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Quantum networks based on atomic qubits and scattered photons provide a promising way to build a large-
scale quantum information processor. We review quantum protocols for generating entanglement and op-
erating gates between two distant atomic qubits, which can be used for constructing scalable atom–photon
quantum networks. We emphasize the crucial role of collecting light from atomic qubits for large-scale net-
working and describe two techniques to enhance light collection using reflective optics or optical cavities.
A brief survey of some applications for scalable and efficient atom–photon networks is also provided.
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1 Introduction

Scalable quantum information processing has been proposed in many physical systems [1, 2]. There are
two types of quantum bits (qubits) currently under investigation: material and photonic qubits. Qubits
stored in atoms or other material systems can behave as good quantum memories, but they are generally
difficult to transport over large distances. On the other hand, photonic qubits are appropriate for quantum
communication over distance, yet are difficult to store. It is thus natural to consider large–scale quantum
networks that reap the benefits of both types of quantum platforms.

Trapped atomic ions are among the most attractive candidates for quantum memory, owing to their long
storage and coherence times [3, 4]. The traditional approach to entangle multiple trapped ions relies on a
direct Coulomb interaction between ions in close proximity [5–8]. Scaling to larger numbers of qubits can
then proceed by shuttling ions between multiple trapping zones in complex trap structures [9].

A higher level architecture for entangling an arbitrary number of atomic qubits is an atom–photon net-
work [10–14], in which singular or locally interacting material qubits form the quantum registers of a
distributed quantum network as depicted in Fig. 1. The modular structure of this network relies on entan-
gling atomic qubits with photonic qubits in order to establish entanglement between the quantum registers.
Here, we concentrate on probabilistic links where the atom–photon entanglement process succeeds with
a low probability, yet this probabilistic process still can be used to to generate arbitrary-size quantum
networks [15].

Central to the idea of a probabilistic atom–photon network is the heralded entanglement process be-
tween remote nodes, which includes the following two steps. First, the scattering of photons establishes
entanglement between atomic and photonic qubits. Second, the interference and detection of the scattered
photons from multiple atomic qubits project the remote atomic qubits into an entangled state. The success
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Fig. 1 Concept of a distributed atom–photon network for a large-scale quantum information processor. Quantum
registers are ion traps containing singular or locally interacting atomic qubits (blue boxes), which are linked by photons
(red lines) through the use of an optical switch and optical Bell-state detectors.

probability for the first step is

Pap = pe pc pt, (1)

where pe is the probability of generating the desired entangled atom–photon pair, pc is the efficiency of
collecting the emitted photon by the optical system, and pt is the transmission efficiency of the entire
optical system, including fiber coupling. The second step of the heralded entanglement adds other factors
to the success probability, including the loss of certain photonic states at the Bell state detector [16] and the
quantum efficiency of the photon detectors. Experiments demonstrating entanglement between two remote
ions [17–20] have clearly shown that the light collection efficiency pc is the leading limiting factor for the
overall success probability. Improvements to the light collection efficiency from trapped ions therefore
play a crucial role for creating a scalable and efficient atom–photon quantum network.

In this paper, we review protocols and techniques suitable for constructing a scalable atom–photon
quantum network. We first provide a detailed description of methods to create entangled atom–photon
pairs with different types of photonic qubits (Sec. 2), as well as protocols for generating heralded en-
tanglement and operating quantum gates between two remote atomic qubits (Sec. 3). Where applicable,
we will provide examples with 171Yb+ ions as quantum memories. To apply these schemes for building
large–scale atom–photon networks, we discuss specific protocols and techniques relevant to trapped ions,
including using photon emission from multiple ions to entangle a linear crystal of ions (Sec. 4) and im-
proving light collection from trapped ions by reflective optics or an optical cavity (Sec. 5). We also present
a brief outlook of a scalable atom–photon network for quantum information processing (Sec. 6).

2 Protocols for Generating Atom–Photon Entanglement

Entangled atom–photon pairs can be generated from a wide range of systems, including trapped ions,
neutral atoms, and atomic ensembles [12]. The quantum protocols used to produce these entangled pairs
are general and not limited to the specific systems. In this section, we first review these general protocols,
and then use trapped 171Yb+ ions as an example to show detailed schemes of generating both ultraviolet
and infrared photonic qubits.

2.1 Types of Photonic Qubits

When a laser pulse hits an atom, photons can be scattered through either a resonant or off-resonant process.
In both processes the atom can be transferred from the initial state to the multiple final states through
different scattering channels. If an atom has two distinct scattering channels correlated with two orthogonal
states of the scattered photon, an entangled atom–photon pair is produced as described by

|Ψap〉 = c↑ |↑〉|P↑〉+ c↓ |↓〉|P↓〉, (2)
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Fig. 2 Protocols for generating entangled atom–photon pairs. Black dots represent initial atomic states, and white dots
represent final atomic states. The solid straight lines represent photons in the laser beam. The wiggly lines represent
photons scattered or emitted from the atom. The atomic qubit states are denoted by |↑〉 and |↓〉. (a) Number Qubit.
A photon is scattered from a laser pulse, transferring the atom from the initial state to the final state with a certain
probability. The existence of the scattered photon is entangled with the atomic qubits. (b) Polarization Qubit. An
excited atom with two effective decay channels spontaneously emits a photon whose polarization is correlated with the
final atomic state, thus generating entanglement between the polarization of the emitted photon and the atomic qubits.
(c) Frequency Qubit. An atom in an arbitrary qubit state is coherently transferred by a broadband pulse to excited
states. The selection rules ensure that the population in each excited state decay back to its original state, generally
entangling the frequency of spontaneously emitted photons with the atomic qubit. (d) Time-bin Qubit. An atom is
initially in an arbitrary qubit state. A laser pulse resonant with the |↑〉 ↔| e〉 transition is applied to the atom. After
the population in the excited state spontaneously decays back to the initial state, a π pulse rotates the qubit. A second
identical laser pulse is subsequently applied, followed by another spontaneous decay. The emission time of the photon
defines the photonic qubit, which is generally entangled with the atomic qubit.

where |↑〉 and |↓〉 represent the atomic qubit state, and |P↑〉 and |P↓〉 are the orthogonal states of the
photonic qubit. The values of the probability amplitudes, c↑ and c↓, depend on the specific scheme used to
generate the entangled pairs.

The physical properties of photons that are most often used to encode the photonic qubits are (i) exis-
tence of the photon(s) (number qubits), (ii) polarization, (iii) frequency, and (iv) the emission time (time-bin
qubits).

Number Qubits. Suppose a three-level atom with a ‘Λ configuration’ is initially prepared in one of its
ground states, |↑〉, as shown in Fig. 2(a). Photons in a laser pulse are scattered by the atom, transferring
the atom from |↑〉 to |↓〉 with certain probability pe < 1. After the scattering, the final atom–photon state
is described by

|Ψap〉 =
√

1− pe |↑〉|0〉+
√

pe |↓〉|1〉 , (3)

conforming to Eq. 2. Here |0〉 and |1〉 denote the vacuum state and the one photon state generated by the
scattering process.

