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Richard Feynman in 1981 suggested using a quantum machine to simulate

quantum mechanics. Peter Shor in 1994 showed that a quantum computer could

factor numbers much more efficiently than a conventional one. Since then, the ex-

plosion of the quantum information field is attesting to how motivation and funding

work miracles. Research labs in the field are multiplying, commercial companies

manufacturing prototypes are proliferating, undergraduate Physics curricula incor-

porate more than one courses in aspects of quantum information, quantum advan-

tage over classical computers has been claimed, and the United States and European

Union will be spending more than $109 each in quantum information over the next

few years. Naturally, this expansion has led to diversification of the devices being

developed. The quantum information systems that cannot simulate an arbitrary

evolution, but are specialized in a specific set of Hamiltonians, are called quantum

simulators. They enjoy the luxury of being able to surpass computational abilities

of classical computers right now, at the expense of only doing so for a narrow type



of problem. Among those systems, ions trapped in vacuum by electric fields and

manipulated with light have proved to be a leading platform in emulating quan-

tum magnetism models. In this thesis I present trapped-ion experiments realizing a

prethermal discrete time crystal. This exotic phase occurs in non-equilibrium mat-

ter subject to an external periodic drive. Normally, the ensuing Floquet heating

maximizes the system entropy, leaving us with a trivial, infinite-temperature state.

However, we are able to parametrically slow down this heating by tuning the drive

frequency. During the time window of slow thermalization, we define an order pa-

rameter and observe two different regimes, based on whether it spontaneously breaks

the discrete time translation symmetry of the drive or it preserves it. Furthermore,

I demonstrate a simple model of electric field noise classically heating an ion in an

anharmonic confining potential. As ion traps shrink, this kind of noise may become

more significant. And finally, I discuss a handful of error sources. As quantum sim-

ulation experiments progress to more qubits and complicated sequences, accounting

for system imperfections is becoming an integral part of the process.
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Chapter 1: Introduction

In 1989, Wolfgang Paul would be awarded the Physics Nobel prize “for the

development of the ion trap technique”, the world would see the Berlin wall de-

molished, and I started my journey on Earth blissfully unaware of the social and

technological developments that would mark my generation. Thirty years later, this

PhD thesis is presenting aspects of quantum simulation using an ion trap, offering

a perspective on the progress made and current challenges. One wonders what PhD

theses in quantum information—if the field is still called so—will be about in an-

other thirty years. Or perhaps sooner. If social and commercial interest has spurred

Moore’s law of exponential growth in conventional computing power1, it remains to

be seen what it will do for quantum information devices.

Within the field of quantum information is quantum simulation. Experimental

quantum simulators are composed of a diverse landscape of devices [1] that mimic

specific models (Hamiltonians) with some degree of parameter tunability. Underly-

ing the simulations in our lab is the following observation: the physical description

of laser beams interacting with trapped ions can be made similar to the description

of a set of quantum spins interacting with one another, optionally at the presence

1More accurately, exponential growth in the number of components in a dense integrated circuit.
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of magnetic fields.

A number of experiments has been made possible in this platform [2, 3],

from adiabatically prepared ground states of spin Hamiltonians [4] and information

spreading velocities in long-range interacting quantum systems [5], to demonstra-

tions of lack of thermalization [6, 7] and discrete time crystals [8], with a maximum

number of 53 qubits [9] for published research. This breadth reflects the ability to

control and measure the spins, and the tuneability of the applied Hamiltonian.

In this chapter I will mention some key elements of our experiments to merely

set the scene for the reader. For extended descriptions of the physical apparatus or

the derivation of how our simulation Hamiltonian arises from the physical Hamilto-

nian, I point the reader to references included and graduate theses.

1.1 An ion, our qubit

The ion species we use is 171Yb+. Each ion encodes an effective spin-1/2 in

its hyperfine levels | ↓〉z ≡ |F = 0,mF = 0〉 and | ↑〉z ≡ |F = 1,mF = 0〉 of

the 2S1/2 manifold. F is the quantum number for the total angular momentum of

the ion and mF is the projection on the quantization axis, set by a magnetic field

of magnitude ≈ 5 Gauss. Being able to encode an effective spin-1/2 means that

during our simulation, we maintain a two-level system, and all other levels have

been somehow “eliminated” from the simulation picture. This elimination happens

by choosing to always couple to our ion with laser light that may physically be using

states other than |↑〉z and |↓〉z, but it can be effectively described without needing
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those, merely using Pauli spin matrices acting on |↓〉z and |↑〉z.

The hyperfine splitting ωHF ≈ 2π ·12.64 GHz between |↓〉z and |↑〉z is in the RF

spectrum. Before each experimental sequence, the ions are Doppler-cooled with 369

nm light, initialized in the |↓〉z state with optical pumping, and Raman sideband-

cooled to the motional ground state [10]. After the main experimental sequence is

finished (see section 1.3), the state of the ion/spin is projectively measured with 369

nm light. Since each ion’s aforementioned levels are mapped to a single spin, I will

often use the terms “ion” and “spin” interchangeably in this thesis.

1.1.1 State initialization, aka optical pumping

At the beginning of every experimental sequence, right after Doppler-cooling

our ions, we initialize their internal state to 2S1/2|F = 0,mF = 0〉, i.e. the qubit

|↓〉z state. The complete procedure is described in [10] or S. Olmschenk’s thesis [11].

To intuitively understand how we are able to efficiently and accurately initialize our

state to |↓〉z, first let’s see what states we are likely to have after Doppler cooling,

and second, how the optical pumping mechanism takes all of them indiscriminately

to the |↓〉z state.

Right after Doppler cooling, the ion is most likely in its ground state, the 2S1/2

manifold (the 4 states shown in Fig. 1.1). Other states are unlikely, since most decay

fast to one of those S states via spontaneous emission.

Keeping in mind this manifold of possible starting states, let’s see what hap-

pens when we shine the optical pumping light. This 369.5 nm light is resonant with

3
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Figure 1.1: State initialization with optical pumping. All roads lead to Rome:
no matter which state of the S manifold the ion starts from after Doppler cooling,
the optical pumping light will eventually couple it to the |0〉 = |↓〉z state, after a
probabilistic small number of photon absorptions and spontaneous decays. Solid
lines indicate stimulated absorption from the optical pumping light, dotted lines
show spontaneous decay. Adapted from [10].
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the |↓〉z ↔ P1/2|F = 1,mF = 1〉, and has all three polarization components relative

to the quantizing field. With respect to this light...

• ...the |↓〉z state is 12.6 GHz-detuned from the P1/2|F = 1〉 manifold, and the

transition |↓〉z → P1/2|F = 0〉 is dipole-forbidden. So, the |↓〉z state remains

unchanged by the optical pumping light.

• ...the | ↑〉z state is forbidden from selection rules to couple to the same F

and same mF state P1/2|F = 1,mF = 0〉. Therefore it can couple to either

P1/2|F = 1,mF = −1〉 or P1/2|F = 1,mF = 1〉. From each of those, there is a

1/3 probability to decay to |↓〉z and get trapped there (see point above). The

rest 2/3 of the time these two P states decay either back to |↑〉z, in which case

this point “loops” to the beginning, or to one of the Zeeman levels of the S

manifold, in which case...

• ...the Zeeman states S1/2|F = 1,mF = −1〉 and S1/2|F = 1,mF = 1〉 can

each couple to the same Zeeman state of the P1/2 manifold, or the P1/2|F =

1,mF = 0〉. From there, they can decay again with a probability of 1/3 to the

deisred |↓〉z state, or another state of the S manifold, in which case we loop

to one of the previous points.

The conclusion is that the only final state from which the ion cannot escape during

optical pumping is the desired, |↓〉z. Any other state it couples to will keep coupling

to other states, with a small leakage probability at each decay taking it to |↓〉z, and

staying there. So...one way or the other, all possible paths (roads) will eventually

lead the ion to |↓〉z (Rome)!
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A caveat is that when the ion is at the desired | ↓〉z state, there is a very small

probability that the optical pumping light will excite it to the P1/2|F = 1〉 manifold,

from which it is detuned by 12.6 + 2.1 = 14.7 GHz.

Finally, the last step needed for optical pumping is to account for the 0.5%

probability that an ion in any state of the P1/2 manifold will decay not to somewhere

in the S1/2 manifold, but to the 2D3/2 state. The optical pumping light cannot couple

D3/2 to anywhere, so we need another laser to prevent the ion from getting stuck

there. This laser is a 935 nm resonant to the D3/2|F = 2〉 ↔ D[3/2]1/2|F = 1〉.

We add sidebands at 2.2095 + 0.86 = 3.0695 GHz to also couple D3/2|F = 1〉 to

D[3/2]1/2|F = 0〉. From the D[3/2]1/2 state, the ion decays back to the S manifold

with spontaneous decay time of 37.7 ns [12].

1.1.2 State readout

After preparing the ion qubits in the |↓〉z state, we use the Raman beams (see

section later) to perform the main part of the simulation. At the end of it, we are

interested in measuring their state. To this end, we illuminate all of the ion chain

with 369.5 nm light, resonant with the S1/2|F = 1,mF = 0〉 ↔ P1/2|F = 0,mF =

0〉 transition and containing all three polarizations (σ−, σ+, π) with respect to the

quantizing field. A nice overview of the procedure is given in [13] and [14], as well

as [15] and [16] for a similar system in 40Ca+ ions. The main idea (Fig. 1.2) is that

if an ion is projected to the |↓〉z state, the detection will not couple it to any state

and therefore the ion will appear dark. If on the other hand the ion is projected to

6



the |↑〉z state, it enters a cycling transition, constantly absorbing and re-emitting

369.5 nm photons. Using an objective lens system with NA = 0.4, we collect part

of these photons, imaging the ion chain on the sensor of an EMCCD camera.
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2.105 GHz

F=1

F=0

0.86 GHz

2.2095 GHzF=1
F=0

F=1

de
te

ct
io

n

F=1
F=0

F=2

3D[3/2] 1/2

2D3/2

2S1/2

2P1/2

detection cycling transition
“bright error”
“dark error”

Figure 1.2: State readout cycling transition and error modes. Energy levels
relevant to state readout. Similar to optical pumping, we need the 935 nm repump
laser. If an ion is projected to |↑〉z by the resonant detection beam, it enters the
orange cycling transition: photon absorption→photon scattering→ and we collect
these fluorescence photons with our imaging optics. There is a finite probability
that during this cycle, an ion initially projected to |↑〉z will off-resonantly couple
to the P1/2|F = 1〉 manifold, detuned by 2.1 GHz from the light frequency. From
there, it may decay to the |↓〉z dark state and stop fluorescing; a “bright error” has
occurred. Additionally, an ion initially projected to the dark |↓〉z state may couple
to the same P1/2|F = 1〉 manifold and decay to |↑〉z. This transition is less likely to
occur since it is detuned by 12.6 + 2.1 = 14.7 GHz from the light frequency. This is
a “dark error”. Adapted from [10].

There are a few things that can introduce errors at the readout stage. First, the

detection light might off-resonantly couple the state the ion was initially projected

at to the |F = 1〉 manifold of the P1/2 state, and from there decay to a different

qubit state. The process is illustrated in Fig. 1.2. This can happen any time during
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the exposure (i.e., detection) time window of 0.4 − 0.65 ms, and will appear as

an ion with fluorescence between zero and maximum. Typical numbers for these

probabilities are 1% for the dark error (erroneous flip |↓〉z → |↑〉z) and 3% for the

bright error (erroneous flip |↑〉z → |↓〉z). Secondly, during the exposure time, 369 nm

light directly from the laser may enter the imaging optics and fall into the region

of the camera sensor where ion fluorescence would head. In this case, our state

discrimination algorithm may no be able to tell the difference. Third, the camera

sensor comprises of pixels, any of which might “fire” at any moment and produce

a signal as if it had received a photon, even if it didn’t. Reducing this noise is the

primary reason we keep our camera sensor at a low temperature of −60◦ C.

As an aside, when the ion is not properly pumped to the |↓〉z state, a lobe

will appear in the dark and bright count histograms, taken in the calibration stage.

Fig. 1.3 illustrates a time when this happened. The cause for this bad optical pump-

ing could be the optical pumping light itself, or the 935 nm repump light, including

their sidebands. In Fig. 1.3, we see the difference between problematic and func-

tional optical pumping, as demonstraded in the bright and dark count histograms.

Note that the off-resonant optical pumping during the exposure (detection) time

mentioned in the previous paragraph will not resut in a lobe appearing in the his-

tograms, but rather in the flat extension of, say, the bright counts histogram into

the dark counts region and vice versa.

For an overview of how we use the ion fluorescence to decide if a certain ion

was at the |↑〉z or |↓〉z state, see Appendix B.
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Figure 1.3: The signature of bad optical pumping in the detection cali-
bration histograms. Left: The two bumps appearing in the bright (yellow) and
the dark (blue) counts histogram indicate an issue with state preparation. For the
dark counts, the ions undergo the sequence Doppler cooling → Optical pumping
→ Detection, while for the bright counts, they undergo Doppler cooling → Optical
pumping → Raman sideband cooling → π rotation to |↑〉z → Detection. Right:
after optimizing the optical pumping issue, the lobes disappear.

1.1.2.1 Imaging system magnification

To estimate the overall magnification of our imaging system, we first measured

the axial trap frequency using a single ion. Then, we loaded 20 ions and measured

the minimum spacing in pixel units. We then calculated numerically the expected

minimum ion spacing at that axial confinement, and divided that by the spacing

measured in pixels. The conversion factor is

1 camera pixel↔ 0.23± 0.02 µm.

Knowing that the camera pixels are 16×16 µm in size, we estimate the magnification

of our system to be roughly 70×.
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1.1.3 Single-qubit manipulation: The Raman beams

In-between initializing and measuring our qubits is where the magic, aka quan-

tum simulation, happens. The operations that the spins undergo during the simula-

tion stage fall under two different categories: single-body terms σqi and many-body

terms ∼ σqi σ
q′

j , where σqi is the q-th Pauli spin matrix acting on qubit i. I will refer

to the many-body terms in the next section with more detail. As for the single-body

terms, in simple language, they are rotations of the spin-1/2 vector around the Bloch

sphere. As a reminder, a pure state |ψ〉 of a two-level system can always be written

as

|ψ〉 = cos
Θ

2
|↓〉z + eiΦ sin

Θ

2
|↑〉z, |〈ψ|ψ〉|2 = 1,

allowing us to define the vector {Θ,Φ} in spherical coordinates.

The ability to perform these Bloch rotations boils down to the ability to ma-

nipulate the qubit states |↓〉z and |↑〉z, creating arbitrary superpositions of them.

We do that by using Raman transitions between the corresponding atomic states.

To drive these transitions, two Raman beams (“Raman 1” and “Raman 2”) at a 90◦

angle with respect to each other and 45◦ each relative to the ion chain converge at

the ions’ location. Their frequency difference is tuned to be about fA = 29.7 MHz

using Brimrose AOMs. They come from a pulsed laser (Coherent Paladin Compact

4W, air-cooled) with a repetition rate frep ≈ 120 MHz, which means that each of

those beams is an optical frequency comb. For an overview of frequency combs

as used in our setup, see Appendix A.2. The frequency difference fA ensures that
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every optical comb tooth from Raman 1 interferes with an optical comb tooth from

Raman 2 that is 105 teeth away in frequency and results in an RF frequency exactly

equal to the hyperfine splitting between |↓〉z and |↑〉z:

105frep + fA = ωHF.

The polarization of the Raman beams is horizontal (parallel to the table), as per

845 THz
=c/369.5 nm35

5 
nm

33 THz
67 THz

σ- σ+

2S1/2

2P1/2

2P3/2

Figure 1.4: Raman transitions and the relevant energy levels. Each of the
Raman beams is an equal superposition of σ− and σ+ polarizations, coupling the
qubit levels to the |mF = ±1〉 levels of the P1/2 and the P3/2 manifolds. These levels
act as intermediate (adiabatically eliminated) states for the Raman transition to the
other qubit level.

the “lin⊥lin” configuration. For reference, we can write their polarizations εi in the

(σ−, π, σ+) notation as

ε1 =
1

2
(1− i, 0, 1 + i) (1.1)

ε2 =
1

2
(1 + i, 0, 1− i) (1.2)

with |εi|2 = 1.
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Table 1.1: Reference table of Raman beam parameters1

Carrier Rabi frequency Ω0 880 kHz 2

Optical power in each Raman 1st order 790 mW

Raman 1 Raman 2

Horizontal waist 119 µm Horizontal waist 102 µm

Vertical waist 9.8 µm Vertical waist 11.9 µm

1 As measured on October 2, 2020.
2 At maximum power for the Raman 2 beam.

The Raman beams induce Rabi flopping between the qubit states at a Rabi

frequency Ω0 proportional to the geometric mean of their intensities I1 and I2 at

the ion location:

Ω0 ∼
√
I1I2

Given that the sum of their intensities is constant, the geometric mean is maximized

when I1 = I2 ≡ I and then

Ω0 ∼ I

At the ions location, the Raman beams assume a gaussian profile with waists roughly

100 µm and 10 µ along the horizontal and vertical axes respectively. However, this

profile changes periodically because of optics misalignment or degradation and we

have to check it often. For reference, some related measurements are shown in

Table 1.1.

The spatial dependence of the intensity because of the gaussian beam profile

created two issues deemed worth addressing in the past few years, in order to improve

our operation fidelities. First, beam pointing noise of the beams at the ion location
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was translating into intensity noise and therefore noise in Ω0
2. Secondly, for large

ion chains that span a length comparable to the beams’ horizontal waist, the beam

intensity sampled varies significantly and so does Ω0. Therefore, if we apply the

Raman beams for a duration that is a π-time around some axis for the central ion,

the ions at the edge of the chain are rotated by less than π. We addressed the first

issue by implementing a PI lock of the beam pointing and redesigning the Raman

beam path to be telecentric. The second issue was addressed by replacing simple

Bloch rotations with a composite pulse sequence of four rotations. The following

two sections provide more details.

1.1.3.1 The Raman beam pointing lock

In order to stabilize the beam pointing at the ion location, we changed our

Raman beam path and implemented a PI stabilization scheme. As shown in Fig. 1.5,

the 355 nm light exits the Paladin laser roughly collimated, goes through a ×1.33

telescope, and then gets slowly focused into the Raman AOM centers by a spherical

+412 mm lens, to a focus of 160-200 µm radius. The lens performs a spatial Fourier

transform of the wavefront from the object point (inside the laser) to the image at

the AOMs. Therefore, all angular noise out of the laser is mapped to displacement

noise at the AOMs.

This displacement noise is easily measured by sampling the beam and directing

it to a quadrant photodiode (QPD)3 at the effective AOM location. The QPD

2It also affects noise in the AC Stark shift, but as I’ll show in Chapter 2, pointing noise is not
the primary source of AC Stark shift noise in our system.

3QD50-0-SD from OSI Optoelectronics.
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circuitry has two voltage outputs, one for the horizontal and one for the vertical

axis. Each voltage output is proportional to the distance of the beam from the

diode sensor center along that axis. The sensor has a dead area (“element gap”)

in its center at the shape of a cross, 0.2 mm wide. While this area receives most

of the beam intensity, the part of the gaussian intensity profile outside this region

is sufficient to provide a reliable input signal. The QPD output signal is amplified4

and sent as the error signal to a PI lock that uses a half-inch mirror upstream as an

actuator; see Fig. 1.5. A half-inch mirror was chosen, as opposed to a one-inch, due

to its faster response to repositioning, owing to smaller size. Both the horizontal

and the vertical knob of the mirror are controlled by piezoelectric actuators. The

displacement noise at the sampling position is reduced by almost 100 when the lock

is ON and tuned.

