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Fig. 7 Schemes to enhanced light collection from trapped ions.(a) A parabolic geometry for a novel ion trap, where
the RF and DC trap electrodes constitute the reflective surface. The paraboloid is segmented such that the RF node
is positioned at the focus of the mirror. (b) A 3D RF quadrupole trap positioned between two cavity mirrors. The
electrodes of the trap are small enough to fit between the mirrors of the optical cavity. Each substrate has a narrow
RF center electrode, while two outer electrodes provide a close ground for both the RF power and charge that may
accumulate on the dielectric surfaces. The electrodes can be independently mounted on movable stages controlled via
vacuum feedthroughs to precisely position the ion in situ.

5 Techniques for Enhancing Light Collection

Collecting spontaneously emitted photons from trapped atomic ions traditionally involves the use of re-
fractive optics in free space. A common setup uses a high numerical aperture objective to collect light
for entanglement protocols as well as state detection. For the entanglement protocols discussed in Sec. 2,
mode matching of the photons is critical, so light is typically coupled into single-mode optical fibers. For
this type of free-space light collection, there are two critical difficulties that limit the collection efficiency.
First, the solid angle subtended by the collecting lens, ∆Ω/(4π), is usually on the order of 10−2 [19].
This small collection angle contributes a factor of order 10−4 to the total success probability for type II
heralded entanglement schemes. Second, the mode overlap of the optical dipole mode to the fiber mode
substantially decreases the amount of light transmitted by the optical system.

In recent years many proposals for enhancing atom–photon coupling have emerged [38–43]. In Fig. 7
we show two possibilities of employing either reflective optics or an optical cavity to increase light collec-
tion efficiency. One option is to use a single parabolic mirror to collect a large fraction of the scattered light
from the atom [39]. Another method is to place the atom inside a high finesse optical cavity and utilize the
Purcell effect to extract photons. For this application, the strong coupling regime is not necessary. Instead,
the perturbative regime, or “bad cavity” limit (Sec. 5.2), will suffice, as long as the coherent coupling rate
is larger than the dipole decay rate.

Ion traps suitable for such experiments would necessarily need to have an optically open geometry,
such as a surface trap [44, 45] or a needle trap [46, 47], to minimize the occlusion of light reflected from a
mirror or the optical mode of the cavity. The radio frequency (RF) node of the ion trap must be precisely
placed at the focus of the reflective mirror or along the cavity axis. The ion trap could be monolithically
created, ensuring precise alignment of the RF node with the optical field, or it could be aligned in situ. For
dielectric optics, the characteristic ion–electrode distance must be much smaller than the ion–optic spacing
in order to provide adequate shielding of the ion from potential charge accumulation on the optic. Fig. 7 is
a conceptual view of an ion confined at the the focus of a parabolic reflector trap (Fig. 7a) or in an optical
cavity (Fig. 7b).
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5.1 Reflective Optics

One way of collecting more light emitted by a single trapped ion is to place the minimum of the trapping
potential at the focus of a parabolic mirror. In this section we analyze the fiber-coupling efficiency of
the dipole radiation from an ion at the focus of such a trap, with its quantization axis along the line of
symmetry.

Prior to reflection, the optical fields of emitted photons associated with the three possible transitions are
given by

~El=1,m=0 =
ieikr

r

√
3

16π
sinθθ̂, ~El=1,m=±1 =

ieikr

r
e±iφ

√
3

16π
(±cosθθ̂ + iφ̂) . (32)

Once the light has reflected and formed a collimated beam, the wavefronts are flat, meaning the exponential
factor will be a constant and can be ignored.

Using polar coordinates shown in Fig. 8, the paraboloid is defined by z(ρ, f) = ρ2

4f − f , and the
distance from the ion to the reflecting surface is then given by (ρ2 + 4f2)/4f . After reflection, light that
was polarized in the θ̂ direction will have polarization in the −ρ̂ direction, while the φ̂ polarization is
unchanged. The intensity profile that was only a function of θ will be mapped to an intensity profile that
only depends on ρ. The mapping can be found by solving for the distance from the symmetry axis after
reflection as a function of the angle of emission, giving θ = tan−1[(4fρ/(ρ2 − 4f2)].