Polarization Qubits. Polarization qubits can be realized by the scheme shown in Fig. 2(b). An atom,
initially prepared in the excited state |e〉, spontaneously decays to the ground states |↑〉 and |↓〉 with prob-
ability p↑ and p↓, respectively. Each decay channel is associated with a polarization component of the
emitted photon. If these two polarization components, denoted by H and V , are orthogonal, the atomic
qubit stored in the |↑〉 and |↓〉 states is entangled with the polarization of the emitted photon. The overall
atom-photon state is described by

|Ψap〉 =
√

p↑ |↑〉|1H0V 〉+
√

p↓ |↓〉|0H1V 〉 . (4)

conforming to Eq. 2. Here |1H0V 〉 and |0H1V 〉 denote the H and V polarization states for a single photon.
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Frequency Qubits. One example of generating frequency qubits is shown in Fig. 2(c), where both the
ground state and the excited state have two non-degenerate energy levels. Frequency qubits can also be
generated by addressing only one energy level in the excited state, but this configuration does not support
a quantum gate operation [17]. In the case shown in Fig. 2(c), the four energy levels are chosen so that
selection rules only permit transitions from |↑〉 ↔ |e↑〉 and |↓〉 ↔ |e↓〉. The atom is initially prepared in
an arbitrary superposition state, α |↑〉+ β |↓〉. A laser pulse, whose bandwidth covers both the |↑〉 ↔ |e↑〉
|↓〉 ↔ |e↓〉 transitions, coherently excites the atom to the α|e↑〉 + β|e↓〉 state. The population in each
excited state then decays back to its initial ground state. Because the frequency of the spontaneously
emitted photon is uniquely correlated with the originally prepared quantum state, this process results an
entangled atom–photon pair given by

|Ψap〉 = α |↑〉|1r0b〉+ β |↓〉|0r1b〉 , (5)

conforming to Eq. 2. Here |1r0b〉 and |0r1b〉 denote the one-photon states for two different frequency
components, where r is the red, or low frequency photon, and b is the blue, or high frequency photon.
These frequency qubit states are resolved when ωb − ωr À Γ, where ωb and ωr are the two photon
frequencies and Γ is the linewidth of the transitions. We note that the final entangled state preserves the
quantum information in the initial qubit state, thus admitting quantum gate operations.

Time-bin Qubits. The time at which a photon is emitted can also be used to encode photonic qubits [21,
22]. This type of photonic qubit is defined by a superposition of states in which a photon exists within a
‘time bin’ centered either at time t1 or t2. The time-bin states are resolved when e−Γ |t2−t1| ¿ 1. As
shown in Fig. 2(d), an atom is initially prepared in a superposition state of α |↑〉 + β |↓〉. The excited
energy level |e〉 is chosen so that the selection rules only permit the transition from |↑〉 ↔ |e〉. At time t1,
a single frequency laser pulse resonant with the |↑〉 ↔ |e〉 transition excites the population to the |↑〉 state.
After the population in the excited state decays, the atom–photon state is α |↑〉|1t1〉 + β |↓〉|0t1〉, where
|1t1〉 and |0t1〉 represent the one-photon state and the vacuum state at time t1. A π pulse is then applied to
rotate the atomic qubit, changing the atom–photon state to −α |↓〉|1t1〉+ β |↑〉|0t1〉. At time t2, a second
resonant laser pulse is applied to again excite the population in the |↑〉 state. Following the spontaneous
decay, the final entangled atom–photon state is given by

|Ψap〉 = β |↑〉|0t11t2〉 − α |↓〉|1t10t2〉 , (6)

conforming to Eq. 2. Here |0t11t2〉 and |1t10t2〉 represent the states of a single photon at time t2 and t1.

2.2 Photonic Qubits for 171Yb+ Ions

All the atom–photon entanglement schemes discussed above can be realized through resonant scattering
processes with laser-cooled, trapped 171Yb+ ions [23]. Table 1 details how the four types of photonic
qubits illustrated in Fig. 2 can be created using the 2S1/2 ↔ 2P1/2 transition of 171Yb+ ions in the
ultraviolet (UV) at 370 nm. Polarization and frequency photonic qubits have been realized experimentally
in Ref. [17–20].

We note that the 171Yb+ system also supports infrared (IR) photonic qubits, which may be useful for
long-distance quantum communication. Moreover, access to additional optical frequencies may facilitate
entanglement between disparate optically active systems (e.g. between trapped ions and quantum dots).
IR photonic qubits can be generated by either the 3[3/2]1/2 ↔ 2D3/2 transition (935 nm) or the 2P3/2 ↔
2D3/2 transition (1.3 µm), as shown in Fig. 4 for polarization and frequency photonic qubits.

The branching ratio of the 3[3/2]1/2 level between 2S1/2 and 2D3/2 has been calculated to be about
55:1 [24], which decreases the probability of generating a 935 nm photon and thereby reduces the overall
success probability of the entanglement protocols discussed below. Two potential experimental problems
arise from the small branching ratio. First, a higher fraction of the detection events will be dark counts
due to the additional detector integration time. However, there is a way to “veto” these extra dark counts.
After a 935 nm photon detection event, a π pulse at the 2D3/2 hyperfine splitting can be used to coherently
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Fig. 3 Relevant energy levels for 171Yb+. The 2S1/2 ↔ 2P1/2 transition is driven by light at 370 nm. The ion
decays from 2P1/2 to the 2D3/2 state with probability of 0.005. A 935 nm laser is used to pump the ion out of this
state through the 3[3/2]1/2 level. The 3P3/2 state is above the 2P1/2 state, but is not shown in the figure.

Photonic Qubit Type Ground State Excited State
Number Qubit |↑〉 = 2S1/2|0, 0〉 |e〉 = 2P1/2|1,−1〉

|↓〉 = 2S1/2|1,−1〉
Polarization Qubits |↑〉 = 2S1/2|1, 1〉 |e〉 = 2P1/2|0, 0〉

|↓〉 = 2S1/2|1,−1〉
Frequency Qubits |↑〉 = 2S1/2|1, 0〉 |e↑〉 = 2P1/2|0, 0〉

|↓〉 = 2S1/2|0, 0〉 |e↓〉 = 2P1/2|1, 0〉
Time-bin Qubits |↑〉 = 2S1/2|1, 0〉 | e〉 = 2P1/2|0, 0〉

|↓〉 = 2S1/2|0, 0〉
Table 1 The energy levels for generating ultraviolet photonic qubits from the 2P1/2 ↔ 2S1/2 transition, where the
Zeeman levels are denoted by |F, mF 〉.