After the AOMs, the diverging beams are collimated by spherical +240 mm

lenses, placed one focal length downstream from the AOMs. Up to this point,

their profile is spherical; beyond these lenses, their horizontal and vertical axes are

shaped separately to ensure they have a large horizontal waist at the ion location to

address long ion chains, and a small vertical one so as not to waste light intensity

in the vertical axis. Because of the high density of optical elements, it has not

been possible to fully enclose the Raman beam path with beam tubes, which would

reduce its susceptibility to air turbulence. Therefore, the 100-fold reduction of the

pointing noise mentioned does not carry over to the ion location. Measurements

indicated a reduction by a factor between 3 and 10 at the ion location when the lock

4Using the AD8421ARZ-ND instrumentation amplifier.
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Figure 1.5: Raman bean path and pointing lock. Green hands indicate beam
foci. The predominantly angular noise out of the laser head is mapped to beam
displacement noise at the first focus, which is at the Raman AOMs location. We
sample the beam (sampling arm not shown) at this effective location and direct it
to a quadrant photodiode (QPD). The QPD is part of a PI stabilization circuit that
uses the indicated half-inch diameter mirror as an actuator. The schematic omits
elements that are not relevant to the pointing lock, such at the intensity stabilization
AOM and mirrors. All lenses are shown.
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is ON. In other words, the stabilized beam picks up pointing noise as it propagates

past its locking point.

Even though beam tubes are placed sporadically, most of the Raman beam

setup is enclosed in a box with apertures for beam entrance and exit. Pointing noise

measurements show that the box slightly reduces pointing noise at the AOM loca-

tion, although not nearly as much as the active locking. I note that the enclosures

of the 355 nm path, including the Raman beam path, are far from hermetic. To

circumvent the issue that no matter how good a pointing or power lock is, the beams

will pick up noise as they propagate downstream, we are considering implementing a

sample-and-hold scheme. In this case, Raman light would be turned on for example

at the beginning of an experimental sequence at a fixed power, sampled as close to

the ion location as possible, and then pointing- and power-corrected to the value

that was held during the previous sampling.

1.1.3.2 The BB1 composite pulse scheme

Ion chains with 25 ions are about 60-µm long assuming an axial confinement

of faxial = 0.34 MHz. For Raman beams with a horizontal waist of 100 µm, the edge

ions are receiving about 90% of the intensity the central ions receive (accounting

for the beam–chain angle of 45◦), as illustrated in Fig. 1.6. Therefore, a π-time

measured with the central ions will not be accurate for the edge ions and will lead

to miscalibrated rotations and dephasing across the chain. To counteract this effect,

we make use of the BB1 broadband composite pulse scheme [17]. It allows for Bloch
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rotations to be done accurately even at the presence of relatively large systematic

amplitude errors, i.e. miscalibrated π-times. A perhaps equally important benefit of

the BB1 scheme is that it protects us from slow beam intensity noise as well. After

all, the method ensuring precise Bloch rotations for slight intensity variations does

not care whether these variations are spatial or temporal. Of course, the portion of

the noise during the rotation itself still affects us.
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Figure 1.6: Gaussian beam profile along the chain axis. For a trap just enough
tight to not make a 25-ion chain go to the zig-zag configuration, the edge ions are
about 30 µm away from the chain center and the light intensity they see is 0.9 of the
maximum at the center. The beam waist is assumed to be 100 µm and the beam
at a 45◦ angle with the chain axis. For axially looser traps that accommodate > 25
ions, the inhomogeneity is amplified, since the 25 central ions will now be even more
spread out.

A rotation unitary acting on the Bloch vector ψ and rotating it by an angle

θ, around an axis on the XY plane at an angle φ with the positive X axis can be

written as

Rφ(θ) = e−i
θ
2
σφ , σφ = σx cosφ+ σy sinφ

The actual rotation angle really has a spatial dependence and varies for each ion i:

θi,act = Ωit, where Ωi is the Rabi frequency experienced by ion i (see Fig. 1.6). So,

it is sensitive to the spatially-inhomogeneous intensity profiles of the Raman lasers.
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We instead apply the following BB1 unitary, consisting of 4 sub-rotations:

R4R3R2Roriginal = RφBB1
(π)R3φBB1

(2π)RφBB1
(π)Rφ(θ) (1.3)

where φBB1 determines the axis of the three additional rotations, and depends solely

on the desired rotation angle θ and not the desired rotation axis:

φBB1 = arccos

(
−θ
4π

)

Note that the first rotation to be applied in (1.3) is the original one.

The trick is that if the original rotation angle is not θ, but θ + ε because

of a difference in the Rabi frequency between sites i for example, the error in the

combination of all four rotations in (1.3) will be much smaller than ε. In theory, a

systematic miscalibration of the order of 10% will still yield a a negligible error in

the final composite rotation.

We typically use BB1 pulses when the accuracy of the rotation required is

high. For a typical scenario where the desired rotation around some axis is π, we

would need to measure the π and 2π times with a single ion, and input them in our

control software for the durations of the four rotations in (1.3). We find however

that an extra step is needed to further improve the BB1 pulses fidelity. This is

because, while they can significantly reduce systematic intensity errors, they cannot

account for unexpected imperfections in the relative angles of the four rotations.

For example, if for some reason the assumed 2π time input for rotation R3 does not
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produce exactly twice the angle of rotations R2 and R4, the scheme will not fully

work. In other words, all the rotation durations needed might be off by an overall

factor multiplying all of them, but we cannot tolerate relative discrepancies.

To further elucidate this, assume that the accurate 2π-time for a rotation is

t2π. If we aim to do a π rotation with the BB1 scheme and we use the durations

1

2
1.05t2π,

1

2
1.05t2π, 1.05t2π,

1

2
1.05t2π

for the rotations Roriginal, R2, R3, R4 respectively, we effectively introduce a global

systematic miscalibration of 5%. The BB1 scheme should be able to handle that

fine.

• If we input

1

2
1.04t2π,

1

2
1.05t2π, 1.05t2π,

1

2
1.05t2π

instead, then the BB1 scheme will also work, but it will produce accurate

rotations by an angle 1.04/1.05π. These should be robust to slow intensity

noise for example, or the spatial inhomogeneity of the beam along the chain.

However, . . .

• if we input

1

2
1.05t2π,

1

2
1.05t2π, 1.04t2π,

1

2
1.05t2π,

i.e. a relative miscalibration between the π− and 2π-times, then the scheme

will not work. What we see in this case, when we do a sequence of multiple

BB1 composite π-pulses, is a beatnote instead of a pure oscillation. For slight
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miscalibrations, we only see the first part of the beatnote, a slow decay (upper

plot of Fig. 1.7)

In practice, when we measure the π- and 2π-times with one ion, it is possible that

one of these will be off in its accuracy relative to the other. To address that, we

execute sequences of many BB1 π-pulses, like 100, as shown in Fig. 1.7, and tweak

the duration of the 2π-pulse by small amounts of the order of 0.5%, until we see no

decay in the oscillation envelope.

Time (ms)
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y 

of

Miscalibrated 2π time by 0.3 %

Well-calibrated 2π time

Figure 1.7: Sub-optimally calibrated and optimally calibrated BB1 pulses.
A miscalibration of the 2π time by a mere 0.3% adds up when we execute 100
π-pulses (plot above).

1.2 The ion trap

To manipulate the ions with laser light, we must spatially confine them so we

can address them. Additionally, this has to be done in a manner that minimizes their

interaction with their environment, aside from the intended laser-ion interactions.

To do that, our lab (QSim) is operating a three-layer linear RF trap [18], which
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falls under the category of Paul traps [19]. A combination of static and oscillating

electric fields is used to create a potential that confines the ions along all three

spatial axes. The confinement along Z is weaker, resulting to a linear arrangement

of the ions into a chain along this axis. The spacing between them is not uniform

and is determined by the interplay of the repulsive Coulomb force and the trapping

potential. Along any axis, the potential near the local minimum, where the ion

chain lives, is approximated by a quadratic term 1/2mω2
qq

2, where q = x, y, z. The

secular frequencies ωq are a measure of how “tight” the potential is along q and

typical values are ωx = ωy ≈ 2π · 4.7 MHz and ωz ∈ 2π · [0.3, 0.6] MHz. A schematic

of our trap is shown in Fig. 1.8a. The principles of operation of Paul traps have

been documented in previous theses and of course, literature, so I will be selectively

focusing on specific aspects here. First, I will present an intuitive explanation for

how the confinement along two axes, X and Y , is done using a time-dependent

field, while still admitting a static confining potential approximation. Second, I will

explain and most importantly, visualize our method for ensuring that the two Raman

beams impart momentum only along the X axis, while leaving Y undisturbed.

1.2.1 Emergence of the static pseudopotential from the RF drive

The confinement along X and Y is done with an oscillating RF field at a

frequency ΩRF , whose effect on the ions is averaged over an oscillation period to

yield a static pseudopotential ψp. This practice has its own challenges [21], but is

a necessity for ions that need to be localized in all three axes: charged particles
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Figure 1.8: Ion trap schematic and method for rotating the transverse axes
X and Y . a. The 3-layer ion trap in QSim. The Raman beams are along the XZ
plane and the ion fluorescence is collected along the X axis. To rotate the XY plane,
we must effectively rotate the inset (equipotential lines) around Z. Adapted from
[20]. b. Two different scenarios for the central electrodes (DC3 and DC4) voltage
show how they are used to rotate the trap’s XY (transverse) plane. To visualize this
rotation, I plot the potential gradient (arrow). The total gradient (black arrows,
right column) is the sum of the one created by the end and the central electrode
voltages. Each of these gradients points to a fixed direction, therefore by changing
their relative magnitudes, we can steer their sum by small angles. For a fixed end
electrode voltage of Vcentral = 6 V and two different scenarios of For Vcentral = 0.05
V and 0.4 V, I plot the total gradient, demonstrating its angle control.
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cannot be localized by static electric fields alone. Interestingly, this was realized by

Earnshaw in 1839 [22], before the scientific community rejects the idea of ether, as

attested by the assumption of “luminiferous ether” throughout that paper!

This oscillating field is produced by the RF electrodes, shown in Fig. 1.8a. The

maximum voltage at the RF electrodes is multiple hundreds of Volts and it results

in a “breathing” potential around the ions location; see Fig. 1.9. An ion that sits

exactly at the center of this breathing potential, called the RF null, will not feel

any force. An ion that is slightly displaced from the Rf null though will move under

the influence of this force with the cos ΩRFt time dependence, executing periodic

motion. This motion has a very small amplitude and is called micromotion; it is

the less interesting part of ion motion.

x
y

VRF

time
t=0

t=TRF

t=TRF/2

Figure 1.9: Time-dependent RF potential during one RF period TRF. Shown
is the oscillation of the time-dependent part of the potential along X and Y as
experienced by an ion at Z = 0, i.e. the middle of the chain. The potential at t = 0
was calculated at the trap construction phase using CPO software. The range of X
and Y shown is 100 µm. The dot is the ion equilibrium position, i.e. the RF null.
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To understand the more interesting motion that arises, called the secular mo-

tion, let’s try and understand what happens if the ion is displaced from the RF null.

For simplicity, I will consider the 1D problem, as depicted in Fig. 1.10. In this case,

an ion that is very close to the RF null, i.e. the x = 0 position, will be subject to

the RF force during its oscillation around its average position x̄. Since x̄ ≈ 0, the

ion’s micromotion is symmetric around x = 0 and so is the force it experiences: its

time average for an RF cycle will be zero. This will not be true if the ion’s micro-

motion is originally centered farther away from the RF null, eg. at a position with

x̄ < 0. In this case, when the ion is at its leftmost position, it experiences a force

FRF pointing to the right. When at its rightmost position, FRF points to the left,

but with a smaller magnitude. This is exactly because the RF electric field and as a

result the experienced force have a spatial gradient. Because of this asymmetry, the

average RF force during one cycle in this case will not be zero, but point towards

the right. Equivalently, if the ion’s micromotion is originally centered at the left of

the RF null, t̄ > 0, the time-averaged force will be pointing towards the left.

So far we proved that the time-averaged force F̄RF during an RF cycle points

towards the RF null. Another step is needed to dub F̄RF a restoring force: it needs

to be sufficiently linear to the ion’s displacement from the origin. To argue for that,

we can look at the RF electric field shown in the top left Fig. 1.10: the farther from

x = 0 an ion is, the larger in magnitude the force is. Therefore, its acceleration will

also increase; and with the acceleration, its micromotion amplitude. Since now the

ion is sampling a larger length, the difference of the RF force at its extrema will

increase, meaning that the time-averaged force during the RF cycle also increases.

24



For an electric field that is linear with x, this effect will also be linear to the ion’s

displacement from the RF null, and therefore we can call F̄RF a restoring force,

giving rise to an effective static potential ψp, called the pseudopotential.

After these intuitive arguments, one can proceed to calculations and derive the

pseudopotential from the time-dependent electric field ERF = E0(x) cos ΩRFt [23]:

ψp(x) =
eE2

0(x̄)

4mΩRF

(1.4)

where ψp has units of Volts, e is the elementary charge, and m is the ion mass.

As long as E0(x) ∼ x, ψp will be quadratic. Sufficiently far from the RF null, the

electric field E0(x) will not be linear to the position x any more, meaning that ψp(x)

is not harmonic any more either.

1.2.2 Minimizing coupling of the Raman beams to the Y motional

modes

Our Raman beams are parallel to the optical table and their wavevector dif-

ference imparts momentum ∆~k to the ions. This momentum “kick” is purely along

the X axis if the confining potential’s principal axes5 are optimally aligned to the

Raman beams. If they are not, ∆~k has a finite projection along the Y axis, exciting

the ion chain’s motional modes along Y . This usually happens after the Raman

beams have needed to be considerably steered to maximize their intensity at the

5The principal axes on a plane are merely the directions of maximum and minimum potential
gradient.
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Figure 1.10: Emergence of the secular motion from the time-dependent
electric field gradient. Top row: the time-dependent potential and electric
field ERF as a function of position x. Shades of blue are used to denote different
moments during the RF cycle, from t = 0 (dark blue) to half-way through, t = TRF/2
(light blue). An ion whose micromotion is centered around the RF null x = 0
(dashed rectangle) experiences a force from the RF field that’s equal in magnitude
at the extrema of its motion; therefore the average force during a single RF cycle
is zero. Conversely, an ion whose micromotion is centered left of the RF null (solid
rectangles) will be experiencing a larger force towards the right when it is at its
leftmost position, than a force towards the left when at its rightmost position.
Therefore, the average force during a single RF cycle will point toward the right.
This effect is amplified the farther away from the RF null the ion is. This average
force gives rise to an effective harmonic oscillator potential and the secular motion
of the ion. Bottom: The force FRF[x(t)] = eERF[x(t)] from the RF field throughout
one RF cycle. Note that this force is the one experienced from the ion during its
micromotion, so it is proportional to eERF[x(t)] rather than ERF[x, t] for a fixed
position x. For the ion that is roughly at the RF null (dashed), the average force
during the RF cycle is ¯Force = 0, as stated above. For the ions at the left of the RF
null (x̄ < 0), the average force during the RF cycle is ¯Force > 0.
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ion location, or when the trap voltages have been changed for some reason. To re-

cover the trap axes-Raman beam alignment, we slightly rotate the trap’s XY plane

around Z. Since physically rotating the trap chamber is not an option, we change

the electrode voltages in a manner that effectively performs this rotation. We call

this “minimizing the Y mode”, i.e. minimizing the coupling to the Y mode by the

Raman beams.

This procedure is illustrated in Fig. 1.8b. While the confinement in the XY

plane is provided by the RF electrodes and the pseudopotential they create, we can

use the static electrodes to superimpose a weak static potential that adds to ψp. By

steering the principal axes of this weak potential, we align the Y axis to the ∆~k of

the Raman beams. The control knob is the voltage of the central electrodes. We

typically change it in steps of 0.05 V to 0.1 V, performing a Ramsey scan of the

sideband frequency after each step. The duration of the ON time for the Raman

beams is chosen so that the main mode (X) shows a full-contrast peak, i.e. it is

a π-time for the X mode. We then try to change the central electrode voltage to

minimize the other (Y mode) peak.

1.2.3 The vacuum

In order to minimize the ions’ interaction with the environment and keep them

localized, it is necessary to preserve their surroundings as...empty and boring as

possible. This is accomplished by placing the ion trap, i.e. the electrodes structure,

inside an ultra-high vacuum (UHV) chamber. Windows in three of its sides provide
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optical access so the laser beams can reach the ions and exit the trap, and so that

the ions’ fluorescence can exit the chamber and be collected by our imaging optics.

During the five years of my stay in the lab, the vacuum did not present any issues

that required attention of longer than a few hours, and certainly did not require

opening it.

The measure used to assess the vacuum is the air pressure in Torr; ours is

about 10−11 Torr ≈ 10−9 Pa ≈ 10−14 atm. From the basics of Thermodynamics,

recall that the pressure depends on both the number of gas particles and their kinetic

energy. The number of background gas molecules is primarily determined by the

pumping system in use: the ion pump and the TiSub pump that was used in the

past. The molecule that is less efficiently pumped out is hydrogen H2, so a common

assumption is that most of the pressure is due to hydrogen molecules. As for their

kinetic energy, this is determined by the Maxwell-Boltzmann distribution, centered

around an average kinetic energy 〈Ekin = 3/2kBT 〉 where T ≈ 300 K and kB is the

Boltzmann constant. During my stay in the lab and for a few years before that,

the TiSub pump was not “fired”, i.e. heated. Despite this being a recommended

periodic procedure, the fear that heating it after a multi-year recess could cause

unpredictable vacuum issues kept us from doing so. Besides, ion chain lifetimes

were exceptional for short periods of a few weeks at a time, indicating that bad

vacuum is likely not the limiting factor for the rest of the time, when the lifetimes

are suboptimal.
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1.2.3.1 Is your ion chain blinking like Christmas lights?

Two to three times in the past few years we observed that the ion chain

was blinking: ions were randomly switching between dark and bright at a fast

rate. There are two reasons why this might be happening, and one of those is bad

vacuum: if there are many background molecules colliding with the chain, it will

be rearranging between different spatial configurations in response to these elastic

collisions, appearing to be blinking. The other reason is related to malfunctioning

pumping from the 2D3/2 state owing to an issue with the 935 nm repump laser and

its EOM sidebands.

1.3 Simulating the Ising model and variants

At the heart of our experimental sequences is the part where the Ising-like

Hamiltonian is generated. This is done using the Molmer-Sorensen scheme [24], in

which we do not apply one Raman beatnote as in the single-ion rotations case, but

two at the same time. These “red” and “blue” beatnotes are detuned by δ from the

transverse motional sidebands ±ωCOM of the carrier frequency ωHF:

red beatnote: ωHF − µ = ωHF − ωCOM − δ

blue beatnote: ωHF + µ = ωHF + ωCOM + δ

In a basic scenario, we apply these beatnotes to a pair of ions both initialized

in | ↓〉z. They will flop from |↓〉z|↓〉z to | ↑〉z| ↑〉z and back, and be entangled in-
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between, in a state that looks like cos J12t · |↓〉z|↓〉z + sin J12t · |↑〉z|↑〉z, J12 ∈ R. The

underlying basis for this flopping can be intuitively understood with a reasoning

somewhat reminiscent of Raman Rabi flopping. The two states |↓〉z|↓〉z and |↑〉z|↑〉z

are coupled to each other with the mediation of the states |↓〉z|↑〉z and |↑〉z|↓〉z. We

choose δ to be large enough so that the beatnote is sufficiently off-resonant from the

(red- and blue-sideband) transitions for any motional mode. The role of the two

Raman beams in Raman transitions is played here by the two Raman beatnotes,

red and blue. The coupling strength J12 is

J12 =
2∑

k=1

η1kη2kΩiΩj

µ2 − ω2
k

ωk (1.5)

where ωk is the frequency of motional mode k, Ωi is the carrier Rabi frequency of

ion i (at laser intensities that are the geometric mean of the red and blue beatnote

intensities), and ηik is the Lamb-Dicke parameter ηk for mode k weighted by the the

i-th ion’s participation bik in that mode6:

ηik = bikηk (1.6)

When we have N > 2 ions, J12 assumes the role of the strength of the interaction

between spins i and j in an Ising-like Hamiltonian

N∑
i<j

Jijσ
x
i σ

x
j (1.7)

6Essentially, bik is the normalized amplitude of classical motion of ion i for mode k,
∑
k b

2
ik =∑

i b
2
ik = 1.
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with

Jij =
N∑
k=1

ηikηjkΩiΩj

µ2 − ω2
k

ωk. (1.8)

Note that as mentioned in 1.2.2, our Raman beams only couple to the X transverse

modes, so the sum above goes up to k = N . If we coupled to the Y modes as well, we

would need to sum up to k = 2N . The coupling element Jij is often approximated

by a power law

Jij ≈
J0

|i− j|α
, 0 < α < 3 (1.9)

which is a good approximation for N < 20 ions, empirically.

