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Abstract

Quantum information processing combines information theory with laws of quan-

tum mechanics to provide an interesting new study that promises signi�cant tech-

nological advances in the �eld of computation. The quest for a physical quantum

information processor not only tests the limits of quantum mechanics but also moti-

vates the development of new control techniques for quantum systems.

This thesis documents the implementation of the necessary components of a quan-

tum computer in a new atomic ion species, while demonstrating an entangling pro-

cedure that is uniquely insensitive to certain types of phase noise. Quantum bits

are stored in the ground state hyper�ne levels of individual trapped cadmium ions,

and the collective vibration of the ions in the trap potential form a quantum databus

through which information can be transferred. Quantum state measurements and ini-

tialization processes are accomplished through optical pumping, and quantum logic

operations are performed through interactions with applied electromagnetic �elds.

The spin-dependent force, which is the underlying principle of many entanglement

schemes for trapped ions, is investigated in detail in a series of "Schrödinger cat"

experiments that generates entangled wavepackets well separated in the momentum-

position phase space (α = 6). Phase control of the interaction in the gate scheme

proposed by Mølmer and Sørensen results in phase coherence between single-qubit

rotations and a robust two-qubit entangling logic gate that can operate on magnetic-

�eld insensitive �clock� qubits at �nite temperature. The coherence time of the clock

qubit (∼ 1s) is long compared to the gate time (∼ 100µs). Finally, quantum state

tomography is performed on two ions, featuring a set of universal quantum logic gates

that is su�cient for any quantum computation, with an entangling gate �delity of

0.83.

The combination of the tools developed here is su�cient to perform universal

quantum computation. With the advent of scalable, multi-zone ion trap structures,

the concept of a quantum computation device may become reality in the not so distant

future.
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CHAPTER 1

Introduction

1.1. Quantum Information

In recent years there has been exciting and active research in the �eld of quantum

information. This strong interest is based on the idea of exploiting the properties

of quantum mechanics to perform computations, which in certain cases can vastly

exceed the capabilities of classical computers. While this concept was conceived by

Richard Feynman [1] more than twenty years ago, the �eld of quantum information

has only begun to change from science �ction to reality in the past decade.

Quantum information gained much attention in 1994 when Peter Shor presented

an explicit quantum factoring algorithm that was exponentially more e�cient than

any known classical algorithm [2]. The realization of Shor's algorithm would make

many current encryption schemes obsolete, since they can be neutralized if large num-

bers can be factorized easily. Using classical computers, the resources required to fac-

tor a large number grow exponentially with each additional digit, and currently there

exist insu�cient computing resources to factor the large numbers used in encryption

by our government and �nancial institutions. The creation of a quantum computing

device could alter this fact. Ironically, quantum mechanics also provides an alterna-

tive method for secure information transfer by sending correlated quantum bits for

encoding and decoding a message using Quantum Key Distribution schemes [3, 4],

which have been proven to be unconditional secure, in contrast with the fact that

most parts of classical cryptography are based on unproven assumptions. Thus, the

development of quantum information processing devices became a serious pursuit in

the research community.

From a scienti�c standpoint, quantum information processing has the potential

to remove certain limitations of classical computer. For example, Grover's algorithm,

which performs exhaustive searches over the set of possible solutions for ones that sat-

isfy certain requirements, can achieve quadratic speed up for solving non-determinant

polynomial (NP) complete problems [5]. Another application is modeling quantum

systems using a �quantum simulator�, providing access to degrees of freedom unavail-

able in physical systems for testing theories in condensed matter and other �elds,
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which can lead to better understanding of the world on a quantum level. Construct-

ing a physical quantum computer is also a fantastic testbed for quantum mechanics at

a macroscopic scale. However, the implementation of quantum computation devices

is still in its infant stage, and may take many more decades of research to achieve

the predicted results. This thesis is part of a long term e�ort toward these foresee-

able advances using quantum computation, with the goal of eventually developing a

quantum mechanical version of the universal Turing machine.

The rate of advancement of computers has been guided by Moore's Law, which

claims that the number of transistors in the most advanced computer will double every

eighteen months. At the current rate, the size of the transistors in classical computers

will reach a scale where quantum e�ects become signi�cant. Therefore it is inevitable

that quantum mechanics will play an important role in computer technology.

1.2. Ion Trap

Since Hans Dehmelt and Wolfgang Paul developed the �rst ion traps [6, 7], for

which they received the Nobel prize in 1989, the ability to trap ions has contributed

to many advances in atomic physics, including laser cooling [8] and atomic clocks [9],

as well as applications such as mass spectrometers. Quantum information was �rst

introduced to the ion trap system in 1995 when Cirac and Zoller proposed a scheme

for implementing a quantum controlled-NOT gate in trapped ions by coupling the

internal state of two ions with their external vibration [10]. Since then a host of

theoretical and experimental work has pushed the trapped ion system to become

one of the most promising architectures for quantum computing. The key step in

the Cirac and Zoller scheme was demonstrated experimentally by Monroe et al in

the same year [11], though the complete gate operation was realized more recently by

Schmidt-Kaler et al in 2003 [12]. However, other quantum gate schemes equivalent to

the controlled-NOT gate have been proposed and implemented in trapped ion systems

in the meantime [13�17]. These gates rely on the concept of a spin-dependent force

and have many improved characteristics compared to the original Cirac and Zoller

proposal. In addition, the idea of a quantum charge-coupled device has also been

proposed as a scalable architecture for trapped ion quantum computing, using an

array of trap zones where ions can be stored and transported to speci�c locations for

computation when required [18]. These theoretical and experimental work provide

a foundation for trapped ion quantum computing and a complete framework for a

scalable universal quantum processor.
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1.3. Requirements of a Quantum Computer

The criteria for the physcial realization of quantum computation are [19]: 1) a

scalable physical system with well characterized qubits; 2) the ability to initialize the

state of the qubits to a simple �ducial state; 3) long relevant decoherence times, much

longer than the gate operation time; 4) a �universal� set of quantum gates; and 5)

a qubit-speci�c measurement capability. This thesis presents the complete develop-

ment of a two qubit quantum computer in a new trapped ion species. While all of

the criteria listed above have also been demonstrated in other trapped ion systems,

many of which are concurrent with this thesis work, the experiments here are per-

formed using cadmium ions, which have atomic properties that are favorable for long

coherence in terms of qubit memory as well as gate operations. A careful analysis

of the spin-dependent force reveals that the two-qubit entangling gate scheme pro-

posed by Mølmer and Sørensen [13,20] can be phase stabilized, and its insensitivity

towards �uctuating background electric and magnetic �elds makes it a robust gate

scheme. Finally, the components are combined to perform more complicated opera-

tions involving multiple gate operations. These demonstrations show that the system

has the capability of performing sequences of quantum logic operations. Although

the experiments here are limited by two qubits of quantum memory, the techniques

developed here are applicable to a large number of qubits in scalable, multi-zone trap

structures.
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CHAPTER 2

Ion Trapping

This chapter outlines the physical apparatus and the basic functions of ion trap-

ping, including the ion traps and its loading mechanisms, and the laser system for

probing the ions. The details are provided here without the more complicated quan-

tum logic operations, which are discussed in the following chapters. Although ion

trapping has been available for several decades, the speci�c parameters for the exper-

iments are carefully chosen and tested in the laboratory for quantum computation

with trapping cadmium ions. The physical system contains quantum mechanical de-

grees of freedom which are employed for computing purposes, such as the qubit stored

in the internal electronic structure of the ion and the external quantum mechanical

motion of the ions in the trap available for quantum information transfer. Basic op-

erations such as initialization and detection of the qubits can be performed with a

specialized laser and imaging system. This chapter sets up the complete framework

within which quantum information processing can be implemented.

2.1. Trapping Ions

2.1.1. Ion Trap Basics. The ion traps used in this thesis operate based on

the design invented by Wolfgang Paul [21] that con�ne charged particles with an

electric quadrupole �eld oscillating at radio frequency (rf), also called �Paul� or �rf�

traps. Two types of traps are used in the experiments in this thesis: a �ring-and-fork�

asymmetric quadrupole trap and a three-layer linear trap (see �gure 2.1.1). In the

ring-and-fork trap, the potential near the center of the trap can be modeled as an

asymmetric quadrupole potential when a rf potential V0cos(ΩT t) is applied to the

ring electrode and a static potential U0 is applied to the end-caps. The potential at

coordinate (x, y, z) is given by

(2.1.1) V (x, y, z) = κ (U0 + V0cos(ΩT t))

(
αx2 + (2− α)y2 − 2z2

d2
0

)
,

where α ∼ 0.8 and κ ∼ 0.8 are parameters determined by the geometry of the

electrodes, d0 =
√
r2

0 + 2z2
0 is the characteristic internal dimension of the trap, with

r0 being the radius of the ring electrode and 2z0 being the separation between the

two end-caps (see �gure 2.1.1a). For ideal hyperbolic electrodes, α = κ = 1. The
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equations of motion are

ẍ+
2eακ

md2
0

(U0 − V0cos(ΩT t))x = 0

ÿ +
2e(2− α)κ

md2
0

(U0 − V0cos(ΩT t))y = 0,

(2.1.2) z̈ − 4eκ

md2
0

(U0 − V0cos(ΩT t))z = 0.

where m is the mass of the ion and e is the electric charge. For now let's consider

the motion along one dimension, say the x axis. The equation of motion can be

transformed into the standard Mathieu equation [22] with dimensionless parameters

(2.1.3)
d2x

dτ 2
+ (a+ 2qcos2τ)z = 0,

where

(2.1.4) a =
8eU0ακ

md2
0Ω2

T

q =
4eV0ακ

md2
0Ω2

T

τ =
ΩT t

2
.