shelve the qubit state populations to the 2D3/2|F = 2〉 manifold. If the fluorescence detection procedure
detailed in [23] is now performed, in which population of 2D3/2|F = 2〉 is undisturbed, no 370 nm
photons should be detected. The detection of 370 nm photons during this interval would indicate that
the 935 nm photon “detection” was in fact a dark count and should be discarded. The atomic population
transferred from 2D3/2|F = 1〉 to 2D3/2|F = 2〉 can then be returned by a second microwave π pulse.
The second problem posed by the small branching ratio is that it is difficult to implement state detection
for atomic qubits by using the 935 nm infrared transition directly. Instead, the 2D3/2 states can be mapped
to the 2S1/2 states so that the aforementioned UV photon fluorescence detection can be used to measure
the atomic qubits. For example, to detect the atomic states described in Fig. 4(a), the population in the
2D3/2|F = 1,mF = 1〉 state could be transferred to the 2D3/2|F = 2〉manifold by a resonant microwave
pulse at the hyperfine splitting of 0.86 GHz. Light from a 935 nm laser could transfer the population
from the 2D3/2|F = 1〉 manifold to 2S1/2|F = 1〉 (Fig. 3). The state of the atom is then determined by
resonantly driving the 2S1/2|F = 1〉 ↔ 2P1/2|F = 0〉 transition and detecting the fluorescence, indicating
the atom was originally in the 2D3/2|F = 1,mF = −1〉 state.

Finally, we consider the 1.3 µm photons generated from the 2P3/2 to 2D3/2 transition. The branching
ratio from 2P3/2 to 2S1/2 versus 2D3/2 is about 475:1 [24]. While the 1.3 µm wavelength is more amenable
to long distance transmission, the decrease in the protocol success probability is even more drastic. In
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Fig. 4 Generation of infrared photonic qubits entangled with 171Yb+ ions. (a) Generating polarization photonic
qubits at 935 nm. An atom is first prepared in the 2S1/2|F = 1, mF = 0〉 state. A π-polarized pulse at 297.1 nm
transfers the atom to the 3[3/2]1/2|F = 0, mF = 0〉 state, while transitions to the 3[3/2]1/2|F = 1, mF = 0〉 level
are forbidden. The atom can spontaneously decay to the 2D3/2|F = 1〉 level and emit a 935 nm photon, resulting the
entanglement between the polarization qubits of the 935 nm photon and the atomic qubits in the hyperfine levels of the
2D3/2|F = 1〉 state. (b) Generating frequency photonic qubits at 935 nm. An atom is initialized to a superposition
state including the |F = 0, mF = 0〉 and |F = 1, mF = 0〉 hyperfine levels in the 2S1/2 state. Then a π-
polarized pulse at 297 nm coherently transfers the population from 2S1/2 to 3[3/2]1/2. The selection rules only permit
2S1/2|F = 0, mF = 0〉 ↔ 3[3/2]1/2|F = 1, mF = 0〉 and 2S1/2|F = 1, mF = 0〉 ↔ 3[3/2]1/2|F = 0, mF = 0〉.
Then the 3[3/2]1/2 levels can decay to 2D3/2 by spontaneously emitting a 935 nm photon. By only collecting π-
polarized photons the frequency of the emitted photon is entangled with the hyperfine state of 2D3/2. (c) Generating
frequency photonic qubits at 1.3 µm. An atom is initially prepared 2S1/2 and then excited to 2P3/2 by a laser pulse at
329 nm. Decay from 2P3/2 to 2D3/2 results in the emission of a 1.3 µm photon, producing the same atomic qubit as
in (b), but with a different frequency photonic qubit of wavelength 1.3 µm.

addition, 2P3/2 can also decay to 2D5/2, which can subsequently decay to the long-lived 2F7/2 state.
Depopulating these additional metastable states could limit the repetition rate of the experiment.

3 Protocols for Generating Remote Atom–Atom Entanglement

The entangled atom–photon pairs described in the last section can be used to entangle two remote non-
interacting atomic qubits. The key component of entangling these atomic qubits is the interference of the
photons on a 50:50 beamsplitter as shown in Fig. 5(a). In contrast to post-selected entanglement schemes,
in which measurement of the entangled qubits destroys the entanglement, the detection of photons after
the beamsplitter destroys only the photonic system, which can herald the projection of the atomic states
into an entangled state. This heralded entanglement technique generates useful entangled atomic pairs that
serve as the chief resource for constructing a photon-mediated quantum network.

There are two types of heralded entanglement, distinguished by whether only one photon is emitted by
the two atoms (type I) or one photon is emitted by each of the two atoms (type II) [10]. For a single photon
input state [11, 25], the output of a 50:50 beamsplitter is given by

|0〉A|1〉B BS−→
|0〉A|1〉B + |1〉A|0〉B√

2
,

|1〉A|0〉B BS−→
−|0〉A|1〉B + |1〉A|0〉B√

2
. (7)

As shown in Fig. 5(a), |i〉A|j〉B denotes the number of photons i and j in the two spatial modes A and B
entering or emerging from the beamsplitter, having the same frequency and polarization. For a two-photon
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Fig. 5 (a) The experimental setup for the interference effect of individual photons emitted by two ions. The 50:50
beamsplitter (BS) ensures that the origins of detected photons are unknown. In type I heralded entanglement, only
one spontaneously emitted photon is detected following the excitation. Type II heralded entanglement involves two
photons interfering on the beamsplitter. (b) Conceptual sketch of an atom–photon quantum repeater, in which locally-
interacting atomic qubits are entangled with remote atomic qubits via a heralded entanglement protocol and local gate
operations.

input state [11, 25], the interference generates the output states

|0〉A|2〉B BS−→
|0〉A|2〉B

2
+
|1〉A|1〉B√

2
+
|2〉A|0〉B

2
,

|1〉A|1〉B BS−→
(−|0〉A|2〉B + |2〉A|0〉B)√

2
,

|2〉A|0〉B BS−→
|0〉A|2〉B

2
− |1〉A|1〉B√

2
+
|2〉A|0〉B

2
. (8)

3.1 Type I Heralded Entanglement

To implement the type I heralded entanglement protocol, laser pulses are applied to two atoms A and B so
that pe ¿ 1, as shown in Fig. 2(a). The scattering process yields two entangled atom–photon pairs with
states |Ψap〉 =

√
1− pe |↑〉|0〉+

√
pe |↓〉|1〉. The state of the two atom–photon pairs A and B is then

|Ψapap〉 = |Ψap〉A ⊗ |Ψap〉B
≈ |↑〉A |↑〉B |0〉A|0〉B +

√
pe

( |↑〉A |↓〉B |0〉A|1〉B + eiφ| ↓〉A| ↑〉B |1〉A|0〉B
)
, (9)

where terms of order pe and higher are ignored. The relative phase φ = ∆k ∆x, where ∆k is the wavevec-
tor difference between the excitation laser and the collected photons, and ∆x is the optical path lengths
difference from the atoms to the beamsplitter. After the beamsplitter, the output state containing one photon
is

|Ψapap〉 =
( |↑〉A |↓〉B − eiφ |↓〉A |↑〉B

)|0〉A|1〉B +
( |↑〉A |↓〉B + eiφ |↓〉A |↑〉B

)|1〉A|0〉B . (10)

This result indicates that once the two PMTs detect one photon, the atom–atom state is projected into one
of the following states

|Ψaa〉 =|↑〉A |↓〉B ± eiφ |↓〉A |↑〉B , (11)

where the sign is determined by which PMT detects the photon.
The success probability of type I entanglement is PI = 2 Pap ηdet, where Pap is the success probability

of obtaining a useful atom–photon entangled pair (Eq. 1) and ηdet is the photon detection efficiency. Ac-
cording to the above analysis, there is a small probability of order p2

e that both atoms scatter photons. If
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only one photon is detected, there is still a probability pe that another photon was emitted but not detected,
representing a limit on the fidelity of this entanglement procedure.

