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Quantum computers promise to solve models of important physical processes,

optimize complex cost functions, and challenge cryptography in ways that are in-

tractable using current computers. In order to achieve these promises, quantum

computers must both increase in size and decrease error rates.

To increase the system size, we report on the design, construction, and oper-

ation of an integrated trapped ion quantum computer consisting of a chain of 15

171Yb+ ions with all-to-all connectivity and high-fidelity gate operations. In the

process, we identify a physical mechanism that adversely affects gate fidelity in long

ion chains. Residual heating of the ions from noisy electric fields creates decoherence

due to the weak confinement of the ions transverse to a focused addressing laser.

We demonstrate this effect in chains of up to 25 ions and present a model that ac-

curately describes the observed decoherence. To mitigate this noise source, we first

propose a new sympathetic cooling scheme to periodically re-cool the ions through-

out a quantum circuit, and then demonstrate its capability in a proof-of-concept



experiment.

One path to suppress error rates in quantum computers is through quantum

error correction schemes that combine multiple physical qubits into logical qubits

that robustly store information within an entangled state. These extra degrees of

freedom enable the detection and correction of errors. Fault-tolerant circuits contain

the spread of errors while operating the logical qubit and are essential for realizing

error suppression in practice. We demonstrate fault-tolerant preparation, measure-

ment, rotation, and stabilizer measurement of a distance-3 Bacon-Shor logical qubit

in our quantum computer. The result is an encoded logical qubit with error rates

lower than the error of the entangling operations required to operate it.
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Chapter 1: Introduction

1.1: Quantum Computers

Quantum computers offer a completely different computing paradigm than

classical computers. Harnessing the fundamental properties of quantum mechanics,

quantum computers promise to solve certain classes of problems that are impossible

or intractable with modern classical computers. In some sense, quantum comput-

ers are unavoidable, as the Moore’s law scaling of classical transistors eventually

envisions that bits are reduced to the size of atoms, where quantum mechanics be-

comes the dominating principle. One of the first envisioned applications of quantum

computers is to simulate and solve important physical processes that operate under

the laws of quantum mechanics, including molecular structure and chemical reac-

tion mechanisms [1, 2, 3, 4]. The key idea is that because nature is fundamentally

quantum, a quantum computer will be more efficient at modeling these systems.

In the 90’s, Peter Shor developed an algorithm for factoring large numbers

using a quantum computer that is exponentially faster than its classical counter-

part [5]. The computational difficulty of factoring large numbers is a key pillar of

modern cryptography and thus threatened by the development of quantum comput-
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ers. This algorithm expanded the idea that quantum computers may be useful in a

more general sense for solving broad numerical problems. While Shor’s algorithm is

still many years from practical implementation, there is hope in the near-term that

quantum computers will be able to solve other interesting numerical problems, such

as optimizing complex cost functions, at speeds that exceed the ability of classical

computers [6].

The advantages of quantum computers can be summarized by two main prin-

ciples - quantum superposition and quantum entanglement. Classical computers

operate on bits, which are like a switches that only exist in two possible states -

either 0 (off) or 1 (on). Quantum bits, or qubits, can also take on definite states |0〉

or |1〉, but can also exist in a quantum superposition of these two states. A general

quantum state |ψ〉 is described by,

|ψ〉 = α|0〉+ β|1〉

where α and β are two complex numbers required to define the qubit state. For

two qubits, four complex numbers are required, and for N qubits, 2N numbers

are required to fully describe the system. This exponential scaling is essential to

the power of quantum computers. For example, to simulate a 100-qubit quantum

computer using a classical computer would take at least 100,000 Yotta-bits (1024)

of classical data and possibly many more since in general α, β are continuous!

However, superpositions are fragile and are destroyed when the qubit is mea-

sured, returning |0〉 with probability |α|2 or |1〉 with probability |β|2. Thus, even

2



though all possible 2N quantum states can be simultaneously created and oper-

ated on, the measurement only supplies an N -bit output string, sampled randomly

from total quantum state. This appears to be a bottleneck in quantum comput-

ers, however it can be circumvented by applying the second principle of quantum

entanglement, or more generally quantum interference.

Quantum algorithms rely on the ability to interfere different quantum states

together so that the undesired output states are deconstructively suppressed and the

desired output states are constructively enhanced. If the final superposition of states

is much less than 2N , then the result can be efficiently extracted. As an extreme

example, the Bernstein–Vazirani algorithm only requires one query of the quantum

computer in order to obtain the output of the quantum algorithm [7]. Much of

the art of quantum algorithm design is figuring out how to encode problems into

quantum operations that create the desired interference patterns.

Quantum interference often results in the creation of entangled states. En-

tangled states have no classical analogue and led Einstein to conclude the quantum

mechanical description of reality was incomplete [8], although so far experiments

have not supported this position (see Bell’s inequality [9]). A prototypical entan-

gled state is written as,

|ψ〉 =
1√
2

(|00〉+ |11〉)

If we only measure the first qubit and we obtain |0〉, then we know the second qubit

must also be in |0〉, even though we have not measured it. Stranger still, if we apply

a phase to the first qubit |1〉 → eiφ|1〉, then this phase is shared equally amongst

3



the two qubits, even if they are separated far apart. Quantum entanglement is a

key computational resource available only to quantum computers and is a critical

component of quantum algorithms.

Clearly, quantum computers do not simply offer a simple speed up over clas-

sical computers. Rather they open up an entirely new computational space that we

are just beginning to explore. While there are already compelling reasons to build

a quantum computer, we hope that some of the best applications are yet to come.

The best way to develop new uses for quantum computers is to actually build them

and put them in the hands of users. To cite a relevant historical comparison - no

one could have imagined ubiquity of modern classical computers when the ENIAC

was first being built to calculate artillery firing tables.

1.2: Trapped Ion Quantum Computers

There are several competing qubit technologies that all show potential to even-

tually create large-scale quantum computers. These technologies include trapped

ions, superconducting circuits [10], neutral atoms [11], NV centers [12] and photonic

systems [13]. In the future, other qubit technologies may also enter the race, such

as topological qubits [14]. Spurred by recent private and commercial investment,

ion traps and superconducting circuits have emerged as two of the most mature

technologies.

Despite their successes, the two platforms have very different challenges moving

forward. Superconducting qubits suffer from qubit inhomogeneity due to imperfect
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fabrication control. On the other hand, atomic qubits are defined by fundamental

constants of nature and are perfectly replicable. Superconducting qubits are fixed in

place and hardwired with control lines and thus fundamentally stable, whereas the

“wires” in trapped ion systems are focused laser beams, making the wire connectivity

more flexible but also susceptible to misalignment. The most gainful path forward

in scaling up superconducting system is improving the qubit itself. For trapped

ion systems, the qubit is nearly perfect as is, with the primarily challenge being the

“classical” control associated with positioning and transport of ions relative to some

fixed number of laser beam “wires.”

Trapped ions have long since achieved all of Divicenzo’s criteria that were

laid out as requirements for the implementation of a quantum computer [15]. The

remaining challenge is to scale up the performance of the system to solve interest-

ing and useful applications. The primary long-term vision for large scale ion trap

quantum computers is to have a chip with multiple separate ion chains of length N .

Entangling operations may be performed within a single chain through the shared

motional bus, but then the chain may be broken up and ions may by shuttled around

the trap and merged into a different chains as the quantum algorithm progresses.

This is known as the Quantum CCD architecture [16] and is likely to support 100-

1000 total qubits. This architecture is also likely to require additional “sympathetic

cooling” ions that can recool the data ions to quench any excess motion generated

from shuttling operations [17]. Ultimately several QCCD chips in separate vacuum

chambers will have to be photonically connected [18] in order to achieve systems

with 10,000-100,000 qubits.
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A significant open question in ion trap architecture is how large to make N .

There is an obvious benefit to N ≤ 2, in that the laser beams no longer need to be

focused to address individual qubits. Large beams can be directed at “gate” zones

within the chip, and one or two qubits can be shuttled into this zone to perform

single- or two-qubit gates. However there is also significant overhead associated

with maintaining all-to-all connectivity in these systems, as significant shuttling

overhead is required to execute every time-slice in the circuit. For example, in a

recent demonstration [19] of an N = 2 system running a quantum volume (QV = 64)

circuit consisting of 54 entangling operations, 97% of the total length of execution

time (130 ms) was spent re-cooling and shuttling ions.

ForN > 2, ions now need to be individually addressed, which comes at a design

complexity cost, but can also significantly reduce the overhead shuttling costs since

the on-demand “random-access” connectivity of the system can be much higher.

The same QV = 64 circuit would take only ≈ 12.5 ms in an N = 6 system [20] with

no shuttling required. A useful analogy is size of the bit register in classical CPUs.

While it is possible to implement any classical computation on a 1-bit processor

(essentially a Turing Machine), we know that this is inefficient and will have data

bottlenecks. There is a good reason why CPU manufacturers have been pushing

to increase the size of the CPU register (now 64-bit), which allows the processor

to randomly access more data and increase the efficiency of the computation. The

central theme of this thesis is exploring the implications of making N as large as

practically possible in our quantum processor.
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1.3: Thesis Outline

In Chapter 2, we outline the basic techniques required to trap, cool, prepare

and readout ions that are common to any 171Yb+ system. We also describe the

spacing and motional mode structure in long chains. In Chapter 3, we describe how

the ions are controlled as qubits. We start with a simple model and work our way

up to describe the Raman frequency comb used in this system. The theory behind

single-qubit and two-qubits gate operations is explained, with a focus on how high-

fidelity can be achieved in practice. In Chapter 4, we describe the hardware and

engineering approach used to build our ion trap quantum computer. In Chapter

5, we describe how the machine is operated in practice, including how to perform

the required calibrations. Additionally, we provide various metrics that benchmark

the performance of the machine. In Chapter 6, we discuss the feasibility of further

scaling up the chain length. We identify a detrimental physical mechanism that

affects long chains and then develop a strategy to mitigate it. Finally, in Chapter 7,

we demonstrate a quantum error correction code as a means of scaling trapped ion

quantum computers in the long-term. We conclude in Chapter 8 with an outlook

towards the future of trapped ion quantum computing.
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Chapter 2: Trapped Ion Basics

Trapped ions are an excellent platform for quantum information processing

due to their naturally long coherence times [21] and high fidelity state preparation

and measurement [22]. Since each ion is a fundamental building block of nature, the

qubits are perfectly reproducible, which is a large advantage when ultimately scaling

to many 1000s of qubits. In this chapter we will discuss how to contain and trap

atomic ions and outline the basic control required over the atomic level structure to

perform core functions such as cooling, state preparation and measurement.

2.1: Ion Traps

The first step to working with ions is to trap them in a localized area so that

they can be measured, cooled, and controlled. In general, there are two different

types of traps that can be used to confine ion in three-dimensional wells - RF Paul

traps and Penning traps. RF Paul traps we first developed by Wolfgang Paul in

1935 [23] and for which he shared the Nobel Prize in Physics in 1989 [24]. A linear

Paul trap uses a static confining electric field in one dimension, and a dynamic RF

electric field in the other two dimensions to trap an ion. As long as certain stability

parameters are met (related to the mass/charge of the particle, the time scale of the
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dynamic field, and the trap voltages and geometry), then the dynamic field creates

an effective confining field in those two dimensions.

The other type of trap is Penning trap, which was first conceptualized by Frans

Penning [25] and built by Hans Dehmelt, for which he shared the Nobel Prize in

Physics in 1989 with Paul [26]. In contrast, these traps do not use dynamic fields,

which may make them preferable for precision measurement experiments. Here,

a static homogeneous magnetic field provides confinement of charged particles in

two dimensions (via the Lorentz force) and an inhomogeneous static electric field

provides confinement in the third. In this work, we use a Linear RF Paul Trap, since

they readily support one-dimensional ion chains that can be individually addressed

with lasers for quantum computations.

2.1.1: Linear RF Paul Trap

An ion is trapped if it experiences a confining force along all three Cartesian

axes. One can write a general electric potential with quadrupole terms as,

Φ(x, y, z) =
U

2

(
αx2 + βy2 + γz2

)
(2.1)

Applying Gauss’s Law leads to the constraint,

∇2Φ(x, y, z) = α + β + γ = 0 (2.2)
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It is easy to see that at least one of {α, β, γ} must be < 0, or in other words,

deconfining. This is the basis of Earnshaw’s theorem, which states static potentials

alone cannot confine point charges, resulting from the fact that the electric field at

a point in free-space must be divergenceless. Now, consider adding an oscillating

RF quadrupole potential in addition to the the static potential, described generally

by

Φ(x, y, z) =
U

2

(
αx2 + βy2 + γz2

)
+
Ũ

2
cos(ΩRF t)

(
α′x2 + β′y2 + γ′z2

)
(2.3)

Defining x̂ to be along the axis of the trap, then Gauss’s law can be satisfied by

setting,

−(β + γ) = α > 0

β′ = −γ′, α′ = 0

(2.4)

This describes a static confining potential along x̂ (the axial direction) and a dynamic

inverting quadrupole potential in the ŷẑ-plane (the radial directions). To see how

the dynamic field can generate confinement, consider just the dynamic potential

along the ẑ direction. The electric field is given at a location z is given by:

Ez(t) = V z cos(ΩRF t) (2.5)

If the oscillating field is fast enough so that the ion only moves a small distance over

the period of one RF cycle, then the position of the ion can be decomposed into an

equilibrium value z0 and a part that harmonically oscillates about that point with
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amplitude A = eV z0/mΩ2
RF ,

z(t) = z0 + A cos(ΩRF t) = z0 +
eV z0

mΩ2
RF

cos(ΩRF t) (2.6)

The electric force felt by this ion is,

Fz(t) = −eEz(t)

= −eV cos(ΩRF t) z(t)

= −eV cos(ΩRF t)

(
z0 +

eV z0

mΩ2
RF

cos(ΩRF t)

)
= −eV z0 cos(ΩRF t)−

e2V 2z0

mΩ2
RF

cos(ΩRF t)
2

(2.7)

Averaging over one RF period,

Fz = − e2V 2

2mΩ2
RF

z0 (2.8)

Thus integrating over the “fast-motion” of the ion reveals a restoring force

relative to the “slow motion” of the ion (z0). This arises from a ponderomotive force

that, in general, causes charged particles to seek areas of minimum field amplitude

in an inhomogeneous oscillating electric field. The slow-motion is also called the

“secular motion” of the ion, which is also well approximated by harmonic motion
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with ω called the secular frequency,

Fz = −kz = −ω2
secmz

ωsec =
eV√

2mΩRF

(2.9)

We note that the motion of the ion along ŷ can be treated in a similar manner.

Importantly, these two directions do not couple to each other and are completely

separable. For a more careful analysis of the RF + DC confinement in the radial

dimensions, Equation 2.3 can be used to write equations of motion that, with proper

substitutions, resemble equations of the form d2x
dξ2

+ [a− 2q cos(2ξ)]x = 0, which are

well known class of functions called the Mathieu functions. Here a and q represent

unitless parameters that determine the stability of the confinement (which was as-

sumed in Eq. 2.6). While detailed analysis can be found in other resources [27], here

we will simply present the solution to the Mathieu equation,

z(t) = [z0 + z̃ cos(ωzt)]
[
1− qz

2
cos(ΩRF t)

]
(2.10)

Where z0 indicates the ions equilibrium position offset from the RF null, z̃ is

the amplitude of the ions secular motion and qz = 2eV
mR2Ω2 is a dimensionless Mathieu

parameter approximately equal to qz ≈ 0.25 in this work. Relative to the simple

treatment above, the Mathieu solution contains a term that describes motion at the

bare RF frequency applied to the trap electrodes, known as the “micromotion” of

the ion. When the ion at at the RF null (z0 = 0) and qz � 1, the motion of the ion
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is well approximated by harmonic motion. However, if there are stray electric fields

that displace the ion from the RF null (z0 6= 0), then the micromotion becomes

magnified by the displacement and can quickly dominate the secular motion. This

can cause Doppler shifts that reduce the effectiveness of cooling and state detection,

as well as reducing the the appropriateness of the harmonic approximation. Since the

harmonic approximation is crucial to the operation of our two-qubit entangling gates,

one should always seek to minimize excess micromotion by applying compensation

fields until z0 ≈ 0 (similarly along the other two axes). There are several techniques

to measure micromotion [28].

2.1.2: Micro-fabricated Surface Traps

In practice, linear RF Paul traps can be realized rather simply by situating

four conducting rods along the corners of a rectangle (situated in the yz-plane),

with RF connected to one diagonal pair and the other pair shorted to ground at the

relevant RF frequency (typically through a capacitor). Two end cap electrodes with

a gap in between are situated along the x-axis and provide the static confinement

field. This particular design is called a “four-rod” trap and is schematically shown

in Fig. 2.1(a). Four-rod traps provide limited optical access but the design can be

modified to use thin “blade” electrodes that provide higher numerical aperture [20].

The DC pair of blades can be segmented to provide coarse shaping of the static axial

potential. Both four-rod and blade traps are examples of “macro-fabricated” traps.

These traps have dimensions of a few inches, are typically assembled by hand, and

may have non-repeatable trap characteristics that require calibration.
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Figure 2.1: (a) A macro-fabricated four-rod trap places the RF confining voltage
(red) on opposing diagonals of a square. The ground rods (black) are shorted to
ground at RF frequency, but may hold a DC voltage. (b) The four-rod trap can
be deformed into a micro-fabricated surface geometry and maintain a potential
that traps ions (blue dot). Due to the symmetry breaking of the deformation, the
surface geometry introduces higher-order multipole moments that can cause ion
height dependent trap characteristics.

The push for scalable quantum computers has highlighted the need for precise

traps with repeatable properties and many control electrodes required for shuttling

ions between multiple axial trapping wells. Micro-fabrication techniques can achieve

precise dimensional machining of electrodes at∼ 1 µm resolution, at the cost of being

limited to a mostly two-dimensional surface. A deformation of the four-rod trap to

the a surface trap topology is shown in Fig. 2.1(b) and demonstrates how a trapping

quadrupole-like RF field can still be realized above a plane. Although this work uses

a micro-fabricated surface trap, micro-fabrication does not necessarily imply surface

geometry. Using cantilevered MEMS-type features [29] or stacking of multiple 2D

wafers [30] the geometry can be made to more closely resemble a blade-trap, while

still realizing the precision benefits of micro-machining.

As of this thesis, there are two primary competing manufacturing processes

for micro-fabricated traps: silicon CMOS and laser-etched fused silica. CMOS fabri-

cation leverages the capabilities developed from the chip manufacturing industry to
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build ion trap features out of silicon substrates. It is extremely precise and repeat-

able, but is limited to a small selection of available materials. In particular, while

silicon is ideal for eventually integrating photonic waveguides [31] or peripheral elec-

tric elements (e.g., DACs [32], photodetectors [33]), it is not an ideal material from

the ion’s perspective. Silicon is a great photo-detector and so stray light from laser

beams will create electrical carriers that may excite motion in the ion. Care must

be taken to electrically shield any semiconducting material from line-of-sight of the

ion.

The other manufacturing process uses focused femto-second lasers to “acti-

vate” areas of the substrate that are later etched away at a higher rate than the

non-illuminated areas. After evaporating gold onto the substrate at an angle, the

etched channels then define the electrode geometry. Compared to CMOS processes,

which can involve hundreds of steps, the process here is much simpler, which typi-

cally means higher process yield and faster turnaround time for prototyping. Fused

silica is also a preferable substrate since it is an insulator, and will not exhibit the

photo-detector effect of silicon. On the other hand, UV light can ionize defects

within the glass that leads to a slow charging/discharging of background electric

field that can decompensate the ion from the RF null. We make a strong distinc-

tion between the “slow charging” from insulators and the “prompt charge response”

from semiconducting photodiodes; the former can be calibrated for while the latter

is quite damning for a trapped ion quantum computer. In this work, we use a CMOS

micro-fabricated surface trap manufactured by Sandia National Laboratories [34].

The main drawback of micro-fabricated traps compared to their macro pre-
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decessors are the voltage limitations that can be placed on the electrodes. While

macro-traps can readily support up to ∼ 1 kV of RF voltage, it is risky to apply

> 300 V to a CMOS surface trap. This is a result of the relatively small separation

(∼ µm) between RF and GND planes, with dielectric breakdown occurring within

the insulating oxide layer that separates them. The lower RF voltage reduces the

trap depth, which makes ion loss events more common due to residual background

gas collisions. Additionally, it places a cap on the achievable secular frequency

(Eq. 2.9), especially in higher mass ions, which can limit the speed of two-qubit

gates.

Another consideration in surface traps is that the geometry breaks the rota-

tional symmetry of the system, as can be seen in Fig. 2.1(b), and requires one to

consider higher order multi-poles in the trapping potential. In simple surface trap

models, the contribution from the hexapole term is roughly equal to the contribu-

tion from the quadrupole term [27]. The dominant effect of this in our system is a

shift of the secular frequency that depends on the height of the ion from the trap

surface (i.e., ωz → ωz(z)). Intuitively, this is because the RF field lines are more

concentrated below the ion than above it. Thus, for stability of radial motional

mode frequencies in surface traps, it is critical to routinely check and calibrate the

ion height, for example, by minimizing the micromotion along the vertical direction.

2.1.3: Ion Crystals and Normal Modes

In section 2.1.1, we described how the motion of one ion decomposes into

three sets of independent motion along the axes of the trap. If ωx � ωr, then the
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axial potential can support many ions, aligned along x. Assuming the ions are cold,

they will arrange into a crystal that minimizes the total potential energy of the

system. The condition for N ions to form a linear chain, rather than a zig-zag type

arrangement is [35],

ωr
ωx

> 0.77
N√

logN
(2.11)

Assuming this condition is met and considering just the axial direction for now, the

potential energy of the chain is given by a combination of the static axial confining

potential Φ(x) and the inter-ion Coulomb repulsion.

U(~x) = UΦ + UCoulomb

=
N∑
i

Φ(xi) +
e2

4πε0

∑
i<j

1

|xi − xj|

(2.12)

The position of each ion can be solved for numerically by minimizing the potential

energy,

~x∗ = argmin
~x

U(~x) (2.13)

It is useful to define a unit system for working with potentials. Native distance and

energy units normalized to MHz can be defined as,

d0 ≡
(

e2

4πε0m(2π × 1 MHz)

)1/3

(2.14)

E0 ≡
e2

4πε0d0

(2.15)

Then we can write a dimensionless potential energy V = U/E0, using a di-
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mensionless coordinate ui = xi/l0 and expand the static potential in a polynomial

basis as,

V (~u) =
∑
i

(∑
n

Xn
ui
n

n!

)
+

1

2

∑
i 6=j

1

|ui − uj|
(2.16)

Where the coefficients Xn are unitless parameters that describe the relative

strength of each term in the Taylor expansion of the static potential. The benefit

to parameterizing the potential in this manner is that there is a straightforward

conversion to real units. In real units, the static potential has the same form given

by

UΦ(~x) =
∑
i

(∑
n

cn
xi
n

n!

)
(2.17)

With conversion between real and dimensionless parameters,

cn =
E0

d0
nXn (2.18)

With this choice of units, there is also a very intuitive understanding of the

X2 parameter. For one ion in the trap with no other static fields applied, X2 = A

will correspond to an axial mode frequency of
√
A MHz. So for example X2 = 0.04

will give a 200 kHz axial mode frequency. For 171Yb+, the conversion factors can be
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summarized as follows.

c1 = 192 eV/m×X1

c2 = 70.0 eV/mm2 ×X2

c3 = 25.5 keV/mm3 ×X3

c4 = 9.32 MeV/mm4 ×X4

(2.19)

For the remainder of this thesis we will refer to the dimensionless parameters

Xn. In our system, the Raman beams and detection optics are equispaced by 4.43µm

at the ions. In order to align the ions to the imaging optics, the ions must be

equispaced as well. Define the beam centers as ~b and the ion positions as ~x. The

goal is then to numerically optimize the trap parameters to minimize the standard

deviation of the alignment error σE = ‖~b−~x‖/
√
N for the N ions. Perfect alignment

(σE = 0) can only be achieved in an infinite square well, which unfortunately requires

infinite terms in the Taylor expansion.

A quadratic potential only is not sufficient to achieve alignment across the

chain, as shown in Fig. 2.2(a). Reasonable alignment (σE = 160 nm) can be achieved

with the addition of a quartic term as shown in Fig. 2.2(b). If we relax the require-

ment of alignment on the external edge ions, a further improvement (σE = 52 nm)

can be achieved on the internal ions, as shown in Fig. 2.2(c). In this case, the edge

ions are generally not usable as qubits as they are offset by 760 nm from the Raman

beams and detection optics. This results in a trade off between beam alignment and

qubit number that will ultimately depend on system design (e.g. individual Raman
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(a)

(b)
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Figure 2.2: Optimizing 15 ions for alignment on imaging optics equispaced at
4.43 µm. The left column indicates the ion positions ~x (blue dots) along the x

direction relative to the beam centers ~b (grey lines). The right column shows the

alignment error ~E = ~b−~x. (a) A quadratic potential only, (X2, X4) = (0.029, 0), op-
timizing across the entire chain. (b) A quadratic and quartic potential, (X2, X4) =
(−0.005, 0.0023), optimizing across the entire chain. (c) A quadratic and quartic
potential, (X2, X4) = (0.00188, 0.00177), ignoring the end ions during optimization.

beam width) and the desired use case of the system. For high-fidelity operations,

as in the case of this thesis, we bias towards beam alignment. In Section 5.1.3 we

describe a useful secondary purpose for these edge ions.

Now that we have found the equilibrium positions of the ions in the chain,

we now consider their harmonic motion about these points. The ion chain can be

treated classically as a system of coupled harmonic oscillators. The Lagrangian of
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this system is given by,

L = T − U

=
N∑
i

miq̇
2
i,α

2
−

N∑
i

U(qi,α)

(2.20)

Where qi,α are generalized coordinates with i indexing the ions and α = x, y, z

indexing the Cartesian coordinates. Unlike the potential presented in Eq. 2.12 which

just considered the axial direction, we now must consider the all three Cartesian

directions to describe the motion, including the pseudo-potential created by the

RF. Assuming an upright quadrupole, the potential looks like,

U(~r) = UΦ(~x) + URF (~y, ~z) + UCoulomb(~r)

=
N∑
i

Φ(xi) +
N∑
i

miω
2
sec

2
(y2
i + z2

i ) +
e2

4πε0

∑
i<j

1

|~ri − ~rj|

(2.21)

With UΦ(~x) left arbitrary, but may be a polynomial expansion such as Eq. 2.17.

We can Taylor expand the potential energy U about the equilibrium points q
(0)
i with

qi = q
(0)
i + q̃i,

U(qi) = U
(
q

(0)
i

)
+ q̃i

(
∂U

∂qi

)
q
(0)
i

+
∑
j

q̃iq̃j
2

(
∂2U

∂qi∂qj

)
q
(0)
i ,q

(0)
j

=
q̃i
2

∑
j

q̃jUi,j

(2.22)

The first term in the expansion is a scalar and can be set to zero. The second

term in the expansion is also zero as a consequence of static equilibrium (equivalent

to minimizing the potential energy in Eq. 2.13). Thus the third term, which is just
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the Hessian matrix (U = Ui,j) of the potential, contains all the information about

the motion of the ions about equilibrium. Assuming that the equations of motion

are oscillatory of the form q̃i(t) = bi exp−iωt then the expanded Lagrangian equation

of motion can be written as,

∑
j

Ui,jbi =
∑
j

ω2Ti,jbi (2.23)

Where Ti,j is just a diagonal matrix with entries corresponding to the mass of

each ion in the chain, which we now label as M. For a single-species ion chain, this

reduces to just a constant, although here we explicitly allow for the possibility of

chain of mixed-species (note for multiple species, ωsec and therefore URF also depend

on mass). Then identifying λ = ω2, Eq. 2.23 is just an eigenvalue problem, which

can be solved numerically,

M−1U~bk = λk~bk (2.24)

The Hessian matrix U is a 3N × 3N matrix, corresponding to each ion in

each of the three Cartesian directions. Thus there will be 3N normal modes of

motion in the chain, ~bk, which are unit vectors describing the participation of each

ion in that mode, each oscillating at frequency wk =
√
λk. The motional modes

form an independent basis set to describe the motion of the chain and are therefore

orthogonal. Typically we group the modes into three sets - the axial modes and the

two transverse (synonymously called radial) set of modes. Note that the direction

of the transverse modes may not necessarily align with the Cartesian coordinates,
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depending on the trap geometry or applied static quadrupoles (e.g. yz quadrupole,

Qyz). The directions of the transverse modes defines the “principal axes” of the trap,

which can be determined by evaluating the curvature of the non-Coulomb potential

(U0 = UΦ + URF ) at ~r = ~0 using a similar eigenvalue method. The principal axes

are then ~bp where H denotes the Hessian operator.

H(U0)|x,y,z=0
~bp = λp ~bp (2.25)

An example of the mode spectrum ωk, using U0 for the system in described this

thesis (see Section 4.2.1) is shown in Fig. 2.3. Note that for gates operating on the

transverse modes (as in this thesis), it is important to keep the highest energy axial

mode well separated from the lowest energy radial mode, so as to avoid exciting

axial motion. Overlap of the radial modes, while not ideal, is mitigated by aligning

the ∆~k of the Raman lasers to be aligned along the principal axis of the set of radial

modes used for gates. As a side note, a consequence of requiring equispaced ions is

that the radial modes are also roughly equispaced, which can simplify gate design

(see Section 3.3.4).

An example of the radial mode participation vectors ~bk for the mode spectrum

given in Fig. 2.3 is shown in Fig. 2.4. The leftmost column describes the in-phase

motional mode, synonymously called the lowest spatial-frequency mode, correspond-

ing to the highest energy radial mode. The intuitive picture for this relation is that

in-phase motion in the radial direction minimizes the distance between ions and

thus maximizes the Coulomb interaction. For the axial modes, it is the opposite;
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Figure 2.3: (Top) Full spectrum for all the normal modes in a 15-ion chain using the
potential described in Section 4.2.1. (Bottom) A detailed view of each individual
set of normal modes along each of the three principal axes of the trap.

in-phase motion in the axial direction maximizes the distance between ions and

thus minimizes the Coulomb interaction, making it the lowest energy axial mode.

Although historically this mode been called center-of-mass (COM) mode, we avoid

that terminology in this thesis, because it does exhibit a spatial “bending” feature.

Throughout this thesis, we consistently label the in-phase mode with mode index 1

for both axial and radial sets.

The rightmost column describes the out-of-phase motional mode, synony-

mously called the highest spatial-frequency mode, corresponding to the lowest en-

ergy radial mode (and historically called the “zig-zag” mode). The out-of-phase

motion in the radial (axial) direction maximizes (minimizes) the distance between
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Figure 2.4: Lower radial mode participation matrix for 15-ion chain corresponding
to the red spectrum in Figure 2.3. The left(right)-most column corresponds to the
in(out-of)-phase motional mode with the highest(lowest) energy.

ions, thus minimizing (maximizing) the Coulomb interaction and making it the low-

est (highest) energy mode amongst the mode set.

2.2: The 171Yb+ Ion

There are a finite selection of elements to use for trapped ion quantum infor-

mation processing. The most rigid requirement is that the ion have a hydrogen-like

atomic level structure, most commonly found in ions with only a single outer elec-

tron (e.g. alkali earth metals), although some dual outer electron species also exhibit

hydrogen-like spectra (e.g., Al+). The complexity of atomic levels grows rapidly with

increasing number of outer electrons and the amount of lasers required to control the

atom quickly becomes impractical. The list of practical ion choices is thus typically
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limited to: Be+, Mg+, Ca+, Sr+, Ba+, Zn+, Cd+, Yb+, and Hg+. Among these

choices, the commercial availability of laser wavelengths on the primary Doppler

cooling line and/or the qubit transition should be considered for scaling systems

into robust large-scale quantum computers.

There are also several different strategies to encode a perfect two-level system

(that of an ideal qubit) into realistic multi-level atom. Zeeman qubits are encoded

into ground state S1/2 Zeeman levels in isotopes with typically zero nuclear spin.

The qubits are inherently magnetic field sensitive, but also easily controlled with

RF frequencies (∼MHz) and benefit from simple atomic level structure (no hyperfine

levels). Additionally, there are no auxiliary states in the ground state other than

the qubit states, making leakage impossible.

Hyperfine qubits in isotopes with non-zero nuclear spin (I 6= 0) are encoded

into the ground state S1/2(F = I ± 1/2,mF = 0) levels typically split by frequencies

on the GHz scale. Since ∆mF = 0, these qubits are called “clock-qubits” and are

first-order magnetic field insensitive. Thus hyperfine qubits have many of the ben-

efits of Zeeman qubits with longer practical coherence times. Typically an isotope

nuclear spin of I = 1/2 is ideal since it minimizes the number of auxiliary states,

although higher nuclear spins can be used with the cost of precise laser polariza-

tion control for state preparation and measurement. Optical addressing of hyperfine

qubits typically requires two laser beams in a Raman configuration.

Finally, optical qubits make use of a low-lying D states to encode the qubit

states, connected by an electrical quadrupole transition, typically S1/2 ↔ D5/2.

While the lifetimes of of the meta-stable D states are quite long (∼ s) compared
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to coherent operations, they are not ∼infinite as in the case of Zeeman/HF qubits,

which may pose a fundamental long-term limitation for ion trap quantum computers.

Also, the local oscillator in this case is an optical frequency and must be stabilized

to ∼Hz linewidths to maintain reasonable qubit coherence, a non-trivial task. On

the other hand, qubit operations only require one laser beam, which can make the

optical design simpler.

12.642812118466 + δ2z GHz

δ2z = (310.8)B2 Hz  [B in gauss]

2S1/2

2.105 GHz
2P1/2

γ/2π = 19.7 MHz

δZeeman = 1.4 MHz/G

36
9.

52
62

 n
m

(7
39

.0
52

4 
/ 2

)

171Yb+

F=1

F=1

F=0

F=0

2D3/2

F=2

F=1
0.86375(3) GHz

3D[3/2]1/2
F=0

F=1
2.2095 GHz

93
5.

18
79

 n
m

2F7/2

F=4

F=3

F=3

F=2
1D[5/2]5/2

63
8.

61
51

 n
m

63
8.