The lowest-order approximation yields a solution

(2.1.5) x(t) = x0cos(β
ΩT

2
t)
[
1− q

2
cos(ΩT t)

]
,

where β =
√
a+ q2/2, and x0 depends on the initial conditions. The slower oscillation

at frequency ωx = βΩT/2 is called the �secular motion�. When a � q2 � 1 and

U0 ' 0, then the ion acts as though it is con�ned in a harmonic pseudo-potential

where

(2.1.6) V =
1

2
mω2

xx
2,

with ωx =
√

2eV0ακ/(md
2
0ΩT ) being the secular frequency. The secular motion is used

as a quantum databus where information can be transferred from one ion to another.

The oscillation at the faster rf frequency cos(ΩT t) is called the �micromotion� because

the amplitude is suppressed by q/2 = 2
√

2ω/ΩT .

The secular frequencies of the asymmetric quadrupole trap are non-degenerate

in all three dimensions, with ratios of ωx : ωy : ωz being approximately 2 : 3 : 5.

These ratios can be changed by biasing the static potential U0. In general, the trap

5



Figure 2.1.1. Schematic diagrams of the ion trap electrodes. (a)
Asymmetric quadrupole trap with a 400µm diameter ring electrode
and a 300µm gap between the fork electrodes. The rf is applied to one
electrode while the other electrode is held at rf ground with a possible
dc o�set. (b) Three-layer linear trap made of gold-coated electrodes on
alumina substrates. The rf is connected to the middle layer which is
125µm thick, while static voltages are connected to the electrodes on
the segmented outer layers that are 250µm thick (the grounded elec-
trodes are shaded in dark gray while bias potentials are applied to the
others). The layers are separted by alumina spacers (not shown) with
a thickness of approximately 0.3µm. In the experiments, the ions are
coupled to motion in the direction zT de�ned to be the x-axis in the
asymmetric quadrupole trap shown in (a) and the z-axis in the linear
trap shown in (b).

frequencies in the three principal axes is best kept non-degenerate to simplify the

normal oscillation modes of the ions and for Doppler cooling to be e�ective.

The idealized linear trap consists of four rods running parallel along the z axis.

Rf is applied to a pair of diagonal electrodes while static potential is applied to the

other two, which are segmented. The outer segments are held at U0 while the middle

segments are held at ground. In this case, the potential becomes

V = V0cosΩT t

(
x2 − y2

r2
0

)
+ κU0

(
2z2 − x2 − y2

2

)
,

where κ is a geometric factor. The trap provides a static harmonic potential in the

z direction, with oscillation frequency ωz =
√

2κU0q/m. Along the axis of the trap

where x = y = 0, there is no micromotion. Compared to the ring-and-fork trap, where

the rf node is a single point at the center of the trap, the linear trap can support

many ions at its rf nodal line simultaneously and avoid unwanted micromotion.

The actual linear trap used in the experiments consist of gold electrodes plated on

three layers of alumina substrates. Rf is applied to the center layer, while the outer

layers are segmented in the axial direction and held at DC voltages. Positive voltages

are applied to the end segments and negative voltages to the middle segments to

6



Figure 2.1.2. (Left) Vacuum apparatus enclosing the three-layer lin-
ear trap. Located inside the 4 inch diameter hemispheric chamber in the
lower right corner, the trap is visible from the large quartz window. The
rf resonator is connected to the trap electrodes by the feedthroughs on
top of the chamber. The vertical structure in the middle is the titanium
sublimation pump, with the ion pump to its left. The feedthroughs for
the ion gauge is not visible from this angle. (Right) Side view of the
vacuum chamber. Two windows at 45◦ allow laser access to the ions
inside the trap.

provide axial con�nement. Voltage di�erentials are applied to the electrodes in the

front and the back layer to tilt the transverse principle axes de�ning the independent

modes of oscillation. This is important for e�ective Doppler cooling in all dimensions

in a later discussion. The �exibility of biasing the static potential at each electrode

independently also allows us to cancel excess micromotion due to background static

electric �elds (see section 2.1.6 for further discussion).

2.1.2. The vacuum system. Each ion trap is positioned under ultra high vac-

uum (< 10−11 Torr) inside a 4 inch diameter hemispheric chamber (see �g 2.1.2). The

chamber has optical access from the cross section of the hemisphere and two smaller

windows at 45◦ around the equator and forming a right angle with each other. Each

trap is placed so the weakest axis is horizontal and parallel to the large vacuum win-

dow and the geometry allows optical access to the trap region from every window.

The chamber is attached to a continuously running Varian ion pump with nominal

pumping speed of 20 liter/second, and also out�tted with a titanium sublimation

pump. The system also contains an ion gauge capable of detecting pressures down
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to 10−11 Torr, and sometimes a mass spectrometer/residual gas analyzer (RGA) to

monitor the concentrations of cadmium vapor or detect leaks.

To achieve ultra-high vacuum (UHV) pressures, the stainless steel vacuum parts

are �rst baked at 400◦C for a day or two before assembly. This forms an oxide layer on

the surfaces which reduces the outgassing of stainless steel. Surfaces to be exposed to a

vacuum are cleaned with an ultrasonic hot acetone bath for at least half an hour. The

vacuum system is then assembled with the trap, electron guns, cadmium ovens, and

electrode connections installed. A mechanical pump (model TSU 071 from Pfei�er

Vacuum) is used to attain pressures down to 10−6Torr before the �nal bake. The

temperature is raised slowly in 20◦C increments about every hour, in order to prevent

di�erential expansion between vacuum parts that may cause a leak. Baking removes

water and hydrocarbons from vacuum system walls [23], and the �nal temperature

at 200◦C for our system is restricted by the temperature tolerance of the seal for

the quartz windows, which allow UV optical access to the trap. Current is passed

through the electron guns and the cadmium ovens to remove dirt that may outgas

later when these equipment are in use. At 200◦C and 10−6 Torr, the valve connecting

the vacuum system to the mechanical pump is closed and a 500 liter/second ion

pump (model P-E 500 STD by Perkin Elmer) is connected to the vacuum system and

turned on. The bake continues for more than a week and is closely monitored as the

ion pump reduces the pressure to 10−7 or 10−8 Torr. Finally, the valve to the large

500 liter/second ion pump is closed, and the system is returned to room temperature

slowly, again at the rate of about 20◦C/hour. The vacuum system is rested for a few

days until the pressure level reaches steady state, and the small 20 liter/second ion

pump can be turned on in the mean time. The titanium sublimation pump, which

operates by heating a �lament containing titanium to a temperature where the metal

sublimates from the �lament to the nearby walls of the vacuum system, is turned on

for 2 minutes with 40 Amps of current once each hour for 5 to 10 times. The titanium

�lm on the vacuum system walls combines with the active gases as the gas molecules

strike the wall and removes them from the vacuum system. The �nal pressure should

reach below 10−10 Torr. The small ion pump runs continuously as long as the system

is under vacuum.

Trap voltages are controlled from the outside and connected to the electrodes via

feedthroughs. An rf resonator consisting of a helical coil inside an enclosed cylinder

made of copper [24] transforms a 2W rf signal from an ampli�ed source to high voltage

and is attached to the trap electrodes via vacuum feedthroughs (see �gure ). The

input rf is coupled capacitively to the resonator via a wire loop inside the cylinder,
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Figure 2.1.3. Helical resonator for transforming rf. The helical coil
design reduces the length of the resonator (compared toλ/4 for a linear
coil design). The rf load is connected to the outer conductor (ground)
and the inner coil. The rf input (typically 2W at 50MHz) is connected
to the capacitively-coupled wire loop on one end of the resonator, and
the transformed rf has amplitude V0 ≈ 200V, with a loaded Q of ∼ 300.

and has a typical resonant frequency at around 50MHz. Typical loaded Q factor is

>300, translating to approximately V0 =200V at the trap electrodes.

2.1.3. Loading Ions. The original design for loading ions is as follows: cadmium

or cadmium oxide metal inside an alumina tube is heated by passing current through

a tungsten coil to produce a beam of atomic vapor aimed in the vicinity of the trap;

an electron gun consisting of a charged plate with an aperture in front of a heated

tungsten coil generates a beam of electrons also aimed at the trap region. The high

velocity electrons (∼ 100eV) collide with the neutral cadmium atoms and ionize them,

leaving the positively charged cadmium ions inside the trap. If the atoms are ionized

outside the trap region, conservation of energy dictates that the ion entering the

trap region has higher energy than the trap barrier, therefore these ions will not stay

trapped. On the other hand, if the atoms are ionized inside the trapping region, then

the ions can not escape as long as the depth of the trap is larger than the initial kinetic

energy of the ion. With careful alignment of the cadmium oven and the electron gun

with respect to the trap electrodes, this method is very e�ective at loading ions into

the trap.

The di�erence between cadmium and cadmium oxide ovens is the melting tem-

perature: 765◦C for cadmium and 1559◦C for cadmium oxide. Since the vacuum

chamber needs to be baked at 200◦C for about a week in order to reach ultra high

vacuum (maximum temperature limited by the vacuum window seal), the result is an
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observable layer of cadmium coating on the trap electrodes if cadmium metal is used.