Our simulations commonly involve effective magnetic fields in addition to the

spin-spin interaction term in (1.7). The generic Hamiltonian we apply can be written

in the form of a long-range Ising model with fields:

Hsim =
N∑
j<i

Jijσ
q
i σ

q
j +Bq′

N∑
i

σq
′

i +
N∑
i

Bz
i σ

z
i (1.10)

where q, q′ are axes on the X − Y plane of the Bloch sphere. In theorists language,

the first term is “2-local”, which means that the interactions are 2-body (between

pairs of spins), even though they act on all pairs of them. I am not going through

the full derivation of how (1.10) emerges from the physical laser-ion interaction

Hamiltonian, but I will focus instead on how the profile of the J interaction matrix

depends on the structure of the chain’s motional modes and the detuning of the

laser beatnote from them. For the mathematical derivation, reference [25] and the

PhD theses [26] and [27] are good references; [28] also nicely illustrates the small
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time-dependece of J in small times of the order 1/δ.

Generation of the site-dependent field Bz
i σ

z
i is afforded by means of a tightly-

focused laser beam that can address ion i with minimal crosstalk between neigh-

boring ions [29]; its waist is of the order of 0.5 µm. In addition to the initialization

and measurement abilities mentioned earlier, the parameters q, q′, J0, α, Bq′ , and

Bz
i are tunable and together with single-spin rotations form a versatile toolkit.

The detuning δk of this beatnote from each mode k controls the coupling to

that mode, determining its contribution to the resulting Hamiltonian. Since the

mode eigenvector bik has a different profile with regard to i, the detunings δk allow

for shaping of the interaction matrix J .

1.3.1 The interaction matrix and the motional modes

The profile of the interaction matrix J depends on the mode eigenvector bik

for each mode k and on how strong we couple to that mode, determined by the

detuning of the beatnotes from it. To get an idea about these relationships, let’s

simplify the expression (1.8) for Jij. I will use µ2 = (ωk + δk)
2 ≈ ω2

k + 2ωkδk since

δk/ωk is of the order of 0.01. I will also neglect the spatial dependence of the beam

intensity: Ωi = Ω ∀i. We can then write

Jij ≈
Ω2

2

∑
k

ηikηjk
δk

(1.11)
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Figure 1.11: Varying detuning scenarios. Four different scenarios, a− d, for the
detuning δ of the Raman beatnote (red line) from the motional modes, shown at
the left in each row. The Jij matrix is the product of the two matrices shown in the
second and third columns. Our typical case is a. For detunings outside the forest of
transverse modes (scenarios a and d), the J matrix looks similar in magnitude, but
in d it contains negative (ferromagnetic) couplings in addition to positive ones. In
scenario b, the beatnote is tuned close to a mode with nodes on three ions. In the
resulting Jij matrix, these spins interact minimally with others. In c, the beatnote
is close to a mode where the edge ions participate very little in the motion. The
resulting interaction matrix resembles an interacting subset of spins embedded in a
system with whom it interacts only weakly, through its boundaries. Color scheme
scaling varies for each row.
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and using 1.6,

Jij ≈
Ω2

2

∑
k

η2
kbikbjk
δk

(1.12)

Given that the bandwidth of the transverse modes in our case is much smaller

than their mean, I will neglect the ηk ∼ 1/
√
ωk dependence and write ηk ≡ η =

∆k/(2mωCOM)∀k, where m is the ion mass and ∆k the momentum kick from the

Raman beams:

Jij ≈
(ηΩ)2

2

∑
k

bikbjk
δk

(1.13)

A first observation from the relation above is that the light intensity only enters

through the Rabi frequency Ω. This means that the intensity only affects the spin-

spin couplings by an overall factor and it does not alter the matrix profile. Since the

range α of the interactions is determined by the profile, the light intensity does not

matter for the interaction range. More importantly, the role of the mode eigenvectors

bik is clearly shown. I rewrite each term of the sum as

(
bik
δk

)
· bTkj (1.14)

which points to the following statement: the Jij matrix is a product of two ma-

trices. The first one is the mode eigenvectors bik “filtered”, aka with each column

k multiplied by the weight 1/δk. The second matrix is just the transpose of bik.

This is illustrated in Fig. 1.11, for four different scenarios of detuning δ. Where we

place the beatnote determines which motional modes will be coupled to the most.

Typically we detune the beatnote higher of the COM mode, which is the highest,
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and none of them dominates the sum in (1.14). As another example, if we place the

beatnote close to a mode where a few ions are not participating (are stationary),

they will not be coupled to other spins in the resulting interaction matrix (second

row of Fig. 1.11). Section 3.3 further discusses the spatial inhomogeneity of Jij along

the chain axis in our typical detuning scenario.

The second and third interaction profiles of Fig. 1.11 require tuning the Raman

beatnote closer to the motional mode frequencies than the first case, which is the

typical one, or the last. As discussed in the next section, that will couple to these

modes more strongly and will excite phonons with a higher probability if the laser

intensity is kept the same. To maintain the same phonon error rate, we would need

to decrease the laser intensity I by the same relative factor as the detuning, suffering

a decrease in the overall interaction strength that ends up being the same factor as

the detuning reduction. This estimate only considers coupling to the phonon mode

that is closest to the beatnote; for an accurate comparison, one would need to sum

the contributions for all modes.

As an example, the smallest detuning for the third case of Fig. 1.11 is about

15 times smaller than the one of the first case. If δ, I, Jij are the smallest detun-

ing, intensity, and interaction matrix for the first case, and δ′, I ′, J ′ij are the same

quantities for the third case, we have

δ′ ≈ κδ, I ′ = κI, J ′ij = κJij

where κ = 1/15 ≈ 0.07. In words, to keep the phonon errors the same, we would end
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up with a 15-fold reduced interaction, requiring sequences to be 15 times longer to

observe the same physical effect, i.e. keep the product Jij · time the same. Needless

to say, this decision must consider the experimental coherence times, limiting the

duration that interactions can be meaningfully applied. To mitigate this effect, we

can decide to tolerate a phonon error rate s times more than the original. In this

case,

I ′ = κ
√
sI, J ′ij = κ

√
sJij.

1.4 Approximations and error sources

Alas, the ideal evolution of the spins under (1.10) is tainted by a medley

of caveats. Approximations in deriving (1.10) from the physical Hamiltonian as

well as laboratory noise warrant our attention, if anything to rank their impact on

our simulations and prioritize some of them for addressing. To gain an overview

of the relevant causes of infidelity, the reader is encouraged to look at references

[2, 21, 30] or PhD theses [26, 28, 31]. What follows is a limited listing of some of

these caveats. All of them have already been described theoretically in the literature,

but quantifying their impact in each of our simulations is a work in progress.

Fluctuating AC Stark shifts seem to be a primary suspect of deviations from

ideal evolution according to our current understanding. Essentially, the Raman

beams off-resonantly couple to atomic transitions and shift the splitting between

the qubit states |↓〉z and |↑〉z. This results in terms that correspond to fields ∼ σz,

adding to the ideal evolution. Since these AC Stark shifts depend on a variety of
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factors that are noisy, they are noisy themselves, and so are these terms. Chapter 2

discusses this noise further.

Secondly, as mentioned, the Raman beams off-resonantly couple to the mo-

tional modes of the ion chain. Residual excitation of phonons is another source

of errors in our simulation. To understand those, we look at the time evolution

operator U(t) for the physical Hamiltonian [2, 25]:

U(t) = e
∑
i ζ̂i(t)σ

i
x−i

∑
i<j χij(t)σ

i
xσ

j
x. (1.15)

The term involving

ζ̂i(t) =
N∑
k

[
αik(t)a

†
k − α

∗
ik(t)ak

]
includes Pauli operators σix acting on the spin part of the wavefunction and ladder

operators ak, a
†
k acting on its motional part7. It is similar to a displacement operator

D(αk), acting on the initial motional state of zero quanta for mode k and transform-

ing it to a coherent state with an average number of n̄k = |αk|2 quanta. This term

entangles the spin and the motional degrees of freedom and can have complicated

effects on our simulations [32]. In QSim and for transverse fields in (1.10) that are

much smaller that the nearest-neighbor interactions J0, most of these effects can be

ignored and this term just causes erroneous spin-flips with a small probability pflip

to first-order. See 3.1 for more details and a quantitative estimate of pflip.

Another noise source is fluctuations of the magnitude of the spin-spin inter-

7The careful reader will notice that U(t) features χij(t), but not Jij . Because of what is called
the slow-regime approximation, for times much longer than the inverse motional detunings 1/δk,
χij(t) ∼ Jij · t.
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actions J0 and fields, if present, because of beam intensity fluctuations at the ion

location. The spectrum of this noise is concentrated in frequencies much lower than

we were susceptible for the prethermal time crystal experiment presented in Chap-

ter 4 and for this reason I will not focus on it. The interested reader though can

easily model it using insights from the Stark shift noise discussion in Chapter 2.

Finally, in the recent years we have needed to address two additional issues.

First, as the size of the ion chains used in our simulations increases, the profile of the

interaction matrix Jij deviates from a power law. For the prethermal time crystal

experiment we remedied this issue by departing from the power law assumption

altogether, and working with the raw Jij itself. Whether that Hamiltonian hosted

a phase transition or not had to be explored with numerical calculations, instead

of deduced from the exponent of a power law. For visualization of Jij matrices,

including the extra issue of their inhomogeneity along the chain, see 3.3. The second

issue that warranted attention was decoherence caused by the finite duration of our

simulations and the resulting spectral “spreading” of these pulses. The shorter the

quench duration of Hsim, the broader the spectral decomposition of the Raman

beatnote, and the larger its effect on exciting the adjacent in frequency motional

modes. We found that using a shaping envelope for our MS pulses greatly decreased

this effect; see 3.2 for more.
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Chapter 2: Stark shifts, their noise, and its causes

The goal of this section is to build intuition and provide insights on the primary

source of decoherence for many of our simulations: fluctuating AC Stark shifts.

Theoretically calculating expected values from experimental parameters is tedious;

I include the derivation in Appendix A. However, when it comes to estimating their

fluctuations based on lab noise, scaling arguments are sufficient and all that is needed

is an understanding of how the Stark shift depends on quantities like the intensity of

the light. I assume basic knowledge of Raman transitions and the Λ scheme used in

the lab to couple the qubit states |↓〉z and |↑〉z through the adiabatically eliminated

states of the P1/2 and P3/2 manifolds.

First, I will motivate studying σz noise as a relevant factor in our simulations,

and show that Stark shifts manifest as σz terms. Afterwards, some background
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Figure 2.1: The MS coherence time is ∼ 3 times longer when the spins initially
point to opposite directions in Z.

information on Stark shifts will ready the reader to understand how they depend on

physical parameters and how they are categorized. Lastly, I will go over Stark shift

noise, presenting the simple model for our lab based on recent measurements.

2.1 Pointing the finger to Stark shift noise

Why do we care about Stark shift noise? On June 2019 we saw compelling

evidence that σz noise is a major decoherence factor during application of the MS

scheme. To show that, the MS scheme was applied to two different initial states

with two ions: |↓〉z|↓〉z and |↓〉z|↑〉z. In the absence of noise we expect similar results

for both these states under the MS evolution [24].

However, as shown in Fig. 2.1, the |↓〉z|↑〉z initial state had a coherence time

three times longer than the | ↓〉z| ↓〉z case. This can be explained if there is a

noisy effective magnetic field Bz(t)σz along Z. To show that, let’s look at the time
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evolution under this term for infinitesimal time dt for the two initial states:

e−iBz(t)dtσz |↓〉z|↑〉z = e−iBz(t)dt(−1+1)|↓〉z|↑〉z = |↓〉z|↑〉z (2.1)

e−iBz(t)dtσz |↓〉z|↓〉z = e−iBz(t)dt(−1−1)|↓〉z|↓〉z = e−2iBz(t)dt|↓〉z|↓〉z (2.2)

We see that for the |↓〉z|↑〉z state, the σz noise has no effect, whereas for the |↓〉z|↑〉z

state, it adds a phase of 2Bz(t)dt. If this noise was the only Hamiltonian term, then

this overall phase factor could not demonstrate itself in a measurement of course.

But in a realistic scenario with other non-commuting terms present, eg. σixσ
j
x, this

noise contribution is measurable. When different runs are averaged together, each

of them has acquired a different phase because Bz(t) is noisy, leading to dephasing.

To strengthen the suspicion that the noise is along Z, we repeat the same

experiment for initial states along the Y axis, |↓〉y|↑〉y and |↓〉y|↓〉y . Both initial

states along Y are expected to decohere comparably fast to |↓〉z|↓〉z and much faster

than |↓〉z|↑〉z—and they do, as shown in Fig. 2.2:

e−iBz(t)dtσz |↓〉y|↑〉y = e−iBz(t)dt|↑〉y|↓〉y (2.3)

e−iBz(t)dtσz |↓〉y|↓〉y = e−iBz(t)dt|↑〉y|↑〉y. (2.4)

Interstingly, tests performed more recently, in spring 2021, imply that while

present, σz noise does not fully explain the decay in the MS evolution of Fig. 2.1.

In theory, we should be able to echo out such noise, if π-pulses are interleaved with

the MS evolution, regardless of the initial state. The interval between the π-pulses
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Figure 2.2: Four different initial states strengthen the claim that there is significant
σz noise. Only the |↓〉z|↑〉z state shows a distinctly longer coherence time.

determines the spectrum of σz noise that is echoed out. Indeed, starting from two

spins both in |↓〉z, the decay time of the MS evolution increased with more frequent

π-pulses. However, it never compared to the high values that the |↑〉z|↓〉z initial

state had.

2.2 Stark shifts manifest as a σz term

After establishing the presence of strong σz noise, let’s argue that Stark shift

noise could be its source. Stark shifts pertain to the “physical domain”. In the

“simulation domain”, the Stark shift corresponds to an effective magnetic field along

the Z axis. Therefore, we commonly state that a noisy Stark shift corresponds to a

noisy σz field for the qubits, invoking the Bloch vector picture.

Intuitive explanation. We can think in terms of rotating frames. The qubit’s

clock is rotating with a frequency of ωHF ≈ 12.6 GHz, and the laser beatnote clock
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ideally rotates with the same frequency (for a carrier transition). Any Bloch vector

appearing stationary in one of them will also appear stationary in the other.

Now assume that the qubit frequency is Stark-shifted by ∆E. A Bloch vector

stationary in the laser beatnote frame will appear to be rotating with frequency ∆E

at the qubit frame—as if it’s Larmor precessing because of an effective magnetic

field! Furthermore, if ∆E fluctuates in time, this effective magnetic field term in

the simulation Hamiltonian will also fluctuate.

More detailed explanation. One can use effective Hamiltonian theory to show

the connection between a Stark shift and a σz term. Let’s assume a general form

for a Hamiltonian term HI that describes interactions consisting of one or more

harmonic terms:

HI(t) =
L∑
n=1

ĥne
−iωnt + h.c. (2.5)

where L is the total number of different harmonic terms making up HI with 0 <

ω1 ≤ ω2 ≤ ... ≤ ωL. The effective Hamiltonian, where all processes oscillating at

frequency ω1 and above are assumed to average out to zero, is [33]:

Heff =
L∑

m,n=1

1

ω̄mn

[
ĥ†m, ĥn

]
ei(ωm−ωn)t (2.6)

where

1

ω̄mn
=

1

2

(
1

ωm
+

1

ωn

)
(2.7)

The important observation is that an interaction Hamiltonian HI coupling 2

levels |1〉 and |2〉 of a 2-level system—as is our case—will include a term propor-
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tional to |1〉〈2| and its hermitian conjugate, ĥ ∼ |1〉〈2|, and therefore its effective

Hamiltonian will be proportional to the commutator

Heff ∼
[
|2〉〈1|, |1〉〈2|

]
= |2〉〈2| − |1〉〈1| ∼ σz (2.8)

2.3 AC Stark shifts and their calculation

A Stark shift is the change in an electronic energy level because of the presence

of an external electric field. Classically, the field is pushing the positive nucleus

and the negative electron cloud toward opposite directions, overall increasing the

potential energy of the atom. In this thesis, all such electric fields are oscillating

and not static, and they cause AC Stark shifts on an energy level.

It is useful to make a connection between Rabi flopping and Stark shifts. If

the light polarization allows for Rabi flopping between states |i〉 and |j〉, the same

light tuned off-resonance will cause a Stark shift on these states. If the polarization

prohibits coupling, there can not be a Stark shift either. The single, simple formula

worth remembering relates the Stark shift to the Rabi frequency that the same light

would cause if on-resonance with the atomic transition [34]:

Stark shift =
(Rabi frequency)2

4 ·Detuning
(2.9)

Equation (2.9) holds for both 2nd and 4th order Stark shifts. For 2nd order ones,

the Rabi frequency is the single-photon Rabi frequency usually denoted by g0 or

g in the literature and the detuning is between the laser frequency (c/355 nm in
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our case) from the relevant P state, typically ∆ = 33 THz or 66 THz. For 4th

order Stark shifts, the Rabi frequency is the 2-photon Raman Rabi frequency and

the detuning is between the corresponding RF beatnote and the atomic transition

between S levels.
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Figure 2.3: AC Stark shift types. Schematic of Stark shifts on a state of interest
|s〉 at the S manifold, because of off-resonant light coupling it to a state |p〉 in the
P manifold and/or a state |s′〉 in the S manifold. Each of Raman 1 and 2 induces a
2nd order Stark shift. During the Ising simulation, Raman 2 has two tones, red and
blue, which interfere with Raman 1 to create red and blue beatnotes. For the 2nd

Stark shift, we do not need to take into account the red and blue tones of Raman
2, since their frequency difference of ∼ 2fCOM is much smaller than the detuning of
the light from the transition, ∆ ≈ 33 or 66 THz. The single-beam 4th order Stark
shift is much larger than the single-beam 2nd order. To proceed to calculations, one
must further take into account all the states |p〉 of the P manifold that light can
couple with the the |s〉, |s′〉 in question.

Note that Stark shifts typically enter our quantum simulation in two ways.

First, the single-beam 4th order Stark shift from a tightly focused beam (“poke
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beam”) is used to engineer programmable local effective magnetic fields [29] . This

is a useful, desirable effect, instrumental to the breadth of usage of our quantum

simulator. Second, fluctuating cross-beam Stark shifts during the MS scheme man-

ifest themselves as noisy σz terms. To our most updated understanding, this σz

noise is a significant source of decoherence in most of our experiments, and this is

the focus of this section.

To calculate the Stark shifts for the qubit states of 171Yb+ from equation (2.9),

there are a few steps one needs to do. For a detailed derivation, see Appendix A.

These steps consist of accounting for the polarization mix of the Raman beams

(potentially a mix of σ−, π, and σ+), multiple intermediate P states, multiple S

states that can potentially couple to a qubit state via Raman transitions, the fact

that our laser beams are not CW, but optical combs, the existence of two optical

combs (red and blue) in one Raman beam for our application of the MS scheme, and

finally remembering that the 4th order Stark shift measured in the lab is differential,

i.e. the difference between the Stark shift of each qubit state.

The jungle of Stark shifts for a qubit state is shown in Fig. 2.3. In theory,

they should all sum to zero for QSim’s linear Raman beam polarizations, perpen-

dicular to each other (lin⊥lin). However, some of them are nulled easier and more

reliably than others. Notably, all single-beam Stark shifts are nulled by ensuring

the lin⊥lin configuration. Measured polarization noise is small (see 2.4.2) with a

non-appreciable result in single-beam Stark shift noise. In contrast, nulling the

cross-beam shifts from the red and blue beatnotes relies on optimal overlap of the

red and blue tones of the Raman 2 beam and fine-tuning of their relative powers;
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both these conditions are especially susceptible to noise.