61
02

 n
m

0

1

2.438 µm

29
7 

nm

τ = 8.07 ns

γ/2π = 4.2 MHz
τ = 37.7 ns

γ/2π = 3.02 Hz
τ = 52.7 ms

435.5 nm

467 nm

τ ~ 10 yrs

2D5/2 F=2

F=3

411 nm

γ/2π = 22 Hz
τ = 7.2 ms

2P3/2

100 THz
1.35 µm

(9
9.

5%
)

(0.5%)

(0.2%)
(1

.8
%

)

(9
8.

2%
)

32
9 

nm

1.65 µm(1.0%)

(9
8.

8%
)

(17%)

(83%
)

3.4 µm

Zeeman Splittings (∆m=1):
         2S1/2 F=1:  +1.4 MHz/G
         2P1/2 F=1:  +0.47 MHz/G
         2D3/2 F=1:  +1.4 MHz/G
         2D3/2 F=2:  +0.84 MHz/G
         2F7/2 F=3:  +1.8 MHz/G
         2F7/2 F=4:  +1.4 MHz/G

Percentages (XX.X%) show 
the branching ratio for that 
transition.

Figure 2.5: Relevant atomic energy levels for operating the 171Yb+ ion as a qubit.

For hyperfine qubits, 171Yb+ is a great choice because it is a stable isotope

with nuclear spin I = 1/2. The primary Doppler cooling line 2S1/2 ↔2 P1/2 is at

369.5 nm, which is UV but also within the range of where laser diodes are still
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commercially available1 [36] and compatible with optical fibers over short distances.

For qubit control, the Raman wavelength that minimizes two-photon Stark shifts is

at 355nm, where there are several commercially available high-power lasers2.

The atomic level structure of 171Yb+ is shown in Figure 2.5. The qubit is

defined on the 2S1/2 ground state, on the ∆mF = 0 hyperfine splitting as follows,

|0〉 = |F = 0,mF = 0〉

|1〉 = |F = 1,mF = 0〉 (2.26)

2.2.1: Ionization and Loading

The first step to trapping an ion is to ionize a neutral atom near the center

of the RF null. Neutral atoms reside in solid fragments of an isotopically enriched

(95%) 171Yb+ source placed inside a stainless steel tube that is closed at one end.

The tube is resistively heated by passing current (2.06 A) through a tungsten coiled

filament welded to the closed end, causing the sample to heat up and atoms to

evaporate. Because the oven is in a UHV environment, where the mean free path is

∼ km, the evaporated atoms become collimated by the aspect ratio of the tube and

form a well directed flux beam. The atomic flux beam is oriented at the bottom of

the chip trap, passing through a load slot milled through the chip, and arriving at

the RF null located above the surface of the chip.

The neutrals are then photo-ionized in a two-stage process. First, the electron

1Nichia NDU1113E
2Paladin Compact 355-4000
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in the neutral atom is excited from 1S0 → 1P1 by a 398.9 nm laser. From this

excited state, the continuum limit for ionizing the the electron is ≈ 394 nm. Several

readily available wavelengths are suitable for this ionization process including the

369.5 nm Doppler cooling and 355 nm Raman lasers required to operate the 171Yb+

ion. Typically, there is limited available laser power at 369.5 nm (∼ mW), which

can limit the ionization rate. In comparison, there is excess beam power (∼ W)

available from the Raman 355 nm laser, in particular from picking off the 0th AOM

order from the beam modulators, which is otherwise beam-dumped. This has the

added engineering complexity associated with re-routing that beam with limited-

space constraints, but with benefit of fast ionization rates.

In this system, we elect to use a third option, a free-running high-power

(120 mW) laser diode3 operating at 393 nm and modulated by a fast shutter sys-

tem [37]. This ionization light is spatially multiplexed via polarization (beam cube)

with the 399 nm neutral excitation beam into a fiber that is routed to a beam de-

livery box mounted on the vacuum chamber. A reflective collimator4 at the fiber

output collimates the beams independent of the wavelength. An achromatic lens5

focuses the beams to a waist of 17 µm at the RF null. With 10 mW of 393 nm power

and 5 µW of 399 nm power, we achieve an average ion loading rate of 0.5 s/load

from a hot oven.

The neutral excitation and ionizing beams are overlapped with the RF null,

oriented parallel to the chip surface and perpendicular to the velocity vector of the

3Nichia NDU4316
4Thorlabs RC08FC-F01
5Edmund Optics #65-980
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atoms. This is important because the neutral atoms are thermally distributed with

a velocity peak above room temperature and would see a broad Doppler shifted

1S0 → 1P1 line for a neutral excitation beam oriented parallel to the flux. By

orienting the beam perpendicular to the flux, we see the Doppler-free linewidth,

which provides isotope selectivity.

2.2.2: Doppler Cooling

Now that a 171Yb+ ion exists within the RF trapping region, it sees the confin-

ing psuedo-potential. However, the ion is quite hot because it maintains the thermal

energy required to evaporate it out of the solid state. This energy must be removed

from the ion in the form of photons in order for the ion to become well localized

within the trap. To see how this is accomplished, consider a laser detuned by ∆

from an electronic transition in an atom. Then the scattering rate of photons is

given by [38],

γs =
sγ/2

1 + s+ 4∆2/γ2
(2.27)

where s = I/Is is the saturation parameter with saturation intensity given by

Is = πhc/3λ3τ for the resonant wavelength of the transition λ and the lifetime of

the excited state τ . γ is the angular linewidth of the transition γ = 1/τ . The

first order Doppler-shift seen by the ion is then given by δD = −~k · ~v where ~v is

the velocity vector of the ion and ~k is the k-vector of the laser. Then the effective

detuning seen by the ion is given by ∆D = ∆ + δD. When the ion is moving in

the same (opposite) direction as the photons, then the frequency of the photon is
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red(blue)-shifted and the effective detuning decreases (increases). If the laser is

detuned red of the transition, ∆ < 0, then the scattering rate will increase when

the ion is moving in the opposite direction of the photons. Each absorption of

a photon changes the momentum of the ion by ~k in the direction of k̂, whereas

the emission of a photon is isotropic and averages to zero momentum transfer over

several scattering events. Therefore, the momentum of an ion moving in a direction

opposite to the k-vector of the laser is preferentially removed, resulting in a loss of

kinetic energy and cooling of the ions.

Since the ion is oscillating within the RF pseudo-potential, each half-period

of motion will be blue-shifted, providing several opportunities for cooling. Unlike

a free, untrapped atom, which requires counter-propagating sets of laser beams in

all three Cartesian dimensions to cool (6 beams total), trapped ions only require a

single Doppler cooling beam. The caveat is that the ~k of Doppler cooling beam must

have projections along all the principal axes of the trap in order to fully cool the

ion. In this system, the Doppler cooling beam is oriented at 45◦ relative to the trap

axis (x̂) and parallel to the chip surface (xy-plane). The radial axes of the trap are

then tilted at 45◦ relative to the chip surface with a DC yz-quadrupole field (Qyz).

In this configuration, the Doppler cooling beam has projections onto the axial and

both radial sets of motional modes.

The optimal detuning value of the Doppler cooling beam ∆ will depend on the

temperature of the ion. Since the Doppler cooling mechanism depends on the slope

of the scattering rate curve, the maximum cooling efficiency will be achieved at the

maximum slope. The location of this maximum slope will depend on both the ion
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temperature due to the Doppler broadening and the applied laser power due to power

broadening. In 171Yb+ the primary cooling line is on 2S1/2(F = 1)→ 2P1/2(F = 0)

with linewidth γ/2π = 19.7 MHz. In all of our experiments with chains, we start

with 1 ms of Doppler cooling at ∆ = 2π×−42 MHz detuning and then proceed with

1 ms of second-stage Doppler cooling at ∆ = 2π × −8 MHz with a weaker beam

near one saturation intensity. The Doppler limit is given by TD = ~γ/2kB which for

171Yb+ is ≈ 480 µK. Although the average momentum from spontaneous emission

averages to zero, 〈p〉 = 0, the average squared momentum does not, 〈p2〉 6= 0,

representing a heating process. The Doppler limit is the equilibrium where the

heating rate equals the cooling rate.

As stated above, the primary Doppler cooling line used in 171Yb+ is 2S1/2(F =

1)→ 2P1/2(F = 0), although several factors make this process deviate from an ideal

two-level system. The first is the existence of Zeeman levels in the 2S1/2(F = 1)

state. From the excited 2P1/2(F = 0) level, the ion will probabilistically relax

into any one of the Zeeman levels. Thus a mixture of linear π̂ and circular σ̂±

polarizations is required to ensure the ion continues to scatter photons. Additionally,

a magnetic bias field is required in destabilize coherent dark states that can arise

from superpositions of angular momentum states that interfere to create net zero

coupling to the 2P1/2(F = 0) level [39]. A magnetic field of B ≈ 5 G is applied

perpendicular to the surface of the trap and the k-vector of the Doppler beam,

defining an atomic quantization axis and lifting the degeneracy of the Zeeman states.

The ideal polarization of light, which equalizes the Rabi frequency for all the Zeeman

states, is linear and oriented at ≈ 55◦ relative to B [39].
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Figure 2.6: Schematic depicting the relevant atomic energy levels that must be
addressed in order to efficiently cool 171Yb+. Not shown is the 2D3/2 manifold,
which also must be actively depopulated.

The second deviation from the ideal level system is the existence of hyperfine

structure in 171Yb+. Driving the transition 2S1/2(F = 1) → 2P1/2(F = 0) can

occasionally off-resonantly excite 2P1/2(F = 1), since the hyperfine splitting in the

excited state is only 2.105 GHz. From here the ion can decay into 2S1/2(F = 0)

which would cause cooling to cease. In order to bring the ion back into the cooling

cycle, we also need to drive 2S1/2(F = 0) → 2P1/2(F = 1) as shown in Figure 2.6.

This is accomplished by creating 14.748 GHz sidebands on the main cooling light

with a resonant free-space EOM6.

Finally, as shown in Figure 2.5, there is 0.5% probability that the ion de-

cays into the 2D3/2 manifold from the excited 2P1/2(F = 1) state. This D-state

is metastable with τ = 52.7 ms and removes the ion from the cooling cycle after

6Qubig, PM - Yb+ 14.7

33



only ≈ 200 scattering events. An IR laser at 935 nm depopulates this state to the

bracket 3D[3/2]1/2 state, which quickly decays back into the main cycling path. As

above, the Zeeman and hyperfine structure also exists in the 2D3/2 manifold, which

means the 935 nm laser requires a mixture of π̂ and circular σ̂± polarization, and

sidebands at 3.072 GHz created by a resonant EOM in order ensure the ion cannot

get stuck. In the end, all the auxiliary frequencies and lasers required for Doppler

cooling 171Yb+ are only meant to ensure that the ion continues to scatter photons

on the main transition so that the ion can cool efficiently.

We also note that if the ion collides with a background gas particle while it is

in the excited 2P1/2 state, it can inelastically scatter into the long-lived (τ ∼ 10 yrs)

2F7/2 state. Empirically, we observe that application of high-power 355-nm Raman

light can recover the ion from this dark state, likely through a nonlinear multi-photon

process. A 638-nm laser can also be used to repump via the 1D[5/2]5/2 state.

2.2.3: State Preparation

Now that there is a cold, well-localized ion in the trap, we can use it to

store quantum information. In order to run circuits, the ion must start in a well

defined quantum state. We initialize the quantum state into |0〉 by means of optical

pumping. We wish to clear out the 2S1/2(F = 1) state, primarily by exciting to

the 2P1/2(F = 1) state, which has a high branching ratio into |0〉. Over several

scattering events the probability of remaining in the 2S1/2(F = 1) rapidly decays.

In this system, we accomplish this by adding 2.105 GHz sidebands to the same

369.5 nm light used for the main line of Doppler cooling (with ∆ = 0 and being
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Figure 2.7: Schematic depicting the relevant atomic energy levels that must be
addressed in order to efficiently pump 171Yb+ into the |0〉 state. Not shown is the
2D3/2 manifold, which also must be actively depopulated.

certain to turn off the 14.748 GHz sidebands). As shown in Figure 2.7, the 2S1/2(F =

1) → 2P1/2(F = 0) transition does not contribute to the pumping, but it also

does not degrade fidelity significantly because it is 14.7 GHz off-resonant from the

undesired 2S1/2(F = 0) → 2P1/2(F = 1) transition. As with Doppler cooling, this

process requires 935 nm light with the proper polarization and frequency sideband

in order to depopulate the 2D3/2 manifold. We use a 100 µs “slow pump” procedure

with a low saturation intensity to further reduce the risk of off-resonant excitation.

After optical pumping, we measure 99.78% fidelity for the |0〉 state, with only 0.02%

error due to the optical pumping procedure and the rest due to detection errors (see

Section 5.3.1).
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2.2.4: State Detection

At the conclusion of a quantum circuit, we must measure the state of all the

individual ions in the chain to extract the results of the algorithm. The detection

scheme in 171Yb+ is based on state-dependent fluorescence. As shown in Figure 2.8,

we illuminate the ion with light that is resonant with 2S1/2(F = 1) → 2P1/2(F =

0). Ions in |0〉 are off-resonant by 14.7 GHz from this light and will scatter very

few photons, making it “dark”. On the other hand, ions in |1〉 are resonant and

will scatter many photons, making it “bright”. Since the decay from 2P1/2(F =

0)→ 221/2(F = 0) is forbidden, the ion will cycle in this transition, emitting many

photons. Even if the ion decays to the 2D3/2 manifold, it will likely get excited to

3D[3/2]1/2(F = 0) by 935 nm, which is forbidden to decay to |0〉, and therefore it

will return to the detection cycle without an error.

Even though a single photon is enough to collapse the wavefunction of the

qubit, the bright/dark states are long-lived over several hundred scattering events.

In our typical detection window of 100 µs, a bright ion will scatter around 1000 pho-

tons, which makes it rather easy to gather sufficient SNR to discriminate between

dark and bright states. Figure 2.9 shows a typical photon histogram for a state

prepared in 1√
2
(|0〉+ |1〉). When the ion is bright, we collect an average of ≈ 10 pho-

tons corresponding to ≈ 1% total detection efficiency (see Section 4.5). The number

of photons detected is Poisson distributed about this mean value. To distinguish

bright from dark, we use a simple threshold discriminator set at 1.5 photons. On a

single shot, if the the number of photons collected is below (above) this threshold
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Figure 2.8: Schematic depicting the relevant atomic energy levels that must be
addressed in order to perform state detection. Not shown is the 2D3/2 manifold,
which also must be actively depopulated.

then we declare the state |0〉 (|1〉), as shown in Figure 2.9. With this technique we

achieve an average detection fidelity of 99.54% (see Section 5.3.1), which is close to

the maximum theoretical detection fidelity of 99.85% at our detection efficiency [40].

The main detection error is caused by leakage from the cycling transition by

2.105 GHz off resonant excitation to 2P1/2(F = 1), which can cause a bright ion to go

dark. For this reason, it is important to drive detection efficiency as high as possible

to maximize the probability of detecting > 1 photon before the ion is pumped dark.

Additionally, the detection window should be minimized to the point where there

is no excess separation between the |0〉 and |1〉 state histograms. This reduces the

error due to background dark counts (which would cause a dark ion to look bright),

detection crosstalk (from neighboring bright ions), and dark-to-bright off-resonant

excitation. Different discrimination schemes above and beyond a simple threshold,
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Figure 2.9: Typical photon histogram for a state prepared in 1√
2
(|0〉 + |1〉), mea-

sured over a 100 µs detection window, and accumulated over many experimental
repetitions. We use a threshold discriminator at 1.5 photons (dashed black line) to
distinguish between the bright |1〉 state (blue) and the dark |0〉 state (red).

such as time-resolved photon counting [41] and adaptive Bayesian estimation [42]

may improve detection fidelity. Additionally, the detection efficiency can readily be

improved by increasing the quantum efficiency of the photon detector in the UV

range, for example with a superconducting nanowire single-photon detector [43, 44].

Finally, other atomic transitions can supplement the state-dependant fluorescence

scheme, such as shelving to the 2F7/2 state [45], to decrease the off-resonant excita-

tion errors.

2.2.5: The 171Yb+ Hyperfine Structure

As described in Equation 2.26, the qubit is defined on the ground state hy-

perfine “clock” transition separated by ω0/2π = 12, 642, 812, 118.5 + δ2 Hz, where

δ2 = (310.8)B2 Hz is the second-order Zeeman shift for a magnetic field B in

Gauss [40, 46]. This transition is called a clock state because ∆mF = 0, which
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means it is first-order insensitive to magnetic field noise, which greatly increases

its coherence time. There is still a quadratic sensitivity to magnetic field noise,

although the effect is much smaller as long as B is kept small. Recall that some

non-zero B is required to define the atomic quantization axis and prevent population

trapping in dark states.

The total atomic system in 171Yb+ consists of two spin-1/2 particles, the neu-

tron and the electron. The F = 0 state is a singlet state and the F = 1 state is a

triplet state. Then in terms of the two spins in the system,

|0〉 =
1√
2

(|↓e↑n〉 − |↑e↓n〉)

|1〉 =
1√
2

(|↓e↑n〉+ |↑e↓n〉) (2.28)

Thus in order to flip the qubit state |0〉 → |1〉, there must be a phase shift of the

electron spin |↓e〉 → |↓e〉, |↑e〉 → −|↑e〉. For this reason, the lifetime of the |1〉 is

practically infinite, since even a magnetic dipole transition on the electron will not

change the qubit state, due to the symmetry of the mF = 0 singlet and triplet

states. To create a phase shift in the electron spin we must apply a B-field that is

parallel to the DC bias field B and has a frequency that is resonant with ω0. In our

system, a microwave horn antenna is used to couple the resonant MW frequency

into free-space with linear polarization and the electric field perpendicular to B.

As a side note, the Raman interactions described in Section 3.1.2 create a fictitious

B-field that is also oriented along B to generate this phase shift.

With microwave control of the qubit, we can characterize the natural coherence
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Figure 2.10: Microwave T2 for three physical qubits in a 15-ion chain. The contrast
is fit to a Gaussian decay Ae−(τwait/T2)2 , with average fit value T2 = 2.84(16) s.

time of the qubit by preparing 1√
2
(|0〉+ |1〉), waiting, and then applying a π/2 pulse

of varying phase that attempts to return the qubit into a pure |0/1〉 state, called

a Ramsey fringe. The extent to which the qubit does not perfectly return to |0/1〉

quantifies the decoherence in the system and is called the Ramsey fringe amplitude.

Additionally, during the wait time, we suppress static magnetic field inhomogeneity

using a dynamical decoupling technique that applies π-pulses with alternating 90◦

phase offsets, commonly known as an (XY )N pulse sequence [47], to periodically

refocus the qubit spin. The resulting data is shown in Figure 2.10. We observe

that the resulting decay is better fit to a Gaussian (Ae−(τwait/T2)2), compared to an

exponential decay, with average T2 = 2.84(16) s. The coherence time of this echo

experiment is limited by control noise rather than the qubit itself, as T2 > 1 hour has

been achieved in 171Yb+ in other experiments [21]. In particular, residual magnetic

field noise and/or drift in the LO used to generate the MW tone will result in phase
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noise and cause decoherence. In the future magnetic field noise can be decreased by

operating our qubit in a lower bias-field or by using magnetic shielding.
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Chapter 3: From Ions To Qubits

In order to compute with qubits, one must be able to implement a universal

gate set. Quantum gates on qubits are represented mathematically in a simple form

using matrices. The challenge then is to control a physical Hamiltonian so that the

desired unitary matrix is actually implemented on the ion. In the following sections,

we describe the Hamiltonian for a trapped ion system and then depict how it can

be controlled to implement digital single- and two-qubit gates that form a universal

gate set.

3.1: Coherent Raman Control

Lasers are the primary tool for controlling trapped ions. To build intuition on

these interactions, we first present a simple model of single CW laser beam and a

qubit encoded on a dipole allowed transition. Then, we introduce modifications to

this simple model to allow for two-photon Raman transitions on hyperfine qubits.

Finally, we describe the pulsed Raman frequency comb that is used in this system

for coherent control of the qubits.
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3.1.1: Simple Trapped Ion Model

A trapped ion consists of two near-perfect quantum systems: a spin qubit

rotating at its resonant frequency (ω0) and quantum harmonic oscillator defined by

the frequency of ion motion in a harmonic trap potential (ωm).

Hspin =
1

2
~ω0σ̂z

Hmotion = ~ωm(a†a+
1

2
)

H0 = Hspin +Hmotion

(3.1)

Controlling the ion corresponds to controlling both of these degrees of freedom.

For now, imagine that ω0 is an optical frequency such that the trapped ion can be

addressed with near-resonant laser light. For the simple case of a single laser beam

addressing a dipole transition, the perturbing Hamiltonian can be written as:

H1 = −d̂ · E (3.2)

where E is the applied electric field at the ion location x̂ and d̂ is the dipole operator.

This gives the total Hamiltonian,

H = H0 +H1 (3.3)

Assume a traveling wave E = E0ε̂ cos(~kx̂ + ωt + φ) and using E0(d̂ · ε̂) =

Ω(σ̂+ + σ̂−), where Ω is the resonant Rabi frequency defined by the frequency with
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which population is exchanged between |↓〉 ↔ |↑〉. The spin lowering and raising

operators σ̂+/σ̂− are defined by σ̂+ = σ̂x + iσ̂y = |↑〉〈↓| and σ̂− = σ̂x − iσ̂y = |↓〉〈↑|.

Transforming to the interaction frame, HI = U †HU + i∂U
†

∂t
U characterized by the

unitary U = e−iH0t/~, and using the RWA approximation (ω, ω0 � Ω) to ignore the

fast rotating terms at e±i(ω+ω0)t, we can write,

HI =
~Ω

2

(
σ̂+e

i(~kx̂−µt−φ) + h.c.
)

(3.4)

Where µ = ω − ω0 parameterizes the detuning of the laser beam frequency

from the resonance. In this simple case, we are only considering a single motional

mode (one of three for a single ion). In practice, this is accomplished by aligning

the ~k vector of the laser beam to be parallel with one of the principle trap axes (in

this example, k̂ ‖ x̂). Since the mode decomposition forms a independent basis set

that describes the motion of an ion, the modes do not couple to each other and we

can ignore the other two modes that are not addressed. The position of the ion

can be expanded into two parts, the mean (stationary) position of the ion and the

small harmonic oscillations about that mean, ~kx̂ = kxeq + η(â†+ â) with the Lamb-

Dicke parameter η = kx0, x0 =
√

~/2mωm representing the zero-point spread of the

ground state wave function, and â†/â representing the phonon creation/annihilation

operators. With this expansion, the interaction Hamiltonian becomes,

HI =
~Ω

2
σ̂+ exp[iη(âe−iωmt + â†eiωmt)]e−i(µt−φ) + h.c. (3.5)

44



Expanding the exponent exp[ηx] ≈ 1 + ηx + η2

2
x2 . . . up to first order of the

Lamb-Dicke parameter, we can write:

HI ≈
~Ω

2
[(σ̂+e

−i(µt−φ) + σ̂−e
i(µt−φ))(1 + iη(âe−iωmt + â†eiωmt))]

=
~Ω

2
[(σ̂+e

−i(µt−φ) + σ̂−e
i(µt−φ)) + iη(σ̂+e

−i(µt−φ) + σ̂−e
i(µt−φ))(âe−iωmt + â†eiωmt)]

(3.6)

There are three particular cases of interest we can look at with µ = 0,±ωm.

In each case, we again perform the RWA approximation and ignore terms that are

oscillating on the order of ωm.

Case 1: µ = 0

Here the Hamiltonian reduces to

Hcarrier =
~Ωnn

2
(σ̂+e

iφ + σ̂−e
−iφ) (3.7)

This operation describes a spin transition only corresponding to |↓〉|n〉 ↔ |↑〉|n〉.

This is called the carrier transition.

Case 2: µ = −ωm

Here the Hamiltonian reduces to

HRSB =
~Ωn−1,n

2
(âσ̂+e

iφ + â†σ̂−e
−iφ) (3.8)

This operation corresponds to flipping the spin and removing one quanta of

motional energy, i.e., |↓〉|n〉 ↔ |↑〉|n− 1〉. This is called the red sideband tran-
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sition.

Case 3: µ = ωm

Here the Hamiltonian reduces to

HBSB =
~Ωn+1,n

2
(â†σ̂+e

iφ + âσ̂−e
−iφ) (3.9)

This operation corresponds to flipping the spin and adding one quanta of

motional energy, i.e., |↓〉|n〉 ↔ |↑〉|n+ 1〉. This is called the blue sideband

transition.

We point out that in all cases, there is a modified Rabi frequency given by

Ωm,n = Ω0|〈m|eiη(â†+â)|n〉|

= Ω0Dm,n

(3.10)

Where Dm,n is the Debye-Waller factor. Since Dm,n = Dn,m, assume without loss of

generality that n ≥ m, then this factor is given by:

Dm,n = e−η
2/2ηn−m

√
m!

n!
Ln−mm (η2) (3.11)

Where Ln−mm is the generalized Laguerre polynomial. In the Lamb-Dicke regime,

where η2(2n + 1) � 1, these Debye-Waller factors for the modification of the Rabi

frequency in the carrier, red sideband, and blue sideband transitions are shown in
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Fig. 3.1 and can be summarized as follows.

Ωcarrier ' Ω0[1− (n+ 1/2)η2]

ΩRSB ' Ω0η
√
n

ΩBSB ' Ω0η
√
n+ 1

(3.12)

By assumption of the Lamb-Dicke regime, the correction to the carrier frequency

is small, whereas the Rabi frequency of the red/blue sideband transition is reduced

by the Lamb-Dicke parameter and depends more strongly on the motional quantum

state, a fact that we can exploit to perform thermometry on the ion. Another feature

to note is that when the ion is in its motional ground state (n = 0) then ΩRSB = 0

whereas ΩBSB = Ω0η. Intuitively, there is no more motional energy to remove in

the ground state. We can exploit this asymmetry to perform sub-Doppler cooling

of ions that relies on the existence of a dark state (see Section 5.1.2).

3.1.2: Raman Transitions

Despite the simple model presented above (one-ion, single motional mode,

single CW laser beam, dipole transition), it can readily be extended to more complex

situations. Encoding a qubit in a dipole-allowed transition would be a poor choice

due to the typical lifetimes of the excited state (∼ ns). Thus the electric dipole

assumption is the first to be discarded. To optically address a hyperfine transition,

as in 171Yb+, we use two laser beams with frequency ω1, ω2, each detuned from

possibly multiple excited (dipole-allowed) states by ∆i, with the frequency difference
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Figure 3.1: Simple model of a trapped ion showing the three basic operations we
can achieve with a laser: a carrier transition (black), and red sideband transition
(red) and a blue sideband transition (blue).

between the two beams tuned to the hyperfine qubit resonance frequency ω0 plus

some detuning µ, so that ω1 − ω2 = ω0 + µ. When the resonance condition is

satisfied (i.e., when the beat-note between the two lasers are tuned to hyperfine

qubit frequency), the hyperfine states become coupled via a two-photon stimulated

Raman transition. When the detuning from the excited state (∼ ∆i) is large enough,

the excited state probabilities become negligible (∼ 1/∆i). Since the time scale

for excited state dynamics goes like ∆i, compared to the typically much slower

qubit state dynamics, which go like (∼ Ω), the excited state can be adiabatically

eliminated to create a coupling that is formally equivalent to the process described

in Section 3.1.1. In our experiment, ∆i is 33 and 67 THz, whereas Ω is ∼ 500 kHz.

The electric fields of the two Raman beams, indexed by j = 1, 2, can be
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described by:

Ej = Ej ε̂j cos(~kjx̂+ ωjt+ φj) (3.13)

Making the following identifications:

ω ↔ ω1 − ω2

~k ↔ ∆~k = ~k1 − ~k2

φ↔ ∆φ = φ1 − φ2

(3.14)

The carrier interaction Hamiltonian can be written almost identically to Eq. 3.7:

Hcarrier =
~Ω0

2
(σ̂+e

i∆φ + σ̂−e
−i∆φ) + δ(2)σ̂z (3.15)

We note that Raman transitions couple to motion along the direction defined

by ∆~k. If one wishes to maximize ∆~k (for example, to speed up two-qubit gates),

the Raman beams are typically chosen to counter-propagate so that |∆~k| = 2|~k|

Additionally, there is a new term on the right hand side of the Hamiltonian that

corresponds to an AC Stark shift (also know as the Autler-Townes effect) that shifts

the qubit levels due to off-resonant coupling of the Raman beams to the excited

states. The parameter δ(2) = δ
(2)
↑ −δ

(2)
↓ characterizes the magnitude of the differential

two-photon Stark shift between the two qubit states. The two-photon Stark shift
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for each qubit state is defined as [48]:

δ
(2)
↑/↓ =

∑
j

[
E2
j

4~2

∑
i

|〈↑ / ↓|d̂ · ε̂j|i〉|2

∆i,j

]
(3.16)

So far, in the interaction Hamiltonian, we have rolled up the details of the laser

polarization and the dipole coupling matrix into an effective Rabi frequency Ω. With

Raman transitions, more consideration must be taken into the beam polarizations

and it is worth explicitly writing down the expected Rabi frequency as [48]:

Ω0 =
E1E2

4~2

∑
i

〈↑|d̂ · ε̂2|i〉〈i|d̂ · ε̂1|↓〉
∆i

(3.17)

For the case of Raman transitions between hyperfine states of the S1/2 mani-

fold, where each Raman beam is tuned between the two excited P1/2 and P3/2 mani-

folds split by fine-structure (ωFS) and detuned from the P1/2 states by ∆1 ≈ ∆2 = ∆,

the Rabi frequency is given by [49]:

Ω0 = PF,mF→F ′,m′F
g1g2

3

(
1

∆
+

1

∆− ωFS

)
(3.18)

Where g1, g2 are the resonant one-photon Rabi frequencies of the each beam

evaluated on the dipole element d̂0 of the cycling 2S1/2(F = 1,mF = 1) ↔ 2P3/2(F =

2,mF = 2) transition [49]:

gj =
Ej
2~
|d̂0 · σ̂+| (3.19)

The prefactor in Eq. 3.18, PF,mF→F ′,m′F , contains all the information about the po-
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larization of the Raman beams relevant to driving an |F,mF 〉 → |F ′,m′F 〉 transition

in the S1/2 ground state manifold. In general, the polarization of a laser beam

can be expressed as a linear combination, ε̂i = ei−σ̂− + eiπσ̂π + ei+σ̂+, of the laser’s

left circular (σ̂−), linear (σ̂π), and right circular (σ̂+) polarization components with

|ei−|2 + |eiπ|2 + |ei+|2 = 1. The polarization prefactor can be succinctly described by

P = i(ε̂∗2× ε̂1) ·B̂, where B̂ defines the quantization axis of the ion. The polarization

prefactor can be enumerated for all the possible hyperfine transition as follows [50]:

P0,0→1,0 = (e0
−e

1∗
− − e0

+e
1∗
+ )

P0,0→1,−1 = −(e0
−e

1∗
π + e0

πe
1∗
+ )

P0,0→1,1 = (e0
+e

1∗
π + e0

πe
1∗
− )

P1,0→1,−1 = (e0
−e

1∗
π + e0

πe
1∗
+ )

P1,0→1,1 = (e0
+e

1∗
π + e0

πe
1∗
− )

(3.20)

For typical operations, we wish to maximize the qubit drive and minimize the

coupling to the Zeeman levels to avoid qubit leakage errors. From the equations

above, this condition can be enforced by ensuring that there is no π-light in the

Raman beams (ε0π, ε
1
π = 0). Thus the polarization prefactor in most set-ups can be

reduced to P = e0
−e

1∗
− − e0

+e
1∗
+ . This condition can be achieved by using linearly

polarized light in both Raman beams that are perpendicular to each other and also

to the magnetic field (colloquially called the “lin-perp-lin” configuration).

Continuing on in this specific case of hyperfine transitions with Raman beams
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tuned between the P1/2 and P3/2 manifolds, we can write down the two-photon stark

shifts for each laser beam j:

δ
(2)
↓,j =

g2
j

3

(
1

∆
− 1

∆− ωFS

)
δ

(2)
↑,j =

g2
j

3

(
1

∆ + ω0

− 1

∆− ωFS − ω0

)
δ

(2)
j = δ

(2)
↑,j − δ

(2)
↓,j

≈
−g2

jω0

3

(
1

∆2
+

1

(∆− ωFS)2

)
(3.21)

Where the final approximation is due to ω0 � ∆, ωFS. It is clear from Eq. 3.18

and 3.21 that for Raman beams tuned between the P1/2 and P3/2 manifolds, the

couplings add constructively for the Rabi frequency, and subtract destructively for

the 2-photon Stark shifts. In fact, there is a minimum in the 2-photon Stark shift

relative to the Rabi frequency, δ(2)/Ω0 ≈ 2×10−4 at ∆∗ = ωFS/3, which corresponds

to a Raman wavelength of 355 nm [51]. This wavelength is also readily generated as

the third harmonic of an Nd:YAG or Nd:YVO4 laser, which means there are many

commercially-available high-power sources, making this wavelength selection near

ideal for 171Yb+.

3.1.3: Raman Frequency Combs

In the previous section, we detailed how the phase of the Raman qubit drive,

φ, depends on the phase difference between the two Raman beams, ∆φ = φ1 − φ2.

In order to coherently control qubits over long gate sequences, this phase must

be very stable. One way to generate two phase-locked laser beams is to split a
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single laser beam with a beam-splitter and direct them to the ion along two arms

of an interferometer. In this case, noise on ∆φ will primarily result from optical

path length fluctuations caused by acoustic vibrations on fast time-scales (∼ kHz),

air turbulence on medium time-scales (∼ Hz) and thermal drifts on slow time-

scales (∼ mHz). Of course, in order to drive hyperfine transitions, the two beams

must also have frequency components that are separated by the qubit frequency,

ω0. Generating this tone in a split-CW setup is challenging because AOMs do not

operate at the required frequency (∼ GHz) and EOMs have very low conversion

efficiency, particularly in UV wavelengths. An alternative to splitting one CW laser

beam, is to use two separate CW laser LOs running at a frequency difference near

the hyperfine splitting. In this case, reliably locking the optical phase of the two

beams at ω0 = 12.6 GHz to Hz level stability can be quite challenging and the

environmental shielding requirements are more stringent because the two optical

paths are now completely separate, compared to just the paths after the beam

splitter (i.e. the interferometer is bigger).