This atomic deposition can be avoided by using cadmium oxide metal, at the cost of

heating the alumina tube casing to a much higher temperature to produce cadmium

atomic vapor for loading ions. The cadmium oxide ovens often require several minutes

of continuous heating to reach melting temperature where a pressure increase can be

observed, while cadmium ovens reach melting point on the order of seconds. For the

electron gun, the tungsten coil is usually heated until the black body radiation is

visible, but the electron emission is not noticeable unless the aperture plate is biased

to 100V. Normally, the electron gun is turned on for no more than the time it takes

to collect 100µA of total emission current.

However, there are several drawbacks to ionizing cadmium atoms with high veloc-

ity electrons. The cadmium oven and especially the electron gun create a signi�cant

increase in pressure (from < 10−11 to 10−8) inside the vacuum chamber, which re-

mains relatively high even after they are turned o� for half an hour or more (pressure

typically drops to 10−10 a few minutes after the electron gun is turned o�). This

increase in the background gas and ion collision rate reduces the ion lifetime in the

trap from several hours to several minutes, leaving insu�cient time to perform ex-

periments. The ionization rate can also be too high that a cloud of ions always result

from loading, making it nearly impossible to isolate exactly one or two ions of the

desired isotope in the trap.

While experimenting with the ion traps, new techniques were discovered that

conveniently avoids the problem with pressure built up. When a couple milliwatt

of the 214.5nm laser used to Doppler cool the ion is directed on the electrode, ions

appear in the trap. Although the exact mechanism is not understood, the hypothesis

is that the laser excites the electrons in the metal to overcome the work function

at the metal/vacuum interface or to allow electrons to tunnel through that potential

barrier during certain phases of the rf. The electrons are then accelerated through the

trap region within less than a cycle of the rf and ionizes neutral atoms in their path.

This e�ectively creates a localized electron beam at the trap, resulting in a barely

detectable increase in pressure. This method still requires the oven to be on during

loading to maximize the electron-cadmium collision rate, and the ionization rate is

very low compared to the large electron gun such that individual ions can be loaded

into the trap. However, this slow rate could take several minutes and sometimes up to

hours to trap an ion, which is less than ideal. The continual production of cadmium

vapor also results in coating the trap electrodes with cadmium, and while no direct

evidence has been obtained, the atomic deposition layer has long been suspected to

be the origin of patch potentials on the electrodes that may be responsible for the
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Figure 2.1.4. Energy levels of neutral cadmium atoms. A 915.4nm
pulsed laser is frequency quadrupled to drive the 5s to 5p transition in
neutral cadmium at 228.87nm. Two photons at this wavelength (equiv-
alent to 5.41eV each) have su�cient energy to overcome the ionization
threshold (8.99eV) and produce Cd+ ions. [25]

anomalous vibrational heating observed in these traps as well as traps of other atomic

species.

Neutral cadmium can also be photoionization in the trap region using a pulsed

laser tuned to the 229nm S to P transition of neutral cadmium. The ionization

energy of neutral cadmium is 8.99eV, which can be overcome with a two photon

process (each photon carries 5.41eV of energy) [25]. The high peak intensity of

the pulsed laser results in a very reasonable ionization rate. In the laboratory, we

have tested two di�erent pulsed lasers for photoionization of cadmium atoms: both

are mode-locked Ti:Sapphire lasers, one operating in the picosecond regime and the

other operating on the femtosecond regime. They operate at four times the desired

wavelength at 915.40nm, and the high peak intensity during the short pulses allows

e�cient frequency doubling with a lithium borate (LBO) crystal and a second stage

frequency doubling with a thin alpha barium borate (BBO) crystal. Both the 2

picosecond and the 150 femtosecond pulse lasers require an average optical power

between 0.3 to 3 mW to produce cadmium ions in the trap at the rate of ∼ 1 ion per

second. The background cadmium gas has su�cient ionization cross section that in

general no additional atomic vapor from the oven is required. This method creates

no detectable increase in pressure, and the lifetime of the ion in the trap remains on
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the order of several hours, making this by far the most preferred method of loading

ions into the trap.

Residual background gas collisions can be important to the ion lifetime in the

trap [26]. Inelastic collisions can alter the internal state of the trapped ion or even

change the species of the ion, while elastic collisions only add kinetic energy to the

ion. The most troublesome inelastic processes are chemical reactions and charge ex-

change, which can occur only if the interparticle spacing of the two colliding particles

approaches atomic dimensions. An upper limit is given by the Langevin rate, where

background neutrals penetrate the angular momentum barrier and spirals into a col-

lision with the ion. In these collisions, the electric �eld from the trapped ion polarizes

the background neutral, creating an attractive potential

(2.1.7) U(r) = − αq2

8πε0r4
,

where α is the electric polarizability of the neutral atom and q is the electric charge.

Solving the Lagrangian for a two-body system:

L =
1

2
µ
(
ṙ2 + r2θ̇2

)
− U(r),

where µ = m1m2/(m1 + m2) is the reduced mass, impact parameters less a critical

value

bcritical =

(
αq2

πεµv2

)1/4

will result in spiraling collisions for an particle approaching at velocity v toward the

mainly stationary ion. The Langevin rate

kLangevin ≡ σv = πb2
criticalv,

where σ is the collision cross section, leads to an overall reaction rate

γLangevin = nkLangevin = nq

√
πα

εv
,

where n = P/kBT is the density of the background gas, dependent on the pressure

P and temperature T . For collisions with the dominant background gas H2 at a

pressure of P = 10−11Torr = 1.33×10−9Pa and room temperature T = 300, with µ ≈
3.32× 10−27kg and αH2 ∼ 8× 10−31m3, the collision rate is γLangevin ≈ 4.6× 10−4s−1,

or once every 36 minutes. Our observation of the ion lifetime in the trap is on the

order of an hour, which is consistent with these calculations since not every collision

results in ion loss.

2.1.4. Doppler Cooling. The S1/2 to P3/2 transition in Cd+ ion can be reso-

nantly coupled with an electromagnetic �eld at 214.5nm. Dipole interaction results
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in an absorption/spontaneous emission rate of

(2.1.8) γs =
s0γ/2

1 + s0 + (2∆/γ)2
,

where ∆ is the detuning from resonance, γ = 2π × 60MHz is the natural linewidth,

and s0 = I/Isat is the saturation parameter with Isat = πγhc/(3λ3) = 7.9µW/mm2

being the saturation intensity. A particle in motion observes the Doppler e�ect and

the �eld appears to have a di�erent detuning ∆′ = ∆− k · v when the particle has a

velocity v. If the �eld is red detuned, then the particle will scatter more frequently

when k · v < 0 and less frequently when k · v > 0, assuming the Doppler shift is less

than the detuning (k · v < ∆). This imbalance in scatter rate results in more recoil

energy being transferred to the particle when it is traveling towards the beam source,

and when two counter-propagating beams are both red detuned, the particle becomes

trapped in the middle. This process is called Doppler cooling.

In the case of ions in a Paul trap, only one Doppler beam is necessary since the

restoration force of the trap guarantees that any excess kinetic energy from the ion

can be removed on an approach where k · v < 0. The wave vector must couple to

all three principal axes of the trap to ensure Doppler cooling in all dimensions. In

general, the Doppler cooling limit is 〈E〉 = ~γ/2 = ~ωn̄, where n̄ is the average

number of phonons in the vibrational mode. However, because the Doppler beam is

at a 45◦ angle with respect to the dimension that is used for quantum information

transfer, the cooling limit includes a factor that is dependent on the polarization of

the �eld and integrated over the radiation pattern of the emitted �eld. The calculated

Doppler limit is 〈E〉 = 0.425~γ, which is approximately the same as the general case

where 〈E〉 = ~γ/2. For a trap frequency of ω ∼ 2MHz, the Doppler limit is n̄D = 13.

The spontaneous emitted photons from the Doppler cooling beam are collected

by an objective lens, and individual ions can be distinguished on the camera when

they are localized at their equilibrium positions in the trap (see section 2.3 for details

on the optics setup). As the laser approaches resonance from a lower frequency, the

�uorescent rate increases and the ions become visibly brighter on the camera. When

the laser frequency is tuned to just above resonance, the ions become non-localized

due to Doppler heating (or lack of cooling) and disappears from the camera image.

However, a single ion usually remains trapped if the Doppler heating is kept to less

than a few seconds and Doppler cooling is immediately turned on afterwards.

2.1.5. Isotope Selectivity. The isotope shifts in cadmium ions allow us to dis-

tinguish the isotopes from one another. This is important since the even isotopes of

cadmium have no nuclear spin and therefore have no hyper�ne splitting, and only odd

isotopes (111 and 113) have hyper�ne levels which can be used as qubits (see section
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Figure 2.1.5. CCD image of 6 ions in the three-layer linear trap. The
di�erent brightness of the ions indicate di�erent isotopes.

Figure 2.1.6. Cadmium isotope abundances and the isotope shifts in
the resonant frequency of the S1/2 to P3/2 transition in cadmium ions.
The vertical height indicates the relative abundance of each isotope
of cadmium, and the relative frequency of each isotope is shown on
the horizontal axis, in both GHz in the UV and also in terms of the
wavelength of the Ti:Sapphire laser before the �eld is frequency quadru-
pled.