Type I entanglement relies on interferometric stability of the optical paths, so fluctuations in the phase
φ = ∆k∆x must be kept small. An important source of decoherence is the atomic recoil from the ab-
sorption and emission of a photon, indicating which atom scatterers the photon [26, 27]. The resulting
entanglement fidelity is found to be F = 1− 4η2(n̄ + 1/2) in the Lamb-Dicke limit where η2n̄ ¿ 1 [28].
Here, η = ∆k

√
h̄/(2mω) is the Lamb-Dicke parameter of each ion of mass m, and n̄ is the average

number of thermal quanta of motion in a trap of frequency ω. This problem can be overcome by col-
lecting photons in the forward scattering direction (∆k = 0), or by confining the ions deeply within the
Lamb-Dicke limit where the recoil probability is small.

3.2 Type II Heralded Entanglement and Gate Operation

The interferometric stability requirement for type I entanglement is a serious challenge for experimental
implementation. Type II entanglement bypasses this issue through interference of two photons, one from
each atom, where the interferometric phase k∆x becomes common mode. This makes type II entanglement
more robust to noise, and it has been successfully demonstrated in experiments [17–20].

Polarization, frequency, and time–bin qubits can all be used for type II entanglement generation. Fre-
quency and time–bin qubits can also be used to implement a heralded quantum gate, where the output state
depends on the input state of the atomic qubits. We discuss this gate operation, and show how it can be
used for entanglement generation.

Initially atoms A and B are independently prepared in arbitrary quantum states. The total atom–atom
state is described by

|Ψaa〉i = (αA| ↑〉A + βA| ↓〉A)⊗ (αB | ↑〉B + βB | ↓〉B) . (12)

Suppose the entangled atom–photon pairs are generated, preserving the initial quantum information by us-
ing appropriate photonic qubits. If we assume equal optical path lengths from each atom to the beamsplitter
for simplicity, the overall input state of the atom–photon pairs to the beamsplitter is

|Ψapap〉 =
(
αA| ↑〉A|P↑〉A + βA| ↓〉A|P↓〉A

)⊗ (
αB | ↑〉B |P↑〉B + βB | ↓〉B |P↓〉B

)
(13)

= |φ̃+〉aa|φ+〉pp + |φ̃−〉aa|φ−〉pp + |ψ̃+〉aa|ψ+〉pp + |ψ̃−〉aa|ψ−〉pp, (14)

where |φ±〉pp and |ψ±〉pp are the maximally entangled Bell states for photonic qubits and |φ̃±〉aa and
|ψ̃±〉aa are the associated atomic states given by

|φ±〉pp =
1√
2

(|P↑〉A|P↑〉B ± |P↓〉A|P↓〉B
)

(15)

|ψ±〉pp =
1√
2

(|P↑〉A|P↓〉B ± |P↓〉A|P↑〉B
)

(16)

|φ̃±〉aa =
1√
2

(
αAαB |↑〉A |↑〉B ± βAβB |↓〉A |↓〉B

)
(17)

|ψ̃±〉aa =
1√
2

(
αAβB |↑〉A |↓〉B ± βAαB |↓〉A |↑〉B

)
. (18)

As a consequence of the quantum interference at the beamsplitter, the photons will emerge from differ-
ent exit ports only if they are in the antisymmetric state |ψ−〉pp [16, 25, 29, 30]. Using frequency qubits
as an example, where |P↑〉 = |1r0b〉 and |P↓〉 = |0r1b〉, according to Eq. 7, the beamsplitter produces the
output state

|ψ−〉pp =
1√
2
(|1r0b〉A|0r1b〉B − |0r1b〉A|1r0b〉B). (19)
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Consequently, when the two PMTs detect a coincident event, the final atom–atom state |Ψaa〉f is projected
into

|Ψaa〉f =
αAβB | ↑〉A| ↓〉B − βAαB | ↓〉A| ↑〉B√

|αAβB |2 + |βAαB |2
. (20)

The above protocol generates the final state |Ψaa〉f from the initial state |Ψaa〉i by a gate operation
given by

1
2
ZA (I − ZA ZB) =




0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0


 , (21)

where ZA(B) is the single qubit Pauli-z gate for atom A (B). Notice that this gate is not a unitary operator
since the input states |↑〉A| ↑〉B and |↓〉A| ↓〉B do not output any heralded events, yielding a null result.
This quantum gate operation can be used to entangle two atomic qubits: for example, if the initial state is
set to αA = αB = βA = βB = 1/

√
2 in Eq. 12, the gate operation generates a maximally entangled Bell

state.
There are some advantages to performing type II entanglement with time–bin qubits. First, in contrast

to frequency and polarization qubits, photons in time–bin qubits have only one component mode of polar-
ization and frequency and are less sensitive to birefringence and dispersion in the photonic channel. This
feature also makes time–bin qubits a good candidate for generating entangled atom–photon pairs using a
cavity setup as discussed in Sec. 5.2. Second, the system can be projected into either the |ψ+〉pp or the
|ψ−〉pp state by using time–bin qubits, where |P↑〉 = |0t11t2〉 and |P↓〉 = |1t10t2〉. Note that this is a
consequence of PMTs being able to resolve the arrival time of photons but not the frequency. From Eq. 7,
the output states from the beamsplitter for |ψ±〉pp are given by

|ψ−〉pp =
1√
2

(|1t10t2〉A|0t11t2〉B − |0t11t2〉A|1t10t2〉B) , (22)

|ψ+〉pp =
1√
2

(|0t10t2〉A|1t11t2〉B − |1t11t2〉A|0t10t2〉B) . (23)

This explicitly shows that if only one scattered photon is detected at each time t1 and t2 by different PMTs,
the photon state is projected into the |ψ−〉pp state, which projects the atom–atom state into the entangled
state |ψ̃−〉aa. Instead, if the events are detected by the same PMT, the photon state is projected into the
|ψ+〉pp state, yielding the atom–atom state |ψ̃+〉aa.

Since type II entanglement schemes require the presence of two photons, the success probability is
PII = pB(Pap ηdet)2, where pB is the probability of detecting a Bell state of the two photons (in the
examples above, pB = 1/4 for the frequency qubit and pB = 1/2 for the time-bin qubit). The success
probability for type II entanglement is quadratic in Pap and is thus typically much smaller than that of type
I for Pap ¿ 1. However, type II entanglement has the advantages of no fundamental fidelity limit and far
less sensitivity to experimental noise and interferometric instability.