A different solution is to use a pulsed Raman laser generated by a mode-locked

optical frequency comb. Inside the laser cavity, a laser gain medium (in our case

Nd:YVO4) sets the gain bandwidth, ∆νg, that specifies the frequency range over

which light is emitted from the medium. The laser cavity itself also supports discrete

longitudinal laser modes that are spaced in frequency ∆νc = c
2L

set by the length of

the cavity L. If ∆νc � ∆νg, then many laser modes are simultaneously supported

within the cavity. So far the output of this laser is still CW (and multimode) and

requires one more ingredient to generate pulses - a mode-locking element. The mode
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locking element in our case is a passive Saturable Bragg Reflector (SBR) on one end

of the cavity that becomes more reflective at higher laser intensities. Thus, the SBR

will preferentially amplify high-intensity spikes that ultimately leads to all laser

modes being phase locked to their maximum at the location of the SBR at a fixed

point in time. As time evolves, this high-intensity spike travels spatially back and

forth in the cavity and forms the pulse of our pulsed laser. This is all to highlight the

point that mode-locked lasers can be thought of as an ensemble of phase-coherent

CW laser beams. If any (or multiple) pairs of the CW beams in the ensemble are

spaced by ω0, then one can drive qubit transitions. As an added benefit, the large

peak power of the pulses at the fundamental 1064 nm wavelength leads to high

conversion efficiencies to UV third-harmonic 355 nm wavelength through nonlinear

SHG and SFG processes.

Fortunately, the simple model for Raman transitions given in 3.1.2 can readily

be extended to pulsed lasers. Instead of a constant electric field amplitude, we now

consider one that is periodically modulated. The laser’s time-varying electric field

amplitude at a fixed point in space is given by [52]:

Ej(t) = Ej

N∑
n=1

p(t− n/frep) (3.22)

where p(t) is the pulse shape and frep is the repetition rate of the laser (frep = ∆νc).

We assume for now that the Raman transition is being driven by two lasers with

independent carrier frequencies and polarizations, but the difference between the two

carrier frequencies is less than the common repetition rate. This can be accomplished
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by splitting the output of a pulsed laser and passing the two beams through two

AOMs with a frequency difference fA = (ω2 − ω1)/2π and two sets of polarization

optics. In this setup, the phase of the Raman drive is also just set the by the phase

difference of the two RF tones applied to the AOMs, ∆φ = φ1 − φ2.

In the regime where each laser pulse is weak and many pulses are required to

drive the ion from |↓〉 to |↑〉, it is useful to analyze the effect of Raman driving in the

frequency domain [53]. If the pulse width τ is much less than the repetition period

1/frep, then the Fourier transform of the electric field amplitude is given by [52]:

Ẽj(ω) =
∑
k

Ẽj,k(ω) = Ej
∑
k

δ(ω − ωk) p̃(ω − ωj) (3.23)

where δ(ω) is a sharply peaked function of width ∼ frep/N . This describes an

optical frequency comb whose teeth (indexed by k) are centered on the carrier fre-

quency ωj, spaced by the repetition rate 2πfrep, and modulated by the envelope

function p̃(ω). This result is identical to our previous picture of many equally

spaced CW laser modes supported simultaneously in the laser cavity and modu-

lated by the laser gain bandwidth. For a mode-locked laser, the pulse shape is

given by p(t) =
√
π/2 sech(πt/τ) [52, 54], which results in an envelope function

p̃(ω) = τ
√
π/2 sech(ωτ/2) and an RMS electric field amplitude:

Ēj =

[
frep

N

∫ ∞
−∞

Ej (t) dt

]1/2

=
√
frepτ Ej (3.24)

Spectrally, the time-averaged electric field amplitude corresponding to the kth tooth
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of the jth frequency comb is therefore

Ej,k = frep

∫ ∞
−∞
|Ẽj,k(ω)| dω = Ej frep p̃(ωk − ωj) (3.25)

This enables us to define the single-photon Rabi frequency gj,k due to the kth comb

tooth, which is obtained by substituting Ej,k for Ej in Eq. 3.19.

As long as the pulse width τ is short enough so that the frequency comb’s

bandwidth is larger than the qubit splitting ω0, then pairs of teeth from each comb

can be brought into resonance in order to drive the Raman transition. The resonance

condition is therefore

|fA + nfrep| = ω0/2π (3.26)

where n is an integer. Inserting gj,k into Eq. 3.18, summing over all resonant comb

pairs, and assuming frepτ � 1, we find the Raman Rabi frequency [52],

Ωn =
∑
k

P
g1,k g2,k+n

3

(
1

∆
+

1

∆− ωFS

)

≈ Ω0 hn (3.27)

due to this resonant comb tooth, where we have defined the comb-independent Rabi

frequency

Ω0 = P Ē1Ē2
|d0 · σ̂+|2

12 ~2

(
1

∆
+

1

∆− ωFS

)
(3.28)
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and the envelope function,

hk = kπfrepτ csch (kπfrepτ) (3.29)

which has the property h0 = 1.

Equations 3.28 and 3.29 cleanly divide the factors that determine the Raman

Rabi frequency: the envelope function hk is a simple function containing only the fre-

quency comb’s temporal characteristics—its pulse length and repetition rate—while

the comb-independent Rabi frequency Ω0 contains the parameters that describe any

laser’s interaction with a set of dipole-allowed atomic transitions—the transitions’

dipole moments and the laser’s polarization, intensity, and single-photon detunings.

In this sense, using a pulsed laser is very similar to the model presented in Section

3.1.2 with a few caveats. Note that the Rabi frequency in Eq. 3.28 is proportional

to the time-averaged electric field of the two Raman beams, which is a quantity

that is convenient to measure experimentally, but somewhat obscures the fact that

the pulses must be overlapped in time in order to drive the qubit transition. In

practice this is easily accomplished by including a motorized delay stage on one

arm of interferometer. The second caveat is that the frequency combs contain other

frequency components that are off-resonant from the qubit transition and can cause

four-photon Stark shifts, as discussed in the following section.
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Figure 3.2: Schematic representations of the (a) optical frequency combs and (b)
beatnote comb. The solid (dotted) teeth in the beatnote comb represent co(counter)-
rotating terms. The curvatures of the envelope functions have been exaggerated
relative to the comb spacings.

3.1.4: Four-Photon Stark Shifts

An intuitive picture of pulsed Raman manipulation is depicted in Fig 3.2.

The two optical combs, are both centered on the optical carrier frequency ω1 and

are offset by the AOM difference frequency 2πfA. The beatnotes between the two

optical combs create an RF beatnote comb, which is centered on zero and extends

to frequencies of order ∼ 1/τ . The beatnote comb is naturally expressed in units of

Ω0, and its envelope is hk.

There are two sets of teeth in the beatnote comb: the co-rotating teeth cor-

respond, intuitively, to photon absorption from comb 2 and emission into comb 1

and appear at kfrep + fA, while the counter-rotating teeth correspond to absorp-
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Figure 3.3: Schematic diagram of the near-resonant beatnote comb teeth, illustrating
the relationship between x and fA. As in Fig. 3.2, the solid (dotted) teeth in the
beatnote comb represent co-(counter-)rotating terms.

tion from comb 1 and emission into comb 2 and appear at kfrep − fA. In order to

drive the Raman transition from |↓〉 to |↑〉, frep and fA must be set to place one

beatnote comb tooth at ω0/2π, which is equivalent to the resonance condition given

in Eq. 3.26. The other beatnote comb teeth, which are off-resonant and do not

drive the transition, give rise to a four-photon Stark shift. These four-photon Stark

shifts scale as ∼ Ω2/∆ and can be ×100 larger [50] than the two-photon Stark shifts

discussed in Section 3.1.2. These shifts are somewhat unique to using the optical

frequency comb approach. We can neglect Stark shifts due to the Zeeman states

because the Raman Rabi frequency between |↓〉 and those states is zero if there is

no π component to either Raman laser’s polarization (Eq. 3.20), as is the case a

“lin-perp-lin” configuration.

A change in the laser parameter frep has the effect of shifting the frequen-

cies of the beatnote comb teeth, thereby changing the resulting Stark shifts. We

parameterize the variable frep with the dimensionless parameter,

x ≡ ω0/2π mod frep

frep

(3.30)
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which ranges from 0 to 1. The resonance condition in Eq. 3.26 becomes simply,

fA = (n± x) frep (3.31)

for driving the qubit transition, which is illustrated in Fig. 3.3. Although n can be

any integer, typically |fA| < frep because of the finite bandwidths of the AOMs.

The Stark shift on the qubit transition frequency due to the kth comb tooth

is [50],

δ
(4)
k = −|Ωk|2

2∆k

(3.32)

where Ωk is given by Eq. 3.27 and ∆k is the detuning of the kth tooth away from

the qubit transition. Summing over all co- and counter-rotating comb teeth, we find

a total Stark shift

δ(4) =
∑
k

δ
(4)
k = δ

(4)
0

∑
k

h2
k

(
1

k − n− x+ fA/frep

(3.33)

+
1

k − n− x− fA/frep

)
,

where we define the comb-independent Stark shift

δ
(4)
0 = − |Ω0|2

4πfrep

(3.34)

We note that Eq. 3.33 holds whether one comb tooth is resonant with the qubit

transition or not, but we implicitly omit the resonant term, if there is one, from

the sum. Although δ
(4)
0 does depend on frep, the integer n, which specifies the pair
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Figure 3.4: The 4-photon Stark shift versus frep (parameterized by x). The vertical
lines indicate where the plot crosses zero.

of comb teeth immediately below resonance, is typically 107 in this experiment.

Therefore, varying x from 0 to 1 changes frep by less than 1%, so δ0 can effectively

be treated as a constant prefactor.

While it is possible to drive transitions using only one Raman beam that con-

tains either one comb (“resonant operation” with x = 0/1) or two combs (“phase

insensitive operation” since ∆k = 0), both cases require elliptical or circular po-

larization. This complicates the picture a bit, since a single comb can interfere

with itself to create intra-beam Stark Shifts. In this experiment, with the polar-

izations set to be linear in both beams, Raman transitions are driven with a single

comb in both beams (“phase-sensitive operation”) and Stark shifts arise only from

inter -beam (i.e., cross-beam) interference.

In Fig. 3.4, we compare the ratio of the Stark shift given in Eq. 3.33 to the

Rabi frequency given by Ω = Ω0 hn, over a variety of frep values corresponding
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to x ∈ [0, 1]. Interestingly, there are particular values of frep at which the four-

photon Stark Shift is completely nulled, which reduces pulsed Raman operation to

the simplicity of CW Raman operation. Since frep depends on the cavity length

inside the laser, this is typically set during manufacturing and cannot be specified

by the customer at purchase. It is clear that the four-photon Stark shift can change

dramatically with frep, leading to “good” or “bad” lasers resulting from probabilistic

frep values sampled over the manufacturing distribution. In order to take control

over this parameter, we modify the laser to place the output coupler of the laser

cavity on a movable stage, thus allowing us to tune the length of the cavity (Section

4.4.1) and null the four-photon Stark shift (Section 5.2.1).

3.2: Digital Single Qubit Gates

In driving single qubit interactions, coupling to any sort of motion is undesir-

able, as this can cause leakage out of the qubit subspace by entangling spin with

motion. Therefore, we use the carrier transition Hamiltonian given in Eq. 3.7, whose

operator has the form (σ̂+e
iφ + σ̂−e

−iφ). For |0〉 = ( 1
0 ) and |1〉 = ( 0

1 ), the spin low-

ering and raising operators are given by,

σ̂+ =

(
0 1
0 0

)
(3.35)

σ̂− =

(
0 0
1 0

)
(3.36)

Thus it is easy to see that when φ = 0 and φ = −π/2, one can easily create
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the digital Pauli X̂ and Ŷ gates.

(σ̂+e
i0 + σ̂−e

−i0) =

(
0 1
1 0

)
= X̂ (3.37)

(σ̂+e
i(−π/2) + σ̂−e

−i(−π/2) =

(
0 −i
i 0

)
= Ŷ (3.38)

This is for the specific case in which θ = Ωt = π, commonly called a “π-pulse”.

More generally, θ and φ are continuous parameters controlled by the duration of the

carrier pulse and the phase difference between the two Raman beams. In the more

general case, this Hamiltonian creates a unitary of the form,

R̂(θ, φ) =

 cos( θ
2
) −i sin( θ

2
)e−iφ

−i sin( θ
2
)eiφ cos( θ

2
)

 (3.39)

This unitary describes a rotation in the Bloch sphere of arbitrary angle about

an arbitrary axis in the xy-plane and is native to the trapped ion system. Commonly

used are rotation axes aligned with the x and y axis, so it is worthwhile to explicitly

define R̂x(θ) and R̂y(θ) as,

R̂x(θ) =

 cos( θ
2
) −i sin( θ

2
)

−i sin( θ
2
) cos( θ

2
)

 (3.40)

R̂y(θ) =

cos( θ
2
) − sin( θ

2
)

sin( θ
2
) cos( θ

2
)

 (3.41)

The single qubit gates R̂x(θ) and R̂y(θ) are universal by themselves, but is
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also useful to define a rotation about the z-axis,

R̂z(θ) =

(
1 0
0 eiθ

)
(3.42)

This gate can be implemented physically and natively in the ion trap system

by detuning far from the carrier/motional modes and using Stark shifts from the

Raman beams. On the other hand, this operation can also be implemented virtually

by simply advancing the phase of any subsequent RF pulses by θ for whichever

ion acquired the R̂z(θ) gate. This approach requires one to keep track of all the

ion phases in the chain and be able to shift them independently, which in this

system is done automatically at the waveform compiling step and then applied to

the individual addressing beams. Virtual gates are strongly preferred, as they do

not consume any wall-clock time in the circuit and their accuracy is only limited by

the phase resolution/bit depth of the RF source.

Single qubit gates are fast (∼ 1 µs) relative to their two-qubit counterparts

(∼ 225 µs), which means we can perform extra rotations as a means to mitigate

errors with minimal time cost relative to the total circuit. Such sequences are known

as composite pulse sequences in which a single imperfect pulse with some error ε

is replaced with a sequence of pulses, which reduces the error to O(εn), where n

can be chosen arbitrarily at the cost of extra rotation angle [55]. There are many

such sequences designed to suppress against amplitude, frequency, or phase errors.

On the time scales of single qubit gates, amplitude errors are the dominant source

of noise in this system due to either slow alignment drifts of the tightly focused
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individual beams or fast motion of the ions (Sec. 6.1).

The two main pulses used in ion trap quantum computers are the BB1 pulse

[56] and the SK1 pulse [55]. Both suppress amplitude errors on arbitrary input

states, however the SK1 pulse also suppresses small amplitude errors on neighboring

idle qubits due to Rabi crosstalk (Sec. 5.3.2). For a first-order correction, the SK1

pulse consists of three pulses [55],

SK1(θ, φ)|ψ〉 = R2(2π, φ2)R1(2π, φ1)R(θ, φ)|ψ〉

φ1 = φ− arccos

(
θ

4π

)
φ2 = φ+ arccos

(
θ

4π

) (3.43)

Where R is the desired pulse (plus error) and R1/R2 are the correction pulses,

with the one caveat that if θ = 0, then the correction pulses should obviously not

be performed. In this work we use SK1 pulses and benchmark their performance

on a 15-ion chain in Section 5.3.3. Additionally, we apply a shaped Gaussian en-

velope to the entire composite SK1 pulse, rather than use square pulses, to avoid

excitation of axial motion due to prompt charge response. For a shaped SK1 pulse,

the total integrated area under the Gaussian curve should be A = θ + 4π, with the

appropriately timed phase flips delimiting the different pulses in the sequence.

3.3: Digital Two Qubit Gates

The prototypical entangling gate is the CNOT gate, which flips a target qubit,

depending on the state of a control qubit. If the control qubit is in a superposition
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state, then this operation readily generates entanglement. While the CNOT is easy

to understand and model from a theoretical standpoint, it is generally hard to im-

plement physically due its asymmetric nature (i.e., there is a distinction between

the control qubit and the target qubit). The Ciraq-Zoller gate [57] uses the asym-

metry of the motional ground state, where there is no RSB transition available for

|0〉, to implement the asymmetry of the CNOT gate. Therefore, the gate requires

high-fidelity ground state cooling and is not robust to heating of the modes that

may occur throughout a long circuit sequence.

One could imagine that symmetrical gates need not require ground state cool-

ing and are more natural to implement physically in an ion trap system over a range

of possible motional states. The CNOT gate can be symmetrized with single qubit

gates only, which makes it equivalent from the perspective of a universal gate set.

In particular, if the state vector is written as {c00, c01, c10, c11} in the z-basis, then

the CNOT gate is written as,

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (3.44)

Then with the following transformation, we arrive at a symmetrical matrix

representing a ZZ entangling operation, which applies a phase shift to the coeffi-

cients of the anti-symmetric spin states in the two-qubit state vector.

ZZ = [Rz(π/2)⊗Rz(π/2)H]


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 [I ⊗H] =


1 0 0 0
0 −i 0 0
0 0 −i 0
0 0 0 1

 (3.45)
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An XX interaction, which is implemented by the Mølmer-Sørensen interaction

and described in the following section, looks identical to ZZ when the state vector

is represented in the x-basis. To see how an XX interaction transforms a state in

the z-basis, we can rotate the x-axis up to z, perform the ZZ interaction, and then

return the x-axis back to its origin.

[Ry(π/2)⊗Ry(π/2)]


1 0 0 0
0 −i 0 0
0 0 −i 0
0 0 0 1

 [Ry(−π/2)⊗Ry(−π/2)] (3.46)

=
eiπ/4√

2


1 0 0 −i
0 1 −i 0
0 −i 1 0
−i 0 0 1

 (3.47)

This operation corresponds to a collective spin flip, |00〉 → eiπ/4√
2

(|00〉 − i|11〉)→

|11〉. This highlights the duality that a phase-shift in the x-basis corresponds to a

spin flip in the z-basis. Additionally, we point out that the XX interaction can

be wrapped in single-qubit gates to create an effective ZZ interaction, which can

be used to operate gates in the “phase-insensitive” configuration that is immune

interferometric optical phase noise [19, 58].

3.3.1: Mølmer-Sørensen Interaction

In this section we describe the Mølmer-Sørensen interaction and show how it

implements an XX entangling operation mediated by the shared motional bus of

the ion chain. One obvious benefit to this approach is that because the motional

modes are global with respect to the chain, the entangling operations have all-to-all
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(a) (b)

Figure 3.5: The Mølmer-Sørensen interaction consists of applying symmetrical
red/blue tones near the motional modes. (a) Weak-field coupling of the MS in-
teraction can be thought of a resonance condition between virtual excited modes.
The dependence on the motional state n on the red/blue sideband factors out when
both paths are considered. (b) General-field coupling creates a spin-dependent force
that splits the even/odd parity spin states in phase-space. When motion is closed
at the end of the interaction, the spin states acquire a geometric phase shift propor-
tional to the total area (A) enclosed in phase-space.

connectivity. A downside to all-to-all connectivity is that parallel entangling gates

are more difficult to implement, since the MS interaction is pair-wise over all the

illuminated ions,
∑

i,j XiXj. For example if one wishes to implement gates X1X2

and X3X4 in parallel, the cross terms {X1X3, X1X4, X2X3, X2X4} must be nulled

to avoid driving unwanted interactions. While this can be accomplished through

laser pulse-shaping, demonstrations so far have shown a decrease in fidelity relative

to serial operations [59, 60].

Another complication with coupling to the motional bus to generate entan-

glement is that the Rabi frequency of the RSB/BSB depends on the motional state

(Sec. 3.1.1). Mølmer and Sørensen are credited with first devising a scheme that is

insensitive to the motional state [61, 62]. The scheme involves applying a bichro-

matic tone, corresponding to a simultaneous blue and red sideband, symmetrically
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detuned from the carrier transition by ±µ and detuned from the motional modes by

±δ = |µ| − ωk. In the weak-coupling regime, where n+ 1/n− 1 motional states are

negligibly excited (ηΩ � δ), the MS interaction uses resonance conditions within

virtual excited motional states to create collective spin flips. The fact that this

is insensitive to the motional state can be observed by examining Fig. 3.5(a) and

considering the second-order perturbation [63],

Ω̃ = 2
∑

m=n±1

〈11, n|HI |m〉〈m|HI |00, n〉
δ

=
(ηΩ)2

δ
(3.48)

Traversing the (n − 1) or (n + 1) path, we pick up a factor of (n) or (n + 1)

from the Debye-Waller factors, respectively. However the δ from each path has

opposite sign, so when adding these two paths together, the dependence on n is

canceled in the effective Rabi frequency. The result is the same for the odd-parity

states {|01, n〉, |10, n〉}. The weak-field regime is often used in quantum simulation

experiments to model Ising chains with a tunable power-law coupling parameter [64].

In the general-field regime, the MS interaction excites motion via a spin-dependent

force, which strongly entangles spin with motion. As shown in Fig. 3.5(b), the

even parity states are driven in one direction in the QHO phase-space and the odd

parity states in the other direction. As long as the motion is closed at the end of

the interaction, then the two parity spin states acquire a relative geometric phase

proportional to the total area enclosed, with no residual entanglement to the motion.

To understand the MS interaction in the general-field regime, we start from

the interaction Hamiltonian given in Equation 3.4 and consider applying two tones
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(blue/red) with symmetric detuning ±µ from the carrier transition [65],

HI =
~Ω

2
σ̂+

(
e−i(∆kx̂+µt+∆φb) + ei(∆kx̂−µt+∆φr)

)
+ h.c.

=
~Ω

2
σ̂+

(
e−i(∆kx̂+µt+φ(m)+φ(s)) + ei(∆kx̂−µt−φ

(m)+φ(s))
)

+ h.c.

= ~Ω
(
cosµt+ φ(m) −∆kx̂

) (
eiφ

(s)

σ̂− + e−iφ
(s)

σ̂+

)
= ~Ω

(
cosµt+ φ(m) −∆kx̂

) (
σ̂x cosφ(s) − σ̂y sinφ(s)

)
= ~Ωσ̂n

(
cosµt+ φ(m) −∆kx̂

)

(3.49)

Where we have defined the spin and motion phase as φ(s) = (∆φb + ∆φr)/2

and φ(m) = (∆φb − ∆φr)/2 and defined σ̂n =
(
σ̂x cosφ(s) − σ̂y sinφ(s)

)
. For now

we will assume φ(s) = 0 corresponding to an XX interaction, although this can

easily be adjusted to Y Y by setting φ(s) = −π/2 (or along any other axis in the

equator). Expanding the position of ion j as in Eq. 3.5, but now considering all

the normal motional modes of a chain, with the Lamb-Dicke parameter ηk, the

mode participation vector bkj , the mode frequency ωk, and the annihilation/creation

operators âk/â
†
k all indexed by motional mode k,

HI = ~Ωjσ̂
x
j

[
cosµt+ φ

(m)
j −

∑
k

ηkb
k
j (âke

−iωkt + â†ke
iωkt)

]
(3.50)

As in Section 3.1.1, we can expand this expression according to the power of

70



ηk to give [65],

HI =~Ωjσ̂
x
j

[
cos (µt+ φ

(m)
j ) + sin (µt+ φ

(m)
j )

∑
k

ηkb
k
j (âke

−iωkt + â†ke
iωkt)

− 1

2
cos (µt+ φ

(m)
j )

∑
k

∑
l

ηkηlb
k
j b
l
j(âke

−iωkt + â†ke
iωkt)(âle

−iωlt + â†l e
iωlt)

]

(3.51)

The first term is a single-qubit interaction, which is far off-resonant and can

be ignored in the case of µ ≈ ωk ≈ 3 MHz as in the situation of two-qubit gates

on the radial modes. When this interaction is applied to multiple ions, we simply

sum HI over the ion indices j. The unitary that describes this interaction can be

obtained by using the Magnus expansion, which terminates exactly after the first

two terms [66],

U(τ) = exp

[
−i
∫ τ

0

dtHI(t)−
1

2

∫ τ

0

dt1

∫ t1

0

dt2[HI(t1), HI(t2)]

]
= exp

[
i
∑
j

φj(τ)σ̂xj + i
∑
i<j

Θij(τ)σ̂xi σ̂
x
j

]
(3.52)

The first summation corresponds to spin-phonon coupling with the following defini-

tions [65],

φj(τ) = −i
∑
k

(
αkj (τ)â†k − α

k∗
j (τ)âk

)
(3.53)

αkj (τ) = − i
~
ηkb

k
j

∫ τ

0

χj(t)e
iωktdt (3.54)

χj(t) = ~Ωj(t) sin
(
µ(t)t+ φ

(m)
j

)
(3.55)
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Note that φj(τ) has exactly the form of the displacement operator D̂(α) =

exp
[
αâ† − α∗â

]
, which describes a force that depends on the spin (σ̂xj ), as introduced

earlier. In order to close motion and disentangle spin from motion at the end of the

interaction, we must enforce αkj (τ) = 0 for each motional mode k and each ion j.

In short chains this may be achieved by simply tuning the length of the interaction

(τ), although in longer chains with more motional modes this may not be possible.

Thus, we have explicitly allowed the Rabi frequency Ωj(t) and the detuning µ(t) to

be time-dependent in the definition of χj(t), corresponding to the other two control

knobs in the system.

The second summation is the spin-spin interaction that is of interest for en-

tangling gates and corresponds to the phase-space area enclosed for each motional

mode [65],

Θij(τ) =
2

~2

∑
k

η2
kb
k
i b
k
j

∫ τ

0

dt1

∫ t1

0

dt2 χi(t1)χj(t2) sin [ωk(t1 − t2)] (3.56)

When Θij(τ) = π/4 at the end of the operation, we obtain the matrix that

looks like Eq. 3.45 when the state vector is represented in the x-basis. The fidelity

of this MS operation (averaged over a thermal distribution of motional states with
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temperature T ) relative to the ideal XX unitary matrix is given by [65],

F =
1

10
[4 + 2(Γi + Γj)|sin(2Θij)|+ Γ+ + Γ−] (3.57)

Γi(j) = exp

[
−2
∑
k

|αki(j)|2 coth

(
~ωk

2kBT

)]
(3.58)

Γ± = exp

[
−2
∑
k

|αki ± αkj |2 coth

(
~ωk

2kBT

)]
(3.59)

Thus when αkj (τ) = 0 (for all ions j) and Θij = ±π/4, then F = 1, correspond-

ing to the two conditions, (1) spin is disentangled from motion at the end of the gate

and (2) the total area enclosed in phase-space creates the differential phase-shift re-

quired for a maximally-entangling operation like that described in Eq. 3.45. These

constraints are general for both serial and parallel gate operations. In the case

of parallel gates, the first condition remains unchanged, however the second con-

dition must be slightly modified so that the intended two-qubit interactions have

Θij = ±π/4, while the unwanted two-qubit interactions have Θij = 0.

We also note that the sign of Θij is allowed to be either positive or negative,

as both can be readily compiled into a CNOT gate through slightly different single-

qubit gate operations [67] and the unconstrained sign allows more flexibility in the

gate design. Finally, we note that some quantum algorithms may make use of less

than fully entangling operations, |Θij| < π/4. In AM gate schemes, this can be

achieved by simply scaling the solution for |Θij| = π/4, although it may save time-

cost to compute a second set of solutions for a smaller angle (e.g., |Θij| = π/8) as

small-angle gates can in general run faster. In the following section, we describe
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pulse-shaping techniques to satisfy these constraints under serial gate operations

between just two ions.

3.3.2: AM Laser Pulse Shaping

The three control knobs available within a gate waveform to achieve high gate

fidelity are the total gate duration (τgate), the laser power at the ions Ω(t) (i.e.,

amplitude modulation), and the gate detuning µ(t) (i.e., frequency/phase modula-

tion). The gate duration τgate does not have enough fine control for long chains with

many motional modes, and should always be minimized within the bounds of achiev-

able laser power to minimize errors due to heating and other decoherence sources.

There have been many demonstrations of AM gates [20, 68], FM gates [69, 70], PM

gates [71], multi-tone gates [72, 73], and combinations thereof (e.g., AM-PM [74],

AM-FM [75, 76]). For the work presented in this thesis, we use AM gates, which

have been successful in predecessor experiments [77]. We present a slight modifica-

tion of this pulse-shaping scheme to use linear interpolation to smooth out impulse

jumps between different amplitude segments to avoid excitation of axial motion due

to prompt charge response (Section 2.1.2). In Section 5.3.4 we characterize AM-

interpolated gates on a chain of 15 ions and demonstrate high-fidelity operations

that appear to be limited by noise sources other than the gate solution itself. While

FM/PM gates may be preferable to use in the future, we expect the primary benefit

to be slightly faster gates. FM gates make better utilization of the available laser

power, as AM gates are necessarily de-rated from the maximum Rabi frequency in

order to achieve control.
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For discrete AM gates, assume the laser sequence is divided into nseg equal

length segments over the total gate length τgate, each with a constant amplitude

and the same fixed detuning µ. Then Ω = (Ω1,Ω2, . . . ,Ωnseg) is a column vector

describing the Rabi frequency of each segment, which we wish to optimize. The

start and stop times of the n-th segment is given by τ1,n = (n − 1)τgate/nseg and

τ2,n = nτgate/nseg. Because Ωn is constant, it can be pulled out of the integral in

Eq. 3.54 and the spin-motion term is then given by [65],

αkj = Ak
jΩ (3.60)

Ak
j (n) = −iηkbkj

∫ τ2,n

τ1,n

sin(µt)eiωktdt (3.61)

Where Ak
j (n) is a row vector whose n-th component describes the net dis-

placement caused by the n-th waveform segment on ion j in the motional mode

k. Similarly for the spin-spin term, ΩpΩq is constant and can be pulled out of the

double integral in Eq. 3.56, which can now be expressed as a matrix given by [65],

Θij = ΩTγΩ (3.62)

γ(p, q) =



∑
k

η2
kb
k
i b
k
j

∫ τ2,p

τ1,p

dt1

∫ τ2,q

τ1,q

dt2 sin(µt1) sin(µt2) sin [ωk(t1 − t2)] (p > q)

2
∑
k

η2
kb
k
i b
k
j

∫ τ2,p

τ1,p

dt1

∫ t1

τ1,p

dt2 sin(µt1) sin(µt2) sin [ωk(t1 − t2)] (p = q)

γ(q, p) (p < q)

(3.63)

The requirement that motion is closed at the end of the gate (i.e., αkj = 0 for
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all motional modes 1 ≤ k ≤ N and for each ion indexed by j = 0, 1) can be simply

summarized as follows,


A1

0

A2
0

...
AN

1

Ω = ~0 (3.64)

Equation 3.64 is a homogeneous system of 2N linear equations with nseg un-

knowns. If nseg = 2N , then there is a unique solution for Ω that can be calculated

exactly. Since Eq. 3.64 is linear with respect to Ω, if Ω0 is a solution then aΩ0

is also a solution with arbitrary scale factor a. Thus as long as motion is closed

and Θij 6= 0, then the solution can be scaled to achieve the desired entangling gate

angle (within the bounds of available laser power). If nseg > 2N , then the system

is under-determined and in general has infinitely many solutions. In this case one

may wish to optimize within the null-space to find solutions that minimize Rabi

frequency or some metric for robustness. For long ion chains where N may be large,

it is a more scalable solution to over-determine the problem, nseg < 2N , which in

general does not have an exact solution. However, good solutions can still be found

through an optimization procedure. The obvious quantity to optimize is the fidelity

given in Eq. 3.57, however this is nonlinear in Ω. In the limit of high-fidelity (small

α), then the exponentials in the fidelity equation can be expanded in terms of α to
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produces an approximate expression that is quadratic in Ω (similar to Θij) [65],

F ≈ 1− 4

5

∑
k

(|αki |2 + |αkj |2) coth
~ωk

2kBT

= 1− 4

5
ΩT

[∑
k

(
Ak
i

†
Ak
i + Ak

j

†
Ak
j

)
coth

~ωk
2kBT

]
Ω

= 1− 4

5
ΩTMΩ

(3.65)

The matrix M is Hermitian, which means that ΩTMΩ = ΩTRe[M]Ω. With this

definition, we want to minimize ΩTMΩ subject to the constraint ΩTγΩ = ±π/4.

The method of Lagrange multipliers can be used to minimize the scalar function

L(Ω, λ) = ΩTMΩ − λ(ΩTγΩ ∓ π/4) as a function of Ω and multiplier λ. This

function is designed to have stationary points that satisfy ∂L
∂Ω

= 0 and ∂L
∂λ

= 0,

leading to equations,

∂L
∂Ω

= 0⇒MΩ = λγΩ (3.66)

∂L
∂λ

= 0⇒ ΩTγΩ = ±π/4 (3.67)

Equation 3.66 is just a generalized eigenvalue problem. After calculating the eigen-

vectors Ω, we scale each so that ΩTγΩ = ±π/4, and then calculate the exact fidelity

(not approximate) as given in Eq. 3.57. The solution with the highest fidelity is the

optimal solution.
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Figure 3.6: Linear parameterization of the n-th segment of an AM XX gate wave-
form. The are two free parameters corresponding the Rabi frequency at the start
and end of the segment.

3.3.3: Linearly Interpolated Gate Solutions

We now expand upon the framework from the previous section to generate

pulse solutions where the Rabi frequency of each segment varies in a linear fashion

over the length of the segment and is continuous between segments. We now parame-

terize each segment n with two Rabi frequencies corresponding to the starting ampli-

tude Ω1,n at τ1,n = (n−1)τgate/nseg and the end amplitude Ω2,n at τ2,n = nτgate/nseg,

with ∆τ = τ2,n−τ1,n constant for all n. This parameterization is depicted in Fig. 3.6.

The Rabi frequency at any point during segment n is then given by,

Ωn(t) =
Ω2,n − Ω1,n

∆τ
t+

τ2,nΩ1,n − τ1,nΩ1,n

∆τ

=
1

∆τ
[(τ2,n − t) Ω1,n + (t− τ1,n) Ω2,n]

(3.68)

There are now 2nseg free parameters, with Ω =
(
Ω1,1,Ω2,1 . . .Ω1,nsegΩ2,nseg

)
.
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When Ω was constant, we could pull it out of the spin-motion integral in Eq. 3.54.