The single-beam and cross-beam Stark shifts for state i take the simple forms

shown in Table. 2.1. They are expressed as a product where the light’s characteristics

are fairly decoupled; these are the intensity (determining Ω0), the polarization1

(determining Pij), and the frequency (determining the Kij factors). All these are

assumed to be measured at the ion location. The index i in that table denotes the

state i whose Stark shift we are calculating, and the index j denote the state j

that i couples to via the laser field. Fig. 2.4 shows the Raman beam configuration

in QSim and the resulting nulling of the 4th order cross-beam Stark shift. When

running experiments, we tune the relative powers of the red and blue tones of Raman

2 to ensure that their Stark shifts add to zero at the center of the ion chain. In

addition, every few weeks, especially when optics in the Raman 2 path have been

tweaked, we minimize the Stark shift gradient along the ion chain by optimizing the

spatial overlap of the red and the blue tones.

Table 2.1: Summary table of Stark shift-related formulas

Single-beam Stark shift: state i, ∆E
(4)
single,i

1
4
Ω2

0

∑
j P

2
ijKsingle,ij

Cross-beam Stark shift: state i, ∆E
(4)
cross,i

1
4
Ω2

0

∑
j P

2
ijKcross,ij(δωcomb)

Base Raman Rabi frequency Ω0
1
6

(
g2P1/2,0

∆
+

g2P3/2,0

ωF−∆

)
Polarization factor Pij for states i and j See Appendix A.4

Ksingle,ij

∑
k

(
kωrepτ

2

)2

csch2 kωrepτ

2
· 1
kωrep−ωij

Kcross,ij(δωcomb)
∑

k

(
kωrepτ

2

)2

csch2 kωrepτ

2
·
(

1
kωrep−ωij+δωcomb

+

1
kωrep−ωij−δωcomb

)
1 For explanation of symbols see Appendix A

1which includes the relationship of the light polarization with the quantizing magnetic field
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Figure 2.4: Schematic of the two Raman beams and the Stark shift gradi-
ent. a. Raman 1 (gray) contains only 1 frequency tone. Raman 2 (blue and red)
contains 2 tones, which converge at the ion location at a small angle (exaggerated

here). The polarizations ~εi and the quantizing magnetic field ~B show the lin⊥lin
configuration. b. Intensity profile of the red and blue beatnotes at the ion location.
The two tones travel slightly separated in space and ideally converge at the ions
location. Realistically, our typical tolerance for the distance between the beam cen-
ters along the ion chain axis, drb, is around 3 µm. This is very small compared to
the beam waist of about 100 µm. c. Each of these tones interferes with the optical
comb of Raman 1 to give a red and a blue beatnote. Each of these beatnotes causes
a cross-beam 4th order Stark shift with opposite sign. Noise in the Raman 1 or 2
intensity causes each of the red and blue curves to jitter (“breathe”) in the vertical
direction, as the vertical arrows show. To get the total cross-beam Stark shift, we
add the red and blue contributions (black curve). d. Zooming in vertically to better
discern the black curve (total cross-beam Stark shift) profile, we see that a Stark
shift gradient is formed in the region of the ion chain, the center few tens of µm.
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2.3.1 Why are the red and blue SB Rabi frequencies different when

the Stark shift is nulled?

Part of our calibrations, done a few times per day during data taking, is nulling

the sum of the cross-beam Stark shifts of the red and the blue beatnotes. To do that,

we tweak the intensities of the red and the blue tones of Raman 2—see Fig. 2.4 for

a schematic. We always find that when the Stark shift is nulled, the light power of

the blue tone is higher than the red. This is measured by the on-resonance sideband

Rabi frequencies, equal to2 ηCOMΩred and ηCOMΩblue, where ηCOM is the Lamb-Dicke

parameter for the COM transverse mode and Ωred,Ωblue the carrier Rabi frequency

scaled to the power of each beatnote. The reason that Ωblue has to be larger than

Ωred is largely irrelevant to the AOM efficiencies at the different RF drive frequencies

for the red and the blue sidebands.

Mathematically speaking, the answer is in the comb factors Kcross,ij, at Ta-

ble 2.1. For each beatnote, the frequency difference between the two Raman beams/optical

combs is

δωred
comb = ωA − µ (2.10)

δωblue
comb = ωA + µ (2.11)

with ωA = mod (ωHF/ωrep) ≈ 29.7 MHz and µ the total detuning of the beatnote

from the carrier transition. Plugging (2.10–2.11) in the factors Kcross,ij (for |i〉 =

2Assuming we start from the 1 or 0 phonon number states for the red and the blue respectively.
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|↓〉z, |j〉 = |↑〉z), for typical trap frequencies, we get

∣∣∣∣ Kred

Kblue

∣∣∣∣ ≈ 1.21 (2.12)

To make the red-beatnote Stark shift equal in magnitude to the blue-beatnote one,

the square of the carrier frequency (Ωred)2 (see first box of Table 2.1) has to com-

pensate for that factor of ∼ 1.21:

Ωred

Ωblue

≈ 1√
1.21

≈ 0.91 (2.13)

which means that the sideband Rabi frequencies have to have the same ratio:

ηCOMΩred

ηCOMΩblue

≈ 0.91. (2.14)

Fig. 2.5 visualizes this mathematical explanation. The gist is that the red and

the blue beatnotes creating the red and the blue Stark shift are different, i.e. the

frequencies of their comb teeth are not identical sets of numbers. They might look

similar, but the detunings of the teeth of each beatnote from the related transition,

ωHF, are a different set for each case. Nominally, the few smallest in magnitude

detunings from ωHF are shown in Table 2.2.

Table 2.2: Smallest detunings of the red and blue beatnote teeth from the
hyperfine frequency ωHF. Only the smallest detuning matches in magni-
tude (µ).

Red beatnote . . . 2ωA − µ− ωrep µ 2ωA − µ µ+ ωrep . . .

Blue beatnote . . . 2ωA + µ− ωrep −µ 2ωA + µ −µ+ ωrep . . .
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Figure 2.5: Illustration of the red and the blue beatnotes creating the
cross-beam Stark shifts. Left: Creation of the red beatnote from the interference
of the optical combs of Raman 1 and Raman 2–red tone. Right: Creation of the
blue beatnote from the interference of the optical combs of Raman 1 and Raman
2–blue tone. The Stark shift for any of the resulting beatnotes is related to how all
of its comb teeth are detuned from ωHF, the transition related to this Stark shift
(other transitions involving the Zeeman levels of the S1/2 manifold are suppressed
because of the lin⊥lin polarization scheme—see Appendix A for details). These sets
of detunings might look similar for the red and the blue cases, but they are not
identical sets.

The agreement of (2.14) with experimental sideband Rabi frequency ratios

measured right after the Stark shift has been nulled is within the order of 1%. The

level of predictability of this ratio points to a way to measure the overlap of the

red and blue tones of Raman 2 at the ion location (see section below for more

information on this overlap and its significance). We control Ωred and Ωblue with

the voltage amplitude of the RF drive of the Raman 2 AOM. For optimally aligned

beams, including the Raman 2 red and blue tones, the ratio in (2.14) points to a

single value for the ratio that the voltages should have3, every time. If at some point

we realize that these voltages (in the LabVIEW control software) have a different

3Assuming the total RF power going into the AOM is the same in all these comparisons, to
account for nonlinearities of its efficiency as a function of RF power.
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ratio, this indicates that the intensity ratios of the red and blue tones of Raman 2

are not as expected, most likely because of a relative misalignment between them.

2.4 Stark shift noise mechanisms

Any aspect of the light-ion interaction that is noisy leads to Stark shift noise.

Intensity fluctuations lead to fluctuations of the base Rabi frequency Ω0. Frequency

fluctuations (laser or qubit frequency) cause fluctuations of the Ksingle,i,j and Kcross,ij

factors. Finally, polarization fluctuations lead to fluctuations of the Pij factors.

Given realistic conditions for our lab, the intensity noise is by far the primary

contributor to Stark shift noise.

2.4.1 Intensity noise

The intensity of any Raman beam at the ion location fluctuates because of

global power fluctuations in that beam or its displacement relative to the ions—

pointing noise—given its gaussian profile. Measurement after implementation of a

power lock (“noise-eater lock”) for the 355 nm optics path suggests that the power

noise of a beam has a fractional standard deviation σpower ≈ 0.6% with the lock

active and at the ion location4. As for beam pointing noise, measurements with the

pointing lock active suggest fractional standard deviation σpointing between 0.5% and

2% in each direction, as a fraction of the beam waist. See section 2.4.1.1 for the

pointing measurement in detail.

I will argue that power fluctuations are the main contributor to Stark shift

4Measurement taken at 3/4/2020.
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fluctuations. This claim is founded on measurements of single-beam Stark shift

noise in conjunction with power noise. At Fig. 2.6 (left plot), each point represents

averaged Ramsey experiments measuring the single-beam Stark shift of Raman 2—

typically minimized to a few tens of Hz, and 200 Hz for this measurement5. To

measure it, we initialize a single ion to a state at the equator of the Bloch sphere and

we turn on Raman 2 by itself, scanning this duration. We end with an analysis pulse

and state readout, measuring the spin projection along X or Y . An exponentially

decaying sinusoidal was fitted to its time trace and the inverse of the decay time is

plotted as the decay rate. This procedure was repeated for multiple ion positions.

Different ion positions see varying Stark shift coherence decay times. Using a simple

Monte Carlo simulation to map those decay rates to spread of the shot-to-shot

distribution of Stark shifts, we obtain a fractional Stark shift noise of about 1.5%—

at least for this single-beam case.

Keeping that value in mind, let’s look at how much of this Stark shift noise

is explained by beam power fluctuations. From Table 2.1 we see that the shift

scales with the square of the beam intensity. Importantly, if this intensity is treated

like a gaussianly distributed random variable at the ion position, its square will

have twice the standard deviation, and not just
√

2 larger. As stated earlier, this

power was measured with fractional noise σpower ≈ 0.6%, and therefore it is by itself

causing fractional Stark shift noise ≥ 1.2%. In other words, it can account for 80%

of the single-beam Stark shift noise. This notable contribution motivates further

investigation on the theoretical modeling side, and points to the lowest hanging fruit

5Measurement taken at 3/2/2021.
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Figure 2.6: Noise measurement and estimation for single-beam Stark shift.
Left: The decay rate of the single-beam Stark shift of Raman 2 for various ion
locations along the chain axis (black). In purple, the decay rate converted to a
fractional noise (standard deviation σ of the Stark shift itself. Middle: To convert
decay rates to Stark shift noise, I average a large number of sinusoidals with a given
noise standard deviation σ of their frequency (gaussianly distrubuted). Different
colors are different averaged signals; more noise makes the signal decay faster. In
dashed lines is the exponential decay envelope. Right: The dependence of the
decay rate on the fractional Stark shift noise. The grid lines mark the noise case for
the center of the ion chain, from the leftmost plot. The fractional Stark shift noise
extracted is approximately 1.5%.

for system improvement on the experimental side. A measurement of single-beam

Stark shift was chosen, because it is more straightforward to interpret compared to

the cross-beam case. In general, the decay rates observed in cross-beam Stark shifts

are higher than the single-beam case by a factor of 10, roughly.

For the cross-beam Stark shifts and for the sake of generally applicable results

that go beyond a measurement at a specific time and lab conditions, I will use a

model that allows constraining the large number of independent variables determin-

ing the shifts. There are several assumptions I will make. First, that the three

relevant beams (Raman 1, Raman 2-red tone, Raman 2-blue tone) share the same

amount of fractional power noise; same for their fractional pointing noise (normal-

ized by the beam waists) in both horizontal and vertical axes. Second, that the

horizontal centers of Raman 2-red and Raman 2-blue are not be perfectly over-
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lapped, but they are at a distance drb, along the ion chain axis. This is motivated

by our limited ability to perfectly overlap them, and a typically acceptable residual

Stark shift gradient of order 10 Hz/µm along the ion chain. Third, that the ratio

rc−i of common-mode to independent noise between Raman 2-red and Raman 2-

blue is the same for power and pointing noise. Fourth, that the Raman 1 beam’s

power and pointing are uncorrelated to Raman 2’s homologue properties (although

the distributions for each beam have the same σ for eg. power).

Note that rc−i is not restricted from 0 to 1, but runs from 0 to ∞. As an

example, for Raman 2, the total power noise σpower is assumed to be the same for each

of the red and the blue tones. Within each tone, σpower is allocated to COM noise

with σCOM standard deviation and uncorrelated noise with σunc standard deviation,

through the relation

σCOM = σpower
r√

1 + r2
c−i

σunc = σpower
1√

1 + r2
c−i

which ensures σ2
COM + σ2

unc = σ2
power.

Fig. 2.7 uses these assumptions to assess the amount of Stark shift noise ex-

pected, given specific power and steering noise, as well as different ratios of COM-to-

independent noise for red and blue tones. The Stark shift (vertical axis of each plot)

is normalized to the cross-beam Stark shift that one tone, red or blue, produces; of

the order of 12 kHz for typical lab operation. A notable result is that beam pointing

noise matters less that an equal amount of (fractional) power noise. This does not

come as a surprise, since the ion chain sits largely on top of the gaussian intensity
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profile of the beams and even if they jitter around that position, the intensity pro-

file does not change much at the chain location. This argument holds for horizontal

pointing noise where the beam waists are large (≈ 100 µm). As shown in 2.4.1.1,

vertical pointing noise along the tight beam axis is also present but not to an extent

belying the above argument. The arrow in the figure points to a realistic approxi-

mation for our lab: the pointing noise is set to 1%, the centers of the red and blue

tones are assumed to be 3 µm apart, and the ratio of common-mode/uncorrelated

noise for both power and pointing in the beams is assumed to be 2.

2.4.1.1 Beam pointing and ion position noise measurement

Raman beam pointing noise contributes to Stark shift noise. Once we measure

the pointing noise, calculating its contribution to Stark shift noise is fairly straight-

forward, under minimal assumptions. We measured Raman 2’s pointing noise at

the ion location and presumed similar behavior for Raman 1.

The setup at Fig. 2.8 was used to look at the pointing of the red and blue

tones of Raman 2 virtually simultaneously. The red tone by itself was switched

on for 50 µs, immediately followed by the blue tone by itself for another 50 µs.

This was repeated for 200 seconds. Since we do not expect to see noise faster than

1/100 µs = 100 kHz, this alternating scheme is equivalent to measuring the two

tones simultaneously. To eliminate the effect of AOM and detector rise/fall times,

we kept the middle third of each 50 µs pulse. The results are shown in Fig. 2.9 and

their Allan variance in Fig. 2.10. For the horizontal axis, the standard deviation of
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Figure 2.7: Differential cross-beam Stark shift from both red and blue
beatnotes. Case scenarios for the noise—not magnitude—of the total cross-beam
Stark shift. Each plot vertical: its fractional standard deviation divided by the
cross-beam Stark shift of a single-tone. Horizontal: ion chain axis in µm. Pointing
noise σpointing from 0% to 2% and power noise in each beam/tone from 0% to 2%,
modeled as described in the text. A distance drb = 0 µm between the horizontal
centers of the red and blue tones of Raman 2 implies perfect overlap, while the 3
µm value is closer to our typical tolerance. A ratio rc−i = 0 of common mode to
independent noise implies that all noise is uncorrelated between the red and blue
tones, while a large value like 100 that it’s mostly COM. The red arrow indicates a
reasonable best-case approximation for QSim and it corresponds to total Stark shift
noise of around 100 Hz in standard deviation, assuming a red or blue Stark shift of
around 12 kHz.
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Figure 2.8: Optics diagram for the beam pointing noise measurement.
Using a quadrant PD, we measured the steering noise of Raman 2 and its two tones,
red and blue. To accurately reproduce the beam behavior at the ions, we placed
a spherical converging lens of focal length f at a distance 2f away from the trap.
Another 2f away from it, we collected half of the beam at the quadrant PD and the
other half with a Guppy beam profiler camera. This was necessary to calibrate the
quadrant PD measurement (convert its voltage reading to distance). The quadrant
PD was chosen over the beam profiler for the actual measurements due to its higher
sensitivity and acquisition rate. To ensure the 4f configuration of this measurement
setup, we made sure that the red and blue tones appear to be maximally overlapping
at the beam profiler, since we know they are optimally overlapped at the ion location.

the horizontal beam centers was about 0.5 µm (on top of a beam waist of about 100

µm). For the vertical axis, it was about 0.15 µm (on top of a waist of about 10 µm).

To complete the pointing noise investigation, we considered ion motion relative

to the trap and the beam. A cause could for example be noise in the trap voltages.

The closest quantity we could measure was motion of ions relative to the imaging

system, essentially by taking a picture of a single ion every ∼ 10 ms (Fig. 2.11). The

position fluctuations were negligible. Still, it is interesting to observe in the Allan
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Figure 2.9: Beam pointing noise measurement. From top to bottom: horizon-
tal axis (parallel to optical table and at 45◦ angle to the ion chain, vertical axis,
differential for horizontal axis, differential for vertical axis. It seems that the noise
is mostly common mode for the vertical axis, while it’s more split between common
and differential for the horizontal axis.

variance that drifts start occurring at timescales of 1 s or longer. Additionally, it

seems that their position fluctuates slightly more horizontally than vertically. This

is not related to harmonic oscillator wavefunction spreads, since these would be at

least an order of magnitude smaller than the spreads observed. It is likely that along

the horizontal axis, the weaker axial confinement allows for larger traversations of

the ion, after a disturbance like a background collision or trap voltage noise.

In conclusion, neither beam pointing or ion position fluctuations pose as a

significant source of intensity noise at the ions. Owing to the gaussian profile of

the beams, the ions are sitting at a maximum with a zero spatial derivative of the
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Figure 2.10: Allan variance of the beam centers from the data of Fig. 2.9.
Left: horizontal (red and blue tones of Raman 2). Center: vertical. Right: differ-
ential.

intensity, and therefore small deviations have little effect. This is further evidenced

in Fig. 2.7. A caveat in this argument is that the Raman beams have not always

been measured to have an ideal gaussian profile at their focus. Burnt or dirty optics

have occasionally led to the intensity profile having features at a scale much smaller

than the waist, and it is possible that even pointing noise of the order ∼ 1 µm could

have a significant effect in that case.

2.4.2 Polarization and frequency noise

The other two fundamental sources for Stark shift noise are polarization and

frequency. Fig. 2.12 presents a measurement of the polarization noise in the Raman

2 beam, measured close to the ion location. It substantiates the claim that our

polarization noise is negligible as far as its effect on Stark shift is concerned.

Frequency noise is even less significant. The frequencies that could be fluc-

tuating are the qubit frequency because of fluctuating magnetic fields, and the fre-

quencies of the RF comb teeth. We know the former is negligible—after all, that

is one of the reasons why the 171Yb+ hyperfine states form a good qubit: they are

insensitive to the magnetic field at first order.
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Figure 2.11: Ion position noise. The position of the ions relative to the imaging
system shows small fluctuations with standard deviations of 0.046 µm for the hori-
zontal (along the ion chain) direction and 0.036 µm for the vertical (perpendicular
to the Raman beams plane) axis. For reference, the horizontal beam waists are
about 100 µm horizontally and about 10 µm vertically.

As far as the RF comb teeth go, remember that the only thing that we are

locking is our RF beatnote to the frequency of the m = 105th comb tooth. All the

other comb teeth that are causing 4th order Stark shifts are not locked. Fig. 2.13

showed a 100 s-long measurement of the repetition rate drift, over which its fractional

standard deviation was 2 · 10−7, eliminating it from the list of concerns as well.
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Figure 2.12: Polarization noise in Raman 2 To measure the polarization noise
in the Raman 2 beam, a PBS was placed in its path right after the trap, and the
power of the transmission and reflection were measured. The upper plot is the sum of
these two, proportional to the total power. The lower plot is the difference between
the ports, which is the signal we care about, since the transmission is horizontally
polarized and the reflection verticallly polarized. This difference is normalized to the
total power from the upper plot, to scale out the effect of overall power fluctuations.
After that, the fractional standard deviation is 0.001, making this a negligible effect.
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Figure 2.13: Repetition rate noise of our pulsed Raman laser. Using the PI
beatnote lock setup, we switched the stabilization off and observed the fluctuations
of the 105th tooth (mixed down) for 100 s. The fractional fluctuations of noise have
a standard deviation of 10−7, consistent with the manufacturer’s claim for repetition
rate noise of a few tens of Hz. Like polarization, this is a negligible Stark shift noise
source.
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Chapter 3: Other imperfections

This chapter discusses three aspects of quantum simulation with the ion trap,

all relevant to departures from ideal, power-law interactions evolution, that we have

had to somehow address. This implied either making technical improvements in

the apparatus, or modeling error terms to match the quantum simulation results to

expectations.