If the path length difference between the two photonic channels is offset by an amount ∆x, a phase
factor ei ∆ω ∆x/c emerges between the two components of Eq. 20. For frequency photonic qubits, ∆ω is
the difference frequency between the two photon frequencies, and for time-bin qubits this is given by the
frequency difference between the atomic qubit levels. Since ∆ω/c ¿ k, type II entanglement and gate
operation are typically much more robust than type I schemes.

4 Quantum Information Protocols Based on Multi-ion Emission

Photon emission from multiple ions can be a useful technique to scale up the type I entanglement protocol
to create large multi-partite entangled states. In this section we focus on the type I scheme to entangle
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many atoms through the collective emission of one photon. This entanglement protocol can be used to
generate multi-partite entangled W-states [28,31]. W-states have been shown to provide a means to secure
quantum communication [32], and have also been proven to be the only state capable of solving certain
problems on quantum networks [33]. Besides these specific applications, the W-state may be of interest
for investigating emergent phenomena in large multi-partite entangled states [34].

N -particle W-states of the form |W̃N 〉 = 1√
N

(eiφ1 |00....01〉 + eiφ2 |00....10〉 + .... + eiφN |10....00〉)
can be created by weakly exciting N atoms such that the probability to scatter more than one photon
is vanishingly small [28]. The notation |W̃N 〉 refers to generalized W-states, in which the phase factors
present in the quantum state are arbitrary but fixed. The specific state where all the phase factors are equal
is simply referred to as the W-state |WN 〉. Implementing such a type I process with remotely-located ions
will come at the cost of maintaining optical interferometric stability, so we consider the heralding of W-
states by using atoms confined in a single trap. The generation of a N-atom W-state can be verified by
measuring the entanglement witness given by Ŵ = N−1

N Î − |WN 〉〈WN |, the negative expectation value
of which signals multi-partite entanglement [35]. By exploiting the symmetry of the W-state with respect
to an exchange of any two qubits, it was shown that this witness operator can be measured by 2N − 1
measurements without individual addressing [36]. Because the phase factors of the W state are determined
by the relative optical path lengths from each ion to the detector, the angular distribution of the scattered
photon forms interference fringes. In order to use this witness to characterize the entanglement, the photon
detector must be able to resolve these fringes.

We develop a method of calculating the fidelity of the W-state by drawing a parallel between the storage
of coherence in the atoms through an inelastic scattering event and the coherence in the light field through
an elastic scattering event. In the experiment of Ref. [26], where two ions in a single trap were weakly
excited, the position of scattered photons was shown to exhibit interference in elastic scattering events
but no interference in inelastic scattering events. In the case of elastic scattering, no information about
which ion scattered the photon will exist, allowing the different optical paths to interfere [26, 37]. This
process yields an interference pattern with regions of high intensity, where the photon phases e−i~k·~R add
constructively. In the case of inelastic scattering, the photon phase e−i~k·~R gets imprinted on the ions upon
detection of a photon. The ions will also pick up a dynamical phase e−iωA∆t, where ∆t is the time it takes
for the photon to reach the detector, and ωA is the frequency difference between |0〉 and |1〉. If the time
that photons take to traverse the full length of the ion crystal is short compared to ωA

−1, this dynamical
factor can be ignored. For the 171Yb+ Zeeman splitting with a magnetic field on the order of a few Gauss,
this approximation is valid for ion crystals much smaller than one meter. When this approximation is valid,
the regions of high intensity in the elastic case are the same points at which the detection of a photon in
the inelastic case signals the creation of a W-state with all the phases being equal. Therefore, in order
to identify scattering regions that herald a high fidelity W-state, it should suffice to calculate the elastic
scattering cross-section for N ions in a trap and identify the high intensity region.

In order to find the points of high intensity in the radiation pattern, we generalize the derivation of the
scattering cross-section for two ions in a single trap [27] to N ions. Starting with the differential scattering
cross-section as given by the electric dipole Hamiltonian in second-order perturbation theory

dσ

dθ
=

∑

f

∣∣∣∣∣∣
∑

p,j

〈Ψf |(Dp · ε̂out) e−i~kout·Rp |Ψj〉〈Ψj | (Dp · ε̂in) ei~kin·Rp |Ψi〉
ω0 − ωin + (Ej − Ei)/h̄− iΓ/2

∣∣∣∣∣∣

2

, (24)

where Dp and Rp are the dipole and position operators for the p th ion, ε̂ is a polarization vector, ~kin and
~kout are incoming and outgoing wavevectors and the indices i and f represent the initial and final state
of the ions. It is important to note that this expression only applies to elastic scattering events, since in
this case the probability amplitudes for the photon scattering off different ions are added together because
these processes are indistinguishable. The quantum states in the perturbation expansion are taken to be
eigenvectors of the unperturbed Hamiltonian of N ions in a harmonic trapping potential and are therefore
product states of the ions’ internal degrees of freedom and the motional state of the system.

Copyright line will be provided by the publisher



fdp header will be provided by the publisher 11

We now examine the special case of the ion crystal axis lying in the plane defined by the incoming and
outgoing wavevectors and the quantization axis being perpendicular to that plane. In this case, the dipole
operator only contributes an overall scaling factor to the scattering cross-section and is therefore ignored
in this calculation. As explained in [27], the denominators in Eq. 24 are nearly constant for the 171Yb+

ion cooled near the Doppler limit on the 370 nm line as a consequence of the recoil frequency, 8.5 kHz,
being small compared to the linewidth. By considering the denominators to be nearly constant, they can be
factored out of the sum allowing us to do the sums over the j and f indices via resolutions of the identity
operator, giving

dσ

dθ
= 〈{nHO}i|

∑

p,p′
e−i(~kout−~kin)·(Rp−Rp′)|{nHO}i〉, (25)

where {nHO}i denotes the initial harmonic oscillator quantum numbers of the ions. Eq. 25 might be seen
as a classical interference pattern from a diffraction grating comprised of slits that oscillate around fixed
points and recoil upon deflection of light quanta. After taking the expectation value, the final scattering
cross-section is given by

dσ

dθ
=

∑

p,p′
eiηλ(Up−Up′ )∆k̂·x̂

N∏
m=1

e−[(Ap,m−Ap′,m)ηm
a ∆k̂·x̂]2(n̄m

a +1/2)+[(Tp,m−Tp′,m)ηm
t ∆k̂·ŷ]2(n̄m

t +1/2).

(26)

In the above equation, n̄m
a (n̄m

t ) are the average number of axial (transverse) thermal quanta in mode
m and ηλ ≡ |~k|d. U is a vector containing the equilibrium positions of the ions in units of length
d =

[
e2/m(ω1

a)2
]1/3

. The Lamb-Dicke parameter for the mth mode in the axial (transverse) direction
is denoted ηm

a(t) = |~k|(h̄/(2mωm
a(t)))

1/2. The difference between incoming and outgoing wavevectors is

∆k̂ = k̂out − k̂in, and Ap,m, Tp,m are elements of transformation matrices from position coordinates to
axial and transverse normal coordinates, respectively.