However now there is a linear factor of t, so we should expect to see terms like∫
t sin(µt)eiωtdt. With this in mind, we can now re-define the spin-motion matrix

given in Eq. 3.60 as follows, with 1 ≤ n ≤ nseg,

αkj = Ak
jΩ (3.69)

Ak
j (2n− 1) = −

iηkb
k
j

∆τ

[
τ2,n

∫ τ2,n

τ1,n

sin(µt)eiωktdt−
∫ τ2,n

τ1,n

t sin(µt)eiωktdt

]
(3.70)

Ak
j (2n) = −

iηkb
k
j

∆τ

[∫ τ2,n

τ1,n

t sin(µt)eiωktdt− τ1,n

∫ τ2,n

τ1,n

sin(µt)eiωktdt

]
(3.71)

The spin-spin matrix is more complicated. Once it is multiplied out, it includes

terms that look like ΩpΩq for different segments p and q, which start to involve

many cross terms once Ω(t) is allowed to vary linearly. Now using tp/q to denote the

independent time parameter of each segment, we can represent all the cross-terms

with a 2× 2 matrix called Bpq,

Ωp(tp)Ωq(tq) =
1

∆τ 2
[(τ2,p − tp) Ω1,p + (tp − τ1,p) Ω2,p] [(τ2,q − tq) Ω1,q + (tq − τ1,q) Ω2,q]

=
(
Ω1,q Ω2,q

)
Bpq

(
Ω1,p

Ω2,p

)
(3.72)

with,

Bpq =
1

∆τ 2

(
τ2,pτ2,q − τ2,qtp − τ2,ptq + tptq −τ1,pτ2,q + τ2,qtp + τ1,ptq − tptq
−τ2,pτ1,q + τ1,qtp + τ2,ptq − tptq τ1,pτ1,q − τ1,qtp − τ1,ptq + tptq

)
(3.73)
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The analogous matrix for the diagonal case (ΩpΩp), is given by Dpp,

Ωp(t1)Ωp(t2) =
(
Ω1 Ω2

)
Dpp

(
Ω1

Ω2

)
(3.74)

Dpp =
1

∆τ 2

(
τ 2

2,p − τ2,pt1 − τ2,pt2 + t1t2 −τ1,pτ2,p + τ1,pt2 + τ2,pt1 − t1t2
−τ1,pτ2,p + τ1,pt1 + τ2,pt2 − t1t2 τ 2

2,p − τ1,pt1 − τ1,pt2 + t1t2

)
(3.75)

Again, when ΩpΩq was constant, it could be pulled out of the spin-spin double

integral in Eq. 3.56. However now there is both a linear factor of tp/q but also a

quadratic factor tptq, so we should expect to see these terms inside the integrals.

Define,

Λ0 =
1

∆τ 2

∑
k

η2
kb
k
i b
k
j

∫ τ2,p

τ1,p

dtp

∫ τ2,q

τ1,q

sin(µtp) sin(µtq) sin[ωk(tp − tq)]dtq (3.76)

Λp =
1

∆τ 2

∑
k

η2
kb
k
i b
k
j

∫ τ2,p

τ1,p

dtp

∫ τ2,q

τ1,q

tp sin(µtp) sin(µtq) sin[ωk(tp − tq)]dtq (3.77)

Λq =
1

∆τ 2

∑
k

η2
kb
k
i b
k
j

∫ τ2,p

τ1,p

dtp

∫ τ2,q

τ1,q

tq sin(µtp) sin(µtq) sin[ωk(tp − tq)]dtq (3.78)

Λpq =
1

∆τ 2

∑
k

η2
kb
k
i b
k
j

∫ τ2,p

τ1,p

dtp

∫ τ2,q

τ1,q

tptq sin(µtp) sin(µtq) sin[ωk(tp − tq)]dtq (3.79)

Since the matrix Bpq contains all the information about the cross terms that will

show up in the spin-spin matrix (Eq. 3.60), we substitute tp/q → Λp/q in Bpq to

arrive at B̃pq, which contains all the spin-spin information between segment p and
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q,

B̃pq =

 τ2,pτ2,qΛ0 − τ2,qΛp − τ2,pΛq + Λpq −τ1,pτ2,qΛ0 + τ2,qΛp + τ1,pΛq − Λpq

−τ2,pτ1,qΛ0 + τ1,qΛp + τ2,pΛq − Λpq τ1,pτ1,qΛ0 − τ1,qΛp − τ1,pΛq + Λpq


(3.80)

Similar integrals can be defined in the diagonal case and substituted into D

to form D̃,

Ξ0 =
1

∆τ 2

∑
k

η2
kb
k
i b
k
j

∫ τ2,p

τ1,p

dt1

∫ t1

τ1,p

sin(µt1) sin(µt2) sin[ωk(t1 − t2)]dt2 (3.81)

Ξ1 =
1

∆τ 2

∑
k

η2
kb
k
i b
k
j

∫ τ2,p

τ1,p

dt1

∫ t1

τ1,p

t1 sin(µt1) sin(µt2) sin[ωk(t1 − t2)]dt2 (3.82)

Ξ2 =
1

∆τ 2

∑
k

η2
kb
k
i b
k
j

∫ τ2,p

τ1,p

dt1

∫ t1

τ1,p

t2 sin(µt1) sin(µt2) sin[ωk(t1 − t2)]dt2 (3.83)

Ξ12 =
1

∆τ 2

∑
k

η2
kb
k
i b
k
j

∫ τ2,p

τ1,p

dt1

∫ t1

τ1,p

t1t2 sin(µt1) sin(µt2) sin[ωk(t1 − t2)]dt2 (3.84)

D̃pp =

 τ 2
2,pΞ0 − τ2,pΞ1 − τ2,pΞ2 + Ξ12 −τ1,pτ2,pΞ0 + τ1,pΞ2 + τ2,pΞ1 − Ξ12

−τ1,pτ2,pΞ0 + τ1,pΞ1 + τ2,pΞ2 − Ξ12 τ 2
2,pΞ0 − τ1,pΞ1 − τ1,pΞ2 + Ξ12


(3.85)

Now the spin-spin matrix has the condensed form for 1 ≤ p, q ≤ nseg,

Θij = ΩTγΩ (3.86)

γ(p, q) =

γ2p−1,2q−1 γ2p−1,2q

γ2p,2q−1 γ2p,2q

 =



B̃pq (p > q)

2D̃pp (p = q)

B̃qp (p < q)

(3.87)
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We have now reformulated the problem to have the same form as in the previ-

ous section - minimize ΩTMΩ (with M constructed from Ak
j given in Eq. 3.70 and

3.71) subject to the constraint ΩTγΩ = ±π/4 (with γ given in Eq. 3.87). However,

the motivation for linearly-interpolated gates was to smooth out impulse jumps in

the laser power that could potentially excite axial motion through prompt charge

response in the chip trap. So far, we have not accomplished this because at each

segment boundary, there are now two free-parameters and there is no guarantee that

they are equal. Thus, we wish to enforce that Ω2,n = Ω1,n+1 for all 1 ≤ n < nseg.

Additionally, we wish the waveform to smoothly turn on/off at the start/end of the

waveform, Ω1,1 = Ω2,nseg = 0. We can succinctly represent all these constraints as,

0 = (Ω1,1 − 0)2 + (Ω2,1 − Ω1,2)2 + · · ·+ (Ω2,nseg−1 − Ω1,nseg)
2 + (Ω2,nseg − 0)2

= Ω2
1,1 + Ω2

2,1 + Ω2
1,2 − 2Ω2,1Ω1,2 + · · ·+ Ω2

2,nseg−1 + Ω2
1,nseg − 2Ω2,nseg−1Ω1,nseg + Ω2

2,nseg

= ΩT



1 0 0 0
0 1 −1 0 . . . . . . . . . . . .
0 −1 1 0

0 0 0
. . .

...
. . . 0 0 0

... 0 1 −1 0

... 0 −1 1 0

... 0 0 0 1


Ω

= ΩTCΩ

(3.88)

Where C is called the “continuity matrix” defined below. This matrix has dimension
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2nseg × 2nseg and rank nseg + 1. Therefore it has a null space of size nseg − 1.

C(i, j) =



1, i = j

−1, (i = 2n & j = 2n+ 1) ‖ (i = 2n+ 1 & j = 2n) for any 1 ≤ n < nseg

0, else

We wish to operate the Lagrange multiplier optimization in a regime where

the continuity condition is guaranteed. To accomplish this, we find the vector null

space of C and then project the fidelity matrix M and spin-spin matrix γ into this

constrained space where continuity is guaranteed. The vector null space of C can

be found using SVD, or equivalently because C is positive semi-definite, finding

the eigenvalues of C and picking out those eigenvectors with eigenvalue λ = 0.

Defining the column null space of C as VC with dimension 2nseg × nseg − 1, then

the constrained fidelity and spin-spin matrices are given by,

MC = VT
CMVC (3.89)

γC = VT
CγVC (3.90)

Now we can proceed to solving the Lagrange multiplier optimization. Note

that the null space of C is size nseg − 1, which is equivalent to the number degrees

of freedom in the system. This means that the condition for an over-determined

system is now nseg < 2N + 1. As before, we wish to minimize the scalar function

LC(ΩC , λ) = ΩT
CMCΩC − λ(ΩT

CγCΩC ∓ π/4) with the corresponding stationary
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Figure 3.7: Example gate solution on ions (−6, 5) in a 15-ion chain. The y-axis
corresponds to the Rabi frequency of each red/blue sideband when brought into
resonance with the carrier. Ω is allowed to go negative, although in this case it does
not as evidenced by the filled blue volume about the x-axis.

points,

MCΩC = λγCΩC (3.91)

ΩT
CγCΩC = ±π/4 (3.92)

After solving the generalized eigenvalue problem, the full Ω vector can be recovered

by Ω = VCΩC . Similar to before, we scale each so that ΩTγΩ = ±π/4, and then

pick the solution with the highest exact fidelity as the optimal solution.

The result of this optimization procedure is shown in Figure 3.7, with the gate

solution on ions (−6,−5) relative to the center ion in a chain of 15 ions. The mode

frequencies and the mode participation matrix used for this solution are the same

as show in Fig. 2.4 and 2.3. For this maximally entangling gate, nseg = 16 and

τgate = 225 µs. The predicted fidelity for this gate, in the presence of no other noise
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Figure 3.8: Phase space trajectories for the gate solution shown in Fig. 3.7. Mode
1 corresponds to the lowest spatial frequency mode. The trajectories shown are ion
independent in the sense that they are not yet scaled by the mode participation
factors. Red corresponds to t = 0.

sources is > 99.99%.

The phase space trajectories for each mode under the influence of this gate

solution is shown in Fig. 3.8. The curves correspond exactly to Eq. 3.54, where the

factor of bkj has been omitted to make the trajectories ion independent. Mode 8

and 9 are most strongly excited because the gate frequency sits in between them.

Thus, failure to close these two modes will result in the largest error. As the modes

become more detuned from the drive frequency, their phase space performs small

oscillations about the origin, approaching the weak-field limit described in Sec. 3.3.1.

In practice, the far away modes can sometimes be completely ignored [75].
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3.3.4: Optimizing Gates for Robustness

So far we have assumed that the gate detuning relative to the carrier µ, has

been fixed at some arbitrary value. While it is possible to find a relatively high

fidelity solution for all µ, some choices of µ require prohibitively high laser power.

This depends on mode-participation of the ions on modes that are strongly driven

and enclose the most phase space. For example, an XX gate that includes ion 0 (the

center ion in an odd-number chain) that is detuned close to an odd-spatial mode

will have zero participation in that mode b2n
0 = 0 (where in-phase index is n = 1).

Thus on average, it will be detuned further from the active modes and require more

power to accumulate the phase required. Therefore, the choice of µ should take into

consideration the joint mode participation vectors of each ion in the gate.

Additionally, there are some choices of µ that are more robust to gate detuning

errors. While the RF tone is generally very stable in frequency, the modes may shift

relative to this frequency due to drifts in the RF power or DC quadrupoles, which

will look identical to a mode detuning error. These shifts have been characterized

in this system to be < 500 Hz over several hours (Sec. 5.2.2). The approach to find

robust solutions is a numerical one - scan over the entire mode spectrum, at each

point find the optimal solution, and then evaluate the average fidelity subject to a

±1 kHz gate detuning error. The gate with the best average fidelity is the optimally

robust solution. The result of this this procedure is shown in Figure 3.9, where

the black dashed line indicates the choice of µ that results in the optimally robust

solution (corresponding to the minimum in the middle plot). This gate solution is
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Figure 3.9: Example gate detuning scan for an XX gate on ions (−6,−5) in a
15-ion chain. The optimally robust detuning corresponding to the solution shown
in Fig. 3.7 is indicated by the black dashed line in all the plots. (Top) Minimum
predicted infidelity of the optimal solution computed at different gate detunings
across the mode spectrum. (Middle) Average infidelity of the optimal solution in
the plot above, subjected to a ±1 kHz gate error. (Bottom) Maximum carrier Rabi
frequency of the optimal solution for each gate detuning. Locations of the motional
modes are indicated by red dashed lines.

the one depicted in Fig. 3.7. This procedure is repeated across all
(
N
2

)
possible gate

pairs to generate the full set. Due to reflection symmetry of the chain, gate (i, j) has

the same solution as (−i,−j), for an ion indexing scheme where the center ion is 0

in an odd-length chain. So in practice only
(
N
2

)
/2 solutions need to be computed.

Empirically we observe that the optimally robust solutions tend to fall nearly

in the middle of two modes. Intuitively, for a mode spectrum where all the modes are

equally spaced by δ, a gate centered between two of these modes will be detuned from

the mode spectrum by ∆i ∈ {. . . , 3δ/2, δ/2,−δ/2,−3δ/2 . . . }. A square bichromatic

pulse will drive phase space loops with period τi = 1/∆i. Thus all the modes will
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close at τ = 2N/δ with integer N . In reality the modes are not perfectly equispaced

and we use amplitude as a control knob and not τ , but the underlying symmetry

hints at why the chosen detunings may be particularly robust.

Additionally, one may also set a threshold for laser power and discard any

solutions that exceed this to guarantee practical operations. Further considerations

for the choice of µ are to avoid the lowest frequency spatial mode, because it will be

the mode predominantly heated by spatially uniform anomalous electric field noise.

Additionally, we observe through numerical analysis that location of the highest

spatial frequency mode is highly sensitive to voltage miscalibrations and should be

avoided. Since the middle 5 modes in a 15-ion chain are stable and do not heat,

they are used in this system as the primary workhorse modes for two qubit gates.

To verify that the example gate solution is robust to a wide-range of gate

detuning errors, we perform a more detailed analysis on the optimally robust gate

solution. Define the gate detuning error by εµ and the fidelity of the gate subject

to the error given by Eq. 3.57 with the substitution µ→ µ+ 2πεµ in Eq. 3.55. The

result of scanning εµ over the range [−2.5, 2.5] kHz is shown in Figure 3.10. This

particular solution achieves 10−4 error over 300 Hz of bandwidth, 10−3 error over

1.025 kHz of bandwidth, 10−2 error over 2.300 kHz of bandwidth, and 10−1 error

over 4.475 kHz bandwidth. This level of robustness is sufficient in our system due to

the relative stability of the modes (Sec. 5.2.2) and the fact that other noise sources

(other than motional closure) seemingly dominate the gate fidelity (Sec. 5.3.4).

In the future, there are straight forward ways to enforce robustness in the

computation of Ω rather than to rely on a brute force numerical search. For one
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Figure 3.10: Predicted gate detuning error vs. gate fidelity/error for the gate shown
in Fig. 3.7 on a 15-ion chain. (Left) Linear scale gate fidelity. (Right) Log scale gate
error

approach, in addition to enforcing αkj = 0, one can also enforce the higher order

moments to also be zero, ∂α
∂µ

= 0, ∂2α
∂µ2

= 0, etc, in the Lagrange optimization

formulation. Including only up to the 2nd moment has been shown to double the

bandwidth of 10−3 error relative to what is shown here [70].
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Chapter 4: Integrated Ion Trap System

In this chapter we will describe the hardware components of the experimental

system. A systems engineering approach was used to design this experiment, starting

from requirements dictated by the physics of the ions. A trapped ion quantum

computer consists of several complex subsystems, working in harmony to achieve

high fidelity operations. To the extent that is is possible, it is useful to conceptually

divide the system into modular subsystems that inherit requirements from the ions.

To scale a system successfully, there are also a few key design principles that must

be considered. The primary challenge when scaling up a system size is to maintain

the fidelity demonstrated on smaller systems. As the system grows in size, the

complexity of the control grows as well. The failure or under-performance of a

single component in the system can turn the quantum computer into a quantum

random number generator. Thus, robustness and reliability at the component level

are two key design principles required for scaling.

As the number of qubits in the system grows, so do the required calibrations

required to run it at high fidelity. Passive stability of the system, whether it be

the optical addressing system or the background electric field seen by the ion, is

critical to reducing the calibration overhead. Passive stability is often achieved
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Figure 4.1: A picture of the integrated ion trap quantum computer. (Left) The
sealed box provides environmental isolation and stability of the enclosed optical
systems. (Right) Inside the box, the vacuum chamber sits on a raised plate. The
Raman and imaging optics primarily reside underneath, on the bottom plate.

by miniaturizing key subsystems, bolting down unused degrees of freedom in the

system, and maintaining stable environmental parameters such as temperature and

humidity. Even with a passively stable design, calibration values are still expected

to drift and the number of calibration routines quickly exceeds the attention span of

a single human. Thus automation is another key factor that allows a large system

to run at high fidelity for extended period of time. This includes autoloading ions

after a loss event, tracking beam alignment, or periodically calibrating two-qubit

gate amplitudes. To achieve automation, the relevant degrees of freedom need to

actuated (by motor, piezo, voltage, etc.) and commanded by a centralized control

system that maintains awareness about the state of the machine.

In Figure 4.1, we show the integrated ion trap quantum computer used in this

thesis. The vacuum chamber, imaging system, and Raman system all reside in a

sealed black box, which exists to shield the sensitive components from environmental

fluctuations and provide passive stability. All of the CW lasers reside on an adjacent
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optical table and are routed into the box via optical fibers. Auxiliary electronics,

such as the control FPGA, power supplies, and frequency sources, are mounted in

a nearby server rack or sit on a hanging rack above the black box.

4.1: Vacuum Chamber Subsystem

In general, qubits need to be well isolated from the environment, otherwise

they will exchange thermal energy with the environmental bath and quickly deco-

here. In trapped ion systems collisions with background gas particles can eject ions

from the trap or scramble the output of a quantum computation. Thus, the chip

trap and oven sources must sit in a UHV environment with low residual background

pressure. Internal chamber parts must be meticulously cleaned with solvents, as-

sembled, sealed in the chamber and baked under vacuum in order to achieve the

lowest possible pressures. In this system we achieve a pressure of 7.11 × 10−11

Torr, measured by directly observing hopping rates of a single ion in a double well

potential.

The internal stack up of the vacuum system is shown in Figure 4.2. The

baseplate shown at the bottom of the picture is mounted internally to the top

6” Conflat feed-through flange of the chamber (the chip trap sits upside down in

our system). The feed-through flange includes a 100-pin micro D-sub for the DC

electrodes, and 8 electrical feed-throughs for oven, RF, and ground connections. A

small hole exists in the center of the flange with a tapered adaptor that ends in a

2.75” Conflat viewport to provide optical access through the slot. The HOA chip is
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Figure 4.2: Picture of internal vacuum stack-up. Copper rods that provide trap RF
connections are in the rear of the picture and are not visible.

inserted in a ZIF-socket that sits on stand-offs from the baseplate. A circuit board

underneath the ZIF-socket routes electrical signals from the chip trap to the proper

wires from the feed-through flange. A metal ground shield is installed above the chip

to shield stray electric fields from the nearby viewport. Underneath the ZIF-socket

is the oven box, which contains the thermal ovens aimed at various parts of the trap.

This system has a total of 5 different ovens. Two isotopically enriched Yb thermal

ovens are aimed at either the load slot or the quantum region of the trap. A thermal

Barium oven is aimed at a separate load slot. Finally two ablation targets, one Yb

and one Ba are aimed at the remaining two load slots.

The external structure of the vacuum chamber system is shown in Figure 4.3.

The entire chamber is raised to a secondary level to allow for Raman and imaging

optics on the bottom level. At the top and bottom of the chamber are 6” Conflat

openings (along ẑ). The top opening is sealed by the feed-through flange and the
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Figure 4.3: Model of external vacuum chamber system. The entire chamber sits on
a raised platform, allowing optical access from underneath.

bottom opening is sealed by a re-entrant viewport that provides a short working

distance to the ions for the imaging system and individual Raman beams. Along

the main x̂, ŷ axes in the horizontal plane are four 4.5” Conflat openings. Three of

these are sealed with viewports, and the fourth leads to a cross that supports the

ion pump/NEG, vacuum gauge, and another viewport that provides clear optical

access. Oriented at 45◦ relative to the main horizontal axes are four 1.33” Conflat

openings that are sealed with viewports for CW beam delivery.

Each of the 4.5” and 6” flanges are sealed along with a captured steel mounting

ring that provides tapped mounting points. The RF resonator and DC filter boards

are mounted directly on the chamber, via the mounting ring, near their respective
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feed-through connections to ensure solid ground connection and shielding of the

output signals. The output of each is well shielded to minimize the risk of external

noise entering the system. Also attached to these mounting rings are Helmholtz coils

along the three orthogonal directions that allow us to specify an arbitrary magnetic

field vector. In typical operation of this system, a magnetic field of ≈ 5 G is applied

along the ẑ axis. Finally associated with each 1.33” viewport opening is a CW

beam delivery box. Each box includes a fiber collimator, polarization optics, and a

focusing lens. Additionally a pick-off lens and small photodiode mounted in the box

provide power monitoring and tweaking up of fiber-coupling. The output beam on

the box can be aligned onto the ions via two motorized linear actuators (CONEX-

TRB12CC) transverse to the direction of beam propagation. By mounting the CW

beam delivery optics directly to the vacuum chamber, which is in turn referenced to

the ion position via the internal stack-up, misalignment drifts are heavily mitigated.

4.2: Trap Subsystem

The trap subsystem includes the ion trap itself, but also RF resonator used to

generate the trapping voltage and the DC voltage source to provide static confining

potentials.

4.2.1: Sandia HOA 2.1.1

The micro-fabricated chip trap in our system is an HOA-2.1.1 chip trap man-

ufactured by Sandia National Laboratories [34]. The trap geometry consists of a
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≈ 3 mm linear slot is the middle of the trap, which we call the “quantum region”

and is where we build up long chains and perform quantum circuits. As shown in

the top of Figure 4.4, the surface of the trap is raised 1.81 mm above the surface

of the chip carrier to allow optical access for focused beams. Similarly, the trap is

narrowed in the quantum region with a signature bow-tie shape to allow for a maxi-

mum NA of 0.11 for beams parallel to the chip surface. For beams perpendicular to

the chip, passing through the 60 µm wide slot in the quantum region, the available

NA is 0.25.

On each end of the quantum region, there is a Y-junction that the splits into

two arms each. Each of the four arms has a slot milled through the substrate called a

“load slot”. There are 94 independent DC control electrodes that allow for shuttling

and transport of ions, as well as fine control of the axial potential of the chain. Each

DC electrode has an integrated capacitor of 1.05 nF, that shorts to ground at RF

frequency to avoid parasitic coupling with the RF. As shown in the bottom of Figure

4.4, in order to build up a long chain, a single ion is loaded in the load slot, and

then shuttled and merged into the existing chain in the quantum region. When the

desired number of ions is reached, this process halts. While there is a thermal oven

aimed at the quantum region, it is not used to avoid contamination of the surface

near the ion chain and also because the loading process is less controlled, making it

more difficult to load deterministic chain lengths.

We apply 220 V to the RF electrodes at a frequency of ΩRF = 2π×36.06 MHz,

resulting in a radial secular frequency of ωsec = 2π × 3.155 MHz. The RF null is

located at a height of z = 68 µm above the surface of the nearest metal electrode
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Figure 4.4: (Top) A picture of the the HOA-2.1.1 chip trap. The central quantum
region is used to perform circuits on long chains, and is raised and tapered in order
to allow optical beam access. (Bottom) Each ion is individually loaded in a load
slot, and then shuttled and merged with an existing chain in the quantum region to
deterministically load a given chain length.

with a characteristic trap distance of R = 140 µm. The potential that we use to

model the potential of the trap is given in unitless spatial coordinate defined by d0

(Eq. 2.14) by,

V (x, y, z) =
X1

1!
(x) +

X2

2!
(x2 − y2/2− z2/2) +

X3

3!
(x3) +

X4

4!
(x4 − 3x2y2 − 3x2z2)

+
Xbend

3!
(x2z)−Qyz(yz)−Qxz(xz) + f 2

sec(y
2/2 + z2/2)(1− 3z/h)

(4.1)

Where Xi are unitless constants defined in Equation, 2.17. Xbend is a term that is

used to describe a bending of the chain in the vertical dimension. This decompensa-

tion is a result of the lack of segmented outer electrodes in the design and empirically

scales with X4 as Xbend ∼ 13.5X4. Qij are quadrupoles where Qyz = 0.5 is used
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to tilt the principle axes of the trap at 45◦. Finally, h is the location of the RF

null and the scaling term is used to describe the asymmetry of radial confinement

in the vertical direction. In each case, the unitless constants scale a particularly

defined voltage primitive that is applied to the DC trap electrodes designed to ap-

ply the desired potential term without decompensating the ion from the RF null.

In typical operation of a 15-ion chain, the in-phase mode along each trap axis is

(νx, νy+z, νy−z) = (0.193, 3.077, 3.234) MHz.

4.2.2: RF Resonator

Creating 220 V to supply to the RF line in the trap is a non-trivial task.

Also, the secular motion of the ion, fsec, is directly proportional to this voltage,

which means that the radial motional mode locations and therefore the two-qubit

gate fidelity also depends on the stability of the RF voltage applied to the trap.

Active stabilization of the voltage over short time scales is required to stabilize the

modes over the time-scale of a gate and decrease motional decoherence due to fast

phase noise on the motional modes. The pick-off for fast stabilization is before the

vacuum chamber, so thermal drifts in the vacuum chamber and trap itself can still

cause drifts. Thus, passive stability of this voltage over long time scales is required

to combat motional mode calibration overhead.

The trap voltage is created by a voltage step-up transformer. A shielded helical

quarter-wave resonator [78], consisting of a copper coil, serves as the inductor in a

resonant LC-circuit in series with the capacitance of the trap itself (C ≈ 12 pF).

When attached to the trap, the resonator has a quality factor Q = 140. As shown
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Figure 4.5: Model of the RF resonator used to general high-voltage trap RF. The
resonant frequency when connected to the trap is designed at 36 MHz.

in Figure 4.5, an RF frequency source is fed via SMA into wound input coupling

antenna. The antenna can be translated via an adjustable micrometer to impedance

match the input signal to 50Ω. The signal couples into the helical copper coil that

is mechanically stabilized by Teflon holders inside the cavity. Although the inside

of the cavity has a cylindrical bore, the outside is square to ensure rigid mechanical

mounting to the chamber.

At the other end of the coil, a low-temperature coefficient (Vishay QUAD

HIFREQ) capacitive divider (36:1) picks off the amplified RF signal. This pickoff

is fed into a rectifier and compared against a precision reference voltage (LM399H),

with the difference signal serving as the input into a digital PID controller [79].

The PID controller outputs the feedback signal into the IF port of a mixer that sits

between the frequency source (LO port of mixer) and the resonator (RF port of

mixer). Since chip traps can easily breakdown if too much voltage is applied, one

should be sure that even when the mixer is full saturated, the applied voltage from
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the resonator is still well below the maximum voltage rating of the trap.

4.2.3: DC Voltage Controller

In order to transport ions around the chip, we must be able to independently

control all 98 DC electrodes on the HOA and implement well timed sequences that

execute shuttling operations. A custom built circuit board houses 25 DAC integrated

circuit chips (16-bit, 4 channels, DAC8734) that are controlled by an FPGA (Opal

Kelly XEM6010-LX150). Voltage solutions consist of several “lines”, where each

line specifies one output state for all 98 electrodes. A shuttling graph defines nodes

(corresponding to a start/end line) and edges (all the lines between the start/end

line). Voltage solutions and shuttling graphs are uploaded to the FPGA on-board

memory from the main control computer via USB. For “coherent” shuttling opera-

tions that need to happen at precise times within a quantum circuit, the latency in

USB communication is unacceptable. The FPGA also has interfaces for one serial

SPI line and hardware trigger. Within a quantum circuit, the main control FPGA

can specify a shuttling edge via the SPI line, that then executes in a deterministic

amount of time at the start of the trigger (also from the main control FPGA).

The voltage lines from the controller box must also be heavily filtered before

they reach the trap, as any noise that is near the motional frequencies of the ion

will cause it to heat. A 5th-order low-pass RC filter is applied to each voltage line

immediately before the lines enter the vacuum feed-through. The corner frequency

of the filters is designed at 1 kHz, which is a conservative design choice that limits

the speed of shuttling operations to ∼ 1 ms, but heavily mitigates risk of external
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lab noise impacting the ion.

4.3: CW Laser Subsystem

The CW laser system provides all of the ionization, cooling, pumping, and

detection required to trap and maintain ions and to use them as qubits. Each laser

system is a self-contained module that sits on a nearby optical table and is routed

to the beam delivery boxes mounted on the vacuum chamber by optical fiber.

The 935-nm, 399-nm, and 393-nm modules are quite simple. The 935-nm light

is generated by an ECDL with a cateye configuration (AOSense). A pickoff optic

couples the light into a fiber and is routed to a multichannel wavemeter (High-

Finesse) for frequency measurement and stabilization. The remaining light passes

through a free-space resonant 3.07 GHz EOM and polarization optics before being

fiber-coupled and delivered to the vacuum chamber. The 935-nm is not delivered

to a beam delivery box, rather ≈ 12 mW of light is focused along the axis of the

ion chain to a waist of 650 µm to ensure uniform illumination of all the ions. After

passing through the chamber, the beam is retro-reflected and directed over the Yb

thermal oven load slot to ensure repumping during loading.

The 399-nm light is generated from an AR coated diode (Nichia NDUA116T)

inserted in a commercial ECDL body (Moglabs) with a Littrow configuration. As

with 935-nm, the light is first picked off and directed to another port on the waveme-

ter for frequency locking. The remaining 399-nm path includes a fast shutter [37] for

binary amplitude control and polarization optics. Then it is frequency multiplexed
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with 369.5-nm and 393-nm light, fiber-coupled and directed to the load slot that

contains the Yb thermal oven. The 393-nm light is generated from a free-running

laser diode (Nichia NDU4316) with no external cavity. The frequency is not sta-

bilized since all the light is higher energy than the ionization threshold for neutral

Yb. Similar to the 399-nm path, a fast shutter provides binary amplitude control

before the light is multiplexed into the load slot fiber.

Due to the variety of functions it must perform (cooling, pumping, detection),

the 369.5-nm module is a bit more complex. The 369.5-nm light is generated from

a laser diode (Nichia NDU113E) inserted in a commercial ECDL body (Moglabs)

with a Littrow configuration. The frequency is stabilized by PDH locking [80, 81]

the laser to a transfer cavity. The length of the cavity is locked to a 780-nm laser

that is in turn locked to the 87Rb D2 (F = 2→ F ′ = 3) line via modulation transfer

spectroscopy on a Rb vapor cell [82]. With this frequency stabilization scheme,

the 369.5-nm light is referenced directly to an atomic transition and thus protects

against long term frequency drifts.

The 369.5-nm light is broken into two paths, the pump/detect path and the

cooling path. The cooling path includes an always-on 14.748 GHz free-space EOM

for repumping sidebands. The pump/detect path includes a switchable 2.105 GHz

EOM that is turned on when performing optical pumping. Each path includes an

unfolded double-pass AOM consisting of two separate AOMs (IntraAction ASM-

2101LA8) that provide amplitude and frequency control. The effective double-pass

set-up reduces leakage light that could decohere the qubit. These paths are recom-

bined on a beam-splitter, with one output port going to the load slot fiber and the
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other going to the quantum region fiber. The beam in the quantum region features

a cylindrical lens that focuses the 369.5-nm light to a beam waist of wz ≈ 20 µm

and wx ≈ 90 µm at the ion plane to ensure equal illumination across a chain.

4.4: Raman Subsystem

The Raman system provides the individual addressing of the ions and commu-

nicates gate waveforms to the qubits. A Raman operation requires two lasers beams.

In this system we use a “global beam” that illuminates all the ions, and then 32

“individual beams” that provide the individual addressability. The global beam will

illuminate idle qubits when operations are being performed on active qubits, but

the only effect of this is a two-photon stark shift on the idle qubits (∼ 50 Hz) which

can be calibrated out (and assuming single-beam 4-photon stark shifts have been

nulled through polarization control).

Both Raman beams are generated from the output of a 4W 355-nm laser

(Coherent Paladin Compact 355-4000). A motorized λ/2 waveplate, a high-power

beam cube, and a beam dump control the total power entering the system. The

beams are then split with a 1:3.5 (individual:global) power ratio at another beam

cube into the individual path and the global path. These two beam paths are

depicted schematically in Figure 4.6.

The global beam path includes a motorized delay stage, which is used to

temporally overlap pulses of the two Raman beams. A wideband, single channel,

AOM (L3Harris) is used to modulate the beam. Due to the wide bandwidth, it
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Figure 4.6: Schematic showing the basic components of the Raman subsystem.
The global beam addresses the entire ion chain whereas the individual beams are
controlled with a 32-channel AOM to implement gates on selected ions.

is typically preferred to put the red/blue tones of a two-qubit gate waveform on

the global beam. The global beam path is designed to be telecentric, which means

that even though the red and blue beams are deflected at different angles out of

the AOM, they will overlap spatially at the ion plane (albeit with slightly different

angles of incidence). The relatively low NA of the global beam path also mitigates

this angular separation at the ions. After the AOM, the global beam is directed

parallel to the chip surface along ŷ, shown in Figure 4.7. The polarization of the

global beam ε̂g is set to linear along the x̂ axis and is focused to an elliptical 1/e2

waist of wz = 10 µm and wx = 166 µm at the ion plane. There is ≈ 750 mW in the

global beam at normal operating power.
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Figure 4.7: Schematic of the Raman geometry. The ion chain is oriented along x̂
and the net ∆~k of the Raman beams is along ŷ + ẑ, which couples to one set of the
radial modes tilted at 45◦ via a static Qyz quadrupole.