As shown in Eq. 33, the m = 0 transition will produce a donut mode with radial polarization given by

~El=1,m=0 → − i4f

ρ2 + 4f2

√
3

16π

4fρ

ρ2 + 4f2
ρ̂ , (33)

which is consistent with the optimal intensity profile for driving a π transition derived in [39]. The amount
of light from this mode that will couple into a single mode fiber is given by the mode overlap

Tl,m =
| ∫ 2π

0

∫ ρo

0
dφ dρ ρ ~El,m · ~G|2∫ 2π

0

∫∞
0

dφ dρ ρ ~El,m · ~El,m

∫ 2π

0

∫∞
0

dφ dρ ρ ~G · ~G
, (34)

where the quantity ρo is the maximum radius of the mirror being used and ~G = e−(ρ/w)2(αx̂ + βŷ) is
the Gaussian mode of the fiber where |α|2 + |β|2 = 1 . Assuming the intensity and polarization of the
Gaussian mode only depend on ρ, the only dependence of the integrand in the numerator on the angle φ is
in the unit vector ρ̂, causing the integral to vanish. Therefore, without additional optics, there will be no
transmission of π transition light into a fiber aligned with the axis of symmetry.

After reflection, the field for a m = ±1 transition is given by

~El=1,m=±1 → ± i4f

ρ2 + 4f2
e±iφ

√
3

16π

(
−ρ2 − 4f2

ρ2 + 4f2
ρ̂± iφ̂

)
. (35)

The collimated beam has circular polarization in the center, becomes increasingly elliptical going away
from the center until it is azimuthally polarized at a distance of ρ = 2f , then becomes elliptical again
approaching a polarization orthogonal to the center of the beam. The overlap integral is calculated using
Eq. 35 to give the following coupling efficiency

Pσ = T1,±1 =
3
2

(
2f

w

)6

|α± iβ|2e2(2f/w)2
∣∣∣∣Γ

(
−1,

4f2

w2

)
− Γ

(
−1,

ρ0
2 + 4f2

w2

)∣∣∣∣
2

, (36)

where Γ(a, b) is the incomplete Gamma function. This expression shows that the light from the σ+ tran-
sition coupling to the fiber has left-handed polarization, and the light generated from the σ− transition
coupling to the fiber has right-handed polarization. If we take the limit where the paraboloid has infinite

Copyright line will be provided by the publisher



fdp header will be provided by the publisher 15

σ  transition

f / w

ρο / w

T1, ±1

T1, ±1

(a)

(b)

(c)

Fig. 8 Light collection using an infinite parabolic mirror to reflect the emitted photons. (a) The probability of collect-
ing a photon from a σ transition in a single-mode fiber as a function of f/w. (b) The probability of collecting a photon
in a single-mode fiber as a function of the maximum radius of the paraboloid (with an optimal focus) in units of w. (c)
The intensity distributions of π and σ light after reflected off a parabolic mirror. It clearly shows that the π light forms
a “doughnut” mode while the σ light more closely resembles distribution of a Gaussian beam.

extent, we can numerically solve for the focus that gives maximum coupling efficiency. Fig. 8 shows the
results of this calculation, which predicts a maximum coupling efficiency near 50%.

This setup may also be used for the logic gate described earlier using frequency qubits. Because the π
transition light does not couple into the fiber without additional optics, we consider σ transitions. In order
to preserve any initial coherence set up in the ion after excitation and emission, we can use the σ+ ± σ−

transitions in the ion. The fields resulting from these transitions are superpositions of Eq. 35. Because
the fiber maps the σ transition photons to circularly polarized photons while preserving orthogonality, a
σ+ + σ− photon captured by the fiber will have a linear polarization orthogonal to a σ+ − σ− photon
captured by the fiber. With this setup, we can still use the 171Yb+ clock states in the ground state manifold
to hold quantum information, but now we use σ light to couple to the mF = ±1 Zeeman states in the
|2P1/2, F = 1〉 manifold. Here, the two states |±〉 =|↑〉± |↓〉 are coupled to the excited state with
σ+ ± σ− polarization, respectively. This implies that after excitation and decay the internal state of the
ion will be correlated with both the frequency and polarization of the emitted photon. In order to use the
parabolic mirror for the gate, the polarization information should be erased to allow for the interference
on the beam splitter to occur. The distinguishability between the σ+ + σ− and σ+ − σ− transitions can
be erased with a linear polarizer oriented to block x̂ + ŷ. Assuming perfect coupling into the fiber, the
probability to see a coincidence is now given by ≈ pB(η 1

2
1
2

1
2 )2, where the three factors of 1/2 come from

maximum coupling efficiency, Clebsch-Gordan coefficients, and the polarization erasure.