3.1 Phonons and loops

The Ising interaction is a derivative of the laser-ion interaction. Unfortunately,

there’s another player in the field: from (1.15) we have seen that additionally to the

pure spin term involving χij, there is the spin-phonon entanglement term involving

ζ̂i. This term resembles a product of displacement operators for each mode k,

weighted by each ion’s participation to each motional mode, bik. Each term ζ̂i

involves [2]

αik(t) = i
ηikΩi

2δk
(e−iδkt − 1) (3.1)

where the phase difference between the red and blue beat notes was taken to be π/2

(without loss of generality).
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Figure 3.1: Phonon loops for αik(t). For typical experimental parameters, the
radius of each loop is much smaller than 1. The distance from the origin, |αik(t)|, is
related to the square root of the average number of phonons generated by the action
of ζ̂i, weighted by the ion’s participation to that phonon mode, bik

.

From (3.1) and we see in Fig. 3.1, αik(t) is complex and its time evolution is

a loop at a rate of δk, i.e. the detuning from each motional mode k. Each normal

mode of motion has its own αik-diagram, and in each diagram, each ion has its own

pair of loops: the |↑〉x and |↓〉x parts of the spin wavefunction see a ±αik(t) factor

respectively (dashed and solid loops). The radius of each loop is

ηikΩi

2δk
= bik

ηkΩi

2δk

where Ωi is the 2-photon Rabi frequency this ion would have if light of the same in-

tensity as the red or blue beatnote was tuned on-resonance. In the usual MS scheme

as applied in QSim, this is about half of the maximum 2-photon Rabi frequency we

measure, since we direct about half of the light intensity to each of the red and

blue beat notes. To be more rigorous, we can write Ωi =
√

Ωred
i Ωblue

i . In practice,

we directly measure the sideband Rabi frequencies for both the red and the blue

sideband with one ion in the trap, namely ηCOMΩred and ηCOMΩblue. Combining this
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with knowledge of our beam sizes, we calculate the carrier Rabi frequencies from

each beatnote, at each ion’s location.

At times t = 2πq/δk (q ∈ N), αik passes from the axes origin and is zero. At

this moment, ζ̂i(t) = 0 and there is no coupling to phonons. At times t = 2π q+1/2
δk

,

there is maximum spin-phonon entanglement. In the typical QSim operation, where

light intensity is not modulated in time as is common in quantum computation

experiments, the incommensurate mode frequencies ωk make the detunings δk in-

commensurate as well, and there is no time where all of them cross the origin at the

same time1. We operate in the “dispersive” or “weak coupling regime” [2], where

we address this issue by ensuring that the radius of the loops is small and that the

spin-phonon entanglement is small in magnitude at all times:

ηCOMΩ� δCOM.

Typically, we set the detuning from the COM mode to be about 3 times larger than

the largest of the red and blue sideband Rabi frequencies:

δCOM ≈ 3ηCOMΩ

1One can argue that still, mathematically speaking, the total effect can be made ε-small for some
time tε. This tε though would be impractically larger than the coherence time of our simulations.
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Figure 3.2: Spin flip probability per ion, broken down by mode. Left: the
probability of a spin flip per ion pflip for a chain of 25 ions and typical experimen-
tal parameters; most notably, δCOM = 3ηCOMΩ. The COM mode has the largest
contribution. The amplitude of the sinusoidal for the k-th mode is approximately
proportional to 1/δk. Right: To get an idea of the contribution of each mode to
spin flip errors, I zoom in time and use a logarithmic vertical scale.

3.1.1 The spin-flip probabilities

Using a derivation from [35], the probability of a phonon-induced spin flip for

ion i at the time of measurement t can be calculated from αik(t) and is

pi(t) =
N∑
k=1

|αik(t)|2 (3.2)

Fig. 3.2 shows the spin-flip probability, averaged over the chain, for typical experi-

mental parameters. Each motional mode k contributes to a spin-flip error in the Z

basis that oscillates with a frequency δk. The largest contribution overall is from the

COM mode, since its detuning from the laser beatnote is the smallest in our typical

operation—there’s a higher chance we couple to it than other modes. Plotting a

portion of the plot in a logarithmic scale, it is evident that the farthest detuned

modes contribute negligibly to this error.
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To develop an understanding of how the spin-flip probability depends on the

specific ion, Fig. 3.3 shows the αik(t) time evolution for each ion and each mode for

N = 9 and reasonable trap parameters. Because of the symmetric character of the

motional modes around the chain center, the right half of the ion chain mirrors the

left half. As the mode number increases, so does the detuning, and the loops tend

to get smaller for higher modes.

It is interesting to note that merely because of the mode eigenvectors bik, the

edge ions have a large participation in the tilt (k = 2) and k = 3 modes, and their

spin-flip errors from each of these is larger than the COM error itself. While the

same is true for, eg. ions 4 and 6 for mode k = 8, its large detuning suppresses its

contribution to spin flips.

3.1.2 More ions, more modes, not much more error/ion

One would think that the more ions we add in the chain and the more mo-

tional modes there are to off-resonantly couple to, the higher the resulting spin-flip

probability. Fortunately, physics is on our side here. As we add ions, the new trans-

verse modes are added farther away from the laser beat note and therefore their δk

increases; additionally, the mode spacing increases as we add more. (Fig. 3.4, left).

If we also account for the inverse square dependence of spin-flip probabilities on δk,

we see that each new mode adds less and less to the spin-flip probability for each

ion, seemingly saturating.

To illustrate this statement, I am using the Poisson binomial distribution to
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calculate spin flip probabilities for an ion chain, where each ion is associated with a

different flip probability (Fig. 3.4).
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Figure 3.4: Scaling of phonon-induced spin flips with number of ions. Left:
Frequency spectrum of transverse motional modes at the blue side of the carrier.
The laser beat note (blue) is detuned by δCOM from the COM mode. As we add
more ions, the transverse modes add farther and farther towards the left, away from
the beatnote, therefore 1/δ2

k decreases dramatically. Right: As we add more ions,
the probability of one or more spin flips anywhere in the chain saturates because of
the 1/δ2

k dependence. Correspondingly, the spin flip probability per ion decreases.
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Figure 3.5: Pulse shaping. We multiply the original unshaped AWG signal with
a smooth-edge window like the Tukey one (blue line), and get the shaped AWG
signal thatis sent to the amplifiers and ultimately to the AOM. The intensity of the
light that the ions see acquires a slightly modified envelope (dashed red) because
of nonlinearities in the process (see next section and Fig. 3.7). Note that for this
figure, it is assumed that the flat part of the pulse, i.e. its maximum value, is at
the saturation power of the AOM, around 2 W for our Raman AOMs. The exact
way the light intensity ramps to its maximum value depends on what this value is,
because of the AOM nonlinearity of the light intensity as a function of the RF input
power—see (3.5).

3.2 Finite pulse width

Single-frequency signals belong to textbooks. Signals that last finite time

contain a range of frequencies, even if they are made up from a single monochromatic

sinusoidal. These other frequencies may excite transitions whose frequency is close

to the laser beatnote frequency, thus introducing undesired Hamiltonian terms. The

first suspect is such undesirable coupling to motional modes, laying δ away from the

laser beatnote in the MS scheme. Secondarily, the same beatnote could couple to

the carrier transition, µ away, although the spectral component there is strongly

suppressed.

To quantify the frequency decomposition of our signals, I use the truncated

power spectral density (PSD) ST (ω), based on the Fourier transform FT (ω) of a
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signal f(t) which lasts for time T :

ST (ω) =
1

T
〈|FT (ω)|2〉 FT (ω) =

∫ T

0

e−iωtf(t)dt (3.3)

The ensemble average symbol 〈. . .〉 is especially meaningful when the signal f(t) is

noisy; in our case it is tied to an AWG-calculated signal and we can safely disregard

the averaging. In the simplest case, the RF beatnote contains 2 frequencies, fred

and fblue, and lasts for the duration of the interaction, τquench. The red and blue

frequencies are 2µ away from each other and spectral components trailing off one of

them are severely attenuated at the location of the other. Therefore, when consid-

ering coupling to the blue sidebands, we only need take into account the spectral

structure of the blue beatnote, and vice versa for the red side.

To visualize, let’s look at the blue side of the spectrum in Fig. 3.6. The PSD

of the pulse peaks δ away from the blue sideband fblue, but is not zero at fblue itself.

Therefore, the blue sideband will be weakly driven. To estimate how much, I define

runsh using the PSD of the unshaped signal:

runsh ≡
Sunsh
T (ωCOM)

Sunsh
T (µ)

For δ = 60 kHz and τquench = 40µs, runsh = 0.019 (Fig. 3.6b left). If the beatnote is

on resonance with the COM mode (δ = 0 kHz), the BSB Rabi frequency is 20 kHz.

Therefore, for δ = 60 kHz, we expect it to be excited with a 0.019 · 20 = 0.38 kHz

Rabi frequency, assuming no pulse shaping. Note that this is a rather unfavorable
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choice for τquench: relatively short, which means that its spectrum will spread more

around the beatnote frequency).

To mitigate this effect, we shape our pulses using the Tukey window w(t) with

a ramp time typically set to tramp = 10µs (Fig. 3.5):

w(t) =


0 , t < 0 or t ≥ τquench

sin2 πt
2tramp

, t ∈ [0, tramp)

1 , t ∈ [tramp, τquench − tramp)

sin2[π/2(2 + (t− τquench))] , t ∈ [τquench − tramp, τquench)

(3.4)

This allows us to suppress the PSD of the laser beatnote at the COM mode by a

factor of rimpr, defined as

rimpr ≡
Sshaped
T (ωCOM)

Sunsh
T (ωCOM)

Multiplying runsh · rimpr gives the coupling to the COM mode with shaped pulses,

and in general is brought down to . 10 Hz, assuming SB Rabi frequencies around

20 kHz.

Interestingly, a non-negligible process to take into account when calculating

Sshaped
T is the nonlinearity of the relative AOM efficiency εrel as a function of the RF

drive power2:

εrel = sin2

(
π

2

√
Pin

Psat

)
(3.5)

where Pin is the driving RF power and Psat the saturation RF power. To illustrate

the effect of this nonlinearity, the PSD of the “naive” shaped signal, i.e. a pure

Tukey-shaped signal, is also shown in Fig. 3.6.

In principle, one could aim to tune τquench such that the COM mode frequency

2ISOMET application note: http://www.isomet.com/App-Manual_pdf/AOFRQSHF.pdf
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Figure 3.6: Power spectral densities for pulses of 3 different durations
τquench. a. The light intensity PSD for the shaped pulse (black) is more tightly
concentrated around the beatnote frequency compared to the unshaped light pulse
(light gray). The dark gray PSD corresponds to the pure Tukey shaping, without
accounting for the nonlinearities introduced by the AOM and its efficiency depen-
dence on the driving RF power. It is included in the plot to show that in principle
it is not an insignificant detail. The improvement ratio rimpr does not significantly
change with the quench duration. The trap (blue) motional frequencies for a typical
configuration are shown in blue (COM transverse frequency: 4.85 MHz, COM axial
frequency: 0.335 MHz). The detuning δ of the beatnote from the COM mode in
this case was 100 kHz.
Zoom-in inset: To quantitatively characterize the frequency spillover to the COM
mode with the square pulses and the improvement from the pulse shaping, I define
runsh and rimpr respectively. b. Relevant rations for 2 motional detunings, δ, 60 and
100 kHz.
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lies centered inside the closest “valley” to the central peak at Fig. 3.6a. Since the

valley center is approximately 1/(2tramp) away from the peak, they would have to

set 1/(2tramp) ≈ δ. For δ = 100 kHz, we would get tramp ≈ 5µs.

3.2.1 The pulse shaping effect on the strength of the simulated Hamil-

tonian

Alas, improvements often come with trade-offs. In the case of pulse shaping,

the trade-off is a reduction in the strength of the simulated interactions and trans-

verse fields. Since the light intensity is not at its maximum value during the ramp-up

and ramp-down times, the Hamiltonian terms involving spin-spin interactions, as

well as transverse fields along X or Y , will be reduced. The dependence of these

two terms on the light intensity is different, so their reduction differs as well. To

complicate matters more, the Tukey window is applied to the waveform calculated

at the AWG; to calculate its effect on the light intensity one must account for the

intermediate stages of amplification and AOM diffraction (Fig. 3.7a). Remembering

that the Tukey window w(t) is only applied to the Raman 2 beam and Raman 1 is

unshaped, we eventually get:

I2(t) = Imax
2 · sin2

[π
2
vRFw(t)

]
(3.6)

where I2 is the intensity of Raman 2 and we used the relation for the AOM efficiency

(3.5). The maximum intensity Imax
2 depends on the input light intensity of Raman

2 and the AOM efficiency for that RF frequency, measured at saturation RF power.
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Figure 3.7: Calculating the effect of pulse shaping on the simulation Hamil-
tonian. a. First, the AWG waveform with the Tukey envelope w(t) is amplified
with a pre-amplifier and an amplifier; it is assumed that the output κw(t) is linear
to the input w(t). The AOM then transforms the input RF power Pin into diffracted
light power according to (3.5). Psat is the optimal (maximum) RF power we can
drive the Raman AOM, which for us is 2 Watts. b. Ramp profiles for the Tukey
window w(t) (dotted line), the transverse fields along X or Y (dashed line) and the
interaction J0(t) (solid line), normalized to their maximal values for each specific
vRF . Each of those is shown for three different RF drive powers vRF , corresponding
to a small drive of vRF = 0.03, a drive at half the saturation power roughly equal
to the case for each of the red and bue sidebands in the MS scheme, vRF = 0.5, and
the maximum drive vRF = 1. c. To calculate the effective strength of each of the 2
terms (interaction and transverse fields), we need to integrate the pulse time profile.
The longer the pulse, the better estimate the maximum value of the term is, since
the ramp duration tramp becomes proportionally smaller in comparison to the total
duration τquench.
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The ratio vRF is the voltage amplitude applied to the AOM RF input, divided by the

voltage amplitude corresponding to saturation power. I use vRF , because it is the

parameter we directly control with our LabVIEW control software. For example,

when driving the AOM with full RF power, vRF = 1 and at the end of the ramp

we have I2(t = tramp) = Imax
2 . For low RF drive of vRF = 0.03, corresponding to a

software input parameter of 10003, we get I2(t = tramp) ≈ 0.002Imax
2 .

The transverse fields Bx/y along X or Y are proportional to the Raman Rabi

frequency Ω, while the interactions strength J0 ∼ Ω2. Remembering that Ω ∼
√
I1I2,

the interaction strength scales as J0 ∼ I1I2, and we end up with

Bx/y(t) = Bmax
x/y · sin

[π
2
vRFw(t)

]
(3.7)

J0(t) = Jmax
0 · sin2

[π
2
vRFw(t)

]
(3.8)

We substitute the time-dependent Hamiltonian terms above with static ones, derived

from the maximum values Bmax
x/y and Jmax

0 rescaled by a factor smaller than 1 to give

an effective value of the strength of that term for a given quench duration. For

example, the corrected X or Y field would be

1

τquench

∫ τquench

0

Bx/y(t)dt = C(vRF , τquench/tramp) ·Bmax
x/y (3.9)

The correction factors C(vRF , τquench/tramp) for three values of vRF and for a range

of quench durations are plotted in Fig. 3.7c.

3out of 32767, which is the maximal value
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3.3 The power law approximation for the interactions

The power law approximation is the statement

Jij =
J0

|i− j|α
(3.10)

modelling how the simulated spin-spin interactions depend on the distance between

each pair of spins {i, j}. This is a heuristic fit result rather than an actual relation

between the elements of the J matrix. In reality, neither are the couplings invariant

along the chain, nor are they exactly described by a power law. In practice, the

power law is a good approximation for small numbers of ions (N . 20).

j
i

~1
/r
α

Figure 3.8: Sample Jij. The position of each column represents a pair of spins
{i, j} and its height (also color-coded) represents the strength of that coupling. The
shaded panel shows how the spin at one end of the chain (i = 1) couples to the rest
(j = 2, 3, . . . , N). The coupling is approximated by a power law with interaction
range α.

In addition, the Jij couplings are not uniform along the chain (parallel to the
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“ridge”), as illustrated in Fig. 3.8:

Ji,i+k 6= Jj,j+k for i 6= j.

The profile of Jij is dictated by the normal modes by means of their eigenvectors.

By tuning the bandwidth of the transverse modes, we can make the interaction

matrix more homogeneous. For an axial frequency of ≈ 0.2 MHz we achieve optimal

homogeneity, as shown in Fig. 3.9, given the rest of our parameters. Of course, ion

chains of only up to a certain length will be linearly arranged in this axial potential

and adding more ions will cause the chain to “buckle”, so in practice we are not

able to accommodate the homogeneity restriction.

Axial

frequency (MHz)
0.1 0.2 0.3 0.4 0.5

J matrix

Figure 3.9: Interactions inhomogeneity along the chain. As the axial fre-
quency is increased, the profile of the nearest-neighbor interactions changes from
convex to concave. These matrices were calculated for N = 20 ions and transverse
COM frequency 4.7 MHz.
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Chapter 4: Prethermal discrete time crystals

4.1 Overview

This chapter features a presentation of the intriguing phenomenon of prether-

mal time crystals (PTC), whose experimental investigation was possible with our

trapped-ion quantum simulator over recent years. My goal is not to provide a com-

plete theoretical description, but to offer an intuitive picture of the physics involved

and the experimental observations.

4.2 Expanding the definition of phases of matter

Time crystals are a phase of matter—a non-equilibrium one. The typical

framework of phases of matter presumes matter in equilibrium. To expand this

framework to matter that is driven, the notion of crypto-equilibrium [36] comes in

handy. As illustrated in Fig. 4.1, a system that is time-dependent may look as if it is

in equilibrium to an observer that is also time-dependent in a carefully chosen way.

Therefore, there are time-dependent Hamiltonians yielding time-periodic dynamics

(perhaps after some short initial transient period) that this rotating observer would

validly claim to be a stationary state, enabling them to dub what they see a phase
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of matter.

Additionally, a prethermal phase of matter is a non-trivial state of the system

that appears to be stationary for very long times, even though it eventually gives

way to the trivial, infinite temperature state1. A condition for the existence of

prethermal phases (“prethermalization”) is that the dynamics host a time interval

during which the system’s entropy is virtually fixed, despite the time-dependent

Hamiltonian. For the experiment I will discuss, the prethermal regime can be made

arbitrarily long.

Fixed frame Time-dependent
frame

tim
e

Figure 4.1: Crypto-equilibrium. If there is a rotating reference frame where the
system does not appear to be changing, then this observer may see a stationary
state and they can talk about a phase of matter.

1The infinite temperature state is a superposition of all Hamiltonian eigenstates with equal
probability. Since the dynamics we will be considering are unitary and we begin from a pure state,
this “infinite temperature” state is still a pure state. However, all observables consisting of local
terms have the same value as if the system was in thermal equilibrium with an infinite temperature
reservoir—hence the liberty to talk about temperature in a closed, non-equilibrium system setting.
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4.3 Experimental procedure

Our system consists of 25 171Yb+ ions, each of which represents a spin-1/2.

The initial states are spin product states, most of which have all spins pointing

along the positive or the negative X axis of the Bloch sphere. In order to prepare

those states, we took advantage of a tightly focused laser beam to flip individual

spins relative to their neighbors [29] (Fig. 4.2).