The individual beam path includes a diffractive optical element that splits

a single beam into 33 equal power beams. The beams are then directed to a 32-

channel AOM (L3Harris) with nominal channel spacing of 450 µm and a center drive

frequency of 200 MHz. By driving specific channels on the AOM, we can selectively

turn on/off individual beams at the output. The output beams are then spatially

overlapped with the imaging system using the reflection of a dichroic mirror. A

custom 0.63 NA lens (Photon Gear) situated in the re-entrant window at the bottom

of the chamber focuses each individual beam along the ẑ axis, through the slot in

the HOA (Figure 4.7). The polarization of the individual beams ε̂i is set to linear

along the ŷ axis. Each beam is focused to a circular 1/e2 radius of w = 870 nm

and spaced by 4.43 µm at the ion plane. There is ≈ 1 mW in each beam at normal

operating power.

In both paths, there are angle and position beam sensors that are used to
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stabilize beam pointing. The net ∆~k of the Raman beams is along ŷ + ẑ. We

typically operate the machine with a Rabi frequency of 500 kHz. At full power we

have achieved a Rabi frequency of 2 MHz, although we purposely de-rate from this

value to leave laser power headroom as burns in the system develop. For two-qubit

gates there is a nice separation of responsibilities between the global and individual

beam. As discussed above, the global path is better suited for communicating fre-

quency content to the ions, including either static red/blue tones or FM modulation

waveforms. Then the individual beams are responsible for communicating phase

and amplitude information. Putting phase information in the individual beams is

a requirement for using software Rz gates. Amplitude information could be put on

either beam, but due to the 2-photon stark shift of the global beam on idle qubits,

this effect is easier to calibrate out when the global beam intensity is held constant.

4.4.1: Rep Rate Control and Stabilization

To control the four-photon Stark shifts, we need control over the repetition

rate of the laser (see Section 3.1.4). The repetition rate is defined by the length

of the cavity and is set during the manufacturing process of the laser. Using a

cleanroom to avoid contamination of the high power laser cavity, we open up the

Paladin laser and install a custom output coupler on a translatable stage (SmarAct

SLC-1730-S-HV) to dynamically tune the length of the cavity. The custom output

coupler is shown in Figure 4.8. To achieve realignment of the optical cavity, a fiber

based autocollimator system [83] is used along with the three degrees of freedom

(tip, tilt, rotation) available on the output coupler mount (SmarAct STT-25.4-HV,
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Figure 4.8: Modified Paladin output coupler that enables tuning of the repetition
rate of the laser.

SR-1908-HV). A piezo ring sandwiched in between the output coupler and the mount

is used to stabilize the length of the cavity.

One flaw in this particular design is that the bandwidth of the piezo is limited

to ∼ 1 kHz due to mechanical resonances in the mirror mount. This bandwidth

is insufficient since acoustic noise can range up to 20 kHz in frequency. Even with

the piezo feedback enabled, we measure the standard deviation of phase noise to

be 52◦ over 10 s, largely at discrete acoustic frequencies. To further reduce this

phase jitter, we feed-forward the residual phase noise onto the the RF signals going

into the AOM, as has been demonstrated previously [84]. With this, the standard

deviation of phase noise is reduced to 1.1◦ over 10 s. This solution is practical since

our RF control system only uses three independent RF channels, each requiring
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a feed-forward circuit. In future systems, where an RF channel is dedicated to

each AOM channel, it may be preferable to suppress the noise at the source. With

improved design, piezo mirrors in cavities can suppress noise up to 180 kHz [85].

4.5: Imaging Subsystem

The imaging system is used for detecting the state of the qubits at the end

of a quantum circuit. In this system the Raman system and the imaging system

are tightly coupled because they both they are combined into the same objective

lens via a dichroic mirror. This has some advantages in that once the paths are

overlapped, only the fine alignment of the shared objective lens needs to be tracked.

However, in future systems it may make sense to decouple these two systems, which

will mean imaging and Raman alignment will need to be calibrated independently.

Starting at the ions, light is collected through the bottom re-entrant viewport

by a custom 0.63 NA objective lens (PhotonGear) with an object working distance of

16 mm. The objective images the ions into an intermediate imaging plane approxi-

mately 200 mm from the back of the lens with a measured magnification of M = 9.2.

The objective is mounted on a six degree-of-freedom hexapod stage (PhysikInstru-

mente H811) that provides rough alignment to the ions (∼ 1 µm at ion plane). A

bounce mirror underneath the motorized stage reroutes the imaging light to the

bottom plate, where a piezo-controlled mirror provides fine alignment (∼ 10nm at

ion plane). The imaging light is transmitted through the dichoric mirror that cou-

ples to the Raman system and passes through another set of lens that provides an
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Figure 4.9: Multi-mode fiber array and PMT imaging system. (Left) The input
face of the multi-mode fiber array under backside illumination. (Middle) On the
output side, the fiber bundle is broken out out in 32 individual optical fiber cords.
(Right) Each fiber output is connected to an individual narrow-band filter and PMT
module.

addition magnification of M = 3 for a total magnification of M = 28. Finally the

light is imaged onto either a camera (Andor Zyla) or a custom multi-mode fiber

array (FTO), chosen by a motorized flip mirror.

While the camera is useful for initial alignment and debugging purposes, it

is not suitable for fast high fidelity state detection due to its low frame rate, high

background dark counts and spatial/electrical crosstalk. The fiber array consists

of 32 multi-mode fibers, each with 0.22 NA and 100 µm core/125 µm cladding

diameter, and spaced by a 125 µm pitch. With a diffraction limited ion spot size

of λ/2NA ≈ 300 nm and a total magnification of 28, the ion image at the fiber

array will have a spot size of 8.2 µm with a pitch of 125 µm (the magnification of

the imaging system is set by the multi-mode fiber pitch relative to the ion spacing).

The NA of the fiber also helps to filter out background scattered light that may be

incident on the fiber array. We characterize the spatial crosstalk of this imaging

system in Section 5.3.1.

Previous experiments have used an integrated multi-channel PMT array, where
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the dominant form of crosstalk was electrical [77]. The fiber array mitigates this by

breaking out the fiber bundle into individual fibers on the other end, as shown in

Figure 4.9. Each individual fiber is then connected to an individual fiber-adapted

PMT module (Hamamatsu H10682-210), which is shielded and physically separated

from the other sensors. With this design we see no evidence of electrical crosstalk.

Additionally a narrow-band 369.5-nm filter (Semrock FF01-370/6-25) sits in between

the fiber bundle output and the PMT module to further reduce background light.

Each photon that is detected on the PMT sends out a digital voltage spike to a

coaxial cable, which are then counted by the main control system.

We estimate that ηC = 7.4% of the total light is collected from the ion, given

by,

ηC = [1− cos(arcsin(NA))] ηGS ηMM (4.2)

Where NA= 0.63 is the numerical aperture of the initial objective lens, ηGS = 88%

is clipping due to misalignment of the in-vacuum ground shield, and ηMM = 75%

is an estimated coupling efficiency of the light into the multi-mode fiber. Then the

total estimated detection efficiency is ηD = 1.1% of the total light from the ion,

given by,

ηD = ηC ηF ηQE (4.3)

Where ηF = 90% is transmission of the narrow-band filter and ηQE = 17% is the

quantum efficiency of the detector.
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4.6: Control Subsystem

There are many different pieces of hardware that must be commanded and

controlled with precise timing at various points within an experiment in order for

the system to function. On the slow scale, ion lifetimes, laser powers, and volt-

age calibrations must be tracked and managed. On the medium scale, CW lasers

with correct frequency and sideband structure need to be switched on/off in order

to perform cooling, preparation and detection operations. And on the fast scale,

frequency and phases of RF sources must be rapidly switched to execute quantum

circuits.

In this system, we draw a line between “coherent” sequences (that is, where

the phase of the qubit matters), and “incoherent” sequences. A main control FPGA

executes all of the incoherent processes such as cooling, state preparation, and pho-

ton counting. Then, at the start of a quantum circuit, the system is handed off to

the coherent RF subsystem via a trigger. The coherent RF subsystem defines the

circuit and contains all the gate waveforms with correct frequency/phase/amplitude,

all routed to the correct subset of ions. When the coherent sequence is finished, the

system is handed back over to the incoherent main control subsystem, whose imme-

diate task is to perform state detection and count photons, before continuing on to

the next task.
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4.6.1: Main Control Subsystem

The main control system consists of an FPGA (Xilinx KC705) mounted to

a custom breakout board. The breakout board provides 32 digital output lines

(SN64BCT25244DWR, line driver), 24 digital input lines, 8 DAC channels (DAC8568),

8 ADC channels (AD7607), and control over 10 DDS chips (AD9912). The DDS

chips are a single-tone programmable frequency source, suitable for running CW

laser AOMs or simple quantum experiments (e.g. Rabi, Ramsey, frequency scans,

etc.), however their capability falls short of what is required to run complex quan-

tum circuits. In particular, because they are single-tone, two-channels would have

to combined to create a bichromatic waveform required for two-qubit gates. The

four-photon stark shift during two-qubits gates depends critically on the amplitude

balance between these two tones, so when the two tones come from different sources,

their relative amplitude must be meticulously tracked and calibrated. Additionally,

the amplitude control on our particular chip (AD9912) is too slow to implement

AM two-qubit gates. Even with other DDS chips with faster amplitude control

(AD9910), a more dedicated system with native dual-tone support is preferred.

The main FPGA is programmed via the ARTIQ ecosystem, which features

the ability to take high-level programming syntax (Python) running on the host

computer and compile it onto the FPGA hardware. This approach has the benefit

of the nanosecond timing resolution afforded by the FPGA, while maintaining a

Python codebase that is readily accessible without knowledge of low-level FPGA

programming languages (e.g. Verilog, VHDL). While FPGAs excel with simple out-

112



put sequences that are tightly timed, they struggle with more complex mathematical

operations involving floating point arithmetic. The FPGA is able to hand off these

tasks to the host computer via a remote procedure call (RPC) and wait for the

response before continuing on with its timing sequence.

The ARTIQ ecosystem also features a networked approach to hardware device

drivers that is able to support equipment hooked up to various computers across

the lab. This makes the system scalable, because wires need not be routed across

the lab to a centralized control computer. Rather, the centralized control com-

puter interacts with auxiliary computers across the lab through the LAN and a

client/server model. The ARTIQ ecosystem also features a GUI for user interac-

tion, an experiment scheduling system that is critical to automation, and databases

that store experimental data and calibration information. With this structure, the

main control system is able to maintain awareness about the state of the machine

and automatically schedule experiments and calibrations.

4.6.2: Coherent RF Control Subsystem

The most complex gate waveform in this system is the two-qubit gate, which

consists of a bichromatic tone with fast modulation (∼ 10 µs) of the amplitude

(or phase/frequency for other gate designs). Additionally, these waveforms must

be reconfigurably routed to any 2 of the 32 channels of the multichannel AOM in

order to implement all-to-all connectivity of the ion chain. An AWG is a natural

choice as an RF source, because they are designed to implement arbitrarily complex

waveforms. However, AWGs are rather expensive and it may be cost prohibitive to
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allocate a dedicated AWG to each of the 32 AOM channels. Additionally, most the

time spent by a qubit in a quantum algorithm is idle time where its is not actively

being operated on. AWGs sample waveform data written in memory, and so this

idle time must still be written and uploaded to the AWG across all the channels,

potentially forming a data bottleneck.

The solution in this system is to use a single AWG card with four output

channels (Keysight M3202A). One channel is routed to a oscilloscope for monitor-

ing and debugging purposes. One channel is used to drive the global beam. The

remaining two channels drive the individual beams and are routed to a custom built

5× 16 switch network. Each of the 5 inputs are split into 16 and connected to the

input channels of 16 SP5T RF switchs (EVAL-ADRF5250). The 16 outputs of all

switchs are connected the middle channels of the 32-channel AOM. A single switch

can point an output channel to any one of the 5 input channels (or ground) specified

by a 3-bit digital register. At a given time, the state of the switch network is fully

defined by 3 × 16 bits. As an example, the switch network state for a single two

qubit gate between ions i and j will point the AOM channel corresponding to ion

i at the first AWG channel and the AOM channel corresponding to ion j at the

second AWG channel, with all the other output channels connected to ground. It

is important that there is an individual AWG channel for each ion, since software

RZ gates may require different phases on the two ions. The switch network state is

controlled by 2 digital pulser cards (PXI-6541) that are programmed in conjunction

with the AWG. The AWG triggers the cards to switch states on the backplane of

a common chassis, as it steps through gate waveforms. The other 3 inputs to the
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switch network are DDS channels for simple experiments that wish to bypass the

complex AWG/switch network compilation procedure

While the current system only supports 16 AOM channels, it is possible to

extend it to support the full 32 channels of the individual AOM. However, the

system has limitations even at its current size. In particular, complicated circuits

can take ∼minutes to compile, relative to the ∼seconds required to gather shot noise

statistics. Thus, the system is not particularly suitable for algorithms that require

∼thousands of different circuits to generate a result, such as QAOA [86] or GST [87].

In the near-future, we plan to upgrade the system using RFSoC technology

(Xilinx Zynq UltraScale+), which will make it possible to give each AOM channel a

dedicated RF line. More importantly, using a reduced waveform instruction set, it

is feasible to stream waveforms directly to the cards, completely eliminating compi-

lation overhead. The system is available as an evaluation board (ZCU111) or from

third party manufacturers (Pentek 5950). The latter option also provides the ability

to phase synchronize channels across multiple cards (Pentek 5903), which may be

required for active crosstalk cancellation or a phase-insensitive gate configuration.
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Chapter 5: System Operation, Calibration, and

Characterization

5.1: System Operation

5.1.1: Autoloading Ions

The average lifetime of a 15-ion chain in our system is ∼30–45 min. In order to

reliably run circuits over extended periods of time, the system must detect ion loss

events and automatically reload a chain with the correct number of ions. To detect

loss events, photon counts are monitored during the second-stage cooling process of

each experimental shot. If a loss event is detected, the system will automatically

attempt to reload a chain. Recall that each ion is individually loaded in the load

slot and then shuttled/merged into the existing chain in the quantum region. The

flowchart for this process is depicted in Fig. 5.1(a).

There are no detection optics above the load slot, which makes this process

probabilistic (i.e., we do not know whether we have loaded an ion in the load slot

until we try to merge it into the quantum region). After warming up the neutral Yb

oven, each load attempt begins by clearing the loading region (“eject”) by applying
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Figure 5.1: Autoloading chains of ions. Each ion is individually loaded in the load
slot, and then shuttled and merged with the existing chain in the quantum region
until the desired chain length is achieved. (a) Flowchart for autoloading chains.
Orange boxes occur in the load slot. Blue boxes occur in the quantum region.
Green boxes are calculations that are processed on the host computer. (b) Typical
example of the detection counts in the quantum region versus the load attempt.
Chain load events are detected by looking for transitions in the detection counts.

high DC voltages to the outer electrodes of the load slot. After returning to a

trapping solution, we attempt to load by simultaneously switching on the 399/393-

nm ionization beams. Then we switch the load beams off and allow the ion to cool (if

an ion was actually trapped). Simultaneously, we collect photons from the existing

chain in the quantum region. If we attempt to merge a hot ion into a cold chain it

can melt the crystal and eject ions from the trap. To throw out ions that have not

sufficiently cooled during the cooling stage, we lower the trapping potential so that

hot ions are “boiled” out of the load slot. Simultaneously, we calculate on the host

computer whether we think an ion was loaded on the previous load attempt and

correspondingly update the estimated length of the chain in the quantum region. If

we have reached the desired chain length, the loaded ion is ejected from the load

slot, otherwise we shuttle it to the quantum region and merge it with the existing

chain.
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We use a fixed axial potential for building up chains in the quantum region,

which means the ions are not necessarily aligned to imaging optics. On each load

attempt we collect photons in the quantum region and look for transitions in the

PMT pattern to detect whether an ion was successfully added to the chain. In the

“detect” block of the autoloading process, we collect a vector of PMT counts ~ci

from the quantum region corresponding to load attempt i. The pattern of ~ci as ions

are added to the chain is shown in Fig. 5.1(b). To detect transitions, we define the

metric m,

m =
||~ci−1 · ~ci||2

1 + ||~ci−1|| · ||~ci||
(5.1)

Where || · || indicates the vector-norm. If ~ci−1 ≈ ~ci, then m ≈ 1, whereas if ~ci−1 ⊥ ~ci,

then m = 0. By setting a threshold τ , we say that an ion has been added to the

chain when m < τ and increment the estimated chain length by one. For first ion,

this metric is noisy, thus we add an additional constraint that ||~ci||2 > 202 photons.

5.1.2: Ground State Cooling

At the start of a circuit, the ions should be cooled as close to the motional

ground state as possible. The Doppler limit is still several quanta of energy, and

therefore a sub-Doppler cooling technique must be used in order to achieve ground

state cooling. Sub-Doppler techniques typically rely on pumping the ion into a dark

state, so that they no longer scatter photons, which is a heating process. Raman

sideband cooling [88] consists of applying a π-pulse on the RSB transition, followed

by optical pumping, |↓, n〉 → |↑, n−1〉 → |↓, n−1〉 so that the net effect is to remove
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Figure 5.2: Blue/Red sideband frequency scan across the radial mode spectrum
following SBC on a 15-ion chain. The population transfer is averaged across all the
ions. The asymmetry between the red and blue sideband indicates that the motional
modes are near the ground state.

one quanta of energy. Repeating this process eventually results in |↓, n = 0〉, which

is a dark state under application of either a RSB pulse or optical pumping. SBC is

immediately followed by optical pumping and then the quantum circuit.

The result of SBC on a chain of 15-ions is shown in Figure 5.2, where we

scan the radial gate modes on both the red and blue sideband. The higher-spatial

frequency modes do not heat from anomalous electric field noise, and are therefore

very close to the motional ground state n < 0.05 (the RSB transfer does not exceed

the noise floor of the measurement). The two lowest spatial frequency modes do

couple to noisy electric fields and therefore heat during the process, resulting in

n ≈ 0.5 for the highest energy in-phase mode.

119



Lock
Point

Figure 5.3: The population transfer as chain of 15 ions are scanned across the
individual Raman beam by translating the axial potential. The middle 13 ions are
well aligned to the Raman beams, but the 2 edge ions are not (see Section 2.1.3). We
can use their crossing point as a signal to lock the Raman beams to the remaining
13 ions. The +7(-7) edge ion corresponds to the red (blue) curve.

5.1.3: Ion-based Beam Pointing Lock

It is critical to maintain precise overlap between the ions and the Raman beams

to stabilize gate amplitudes. The chain can move relative to the beams due to stray

background electric field (X1) or the beams can move relative to the chain due to

thermal drifts or air turbulence. In this sense, the ions themselves are the best

sensors for any misalignment. In Figure 5.3, we show the population transferred

from a fixed Raman pulse as a chain of 15 ions is translated across the individual

beams. The middle 13 beams all achieve good alignment at x = 0 µm, which means

they are equispaced by the design of the potential (Section 2.1.3). The two edge

ions deviate from equispacing, again by design, however they have a crossing at

x = 0 µm that can be used to stabilize the individual beam pointing.

On each experimental shot, before main circuit preparation, we perform a mini-
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calibration experiment. The experiment involves Doppler cooling, optical pumping,

and then a single Raman pulse on the two edge ions tuned to achieve roughly half

transfer at x = 0 µm. State detection is performed on the ions and the states are fed

directly into an integrator feedback loop I that controls a piezo mirror that steers

the beam positions along x̂. For example, if the +7 (-7) ion measures in the |0〉 state

then the integrator is incremented I −= g (I += g), where g corresponds to the

gain of the feedback loop. The feedback output is scaled so that I = 0 corresponds

to the middle of the piezo voltage range with nominal pointing at x = 0 µm. In this

notation, I < 0 (I > 0) corresponds to steering the beams in the −x̂ (+x̂) direction.

The lock bandwidth is limited by the experimental duty cycle, which depends on

the length of the circuit that follows the pointing calibration experiment, but in this

system is ≈ 200 Hz. Since we do not wish to inject quantum shot noise into the

pointing lock, the locking bandwidth is limited to ∼ 10 Hz.

5.2: System Calibration

5.2.1: Nulling Stark Shifts via Laser Repetition Rate

In Section 3.1.4, we showed that the cross-beam four-photon Stark shift caused

by off-resonant comb teeth can by theoretically set to zero by adjusting the repetition

rate of the laser. Here “cross-beam” refers to the off-resonant inter -comb teeth that

scales like the product of the intensities of the individual and global beam (∼ IgIi).

This is in comparison to the intra-beam four-photon stark shifts due to residual

polarization circularity in either the global or individual beam alone (∼ I2
g , I

2
i ).
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Additionally, there are the standard two-photon Stark shifts (Eq. 3.21) that scale

like the intensity of a single beam (∼ Ig, Ii). Thus the total Stark shift during a

carrier operation can be described as,

δ = α
(2)
i Ii + α(2)

g Ig + α
(4)
i I2

i + α(4)
g I2

g + α(4)
x IiIg (5.2)

Where α is a constant that contains all the atomic physics of the shift. The

cross-beam parameter α
(4)
x depends on frep and is the free-parameter we wish to

tune. We assume α
(4)
i and α

(4)
g can be set to zero using polarizers and waveplates.

It might be tempting to tune frep so that the total Stark shift is zero (δ = 0),

however static shifts can in principle be calibrated out in circuits using RZ gates.

More detrimental to the fidelity of circuits is fast Stark shift noise or slow drifts that

occur at the timescales faster than can be calibrated out. The strategy taken in this

experiment is to null the dependence on the individual beam intensity, Ii, with the

assumption that it will be the dominant intensity fluctuations in the system due to

the small beam size. The goal is then to tune frep so that,

α
(2)
i Ii = −α(4)

x IiIg (5.3)

Which would eliminate the dependence of δ on Ii. The quantity α
(2)
i Ii can easily be

measured by turning on the individual beam only during one leg of a MW Ramsey

echo interferometer. In our experiment, α
(2)
i Ii = −76 Hz at the individual intensity

used to drive single-qubit gates. The cross-beam stark-shift α
(4)
x IiIg is more difficult
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(a) (b)

Figure 5.4: (a) Changing the sideband imbalance of a bichromatic tone creates a
linear shift in the Stark shift measured during a MW Ramsey experiment. (b) To
balance the two tones, we find where the optimal motional closure occurs from the
experiment described in Fig. 5.5. This value indicates at which sideband imbalance
the two tones become balanced (grey bar), which allows us to deduce the stark shift
due to the off-resonant comb teeth (red bar in (a)).

to measure because the interaction necessarily drives qubit rotations. One approach

to measure the shift due to off-resonant comb teeth only, is to split the resonant

comb-tooth with two tones symmetrically detuned (∆ = ± ∼ 2 MHz) from the

carrier transition (similar to a MS interaction). If the tones are significantly detuned

from the carrier and motional modes then no spin flip occurs. Additionally if the

two tones are balanced in amplitude, then the Stark shifts from each tone cancels

exactly. Since the splitting of the off-resonant comb teeth is much less than frep, this

does not significantly alter their contribution to the four-photon Stark shift. Thus,

placing a balanced bichromatic tone in one leg of a MW Ramsey echo interferometer

measures the stark shift due to the off-resonant comb teeth only.

The challenge then reduces to ensuring that the red and blue tones are truly

balanced in amplitude. There is no guarantee of this experimentally due to slopes
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Figure 5.5: Motional closure experiment. An MS interaction is tuned ∆ away from
a single motional mode, which entangles spin with motion and causes the spin to
randomize. At periods of 1/∆, the motional excitation closes (i.e. disentangles from
spin) and the spin returns to the |0〉 state.

in AOM efficiency, optical path differences, and other frequency-dependent effects

in the RF chain. Scanning the amplitude imbalance between the two tones creates

a linear change in the Stark shift (Fig. 5.4(a)) and somewhere along that line lies

the point where the tones are truly balanced at the ion. We define the sideband

imbalance (κ) by Ib/Ir = 1+κ
1−κ and find the true κ value by looking at the optimal

motional closure, since the MS Hamiltonian only factorizes properly (disentangles

spin from motion) when these two tones are balanced. With one ion, detuning close

to a motional mode by ∆ excites motion that returns to the initial state (i.e., the

motion closes) with period 1/∆. This experiment is shown in Fig 5.5. Sitting on

the fourth dip for sensitivity and measuring the absolute value of the amplitude of

the dip over a range of κ values yields the quadratic curve shown in Fig. 5.4(b). The

peak of the quadratic curve gives the location where the two tones are balanced.
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Figure 5.6: Nulling the 4-photon stark shift by tuning the repetition rate of the laser.
Experimentally we find the value of frep that nulls the sensitivity to individual beam
intensity at x = 0.877.

Equipped with this knowledge, we can return to Fig. 5.4(a) and finally deduce the

cross-beam stark shift.

Repeating the procedure above at varying values of frep (or equivalently, vary-

ing values of x defined in Eq. 3.30) allows us to iterate until the optimality condition

in Eq. 5.3 is met. The result of this process is shown in Fig. 5.6. To within the ex-

perimental uncertainty, we find the optimal value at x = 0.877, with the cross beam

stark shift measured as α
(4)
x IiIg = 120(56) Hz. The precision in this measurement is

limited by the uncertainty in the quadratic fit of motional closure versus sideband

imbalance (Fig. 5.4(b)) since the cross-beam stark shift has a rather large slope of

700 Hz per 0.01 units of κ. The solid line corresponds to the four-photon Stark shift

model given in Eq. 3.34 with a one-parameter fit to the pulse duration, τ = 11.7 ps.
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5.2.2: Voltage Calibrations

The locations of the radial modes and therefore the gate fidelity depends

strongly on the DC potential applied to the chain. These voltages must be calibrated

to ensure consistent high-fidelity operation of the machine. In Equation 4.1, we pro-

vide the model used to describe the HOA potential. In particular there are four

terms used to describe a Taylor expansion of the axial potential in linear, quadratic,

cubic and quartic terms with corresponding unitless multipliers X1, X2, X3 and X4.

In Section 2.1.3, we describe how these multipliers relate to physical values. For our

normal 15-ion chain operation, we desire odd terms to be zero (X1,X3=0) and the

even terms to achieve optimal equispacing of the ions (X2, X4 = 0.00188, 0.00177).

Calibrating X1 and X2 is accomplished on a single ion. First, we apply a

strong axial confinement of X2 = 0.4 (axial frequency 630 kHz) to find the center

of the well x0. Then we relax the axial confinement to X2 = 0.01 (axial frequency

100 kHz) and look to see if the ion shifted in position relative to x0, indicating a

stray linear field. Then we adjust X1 until the ion is centered again at x0. Next,

we scan the axial sidebands to look for the motional peak at 100 kHz. Even though

our Raman has no ∆~k along the axial direction, by offsetting the center of the beam

relative to the ion, we can couple to axial motion (see Section 6.1.2). A long, low-

power pulse should be used to avoid Stark shifts from the nearby carrier transition.

Finally, we add an offset to X2 until the mode is placed exactly at 100 kHz.

Calibrating X3 and X4 is accomplished on a chain of 15 ions, where the applied

potential now has a calibrated X1 and X2 value. The location of the center ion
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Figure 5.7: The consistency of the mode calibrations over the course of approxi-
mately a month.

relative to the previous value x0, gives the signal required for tweaking X3. We

note that these calibrations are sequential and X3 should not be calibrated until

X1 has been properly set. We adjust X3 until the chain is again centered at x0.

For X4, we again look at the frequency of the axial modes, but this time we use

one of the high-spatial frequency modes, which are particularly sensitive to shifts

in the quartic potential. We adjust X4 until the mode overlaps with our reference

value. The reference value is generated from a numerical mode solver that models the

potential described in Eq. 4.1. The absolute frequency of this mode is less important

(assuming the ions are still well spaced) than the stability and repeatability of this

mode.

The consistency of this voltage calibration procedure is shown over the timescale

of approximately a month in Fig. 5.7(a). On a given day, the measured mode spec-

trum ~ωi is compared against a reference mode spectrum ~ω0 measured on day zero,

with the mode drift given by ~ω0−~ωi. In general, we see that the mode error relative
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to the reference spectrum is primarily a fixed constant offset across the spectrum.

The common mode drift is defined as the difference in the mean of the two spectra,

~ω0−~ωi, and is shown in Fig. 5.7(b). This value drifts over the range of ±1 kHz, but

is easily calibrated out by adjusting the DC quadrupole field Qyz or by offsetting

the gate detuning of all the gates.

The differential mode drift is the error that is not explained by a simple offset

in the mode spectrum. This error is defined by (~ω0−~ω0)− (~ωi−~ωi) and is shown in

Fig. 5.7(c). This error is not simple to calibrate out, however the magnitude of this

error is roughly ±200 Hz and is contained within the 10−4 detuning error band of the

optimized gate solutions. Therefore, by compensating only the common mode drift,

we have high confidence that the gates will maintain good motional closure following

the voltage calibration. However, we note that the effect of the differential mode

drift may also change the mode participation factors, and therefore the XX gate

angle, which should be re-calibrated following a voltage calibration. Empirically we

observe that the voltage calibration remains valid over ∼ 4 hours.

5.2.3: Gate Calibrations

Gates must have both the correct amplitude and phase. The one-qubit gate is

fundamentally more robust due to the use of composite pulse sequences that suppress

amplitude fluctuations. Assuming the Stark shift dependence on individual beam

intensity has been nulled (see Section 5.2.1), then the single-qubit gates is also more

robust from a phase perspective. The two-qubit gate does not benefit from composite

pulse sequences, as the extra rotations significantly decrease fidelity. Additionally,
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as shown in Fig. 5.4(a), a few percent amplitude imbalance in the red/blue tones

of the two-qubit gate waveform can cause ∼ kHz Stark shifts. This effect is not

present in single-qubit gates because they operate on the carrier transition. Thus,

the primary operation that needs to be continually calibrated in this system is the

two-qubit gate.

Assuming the static potential has been calibrated, the radial mode frequencies

are well within the gate detuning error that can be accommodated by our optimized,

robust gates. Therefore, the detuning of the gate relative to the modes does not

have to be calibrated in order to achieve high-fidelity operation. To calibrate the

gate angle (amplitude) for a given gate, we apply [XX(π/4)]2N+1 , N = 0, 1, 2 . . .

pulses to a state initialized to |00〉 and look at P (|00〉) and P (|11〉). For a perfect

π/4 angle these probabilities should be equal, P (|00〉) = P (|11〉) = 0.5. We adjust a

global multiplier to the entire AM gate solution until this is achieved. Increasing N

will increase the sensitivity of this calibration due to coherent build up of the error,

but may also exhibit time-dependant effects that can systematically miscalibrate the

gate angle. We use N = 0 with several thousand repetitions to reduce the effects of

shot noise.

As shown in Fig. 5.4(a), the imbalance of the red/blue tones in the gate wave-

form can have an outsized effect on the Stark shift seen by the qubits participating

in the gate. We can measure this Stark shift on a given gate by initializing the

qubits in |++〉 and then applying [XX(π/4)XX(−π/4)]N , N = 1, 2, 3 . . . Finally,

we apply Ry(π/2) pulses to the two qubits. If there has been no Stark shift, then

the qubits should transfer to the |11〉 state. Applying this experiment while sweep-
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ing the relative amplitude of the red/blue tones in the waveform yields sinusoidal

curves for each qubit. When these qubits are spatially separated in the chain, they

may each see a different red/blue tone imbalance. Thus we set the calibrated tone

imbalance to be the mean of where each qubit has maximum transfer to |1〉. The

residual error, which we call the differential Stark shift, is taken care of by auto-

matically applying differential software Rz(±θ) gates paired with every application

of the XX gate on that ion pair.

5.3: System Characterization

5.3.1: State Preparation And Measurement Error

We characterize the state preparation and measurement (SPAM) errors on

a single ion, initially prepared in the |0〉 state using optical pumping. We can

apply a following SK1 [55] π-rotation to prepare |1〉. To measure the qubit state,

369 nm light that is resonant with the |2S1/2, F = 1〉 ↔ |2P1/2, F = 0〉 transition

is directed onto the ion and the scattered photons are coupled into a multi-mode

fiber bundle and detected on an array of pig-tailed PMTs. We determine that the

ion is bright (dark) when we detect > 1 (≤ 1) photons within a 100 µs window.

The SPAM error for |0〉 (the dark state) is 0.22(2)%, and can be broken down into

dark-to-bright excitation (off resonant 14.75 GHz |2S1/2, F = 0〉 → |2P1/2, F = 1〉),

incomplete pumping (preparation error), and background dark counts. When the ion

is prepared in |1〉 (the bright state), we measure a SPAM error of 0.71(4)%, which can

be broken down into bright-to-dark excitation (off resonant 2.105 GHz |2S1/2, F =
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1〉 → |2P1/2, F = 1〉), threshold error (overlap of bright/dark histograms), state

preparation error (single qubit gate error). The average single-qubit SPAM error

is then 0.46(2)%. Table 5.1 describes the SPAM error budget, derived either from

separate measurements or by fitting Poisson curves to the histogram of photon count

event frequency.

0-state and 1-state error Error
SPAM error on dark ion ≡ |0〉 0.22%

Dark to bright pumping 0.13%
Preparation error - incomplete pumping 0.02%
Background dark counts (measured with no ion qubit) 0.07%

SPAM error on bright ion ≡ |1〉 0.71%
Bright to dark pumping 0.55%
Thresholding error 0.12%
Preparation error (1-qubit randomized benchmarking) 0.03%

Table 5.1: State preparation and measurement error budget for a single ion in our
system.