5.2 Optical Cavity

Another method to increase light collection is to surround the ion with an optical cavity [48–50]. The
field mode modifications imposed by the mirrors change the spontaneous emission of the ion such that it
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preferentially emits into the cavity mode, depending on the coupling parameters. This phenomenon is the
well-known Purcell effect [51].

The dominant ion–cavity coupling parameters are the coherent atom–field coupling, g, the free space
ion spontaneous emission rate, Γ, and the cavity decay rate, κ. These parameters define the cooperativity,
C ≡ g2/κΓ, which is a measure of the atom-cavity coupling with respect to the dissipative processes. The
atomic spontaneous emission rate is enhanced by a factor proportional to 1 + 2C. If we assume that the
photon collection efficiency equals the probability of a spontaneously emitted photon emerging from the
outcoupling mirror of the cavity, over experimental time scales, the collection efficiency is given by

pc =
Tl

L
(

2κ

2κ + Γ

) (
2C

1 + 2C

)
. (37)

The first factor, Tl/L is the fraction of light that is transmitted by the outcoupling mirror, Tl, to the total
losses of the cavity L. The second factor relates the rate photons leave the cavity to the rate they leave the
ion–cavity system. The third factor is the fraction of light scattered into the cavity mode. The “bad cavity”
regime can be intuitively envisioned as providing enough atom–cavity coupling to transfer the excitation
from the atom into an entangled atom–photon pair. This photon then leaves the cavity faster than the time
it takes to be reabsorbed by the atom and emitted into unwanted side modes.

An optical cavity can be used for all the protocols discussed in Sec. 2. Number qubits can be realized
with the coherent transfer of an excitation from the atom to a single mode of the cavity [38, 50, 52]. Polar-
ization qubits can be realized with a cavity coupling to Zeeman levels of atoms lying inside the linewidth of
the cavity [53]. Frequency qubits would need both frequency modes resonant with the cavity. A difficulty
with realizing frequency qubits is the dependence of the coherent coupling strength, g on the mode volume.
In order to ensure that ωb−ωr is an integral multiple of the free spectral range it may be necessary that the
cavity length be large. However, a longer cavity tends to have a larger mode volume, leading to a smaller
coupling strength g. A method to combat this is a near-concentric geometry. In this case, the centers of
curvature of the two mirrors nearly coincide. This leads to an optical mode with an extremely tight focus,
allowing a relatively strong coupling strength g. Time-bin qubits can use the frequency selectivity of the
cavity to ensure that one of the transitions is off-resonant [22]. However, to preserve the coherence, one
must be careful not to excite both levels. That is, the excitation pulse must have a bandwidth much smaller
than the qubit spacing, yet the bandwidth must be greater than the excited state linewidth.

6 Outlook and Conclusions

The quantum network generated by photon-mediated entanglement can be used for quantum communica-
tion and distributed quantum computation. We list some possible applications for such an atom–photon
network.