The fidelity of the entangled state with arbitrary phase of two ions in separate isotropic harmonic traps
(frequency ν and average thermal index n̄) as derived in Ref. [28] is given by

F (θ) =
∫ ∞

0

dτe−τe−4η2(n̄+1/2)[1−cos(χ)cos( ντ
Γ )], (27)

with η = k
√

h̄/(2mν) and χ being the angle between the excitation beam and the emission direction.
In the limit of weak confinement, ν ¿ Γ, and because the integrand decays exponentially in τ , we can
approximate cos

(
ντ
Γ

) ≈ 1, allowing us to carry out the integration and arrive at

F (θ) ≈ e−4η2(n̄+1/2)[1−cos(χ)] = e−8η2(n̄+1/2)[(∆k̂·x̂)2+(∆k̂·ŷ)2] . (28)

This shows the relationship between Eq. 27 and the contrast of the fringes in Eq. 26. This suggests that
the fringe contrast of Eq. 26 for N = 2 might be interpreted as the fidelity of the entangled state with
arbitrary phase when two ions are in the same trap. Moreover, because the fringe peaks correspond to
points of common phase, the full expression (Eq. 26) for N = 2 might be interpreted as the fidelity of the
state where the relative phase is equal to zero. We contend that Eq. 26 should be a valid prediction of the
fidelity of an N qubit W-state in the weak confinement regime, with ηλ À 1 ensuring no ion–ion photon
exchange.

In Fig. 6(a) the emission pattern for three ions is plotted, clearly showing the degrading effect of recoil
due to a large scattering angle. As a consequence of the ions not being evenly spaced, the scattering profile
from ten ions in Fig. 6(b) shows that the only points where radiation adds up in phase is in the forward
scattering direction. This implies that in an inelastic scattering event, the only points where light detection
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Fig. 6 (a) The differential scattering cross section, in the plane defined by the ion crystal axis and the excitation vector,
is shown in the polar plot with the excitation beam coming in along the ion crystal axis at θ = 0. The dashed line
represents the normalized intensity (2/3) required to expect a negative expectation value of the entanglement witness
W-state entanglement witness. For the example shown here, realistic trap parameters were chosen and Doppler-limited
cooling was assumed giving ηλ = 600,

√
h̄k2Γ
2mω2

x
= 1, and ωx

ωy
= 10. (b) The scattering cross section for ten ions in a

harmonic trap is plotted together with the required normalized intensity (0.9, dashed circle) for a negative expectation
value of the witness operator.

will yield a W-state with all the terms having the same phase is in the forward scattering direction. The
angular size of this spot, δθ, in the case where the excitation pulse is along the crystal axis can be estimated
by first normalizing Eq. 26 by dividing by N2, ignoring the Debye-Waller factors and making the small
scattering angle approximation, giving

dσ

dθ
≈ 1− δθ4η2

λ

4N2

∑

p>p′
(Up − Up′)2. (29)

The sum in Eq. 29 can be approximated by numerically solving for the equilibrium positions for different
numbers of ions in a harmonic trap, which yields

∑
p>p′ (Up − Up′)2 ≈ 0.45N2.87. We define the spot

size to be the region where the intensity is at least f times the maximum and find the angular size of the
spot to be approximately given by

2 δθ ≈ 2
1.7(1− f)1/4

η
1/2
λ

N−0.21. (30)

Remembering that the entanglement witness demands that the fidelity of the W-state be bounded by F ≥
N−1

N , we set f = N−1
N . With the interpretation that the elastic scattering cross-section represents the

fidelity of the W-state for an inelastic scattering event, the fraction of photons scattered into the plane of
interest that will yield an N particle W-state is solved

2δθ

2π
≈ 0.55

η
1/2
λ

N−0.46. (31)

Eq. 31 allows the estimation of an upper bound on the angle subtended by the detector being used to signal
the creation of a multi-partite entangled state. This scaling law shows that the efficiency with which one
can create multi-partite entanglement decreases rather slowly with the number of entangled ions.
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Fig. 7 Schemes to enhanced light collection from trapped ions.(a) A parabolic geometry for a novel ion trap, where
the RF and DC trap electrodes constitute the reflective surface. The paraboloid is segmented such that the RF node
is positioned at the focus of the mirror. (b) A 3D RF quadrupole trap positioned between two cavity mirrors. The
electrodes of the trap are small enough to fit between the mirrors of the optical cavity. Each substrate has a narrow
RF center electrode, while two outer electrodes provide a close ground for both the RF power and charge that may
accumulate on the dielectric surfaces. The electrodes can be independently mounted on movable stages controlled via
vacuum feedthroughs to precisely position the ion in situ.

5 Techniques for Enhancing Light Collection

Collecting spontaneously emitted photons from trapped atomic ions traditionally involves the use of re-
fractive optics in free space. A common setup uses a high numerical aperture objective to collect light
for entanglement protocols as well as state detection. For the entanglement protocols discussed in Sec. 2,
mode matching of the photons is critical, so light is typically coupled into single-mode optical fibers. For
this type of free-space light collection, there are two critical difficulties that limit the collection efficiency.
First, the solid angle subtended by the collecting lens, ∆Ω/(4π), is usually on the order of 10−2 [19].
This small collection angle contributes a factor of order 10−4 to the total success probability for type II
heralded entanglement schemes. Second, the mode overlap of the optical dipole mode to the fiber mode
substantially decreases the amount of light transmitted by the optical system.

In recent years many proposals for enhancing atom–photon coupling have emerged [38–43]. In Fig. 7
we show two possibilities of employing either reflective optics or an optical cavity to increase light collec-
tion efficiency. One option is to use a single parabolic mirror to collect a large fraction of the scattered light
from the atom [39]. Another method is to place the atom inside a high finesse optical cavity and utilize the
Purcell effect to extract photons. For this application, the strong coupling regime is not necessary. Instead,
the perturbative regime, or “bad cavity” limit (Sec. 5.2), will suffice, as long as the coherent coupling rate
is larger than the dipole decay rate.

Ion traps suitable for such experiments would necessarily need to have an optically open geometry,
such as a surface trap [44, 45] or a needle trap [46, 47], to minimize the occlusion of light reflected from a
mirror or the optical mode of the cavity. The radio frequency (RF) node of the ion trap must be precisely
placed at the focus of the reflective mirror or along the cavity axis. The ion trap could be monolithically
created, ensuring precise alignment of the RF node with the optical field, or it could be aligned in situ. For
dielectric optics, the characteristic ion–electrode distance must be much smaller than the ion–optic spacing
in order to provide adequate shielding of the ion from potential charge accumulation on the optic. Fig. 7 is
a conceptual view of an ion confined at the the focus of a parabolic reflector trap (Fig. 7a) or in an optical
cavity (Fig. 7b).
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5.1 Reflective Optics

One way of collecting more light emitted by a single trapped ion is to place the minimum of the trapping
potential at the focus of a parabolic mirror. In this section we analyze the fiber-coupling efficiency of
the dipole radiation from an ion at the focus of such a trap, with its quantization axis along the line of
symmetry.