Detection crosstalk is a source of correlated error. We can characterize this by

spatially scanning a 3-ion chain over 3 PMTs (by applying a linear axial field) and

simultaneously applying detection light. The result of this experiment is shown in

Figure. 5.8. At 0 V/mm, we can see that all three ions are aligned to the PMTs,

as expected. Shifting the ions off to the side so that only the final ion is aligned to

to PMT3, we can read the nearest neighbor crosstalk as 0.9% on PMT2, and the

next-nearest neighbor crosstalk as 0.2% on PMT1. Assuming a Poisson distribution

with λ = 9 this corresponds to a 0.31% false alarm rate on the nearest neighbor and

0.02% false alarm rate on next-nearest neighbor. Note that a this error only occurs

when the target is bright and the neighbor is dark. For bright-bright or dark-dark

combinations there is no error, so in practice the average crosstalk detection error
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Figure 5.8: Log-scale plot of detection crosstalk in our system. Scattered photons
from resonant detection light are measured on three channels of a multi-mode fiber
bundle + PMT array. The three ions are scanned spatially across the detectors
using a linear axial field.

is reduced by a factor of 2.

5.3.2: Rabi Crosstalk

Crosstalk errors are caused by unwanted Rabi drive spilling over onto idle

qubits during active addressing of the target qubits. In one sense, crosstalk errors

are a favorable type of error since they are unitary, which means they can in principle

be reversed (e.g. through echoing protocols). On the other hand, crosstalk errors

are correlated, which means they can be difficult to model and may break error-

correction schemes that assume simple stochastic noise models. On a chain, Rabi

crosstalk can be characterized by addressing one ion with a square carrier pulse and

measuring flopping on the idle qubits. In post-processing, we normalize the Rabi

frequency of the idle qubits by the Rabi frequency of the addressed ion. The results
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Figure 5.9: Rabi crosstalk measured in a chain of 15 ions by driving the addressed
ion with a square carrier pulse and observing flopping on the idle qubits. Crosstalk
Rabi frequency is normalized to a percentage of the addressed ion Rabi frequency.

of this experiment are shown in Figure 5.9.

As shown in Figure 5.10, there are three expected sources of crosstalk in our

system - optical, electrical, and acoustical. For a perfect individual Gaussian beam

with a waist of 0.85 µm, the expected electric field amplitude one ion spacing away

(4.43 µm) from the beam center is many order of magnitudes below what is observed.

Thus we would expect optical crosstalk to be dominated by beam aberrations and

to primarily impact the nearest neighbors. There can also be electrical crosstalk

due to capacitive pickup in the RF feed lines in the AOM cell itself that can drive

main-lobe acoustic waves on unwanted channels. The design of the circuit boards in

the AOM has odd numbered channels entering from one side, and even numbered

channels entering from the other side. Thus we expect any electrical crosstalk to be
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Figure 5.10: There are three different sources of Rabi crosstalk in our system. (a)
Optical crosstalk due to beam aberrations causing electric field spill-over onto near-
est neighbor ions. (b) Electrical crosstalk from RF capacitive pickup that drives
main-lobe acoustic waves on next-nearest neighbor channels. (c) Acoustic crosstalk
from diffractive side-lobes of the driven sound wave. Evidence suggests this is the
dominant source of Rabi crosstalk in our system.

primarily next-nearest neighbor. Finally, there can be acoustic crosstalk within the

AOM crystal from side-lobes caused by diffraction of the acoustic column. Due to

interference effects of acoustic waves, we expect these effects to be highly dependent

on the spatial location of the beams and/or ions and to exhibit fringe-like features.

The dominant feature in our crosstalk matrix is nearest neighbor (±1) and next-

nearest neighbor (±2) crosstalk in the range of 2-3%. However there is also a fringe

at ±5 with ∼ 1.5% crosstalk which is difficult to explain with optical or electrical

crosstalk.

To investigate this further, we drive the center AOM channel in a chain of

15, while rastering the ion chain through the beams using DC voltages on the chip

trap. By observing the neighboring ions in this process, we can map out the spatial

pattern of the crosstalk. The result of this experiment is shown in 5.11 at two

different RF powers into the 32-ch AOM, corresponding to a 13× reduction in RF
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Figure 5.11: The spatial pattern of crosstalk onto the nearest-neighbor ions exhibits
fringe patterns consistent with acoustic crosstalk. In this experiment, the center
individual beam is driven while rastering an ion chain through the beams using DC
voltages.

power between the black and red curves. There is apparently no dependence of

crosstalk with RF or optical power. Notably, there is a distinctive fringe pattern

that is consistent with the beams on the crosstalk ions being activated by weak

acoustic waves - either through acoustic or electrical crosstalk, although nearest-

neighbor here suggests acoustical. Through discussion with the AOM manufacturer,

we identified an AOM-beam alignment issue likely responsible some amount of excess

crosstalk. In particular, the input beams are not perfectly orthogonal to input

crystal face. With perfect alignment, we expect the optimal crosstalk to drop to 1-2%

on mostly nearest neighbor, which is in line with other work on similar hardware [77].

Practically, the impact of crosstalk in single-qubit gates can be suppressed

quadratically using SK1 pulses, however two-qubit gates will still be sensitive. As-

suming that the crosstalk originates from acoustic waves, we can attempt to drive
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No Active Cancellation Active Cancellation

Figure 5.12: (left) Excitation on ion +1 (orange) due to beam applied to ion 0
(blue) without any cancellation. (right) Same but with a weak tone of correct
phase/amplitude applied to the AOM channel corresponding to ion +1 (orange).
We achieve 10× supression of the relative crosstalk Rabi frequency using active
cancellation.

the idle crosstalk channel with a weak tone that cancels the acoustic wave at the

location of the idle beam. The results of this experiment are shown in 5.12, demon-

strating a 10× suppression in the relative crosstalk Rabi frequency. We note that

both the phase and amplitude of the cancellation tone must be calibrated to null

the crosstalk. In general, we find that the cancellation tone is not simply 180◦ out

of phase with the drive tone, which is consistent with acoustical crosstalk and path

length differences. Additionally, we point out that unlike electrical crosstalk, which

can theoretically be canceled perfectly, acoustical crosstalk can never be completely

nulled due to the difference in wavevectors between the cancellation wave and the

crosstalk wave. The scalability of this cancellation scheme may ultimately be lim-

ited by the stability of the cancellation tone phases, which may drift on thermal

time-scales.
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5.3.3: Single Qubit Gate Performance

Measuring the fidelity of one single-qubit gate will likely always be limited by

detection errors. One proposed method to overcome this limitation is to observe the

scaling of error with long sequences of single-qubit gates. In particular, randomized

benchmarking protocols use sequences of random Clifford gates to generate estimates

of the computationally relevant errors without relying on accurate state preparation

and measurement [89]. We use a sequence of up to 20 random Clifford gates, which

are then decomposed into our native rotation gates and implemented using SK1

composite pulses (we are limited to only 20 Clifford gates by the details of our

AWG system). Each random sequence is followed by its inverse in order to, in

principle, echo out the gates completely and return the qubit to the initial |0〉 state.

The degree to which the qubit does not return to the initial state quantifies the

infidelity of the circuit.

The measured occupation of the |0〉 ground state as a function of the number

of the applied Clifford gates is shown in Figure 5.13. This benchmarking procedure

is performed on a single ion, as well as on an individual qubit in a chain of 15 ions,

so as to detect any adverse affects arising from an increase in the system size. The

fitted slope of the occupation of the |0〉 state as a function of the number of the

applied Clifford gates indicates a per-Clifford error of 3.4(8) × 10−4 on the 15-ion

chain. We note that on average, each Clifford operation is composed of 1.875 native

gates [90], corresponding to an error of 1.8(3)× 10−4 per native gate. The offset in

the fit is consistent with SPAM errors.
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Figure 5.13: The probability to measure a single ion in the ground state after a
variable number of Clifford gates in a randomized benchmarking sequence. The
slope of the line indicates the per-Clifford fidelity, while the y-intercept indicates
the SPAM error. Fit function for 1 ion chain is 0.9938(8)−N ∗ 1.7(7)× 10−4, and
for 15 ion chain 0.995(1) − N ∗ 3.4(8) × 10−4. Error bars shown are the standard
error of the mean.

5.3.4: Two Qubit Gate Performance

In general, to measure the fidelity of a multi-qubit state relative to some ideal

state, one is required to gather information about the full density matrix, which

scales poorly as the number of qubits grows. However, the density matrix of a

Bell state created from a single XX gate is sparse and so we can take a short cut.

Starting in |00〉 and applying a single XX, the two-qubit density matrix of this

state will be,

ρideal =
1

2


1 0 0 i
0 0 0 0
0 0 0 0
−i 0 0 1

 =


ρ00 0 0 ρ03

0 0 0 0
0 0 0 0
ρ∗03 0 0 ρ33

 (5.4)

So then we only need to infer three values in order to calculate the fidelity of the

state, ρ00, ρ33, and ρ03. The error of the gate is then determined by observing the
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deviation from these ideal values. Measuring this state, we can directly extract ρ00

and ρ33 since the probability to measure |00〉/|11〉 is just ρ00/ρ33 (i.e., P (|00〉) = ρ00

and P (|11〉) = ρ33). Then we only need to infer the value of the off-diagonal term.

Consider the effect of a R̂(π/2, π/4) rotation on each qubit in the entangled

state, with the rotation matrix given by R̂A = R̂(π/2, π/4)⊗ R̂(π/2, π/4). Then the

transformed density matrix is given by ρ̃ideal = R̂A · ρideal · R̂†A. Define the average

parity Π of a state as the sum of the even parity populations minus the sum of odd

parity populations, Π = [P (|00〉) + P (|11〉)]− [P (|01〉) + P (|10〉)]. When the qubits

are perfectly correlated, Π = 1, and when the qubits are perfectly anti-correlated,

Π = −1. Applying this observable to the density matrix ρ̃ideal, yields Π = −2iρ03,

which gives us a direct measure of the off-diagonal term in the density matrix. So

when ρ03 = i/2, as in the ideal state, then Π = 1. While, we have only considered

the ideal state, it can be shown that the fidelity of any mixed state relative to this

ideal state can measured with the same approach [91]. Thus the fidelity of the Bell

state created from a single XX gate is given by,

F =
1

2
(P (|00〉) + P (|11〉) + Π) (5.5)

In the example above, we knew ahead of time which phase to apply to the

“analysis pulses” in order to maximize Π, but in practice we need to scan the phase

R̂A(φ) = R̂(π/2, φ) ⊗ R̂(π/2, φ). This results in a “parity fringe” curve like that

shown in Figure 5.14, where Π is taken to be the amplitude of the sine curve. This

exact calculation of fidelity only requires two experiments - one without analysis
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Figure 5.14: The parity fringe after a single XX gate on ions (−6,−5) in a 15-
ion chain. The parity fringe amplitude (0.992), is one of two numbers required to
calculate the fidelity of the gate.

pulses to measure the populations, and one with analysis pulses to measure the

coherence.

Measuring the gate fidelity of a single two-qubit gate also suffers from SPAM

limitations. Fortunately, the fidelity measurement presented above works for any

odd number of XX gates (an even number of XX gates generates no entangle-

ment). We can take a similar approach to the single qubit gate characterization by

repeating successive XX gates and observe the decay in fidelity versus number of

gates. However, simply repeating XX gates can build up a coherent error that adds

quadratically and could over-estimate the error per gate. For example, we anticipate

the dominant error in the XX(π/4) gate will be an over or under-rotation error by

a small angle ε resulting in XX(π/4 + ε). A sequence of N successive applications

of the gate will then will result in an accumulated angle error of Nε. We take this

situation to be the ”worst-case” scenario.
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Figure 5.15: Fidelity estimate for a gate on ions (−6,−5) in a 15-ion chain. The
cumulative sequence (red) XX(π/4)XX(π/4)... coherently builds errors, and the
echoed sequence (black) XX(π/4)XX(−π/4)... coherently cancels errors The true
gate fidelity lies somewhere in the shaded region. The slope of the two lines deter-
mines the error per gate, or the estimated fidelity to be in the range of 98.5−99.3%.

On the other hand, if the phase of the gate is flipped by π with each successive

application, XX(π/4 + ε)XX(−π/4 − ε)..., then this over/under rotation error is

suppressed to the extent that it is stable between applications. We also note this echo

sequence will also suppress other forms of coherent errors, such as gate crosstalk.

We take the echoed gate sequence to be the ”best-case” scenario. Within a circuit,

we expect the true fidelity of a single XX gate to fall between these two extremes.

As we increase the number of XX gates in the sequence, the slope of the fidelity

gives the error per gate. In Figure 5.15, we show the results of these two sequences

for a gate between ions (−6,−5) in the chain of 15 ions. The estimated fidelity for

this gate is then bounded within 98.5− 99.3%.

Examining the cumulative XX gate experiment can yield insight into the error
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Figure 5.16: Error analysis for repeated XX gates on ions (-6,-5) in a 15-ion chain.
The black points indicate P (|00〉) + P (|11〉), which is a good metric for motional
gate closure. The red points indicate the parity fringe coherence, which is a good
metric for amplitude noise. The points are fit to Π = 1 − (0.053 − (0.055N)2/2).
The blue points indicate the calculated fidelity from Eq. 5.5 with a fit to F =
1− (0.038− (0.044N)2/2)

mechanisms that limit gate performance. As discussed in Section 3.3.1, there are two

conditions to achieve a high-fidelity MS interaction - motional closure (i.e., phase

space is closed and motion is disentangled from spin) and geometric phase enclosed

(i.e., that gate is maximally entangling with χ = π/4). Failure to close motion at the

end of the gate results in residual entanglement of spin and motion. This can indicate

an error in gate design or motional mode calibration error. Since the MS-interaction

is a two-body interaction, it acts on the even parity subspace |00/11〉, assuming the

qubits start in |00〉. Thus, leakage into the odd parity subspace |01/10〉 indicates

residual entanglement with motion. Therefore the metric, 1 − P (|00〉) − P (|11〉),

is useful for quantifying motional closure. This metric is shown after N two-qubit

gates in Figure 5.16.

On the other hand, the off-diagonal term, quantified by Π, provides informa-
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tion about the geometric phase enclosed by the gate. A decrease in Π indicates

either a systematic miscalibration of the gate amplitude, or worse, amplitude noise

that results in decoherence between |00〉 and |11〉. This metric is also sensitive to

phase noise during the gate, although we anticipate amplitude noise to be the dom-

inating contributor. The parity fringe coherence as a function of N is shown in

Figure 5.16. The gate fidelity, which depends on these two numbers, is also shown

in Figure 5.16. Clearly, the gate fidelity is limited by the parity fringe coherence,

rather than the even parity subspace error. This indicates that amplitude noise ap-

pears to be the limiting factor, as opposed to the gate design. Amplitude noise can

either appear from pointing noise of the focused individual Raman beams, or from

movement of the ions with respect to fixed beams (see Section 6.1). While there

are certainly other mechanisms that cause errors in two-qubit gates (spontaneous

emission, motional coherence, stark shift noise, Rabi frequency imbalance, etc.), the

effect of these errors are predicted to be significantly lower than the decrease that

we observe. A more detailed discussion of the XX error budget can be found in

other works [65, 92, 93].

In the future, a more standardized approach to fidelity estimation such as ran-

domized benchmarking or gate set tomography [87, 89] would be preferred. However,

these characterization protocols typically require thousands of relatively deep cir-

cuits to generate an accurate estimate, which are expensive to run in this system

due to the particular implementation of the RF control system. The above char-

acterization is particular for a low power gate. As the required power in a gate

increases, we empirically observe a corresponding decrease in fidelity. We attribute
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this to cross-talk, which we verify by looking at leakage into the odd parity subspace

conditioned on a spin flip in an idle qubit.

In general, ion chains feature all-to-all two-qubit gate connectivity; however,

some gates require more optical power than others to achieve maximal entanglement.

These differences in power requirements can be understood by examining the mode

participation symmetries in the chain. For example, ion 0, the center ion, requires

high power in nearly all of its gates because it only participates in the even spatial

modes (i.e., b0,2n = 0, n = 1, 2, ..., 7 where bi,1 is mode-participation factor of the

highest-frequency in-phase radial mode for ion i). So on average, for a fixed gate

frequency, the modes that drive entanglement are further detuned from the gate.

We note that this is unique to our choice of amplitude modulated (AM) gates with

a fixed frequency; phase/frequency-modulated (PM/FM) gates or multi-tone gates

may have different chain symmetry considerations.

In 5.17, we present the power requirements for the gates in our system. Each

gate is optimized according to Section 3.3.4. Once the optimal gate detuning is fixed

for each gate, we calculate the root-mean-square (RMS) Rabi frequency (Ωrms) of

the AM waveform for each red/blue sideband when brought into resonance with the

carrier transition. In our system, we use equal Rabi frequencies to drive both ions

i, j in the gate (Ωi,rms = Ωj,rms), although this need not be case. The Lamb-Dicke

factor (η ≈ 0.08) converts carrier Rabi frequency to sideband frequency and this

factor is normalized by the gate duration (τgate = 225 µs).

Using Fig. 5.17 as a cost matrix, we optimize the ion → qubit mapping so

that the required gates for a given circuit minimize the total cost. In general, we
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Figure 5.17: For an XX gate on ions i, j, the (RMS) Rabi frequency (Ωrms) of the
AM waveform for each red/blue sideband when brought into resonance with the
carrier transition is normalized by the Lamb-Dicke factor (η ≈ 0.08) and the gate
duration (τgate = 225µs). Gate power is used as a proxy for crosstalk, and the
ion→qubit mapping is chosen to minimize this cost matrix.

observe that each half of the chain has strong coupling to itself, and the two halves

of the chain couple well to each other as long as symmetry of the chain is obeyed

(e.g., gates where the ions are with both odd or both even integer offsets from the

center of the chain couple well, but mixed even and odd integer offsets do not).

5.3.5: Anomalous Heating Rates

The ions are observed to heat up while left along in the dark. This mechanism

is called anomalous heating and is typically attributed to surface physics on the

trap electrodes that causes electric field noise at the ions. This heating can cause

detrimental effects within a single XX gate or over the course of a circuit. It is

important that this heating rate be driven as low as possible through careful design

and cleaning of the trap.
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Figure 5.18: Heating rate measurement for the HOA chip trap. Population trans-
ferred from a fixed RSB pulse on a single ion with radial modes oriented parallel
(horizontal) and perpendicular (vertical) to the chip trap surface. Scanning the
wait time before the RSB pulse allows us to deduce the average phonon number as
a function of time (i.e., the heating rate).

To characterize the anomalous heating rates in the HOA chip trap, we trap

a single ion and orient the principal axes of the trap parallel and perpendicular to

the trap surface. We first characterize the carrier Rabi frequency Ω0. With the

known Lambe-Dicke parameter η, the average phonon population can be deduced

by applying a fixed duration RSB pulse on the radial mode and observing the

population transferred. The result of this experiment is shown in Figure 5.18. We

observe a heating rate to 188(10) quanta/s for the perpendicular (vertical) radial

mode and 88(6) quanta/s for the parallel (horizontal) radial mode. This factor

of two difference is consistent with anomalous heating caused by fluctuating patch

potentials on the trap electrodes [94].
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Chapter 6: Scaling to Long Ion Chains

In the previous chapter, we reported on performance benchmarks for a 15 ion

chain. There are obvious benefits to trying to increase this chain length further to

increase the computational power of the quantum computer while maintaining si-

multaneous all-to-all connectivity. While ion trap architectures with multiple chains

in a QCCD-style system [16, 19] will ultimately be required, especially to perform

mid-circuit measurement, there is significant overhead to the shuttling operations

required to achieve effective all-to-all connectivity across the multiple chains. Thus,

there are advantages to trying to increase the base chain length as long as possi-

ble, even if that system contains multiple chains [95]. The natural question becomes

“what ultimately limits the length of the chain?” There are obvious engineering and

control challenges to increasing the length of the chain, including voltage calibra-

tions, two-qubit gate design, and RF control, however none of these appear funda-

mental. Following published work [96], in Section 6.1 we identify a challenge at the

fundamental physics level that poses a threat to the scalability of long chains, and

then in Section 6.2 we propose a mitigating solution and provide proof-of-concept

demonstration of its capability.
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6.1: Axial Heating

The fidelity of entangling quantum gates between trapped ion qubits relies

on the control of normal modes of motion. It is therefore common to use high-

frequency radial modes to mediate the entanglement [97], since they are more easily

laser-cooled to the ground state and are less susceptible to heating from electric field

noise [94, 98]. However, heating of spectator modes can also degrade quantum gate

fidelity [99]. When addressing individual ions in long chains, the motion of the ions

in the weakly-confined axial direction in particular can spoil the coupling of the ions

to tightly-focused individual-addressing laser beams.

Consider the effect of axial (x̂) motion of a chain of trapped ions, each of mass

m, with axial normal mode frequencies ωk. Each ion is addressed by an array of

focused laser beams that drive Rabi oscillations between two qubit states (|0〉 and

|1〉). The beams are directed perpendicular to x̂ so that, throughout their axial

motion, the ions experience fixed phases of the Rabi drive. The instantaneous qubit

Rabi frequency Ωi of the ion i is proportional to the electric field amplitude of the

laser beam at the position of this ion [20, 100]. This is true for both direct optical

qubit transitions [100] or two-beam optical Raman transitions where one of the

beams has a uniform intensity profile, as used here. For small axial deviations of

the i-th ion about its equilibrium position x = x0, the Rabi frequency can be Taylor

expanded to second order as,

Ωi(x) = Ωi,0 + Ω′i(x0)(x− x0) +
1

2
Ω′′i (x0)(x− x0)2 (6.1)
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with Ω0 = Ω(x0). The linear term Ω′i(x0) in Eq. 6.1 is zero if the beam center is

aligned with x0. However if the ion is offset from the center of the beam, either

due to misalignment or non-perfect equispacing of the ions (see Section 2.1.3), then

this term results in a spin-dependent axial force proportional to the gradient of the

Rabi frequency along the axial direction. We will discuss this effect in Section 6.1.2,

but for now we will assume the beam is centered on x0 (i.e., Ω′i(x0) = 0). When

Ωi � ωk (as in the case of two qubit gates), the ion will experience a time-averaged

Rabi frequency

Ωi = Ωi,0 + Ω′′i,0
A2

2

∫ 2π

0

1

2π
cos2 φ dφ

= Ωi,0 +
1

2
Ω′′i,0

N∑
k=1

b2
ik

Ek
mω2

k

(6.2)

where Ωi,0 is the Rabi frequency at the equilibrium position of ion i, Ω′′i,0 is its

curvature along the x̂-axis, and A is the amplitude of motion given by E = mω2A2/2

for a single motional mode. For many motional modes, we need to include the

sum in Eq. 6.2 representing the mean-squared displacement of the i-th ion from its

equilibrium, with bik the participation of this ion in axial mode k. Ek = ~ωk(nk+1/2)

is the energy of excitation of mode k, with nk the number of motional quanta in the

same mode. Here, Ek is assumed to be constant during a Rabi oscillation or single

gate operation.

Since cooling and heating are incoherent processes, assume that the energies

Ek follow a thermal Boltzmann distribution at temperatures Tk, and write kBTk =

~ωkn̄k with n̄k � 1 the average axial vibrational occupancy number of mode k.
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The spread in the axial mode energy results in a spread in the average value of

the Rabi frequency during the pulse, which results in decoherence. Unlike the ion

position, which, for an ion in a thermal state of motion, is Gaussian-distributed, in

the same state, the ion’s energy follows an exponential distribution. This results in

much stronger relative fluctuations in Ω compared to a process whose average Rabi

frequency depends linearly on the ion’s position.

Starting in |0〉 and driving the carrier transition on the ith qubit, the proba-

bility to find the state in |1〉 can be evaluated by performing the thermal average,

denoted by 〈·〉, over all the modes k as

p|1〉 (t) =

〈
sin2

(
Ωit

2

)〉
=

1

2
− 1

2
Re eiΩi,0t

N∏
k=1

∞∑
nk=0

pk(nk) exp

(
ib2
ikΩ

′′

i,0t
Ek

2mωk

)
,

(6.3)

where the occupation numbers pk(nk) = e~nkωk/(kBTk)/(1 − e−~ωk/(kBTk)) correspond

to Boltzmann distributions at the mode temperatures Tk. Performing the sums over

nk we then obtain

p|1〉 (t) =
1

2
− 1

2
Re eiΩi,0t

N∏
k=1

(
1− e−~ωk/kBT

)
exp

(
iΩ′′i t

2

~b2ik
2mωk

)
1− exp

{
− ~ωk
kBT

(1 + iΩi,0θikt)
} , (6.4)

where the decay parameters θik are defined below in Equation 6.7.

Since the mean occupation numbers n̄k ≈ kBTk/(~ωk) of the modes that con-

tribute to the gate error are much larger than one. Expanding Eq. 6.4 to leading
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order in ~ωk/kBTk ∼ 1/nk, we obtain

p|1〉 (t) =
1

2
− 1

2
Re eiΩi,0t

N∏
k=1

1

1 + iΩi,0θikt
exp

(
iΩ′′i t

2

~b2
ik

2mωk

)
. (6.5)

The last phase term describes the change in the average Rabi frequency due

to the zero-point motion of the ions, with no additional decoherence. In this regime,

it can be neglected, yielding,

p|1〉 (t) =
1− C cos (Ωi,0t+ φ)

2
, (6.6)

The Rabi oscillations exhibit a phase advance of φ =
∑

k arctan (Ωi,0θikt) and a loss

in contrast by a factor of C =
∏

k(1 + θ2
ikΩ

2
i,0t

2)−1/2. Here, the decay parameter for

ion i due to mode k is defined as

θik = −kBTkb
2
ik

2mω2
k

Ω′′i,0
Ωi,0

= −b2
ikξ

2
k

Ω′′i,0
Ωi,0

n̄k, (6.7)

and characterizes the decoherence per Rabi cycle of ion i due to the motion in mode

k. Here, ξk =
√

~/(2mωk) is the zero-point spatial spread of the ion motion.

To probe the decoherence caused by the thermal axial motion of the qubit,

we confine a single ion with varying static confinement strength along the axial x̂

direction. Following Raman sideband cooling [101] of the radial motion of the ion to

an average occupation number n̄ of less than 0.15 quanta, we optically pump the ion

into |0〉. After a 5-ms delay, we drive carrier Rabi oscillations of the ion, obtaining

the data shown in Fig. 6.1. We observe that, when the axial frequency of the ion
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Axial

Figure 6.1: Rabi oscillations on a single ion with axial frequency 140 kHz (black)
and 710 kHz (gray). The black and gray lines correspond to fits to Eq. 6.6. The red
line corresponds to a fit to a two-state model with phase damping. Inset: illustration
of the axial motion of the ion in the tightly-focused Raman beam.

is decreased from 700 kHz to 140 kHz, the Rabi oscillations exhibit a sharp decay.

The observed oscillations do not exhibit an exponential decay with a constant phase

shift, as would be expected from pure phase damping, but instead agree with the

model from Eqs. 6.6-6.7.

We investigate the spatial dependence of the decoherence by applying static

trap voltages to move the ion along x̂. First, we map out the spatial profile of

our tightly-focused Raman beam by tightly confining the ion and then driving it

with a carrier Raman pulse of duration τ = 0.5 µs. We use the fraction of the ion

population transferred to |1〉 to determine the Rabi angle Ωτ , as shown in Fig. 6.2(a).

A Gaussian fit to the obtained data (Ωτ ∼ e−x
2/w2

) yields the 1/e2 intensity-radius of

the tightly focused beam w = 870(25)-nm. On one shoulder of the tightly focused

beam, we observe a deviation from the Gaussian shape, which we ascribe to the
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Figure 6.2: (a) The angle of the Rabi oscillation of a single ion depending on the
position of the ion in a trap with tight axial confinement (ω0 = 2π×630 kHz).
(b) The absolute value of the decay parameter obtained by fit of the Rabi oscillation
to the model from Eq. 6.6 for a weakly axially confined ion (ω0 = 2π×140 kHz)
depending on the position of the ion. The solid line indicates a prediction based on
the Gaussian fit from (a) and an axial ion temperature corresponding to n̄ = 280
quanta.

mode profile of the laser.

Next, we relax the single ion’s axial confinement and perform a carrier Rabi

oscillation experiment, as in Fig. 6.1, at each set position of the ion. We fit the

resulting data to the model from Eq. 6.6 to extract the decay parameter θ, with

the results shown in Fig. 6.2(b). We compare the obtained θ(x) data to the predic-

tion θ = 2(ξ1/w)2 (1− 2x2/w2) n̄1, which assumes a Gaussian shape of the tightly-

focused beam, with the ion’s axial average thermal vibrational number of n̄1 = 280

at the expected Doppler cooling temperature.

We observe good qualitative agreement, with the laser mode shape likely re-

sponsible for the discrepancy at positive x̂ values. The shape in Fig. 6.2(b) is in

striking contrast to decoherence caused by beam fluctuations, which increases on
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the sides of the focused beam. Rather the measured decoherence parameter reaches

its minimum values near the inflection points of the Gaussian curve. The measure-

ments from Figs. 6.1 and 6.2 demonstrate that both the spatial and the temporal

behavior of the observed Rabi oscillations of an ion under weak axial confinement

are well described by the model of Eqs. 6.6-6.7.

We now consider the effect of axial motion on a chain of ions. After sufficient

time tw following laser cooling, the temperature Tk of the axial mode k will be

dominated by the work done by noisy background electric fields [94, 98]. If this field

is uniform in space, its work on mode k will be proportional to (
∑

i bi,k)
2. Since the

decoherence due to the decay parameter scales as 1/ω2
k, we expect the heating of

the lowest-frequency “in-phase” axial mode (m = 1), to strongly dominate the gate

error budget (recall for radial modes the in-phase mode has the largest ωk, whereas

the opposite is true for axial modes). In this case, the effects of the axial motion on

the i-th ion are captured by the single decay parameter

θi ≡ θi1 = b2
i1

(∑
j

bj1

)2

θ(tw), (6.8)

where θ(tw) is the decay parameter of a single ion in a trap with axial frequency

equal to ω1, following Eq. 6.7. Note that for harmonic axial confinement where the

in-phase mode is the center-of-mass mode (bi1 = N−1/2), the decay parameter θi

becomes equal to that for a single ion.

In the experiment, we use a combination of quadratic and quartic axial poten-

tials (see Section 2.1.3) to prepare near-equispaced chains of 15 (25) ions with 4.4 µm
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Figure 6.3: The rate of change of the decay parameter θi as function of the ion index
(i) in a chain of near-equispaced 15 ions (black) and 25 ions (red). The error bars
are statistical from fits of θi(tw) to a linear increase with the wait time tw. The solid
lines correspond to predictions based on power-law spectral density of electric field
noise with exponent α = [0.8, 1] and the independently measured heating rate of
one ion at 3 MHz of ˙̄nr = 88(6) quanta/s (see Section 5.3.5).

ion spacing, obtaining 193 (123) kHz as the lowest axial mode frequency. Following

sideband cooling of the radial modes of the ion chain, we drive simultaneous Raman

Rabi oscillations on the middle 13 (15) ions in the chain after a variable wait time

tw following the Doppler and sideband cooling. We fit the oscillations of each ion to

the model from Eqs. 6.6-6.7 to determine the rate of change of its decay parameter,

and we show the results of these measurements in Fig. 6.3. The observed variation

of the decay parameters across the chains follows the factor b2
i1 from Eq. 6.8, with

the Rabi oscillations of the middle ions exhibiting increased decay due their higher

participation in the lowest-frequency axial mode. This effect is colloquially called

the “soft belly” of the chain and is not observed with a quadratic confinement term

only (in which case bi1 is flat).

155



Electric-field noise in ion traps is empirically observed to follow a power-law

with frequency ω−α, with exponent α between 0 and 2 [94]. To check for consistency

of our observations with this behavior, we use sideband spectroscopy of a single ion

to measure the heating rate of ˙̄nr = 88(6) quanta/s for a 3-MHz radial mode parallel

to the trap surface (Section 5.3.5). In Fig. 6.3, we show the predictions based on

Eqs. 6.7 and 6.8 and α = 1. We also show predictions for α = 0.8, which we deduced

independently from dθ/dtw for a single ion as a function of the axial trap frequency.

We observe good quantitative agreement with our data, suggesting that electric-field

noise in our system is consistent with previously observed values.

The Rabi frequency Ωi,j of the entangling dynamics between the |00〉 and

|11〉 states of ions i and j during two-qubit entangling gates is proportional to the

product of the single-qubit Rabi frequencies on the two addressed ions. If the two

ions are centered on the maxima of their respective individual-addressing beams,

the joint decay parameter corresponding to axial mode k is θik + θjk. The fidelity

of the obtained two-qubit state is bounded from above by Fij = Tr (ρ̂ (t) ρ̂χ) =〈
cos2

(
Ω̄i,jt− χ

)〉
, where χ is the desired two-qubit gate angle, and Ω̄i,j is the mean

value of Ωi,j during the ions’ axial motion. Performing the thermal average as in

Eq. 6.6, we find the state fidelity bound after Ng successive fully-entangling gates

(χ = Ngπ/4) is

Fij =
1

2
+

1

2

∏
m

1√
1 + (Ngπ/2)2 (θik + θjk)2

. (6.9)

To check this prediction, we apply linear amplitude modulated gates (see Sec-

tion 3.3.3) that address ions (−6,−5) in chains of 15 (25) ions that perform one
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Figure 6.4: The fidelity of one (three) fully entangling gate(s) on two ions (indices
i=−6 and j=−5 as in Fig. 6.3) in a chain of 15 and 25 ions as a function of the waiting
time before the gate(s). The error bars denote 1σ uncertainty of the weighted average
of several measurements of the fidelity. The shaded areas show the predictions based
on Eq. 6.9, adjusted down by the error in state preparation and measurement in our
ion chains (0.9%, Section 5.3.1). The shaded area in the theory predictions reflect
the uncertainty in our determination of the decay parameters θi and θj.

or three successive 225 µs (500 µs)-long entangling gates between the target ions,

after a variable wait time tw following Doppler and sideband cooling. Successive

gates are expected to magnify the decoherence effect. After applying the entangling

gate(s), we measure the |00〉, |11〉 subspace population p00 + p11. Separately, we

apply additional π/2 pulses with variable phase to both ions and extract the parity

fringe contrast C, to witness entanglement [91]. We independently determine θi and

θj in our chains as a function of tw by repeating the measurements from Fig. 6.3 and

fitting the resulting decay parameters to a linear increase with the wait time tw.