2.2 on qubits). In the experiments, only isotope 111 ions are used, since isotope 111

and 113 have di�erent ground state hyper�ne splitting (14.5GHz for 111 and 15.3GHz

for 113) and their mass di�erence results in di�erent secular frequencies, creating an

unnecessarily complicated scenario when multiple isotopes are present in the trap.

However, other isotopes can still be potential candidates for sympathetic cooling, as

experiments have shown [27]. Each time the trap is loaded with ion(s), the laser

is tuned to the resonance peak of the ion(s) and the wavelength of the laser in the

infrared (IR) is read by a wavemeter (Burleigh WA-1500) to determine the isotope

number. The undesired isotopes are released from the trap and new ions are loaded

into the trap until the desired isotope is captured. The probability of capturing the

desired isotope increases if the laser is slightly red detuned from the resonance of the

desired isotope to where Doppler cooling is e�cient. In the case of isotope 111, the

other isotopes can be Doppler heated while isotope 111 is Doppler cooled, ensuring

only isotope 111 will remain in the trap. The probability of loading isotope 111 is

also increased with an isotope-enriched cadmium or cadmium oxide source.

2.1.6. Micromotion due to background electric �eld. In the presence of a

background electric �eld E0, the equation of motion (from eq 2.1.2) becomes

(2.1.9) ẍ+
2e

md2
0

(U0 − V0cos(ΩT t))x =
eE0

m
.
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Figure 2.1.7. E�ect of micromotion on the Doppler lineshape. Fre-
quency is scanned by changing the o�set between the tellurium refer-
ence and the laser in the feedback loop. The laser is on resonance at
992MHz on the axis, and the actual frequency shift in the UV is 4 times
the scale shown on the axis. The square boxes show the minimized mi-
cromotion with a HWHM of 9MHz, translating to a linewidth of 72MHz
(compared to the natural linewidth of 60MHz). The triangles and the
circles show di�erent sets of data with much wider Doppler lineshapes,
indicating a large micromotion amplitude. The sharp drop at 955MHz
for the circle and 979MHz for the triangle are suspected to be caused
by Doppler heating from the third and the �rst micromotion sideband
respectively (rf frquency50MHz). The resonant scatter rate is increased
by a factor of 2.5 when micromotion is minimized, which increases the
detection e�ciency. The actual voltage settings used for each data set
are shown in the legend (data was taken in the asymmetric quadrupole
trap). For example, 30VDC -2.6kV v -2.0kV h indicates a 30V bias
applied to the endcap electrodes, a -2.6kV bias applied to the verical
compensation electrode, and a -2.0kV bias applied to the horizontal
compensation electrode.

Then the solution is

(2.1.10) x(t) = x0

[
1 +
√

2
ωx
ΩT

cos (ΩT t)

]
cos(ωxt) +

√
2eE0

mωxΩ
cos(ΩT t) +

eE0

mω2
x

.

The �rst term is the usual solution using the pseudopotential approximation for ωx �
ΩT . The second term contributes extra micromotion with an amplitude proportional

to the background electric �eld E0, and the third term produces a constant o�set in

the position of the ion. The problem with the extra micromotion from the second

term in eq 2.1.9 is that the amplitude could be signi�cantly larger than the actual

secular motion, which could result in excess Doppler shifts and ultimately interferes

with laser cooling. The experiments have shown that without canceling micromotion

due to background electric �eld, Doppler cooling is ine�ective and e�orts to laser cool

to sub-Doppler limits results in complete failure.

There are several ways to cancel the background electric �eld and remove the

extra micromotion. First, the vacuum chambers are equipped with compensation

electrodes positioned near the trap in three orthogonal directions, and high voltage

can be applied to these electrodes to o�set the background electric �eld. For the

three-layer linear trap, the segmented electrodes allow multiple degrees of freedom to

cancel any background electric �eld. The static potential U0 on the electrode in the

ring-and-fork trap also has an e�ect on the micromotion.
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To assess the magnitude of micromotion, one method is to observe the Doppler

lineshape, as in the example shown in �g 2.1.7. Normally, the photon scatter rate is a

function of frequency following eq 2.1.8, with a FWHM of approximately 60MHz when

the ion is undersaturated (I < Isat). When the micromotion amplitude is large, the

linewidth broadens due to Doppler shift from the ion's micromotion. Alternatively,

the process can be viewed as a phase modulation of the �eld at the rf frequency as

observed by the ion, which produces sidebands at intervals matching the rf frequency.

The sideband strengths are proportional to the Bessel functions Jn(φ) with modula-

tion index φ proportional to the amplitude of micromotion. In �g 2.1.7, the resonant

scatter rate in the absence of micromotion is much higher than when micromotion is

present, due to the fact that optical power is not diverted to sidebands and there is

no Doppler heating from the sidebands. The �eld compensation parameters can be

changed with real time feedback from the linewidth measurement and the increased

resonant scatter rate.

Another method to measure micromotion is by comparing the arrival time of the

photons with the rf signal. When the laser is red detuned from resonance, the scatter

rate is correlated with the rf due to the Doppler e�ect when micromotion becomes

signi�cant. A time-to-digital (TDC) converter digitizes the time interval between

photon arrival and the start of the next rf cycle, and the collected histogram shows a

sinusoid variation in the probability of arrival with respect to the rf phase when there

is a signi�cant micromotion amplitude. Micromotion can be nulli�ed by suppressing

the correlation with the rf phase.

The two methods described previously can only detect micromotion along the

direction of the laser. For micromotion in the other dimensions, the information can

be extracted from the position of a single ion in the trap. Eq 2.1.10 shows that there

is a constant o�set eE0/mω
2
x in the position of the ion. The position of the ion is

measured at two di�erent secular frequencies ω1 and ω2, which can be controlled by

changing the amplitude of the rf. The di�erence in position is

(2.1.11) ∆x =
eE0

m

(
1

ω1

− 1

ω2

)
.

The strength of the electric �eld can be determined by rearranging the equation:

(2.1.12) E0 =
m∆x

e

(
1

ω2
1

− 1

ω2
2

)−1

.

Micromotion amplitude in the plane of the camera view can be minimized by elimi-

nating the position shift corresponding to the change in rf amplitude.
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Figure 2.2.1. Internal energy levels of a 111Cd+ ion. Ground state
hyper�ne levels (nuclear spin I = 1/2) serve as a qubit, with a fre-
quency splitting of 14.5GHz. The excited states P1/2 and P3/2 are
separated by a �ne structure splitting of 72 THz, and the transition
from S1/2 ground state is resonant with a 214.5nm and a 226nm ul-
traviolet radiation respectively. The qubit levels |F = 0,mF = 0〉 and
|F = 1,mF = 0〉 statesare magnetic �eld insensitive to �rst order, re-
sulting in a coherence time on the order of a few seconds.

2.2. Cadmium 111 as a Qubit

The choice of ion was selected with careful consideration for the technology avail-

able and for properties favorable towards quantum computation. Typical atomic ion

species for quantum information applications are hydrogen-like, with a single valence

electron with a 2S1/2 ground state. The ions' internal electronic states serve as quan-

tum memory, and two states are designated as the qubit levels |0〉 and |1〉, where
information can be stored in the amplitude and phase of these states. A �hyper�ne

qubit� uses two ground state hyper�ne levels, while a �optical qubit� uses a ground

state and an excited D state with energy lower than the P state. A hyper�ne qubit

has the advantage of extremely long life time on the order of thousands to millions of

years, compared to the life time on the order of seconds for the excited D state. In

addition, hyper�ne qubits can be manipulated using stimulated Raman transition via

coupling to excited states, thus having a less stringent requirement on the frequency
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stability of the laser than optical qubits, which are coupled using electric quadrupole

transitions with linewidths on the order of less than 1 kHz.

The experiments in this thesis uses ground state hyper�ne levels of 111Cd+ ions as

qubits. Hyper�ne interaction exists only in isotopes with a non-zero nuclear spin (I =

1/2 for 111Cd+). The qubit states are de�ned as |0〉 = |F = 0,mF = 0〉 state and |1〉 =

|F = 1,mF = 0〉 state, where F denotes the total angular momentum of the electron

and nucleus and mF denotes the z component of the total angular momentum. These

levels are specially chosen for their insensitivity to magnetic �eld (to �rst order), with

the coherence time of the qubit memory on the order of a few seconds according to

our measurements. The frequency splitting is ω0 = 2π × 14.53GHz [28].

2.2.1. Initializing the Qubits. A quantum register needs to be initialized to a

de�nite state before operations can be performed. For trapped 111Cd+ ions, the qubits

are prepared in the S1/2(F = 0,mF = 0) state at the onset of computation by optical

pumping with radiation near-resonant to the S1/2(F = 1)→ P3/2(F ′ = 1) transition.

For this transition, there is always a dark state composed of a superposition of the

S1/2(F = 1) manifold for any polarization of the light. Therefore, the optical pumping

�eld is tuned to be in between the S1/2(F = 1) → P3/2(F ′ = 1) and the S1/2(F =

1) → P3/2(F ′ = 2) transitions in order to remove any remaining population in the

dark state. The exact polarization of the laser is not critical as long as it is not purely

σ+ (or σ−) polarized. Preparing the ions in the S1/2(F = 0,mF = 0) state with a

60µW beam focused to a 20µm waist typically takes about 1µs (see section 2.3 for

the laser setup).