Prior to reflection, the optical fields of emitted photons associated with the three possible transitions are
given by

~El=1,m=0 =
ieikr

r

√
3

16π
sinθθ̂, ~El=1,m=±1 =

ieikr

r
e±iφ

√
3

16π
(±cosθθ̂ + iφ̂) . (32)

Once the light has reflected and formed a collimated beam, the wavefronts are flat, meaning the exponential
factor will be a constant and can be ignored.

Using polar coordinates shown in Fig. 8, the paraboloid is defined by z(ρ, f) = ρ2

4f − f , and the
distance from the ion to the reflecting surface is then given by (ρ2 + 4f2)/4f . After reflection, light that
was polarized in the θ̂ direction will have polarization in the −ρ̂ direction, while the φ̂ polarization is
unchanged. The intensity profile that was only a function of θ will be mapped to an intensity profile that
only depends on ρ. The mapping can be found by solving for the distance from the symmetry axis after
reflection as a function of the angle of emission, giving θ = tan−1[(4fρ/(ρ2 − 4f2)].

As shown in Eq. 33, the m = 0 transition will produce a donut mode with radial polarization given by

~El=1,m=0 → − i4f

ρ2 + 4f2

√
3

16π

4fρ

ρ2 + 4f2
ρ̂ , (33)

which is consistent with the optimal intensity profile for driving a π transition derived in [39]. The amount
of light from this mode that will couple into a single mode fiber is given by the mode overlap

Tl,m =
| ∫ 2π

0

∫ ρo

0
dφ dρ ρ ~El,m · ~G|2∫ 2π

0

∫∞
0

dφ dρ ρ ~El,m · ~El,m

∫ 2π

0

∫∞
0

dφ dρ ρ ~G · ~G
, (34)

where the quantity ρo is the maximum radius of the mirror being used and ~G = e−(ρ/w)2(αx̂ + βŷ) is
the Gaussian mode of the fiber where |α|2 + |β|2 = 1 . Assuming the intensity and polarization of the
Gaussian mode only depend on ρ, the only dependence of the integrand in the numerator on the angle φ is
in the unit vector ρ̂, causing the integral to vanish. Therefore, without additional optics, there will be no
transmission of π transition light into a fiber aligned with the axis of symmetry.

After reflection, the field for a m = ±1 transition is given by

~El=1,m=±1 → ± i4f

ρ2 + 4f2
e±iφ

√
3

16π

(
−ρ2 − 4f2

ρ2 + 4f2
ρ̂± iφ̂

)
. (35)

The collimated beam has circular polarization in the center, becomes increasingly elliptical going away
from the center until it is azimuthally polarized at a distance of ρ = 2f , then becomes elliptical again
approaching a polarization orthogonal to the center of the beam. The overlap integral is calculated using
Eq. 35 to give the following coupling efficiency

Pσ = T1,±1 =
3
2

(
2f

w

)6

|α± iβ|2e2(2f/w)2
∣∣∣∣Γ

(
−1,

4f2

w2

)
− Γ

(
−1,

ρ0
2 + 4f2

w2

)∣∣∣∣
2

, (36)

where Γ(a, b) is the incomplete Gamma function. This expression shows that the light from the σ+ tran-
sition coupling to the fiber has left-handed polarization, and the light generated from the σ− transition
coupling to the fiber has right-handed polarization. If we take the limit where the paraboloid has infinite
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Fig. 8 Light collection using an infinite parabolic mirror to reflect the emitted photons. (a) The probability of collect-
ing a photon from a σ transition in a single-mode fiber as a function of f/w. (b) The probability of collecting a photon
in a single-mode fiber as a function of the maximum radius of the paraboloid (with an optimal focus) in units of w. (c)
The intensity distributions of π and σ light after reflected off a parabolic mirror. It clearly shows that the π light forms
a “doughnut” mode while the σ light more closely resembles distribution of a Gaussian beam.

extent, we can numerically solve for the focus that gives maximum coupling efficiency. Fig. 8 shows the
results of this calculation, which predicts a maximum coupling efficiency near 50%.

This setup may also be used for the logic gate described earlier using frequency qubits. Because the π
transition light does not couple into the fiber without additional optics, we consider σ transitions. In order
to preserve any initial coherence set up in the ion after excitation and emission, we can use the σ+ ± σ−

transitions in the ion. The fields resulting from these transitions are superpositions of Eq. 35. Because
the fiber maps the σ transition photons to circularly polarized photons while preserving orthogonality, a
σ+ + σ− photon captured by the fiber will have a linear polarization orthogonal to a σ+ − σ− photon
captured by the fiber. With this setup, we can still use the 171Yb+ clock states in the ground state manifold
to hold quantum information, but now we use σ light to couple to the mF = ±1 Zeeman states in the
|2P1/2, F = 1〉 manifold. Here, the two states |±〉 =|↑〉± |↓〉 are coupled to the excited state with
σ+ ± σ− polarization, respectively. This implies that after excitation and decay the internal state of the
ion will be correlated with both the frequency and polarization of the emitted photon. In order to use the
parabolic mirror for the gate, the polarization information should be erased to allow for the interference
on the beam splitter to occur. The distinguishability between the σ+ + σ− and σ+ − σ− transitions can
be erased with a linear polarizer oriented to block x̂ + ŷ. Assuming perfect coupling into the fiber, the
probability to see a coincidence is now given by ≈ pB(η 1

2
1
2

1
2 )2, where the three factors of 1/2 come from

maximum coupling efficiency, Clebsch-Gordan coefficients, and the polarization erasure.

5.2 Optical Cavity

Another method to increase light collection is to surround the ion with an optical cavity [48–50]. The
field mode modifications imposed by the mirrors change the spontaneous emission of the ion such that it
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preferentially emits into the cavity mode, depending on the coupling parameters. This phenomenon is the
well-known Purcell effect [51].

The dominant ion–cavity coupling parameters are the coherent atom–field coupling, g, the free space
ion spontaneous emission rate, Γ, and the cavity decay rate, κ. These parameters define the cooperativity,
C ≡ g2/κΓ, which is a measure of the atom-cavity coupling with respect to the dissipative processes. The
atomic spontaneous emission rate is enhanced by a factor proportional to 1 + 2C. If we assume that the
photon collection efficiency equals the probability of a spontaneously emitted photon emerging from the
outcoupling mirror of the cavity, over experimental time scales, the collection efficiency is given by

pc =
Tl

L
(

2κ

2κ + Γ

) (
2C

1 + 2C

)
. (37)

The first factor, Tl/L is the fraction of light that is transmitted by the outcoupling mirror, Tl, to the total
losses of the cavity L. The second factor relates the rate photons leave the cavity to the rate they leave the
ion–cavity system. The third factor is the fraction of light scattered into the cavity mode. The “bad cavity”
regime can be intuitively envisioned as providing enough atom–cavity coupling to transfer the excitation
from the atom into an entangled atom–photon pair. This photon then leaves the cavity faster than the time
it takes to be reabsorbed by the atom and emitted into unwanted side modes.