The Floquet drive consists of multiple repetitions of the following building

block, itself including two distinct evolutions U1 and U2:

U1 = exp

[
i
π

2

N∑
i

σyi

]
(4.1)

U2 = exp

[
iT

(
N∑
i<j

Jijσ
x
i σ

x
j +By

N∑
i=1

σyi +Bz

N∑
i=1

σzi

)]
,

where σqi is the q-th component of the Pauli operator for the i-th spin, and I set

~ = 1. Jij > 0 is the long-range coupling with average nearest-neighbor interaction

strength J0 = 2π · (0.33± 0.02) kHz, while By = 2π · 0.5 kHz and Bz = 2π · 0.2 kHz

are global effective magnetic fields. The Floquet unitary UF = U2U1 implements

the dynamics over a period of the drive and has frequency ω ≡ 2π/T .

4.4 The prethermal regime

Prethermalization in our experiment relies on the inability of the system to

exchange energy with the drive UF . To intuitively understand this inability, note
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Local initialization

Long-range interactions

Individual-site readout

Figure 4.2: Experimental procedure. First, the spins are initialized using optical
pumping and Raman sideband cooling, followed by single-spin rotations with the
aid of the individual addressing beam shown here. Then (center panel), the Floquet
unitary includes long-range interactions generated with two Raman beams illumi-
nating the ion chain. Finally (bottom panel), the spins are projectively measured
using state-dependent fluorescence. Spins that are projected to the |↑〉z state by
the detection beam, shown in red, will fluoresce, while spins projected to the |↓〉z
state will not. The fluorescence photons are collected by the imaging system and
focused on the sensor of an EMCCD camera (Andor iXon Ultra)—see Section 1.1.2
for details. The presence of a few bright pixels in the region of interest (ROI) for
each ion denotes an |↑〉z state. For more details, see Appendix B. Figure adapted
from [37].

the large difference between two energy scales. The first relates to the drive and

is characterized by its frequency ω. The second relates to a local energy scale Jloc

and is associated with the energy required to flip a single spin. When ω � Jloc,

the system cannot efficiently absorb or emit energy to the drive and undergo such

rearrangements [38, 39], and therefore energy is conserved. The ratio ω/Jloc in the

experiments described ranges from 12 to 67.
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The onset of the prethermal regime is marked by a timescale noted as τpre. By

τpre, the drive has vanished inhomogeneities of the initial state, and local observables

are described by an equilibrium ensemble of inverse temperature β. For example, the

probability of observing an eigenstate |i〉 of energy Ei is proportional to e−βEi . To

experimentally observe this local equilibration stage, we prepare the chain pointing

towardsX with the two central spins at a 90◦ angle, pointing along Z. We then apply

the Floquet drive UF and note the time when the system becomes homogeneous with

regard to X-magnetization (see Fig. 4.3). It is important to point out that τpre comes

before decoherence extinguishes any meaningful signatures. The equilibration of

the system to a quasi-thermal ensemble of the effective Hamiltonian Heff (see (4.2))

ensures that around τpre and later, the observed dynamics truly correspond to the

prethermal regime and are not transients mistaken for prethermal dynamics.

Sp
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r

Time

1

0.5

0 5
10
15
20
25

Time

Figure 4.3: Local equilibration and the onset of the prethermal regime.
Left: The X-magnetization of the two central spins every other Floquet period
(blue) starts from zero, since these spins were initialized along Z. Their nearest
neighbors (orange) start from +X. Around τpre ≈ 3/J0, these two signals merge,
meaning that the spin chain has become homogeneous in terms of spin orientation,
and all spins flip in unison for the subsequent Floquet periods. This homogenization
marks local equilibration; the system is hence described by an equilibrium ensemble
of a specific inverse temperature β. Importantly, the value the two signals converge
to is statisically different from zero, showing that decoherence is not (the only) factor
explaining this convergence. Right: The single-spin X-magnetization data where
the left plot came from. Figure adapted from [37].
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The prethermal window lasts approximately until a timescale denoted as τ ∗

(see next paragraph). From τpre to τ ∗, the stroboscopic dynamics of the system

(every other period) are well-approximated by an effective prethermal Hamiltonian,

which to lowest order in 1/ω is given by [39]:

Heff =
N∑
i<j

Jijσ
x
i σ

x
j +By

N∑
i=1

σyi . (4.2)

The end of the prethermal regime is characterized by the timescale associated

with the frequency-dependent Floquet heating, τ ∗. To experimentally investigate

τ ∗, we measure the dynamics of the prethermal energy density 〈Heff〉/(NJ0) for two

different initial states on opposite ends of the many-body spectrum of Heff : a low-

energy Néel state (Fig. 4.4, left) and a high-energy polarized state (Fig. 4.4, center)

along the Ising interaction axis. In both cases, increasing the driving frequency

suppresses the heating rate, as expected (Fig. 4.4, right). For sufficiently large

frequencies, we observe a plateau in τ ∗, suggesting the presence of external noise.

In particular, the origin of this plateau is consistent with experimental fluctuations

of the light intensity, leading to noisy AC Stark shifts on the qubit transition. For

more details on this noise, see section 4.6 and Chapter 2.

4.5 Crossing the boundary: above and below the critical energy

After establishing the existence of a prethermal time window when thermal-

ization is slowed down for fast drive frequencies, let’s look at interesting physics that

is happening during that interval. At τpre, the system is described by an equilibrium
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Figure 4.4: The prethermal regime. Left & center: Energy density evolution
of a low-energy Néel state and a high-energy polarized state, respectively. Both cases
show Floquet heating toward the infinite temperature value of zero magnetization,
albeit from opposite sides of the many-body spectrum. In addition, in both cases,
faster drive frequencies ω suppress the heating rate. Statistical error bars are of
similar size as the point markers. Right: The heating time τ ∗ for the Néel (red)
and polarized (blue) states increases with frequency. τ ∗ is extracted by fitting the
dynamics of the energy density to ∼ e−t/τ

∗
; exponential fits are shown as solid curves

at the left and center plots. At high frequencies this behavior saturates owing to the
presence of external noise. Error bars for the heating time correspond to fit errors.
Figure adapted from [37].

ensemble of Heff , an antiferromagnetic Ising Hamiltonian. For this Hamiltonian,

states with energy close to the most excited state have spins mostly aligned parallel

to each other and along X (Fig. 4.5). This can happen with states where spins are

mostly aligned towards −X, or where spins are mostly aligned towards +X. There-

fore, a symmetry-breaking phase exists at the top of the spectrum at high energies

(Fig. 4.6C), where spins align either towards −X or +X.

A short interlude may be needed here for readers overly familiar with ferromag-

netic interactions and associated phase transitions. Long-ranged ferromagnetic Ising

interactions stabilize a low-temperature one-dimensional ferromagnetic phase but

antiferromagnetic long-ranged Ising interactions do not stabilize a low-temperature

one-dimensional antiferromagnetic phase. Thus, the antiferromagnetic interactions
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Figure 4.5: FM regime for 14 spins. To provide some intuition about tem-
perature and the FM (aka, symmetry-breaking) regime in our model, I am showing
calculations for the average X-magnetization spatial correlator 〈σixσjx〉 for spins i and
j. All experimental parameters were kept the same as with the 25-ion experiment
for this calculation; the slightly different value for J0 was compensated by adjusting
By so that their ratio is the same. Left: Each of the 214 energy eigenstates has
a different 〈σixσjx〉. Labeling eigenstates with their energy density normalized to J0

for the horizontal axis, note that the higher the energy density, the closer to 1 the
correlator (blue shading). A value of 1 signifies perfect ferromagnetism, i.e. spins
aligned to each other. On the contrary, towards low energy densities on the left,
the correlator is almost zero—this is a paramagnetic regime (red shading). Right:
Using the plot on the left, we can calculate the value of the correlator for thermal
ensembles of various inverse temperatures β. The ferromagnetic regime lives at
negative β values, i.e. at negative temperature. Normally and in the proper mean-
ing of temperature, this would be an inaccessible regime, since there is no thermal
bath with a negative temperature. However, in our closed quantum system they are
defined.

in our system do not support a symmetry-breaking phase at low energy densities

but rather at the top of the spectrum at high densities (Fig. 4.6C), which is the

low-energy-density regime of the ferromagnetic Hamiltonian −Heff .

Continuing with the high energy case, we can see how breaking the symmetry

G ≡
∏N

i=1 σ
y
i = U1 at the top of the spectrum gives rise to a time crystal. Remember

that energy is conserved until τ ∗ and therefore the energy of the initial state we

prepare will be the average energy of the ensemble at τpre (Fig. 4.6C). That ensemble

though features two symmetry-breaking sectors: the “−X” and the “+X”. At τpre

it reaches one of these. Now, for a single period of evolution, the exact Floquet
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dynamics are approximately generated by acting with G, which is a π-pulse around

Y , followed by evolving under Heff for time T [40, 39]. If the system has a net X

magnetization at τpre, then this evolution will flip it every period. The 2T -periodic

resulting signal is a signature of a time crystal.

If, on the other hand, the initial state energy was below a critical value, the

prethermal ensemble at τpre will be in the paramagnetic regime and it will have zero

net X-magnetization. In other words, it will preserve G as a symmetry. The action

of a single Floquet evolution will not have any effect.

We investigate these two regimes by measuring the auto-correlation of the

magnetization:

M(t) =
1

N

N∑
i=1

〈σxi (t)〉〈σxi (0)〉. (4.3)

Starting with a low-energy-density Néel state (Fig. 4.7A), we observe that M(t)

quickly decays to zero at τpre, in agreement with the expectation that the sys-

tem equilibrates to the symmetry-unbroken, paramagnetic phase. This behavior is

frequency-independent, in direct contrast to the Floquet dynamics of the energy

density (Fig. 4.4A). This contrast highlights an essential point: although τ ∗ can

always be extended by increasing the driving frequency, if the system lives in the

trivial Floquet phase, no order will survive beyond τpre.

The Floquet dynamics starting from the polarized state are notably different

(Fig. 4.7B). First, M(t) exhibits period doubling, with M > 0 for even periods

and M < 0 for odd periods. Second, the decay of this period-doubling behavior is

directly controlled by the frequency of the drive. Third, the lifetime of the time-
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Figure 4.6: The symmetry-breaking and the symmetry-preserving regimes.
A. For intermediate times between τpre and τ ∗, the system approaches an equilib-
rium state of the prethermal Hamiltonian Heff . After τpre, the magnetization in the
trivial Floquet phase remains constant. Meanwhile, in the PDTC phase, the magne-
tization oscillates each period leading to a robust sub-harmonic response. For both
phases, at times t � τ ∗, Floquet heating eventually brings the many-body system
to a featureless infinite temperature ensemble. B. Schematic of the stroboscopic
magnetization dynamics in the trivial (red) and PDTC (blue) phase (full/dashed
curves represent even/odd driving periods). In the trivial phase, any transient
time-crystalline-order decays by the prethermal equilibration time τpre, while in the
PDTC phase, the order remains robust until τ ∗, the frequency-controlled heating
timescale. C. Starting from a product state with zero entropy, the dynamics under
Heff bring the system to an equilibrium state at time τpre. The PDTC behavior is
robust if the initial state thermalizes to a prethermal equilibrium state, which spon-
taneously breaks an emergent symmetry of Heff . In our system, this occurs if the
energy density of the initial state is above a critical value εcrit (i.e. to the right of the
dashed line), wherein the system equilibrates to a ferromagnetic state. Regardless
of the initial state, for t > τ ∗, Floquet heating eventually brings the system to the
maximum entropy state at zero energy density. Figure adapted from [37].
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crystalline order mirrors the dynamics of the energy density shown in Fig. 4.4B,

demonstrating that Floquet heating ultimately melts the PDTC at late times.

By considering two additional initial states, we explore the stability of the

PDTC phase as a function of energy density. Fig. 4.7C depicts both the heating

time as well as the lifetime of the time-crystalline order. Near the bottom of the

spectrum, where no symmetry-breaking phase exists, the decay of the magnetization

is both frequency-independent and significantly faster than the heating timescale. In

contrast, near the top of the spectrum, where the symmetry-breaking ferromagnetic

phase lies, the two timescales are consistent with one another, demonstrating that

the PDTC lifetime is limited by Floquet heating. Our results are consistent with

a phase boundary occurring around energy density 〈Heff〉/(NJ0) ≈ 2, in agreement

with independent numerical calculations via quantum Monte Carlo [37].

4.6 Error sources

The dynamics observed in this work are the combination of ideal Hamilto-

nian evolution as in Eq. 4.1 and other terms of smaller magnitude that we refer to

as “error sources”. The combined effect of the latter, when measuring the chain

magnetization, manifests as decoherence.

The most significant error source is fluctuating AC Stark shifts of the hyperfine

qubit frequency. This fluctuation is mostly caused by power instability of the 355

nm laser light at the ions’ location. Even though there is a power PI locking scheme

in effect for the 355 nm light, the sampling point for the lock is at a more upstream
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Figure 4.7: Characterizing the PDTC phase. A, B. Upper plots: The mag-
netization dynamics, M(t), for the Néel state (left) and the polarized state (right).
For the Néel state, M(t) quickly decays to zero at time τpre (dashed vertical line),
independent of the drive frequency. For the polarized state, the sub-harmonic re-
sponse (2T -periodicity) persists well-beyond τpre and its lifetime is extended upon
increasing the drive frequency. The lifetime of the prethermal time-crystalline or-
der, τPDTC, is extracted from a fit of the magnetization evolution to a decaying
exponential. Statistical error bars are of similar size as the point markers. Lower
plots: The X-magnetization dynamics for each ion in the chain at ω/J0 = 38. C.
Heating (τ ∗) and magnetization decay (τPDTC) times for four different initial states
at varying energy densities. For low energy densities, τPDTC (orange) are short,
independent of frequency, and significantly shorter than τ ∗ (magenta), highlighting
the trivial Floquet phase. For high energies, τPDTC is similar to τ ∗, highlighting the
long-lived, frequency-controlled nature of the PDTC behavior. The location of the
observed crossover in energy density is in agreement with an independent quantum
Monte Carlo calculation (red and blue shaded regions) [37]. Error bars for the decay
time correspond to fit errors, while error bars for the energy density correspond to
statistical errors. Figure adapted from [37].

location than the ions. As the beams propagate downstream from that point, active

elements, acoustic noise, and air turbulence introduce extra power noise. At the

ions location, the light’s red and blue beatnotes ideally produce exactly opposite

AC Stark shifts of the qubit levels and cancel each other. In practice, however, they

are not always perfectly balanced. In this case, common-mode power fluctuations

will make the sum of their Stark shifts fluctuate. This manifests as an effective

fluctuating magnetic field term B(AC)(t)
∑

i σ
z
i , common for all spins i and is present
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in every stage of the experimental sequence. A fortunate side effect of the π-rotations

of the drive is that they echo out part of this noise. However, the spectral portion

of B(AC)(t) that is faster than ω/2 is not echoed out and differs between different

repetitions, manifesting as decoherence in the final averaged signal. In numerics

presented in the next section, we model this noise based on experimental evidence

and reasonable simplifications, and present numerical simulations that include it.

Imperfect qubit state readout also impacts the final fidelity of the simulation.

During the finite readout window of 400µs, there is a small probability that a |↓〉

state will be off-resonantly pumped, and read out as a |↑〉 state, and vice versa. For

the experiments presented in this work, the average readout error was 2.3% for each

ion.

Another error source comes from a term combining the spin and the motional

part of the qubit wavefunction that acts in parallel with the effective Ising interac-

tion. This term represents entanglement between these two parts; when we measure

the qubit spin, we effectively trace out the entangled motional state, resulting in a

probabilistic mixed state. The probability for such an erroneous spin flip to occur

is proportional to
N∑
m=1

(
ηmbimΩ

δm

)2

(4.4)

Therefore, by increasing this detuning, we minimize the undesired spin-motion en-

tanglement, but we are also decreasing the strength of our spin-spin interaction term

(see Supplement, Simulating the transverse field Ising Hamiltonian). We set the bal-

ance between these effects by keeping the sum in (4.4) less than 0.1 for two spins,
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which for the 25 spins results in approximately 0.7% flip probability per spin. See

3.1 for further details. This effect is somewhat amplified by the finite duration of the

Hamiltonian quenches in the second term of the Floquet drive, whose spectral de-

composition has nonzero components in the motional frequencies. We considerably

mitigate this effect by applying the Tukey window shaping to the relevant pulses,

which reduces these undesired spectral terms.
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Chapter 5: Ion heating from electric field noise

5.1 Overview

The ions are charged particles and as such, any electric field that’s not part of

the quantum simulation sequence is noise that exerts a force on them and classically

heats them. There is a number of electric field noise sources [41], such as fluctuating

patch potentials on the trap electrodes. It is commonly known that the heating

rate from this noise takes a simple form for harmonic confining potentials (see next

section). What happens when the potential is not harmonic to begin with, or when

the ion has heated out of the harmonic regime of that potential?

So far, electric field noise has not been something to worry much about in

quantum simulators. Ions are Doppler-cooled at the beginning and at the end of an

experimental sequence, “resetting” their motional energy very close to zero. And

during the sequence itself, other sources of decoherence are much more significant.

It is, however, an interesting topic to explore. And perhaps microscopic ion traps

of the future might feature slots with shallow confining potentials where ions are

stored without Doppler-cooling to avoid scattered light. Or measured ion heating

rates might be used to estimate the noise spectrum they see.

In this chapter, I will present proof-of-principle reasoning and numerical cal-
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culations. The key points are a) determining the “filter” function selecting the noise

frequency components causing heating, b) gaining intuition about how ions heat

differently depending on how the confining potential differs from a harmonic one,

and c) a de facto demonstration of a method for generating a stochastic signal with

a desired spectrum, used in the numerics.

This is a work in progress. I do not aim to provide a fully realistic simulation of

the ion heating, and therefore I do not account for more than one spatial dimension,

more than one ion, or the effect of the electric field noise gradient in parametrically

heating the ion, to name a few.

5.2 Heating in a harmonic potential

A generic confining potential can be approximated to be harmonic at the

vicinity of a local minimum. This property stems from keeping the quadratic term in

its Taylor expansion and ignoring all higher orders. Ions trapped in such potentials

with secular frequency ω, when subject to stochastic electric field noise, will in

principle heat classically. The relation between this heating rate and the spectrum

of the electric field noise takes a simple form [42, 41, 43]:

˙̄n =
q2

4m~ω
SE(ω) (5.1)

where ˙̄n is the heating rate of a single ion in motional quanta/s, q and m are the

particle charge and mass respectively, and SE(ω) is the PSD of the noise in electric

field E for the trap frequency ω. We can re-write (5.1) in terms of the energy change
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Figure 5.1: Schematic of a simple chip trap. Left & center: Top and 3D view
of the trap. The red electrodes carry RF potentials, while the blue ones are at fixed
voltages. The ion (blue dot) floats slightly above the trap, at a height h of the order
of a few tens of µm. Right: Symbol notation. From [].

rate Ė = ˙̄n~ω and SF (ω), the PSD of the random force F exerted on the particle

by the field:

P0 = Ė =
SF (ω)

4m
(5.2)

where I used SE = q2SF .

In plain words, what (5.2) tells us is that the only frequency component of

the noise that causes heating is the one that is resonant with the trap frequency.

Naturally, one asks: is the same true for confining potentials that are anharmonic

and the particle’s oscillation frequency depends on its total energy E, unlike the

harmonic case? To start working on this question, let’s first get an idea of what a

potential of interest might look like.

5.3 What potential do the ions live in?

Macroscopic ion traps such as rod or blade traps typically create a confining

potential that is deeper then 1 electron Volt [44, 45]. Depending on the complexity

of their structure, a harmonic potential may be a sufficient approximation up to a
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fraction of this depth, or dedicated electrodes may be used to shape the bottom of

the potential to an anharmonic form. A quartic potential for example balances out

the Coulomb repulsion between ions in the chain in a way that results in uniformly

spaced chains [45].