Assuming su�cient time is always given to the optical pumping process, the ini-

tialized state S1/2(F = 0,mF = 0) still maintain a small probability of coupling

o�-resonantly to the P3/2(F = 1) states and decaying to a S1/2(F = 1) state through

spontaneous emission. In the time for one scatter from the S1/2(F = 1) to the

P3/2(F ′ = 2) state, the probability of the S1/2(F = 0,mF = 0) state leaking to the

S1/2(F = 1) state from undesired scattering is approximately the square of the de-

tuning ratio (400MHz/14.1GHz)2 = 8 × 10−4 . This error is su�ciently small as to

not be a signi�cant contributor to the �delity of qubit measurements or operations.

2.2.2. Detecting the Qubit State. In quantum computation, a qubit can be

in a superposition of both |0〉 and |1〉 states and/or be entangled with the state of

other qubits while quantum operations are performed. However, the results of the

computation can be obtained by the user only through measurements, which collapse

the qubit into a |0〉 or |1〉 state and potentially alter the state of the entangled system.
In the Cd 111 system, the state of an ion can be detected by applying a σ−-

polarized radiation resonant with the cycling transition S1/2(F = 1) → P3/2(F = 2)
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and collecting the �uorescence. The |1〉 state is optically pumped to the S1/2(F =

1,mF = −1) state and continuously cycled and scattered from the P3/2(F = 2,mF =

2) state. Since the other qubit state is far detuned from the only available scattering

channel S1/2(F = 0) → P3/2(F = 1) (by 13.7GHz/60MHz=228 linewidths), the ions

in this state remain dark. A photomultiplier tube (PMT) or a camera collects the

emitted photons for a certain amount of time. If the photon count exceeds a certain

threshold, the ion is determined to be in one state. Otherwise the ion is determined

to be in the other state.

The collection rate is countered by several error mechanisms. First, the dark

state can scatter o�-resonantly via the P3/2(F = 1,mF = −1) state, resulting in large

number of scatters after the ion decays into the cycling transition. Second, the bright

state can also scatter o�-resonantly via the P3/2(F = 1,mF = −1) state and decay

into the dark state. The probability of these errors occuring increases with intensity,

as the o�-resonant scatter rate increases disproportionately with intensity (a direct

result of eq 2.1.8, a phenomenon known as power broadening). Hence the intensity

is kept at below saturation intensity, where power broadening is less pronounced.

These errors are also more likely to occur as the duration of illumination increases.

Therefore, the photon collection time is a balance between the errors due to photon

statistics (the longer the better) and the errors induced by o�-resonant scattering (the

shorter the better). The actual light level and photon collection time is determined

experimentally (see section 2.4.2).

2.3. Lasers and Imaging System

So far the discussion has involved a di�erent laser frequency near 214.5nm for each

individual task such as Doppler cooling, qubit initialization, and qubit detection. In

this section, we will discuss in detail the laser system that generates a tunable 214.5nm

ultraviolet (UV) radiation, methods to generate di�erent frequencies required, and

locking the laser to a known molecular transition.

2.3.1. Ti:Sapphire Laser. The source of the excitation laser is a Coherent

MBR-110 continuous wave (cw) Ti:Sapphire laser pumped by a 10.5W frequency

doubled Nd:YAG laser at 532nm (either a Spectra-Physics Millennia Pro or a Co-

herent Verdi-V10). Figure 2.3.2 shows the schematic of the bow-tie cavity of the

MBR-110. The frequency of the laser can be tuned using a birefringent �lter and an

etalon inside the cavity. An external reference cavity stabilizes the laser and allows

smooth tuning of the frequency. The reference cavity also accepts an external voltage

control for further stabilization of the laser. The Ti:Sapphire laser typically generates

1.5W at 858.0265nm.
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Figure 2.3.1. Schematic of the laser system for detecting Cd+ ions.
A Ti:Sapphire laser pumped by a 10W Nd:YAG laser produces 1.5W of
infrared radiation at 858nm. The �eld is frequency doubled by an LBO
crystal inside a cavity and subsequently frequency doubled again by a
BBO crystal inside another cavity. The resulting 15mW of 214.5nm
radiation excites the S1/2 to P3/2 transition in the cadmium ions in the
trap, and the �uorescence is collected by imaging optics and captured
by the camera or PMT. A feedback signal locks the laser to a known
tellurium atomic resonance to within a 1MHz bandwidth.

2.3.2. Frequency Doublers. The output of the Ti:Sapphire laser is converted

to 214.5nm UV light through two stages of frequency doubling. A WaveTrain cw

frequency doubler from Spectra-Physics converts the infrared (IR) to a 429nm blue

light using a LBO crystal inside a build-up cavity. An optical isolator (IO-3G-852-

HP by Optics for Research) sits between the Ti:Sapphire laser and the LBO cavity to

prevent feedback from the cavity re�ection. The LBO cavity outputs 300mW from a

1.4W input, with conversion e�ciency of 20%, and the output is frequency doubled

again by another WaveTrain frequency doubler containing a BBO crystal in a build-

up cavity to produce the 214.5nm radiation. The BBO can output 10mW of UV

from a 250mW input, with conversion e�ciency of 4%. However, the BBO crystal

is hydrophilic and can easily be damaged by the blue and UV light. Dry oxygen

is constantly �owing through the cavity to preserve the quality of the surface and

lengthen the lifetime of the BBO crystal, and adjustment of the crystal and cavity is

required on a daily to weekly basis as the crystal acquires defects.

2.3.3. frequency lock with a Te2 vapor cell. Standard molecular references

for calibrating tunable lasers are 127I2 (resonances in the 500-675nm range) [29] and
130Te2 (resonances in the 420nm-540nm range) [30]. In this case 130Te2 is more ap-

propriate since an absorption line can be found near 429nm, or twice the 111Cd+ reso-

nance for the S1/2 to P3/2 transition. Doppler-free saturated-absorption spectroscopy
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Figure 2.3.2. Schematic diagram of the MBR-110 Ti:Sapphire laser
(from Coherent Inc). The bowtie cavity consists of 4 mirrors M1-M4,
and resonance is tuned using the birefringent �lter (5) and the etalon
mounted on a galvonometer (14). The output of the laser is partially
de�ected to the temperature controlled Fabry-Perot reference cavity
(12), and the re�ected signal detected by the photodiodes (8) is used
to lock the laser (a piezo behind mirror M3 allow the electronics to
control the cavity). The reference cavity can be tuned from the front
panel or controlled by an external scan signal. Additional Doppler-free
saturated absorption spectroscopy on tellurium provides feedback for
the reference cavity and locks the MBR-110 to within 1MHz bandwidth
for the detection beam (see section 2.3.3 ).

is used to observe the reference line and the reference cavity of the MBR-110 is locked

to this reference line to prevent long term drifts due to temperature or mechanical

vibrations.

The 130Te2 vapor cell obtained from Opthos Instruments Inc is placed inside an

enclosed 2-1/2� vacuum nipple with optical access on both ends and heated by a tape

heater to near 500oC to obtain proper vapor pressure of Te. The quartz cylindrical

cell is 25mm in diameter and 10cm in length, and is wrapped in a layer of ceramic

�ber insulation to avoid large temperature gradients from direct contact with the

heating tape. The temperature is controlled by a temperature servo with feedback

from a thermal couple attached to the insulation near the cell. The bundle is then

further insulated with heavy ceramic �ber layers both inside and outside the stainless

holder to maintain consistent temperature around the cell.

At 500oC, the absorption line is Doppler broadened to several GHz, which allows

too large of a frequency drift for the Ti:Sapphire laser. Therefore a pump-probe

experiment is setup to remove the Doppler e�ect and lock the laser to within the

much narrower natural molecular linewidth. The experiment apparatus is shown
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Figure 2.3.3. Setup for saturated absorption spectroscopy of tel-
lurium. A ∼1mW pump beam and a weaker, counter-propagating
50µW probe beam overlaps inside a tellurium vapor cell. As the fre-
quency of the laser is scanned, each beam excites a di�erent velocity
group whose Doppler-shifted frequency is resonant with the excitation
frequency of the ions. At a certain laser frequency where both beams
are resonant with the same velocity group, the pump beam saturates
the transition, resulting in a decrease in the absorption of the probe
beam. The transmission of the probe beam is monitored by a photode-
tector (New Focus model 2007) as the probe beam is being frequency
modulated. A lock-in ampli�er (model SR510 by Stanford Research
Systems) mixes the detected signal with the frequency modulation sig-
nal (with a low-pass �lter typically set to a 3ms time constant), and
an integrater circuit locks the Ti:Sapphire laser source to the resulting
error signal. A double pass AOM frequency shifts the laser by 1.8GHz
before entering the tellurium setup to bridge the frequency di�erence
between the desired transition and the nearest tellurium transition.