We compute the gate fidelities from our measurements as F = (p00 + p11 +

C)/2 [91] and show these results in Fig. 6.4. With 15 ions, we achieve a baseline two

qubit gate fidelity of 98.5% and with 25 ions we achieve a gate fidelity of 97.5% on
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the two selected ions. We compare these results to the predictions based on Eq. 6.9,

with only the lowest (k = 1) axial mode contributing. We observe good agreement

between our measurements and the model of Eq. 6.9. In particular, in chains of 15

(25) ions, after tw=10 (2.5) ms, corresponding to the time it takes to complete 40

(5) sequential individual entangling gates, our model explains most of the observed

loss in gate fidelity.

In ion chains, the mode frequency of in-phase axial mode scales roughly in-

versely proportional to the ion number ω1 ∼ 1/N (see Section 6.1.1). Assuming elec-

tric field noise with exponent α and using Eqs. 6.7-6.8, we obtain dθi/dtw ∼ N2+α

in such chains, implying that the entangling gate error scales as t2wN
4+2α. For α ≈ 1

as seen in many ion trap experiments [94], this results in a scaling of gate errors

proportional to N6, which is strongly unfavorable to the scalability of long chains

without a mitigating strategy. In this data, the decrease in fidelity of a single gate

after tw = 10 ms is only 1% in a 15-ion chain, compared to 7.5% on a 25-chain. High

fidelity operations on chains than longer 15 ions could be achieved by significantly

lowering the base heating rate, but will ultimately succumb to the same scaling

limitation, assuming the other engineering challenges are met. For example, if ˙̄n

were reduced to 10 qaunta/s at 3 MHz (relative to the 88 quanta/s demonstrated

here), it would be one of the lowest heating rates ever reported to date in a surface

trap [102]. Yet the chain length could only increase by ∼ ×2 (31 ions) and maintain

similar performance to the 15-ion chain shown here.
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Figure 6.5: The lowest axial frequency ω1 of a chain of 171Yb+ ions as a function of
the number of ions N in the potential given by Eq. 6.10 with d = 4.4 µm. The solid
line corresponds to the fitted N−0.856 power law.

6.1.1: Lowest Axial Frequency in Equispaced Ion Chains

In the limit of many ions (N →∞), an equispaced ion chain can be approxi-

mated by a continuous charge distribution with linear charge density e/d, where d

is the ion spacing. The Coulomb potential of this charge is exactly countered by the

applied trap potential

V (x) =
e2

4πε0d
ln

(N/2)2

(N/2)2 − (x/d)2
, (6.10)

which holds the ions in place. To model near-equispaced chains, we use V (x) as

the trap potential and numerically find the equilibrium ion positions xi,0. We find

that, when using the potential from Eq. 6.10, for all N < 250, the deviation of the

equilibrium ion positions from that of an equal-spaced chain is at most 0.02 d.

For ion positions xi near the equilibrium, the total energy can be written as
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e2

2d3

∑N
i,j=1(xi − xi,0)Qi,j(xj − xj,0), where

Qi,i =
2(N/2)2 + 2(xi,0/d)2

((N/2)2 − (xi,0/d)2)2
+
∑
j 6=i

2d3

|xi,0 − xj,0|3

Qi 6=j = − 2d3

|xi,0 − xj,0|3
.

(6.11)

The axial mode frequencies are then found as ωk = ωu
√
λk, where λk are the eigen-

values of the matrix Qi,j and ωu =
√
e2/(4πε0md3) is the unit frequency. The

calculated frequency ω1 of the lowest-frequency axial mode is plotted as a function

of the ion number, N , in Fig. 6.5. For chains of up to 250 ions, we observe good

agreement with the N−0.86 scaling that was predicted for chains in harmonic traps

by Ref. [103].

6.1.2: Spin-Dependent Axial Coupling

In Section 6.1, we assumed that the beam was aligned to the equilibrium ion

position x0, and therefore Ω′(x0) = 0 in the Taylor expansion of Ω. If the beam

is misaligned there can be undesired coupling to the axial motion [104]. Assume a

beam with waist w is misaligned by δx to the ion position x̂. Then,

Ĥ =
Ω0

2
e−(x̂+δx)2/w2

σ̂x

=
Ω0

2
e(−x̂2−2x̂δx−δ2x)/w2

σ̂x

≈ Ω0

2
e−δ

2
x/w

2

σ̂x

(
1− 2δxx̂

w2

)
=

Ω1

2
σ̂x

(
1− 2δxx̂

w2

)
(6.12)
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Where Ω1 = Ω0e
−δ2x/w2

is the derated Rabi frequency due to the misalignment.

Writing the position operator as x̂ = ξ0(â + â†) with ξ0 =
√

~/2mω1 and ω1 the

frequency of the in-phase axial mode, then,

Ĥ ≈ Ω1

2
σ̂x

(
1− 2δxξ0

w2
(â+ â†)

)
=

Ω1

2
σ̂x

(
1− 2

√
2δxξ0

w2
X̂

)

=
Ω1

2
σ̂x − σ̂xX̂Fω1

(6.13)

Where X̂ = (â+â†)/
√

2 and F =
√

2Ω1δxx0/w
2ω1 is the magnitude of the spin-

dependent force on the in-phase axial mode. For a constant carrier Rabi frequency,

this force will create the spin-dependent displacement operator,

D̂ = exp
[
σ̂xâ

†α− σ̂xâα∗
]

(6.14)

with α = F (eiω1t − 1)/
√

2. If the Rabi frequency is not constant, as in a pulse with

a Gaussian amplitude envelope, the ion will follow a state-dependent trajectory in

phase space. If the phase space is not closed at the end of the operation, then there

will be residual spin-motion entanglement that looks like decoherence. However, if

the force is ramped slowly enough relative to 1/ω1, then the net α will be small

and the ion will make excursions that approximately close. Unfortunately, sudden

phase flips throughout a smooth amplitude profile, as in the case of shaped SK1

pulses, will cause a sudden change of force that may cause motion not to close.

Pulse-shaping techniques like those described in Section 3.3.2, taking into account
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the axial in-phase mode, would mitigate this effect.

Additionally, if single-qubit gates are run in parallel, with both ions misaligned

to their respective beams, then this spin-dependent force will create entanglement

between the two ion spins, just as in the case of the MS interaction. To mitigate

this risk in our system, single-qubit gates are run sequentially.

6.2: Sympathetic Cooling

To address the challenge posed by axial heating, we propose to intersperse co-

herent operations with periodic sympathetic cooling [105] of axial modes via coolant

ions that are distributed throughout the ion chain [19, 99, 106]. Since the gate er-

ror is proportional to t2w, in the limit of frequent cooling to the same initial axial

temperature T0, we expect sympathetic cooling to strongly suppress of the effects

of axial heating on gate fidelity.

The choice of a sympathetic cooling ion will lend itself to different cooling

schemes. There have been demonstrations of using 138Ba+ ions as a sympathetic

coolant [19] and the system described in this thesis contains Barium ovens. The D1

line in Barium is sufficiently detuned (493 nm) from the D1 line in Ytterbium (369

nm) that Doppler cooling can be performed on the sympathetic cooling Ba ions with-

out decohering the data qubit stored in Yb. Since recoil from axial Doppler cooling

will heat the radial modes, typically this is followed by resolved sideband cooling on

the radial modes before performing further operations on the data qubits [19].

The mass ratio between 138Ba+and 171Yb+ is r = 171/138 = 1.24, which also
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(a)

(b)

Figure 6.6: Choice of 138Ba+vs 172Yb+ for sympathetic cooling in a 15-ion chain. (a)
171Yb+ × 11,138 Ba+ × 4 with Barium ions located at ion index i = {−5,−2, 2, 5}.
The axial mode participation matrix is unaffected by the mass difference, whereas
the radial mode participation matrix is strongly decoupled, breaking the all-to-all
connectivity of the chain. (b) 171Yb+ × 11,172 Yb+ × 4 with Yb172 ions located at
ion index i = {−5,−2, 2, 5}. Both the axial and radial mode participation matrices
are largely unaffected due to the near unity mass ratio. Compare to the radial mode
participation matrix in a pure chain of 171Yb+ × 15 in the same potential as Figure
2.4.
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scales the radial secular frequency by the same amount. This difference in radial

secular frequency causes radial modes on long chains to decouple into Ba-only modes

and Yb-only modes. Not only does this make it difficult to cool the radial modes of

Yb using Ba, but it also spoils the all-to-all connectivity of the chain. Recall that

to efficiently entangle two ions via the MS interaction, they both must have high

participation in at least one motional mode. As shown in Fig. 6.6(a), the Yb-only

radial modes form groups of 3−4 ions that couple well within the grouping, but not

to other groupings. This effect is not observed in the axial mode spectrum because

the axial potential is dominated by the Coulomb interaction, which depends on

charge, rather than the RF psuedopotential, which depends on mass (and charge).

While only one arrangement of the ions is shown here, this decoupling is common

to all arrangements. Thus large mass ratios in a sympathetic cooling ion are not

conducive to operating gates on the radial modes [107]. Using an even isotope of

Yb, in particular 172Yb+, as a sympathetic coolant leaves the radial mode spectrum

almost unchanged Fig. 6.6(b).

With an even-isotope Yb, Doppler cooling on the D1 line would readily cause

decoherence on the 171Yb+ data qubits. Thus, our solution is to apply the narrow-

line sideband cooling scheme from Ref. [108] (demonstrated on 171Yb+, but applied

to 172Yb+ here). The ground 2S1/2 manifold is coupled to the 2D3/2 manifold via

a quadrupole transition transition using a 435-nm laser beam. To obtain maximal

coupling, this beam should be incident at 45◦ relative to the magnetic field and

be linearly polarized in the plane defined by the magnetic field and its direction of

propagation [109]. Two 435-nm tones separated by the appropriate Zeeman splitting
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allow simultaneous addressing of both ∆m = 0 transitions. Following the scheme

from [108], the two tones are detuned to the red relative to the respective carrier

transitions so as to cool the motional modes of the ion chain. State reset is provided

by a 935-nm beam that couples the 2D3/2 manifold to the 3D[3/2]1/2 states, which

decay to the ground state via emission of a 297-nm photon. We note that this

cooling scheme would work with any even-isotope Yb, although we will focus on

172Yb+ because it minimizes the mass ratio and is the only other isotope available

in the 171-isotopically enriched source in this system (≈ 2.5%172Yb+).

Crosstalk to 171Yb+ in this cooling scheme can arise from off-resonant absorp-

tion of the 435-nm light, as well as from absorption of the 297-nm photons that

are scattered by the 172Yb+ ions. Both crosstalk processes depend on the isotope

shifts of the relevant transitions. The shifts of the 935-nm transition are available

in [110]. The shifts of the 297-nm transition for even Yb isotopes were measured

by [111], while the shifts of the 435-nm transition for even isotopes were measured

by [112]. A King plot of the modified 435-nm (297-nm) isotope shifts as a func-

tion of the modified 935-nm isotope shifts allow us to determine the shift of the

centroid of the 171Yb+ 435-nm (297-nm) line relative to 172Yb+ as ∆435 = 2π × 1.4

GHz (∆297 = −2π × 1.0 GHz). Using these shifts, we determine the detunings of

the 435-nm, 935-nm, and 297-nm light that is involved in cooling 172Yb+ from the

transitions in 171Yb+, and show these in Fig. 6.7.

Decoherence of qubits during the cooling of 172Yb+ can arise via off-resonant

scattering of 435-nm photons by the 171Yb+ ions. The rate Γ435 for this process

is bounded from above by Ω2
435/(4(∆1→2

435 )2τD), where Ω435 is the resonant 435-nm
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Figure 6.7: Diagram of the states and transitions involved in (a) the cooling scheme
of 172Yb+ and (b) the crosstalk to the 171Yb+ qubit ions. Lifetime of the 2D3/2 state
is cited from [113], and that of the 3D[3/2]1/2 state is from [114]. The hyperfine

splittings of the 3D[3/2]1/2 and 2D3/2 states are from [40].

Rabi frequency and τD = 52.7 ms is the lifetime of the 2D3/2 state [113]. In order

to remain in the sideband regime and obtain low temperatures, Ω435 needs to be

smaller than the motional frequency of the cooled modes. Using the radial mode

frequency of 3 MHz, we find that Γ435 < 2× 10−5 s−1.

Further decoherence is induced by the scattering, by 171Yb+, of 297-nm pho-

tons via the off-resonant, two-step, F = 1 → F = 1 → F = 0 transition that is

driven by the combination of the 435-nm and the 935-nm light used to cool 172Yb+.

We model this process using three-level optical Bloch equations. Assuming 435-nm

and 935-nm Rabi frequencies of 2π × 3 MHz, we find that the rate of scattering of

297-nm photons by a 171Yb+ ion via this process, and the resulting decoherence rate,

are both smaller than 2× 10−5 s−1. Stronger crosstalk arises due to absorption, by
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171Yb+, of the 297-nm photons that are scattered by 172Yb+. Given the near-unity

branching ratio of the 297-nm transition, a single 172Yb+ ion at unity saturation will

scatter 297-nm photons at the rate Γsc = Γ/4, where Γ = 1/τB, with τB = 37.7 ns

the lifetime of the 3D[3/2]1/2 state [114]. These scattered photons will be absorbed

by a 171Yb+ ion at distance d at the maximal rate

Γmax
297 = 6π

(
λ

2π

)2
Γ/4

4πd2

(
Γ/2

∆297
1→0

)2

, (6.15)

where λ = 297 nm. Considering a single 171Yb+ ion in an infinite chain with spacing

d and fraction r of 172Yb+ ions, yields the expression for the scattering rate R, with

∆ = ∆max
297 . Setting d = 4 µm and r = 0.5 then yieldsR < 2×10−3 s−1, corresponding

to 2×10−3 error per qubit after 2000 XX gates in a 25-ion chain. Since only the first

several axial modes need to be cooled, fewer coolant ions and a lower cooling duty

cycle would likely suffice. Moreover, sideband-cooling is a dark-state cooling scheme,

and some of the entropy-removing spontaneous scatterings are elastic. Therefore,

the true error rate is likely at least an order of magnitude smaller.

The modification of existing CW laser systems is straightforward to support

172Yb+. For loading 172Yb+, the neutral excitation line is detuned by ∆
1/2→3/2
399 =

2π × −304 MHz relative to the 1P1 (F = 3/2) line in neutral 171Yb [115, 116].

We added a double pass AOM setup running at ∼ 150MHz to shift the frequency

during loading. A shutter blocking the 0-order after the AOM, combined with an

RF switch for the AOM tone, allows us to switch from the (0, 0)-order for 171Yb to

the (−1,−1)-order for 172Yb, with good efficiency and near perfect purity.
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Despite the frequency purity and the fact that 399-nm beam is perpendicular

to the oven flux, when I399 ∼ Isat and resonant with the 172Yb line, we observe

loading of 171Yb at a rate an order of magnitude more than expected. We attribute

this to oven flux that is bouncing off the sidewalls of the load slot and acquiring a

Doppler shift relative to the neutral excitation beam. Isotopic purity is important

for loading chains with a deterministic mixture ratio of 171/172. We empirically

observed that this could be achieved by turning off 171Yb+ cooling light in the load

slot while attempting to load 172Yb+ (while keeping 171Yb+ cooling light on in the

quantum region to cool chains that may be building up there). We find that even

if a 171Yb+ ion is trapped in the load slot, it does not make it through the junction

of the HOA trap, unless it has been cooled.

For Doppler cooling of 172Yb+, the D1 line is detuned by ∆1→0
369 = 2π×3.7 GHz

relative to the 2S1/2(F = 1)→2 P1/2(F = 0) line in 171Yb+ [110, 117]. The approach

here was to build a second local oscillator using a laser diode ECDL and beat-

note lock it to the 171Yb+ 369-nm laser (which is in turn frequency referenced to a

neutral Rb transition). Finally, the overall cooling power of this scheme has a non-

monotonic dependence on the 935-nm power [108], which can broaden the 435-nm

transition and decrease the cooling efficiency. To give flexibility in optimizing the

935-nm power relative to the 435-nm power, we installed a single-sideband optical

serrodyne frequency shifter [118] using an NLTL and an in-fiber EOM. With this

we can tune the power in the frequency tone at +100 MHz for 172Yb+ by 0 − 95%

relative to nominal power at the 171Yb+ frequency.

Loading a two ion chain with exactly one 171Yb+ and one 172Yb+ allows us
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Figure 6.8: Demonstration of sympathetic cooling on a chain of two ions. (Left)
red sideband Rabi flop on the out-of-phase “tilt” mode using the standard Raman
configuration on the 171Yb+ ion. The black curve is taken immediately following
Doppler cooling and optical pumping corresponding to n̄ = 2.87 quanta. The blue
curve is after an additional 1 ms of sympathetic cooling on the 172Yb+ ion corre-
sponding to n̄ = 0.42 quanta. (Right) The laser geometry and ion configuration for
this experiment.

to demonstrate this cooling scheme in a proof-of-principle experiment. To probe

temperature we can look at a BSB/RSB flop on the lower energy radial “tilt” mode

using Raman spectroscopy on the 171Yb+ ion. Immediately following Doppler cool-

ing and optical pumping, we measure n̄ = 2.87 quanta on the radial tilt mode. Then,

two tones are applied to the 435-nm AOM at −2.976 MHz relative to the ∆m = 0

transitions corresponding the RSB of the tilt mode. Simultaneously, the 935-nm

light is shifted to be resonant with the 172Yb+ 2D3/2 →3 D[3/2]1/2 transition to

pump the ion back into the 2S1/2 manifold. After 1 ms of sympathetic cooling, we

again perform a BSB/RSB flop and measure n̄ = 0.42 quanta, demonstrating that

cooling is achieved. The RSB flop before cooling (black) and after cooling (blue) is

shown in Figure 6.8. Qualitatively, the RSB is much weaker after cooling. The laser

geometry is also shown on the right of Figure 6.8, with the 435-nm light oriented at

45◦ relative to the chain.
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Scaling this up to a longer chain will require optimization the cooling param-

eters such as 935-nm power and the number/arrangement on 172Yb+ sympathetic

cooling ions in the chain. An added engineering challenge is to make sure that the

configuration of ions within the chain is constant at the start of each quantum cir-

cuit. Even though the shift in mode frequencies may be within the range of what the

gate can tolerate for detuning errors (see Section 3.3.4), in high-fidelity operations

the mode-participation factors would require re-calibration of the gate amplitude if

the ion configuration were to change. In the room-temperature system described

here, collisions with residual background gas particles re-order the chain randomly

on the scale of 4-5 minutes in a 15 ion chain. In order to put the chain back into the

nominal configuration, a pairwise split-swap-merge protocol using the DC electrodes

of the chip trap will have to be developed to implement a bubble-sort algorithm.

With re-ordering implemented, the chain length will now be limited by the speed

and efficiency of the cooling relative to the underlying heating rate.
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Chapter 7: Fault-Tolerant Quantum

Error-Correction

In addition to scaling up the system size, error rates also need to signifi-

cantly decrease in order to reach compelling applications. For example, the qubit

error rate required to factor a 2048-bit number using Shor’s algorithm is estimated

around 10−9 or smaller [119]. Quantum error correcting codes combine multiple

physical qubits into logical qubits that robustly store information within an entan-

gled state [120, 121, 122]. With quantum error-correction, the error rate requirement

can be achieved on abstracted logical qubits, even if the error rate on the physical

qubits is significantly higher [123, 124]. In this example, with error-correction the

physical error rate required to factor a 2048-bit number is only 10−3, at the cost of

increasing the number of physical qubits to 20 million relative to 14 thousand logical

qubits [119]. Fundamentally, error correction is a trade-off between physical qubit

number and the physical error rate. Decreasing the error rate often requires battling

fundamental physical processes, whereas increasing the qubit number is primarily an

engineering challenge, making this trade-off favorable. Since the exact qubit over-

head required to run quantum error-corrected algorithms depends on the underlying
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physical error rate, the error-correction code architecture, and desired algorithmic

error rate, there is obvious interest in driving the overhead as low as possible through

further reductions in physical error rates or improved code architecture.

However, quantum error-correcting codes are not enough on their own. Fault-

tolerant (FT) operations, which limit the ways in which errors can spread throughout

the system, must also be used. A distance-3 error-correcting code is capable of

correcting an arbitrary error on any one of the physical qubits that make up the

logical qubit. However, interacting with logical qubits and performing computations

with them involves circuits that may consist of several entangling operations. If not

careful, a single entangling gate error can propagate a correlated error through the

circuit and corrupt the logical qubit state beyond the error-correction capability

of the code. Fault-tolerance is a statement being able to correct any single circuit

fault, or in other words to ensure that errors in the circuit contain themselves to

within the error-correction capabilities of the code. Without fault-tolerance, the

logical error rate may be limited by faults at critical circuit locations that cascade

into logical failures, negating the advantage of error-correction. So while error-

correction is critical to scaling up quantum computers in theory, fault-tolerance is

about manifesting that benefit in practice.

So far, FT state preparation, detection, and operations have been demon-

strated using quantum error detecting codes with four data qubits [125, 126, 127,

128, 129]. These codes can identify when errors have occurred, but do not extract

enough information to correct them. There have also been quantum demonstra-

tions of classical repetition codes to correct quantum errors restricted along one axis
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[130, 131, 132, 133, 134, 135]. In other work, qubits have been encoded into quan-

tum error correcting codes that can correct all single qubit errors, but the encoding

procedure was not fault-tolerant [136] and the system was not large enough to mea-

sure the error syndromes non-destructively using ancilla [137, 138]. Parallel work on

bosonic codes has demonstrated encoded operations [139, 140], fault-tolerant detec-

tion, one-axis [141], and two-axis [142] error correction on encoded qubits. For both

qubit codes and bosonic codes, fault-tolerant state preparation of a code capable of

correcting all single-qubit errors has not been achieved to date.

In the subsequent sections, and following the work presented in [143], we

demonstrate all of the primitives required for FT operation of an encoded qubit:

FT preparation, FT measurement, FT logical gates, and FT stabilizer measure-

ment. Our demonstration protects against any single circuit fault (along any axis

and without postselection), realizing quadratic error suppression in principle. In

practice, this requires local errors and high-fidelity operations on a large enouh sys-

tem size to support the code. To investigate the error suppression properties of

fault-tolerance in our code, we compare non-fault-tolerant (nFT) preparation, nFT

logical gates, and nFT stabilizer measurement to their FT counterparts and compare

the relative error rates under various decoding schemes.

7.1: Bacon-Shor 13 Subsystem Code

As shown in Figure 7.1, we choose to implement a [[9,1,3]] Bacon-Shor code [144,

145]. It is a distance-3 code, which means it is able to correct any single-qubit error.
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Figure 7.1: (Top) The Bacon-Shor code is a [[9,1,3]] subsystem code that encodes 9
data qubits into 1 logical qubit. Four weight-6 stabilizers are mapped to ancillary
qubits 10, 11, 12, and 13, for measuring potential errors in the X (purple) and Z
basis (orange). (Bottom) Due to the all-to-all connectivity in the system, the code
can be embedded arbitrarily into the ion chain. An example mapping to a 15-ion
chain is shown here, with the two edge ions unused as qubits.

There are two X-stabilizers (purple) and two Z-stabilizers (orange), each weight-

6, that can be mapped to 4 ancillary qubits (10–13) to detect/correct errors in the

code. The logical operators Pauli operators XL (ZL) act upon on the columns (rows)

of the code. The stabilizers and logical operators are defined in Table 7.1. The code

subspace is defined as the set of all states for which all the stabilizers have a +1

eigenvalue, Si|ψ〉L = +1|ψ〉L. If any of the stabilizers measure a −1 eigenvalue,

then an error has occurred and the quantum state is no longer in code subspace.

By examining the structure of the stabilizer eigenvalues, we can decode where we

suspect an error has occurred and attempt to apply a correction that will return the

state to the code subspace.

This code is well-suited to near-term ion-trap quantum computing architec-
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Stabilizers Logical Operators
S1 = Z1Z4Z2Z5Z8Z8 XL = X1X4X7

S2 = Z4Z7Z5Z8Z6Z9 ZL = Z1Z2Z3

S3 = X1X2X4X5X7X8

S4 = X2X3X5X6X8X9

Table 7.1: Bacon-Shor stabilizers and logical operators.

tures for two reasons. First, Bacon-Shor codes can be prepared fault-tolerantly

without intermediate measurement. Compared with the typical projective prepara-

tion of topological codes, unitary preparation requires fewer gates and less ancillary

qubits. This allows us to demonstrate FT primitives with fewer resources and with-

out intermediate measurements. Second, this code choice is a reasonable midpoint

between the qubit efficiency of the 7-qubit Steane code and the robustness of the

Surface-17 code [146]. Although the Bacon-Shor stabilizers are weight-6 and non-

local, they can be fault-tolerantly measured using only one ancilla per stabilizer [147]

and leverage the all-to-all connectivity in the device.

As a subsystem code, the Bacon-Shor code is a generalization of Shor’s code

that has additional degrees of freedom known as gauge qubits [121]. Of the 9 DoF

present in the original data qubits, 4 are pinned down by fixing the eigenvalue of the

code stabilizers. Of the 5 remaining DoF, 1 DoF is the logical qubit and the other

4 DoFs are the gauge qubits. For particular choices of gauge, the logical states are

products of GHZ states:

|0/1〉L ⊗ |X〉G =
1

2
√

2
(|+ ++〉 ± | − −−〉)⊗3,

|+/−〉L ⊗ |Z〉G =
1

2
√

2
(|000〉 ± |111〉)⊗3,

(7.1)
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where |±〉 = (|0〉± |1〉)/
√

2 and |X/Z〉G refer to different states of the gauge qubits.

The gauge qubits are not protected to the same distance as the logical degree of

freedom, but are useful for designing efficient FT protocols. One basis for the gauge

qubits corresponds to fixing 4 constraints on the eigenvalues of the operators shown

in the Table 7.2.

X-gauges Z-gauges
X1X2 Z1Z4

X4X5 Z2Z5

X7X8 Z3Z6

X2X3 Z4Z7

X5X6 Z5Z8

X8X9 Z6Z9

Table 7.2: Gauge operators in the Bacon-Shor 13 code. Gauge choices |X〉G(|Z〉G)
correspond to all X(Z)-type gauge operators having eigenvalue +1.

It should be noted that this is not an independent set of operators because the

stabilizers of the code, which are products of gauges, already have their eigenvalues

fixed to +1. As such, if the X-gauges X1X2 and X4X5 both have eigenvalue +1 on

a given logical state, then the eigenvalue of X7X8 will also be +1. We refer to a

state in which all X(Z)-type gauge operators have eigenvalue +1 as the |X〉G(|Z〉G)

gauge. It should be noted that these gauge operators do not commute, so these

two gauges are mutually exclusive. When decoding the Bacon-Shor code, we can

only identify operators up to a product of gauges. Thus, logical primitives may also

apply a gauge operator to the logical state. This leaves the logical qubit unaffected,

but alters the state of the gauge qubits.

As an additional note of caution, logical Pauli operators on a subsystem code

must decompose as a tensor product of operations on the logical and gauge degrees
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of freedom. When a logical Pauli operator that acts non-trivially on the gauge sub-

system is used to generate a continuous unitary operator, it will entangle the logical

and gauge subsystems. As these gauge subsystems are less protected than the logi-

cal subsystem, the quantum information will also be less protected. Consequently,

one must design continuous logical operators around logical Pauli operations that

commute with the entire gauge group, ensuring that it acts trivially on the gauge

subsystem.

Bacon-Shor codes support a wide range of FT operations, including state mea-

surement, state preparation, gates, and stabilizer measurement. FT state measure-

ment (in the X/Z basis) is performed by simply measuring all the data qubits (in

the X/Z basis). From this information, one can recover relevant stabilizer outcomes

as correlations among the single data-qubit outcomes.

FT state preparation in the XL/ZL basis is achieved by the definition of the

product states. Fault-tolerance, as a design principle, ensures faults on physical

operations do not propagate to uncorrectable multi-qubit failures in the circuit. As

seen in Eq. 7.1, not all Bacon-Shor logical states require global entanglement. It is

precisely this decomposition into decoupled GHZ states that allows Bacon-Shor to be

prepared unitarily and fault-tolerantly. In the XL/ZL basis, the logical information

is encoded redundantly into the relative phase of each state. While a single circuit

fault may corrupt one of the three GHZ states, the information can be recovered

from the other two.

Fault-tolerance in logical gates is often achieved via transversal gates, which

are physical operations that act independently on each qubit in a code block.
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Bacon-Shor codes have transversal constructions, when allowing permutations, for

{CNOTL, HL, YL (π/2) , XL} [148, 149, 150]. Here, Y (θ) indicates exponentiation

of the Pauli-Ŷ matrix, e−iθŶ /2. FT non-Clifford logical gates, which are required for

universality, can be achieved through magic state distillation [151].

Finally, measuring error syndromes requires interacting ancillae with multiple

data qubits, which could cause damaging correlated errors. However, fault-tolerance

is achieved by carefully ordering the interactions, so that correlated errors can be

reduced to low-weight errors up to a benign transformation of the gauge subsys-

tem [147, 152].

7.2: Fault-tolerant State Measurement and Decoding

A prototypical quantum memory experiment should involve three elements:

(1) FT state preparation, (2) N rounds of FT syndrome extraction, and (3) FT

state measurement. In the final round of the experiment, in order to recover the

encoded measurement outcome, one must measure all of the data qubits individually.

Afterwards, correlations among these single-qubit outcomes must be post-processed

into the relevant stabilizer information. This post-processed information is then

combined with any previously extracted syndromes, and then collectively decoded

to produce a correction. When N is large, the decoder can become quite complex

and may use maximum likelihood estimation or union-find algorithms [152], but in

our case where N = 0, the decoder takes on a simple form.

Global measurement at the end of each circuit provides the state of all nine
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data qubits. From this data, we can calculate the raw total parity, ZL = Z1Z2...Z8Z9,

and the eigenvalue of the two Z stabilizers, S1 and S2. The post-processed total

parity, Z ′L from the different decoding schemes is then given by Table 7.3.

Protocol If Then Else
Raw True Z ′L = ZL

Correction S1 = −1 ‖ S2 = −1 Z ′L = −ZL Z ′L = ZL
Detection S1 = −1 ‖ S2 = −1 Discard data Z ′L = ZL

Table 7.3: Decoding protocols for the N = 0 case of logical encoding and then
measurement.

Raw simply returns the total parity of all the data qubits, regardless of whether

an error has occurred. Error correction attempts to apply a correction to the data

qubits based on the stabilizer outcomes, and yields an expected quadratic suppres-

sion of uncorrelated errors (i.e. corrects any single error). Note that no data is

discarded in this decoding scheme. Error detection is performed by post-selecting

experimental shots that have all +1-eigenvalues of the stabilizers, and is equivalent

to projecting the data into the code subspace. This will yield an expected cubic

suppression of uncorrelated errors (i.e. detects any pair of errors). Importantly, the

error-correction decoding step will occur even with large FT quantum computers,

involves no post-selection, and does not differ in any way from quantum memory

experiments where N > 0.

7.3: Fault-tolerant Encoding

We embed the 9 data qubits and 4 ancilla qubits of the Bacon-Shor-13 code

in a single chain of 15 ions (Figure 7.1), with the two end ions left idle to obtain
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Figure 7.2: Encoding circuit for creating logical qubit states. The right subcircuit
(blue) is used for FT preparation of Z-logical basis states. X-logical basis states can
be created by omitting the final Hadamard gates. The left subcircuit (red, dashed)
can be optionally prepended for nFT preparation of arbitrary logical states.

uniform spacing of the central 13 ions. The mapping of the code onto the chain is

chosen to minimize two-qubit gate crosstalk (see Section 5.3.4).

The encoding circuit used to create logical states is shown in Figure 7.2. The

right sub-circuit (blue) is FT because there are no entangling operations between

independent GHZ states that would allow errors to propagate; however it is limited

to preparation of only Z and X basis states. One may prepend an optional sub-

circuit (red, dashed) that enables the encoding of arbitrary |ψ〉L states, controlled by

a single physical qubit state |ψ〉. This circuit can produce global entanglement, and

allows the possibility of early errors spreading between the separate GHZ states. As

a consequence, this circuit loses the FT properties of the X and Z basis preparation

circuits. To directly investigate the properties of fault-tolerance, we compare the

encoding performance of the right FT sub-circuit to the full nFT circuit with |ψ〉 ∈
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Figure 7.3: Errors for the key basis states of the encoded logical qubit. In both
the FT (blue) and nFT (red) case, the measured expectation value of the parity
(Pmeas = 〈Z/X〉L) is compared against the ideal parity of the logical state (Pideal =
±1). We compare the two state preparation methods under the raw, correction, and
detection decoding protocols described in Section 7.2. The data is from running the
circuit in Figure 7.2

{|0〉, |1〉, |+〉, |−〉}.

After measuring the data qubits, the logical measurement outcome is de-

termined by calculating the total parity of all the data qubits in the Z-basis,

ZL = Z1Z2...Z8Z9. From Eq. 7.1, the |0〉L state has even parity (〈Z〉L = +1)

while |1〉L has odd parity (〈Z〉L = −1). Similarly, the |+/−〉L states have even/odd

parity in the XL basis; a YL(−π/2) operation following the encoding circuit, maps

〈X〉L → 〈Z〉L. The decoded parity compared to the ideal parity of each logical Z,X

basis state is presented in Figure 7.3.

Using the FT circuit and performing error correction, we prepare |0〉L, |1〉L, |+〉L,

and |−〉L states with respective errors 0.21(4)%, 0.39(5)%, 0.71(7)%, and 1.04(9)%.