Loophole-free Bell Inequality Test. Loophole-free Bell inequality tests are of continuing interest for
testing fundamental aspects of quantum mechanics [54]. Bell inequality violation experiments are subject
to two primary loopholes: the detection loophole, and the locality loophole [55, 56]. While trapped ions
typically close the detection loophole due to nearly perfect state detection, they have yet to close the locality
loophole. On the other hand, photonic qubits enable the separation required to close the locality loophole,
yet cannot be detected efficiently enough to close the detection loophole. Combining the advantages of
both trapped ion and photons, the photon-mediated entanglement schemes discussed above can generate
an entangled ion pair that could close both loopholes [57]. To close the locality loophole, the remote ions
must to be space-like separated; that is, the ions must be separated greater than the distance light travels in
the time it takes to perform state detection. For example, if the state detection time were 10 µs, then the
ions would need to be separated by 3 km. Since the starting point for a Bell inequality measurement is
the heralding of the remote entanglement, the success probability does not play a role in determining the
separation of the two ions. However, the improvements to the photon collection efficiency, pc, can shorten
the state detection time, thus reducing the space separation between two ions.
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Remote Deterministic Quantum Gates and Quantum Repeaters. The photon-mediated entangle-
ment schemes can also be used to build a quantum repeater to transmit quantum information across long
distances [58, 59], as well as to create a deterministic controlled-NOT gate between two non-interacting
ions [10]. An array of ion traps each containing a logic ion and an ancilla ion, as illustrated in Fig. 5(b),
can be used to perform a remote deterministic gate. Here, the logic ions contain quantum information,
while the ancilla ions are used to create a photon-mediated channel whereby a gate can be performed.
These remote deterministic gates are created by four consecutive steps: (1) a probabilistic scheme is ap-
plied to two ancilla ions until their entanglement is heralded; (2) local deterministic controlled-NOT gates
are performed on each logic and ancilla qubit pairs; (3) the ancilla qubits are measured in an appropriate
basis; (4) single qubit rotations on the logic qubits are applied based on the results from the measure-
ments of ancilla ions. The expected number of attempts for a successful entanglement of the ancilla ions
is ∼ 1/P , depending on the success probability P of the two-qubit entanglement scheme. Hence, the
average time required to perform a deterministic remote gate is ∼ τrep/P .

This scheme can be extended to create a quantum repeater. Again, we consider a chain of ion traps
spanning the distance, D, over which the information needs to be sent. In each trap there are two ions,
one to generate a link between each of the adjacent nodes. For example, in the nth node, photon-mediated
entanglement links one ion to the (n − 1)th node, and the other ion links the (n + 1)th node. A joint
Bell state measurement on the nth node leaves the (n − 1)th node entangled with the (n + 1)th node,
thereby increasing the distance between entangled nodes. The time required to generate entanglement over
a distance D = NL with N nodes is thus tN = (τrep/P )log2N .

Generation of Cluster States. These photon-meditated quantum networks provide a compelling pos-
sibility for operating a large–scale quantum computer. One universal quantum computation model is the
measurement based cluster state model, which uses a highly entangled state as an input resource [60, 61].
This model requires an initial generation of a large–scale two-dimensional cluster state and individual
single qubit rotations and measurements.

The heralded gate operation discussed earlier (Eq. 21) is not unitary gate, which prevents its application
to the quantum circuit model. However, this gate can be used to generate cluster states because the input
qubits for constructing the cluster state are required to be a superposition state, and the gate will never give
a null result in this case [62].

A 2D square lattice cluster state can be prepared with probabilistic gates that succeed with probability
P [15]. Considering a (small) overall failure probability ε for an n-qubit square lattice cluster state, the
required time Tcluster(n, P ) to generate the state is

Tcluster(n, P ) ' τrep

[(
1
P

)log2(4/P−3)

+
1
P

log2

(
4[ln (2n/ε)− 1]

P

)
+

1
P

ln (2n/ε)

]
, (38)

where τrep is the operation time for a single attempted gate operation. From the above equation, the time
required to generate a cluster state is almost independent on the number of cluster nodes n. For example,
with ε = 0.1 and a two-qubit gate success probability P = 0.1 and τrep = 1 µs for the heralded gate
discussed above, we find that the time required for generating the cluster stare with n = 103 and n =
106 only differs by 0.05%. However, the temporal resource strongly depends on the success probability
P . With P = 0.01, this protocols needs about 5900 years to generate a 2D square lattice cluster state
with n = 103 nodes, compared with a time of 0.16 second with P = 0.1. This shows how critical the
improvement of the heralded gate success probability is for constructing a large scale quantum network.