schematically in Fig 2.3.3. Approximately 10 mW of optical power is diverted

from the 429nm beam and passes through a 894MHz AOM (model TEF-1000-300-

.429 from Brimrose Corp) twice to provide the appropriate frequency o�set (1.8GHz)

between the S1/2 to P3/2 transition in 111Cd+ and the tellurium absorption line. The

beam is then split into a pump (∼ 2mW), a probe (∼ 300µW), and a reference beam

(∼ 300µW). The probe and the reference beams enter the vapor cell from the same

direction, while the pump beam travels in the opposite direction while overlapping the

probe beam. When the �eld is o�-resonant, the pump and probe �elds are absorbed
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Figure 2.3.4. Circuit diagram for the servo lock in the tellurium
setup. The input of the circuit is the error signal from the lock-in
ampli�er, and the acquire switch closes the circuit for an inverting am-
pli�er. The lock switch converts the circuit to an integrator, with the
gain controlled by a 10kΩ potentiometer. The output is sent to the
external lock on the MBR-110. The bandwidth of the feedback system
is limited by the bandwidth of the lock-in ampli�er, typically between
10-100Hz.
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Figure 2.3.5. Circuit diagram for laser frequency sweep and o�set.
To scan the MBR-110 for the tellurium absorption line, a 20kHz sweep
signal is sent to the external scan input on the laser control box. The
output of the lock-in ampli�er shows a dispersion shape as the frequency
of the laser is ramped, pinpointing the tellurium absorption line, as
shown in �gure 2.3.6. If the frequency of the laser is too far from the
tellurium absorption resonance, an o�set knob (5k potentiometer) in
the circuit is used to bring the laser closer to resonance. The laser
must be on the tellurium absorption resonance (within the peak and
valley of the dispersion shape signal) when the lock is acquired.

by di�erent velocity groups, resulting in the probe and the reference beams having

the same optical attenuation across the length of the vapor cell. When the �eld is

resonant with the tellurium absorption line, then the pump beam saturates the zero
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velocity group of molecules, allowing the probe beam to pass through the vapor cell

with very low attenuation, while the reference beam continues to be absorbed by

the molecules in its path. The optical power of the probe and the reference beams

are measured upon exiting the vapor cell, and the di�erence between the two signals

clearly presents the Doppler-free pro�le of the absorption lineshape.

To use this resonance signal in a feedback system involving the source laser, the

pump beam is frequency modulated to provide a lock-in signal. An acousto-optic

modulator is driven by a 80MHz signal from a voltage-controlled oscillator (VCO).

The voltage control is modulated at 20kHz with amplitude that varies the output

frequency by 2MHz. When the frequency of the �eld is on the slope of resonance,

the reference-subtracted probe signal oscillates with the frequency modulation, and

the output can be mixed with the source to generate an error signal. As the laser

frequency is scanned, the error signal shows a dispersion-like shape as shown in Fig

2.3.6. This signal can be used in a feedback loop that restores the error signal to

the zero-crossing point, corresponding to the resonant frequency of the tellurium

absorption feature. The feedback loop uses the external scan input on the MBR-110.

The external scan input accepts a signal between 0 to 10V, which scans the reference

cavity within a range corresponding to a scan bandwidth (typically set to 10GHz) in

the Ti:Sapphire laser.

2.3.4. generating multiple frequencies. Starting with the 214.5nm laser locked

to the tellurium reference, the di�erent frequency �elds required can be generated us-

ing various types of modulators. As shown in �g 2.3.7, the resonant frequency of the

S1/2(F = 1) → P3/2(F ′ = 2) transition is reached by up-shifting the frequency of

the laser by 215MHz with an acousto-optic modulator (AOM). This also determines

the frequency shift for the beam directed towards the tellurium lock, which must be

1.748GHz (or double-pass through a 894MHz AOM plus a -40MHz shift due to the

pump beam AOM shift) below the laser's frequency. For Doppler cooling, a 185MHz

modulation frequency is sent to the same AOM used for the resonant detection beam,

which red-detunes the frequency by half a linewidth. The optical pumping beam used

for initializing the qubit needs to be between the S1/2(F = 1) → P3/2(F = 1) and

S1/2(F = 1)→ P3/2(F = 2) resonances, so the zero-th order unshifted beam from the

detection AOM is double-passed through a 450MHz AOM, resulting in a frequency

685MHz above the S1/2(F = 1)→ P3/2(F = 2) resonance.

Since the 14.5GHz ground state hyper�ne splitting is much larger than the ∼
800MHz P3/2 excited state hyper�ne splitting, the ion can be trapped in the S1/2(F =

0) hyper�ne state that is not resonantly coupled to the excited state by the laser
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Figure 2.3.6. Tellurium absorption lock-in error signal. The laser fre-
quency is sweeped using a 2V peak to peak modulation at 2Hz applied
to the external scan input of the MBR-110, scanning a range of 20%
(2V out of 10V) of the 5GHz total bandwidth. The oscilloscope trace
of the error signal is plotted, with the x-axis calibrated to the frequency
sweep. The data show a linewidth of 13MHz. To lock the laser to the
tellurium resonance, the laser is tuned to within the maximum and the
minimum of the loop and a servo loop is activated to keep the error
signal at zero-crossing. The noise on the error signal when the servo is
active is less than 10% of the peak to peak amplitude di�erence, from
which an upper limit on the bandwidth of the laser can be inferred to
be <1MHz at 429nm.

during Doppler cooling. To avoid this population trapping, a frequency 13.7GHz

detuned from the laser is added to the �eld using an electro-optic modulator (EOM).

2.3.5. Acousto-optic modulators (AOM). In addition to shifting the fre-

quency of the incident �eld, acousto-optic modulators also act as switches for the

optical beams. They operate by launching a standing wave with frequency ωrf inside

the crystal, causing a periodic change in the index of refraction. An incident �eld

at frequency ωL passing through this periodic medium Bragg di�racts with the n-th

order di�raction carrying a frequency ωL + nωrf . Usually, the ± �rst order is used,

and the incident angle is tuned to maximize the optical power in the desired order.

When the modulating rf signal is disconnected from the AOM, the Bragg di�raction

disappears and the n-th order beams are switched o� for n 6= 0. These AOMs (model

QZF-210-40-214) are specially made by Brimrose Corp with anti-re�ection(AR) coat-

ing speci�cally for the 214nm wavelength on a fused silica substrate. The AOMs have
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Figure 2.3.7. Relative frequencies for detection, initialization, and
Doppler cooling. The laser is locked to the tellurium reference at
215MHz below the S1/2(F = 1) ↔ P3/2(F = 2) resonance, as in-
dicated by the dashed line. An AOM operating at 215MHz serves
as a beam switch and bridges the frequency gap to resonance. The
same AOM modulating at 185MHz generates a red detuned �eld that
Doppler cools the ions. And an EOM phase modulating at 6.8GHz
can prevent population trapping in the S1/2(F = 0) state with the
second modulation sideband of the resulting �eld. For initialization,
a separate double pass AOM operating at 450MHz can couple to the
S1/2(F = 1)↔ P3/2(F = 1) transition and optically pump the ions into
the S1/2(F = 0) state.

a bandwidth of 40MHz centered around 210MHz, with greater than 50% di�raction

e�ciency. However, the beam focusing to ∼50µm is required for high di�raction ef-

�ciency, and we have observed that the optical transmission degrades over time (on

the order of a year), probably due to damage to the AR coating from the focused UV

laser. More recently acquired AOMs made by IntraAction (model ASM-2102LA61)

are designed for a collimated beam which should prevent similar problems, though

there has been insu�cient time to observe long term trends on these models.

2.3.6. electro-optic modulators (EOM). Since no high frequency EOM for

214.5nm light is available, a New Focus EOM (model 4851) designed for 429nm light

modulating at 6.8GHz is placed in between the LBO cavity and BBO cavity. The

BBO cavity is tuned to match its free spectral range to one quarter of the 6.8GHz so all
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sidebands from the EOM can resonate in the cavity. The frequency doubled/summed

�eld produced by the BBO then contains a frequency component 13.6GHz detuned

from the carrier, and can e�ectively depopulate the S1/2(F = 0) state. (For cavity

modi�cation, see appendix B.)

2.3.7. Imaging System. Fluorescence from the ions is collected by a 1 inch

objective lens outside the vacuum chamber, and a second set of lenses images the

ions onto a camera, with a total magni�cation of approximately 200. The cameras

are UV sensitive, and two di�erent models have been used in the experiments. The

�rst is a Quantar Technology single-photon imaging detector system (model 2601B).

The detector has capability of single-photon counting like a photomultiplier but also

is sensitive to the xy position. Its 23mm circular active area is sensitive from below

180nm to beyond 900nm. The other camera is a Princeton Instrument PI-MAX

intensi�ed CCD camera. The 512x512 pixel array has its drawbacks: slow image

download time on the order of 100ms and large read noise, although the quantum

e�ciency (∼2%) is slightly better than the Quantar detector (<1%). A third option

is a Hamamatsu H6240-01 photomultiplier tube. While it is not position sensitive,

the PMT has the highest quantum e�ciency (∼ 20%) and conveniently outputs a

TTL pulse with a 35ns resolution, which, as explained in later sections, is perfect for

detecting the state of a single ion. For an over-saturated ion �uorescing at γ/2 =

2π × 30MHz, the photon count rate on the PMT shows 650kHz, giving a collection

e�ciency of 2% for the entire imaging setup using the PMT.

2.4. Experiment Setup

2.4.1. Generating control pulse sequences. The main control of the exper-

iment is a computer running LabView software. A National Instrument 6534 PCI

card outputs a 32-bit TTL signal, with each bit controlling an rf switch. Each rf

switch connects a frequency generator/synthesizer to an actual optical modulator in

the experiment. Some rf switches also functions as multiplexers, where the TTL signal

determines which one of the two input signals is sent to a particular modulator. An

example is the two frequencies that are multiplexed to the same AOM that switches

the beam between resonant detection and Doppler cooling. A manual override is also

built into the rf switches for diagnostic purposes.