However, the future of quantum information-oriented ion traps seems to be

lying with smaller, shallower structures. Their potentials are a fraction of an electron

Volt deep (tens of meV), meaning that the harmonic approximation at the bottom

breaks down sooner, as ions heat. As such, heating at the anharmonic regime is more

relevant for chip traps than macroscopic ones. A basic chip trap with two RF rail

electrodes providing transverse confinement and static voltage electrodes providing

axial confinement is shown in Fig. 5.1. Using the Biot-Savart-like law for the electric

field [46], we can calculate the electric fields and therefore the electric potential along

any axis above the trap. For the example trap parameters shown in Table 5.1, these

potentials are shown in Fig. 5.2. For the X and Y axes, I calculate the oscillating

electric field at the RF frequency ΩRF and then derive the time-averaged field and

the resulting static pseudopotential following [23].

Table 5.1: Model chip trap parameters

L1 = 250 L2 = 270 L3 = 700

R1 = 15 R2 = 30 R3 = 300

U0 = 5 U1 = −15 U2 = −18

V0 = 40 ΩRF = 2π · 25

1 Lengths are given in µm, voltages in
V , frequency in MHz.
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Figure 5.2: Potentials along all 3 axes of the chip trap from Fig. 5.1. The red
line indicates the ion equilibrium position at each axis. Top: Potential along the ion
chain axis (Z). The ion chain is centered in the central valley. Bottom left: Along
the transverse axis X (parallel to the trap surface), the static pseudopotential is
symmetric, ψp(x, y, z) = ψp(−x, y, z). An inverted cosine (dashed orange) is a good
approximation, making it equivalent to the simple pendulum problem. Bottom
right: Along the transverse axis vertical to the trap chip, the static pseudopotential
is not symmetric. The ion equilibrium position is at height h =

√
R1R2. The

potential depth is about 50 meV for the parameters of Table. 5.1.
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Figure 5.3: Velocity for periodic motion in the transverse (X) and axial
(Z) potentials for a single period. Left: The velocity vnorm(t) for one oscillation
along the transverse X axis, as the ions heats and its energy is increased (dark to
lighter curves). At the beginning, when its energy E is low compared to the potential
depth V0, the harmonic approximation of the potential is accurate and its motion is
harmonic: vnorm(t) is a sinusoidal and lasts exactly Tharm. As its energy is increased
though, the motion becomes less and less sinusoidal, and lasts longer. The velocity is
normalized to its value for the maximum energy V0,

√
2V0e/m. The oscillations last

longer with higher energies, because the potential widens compared to the harmonic
approximation and the restoring force experienced is on average less than in the
harmonic case. Right: Same plot for the axial potential. Contrary to the case on
the left, now as the ion heats, its oscillations become faster. This is because for
the parameters chosen, the potential at higher energies becomes narrower than its
harmonic approximation, and the restoring force is stronger. Note that the energy
color scale is nonlinear.

5.4 Oscillation period and susceptibility to noise

It is clear that the harmonic approximation is only valid for a small fraction of

the potential depth. Particles in non-quadratic potentials perform periodic, but not

harmonic motion. To provide additional intuition about the effect of anharmonicity

to particle motion, I calculate classical ion trajectories at the absence of noise and

show the velocity during a single period in Fig. 5.3. In general, depending on

whether the potential gets narrower or wider than its harmonic approximation at

high energies, the oscillation period will become shorter or longer respectively, as

the ion heats.
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Looking at the transverse velocity plot (Fig. 5.3, left), we can start visualizing

that as the ion heats and its oscillation slows down, noise frequencies that were

resonant earlier now are becoming too fast and less relevant, similar to an oscillator

driven off-resonance by frequencies faster than its natural one. Unfortunately, re-

alistic noise spectra are noisier at lower frequencies, meaning that the heating rate

likely increases as the ion heats.

On the contrary, at the axial case (Fig. 5.3, right), as the ion heats, its motion

becomes resonant with faster frequencies. This is good news, since noise typically

decreases with frequency in typical spectra.

In the following section, I will show how we can use the velocity calculations of

Fig. 5.3 to calculate an effective filter on the electric field noise, determining which

frequency components of it will resonate and amplify the ion motion.

5.5 Anharmonic potentials and noise frequencies that heat

In this section I will formalize the intuition that the noise frequencies causing

heating are mostly the ones resonant with ion motion, for a generic potential. I am

following the framework set at [47]. The most important assumption is that the

noise is sufficiently small, so that over a large number of classical oscillations the

ion trajectory during a period remains what it would be at the absence of noise.

In other words, noise slowly adds energy, but the trajectory is still described by

noiseless evolution at a given energy (which increases with time).

At time t, the infinitesimal change in the particle’s energy E is dE = f(t)dx,
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where f(t) is the stochastic noise force and dx the infinitesimal displacement; the

effect of the restoring force from the potential is omitted since it is conservative and

it averages out every period. We can re-write dE as

dE = f(t)v(t)dt (5.3)

where v(t) = dx/dt and get for a non-infinitesimal time interval ∆t = [t, t+ ∆t]:

∆E =

∫ t+∆t

t

f(t′)v(t′)dt′ (5.4)

We will choose ∆t to be much larger than one period, but small enough that the

energy change ∆E is small compared to E. According to this “small noise assump-

tion”, we can replace the velocity v(t) with the noiseless evolution velocity v
(E)
0 (t).

The latter is only sinusoidal for a harmonic potential, and may even by asymmetric

during one period, depending on the potential profile. It can be computed nu-

merically for an arbirtrary confining potential. Within ∆t though, it is necessarily

periodic, and as such we can use its Fourier series expansion:

v
(E)
0 (t) =

∞∑
k 6=0

ak(E)e−ikω(E)t (5.5)

where both the coefficients ak(E) and the basis functions of the expansion depend

on the energy E at the start of the interval ∆t. It is essentially v
(E)
0 (t) that is shown

in the plots of Fig. 5.3 for different values of energy. The coefficients ak(E) depend

only on the confining potential V (x), they are a function of energy E, and are given
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by

ak(E) =
1

T (E)

∫ T

0

v
(E)
0 (t) · eikω(E)tdt (5.6)

Substituting (5.5) back into (5.4), we get

∆E(E) =
∞∑
k 6=0

ak(E) · Ft,∆t [kω(E)] (5.7)

where Ft,∆t [kω(E)] is the truncated Fourier transform of the stochastic force f(t)

between times t and t+ ∆t:

Ft,∆t [kω(E)] =

∫ t+∆t

t

f(t′)e−ikω(E)t′

As a final tweak, we can use the fact that ak(E) and Ft,∆t are essentially Fourier

transforms of real quantities and thus even-symmetric at the frequency axis, a−k(E) =

a∗k(E) and similarly, Ft,∆t [−kω(E)] = F ∗t,∆t [kω(E)]:

∆E(E) = 2
∞∑
k>0

Re {ak(E)Ft,∆t [kω(E)]} (5.8)

Let’s unpack what (5.8) tells us. For a given energy E, the energy change ∆E

is directly related to the noise frequency resonant with the frequency ω(E) at this

energy and its harmonics kω(E), weighted by the factors ak(E). The profile of ak(E)

with frequency kω(E) acts as a filter acting on the noise spectrum, determining the

efficiency with which the noise frequency components lead to heating. In Fig. 5.4 I

illustrate the profile of |ak(E)|2 for various energy levels at the transverse potential
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along X (from Fig. 5.2).
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Figure 5.4: ak(E) factors for various energies E for the transverse (X)
potential. The frequency axis is normalized to fharm, the frequency corresponding
to the harmonic approximation of the potential. For low energies (darker curves), the
harmonic approximation is a good description, manifesting as a peak at f/fharm = 1:
noise frequencies resonant with fharm are the main contributors to heating. As the
oscillation energy E increases though, the particle motion becomes more complicated
(and slow), allowing lower noise frequencies to cause heating.

5.6 Generating signals with a desired spectrum

Now that we have an idea of what to expect for different confining potentials

and noise spectra, I will go over the last step needed before running a numerical

simulation: generating the stochastic electric field force time series with a spetrum

imitating realistic lab conditions. Let’s say we want to generate a signal s(t) with a

desired power spectral density (PSD) S(f). For infinitely long signals, S(f) starts

from infinitesimal frequencies and goes up to infinite frequency. Realistic signals

though have a finite duration Tinst. This sets the slowest frequency the Fourier

decomposition can contain, fmin ≡ 1/Tinst. The PSD calculated for this finite signal

is the truncated PSD STinst(f) (see (5.10)).

Additionally, for ease of numerical methods, I will be working with discrete

signals, assumed to represent realistic continuous signals sampled at interval dt. The
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sampling interval must be chosen to be short enough so that the simulation does

not “miss” critical events, but long enough that we do not require a prohibitive

amount of computational resources. I typically set dt so that an oscillation of the

ion inside the confining potential lasts a few tens of dt. At the same time, dt sets

the highest frequency of the Fourier decomposition to fmax ≡ 1/dt. Remembering

that real (not complex) signals have symmetric Fourier transforms around fmax/2,

the highest frequency we can have meaningful information for is fmax/2. This is why

PSDs shown in this chapter will be even symmetric; I include the symmetric part

for clarity.

After clarifying the relation of duration to frequency, let’s establish a working

convention for generating a signal “with a desired spectrum”. The PSD is a some-

what abstract concept, since it involves averaging an infinite number of instances

(realizations) of the actual signal to specify it. No instance by itself will yield the

exact same PSD as another one. For the purposes of this chapter, when setting a

goal to generate n instances of a signal in time with duration Tinst each, I will be gen-

erating a signal nTinst long with a PSD exactly equal to the desired one. Then, I will

be partitioning it into n pieces, with PSDs that fluctuate around the ideal/desired

one. This subtlety is illustrated in Fig. 5.5.

Next, in order to explain the generation of the time signal from a PSD, let’s

remember the Wiener-Khinchin theorem. It allows defining a (truncated) PSD
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Figure 5.5: The total, nTinst-long time signal generated has exactly the PSD re-
quested (black), here with a 1/f dependence. An instance chosen at random, eg. the
first (blue) has a PSD which is still 1/f but noisy. The averaged PSD of all instances
converges to the requested 1/f dependence (purple). The PSD for the total signal
is calculated from a longer sequence compared to the PSD for a single instance, thus
it extends to lower frequencies.

STinst(ω) through the (truncated) Fourier transform FTinst(ω) of a signal s(t):

FTinst(ω) =

∫ Tinst

0

e−iωts(t)dt (5.9)

STinst(ω) =
1

Tinst

〈|FTinst(ω)|2〉 (5.10)

According to our working convention from earlier, the desired form Sdes(ω) for the

PSD will be made to exactly correspond to the spectrum of the nTinst-long signal:

Sdes(ω) =
1

nTinst

|FnTinst(ω)|2 (5.11)

and therefore we can write the Fourier transform of the total signal as

FnTinst(ω) =
√
nTinstSdes(ω)eiφ(ω). (5.12)

The phase φ(ω) is the randomness-adding element of this algorithm. Working with
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actual discrete spectra and signals in the simulation, φ(ω) becomes φk for each

discrete frequency ωk and is sampled from a uniform distribution between 0 and 2π.

Now that we have calculated the Fourier transform FnTinst(ω) of the signal s(t), all

that is left to do is apply the inverse Fourier transform F−1 to it, to transition to

the time domain:

s(t) =

∫ ωmax

ωmin

FnTinst(ω)eiωtdω (5.13)

5.7 Numerical results for a harmonic and an anharmonic potential

I start with the case of a truncated harmonic potential Uharm(x) and simulate

the ion behavior under a noisy electric field. Using a quadratic potential allows to

benchmark the numerics against analytical expectations for the heating rate. I then

proceed to an anharmonic potential U(x) of width w and depth U0, equal to the

truncated sinusoid that has Uharm as its approximation at the bottom (Fig. 5.6).

Uharm(x) =
1

2
m(2πf0)2x2 (5.14)

U(x) =
1

2
U0

(
1− cos

πx

w

)
(5.15)

where f0 is the secular frequency of the harmonic regime, and U0 = 8f 2
0w

2m to

make sure that U(x) = Uharm(x) + O(x4) around x = 0. f0 = fharm is the secular

frequency of the harmonic approximation.

The code used numerically solves the differential equation of motion

d2x

dt2
= −dUpot(x)

dx
+ f(t)
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Figure 5.6: Confining potentials used for the simulation The ion equilibrium
position is at the red line.

where x(t) is the ion’s position, Upot(x) = U(x) or Uharm(x) is the confining potential,

and f(t) is the stochastic force from the noisy electric field. Using the method from

5.6, f(t) can be made to have an arbitrary spectrum. In all subsequent simulation

results, the PSD of the noise falls as its inverse frequency, a common occurence in

the lab [48, 49]:

SF (ω) = S0
2πf0

ω

In principle though it may be an analytical function or an experimentally measured

spectrum.

I discretize the signals with a time step dt set to 1/10 of the ion period at the

harmonic regime. Also, because of limited computational resources, the parameters

used for this simulation do not correspond to realistic ion traps. Specifically, the

chosen heating rate (determining S0) is chosen as 13000 quanta/s, much higher than

typical numbers of a few tens to hundreds of quanta/s. Additionally, the width w = 2

µm of the confining potential is much smaller than typical widths. These choices,

however, allow for significant heating within a duration that can be simulated in

a few minutes with our resources. Using a more advanced system, one can afford

to get much more realistic and computationally demanding. The total generated
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signal for each potential case was 2 s, with dt = 1 µs, split into n = 50 instances.

The harmonic frequency was f0 = 0.1 MHz. Fig. 5.7 shows the simulation results

for a particular noise instance and an ion that began from resting at the bottom U

and Uharm.

From the position and velocity of the ions I calculate their energy evolution

for each instance at Fig. 5.8. Despite the small number of instances used (50), their

ensemble averages already tell different stories for each potential, confirming our ex-

pectations from previous sections: it seems that the heating rate for the anharmonic

case becomes higher than for the harmonic case after some time, corresponding to

the average time needed for the ion to heat out of the harmonic approximation

regime. Notice that as the energy of the ensemble increases, so does its variance.

5.8 The Fokker-Planck equation

The distribution of the ion energy E as a function of time, η(E, t), can be

modeled with the Fokker-Planck equation formalism [47]. Essentially, this formalism

models the evolution of a probability distribution (of the energy in our case) under

the action of a stochastic process:

∂η

∂t
= −∂(g1η)

∂E
+

1

2

∂2(g2η)

∂E2

where g1 = g1(E) is the drift coefficient, characterizing the ensemble heating rate,

and g2 = g2(E) is the diffusion coefficient, characterizing the spread of the energy

distribution as the ensemble heats. I will leave a theoretical treatment for the future,
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Figure 5.7: Position x(t) for the harmonic and the anharmonic potential.
Shown is an instance chosen at random for each. Not many conclusions can be
deduced from single instances; there are howver two comments to be made. First,
notice that the ion oscillation for the anharmonic case (bottom) has visibly slowed
down at 12 ms, since at higher energies this potential hosts slower oscillations.
Second, the time trace for the anharmonic case is shorter than for the harmonic,
because around 13 ms the particle escaped the potential: its energy reached ≈ U0

and its motion amplitude ≈ w.

108



Figure 5.8: Energy evolutions for the harmonic and anharmonic potentials
The ensemble average for the 50 instances at each time step is shown in purple.
The band denotes the standard error of the mean, while the black dotted line shows
linear heating from the fixed harmonic heating rate P0 from (5.2). The harmonic
case seems to follow that prediction. The anharmonic case also seems to follow
it at the beginning and until ∼ 5 ms. After that, we have recurring events when
the ensemble average heats faster than P0, until an ion in some instance heats so
much it escapes the trap (vertical green lines). Right after, the ensemble average of
the remaining instances soon picks up again. The green plots trace those “escape
events” by showing the percentage of ions staying trapped at time t.

but it is worth noting that both the drift and the diffusion coefficients are related

to the numerically calculated energy distribution, shown in Fig. 5.9. Additionally,

Fig. 5.10 shows the variance of the ∆E added during an interval ∆t, as a function of

the ion energy E over that interval ∆t. In both the harmonic and the anharmonic

case, this relationship is linear. This variance σ2(∆E) is directly related to the

diffusion coefficient g2(E), which can therefore also be numerically estimated.
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Appendix A: Stark shifts calculation

The final formulas produced were checked against a Ramsey measurement of

the differential Stark shift from the red beatnote and produced a result 5% off the

measured value.

A.1 Relevant Stark shifts

The Stark shifts relevant to our operation are 2nd and 4th order (Fig. 2.3). The

2nd order ones stem from the existence of any single Raman beam, which couples

the qubit states, |↑〉z and |↓〉z, to a subset of the P manifold, and thus shifts each

of |↑〉z and |↓〉z with a 2nd order shift. The 4th order ones stem from the coupling

of a qubit state to another S state via an intermediate, adiabatically eliminated P

state, with the Λ scheme of 2 optical combs (beams).

To calculate Stark shifts, I have found the following prescription helpful:

1. State which state |i〉 we aim to calculate the Stark shift of.

2. Note the polarization of the light, σ−, π, and σ+.

3. List the states |i′〉 that this light can couple to (Rabi flop), both for single-

photon and two-photon Rabi flopping. To do that, use the light’s polarization
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and selection rules.

4. For each of these states |i′〉, calculate the detuning of the light from the tran-

sition |i〉 ↔ |i′〉, including its sign.

5. Using these detunings and for each of the states |i′〉, calculate the Stark shift

from the base formula (2.9); add them together. Single-photon Rabi flopping

will be associated with a 2nd order Stark shift; two-photon (Raman) Rabi

flopping will be associated with a 4th order shift.

6. Repeat steps 2 through 5 for all beams. A beam in this case is any light with

a unique {intensity, polarization, frequency} triplet. Add the Stark shifts

together.

A.2 RF combs

Pulsed lasers like our 355 nm Raman laser create optical combs with a large

number of frequencies spaced by the repetition rate ωrep = 2πfrep. As far as calcu-

lation of Rabi frequencies and Stark shifts goes, each of these teeth will behave like

a separate CW beam. Therefore, I will review some frequency comb “accounting”

before proceeding.

Assume we have two beams, each an optical comb, OC1 and OC2, with a

relative detuning of δωcomb = 2πδfcomb. Their optical comb teeth are given by

f
(OC1)
l = fopt. carrier + lfrep (A.1)

f
(OC2)
l = δfcomb + fopt. carrier + lfrep (A.2)
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where l ∈ Z, l ∈ [−l0, l0], and l0 is related to the pulsed laser generating the

combs and its bandwidth f
(OC)
BW : l0 ≈ 4f

(OC)
BW /frep = 4

τfrep
, which in QSim’s case is

l0 ≈ 12001.
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Figure A.1: Optical comb of our 355 nm pulsed laser. The laser carrier frequency
c/355 nm ≈ 845 THz lies between states 2P1/2 and 2P3/2 (left). Zooming in (center),

we see the electric field envelope of bandwidth f
(OC)
BW ≈ 71 GHz. Zooming in further

(right), we see the individual comb teeth, spaced by frep ≈ 120 MHz.
.

In the context of Raman transitions and 4th order Stark shifts, it is useful to

look at the beatnote between the two optical combs, which we call an “RF comb”

(RFC), since its frequencies lie on the RF frequency spectrum. To find out the

frequencies f
(RFC)
k of the RF comb teeth, we write down all the combinations of an

1I choose to include most of the intensity envelope by setting its width to four times its band-
width.
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optical comb tooth from OC2 subtracted from OC1 and vice versa:

RFC from two OCs =


OC1− OC2 : l1frep − δfcomb − l2frep

OC2− OC1 : l2frep + δfcomb − l1frep

(A.3)

RFC from one OC = l1frep (A.4)

For the case of two optical combs (A.3), setting l1− l2 ≡ k, we get for the RF comb

teeth:

f
(RFC)
k = kfrep ± δfcomb, k ∈ [−2l0, 2l0] (A.5)

where the ± term is omittted if there is only one optical comb present, as in (A.4).