We note that the average state preparation and measurement error for a single phys-

ical qubit in the Z basis is 0.46(2)% (see Section 5.3.1) compared to 0.30(3)% in the

logical qubit. This is one context in which the logical qubit clearly outperforms our
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physical qubit. For the nFT circuit the respective errors are 0.93(8)%, 1.05(9)%, 3.7(2)%,

and 3.8(2)%. The error-detection experiment presents particularly strong evidence

for fault-tolerance. We observe a remarkable gap in the failures between the nFT

and FT protocols: averaged over the basis states, we see 2 failures of FT error-

detection over 13,288 post-selected shots, compared with 197 failures over 12,105

post-selected shots when using nFT error-detection. This agrees with a local error

model where we expect cubic suppression of FT error-detection, in stark contrast

with nFT error-detection, which can fail due to a single circuit fault. The observed

two orders-of-magnitude difference lends further evidence that these circuits, which

are fault-tolerant in principle, are also fault-tolerant in practice.

The comparison of FT and nFT encoding circuits among the basis states is

a bit superficial because there is no reason to choose a nFT circuit when a FT

circuit exists. However, the nFT preparation circuit is useful for creating arbitrary

quantum states, and in particular the magic states |Hx〉L = e−iπŶ /8|0〉L and |Hy〉L =

e−iπX̂/8|0〉L, which can be distilled to implement FT non-Clifford gates [151, 153].

These states are depicted on the logical Bloch sphere along with their 〈ZL〉 projection

in Figure 7.4. After encoding, we perform YL(π/2) rotations to bound the fidelity

of these states.

To calculate the fidelity of our magic state preparation circuit for the state

|Hx〉L, we can compute the fidelity between a mixed state ρ, which represents the
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Figure 7.4: (Left) Magic states |Hx〉L (magenta) and |Hy〉L (cyan) are directly
encoded using the full nFT circuit from Figure 7.2. Subsequent YL(π/2) rotations
(blue arrows) are used to bound the fidelity. (Right) Experimental 〈Z〉L values for
the states depicted on the left.

experimentally prepared state, and the ideal pure state |ψ〉 as

F = 〈ψ|ρ|ψ〉

= Tr[ρ|ψ〉〈ψ|]

=
1

2
(1 + 〈X〉ρ〈X〉ψ + 〈Y 〉ρ〈Y 〉ψ + 〈Z〉ρ〈Z〉ψ)

=
1

2

(
1 + 〈X〉ρ

1√
2

+ 〈Z〉ρ
1√
2

)
.

(7.2)

The expectation values 〈Z〉ρ and 〈X〉ρ can be extracted by measuring logical

Z operator, 〈Z〉L before and after a logical YL(π/2) operation. This analysis leads to

the following fidelities as shown in Table 7.4. Importantly, after error correction, the

calculated |Hx〉L encoding fidelity is 97(1)%, which is above the distillation threshold

of 92.4% [153].

The same procedure cannot be applied to the |Hy〉L state, as the [[9,1,3]]

Bacon-Shor code does not allow for fault-tolerant measurement in the logical Y
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Processing Technique Fidelity
Raw 0.85(1)

Correction 0.97(1)
Detection 0.98(1)

Table 7.4: Fidelities for the |Hx〉L magic state preparation circuit under different
processing techniques.

basis. Using the constraint

〈X〉2 + 〈Y 〉2 + 〈Z〉2 ≤ 1

we can only numerically bound the fidelity of the |Hy〉L state to the range 0.75 ≤

F ≤ 0.99. However, we argue that the fidelities for preparing |Hx〉L and |Hy〉L

should be very similar, as the preparation circuit only differs in the phase of a single

qubit gate, a quantity which we control to ≈ 400µrad limited by the AWG bit depth.

Thus the |Hy〉L state fidelity should be very similar to values shown in Table 7.4.

7.4: Fault-tolerant Logical Gates

We implement a YL(θ) rotation on the encoded qubit, which can only be

performed transversally for a discrete set of angles [154]. This is a consequence

of the Eastin-Knill theorem, which states that continuous operations cannot be

implemented transversally. In the case of Bacon-Shor, the smallest transversal YL(θ)

rotation we can create is YL(π/2), which is generated by applying a physical Y (π/2)

to each data qubit, followed by relabeling the data qubit indices in post-processing,

as shown in Figure 7.5 (left, blue). We compare the performance of this FT rotation

with a nFT circuit which implements YL(θ) = Y1Z2Z3X4X7(θ) (Figure 7.5, left,
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nFT FT

Figure 7.5: (Left) A schematic depicting different logical operations. A FT dis-
crete logical rotation (blue) operating on |0〉L is a transversal operation, YL(π/2) =
Y (π/2)⊗9, that leaves the code subspace (gray planes) and returns via a permuta-
tion of qubit labeling (Uperm). A nFT continuous logical rotation (red) operating
on |0〉L is a 5-qubit entangling operation, YL(θ) = Y1Z2Z3X4X7(θ), that rotates
through the code subspace. At θ = π/2, these gates are equivalent up to a gauge
transformation. (Right) The circuit for the nFT gate capable of creating any state
along the red curve in the schematic on the left. The circuit for the FT gate shown
by the blue curve in the schematic on the left.

red). The rotation angle is controlled by a single qubit Y (θ) rotation on data qubit

1. In a perfect system, these rotations are equivalent for θ = Nπ/2, N ∈ Z on

the logical qubit, but differ in their operation on the gauge qubits. The circuits

for each of these operations is shown in the right-hand side of Figure 7.5. The

nFT gate (red) generates entanglement among the separate GHZ states, and so the

failure of a single operation in the circuit can lead to the failure of the logical qubit.

On the other hand, the FT circuit (blue) is clearly fault-tolerant by its transversal

construction.

The results of these different gate operations on the logical qubit are shown

in Figure 7.6 (left). In both cases, the expectation value of the logical Z operator

is fit to a decaying sinusoid 〈Z〉L = A cos(θ)e−Γθ/π
2 . The gate error per π/2 angle,

corresponding to fit parameter Γ, is 0.3(1)% for the FT gate after error-correction.
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Figure 7.6: The data from running the circuits in Figure 7.5. (Left) Logical Rabi
flop comparing FT (blue) and nFT (red) logical operations. (Right) Detailed view
at θ = π.

This error rate explains the additional error present for the |+/−〉L states in Figure

7.3, which require two additional YL(π/2) gates for state preparation and measure-

ment. The error at θ = π, the maximum gate angle required with optimized circuit

compilation, is shown in Figure 7.6 (right). The error for the FT gates and nFT

continuous rotations is 0.33(18)% and 6.4(1.6)%, respectively, after error correction.

Compared to the FT circuit, error correction on the nFT rotation provides minimal

gains, indicative of a high proportion of weight-2 errors relative to weight-1 errors.

In contrast, 〈Z〉L recovers quite significantly after error detection, indicating that

there are still few weight-3 or higher errors in the system. This is a striking example

of the value of fault-tolerance, which minimizes the impact of correlated weight-2

errors on the logical qubit.

7.5: Logical Qubit Memory

Performance of the logical qubit as a quantum memory can be characterized

by measuring the coherence of |+〉L versus time, as in a typical Ramsey experiment.
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Figure 7.7: A logical Ramsey experiment to characterize the logical qubit memory
coherence as a function of time.

The circuit for this experiment is shown in Figure 7.7. After encoding |+〉L and

waiting a certain time, a varying Z(θ) gate is applied to every data qubit, followed

by YL(−π/2). A fit of 〈X〉L depending on θ to a Ramsey fringe yields the Ramsey

amplitude for that wait time.

As shown in Equation 7.1, the logical |+〉 state we use is composed of three

GHZ states 1√
2
(|000〉 + |111〉). Due to the structure of these states, if a Z(θ) gate

is applied to each qubit, the three gates will coherently combine, and the end result

will be the same as if a Z(3θ) gate had been applied on any single qubit. In this

case, we only need to scan theta from θ = [−π/3, π/3] to reveal the full Ramsey

fringe.

For the “raw” processing case, any Z error flips the logical output. As a result

the cases where 1 or 3 errors occur lead to |−〉L states, while while cases with 0 or
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Figure 7.8: Examples of logical Ramsey fringe fitting at two different wait times,
0ms (left) and 14ms (right). The error model well matches the experimental data.

2 errors lead to |+〉L. Consequently the expectation value of XL can be thought of

as the squared amplitude of cases which lead to |+〉L, subtracted by the squared

amplitude of cases which result in |−〉L. This results in a curve

〈XL〉 = cos(3θ/2)6 − 3 cos(3θ/2)4 sin(3θ/2)2 + 3 cos(3θ/2)2 sin(3θ/2)4 − sin(3θ/2)6

= cos(3θ)3.

(7.3)

In the “corrected” processing case, the state can tolerate a single error without

having its logical information corrupted. As a result error cases with 0 or 1 errors

lead to |+〉L, while 2 or 3 lead to |−〉L. This results in the curve

〈XL〉 = cos(3θ/2)6 + 3 cos(3θ/2)4 sin(3θ/2)2 − 3 cos(3θ/2)2 sin(3θ/2)4 − sin(3θ/2)6.

(7.4)

Lastly the ’detected’ processing method is slightly more complex, as postse-

lection means we must renormalize the expectation value. The case with 0 errors
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Figure 7.9: The logical qubit Ramsey fringe amplitude as a function of wait time,
measuring the coherence of the |+〉L state.

leads to |+〉L, while the case with 3 errors leads to |−〉L. Cases with 1 or 2 errors

must set off at least one stabilizer, and as a result those runs will be removed from

the dataset. As a result the probabilities must be renormalized, leading to the curve

〈XL〉 =
cos(3θ/2)6 − sin(3θ/2)6

cos(3θ/2)6 + sin(3θ/2)6
. (7.5)

These models well describe the experimental data, as shown in Fig. 7.8(b). From

the fits we can extract the amplitude and phase shift of each curve.

Repeating this fitting procedure at varying wait times leads to the coherence

decay curves shown in Figure 7.9. Fitting the data in each decoder case to a decaying

exponential Ae−t/T
∗
2 , for the raw, error correction, and error detection decoding

schemes, we measure a T ∗2 of 16(2) ms, 160(30) ms, and 1200(400) ms.

To understand the phase flip errors in the logical qubit, we measure the T ∗2

of a physical qubit in a chain of 15 ions. This is accomplished via a laser Raman

Ramsey sequence on the center ion, RY (π/2) − τwait − RZ(θ) − RY (−π/2), with
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Figure 7.10: Ramsey fringe amplitude as a function of time for a single qubit is a
chain of 15 ions. The shaded region indicates the 1σ uncertainty in the exponential
decay least-squares fit.

no echoes. At each wait time τwait, the phase θ is swept, and the resulting data is

fit to a sinusoid to extract the contrast. The Ramsey contrast is fit to a decaying

exponential Ae−τwait/T
∗
2 to extract T ∗2 . The results of this experiment are shown in

Figure 7.10. We find T ∗2 = 610(120) ms for a physical qubit in a chain of 15 ions.

We attribute the physical qubit decoherence primarily to control noise, rather than

to fundamental qubit decoherence. In particular, we note that there are features of

revivals at ≈ 8 ms and 16 ms, corresponding to noise at ≈ 125 Hz. We assign this

to mechanical fluctuations (e.g., fans) that shift the standing wave of the optical

Raman beams relative to the ions. In particular, this error is coherent and global

with respect to its effect across the chain. In the future, this effect can be mitigated

by switching to a “phase-insensitive” configuration [155].

The GHZ states that make up the Bacon-Shor code (|000〉 + |111〉) are three

times as sensitive to phase noise as our physical qubit. To understand the implication
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Figure 7.11: Ramsey fringes for each independent GHZ state are analyzed from
the logical T ∗2 experiment in Fig. 7.9. For the theoretical prediction, we apply the
fitted dephasing noise in Fig. 7.10 to a numerical simulation of a three-qubit GHZ
state. The shaded region indicates the 1σ uncertainty in the exponential decay
least-squares fit in Fig. 7.10, propagated through the numerical simulation.

of the physical T ∗2 on the logical T ∗2 , we run numerical simulations to extrapolate

the measured phase noise to a GHZ state. We assume that the Pauli-Z noise in

the middle of the Ramsey sequence is Gaussian distributed with some width ∆Z .

Using the fit from Figure 7.10, we can numerically solve for the width of the noise

spectrum ∆Z . Once this value is found, we re-run the simulation with that noise

spectrum on a three-qubit GHZ state to extract the predicted contrast. In Figure

7.11, we compare this predicted value to the three individual GHZ states measured

in the logical qubit memory experiment. We conclude that almost all the dephasing

in the logical qubit that we observe is explained by the observed T ∗2 -decay in the

physical qubit. We note that this is the same experimental data presented in Figure

7.9, just post-processed to analyze individual GHZ states rather than to perform

error-correction.
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7.5.1: Decoherence-Free Subspaces

The construction of the |+〉L state (|000〉 + |111〉) in the Bacon-Shor code,

leads to increased sensitivity to phase noise. Worse still, this error accelerates as

the code size increases to distance-4 (|0000〉 + |1111〉) and distance-5 (|00000〉 +

|11111〉), a feature that is unfavorable for the scalability of error-correction in our

system. In other work, GHZ-like states that are constructed out of decoherence free

subspaces have been shown to be robust to this type of noise [156, 157]. We define

the ferromagnetic (anti-ferromagnetic) GHZ state of size n as,

|FMn〉 =
1√
2

(|000 . . .〉+ |111 . . .〉) ,

|AFMn〉 =
1√
2

(|010 . . .〉+ |101 . . .〉) ,
(7.6)

In our system, where the phase noise is global and coherent (due to common beam

path fluctuations or noise in the magnetic field), the even length AFM states

|AFM2n〉 will experience no decoherence, as each half of the GHZ state will ac-

quire the same phase, resulting in a non-measurable global phase. The odd length

AFM states |AFM2n+1〉 will experience decoherence on the scale of a single physical

qubit. To test this theory in our system, we create |FMn〉 and |AFMn〉 states for

n = 3, 4, 5 and measure their coherence as function of time in Figure 7.12. For all

n, the AFM GHZ states have significantly longer coherence than their FM counter-

parts. Notably, the large drop in contrast over the first 2 ms in the FM states is

almost completely absent from the AFM states.

We can extend this increased coherence of AFM states, to the full Bacon-Shor
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Figure 7.12: (Left) The Ramsey fringe amplitude as a function of wait time, for
varying length ferromagnetic GHZ states |000 . . .〉+ |111 . . .〉. (Right) The Ramsey
fringe amplitude as a function of wait time, for varying length anti-ferromagnetic
GHZ states |010 . . .〉+ |010 . . .〉.

code using the gauge degrees of freedom. Define the |Z〉G gauge as the state in which

all the Z gauge operators (Table 7.2) have a −1 eigenvalue. Then the definition of

the |+〉L state becomes,

|+〉L ⊗ |Z〉G =
1

2
√

2
(|010〉+ |101〉)⊗3, (7.7)

Which we refer to as the AFM Bacon-Shor code. Repeating the logical qubit memory

experiment, we show the coherence of the AFM logical qubit in Figure 7.13. As

before, we fit the data in each decoder case to a decaying exponential Ae−t/T
∗
2 . For

the raw, error correction, and error detection decoding schemes, we measure a T ∗2

of 47(6) ms, 460(60) ms, and 6600(1300) ms. For the case of error correction, the

AFM Bacon-Shor code has a three times longer coherence time than that of FM

code and is roughly consistent with the physical qubit coherence time. We stress

that because we only modified the gauge degrees of freedom in the code, this does
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Figure 7.13: The logical qubit Ramsey fringe amplitude as a function of wait time,
measuring the coherence of the AFM |+〉L state. In Figure 7.9, the |+〉L took the
form of the product state |000〉 + |111〉 (ferromagnetic). Here the |+〉L takes the
form of the product state |010〉+ |101〉 (anti-ferromagnetic).

not change any of the error-correction properties of the code or impact any of the

other results we have previously demonstrated. In this case, manipulation of the

gauge qubits significantly increases the performance of the logical qubit.

7.6: Fault-tolerant Stabilizer Measurements

In stabilizer measurements, fault-tolerance is achieved by a specific ordering

of the interactions between the ancilla and the stabilizer block [147]. To test this

theory, we insert a variable Z(θ) error on ancilla 12 during the measurement of a

single stabilizer (S3 = X1X2X4X5X7X8) and compare the impact of this error in a

FT ordering and a nFT ordering. The circuits for these experiments are shown in

Figure 7.14. In both cases, without correction, a Z error on the ancilla qubit will

propagate to an X error on the data qubit and flip 〈Z〉L.

The results of this experiment are shown in Figure 7.15. At the extreme case
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Figure 7.14: Non-fault-tolerant (red, right) and fault-tolerant (blue, right) stabilizer
measurement orderings, performed on a FT-encoded |0〉L state. In both cases, a
variable error Z(θ) is introduced on the ancilla qubit in the middle of the stabilizer
measurement operation to test how the error propagates.

of θ = π, the raw parity is nearly identical in the two cases, but after correction,

the FT stabilizer measurement recovers the correct logical parity whereas the nFT

stabilizer measurement induces a logical fault. This is because the FT gate ordering

propagates a correlated error that decomposes as the product of (at worst) a single

qubit fault and a benign transformation of the gauge subsystem. By comparison,

the nFT gate ordering propagates a correlated error that corresponds to a logical

operator and directly corrupts the logical subsystem.

At θ = 0, (i.e., when no error is added) the error-corrected error rates for |0〉L

after the nFT and FT stabilizer measurement are 0.76(22)% and 0.20(13)%, respec-

tively, compared to a baseline encoding error of 0.23(13)%. To within statistical

error, there is no distinction between performing the FT stabilizer measurement or

not, providing strong evidence that this procedure does not corrupt the logical qubit

state beyond the error-handling capabilities of the code. On the other hand, there is
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Figure 7.15: (Left) Schematic depicting where the artificial error occurs for the nFT
(red) and FT (blue) ordering of the stabilizer measurement. (Right) The data from
running the circuits in Figure 7.14. Expectation value of the logical Z operator after
encoding |0〉L (Baseline, grey/black line), and then performing the nFT (red) or FT
measurement (blue) of a single X-type stabilizer with a Z(θ) error inserted on the
ancilla during measurement.

a statistically significant difference (p-value < 0.015) between the nFT and FT or-

dering. This again demonstrates the value of fault-tolerance in an apples-to-apples

comparison: in two circuits of identical complexity, performing the circuit fault-

tolerantly yields an average 4-times reduction in error. The fact that this reduction

is not larger speaks to the precise phase control in our system.

In this experiment, because the input and measured state was |0〉L, the mea-

surement is only sensitive to X-type errors. To check if the FT stabilizer is intro-

ducing Z-type errors into the logical qubit, we perform the same experiment (with

no artificial error added, θ = 0) on the |+〉L input state. |+〉L is measured in the

〈X〉L basis by a transversal YL(−π/2) gate that maps 〈X〉L → 〈Z〉L. We also check

a Z stabilizers on both |0/+〉L input states. The results are shown in table 7.5. We

note that from the logical T ∗2 experiment (Section 7.5), we expect the error on the
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|+〉L state to increase by 1.8% over the ≈ 1.5ms required to measure the stabilizer,

which is not included in the baseline encoding error below.

Input State Baseline Encoding FT Z Stabilizer FT X Stabilizer
(% Error) (% Error) (% Error)

|0〉L 0.23(13) 0.41(10) 0.20(13)
|+〉L 0.45(11) 3.3(3) 2.1(2)

Table 7.5: Logical error rates for both Z and X FT stabilizers on different logical
input states, after error-correction.

Now that we have verified the theory of stabilizer fault-tolerance on a single

stabilizer measurement, we proceed to directly measuring the full set of stabilizers

with four additional ancilla qubits. First, the state is fault-tolerantly encoded into

the |0〉L state. Then, an artificial single-qubit error is applied to a particular data

qubit. Finally, the full set of stabilizers, in sequential order X and then Z, are

mapped to the ancilla qubits in a single shot. The circuit for this experiment is

shown in Figure 7.16.

If no error has occurred, all four stabilizers commute with the logical qubit

state and the ancilla qubits should remain in the |0〉 state. Conversely, if an error

did occur on a data qubit, the stabilizers that do not commute with that error

flip the state of the ancilla to |1〉. For example, a Pauli Y error on data qubit 1

anticommutes with both the X and Z stabilizers that measure it, resulting in a flip

of ancilla qubits 10 and 12. The result of this experiment for all possible stabilizer bit

strings is shown in Figure 7.17. Since the high and low values of the stabilizers are

clearly distinguishable, this demonstrates the ability to, on average, simultaneously

identify arbitrary single qubit errors along both X and Z axes using the stabilizer

197



10

12

13

11

1

2

3

4

5

6

7

8

9

Encoding Error X Stabilizers Z Stabilizers

Figure 7.16: After encoding |0〉L, different Pauli errors are purposely introduced on
a selected data qubit in the code. To detect the error, each stabilizer eigenvalue is
mapped onto the state of the corresponding ancilla qubit.

outcomes.

For a given artificial error, each stabilizer measurement yields a determinis-

tic eigenvalue measurement (e.g., {+1,−1,−1,+1)} that is mapped to the ancilla

qubit state (e.g., {0, 1, 1, 0}). Defining the error as the absolute value of difference

between the expected ancilla bit string and the measured populations, and averaging

across all the artificial errors, we obtain the following total error for each stabilizer

measurement:

Stabilizer Total Error (εSi)
S1 = Z1Z4Z2Z5Z3Z6 0.244(3)
S2 = Z4Z7Z5Z8Z6Z9 0.298(6)
S3 = X1X2X4X5X7X8 0.179(3)
S4 = X2X3X5X6X8X9 0.248(3)

Table 7.6: Total error rate for all the stabilizers in a full syndrome extraction experi-
ment. This error includes encoding error, errors introduced from previous stabilizers
and logical qubit T ∗2 dephasing error.
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Figure 7.17: The data from running the circuit in Figure 7.16. The ideal ancilla
population is 0/1 depending on whether an error did not/did anticommute with the
stabilizer block. The colored bars correspond to the measured population of the
different ancilla qubits.

In this experiment, the stabilizers are measured in the order S3, S4, S1, S2.

The raw encoding of the |0〉L state has a base εenc = 0.038(2) error, which we

assume is isotropic in the sense that all stabilizer measurements should see the

error equally. Additionally, stabilizer measurements will detect errors introduced

by itself or previous stabilizer measurements, which we assume to be isotropic as

well. The per stabilizer error can be calculated by the differential error between

successive stabilizer measurements. We calculate εZ = 0.064(7) per Z-stabilizer

(avg. 98.9% gate fidelity) and εX = 0.069(5) per X-stabilizer (avg. 98.8% gate

fidelity). Finally, we observe an error offset on the X-stabilizers relative to the Z-

stabilizers of εT ∗2 = 0.072(5), consistent with a Z-type error caused by the logical

qubit dephasing (T ∗2 ) over the wall-clock time it takes to measure the X-stabilizers

(≈ 3 ms). Then the total stabilizer measurement error for each ancilla qubit is well

explained by the following error model:
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εS1 = εenc + 2εX + εZ

εS2 = εenc + 2εX + 2εZ

εS3 = εenc + εT ∗2 + εX

εS4 = εenc + εT ∗2 + 2εX

(7.8)

While the circuit shown in Fig. 7.16 is remarkably accurate given the complex-

ity (30 two-qubit gates in total), the error rate is still too high to improve the logical

qubit fidelity over even a single round of stabilizer readout and feedback. Comparing

the stabilizer eigenvalues obtained from the ancilla qubits S1,a and S2,a (the data

shown in Figure 7.17) to the stabilizer eigenvalues obtained from the data qubits

at the end of the circuit S1,d and S2,d (the process described in Section 7.2), we

observe a covariance of cov(S1,a, S1,d) = 0.80 and cov(S2,a, S2,d) = 0.82. A general

rule of thumb is that the false-positive rate from the full syndrome extraction needs

to be between 5-10% in order for the syndrome extraction to be beneficial. In other

theoretical modeling work of the Bacon-Shor 13 code, the physical two-qubit gate

needs to achieve ≈ 99.9% fidelity in order to surpass the pseudo-threshold where

the logical qubit outperforms the physical qubit [146].

Ultimately, the logical qubit state must be stabilized over many rounds of

error-correction, which will involve mid-circuit detection of the ancilla qubits and

conditional feedback. Intermediate measurement of a subset of qubits in the ion

chain requires physically breaking the chain and shuttling idle qubits far away from

the measured qubits in order to reduce decoherence due to resonantly scattered
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369.5-nm photons during the detection process. After the measured qubits are reset,

the separate chain segments must be re-merged into a single chain in order to resume

with computations. This process is likely to heat the axial and/or radial modes, and

so to maintain high-fidelity operations, the chain must be re-cooled. This can be

accomplished using the sympathetic cooling scheme described in Section 6.2.
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Chapter 8: Outlook

It is clear that ultimately trapped ion quantum computers will require sym-

pathetic cooling. In the QCCD architecture, sympathetic cooling ions are required

to re-cool multiple ions chains after they are shuffled and transported around a

multi-zone ion trap. It also appears as though sympathetic cooling will be able to

mitigate the dominant scaling limitation in a single long chain of ions, which is axial

heating. While there are other scaling considerations (e.g., gate speed, computa-

tional complexity of entangling waveform, etc.), none scale as unfavorably (N6) as

the error due to axial heating. The picture that emerges is a maximum chain length

where the trap-specific anomalous heating rate equals the sympathetic cooling rate.

Practically, the cooling rate should be at least twice as fast as the heating rate, as

gate operations still need to be performed.

Therefore, there is still strong motivation to reduce anomalous heating rates,

as this will set the maximum chain length and/or minimize the requirements on

sympathetic cooling (e.g., mixture ratio, cooling beam power, etc.). Further studies

are also needed to characterize the sympathetic cooling rates in a chain and perform

trade studies on the coolant mixture ratio and placement within a chain to maximize

performance. One clear upgrade path is to operate the vacuum chamber at cryogenic
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temperatures (∼ 10 K), which has been shown to reduce anomalous heating [94] and

will eliminate some of the complications with operating a room-temperature mixed-

species ion chain, namely reordering of the chain due to background gas collisions.

There is also further work required to determine how two-qubit gate fidelities

can reach > 99.9%, which is roughly where quantum error-correction surpasses the

threshold and can be used for further error suppression. While this fidelity has

been achieved in systems with large beams that are limited to N = 2 chains [92,

158], it has not yet been realized with focused individual addressing beams, which

support N > 2 chains. However, there appears to be no fundamental limitation to

this approach. A recent demonstration using focused beams on a small chain has

achieved 99.5% fidelity [93] and with further engineering it seems possible to achieve

99.9%.

With the integration of sympathetic cooling, reductions in anomalous heating

rates, and further improvements to the two-qubit gate fidelity, it seems very possible

to achieve high-fidelity operations on a chain of N ≈ 30 ions. This is coincidentally

the number of ions required to hold two logical qubits with the Bacon-Shor 13 code.

Thus, one can imagine the QCCD architecture, but with logical qubits shuttled

around the chip rather than physical qubits. Since quantum error-correction is

expected to take up a significant portion of time in a fully fault-tolerant quantum

algorithm, there is good reason to keep a single logical qubit well-localized with

strong inter-connectivity, particularly for stabilizer readout. Of course, even with

just two chains of N ≈ 30 ions, we enter the regime where the quantum computer

can no longer be simulated classically, and we hope to find exciting algorithms to
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explore new physics or solve difficult numerical problems.
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Appendix A: Error Bars and Fitting Quantum Data

In this appendix, we describe the fundamental statistics of quantum exper-

iments, including calculation of error bars. Additionally, we describe how to fit

data from quantum experiments that may consist of several individual quantum

experiments. Finally we describe how to derive error bars from these fits.

A.1: The Binomial Distribution

The output of a quantum experiment on a single qubit is a Bernoulli Trial that

succeeds (i.e., measures |1〉) with probability p. We wish to estimate p̂ and obtain

error bars on this estimate. To do this, we must repeat this Bernoulli Trial several

times to obtain statistics. The probability of measuring k successes in a sequence

of n Bernoulli trials is given by the Binomial Distribution, k ∼ B(n, p). Or in other

words:

P (k|n, p) =

(
n

k

)
pn(1− p)n−k (A.1)

One approach to estimating p̂ is to use Maximum Likelihood Estimation

(MLE) to maximize P (p|n, k) over all possible p ∈ [0, 1]. Thus:
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p̂MLE = argmax
p

P (p|n, k)

= argmax
p

(
P (k|n, p)P (p)

P (k)
) From Bayes’ Law

= argmax
p

(P (k|n, p)) Assuming p ∼ U(0, 1)

= argmax
p

(pn(1− p)n−k) Ignoring constants in n, k

= argmax
p

(n log p+ (n− k) log (1− p)) Log is monotonic increasing (A.2)

Taking the derivative of the result of (A.2), setting it equal 0, and solving to

p yields the familiar result:

p̂MLE =
k

n
(A.3)

This fits with our naive intuition that we should just take the mean over the

measurement output string (e.g., mean([0, 1, 0, 1, 1, 0, 0, ...])), but in this case it is

also the MLE estimator!

A.2: Error Bars on p̂

In general, we should expect that p̂ 6= p, since we can only ever estimate p̂

through statistical means, which are inherently random. Thus we need to under-

stand what the error bars on p̂ are. It is important to note that the error bars

are generally asymmetric, meaning there are different upper bounds than lower

bounds. This asymmetry is magnified near the extreme of the interval [0, 1]. One
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easy way to see this is to imagine flipping a fair coin (p = 0.5) five times. There is

a (0.5)5 = 0.03125 probability that you see all heads. In this case, p̂ = 1 and the

upper bound is 0 because probability cannot be larger than 1. One would expect

that our lower bound includes the true value, p = 0.5.

There are many approximate solutions to find the error bounds on p̂ includ-

ing the Wilson score, Agresti-Coull, and Jeffreys interval. Here we will present

the ”exact” Clopper-Pearson solution that uses the underlying binomial probabiliy

distribution. Note: ”exact” is a bit of a misnomer, because the approximations

work quite well, but here it means that we directly solve for the error bounds. The

Clopper-Pearson interval contains all values of p not rejected by a given significance

level α (α = 0.05 for 95% confidence interval).

The lower limit (getting at least k successes) is given by:

n∑
x=k

(
n

x

)
pL

x(1− pL)n−x =
α

2
(A.4)

The upper limit (getting at most k successes) is given by:

k∑
x=0

(
n

x

)
pU

x(1− pU)n−x =
α

2
(A.5)

We wish to solve for pL and pU . The Beta Distribution has important links

to the Binomial Distribution. In the Bayesian picture, it is known as the conjugate
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prior. This means that prior on p has the same algebraic form as the posterior

P (k|p, n). Or, in other words, the Beta Distribution describes the probability distri-

bution on p, which we have imperfect knowledge of, given our sampled data. This

is an important property for iterative update schemes where you may want to adap-

tively sample from some Binomial Distribution and stop as soon as you hit a given

confidence level. For now, we will just use the following identity:

n∑
x=k

(
n

x

)
px(1− p)n−x =

∫ p

0

Beta(x;α = k, β = n− k + 1)dx (A.6)

So our lower bound is just given by the CDF of the Beta Distribution, which

we wish to invert to solve for pL. The upper bound can be similarly solved for. The

inverse of the CDF is called the percentage point function PPF and answers the

question ”what probability should I choose to contain x percent of the total popu-

lation?”. For example PPF(0.5) gives the median of any probability distribution.

We obtain the closed form solution for the bounds:

(pL, pU) = (BetaPPF (
α

2
; k, n− k + 1), BetaPPF (1− α

2
; k + 1, n− k)) (A.7)

The Beta PPF function is available in most software packages. In Python, one

can use the scipy.stats.beta.ppf(q,a,b) function.
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A.3: Fitting Functions on Binomial Data

The previous sections have only dealt with a single data point drawn from a

Binomial Distribution with constant p, however in most quantum experiments we

wish to fit a function to many such data points, each drawn from a different Bino-

mial Distribution with a varying pi value. The function we wish to fit usually only

has a few degrees of freedom, so it not possible to maximize the MLE for each data

point. Thus, we take the approach that we should maximize the total MLE for all

of the data points.

We wish to fit a function pi = f(xi|θ) where θ describes the parameters of the

model that we wish to optimize. The total likelihood of parameter choice θ is given

by:

L(θ) =
∏
i

P (f(xi|θ)|ni, ki) (A.8)

Typically we like to use the log likelihood, since it converts products to sums

and makes the optimization less susceptible to numerical rounding errors. Also,

since most numerical optimization routines prefer minimization to maximization,

we will use the negative log likelihood. Recalling from Section 1 that P (p|n, k) ∝

P (k|n, p) = B(k, n, p), we get:
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θ̂MLE = argmax
θ

(L(θ))

= argmin
θ

(− logL(θ))

= argmin
θ

(−
∑
i

logB(ki, ni, f(xi|θ)))

This minmization can readily be solved using numerical optimizations. In

Python, one can use scipy.optimize.minimize(fun, x0) .

A.4: Error Bars on θ̂

As before, we expect θ̂ 6= θ, and so we wish to obtain error bars on the fit

parameters. For the MLE estimator (unbiased, efficient) the variance is given by

the Cramer-Rao Bound:

var(θ̂) =
1

I(θ̂)
(A.9)

Where I(θ̂) is the Fisher information matrix. For a model with only a single

parameter, the Fisher information is just the second derivative of the negative log-

likelihood at the optimal point θ̂

I(θ̂) =
d2(− logL(θ))

dθ2

∣∣∣∣
θ̂

(A.10)

For models with more than one parameter, one should calculate the Hessian,
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H(θ̂) and take the diagonals to get:

σθ̂ =
1√

diag(H(θ̂))
(A.11)

As a practical note, if using a quasi-Netwonian solver (e.g., L-BFGS-B) for the

MLE maximization in Section 3, one should not trust the Hessian that is (often)

returned as a result of the optimization. It is often a poor approximation and is

conditional on the path that the optimizer took (i.e., it can depend on the initial

guess of the parameters). It is better to independently approximate the Hessian at

θ̂ using a finite differences method. In Python, numdifftools.Hessian(f) does

exactly this.
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[125] Antonio D Córcoles, Easwar Magesan, Srikanth J Srinivasan, Andrew W
Cross, Matthias Steffen, Jay M Gambetta, and Jerry M Chow. Demonstration
of a quantum error detection code using a square lattice of four superconduct-
ing qubits. Nature Communications, 6(1):1–10, 2015.

[126] Maika Takita, Andrew W Cross, AD Córcoles, Jerry M Chow, and Jay M
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