In this paper, we have described various protocols that rely on spontaneous emission processes and
single photon interference effects to generate atom–photon and atom–atom entanglement. Variant schemes,
such as generating infrared photonic qubits and collecting multi-ion emission, have also been studied. We
emphasize that currently the primary issue for realizing a scalable atom–photon quantum network is the
improvement of the probability of collecting spontaneous emitted photons from trapped ions. To realize
this goal, reflective optics and optical cavities are suggested for integration into trapped ion systems to
enhance the light collection efficiency. We expect that even a modest improvement to this efficiency can

Copyright line will be provided by the publisher



18L. Luo , D. Hayes, T.A. Manning, D.N. Matsukevich, P. Maunz, S. Olmschenk, J.D. Sterk, and C. Monroe: Atom-Photon

lead to a large improvement in the success probability of entangling two distant atomic qubits. Such
improvements also increase the feasibility of deterministic quantum gate operations between remote atomic
qubits, quantum repeater networks, and cluster state generation.
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[6] F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos,

J. Eschner, and R. Blatt, Nature 422, 408 (2003).
[7] P. C. Haljan, P. J. Lee, K. A. Brickman, M. Acton, L. Deslauriers, and C. Monroe, Phys. Rev. A 72, 062316

(2005).
[8] J. P. Home, M. J. McDonnell, D. M. Lucas, G. Imreh, B. C. Keitch, D. J. Szwer, N. R. Thomas, S. C. Webster,

D. N. Stacey, and A. M. Steane, New J. Phys. 8, 188 (2006).
[9] D. Kielpinski, C. Monroe, and D. Wineland, Nature 417, 709 (2002).

[10] L. M. Duan, B. B. Blinov, D. L. Moehring, and C. Monroe, Quant. Inf. Comp. 4, 165 (2004).
[11] D. L. Moehring, M. J. Madsen, K. C. Younge, R. N. Kohn, P. Maunz, L. M. Duan, C. Monroe, and B. Blinov, J.

Opt. Soc. Am. B 24, 300 (2007).
[12] L. M. Duan and C. Monroe, Advances in Atomic, Molecular, and Optical Physics 55, 419 (2008).
[13] H. J. Kimble, Nature 453, 1023 (2008).
[14] J. Kim and C. Kim, Quant. Inf. Comp. 9, 181 (2009).
[15] L. M. Duan and R. Raussendorf, Phys. Rev. Lett. 95, 080503 (2005).
[16] S. L. Braunstein and A. Mann, Phys. Rev. A 51, R1727 (1995).
[17] D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L. M. Duan, and C. Monroe,

Nature 449, 68 (2007).
[18] D. N. Matsukevich, P. Maunz, D. L. Moehring, S. Olmschenk, and C. Monroe, Phys. Rev. Lett. 100, 150404

(2008).
[19] S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L. M. Duan, and C. Monroe, Science 323, 486 (2009).
[20] P. Maunz, S. Olmschenk, D. Hayes, D. N. Matsukevich, L. M. Duan, and C. Monroe, arXiv:0902.2136 (2009).
[21] J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, Phys. Rev. Lett. 82, 2594 (1999).
[22] S. D. Barrett and P. Kok, Phys. Rev. A 71, 060310(R) (2005).
[23] S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, Phys. Rev. A 76,

052314 (2007).
[24] E. Biémont, J. F. Dutrieu, I. Martin, and P. Quinet, J. Phys. B: At. Mol. Opt. Phys. 31, 3321 (1998).
[25] L. Mandel, Rev. Mod. Phys. 71, S274 (1999).
[26] U. Eichmann, J. C. Berquist, J. J. Bollinger, J. M. Gillingan, W. M. Itano, D. J. Wineland, and M. G. Raizen,

Phys. Rev. Lett. 70, 2359–2362 (1993).
[27] W. M. Itano, J. C. Berquist, J. J. Bollinger, and D. J. Wineland, Phys. Rev. A 57, 4176 (1998).
[28] C. Cabrillo, J. I. Cirac, P. Garcia-Fernandez, and P. Zoller, Phys. Rev. A 59, 1025 (1999).
[29] C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).
[30] Y.H.Shih and C.O.Alley, Phys. Rev. Lett. 61, 2921 (1988).
[31] D. Kielpinski, New J. Phys. 9, 408 (2007).
[32] J. Jaewoo, J. Lee, J. Jang, and Y. Park, arXiv:quant-ph/0204003.
[33] E. D’Hondt and P. Panangaden, Journal of Quantum Information and Computation 6(2), 173 (2005).
[34] P. C. W. Davies, Fluctuation and Noise Letters 7(4), C37 (2007).
[35] M. Bourennaneand, M. Eibl, C. Kurtsiefer, S. Gaertner, H. Weinfurter, O. Gühne, P. Hyllus, D. Bruß, M. Lewen-

stein, and A. Sanpera, Phys. Rev. Lett. 92, 087902 (2004).
[36] O. Gühne, C. Lu, W. Gao, and J. Pan, Phys. Rev. A 76, 030305 (2007).
[37] M. O. Scully and K. Druhl, Phys. Rev. A 25, 2208 (1981).