The detunings {δk} of these RF comb teeth from a transition ftr responsible for the

Stark shift are


One optical comb: δk = ftr − kfrep

Two optical combs: δk = ftr − kfrep ± δfcomb

(A.6)

The transition frequency ftr may be the hyperfine splitting ωHF/(2π), or any other

transition within the S manifold, such as |1, 0〉 ↔ |1,−1〉. Depending on light

polarization, many of these transitions may not be allowed. Depending on the

operation, δfcomb may be equal to fA = (2π)−1 mod (ωHF/ωrep) for a simple carrier

transition, fA ± ωCOM for resonant sideband flopping, or fA ± (ωCOM + δ) for the

M-S scheme. In the latter, δ is the detuning of the laser beatnote from the COM

motional mode.
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A.3 Single-photon Rabi frequencies

After the detunings, the next ingredient necessary to calculate Stark shifts is

the relevant Rabi frequencies. The single-photon Rabi frequency for the transition

between states |i〉 and |j〉 for light of frequency ωl is

gl,ij =
~µij · ~El

~
= El

~µij · ε̂
~

(A.7)

where the electric field corresponding to ωl is ~El = Elε̂. Our Raman laser is pulsed,

and the existence of pulses in the time domain results to its Fourier decomposition

being a frequency comb. The electric field envelope in the pulsed laser is [50]

Eenv(t) =
∞∑

l=−∞

f(t− lTrep)

The Fourier transform of Eenv(t) is

Ẽenv(ω) =

∫ ∞
−∞

e−iωtEenv(t)dt (A.8)

=

∫ ∞
−∞

e−iωt
∞∑

l=−∞

f(t− lTrep)dt (A.9)

=
∞∑

l=−∞

∫ ∞
−∞

e−iωtf(t− lTrep)dt (A.10)

Now imagine that for every term l of the sum, we do the redefinition t′ ≡ t− lTrep ⇒

t = t′ + lTrep:

e−iωtf(t− lTrep) = e−iωlTrepe−iωt
′
f(t′)
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and we have

Ẽenv(ω) =
∞∑

l=−∞

e−iωlTrep
∫ ∞
−∞

e−iωt
′
f(t′)dt′ (A.11)

=

(
∞∑

l=−∞

e−iωlTrep

)
·
[∫ ∞
−∞

e−iωt
′
f(t′)dt′

]
(A.12)

=

[
∞∑

l=−∞

2πδ(ωTrep − 2πl)

]
·
[∫ ∞
−∞

e−iωt
′
f(t′)dt′

]
(A.13)

=

[
∞∑

l=−∞

δ

(
Trep

2π/ω
− l
)]
·
[∫ ∞
−∞

e−iωt
′
f(t′)dt′

]
(A.14)

=
∞∑

l=−∞

∫ ∞
−∞

e−ilωrept′f(t′)dt′ (A.15)

where I used an exponential sum rule and ωrep = 2π/Trep. It is clear that the Fourier

transform Ẽenv(ω) is a sum of discrete frequencies (comb teeth). I divide by Trep to

get time-averaged value over a pulse cycle for a single comb tooth l:

El ≡
1

Trep

Ẽenv(lωrep) =
ωrep

2π

∫ ∞
−∞

e−ilωrept′f(t′)dt′ (A.16)

If f(t) =
√
π/2Eenv,0 sech(πt/τ) [50], we get

El = Ẽenv(lωrep) = Eenv,0
ωrepτ√

8π
sech

lωrepτ

2
(A.17)
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To use the more easily measurable quantity of time-averaged intensity Ī ≡ Ienv(t),

we note that

Ī = Ienv(t) =
1

2
cε0E2

env(t) =
1

2
cε0

ωrepτ

2π
E2

env,0 (A.18)

⇒ Eenv,0 =

√
4πĪ

cε0ωrepτ
(A.19)

Inserting (A.19) into (A.17), we get

El =

√
Īωrepτ

2cε0
sech

lωrepτ

2
. (A.20)

Now we can proceed with the next element to be calculated for (A.7). The

matrix elements ~µij · ε̂ are calculated with the aid of Clebsch-Gordan coefficients for

the corresponding angular momentum values of |i〉 and |j〉; see Jonathan Mizrahi’s

thesis for details [51].

gl,ij =
El
~
C(F,mF , J, F

′,m′F , J
′, I(nucl), q)µij (A.21)

=
El
~
C(. . .)

√
3πε0~c3γ · (2J ′ + 1)

ω3
ij

(A.22)

=
El
~
C̃(. . .)

√
3πε0~c3γ · ~γ/(12πc2)

ω3
ij · ~γ/(12πc2)

= ElC̃(. . .)γ

√
ε0c

4Isat,ij

(A.23)

=
C̃(. . .)

2
· γ

√
Ī

2Isat,ij

· √ωrepτ sech
lωrepτ

2
(A.24)

= gij,0
C̃(. . .)

2

√
ωrepτ sech

lωrepτ

2
(A.25)
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Table A.1: Summary table of Stark shift-related parameters

Mode-locked laser pulse duration τ 14.8 ps

Mode-locked laser pulse rep. rate ωrep/(2π) 120.125 MHz

Isat,P1/2
510.3 W/m2 Isat,P3/2

950.6 W/m2

Power (each Raman beam) 0.66 W

Beam waists (ion location, µm)1 106.7× 8.9 , 114× 11.2

gP1/2,0 2π · 12.06 GHz gP3/2,0 2π · 12.26 GHz

1 As measured on February 3, 2021

where C̃(. . .) ≡
√

2J ′ + 1C(. . .), gij,0 ≡ γj
√
Ī/(2Isat,i,j) and I used the inten-

sity as a function of the electric field, transition saturation intensity [52] Isat,ij ≡

πhcγ/(3λ3
ij) = ~ω3

i,jγ/(12πc2). I note that the γ used is the inverse of the sponta-

neous emission lifetime of about 8 ns [53, 54], for the P1/2 state, and about 6 ns for

the P3/2. Observe that

∞∑
l=−∞

|gl,ij|2 ≈
∫ ∞
l=−∞

dl |gl,ij|2 = C̃2(. . .)g2
0.

A.4 Two-photon Rabi frequencies

The discussion so far was relevant to optical comb teeth and single-photon

transitions of optical frequencies. For a Raman transition between S levels, say

|0, 0〉 ↔ |1, 0〉, the transition frequency ωtr is in the RF range. It can be that 2

optical comb teeth from the same beam (aka comb) interfere and drive the transition,

or 2 optical comb teeth from different combs (beams) interfere with the same effect.
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This physical distinction is made in the equations through the polarization vectors

ε̂1 and ε̂2 for each beam used, and including a provisional absolute relative frequency

shift between them. In any case, the associated 2-photon Rabi frequency will be a

sum of all pairs of optical comb teeth that are spaced m = bωtr/ωrepc apart, and an

additional sum over all states s that mediate that transition and get adiabatically

eliminated:

Ωm,ij =
∑
s

l0∑
l=−l0

gl,isgl+m,si
2∆sl

(A.26)

The detunings ∆sl in principle change with both the tooth l and the mediating state

s. However, given our pulsed laser, the index l will make ∆sl span a range about 4

times the optical comb’s bandwidth 4f
(OC)
BW = 4/τ ≈ 0.28 THz:

∆slmax −∆slmin
≈ 0.28 THz

which is very small (< 1%) compared to the average values of ∆sl = 33 or 66

THz (depending on which P state mediates the Raman transition). Therefore, the

index l will be omitted in (A.26): ∆sl → ∆s. Additionally, the range ±l0 for the

optical comb teeth will be taken to be ±∞ since the function in the sum decays

exponentially with l and this substitution will not have any significant numerical

impact, while it simplifies expressions:

Ωm,ij =
∑
s

∞∑
l=−∞

gl,isgl+m,si
2∆s
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Using (A.25), we get

Ωm,ij =
1

8
g2

0ωrepτ
∑
s

[
C̃isC̃sj

∆s

∞∑
l=−∞

sech
lωrepτ

2
sech

(l +m)ωrepτ

2

]

and after some manipulation and approximating the infinite sum with an integral,

Ωm,ij =
1

4
mωrepτ csch

mωrepτ

2

∑
s

C̃isC̃sjgis,0gsj,0
∆s

. (A.27)

The states s can in principle be any of the 12 states of the P1/2 and the P3/2

manifolds. Grouping these together and realizing that the detunings ∆s are ∆ =

2π · 33.9 THz for the P1/2 state and ∆− ωF = 2π · 66.1 THz for the P3/2 state, we

can write

Ωm,ij =
1

4
mωrepτ csch

mωrepτ

2

g2
P1/2,0

∆

∑
{s}∈P1/2

C̃isC̃sj

+

 g2
P3/2,0

∆− ωF

∑
{s}∈P3/2

C̃isC̃sj

 .
(A.28)

Equation (A.28) is a general formula. For transitions that could be of interest

between states of the S manifold we can substitute the relevant Clebsch-Gordan

coefficients C̃ab and get a simpler relation where a “base 2-photon Rabi frequency”

Ωm,0 emerges (I have ignored all hyperfine splittings since they are ≈ 10−4 relative
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to the fine splitting ωF in the P manifold and the detunings ∆ and ∆− ωF ):

Ωm,|0,0〉,|1,0〉 = Ωm,0(ε−1 ε
−
2 − ε+

1 ε
+
2 ) (A.29)

Ωm,|0,0〉,|1,±1〉 = ±Ωm,0(ε±1 ε
0
2 + ε0

1ε
±
2 ) (A.30)

Ωm,|1,0〉,|1,±1〉 = Ωm,0(ε0
1ε
∓
2 + ε±1 ε

0
2) (A.31)

where Ωm,0 is the polarization-independent 2-photon Rabi frequency for a given

m = bωtr/ωrepc.

Ωm,0 ≡
1

12
mωrepτ

(
g2
P1/2,0

∆
+

g2
P3/2,0

ωF −∆

)
csch

mωrepτ

2
= 0.0171 ·

√
Ī1Ī2.

In the last equation, I substituted the values (A.1) corresponding to QSim’s pulsed

laser, leaving the easily measurable intensities Ī1 and Ī2 of the Raman beams at the

ion location as the only variables. Their units are SI, and Ωm,0 is in rad/s. For the

beam powers and waists shown in Table A.1, Ωm,0/(2π) ≈ 1040 kHz. It is easily

seen that if none of the Raman beams’ wavevector ~k has a projection along the local

magnetic field, i.e. has zero π component (ε0
1 = ε0

2 = 0), no Rabi flopping to the

Zeeman states will be driven. Given (A.29)–(A.31), we can write for the 2-photon

Rabi frequencies btween states of the S manifold:

Ωm,ij = Ωm,0Pij (A.32)
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where Pij is a polarization-dependent factor ranging from 0 to 1; for our typical

lin⊥lin arrangement in QSim, it is 1. To isolate the dependence on m, which will

be useful in a bit, I will also write (A.32) as

Ωm,ij = Ω0Pij
mωrepτ

2
csch

mωrepτ

2
(A.33)

where I set the base 2-photon Rabi frequency Ω0 as

Ω0 ≡
1

6

(
g2
P1/2,0

∆
+

g2
P3/2,0

ωF −∆

)

A.5 4thorder Stark shift

Now that we have the 2-photon Rabi frequencies and the detunings for each

RF comb tooth, we are ready to write a general 4thorder Stark shift formula, using

the general prescription (2.9). For the 4th order Stark shift on state |i〉 from coupling

to state |j〉 via the k-th RF comb tooth, we can write

:  the “coupling” state

:  the state whose frequency is shifted

:  the RF tooth coupling these states

2-photon Rabi frequency between
states   and  , if the frequency of RF
tooth    was on-resonance
and its intensity unchanged 

detuning of RF tooth k from the
transition 
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Using (A.6) and (A.33), we get

Single-beam 4-photon Stark shift

∆E
(4)
k,ij =

Ω2
0

4
P 2
ij

(
kωrepτ

2

)2

csch2 kωrepτ

2
· 1

kωrep − ωij
(A.34)

Cross-beam 4-photon Stark shift

∆E
(4)
k,ij =

Ω2
0

4
P 2
ij

(
kωrepτ

2

)2

csch2 kωrepτ

2
·
(

1

kωrep − ωij + δωcomb

+

+
1

kωrep − ωij − δωcomb

)
(A.35)

To find the total 4th order Stark shift on state |i〉, we thus need to sum over all

coupling states |j〉 and RF comb teeth k2. For example, for cross-beam Stark shifts

we have:

∆E
(4)
single,i =

∑
j

∑
k 6=m

∆E
(4)
k,ij (A.36)

=
Ω2

0

4

∑
j

P 2
ij

∑
k

(
kωrepτ

2

)2

csch2 kωrepτ

2
·

·
(

1

kωrep − ωij + δωcomb

+
1

kωrep − ωij − δωcomb

)
(A.37)

For our usual lin⊥lin Raman beam geometry, the qubit states |↓〉z and |↑〉z can

only Raman-couple to one another, therefore the sum over j only has one term, the

polarization factor Pij is 1, and ωij = ωHF. For a given pulsed laser (given pulse

duration and repetition rate), we can simplify the Stark shift expressions by defining

2In the case that an RF tooth k′ is resonant with the transition ωij , it is omitted from the sum.
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a comb factor for single- and cross-beam geometries:

Kcross,ij(δωcomb) ≡
∑
k

(
kωrepτ

2

)2

csch2 kωrepτ

2
·
(

1

kωrep − ωij + δωcomb

+

1

kωrep − ωij − δωcomb

)
(A.38)

Ksingle,ij ≡
∑
k

(
kωrepτ

2

)2

csch2 kωrepτ

2
· 1

kωrep − ωij
(A.39)

Then, (A.36)–(A.37) become

Single-beam: ∆E
(4)
single,i =

Ω2
0

4

∑
j

P 2
ijKsingle,ij (A.40)

Cross-beam: ∆E
(4)
cross,i =

Ω2
0

4

∑
j

P 2
ijKcross,ij(δωcomb). (A.41)

where the dependence of the 4th order Stark shift on physical factors is nicely sep-

arated: Ω0 codifies the light intensity, Pij codifies the polarization, and the comb

factors K codify the frequency dependence. All these properties of the light pertain

to the ions’ location. To make this statement explicit, I will write for both single-

and cross-beam Stark shifts

∆E
(4)
i = ζĪ1Ī2

∑
j

P 2
ijKij

where ζ does not depend on any light properties. The light intensities Ī1 and Ī2 cor-

respond to the two optical combs interfering. If that’s a single-beam Stark shift, we

replace their product with Ī2
1 . This expression will be very useful when translating

light intensity noise to Stark shift noise.
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Appendix B: The state discrimination algorithm

This section aims to briefly present the state discrimination algorithm used

in QSim, which is the last stage of qubit readout. Is is often viewed as a trivial

stage of quantum simulation, but it often comes up in data analysis, and a quick

presentation will be hopefully useful.

Qubit readout (Fig. B.1) is a multi-stage process. First, the ions are illumi-

nated with a resonant 369 nm “detection” beam. For details, see [13] or [27]. When

an ion interacts with its first detection photon, its spin wavefunction is projected

to either | ↓〉z or | ↑〉z. From there on, it either undergoes the detection cycling

transition absorbing and reemitting photons, or it does not emit at all. Second,

the imaging system collects a small part of this fluorescence and focuses it on the

sensor of an EMCCD camera (Andor iXon Ultra 897). The camera system converts

these photons to current, and ultimately communicates a two-dimensional array to

a PC, containing the counts for every pixel of the rectangular acquisition area. The

acquisition rate of the camera is currently the bottleneck in the repetition rate of

our experimental sequences, because after every exposure it has to undergo a “keep

clean” cycle that cleans the sensor from accumulated charge, even if it was just read

out. Finally, this 2D array of numbers is input to an algorithm that determines
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whether an ion was bright or dark, i.e. |↑〉z or |↓〉z, for every ion individually.

Objective 
lens system EMCCD sensor 

State 
discrimination 
algorithm 

1 2 4 3 

Figure B.1: The flow of qubit state readout. 1. The 369 nm detection light
causes the ions to fluoresce or not, depending on their state. 2. The imaging system
collects a fraction of this fluorescence and focuses it to the EMCCD sensor, with an
overall magnification of about 70×. 3. The EMCCD sensor’s pixels convert incident
photons to current, which is converted to a digital signal indicating the number of
electron counts by the Andor electronics. 4. The QSim computer algorithm decides
if these counts indicate an ion in the bright or the dark state.

Fig. B.2 showcases the flow of the calibration procedure for state discrimina-

tion. This procedures first identifies which subsets of pixels (ROI, region of interest)

within the large exposure area are encircling each ion. After finding these ROIs, it

identifies the optimal fluorescence threshold to classify a certain ROI as bright or

dark. One would naively think that any collected 369 nm fluorescence at all signifies

a bright ion. This is not true, since we have a non-negligible amount of 369 nm light

directed into the imaging optics, that is not ion fluorescence but coming straight

from the laser. Adding to that, camera pixels have a finite probability to “fire” and

appear bright even at the absence of a photon; finally, there is a small but finite

chance that a dark ion will be off-resonantly excited by the 369 nm light and start
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fluorescing (off-resonant pumping).

To start, the ion chain is illuminated with Doppler cooling light and the camera

is exposed for a long duration (of the order of 20 ms). This long duration allows for

a large amount of ion fluorescence to accumulate on the sensor, facilitating drawing

the ROI around each of the bright disks (ions). Once these ROIs are found, the

ion chain is initialized to the bright state and illuminated with resonant detection

light for the normal exposure time, of the order of 0.3 ms. These bright state shots

are repeated 1000 times. The image acquired (stage d in Fig. B.2) is significantly

dimmer than the first Doppler-cooling shot. After that, the chain is initialized in

the dark state and the camera is exposed again 1000 times; any counts registered

now are undesired noise. A procedure is then followed, consisting of comparing a

property of the bright pictures for each ion to the same property calculated for the

dark ones for that ion, and finding a value that optimally delineates between these

two.

Initially we were using as this measure the natural choice of the total counts

enclosed in the ion ROI. Recently, however, we switched to a slightly more elaborate

measure because it was yielding a higher degree of separation between the dark and

the bright distributions (by 0.1− 0.5%, which matters for fidelities that are ≈ 97%

to begin with). For this measure, we average the counts for the brightest l-th and

(l + 1)-th pixels, for example the 4th and 5th brightest ones. The dark and bright

distributions of this measure (quantiles) are slightly more separated than just the

total ROI counts. The reason for that is conjectured to be its robustness against

camera noise and pixels firing randomly: Not more than 1-3 pixels per ROI are
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expected to have this erroneous behavior. Therefore, by discarding the brightest

say 3 pixels we discard all of these spurious bright events. Of course, in the case of a

bright ion, we are also throwing away pixels that registered legitimate fluorescence

counts. However, a fluorescing ion will cause more than 4 pixels in its ROI to register

high counts, with high certainty. Thus, we can afford to throw away some of them

and still be left with some bright pixels if the ion was bright.
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Figure B.2: Stages of the state discrimination algorithm.
a) The cooling shot (i.e. the array of pixel counts) is loaded into memory.
b) The raw cooling shot is rescaled so that the counts are expressed in a range
[0-1] for ease, then smoothened using a gaussian filter of order the ion’s radius as it
appears on the camera, and importantly, converted to a binary landscape by identi-
fying ”sharp edges” with the MaxDetect command of Wolfram Mathematica R©. At
the end of this stage we identify the geometrical center for each of the yellow ”is-
lands” and round its {x,y} coordinates to integers; this location will be the identified
center for this ion (green pixel).
c) The rectangular ROI rectangles are calculated for each ion. Typical choices for
their size are 5 × 5 and 7 × 7, but they can be tailored to account for smaller ion
spacing at the center of the chain, requiring 5× 7 ROI dimensions for these ions.
d) A typical bright shot, with the EMCCD set to maximum EM gain.
e) A typical dark shot (same parameters as the bright shot).

128



Appendix C: The data takers

Humility.

The data takers patiently gather the crops

from their electric plantations.

Pushing buttons and aligning optics,

never cursing at the slip of a tool

or at the loss of a day.

Never arrogant,

with thoughts of a distant warm future

drawing a faint smile on their lips.

Gleams on a monitor is what they are looking for.

And they do not quit until their baskets are heavy

with the precious fruits of their labor.

Oh, how I wish it was easier to be like them.
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