Typical pulse sequences have the following format: 1) a Doppler cooling pulse is

�rst turned on for 1 to 2 milliseconds, 2) an optical pumping pulse is turned on to

initialize the ion in the S1/2(F = 0,mF = 0) state, 3) some pulse sequence tailored

speci�cally for the particular experiment, and 4) a pulse of detection laser and collect

spontaneous emitted photons. Data in the form of photon counts from the PMT
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Figure 2.4.1. General experiment pulse sequence. The ions are
Doppler-cooled for ∼ 1ms and then initialized to the ↑ state before
each experiment. Then a sequence of pulses are applied depending
on the speci�c experiment that is being performed, and the state of
the qubits are measured at the end. Each line shows the TTL signal
controlling the corresponding rf switch.

during the detection cycle of the experiment is received by a National Instrument 6602

PCI counter card. One of the 32 digital channels from the output of the 6534 pulser

card provides the appropriate gate for counting the photons from the qubit detection

cycle at the end of the experiment, and photons scattered during the cooling cycle or

during the experiment are ignored by the counter. The photon count from each gate

pulse is stored in a bu�er on the counter card, and the software waits until the user-

speci�ed number of experiments have been performed before downloading the bu�er.

This improves the duty cycle of the experiment since downloading information from

hardware is time consuming, possibly taking up to milliseconds per download. The

counter card is also used to trigger the 6534 pulser card at the beginning of each

experiment to ensure the counter is armed before each experiment starts.

The downloaded data are �rst converted into a histogram indicating how many

trials resulted in a given number of photons collected. The average number of photons

can be extracted from the histogram and plotted on a graph. Alternatively, the

histogram can be separated into two distributions, one for the state with many photon

counts and one for the state with zero photon counts. A discriminator threshold can

be set from the dark/bright state photon statistics, and the probability of the ion

being in the bright state during the detection phase is plotted in place of the average

number of photons. This probability is insensitive to the photon number �uctuations
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that appear when the average number of photons is nonzero, but the probability is

still sensitive to the quantum statistical �uctuations that may be associated with the

state of the ion. For example, an ion in the state |1〉 �uorescing with an average

photon count of X averaging over N trials will have photon number �uctuations√
X/N and no quantum �uctuation, and the discriminator can remove this photon

number �uctuation. An ion in the state |0〉+ |1〉 is collapsed into a bright state or a

dark state in the measurement with equal probability and therefore has a quantum

�uctuation 1/
√
N in N trials in addition to the photon number �uctuation, which can

not be removed by the discriminating between the dark and bright photon counts.

2.4.2. Qubit detection �delity. The qubit detection setup an be calibrated

using a very simple experiment. First we run the pulse sequence shown in �g 2.4.1

without any additional experiment pulses. The ion is prepared in the |0〉 state and
immediately measured. The result is shown in the top graph in �g 2.4.2. Then

we run the pulse sequence again but this time without the initialization step. The

Doppler cooling pulse should pump the ion to the |F = 1,mF = −1〉 state due to its
σ− polarization (in fact, the polarization is set by tuning the quarter-wave plate while

using the photon number distribution here as a real-time feedback). Therefore the

ion should �uoresce during detection, and the photon number distribution is plotted

in the bottom graph in �g 2.4.2. The distributions are clearly distinct, with the dark

state having average photon number of almost 0, and the bright state having an av-

erage photon number of 12. The dark state has occasionally one or two counts due to

background light or PMT dark counts (not temperature cooled) and higher number

counts due to o�-resonant pumping or imperfect preparation. The bright state has

occasionally a zero count due to the tail end of the poisson distribution, imperfect

polarization, or error in the preparation of the state. The errors for each discrimina-

tor threshold setting are determined by calculating the percentage in the dark state

distribution that are above the threshold, and the percentage in the bright state dis-

tribution that are at or below the threshold. The optimal value for the threshold

(minimum detection error) is where the error from the dark state distribution and

the error from the bright state distribution are optimally matched. A systematic

study of the detection �delity at various intensities and gate pulse lengths showed

that the highest detection �delity of 99.7% occurs when the bright state produces an

average photon count of 12 over a 200 microsecond detection window (at intensity

I = 0.10Isat).

Ideally, a fully functional quantum computer for trapped ions should contain mul-

tiple trapping zones where qubits in the internal states of the ions can be stored or

processed. When a measurement needs to be performed on one ion, it is transported
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Figure 2.4.2. Histogram of photon counts from a single ion. Photons
are collected by the PMT from a single ion in the | ↑〉 dark state (top)
and the | ↓〉 bright state. The ion in the dark state emits no photons
except for the 0.1% chance of o�-resonant pumping into the bright state,
and the statistics with one or two collected photons shown in the graph
are likely due to background or dark counts on the PMT. The average
number of collected photons from an ion in the bright state is 12, and
the photon number distribution corresponds to a poisson distribution.
From this data, a discriminator threshold is set at 2, below which the
ion is considered to be collapsed into the dark state and otherwise
considered to be collapsed into the bright state. The plots here show a
0.3% error in determining the state of the ion accurately using the
discriminator.

to the �measurement zone� and its internal state can be measured using the procedure

described above. However, one can imagine scenarios where it would be e�cient to
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Figure 2.4.3. Poisson distribution of photon numbers for two ions
(calculated). The distributions are for a mean of 0, 26, and 52, corre-
sponding to two dark ions, exactly one bright ion and one dark ion, and
two bright ions in the trap respectively. The distribution for two dark
ions has no overlap with the other distributions, but the distributions
for a single bright ion and two bright ions overlap, resulting in errors
in determining the state of the ions.

Figure 2.4.4. Histogram of photon counts from two ions. The ions are
prepared in an equal superposition of | ↑〉 dark state and | ↓〉 bright state
before detection. The distributions for zero, one, and two bright ions
are distinct, with average photon numbers of 0, 26, and 52 respectively.
The single bright ion distribution accounts for half of the probability
distribution, and the distributions for two dark ions and two bright ions
each account for 25% of the total probability (normalized to 1).
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Figure 2.4.5. Detection error for two ions (calculated from the-
ory). The corresponding overlapping poisson distributions are centered
around a mean of 26 and 52 photon counts, corresponding to exactly
one ion in the bright state and both ions in the bright state. The errors
for each case is plotted against the discriminator threshold value. The
intersect of the two plots at threshold value 38 corresponds to an overall
detection error of 1.8%. This statistical error is approximately equal
to the contribution due to o�-resonant pumping an ion from the dark
state to the bright state.

Figure 2.4.6. Detecting the state of two qubits with an intensi�ed
CCD camera. The images correspond to the states | ↑↑〉, | ↑↓〉, | ↓↑〉,
and | ↓↓〉. Using the CCD camera, the states and can be di�erentiated,
which can not be done using the PMT. The quantum e�ciency of the
CCD less than that of the PMT, but still provides a detection �delity
of ∼ 97%.
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measure more than one ion at a time. Here, the motivation originates out of exper-

imental necessity since the traps in the two-ion experiments in this thesis can only

sustain a single trapping zone.

While a PMT is the most e�ective photon collecting device (highest quantum

e�ciency) compared to the other cameras, the photons emitted from one ion is in-

distinguishable from the photons emitted from the other ion using a PMT. This is

problematic for some experiments, but certain measurements such as parity do not

require the ions to be distinguishable. For two ions, the histogram of the photons

counts shows three distributions: both ions in the dark state, both ions in the bright

state, and exactly one ion in the bright state. While the single bright and the double

bright distributions are distinct from the double dark distribution, the two poissonian

distributions overlap since their widths are
√
X and

√
2X respectively for an average

photon count of X per bright ion. Typical detection condition has an average photon

count of 26 for the single bright ion and an average photon count of 52 for two bright

ions. The poisson distributions of the two ion �uorescence are plotted in �gure 2.4.3,

and the actual photon distribution of two ions in equal superposition of bright and

dark states shown in �gure 2.4.4. The error of determining the number of bright ions

using a discriminator is theoretically 1.8%, as shown in �gure 2.4.5.

Figure 2.4.6 shows the �uorescence detected by the CCD camera that allows us

to di�erentiate the two ions during detection. One drawback of the CCD camera is

the data download time can be on the order of 15ms, which can signi�cantly slow

the experiment repetition rate. The imager also has a lower quantum e�ciency than

the PMT and therefore requires higher �eld intensity to distinguish the bright state

from the background pedestal. For two ions, the detection �delity is about 97%.
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CHAPTER 3

Single Ion Coherent Operations

3.1. Notation

Implementing a quantum computer in a physical system requires the melding of

di�erent �elds, each having its own language and notations. From the computer

science perspective, the qubit is a system that can be in an arbitrary superposition

of |0〉 and |1〉. However, the qubit can also be (and often is) described in terms of a

spin-1/2 system, where a rich knowledge base already exists and the interactions are

well known in atomic physics. In reality, any two-level quantum system can serve as

a qubit, with a pseudo-spin label assigned to each one of the levels. In 111Cd+ ion,

the ground state hyper�ne levels
∣∣S1/2, F = 0,mF = 0

〉
and

∣∣S1/2, F = 1,mF = 0
〉
are

selected as the qubit levels. In this thesis, the following de�nition is used to translate

between the di�erent sets of notation:

|0〉 = |↑〉 =
∣∣S1/2, F = 0,mF = 0

〉
|1〉 = |↓〉 =

∣∣S1/2, F = 1,mF = 0
〉
.