An optical cavity can be used for all the protocols discussed in Sec. 2. Number qubits can be realized
with the coherent transfer of an excitation from the atom to a single mode of the cavity [38, 50, 52]. Polar-
ization qubits can be realized with a cavity coupling to Zeeman levels of atoms lying inside the linewidth of
the cavity [53]. Frequency qubits would need both frequency modes resonant with the cavity. A difficulty
with realizing frequency qubits is the dependence of the coherent coupling strength, g on the mode volume.
In order to ensure that ωb−ωr is an integral multiple of the free spectral range it may be necessary that the
cavity length be large. However, a longer cavity tends to have a larger mode volume, leading to a smaller
coupling strength g. A method to combat this is a near-concentric geometry. In this case, the centers of
curvature of the two mirrors nearly coincide. This leads to an optical mode with an extremely tight focus,
allowing a relatively strong coupling strength g. Time-bin qubits can use the frequency selectivity of the
cavity to ensure that one of the transitions is off-resonant [22]. However, to preserve the coherence, one
must be careful not to excite both levels. That is, the excitation pulse must have a bandwidth much smaller
than the qubit spacing, yet the bandwidth must be greater than the excited state linewidth.

6 Outlook and Conclusions

The quantum network generated by photon-mediated entanglement can be used for quantum communica-
tion and distributed quantum computation. We list some possible applications for such an atom–photon
network.

Loophole-free Bell Inequality Test. Loophole-free Bell inequality tests are of continuing interest for
testing fundamental aspects of quantum mechanics [54]. Bell inequality violation experiments are subject
to two primary loopholes: the detection loophole, and the locality loophole [55, 56]. While trapped ions
typically close the detection loophole due to nearly perfect state detection, they have yet to close the locality
loophole. On the other hand, photonic qubits enable the separation required to close the locality loophole,
yet cannot be detected efficiently enough to close the detection loophole. Combining the advantages of
both trapped ion and photons, the photon-mediated entanglement schemes discussed above can generate
an entangled ion pair that could close both loopholes [57]. To close the locality loophole, the remote ions
must to be space-like separated; that is, the ions must be separated greater than the distance light travels in
the time it takes to perform state detection. For example, if the state detection time were 10 µs, then the
ions would need to be separated by 3 km. Since the starting point for a Bell inequality measurement is
the heralding of the remote entanglement, the success probability does not play a role in determining the
separation of the two ions. However, the improvements to the photon collection efficiency, pc, can shorten
the state detection time, thus reducing the space separation between two ions.

Copyright line will be provided by the publisher



fdp header will be provided by the publisher 17

Remote Deterministic Quantum Gates and Quantum Repeaters. The photon-mediated entangle-
ment schemes can also be used to build a quantum repeater to transmit quantum information across long
distances [58, 59], as well as to create a deterministic controlled-NOT gate between two non-interacting
ions [10]. An array of ion traps each containing a logic ion and an ancilla ion, as illustrated in Fig. 5(b),
can be used to perform a remote deterministic gate. Here, the logic ions contain quantum information,
while the ancilla ions are used to create a photon-mediated channel whereby a gate can be performed.
These remote deterministic gates are created by four consecutive steps: (1) a probabilistic scheme is ap-
plied to two ancilla ions until their entanglement is heralded; (2) local deterministic controlled-NOT gates
are performed on each logic and ancilla qubit pairs; (3) the ancilla qubits are measured in an appropriate
basis; (4) single qubit rotations on the logic qubits are applied based on the results from the measure-
ments of ancilla ions. The expected number of attempts for a successful entanglement of the ancilla ions
is ∼ 1/P , depending on the success probability P of the two-qubit entanglement scheme. Hence, the
average time required to perform a deterministic remote gate is ∼ τrep/P .

This scheme can be extended to create a quantum repeater. Again, we consider a chain of ion traps
spanning the distance, D, over which the information needs to be sent. In each trap there are two ions,
one to generate a link between each of the adjacent nodes. For example, in the nth node, photon-mediated
entanglement links one ion to the (n − 1)th node, and the other ion links the (n + 1)th node. A joint
Bell state measurement on the nth node leaves the (n − 1)th node entangled with the (n + 1)th node,
thereby increasing the distance between entangled nodes. The time required to generate entanglement over
a distance D = NL with N nodes is thus tN = (τrep/P )log2N .

Generation of Cluster States. These photon-meditated quantum networks provide a compelling pos-
sibility for operating a large–scale quantum computer. One universal quantum computation model is the
measurement based cluster state model, which uses a highly entangled state as an input resource [60, 61].
This model requires an initial generation of a large–scale two-dimensional cluster state and individual
single qubit rotations and measurements.

The heralded gate operation discussed earlier (Eq. 21) is not unitary gate, which prevents its application
to the quantum circuit model. However, this gate can be used to generate cluster states because the input
qubits for constructing the cluster state are required to be a superposition state, and the gate will never give
a null result in this case [62].

A 2D square lattice cluster state can be prepared with probabilistic gates that succeed with probability
P [15]. Considering a (small) overall failure probability ε for an n-qubit square lattice cluster state, the
required time Tcluster(n, P ) to generate the state is

Tcluster(n, P ) ' τrep

[(
1
P

)log2(4/P−3)

+
1
P

log2

(
4[ln (2n/ε)− 1]

P

)
+

1
P

ln (2n/ε)

]
, (38)

where τrep is the operation time for a single attempted gate operation. From the above equation, the time
required to generate a cluster state is almost independent on the number of cluster nodes n. For example,
with ε = 0.1 and a two-qubit gate success probability P = 0.1 and τrep = 1 µs for the heralded gate
discussed above, we find that the time required for generating the cluster stare with n = 103 and n =
106 only differs by 0.05%. However, the temporal resource strongly depends on the success probability
P . With P = 0.01, this protocols needs about 5900 years to generate a 2D square lattice cluster state
with n = 103 nodes, compared with a time of 0.16 second with P = 0.1. This shows how critical the
improvement of the heralded gate success probability is for constructing a large scale quantum network.

In this paper, we have described various protocols that rely on spontaneous emission processes and
single photon interference effects to generate atom–photon and atom–atom entanglement. Variant schemes,
such as generating infrared photonic qubits and collecting multi-ion emission, have also been studied. We
emphasize that currently the primary issue for realizing a scalable atom–photon quantum network is the
improvement of the probability of collecting spontaneous emitted photons from trapped ions. To realize
this goal, reflective optics and optical cavities are suggested for integration into trapped ion systems to
enhance the light collection efficiency. We expect that even a modest improvement to this efficiency can
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lead to a large improvement in the success probability of entangling two distant atomic qubits. Such
improvements also increase the feasibility of deterministic quantum gate operations between remote atomic
qubits, quantum repeater networks, and cluster state generation.
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