Copyright line will be provided by the publisher



fdp header will be provided by the publisher 19

[38] J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, Science 303, 1992
(2004).

[39] N. Lindlein, R. Maiwald, H. Konermann, M. Sondermann, U. Peschel, and G. Leuchs, Laser Physics 17, 927
(2007).

[40] M. Hijlkema, B. Weber, H. Specht, S. C. Webster, A. Kuhn, and G. Rempe, Nature Physics 3, 253 (2007).
[41] M. Tey, Z. Shen, S. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, Nature Physics 4, 924

(2008).
[42] S. Gerber, D. Rotter, M. Hennrich, R. Blatt, F. Rohde, C. Schuck, M. Almendros, R. Gehr, F. Dubin, and

J. Eschner, New. J. Phys. 11, 013032 (2009).
[43] G. Shu, M. R. Dietrich, N. Kurz, and B. B. Blinov, arXiv:0901.4742 (2009).
[44] J. Chiaverini, R. B. Blakestad, J. Britton, J. D. Jost, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland,

Quant. Inf. Comp. 5, 419 (2005).
[45] S. Seidelin, J. Chiaverini, R. Reichle, J. J. Bollinger, D. Leibfried, J. Britton, J. H. Wesenberg, R. B. Blakestad,

R. J. Epstein, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, N. Shiga, and D. J. Wineland, Phys. Rev.
Lett. 96, 253003 (2006).

[46] L. Deslauriers, S. Olmschenk, D. Stick, W. K. Hensinger, J. Sterk, and C. Monroe, Phys. Rev. Lett. 97, 103007
(2006).

[47] R. Maiwald, D. Leibfried, J. Britton, J. C. Bergquist, G. Leuchs, and D. J. Wineland, arXiv:0810.2647 (2008).
[48] A. Mundt, A. Kreuter, C. Becher, D. Leibfried, J. Eschner, F. Schmidt-Kaler, and R. Blatt, Phys. Rev. Lett. 89,

103001 (2002).
[49] M.Keller, B.Lange, K.Hayasaka, W.Lange, and H.Walther, Nature 431, 1075 (2004).
[50] C. Russo, H. Barros, A. Stute, F. Dubin, E. Phillips, T. Monz, T. Northup, C. Becher, T. Salzburger, H. Ritsch,

P. Schmidt, and R. Blatt, Appl. Phys. B 95, 205 (2009).
[51] P. Berman (ed.), Cavity QED, Adv. At. Molec. Opt. Phys. Supplement 2 (Academic Press, 1994).
[52] A. Kuhn, M. Hennrich, and G. Rempe, Phys. Rev. Lett. 89, 067901 (2002).
[53] T. Wilk, S. Webster, A.Kuhn, and G.Rempe, Science 317, 488 (2007).
[54] J. F. Clauser, M. A. Horne, A. Shimony, and R. A.Holt, Phys. Rev. Lett. 23, 880 (1969).
[55] A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804 (1982).
[56] M. A. Rowe, D. Kielpinski, V. Meyer, C. A. Sackett, W. M. Itano, C. Monroe, and D. J. Wineland, Nature 409,

791 (2001).
[57] C. Simon and W. T. M. Irvine, Phys. Rev. Lett. 91, 110405 (2003).
[58] H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 81, 5932 (1998).
[59] L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Nature 414, 413 (2001).
[60] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).
[61] H. J. Briegel and R. Raussendorf, Phys. Rev. Lett. 86, 910 (2001).
[62] L. M. Duan, M. J. Madsen, D. L. Moehring, P. Maunz, J. R. N. Kohn, and C. Monroe, Phys. Rev. A 73, 062324

(2006).

Copyright line will be provided by the publisher


