / �J1� and also reach By =0 in a typical simu-
lation time ��300 �s�. The results indicate that Eq. �3� is
satisfied over the trajectory; Ḃy�t�� /�ge

2 remains much less
than one even with a maximum occurring at By / �J1��1. To
demonstrate the simulation is indeed adiabatic for these pa-
rameters, the measured probability P�FM� �solid dots� is
shown in the lower panel of Fig. 4�a�. The black line repre-
sents the adiabatic ground state and the gray line is the the-
oretical expected probability including the experimental
ramp. The dotted line in this figure is the theoretical state
evolution using a By-field ramp that reaches zero. The pre-
dicted evolution does not significantly deviate from the ideal
ground state and the data are in good agreement with all
three theory curves.

Figure 4�b� presents the case when the next-nearest-
neighbor interaction is AFM and J2 / �J1��0.9 �as in Fig.

1�b�	. When By / �J1��1, Ḃy�t�� /�ge
2 reaches a maximum

value of �0.6, indicating that the probability for excitations
will likely increase. This difference is because in this case
the gap �ge at the “critical” point is �15 times smaller than
that in Fig. 1�a�. In contrast to the FM J2 case, the theoretical
probability curves shown in the lower panel of Fig. 4�b�
predict significant diabatic effects when using this By-field
profile for simulations near the special point. In fact, to suc-
cessfully evolve to the true ground state near By =0, the
simulation time �assuming same initial conditions and an ex-
ponential ramp of By� should be at least a factor of ten
longer.

Because all the data lies outside of the region where the
energy gaps are small, the diabatic excitations are minimal,
but further experimental study is needed to precisely quan-
tify this effect. One method to probe excitations, which may

also be useful as N�1, is to perform and then adiabatically
reverse the experimental ramp and measure the probability
of returning to the initial state. The main contributions to the
overall data offset from theory shown in Figs. 3 and 4 are
spontaneous emission due to off-resonant scattering �prob-
ability �15% in 1 ms�, imperfect optical pumping �state
preparation�, parasitic fields along the x and z axes, and state
detection error. Additional phonon terms not appearing in the
Hamiltonian of Eq. �1� are expected to contribute at a level
under 2%.10

As the number of spins N grow, the technical demands on
the apparatus are not forbidding.10,11 In particular, the ex-
pected adiabatic simulation time for this model is inversely
proportional to the critical gap in the energy spectrum; for
the transverse-field Ising model in a finite-size system, this
gap decreases as N−1/3.19 Scaling this system to accommo-
date long ion chains �approaching the thermodynamic limit�
will allow investigation of behavior near critical points. This
is interesting for N�20, where general spin models become
theoretically intractable. For instance, the Lanczos
algorithm20 can be used to find low-lying states of a 30 spin/
site problem if the 230 element matrix is sparse. If one is
interested in a nonsparse matrix, as is the case for the ion
system with long-range magnetic coupling, the limiting num-
ber of spins is �20. Theoretical investigations of dynamics
limit the number of spins further.8,21 We note that this ap-
proach to quantum simulation is versatile and may be ex-
tended to simulate Heisenberg or XYZ spin models using
additional laser beams.12
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