In the �eld of quantum information, schemes for logic gates in one system often

has direct analogies in other systems, though di�erent physical interactions may be

required to generate the desired Hamiltonian. For this thesis, the mathematical

descriptions are presented in terms of a spin-1/2 system that physicists are familiar

with, and can be applied to many other physical systems for quantum computation.

In the experiments, the theories are transcribed into physical interactions with the

ions, with results that are actual observables, or more speci�cally, the probability of

measuring a qubit in a certain state.

In a system of trapped ions, the steady-state Hamiltonian consists of the internal

energy of the qubits and the collective motion of the ions in the trapping potential.

Each qubit is treated as a �ctitious spin-1/2 particle in an e�ective constant magnetic

�eld along a quantization axis (z). The e�ective magnetic �eld accounts for the

natural energy splitting ~ω0 between the spin levels |↑〉 and |↓〉, though the actual

cause of the energy splitting in a real system may be due to some other mechanism

(for example, hyper�ne interaction in cadmium ion qubits). For simplicity, we restrict

the ion's motion along one dimension (call it zT ), though in special cases it may be
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desirable to include motion along other dimensions. For N ions in the trap, there are

N collective vibrational modes, and the complete steady-state Hamiltonian can be

written as

(3.1.1) Ĥ0 =
N∑
i=1

~ω0

2
σ̂(i)
z +

N∑
ν=1

~ων â†ν âν ,

where i is the index for the N ions available in the trap and the Pauli spin matrix

σ
(i)
z evaluates the energy of the i-th qubit, ων is the frequency of collective vibration

for the normal mode indexed by ν, and â†ν and âν are the creation and annihilation

operators respectively for the mode ν. This assumes the displacement of each ion

from its equilibrium position is small compared to ion spacing so that the Coulomb

interaction can be approximated by its lowest order (quadratic) term [31]. Typically,

the ions are strongly bound in the transverse xT and yT directions but weakly bound

in the zT direction (note that trap axes xT , yT , and zT of the harmonic oscillator

potential need not be the same as the quantization axes x, y, and z) . Further, logic

gates involving one or two qubits are su�cient for universal quantum computing,

therefore we will only consider interactions with N ≤ 2 ions.

As mentioned previously, the harmonic oscillator potential is used as a quantum

databus for transferring and processing information between ions. Although many

entangling schemes, including the original Cirac and Zoller proposal, are designed

speci�cally for ion trap systems using this feature, the Hamiltonian in eq 3.1.1 ap-

pears naturally (or could be engineered) in many other physical systems as well. For

example, the Hamiltonian is identical in cavity QED experiments [32], where the

internal state of atoms interacts with the photons in the quantized cavity modes de-

scribed by a harmonic oscillator. This is similarly true for superconducting qubits

coupled by the quantized microwave cavity mode of a transmission line [33]. Some of

these systems such as cavity QED have been well studied and provide great insights

for understanding other analogous systems.

The rest of this chapter explores ways to manuver this pseudo-spin-1/2 system to

perform arbitrary single qubit rotations, and also to couple the spin to the harmonic

oscillator databus. In later chapters, the same principles are used to produce more

complicated interactions with the harmonic oscillator to perform logic operations on

more than one qubit.

3.2. Single Qubit Rotation

This section lays out the most general form for the type of interactions that can

lead to coupling between two spin states. Here the system is simpli�ed to only one

ion in the trap with one mode of vibration determined by the trap parameters. The
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Hamiltonian contains two terms

(3.2.1) H0 =
~ω0

2
σ̂z + ~ω1â

†â.

The state of the system is represented by

(3.2.2) |Ψ(t)〉 =
∞∑
n=1

(a↑,n(t) |↑〉+ a↓,n(t) |↓〉) |n〉

where |n〉 denotes the eigenstates of the harmonic oscillator with eigenvalue n~ω1.

In the spin-1/2 analogy, the two spin levels can be coupled using a magnetic dipole

coupling

(3.2.3) Ĥ1 = −µ ·B

with magnetic �eld B(r, t) = Bxcos(kr−ωt+φ)x. In an actual system, the coupling

mechanism need not be a magnetic dipole interaction, as long as the interaction yields

a Hamiltonian of the form

(3.2.4) H1 =
~Ω

2

(
σ+e

i(kr−ωt+φ) + σ−e
−i(kr−ωt+φ)

)
.

Here Ω = −µBBx/(2~) is call the Rabi frequency. The other terms in eq 3.2.3 will be

removed in the Rotating Wave Approximation (RWA) and are therefore unnecessary.

To understand the evolution of the system under this interaction, �rst consider

a special case where the magnetic �eld propagates perpendicular to the direction of

the harmonic potential, i.e. k · zT = 0. Since the photons have no momentum in the

zT direction, the ion can not couple to the harmonic oscillator via this interaction

(see Appendix A for details). Therefore the factor eik·r contributes at most a phase

factor eikr0 , which is assumed to be included phase φ. The interaction Hamiltonian

HI = eiH0t/~H1e
−iH0t/~ in the rotating frame of the qubit is (applying the RWA)

(3.2.5) HI =
~Ω

2

(
σ+e

−i(δωt+φ) + σ−e
i(δωt+φ)

)
,

where δω = ω − ω0 is the �eld detuning from spin resonance. The solution to this

Rabi two-level problem can be found in many textbooks [34] :

(3.2.6) ċ↑,n = −iΩ
2
e−i((δω)t+φ)c↓,n

ċ↓,n = −Ω

2
ei((δω)t+φ)c↑,n
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where cm,n(t) are the amplitudes of the corresponding levels |m〉 |n〉 for the qubit state
in the rotating frame

(3.2.7) |ψ〉 =
∞∑
n=1

(
c↑,n(t)e−iω0t/2 |↑〉+ c↓,n(t)eiω0t/2 |↓〉

)
einω1t |n〉 .

When the �eld is on resonance, the time-evolution operator U(t) which transforms the

initial state to the �nal state by |ψ(t)〉 = Û(t) |ψ(0)〉 can be written in the {c↑,n, c↓,n}
basis as

(3.2.8) Û(t) =

(
cos
(

Ωt
2

)
−ie−iφsin

(
Ωt
2

)
−ieiφsin

(
Ωt
2

)
cos
(

Ωt
2

) )
= R(Ωt, φ).

The matrix R(Ωt, φ) represents a rotation on the Bloch sphere by angle θ = Ωt around

a torque vector pointing in the direction cos(φ)x + sin(φ)y on the equatorial plane.

A universal quantum computer must be able to rotate a single qubit by any

given angle on the Bloch sphere around any axis. Here we just demonstrated rotation

around any vector on the xy-plane. But what about rotation around an axis not in the

xy-plane? From Euler's rotation theorem we know that an arbitrary rotation in three-

dimensions can be parameterized by three independent variables called the Euler

angles, each rotating around an orthogonal axis. The time evolution operator already

accounts for rotation around two of the three axis: Rx(θ) = R(θ, 0) for rotation around

the x-axis, and Ry(θ) = R(θ, φ) for rotation around the y-axis. Rotations around the

z-axis can be performed using a composite sequency of rotation along the x-axis and

the y-axis: Rz(θ) = Rx (π/2)Ry (θ)Rx (−π/2). The rotation around the z-axis is

equivalent to applying a phase shift θ to the qubit. Therefore, the Hamiltonian in eq

3.2.5 is su�cient for arbitrary single qubit rotation given that the user has control of

the phase and the duration of interaction.

3.3. Coupling Spin to Motion

However, a mechanism to connect the internal state to the quantum databus for

entangling operations is still needed. Now consider the more general case where the

�eld couples to the harmonic oscillator. When the wave vector of the �eld has a

component in the harmonic oscillator potential, then the k · zT does not equal zero.

The position operator ẑT = z0

(
â+ â†

)
~zT (where ~zT is the unit vector in the zT

direction) couples to the harmonic oscillator, and the interaction Hamiltonian now

becomes

(3.3.1) HI =
~Ω

2

(
σ+exp

{
i
[
η
(
âe−iω1t + â†eiω1t

)
− (δω)t− φ

]}
+ h.c.

)
.
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where η = kzz0 is the Lamb-Dicke parameter, with kz = k · ~zT being the component

of the wave vector in the zT direction and z0 =
√

~/(2Mω1) being the position

spread of the ion in the ground state. In the resolved-sideband limit, where Ω� ω1,

speci�c vibrational levels |↑〉 |n′〉 ↔ |↓〉 |n〉 can be coupled by tuning the frequency

δω = (n−n′)ω1 +δ to account for the energy di�erence between the vibrational levels

n and n′ (and keeping the detuning δ � ω1 small). The other levels can then be

eliminated, and the coe�cients of the two coupled levels evolve as

(3.3.2) ċ↑,n′ = −Dn′,n
Ω

2
e−i(δt+φ)c↓,n

ċ↓,n = −Dn′,n
Ω

2
ei(δt+φ)c↑,n′

where Dn′,n is the Debye-Waller factor de�ned by

(3.3.3) Dn′,n =
∣∣∣〈n| eiη(a+a†) |n′〉

∣∣∣
= e−η

2/2

(
n<!

n>!

)1/2

η|n
′−n|L

|n′−n|
n< (η2),

where n<(n>) is the lesser (greater) of n
′ and n, and Lαn is the generalized Laguerre

polynomial (see Appendix A).

Eq 3.3.2 is analogous to eq 3.2.6 for the two-level Rabi �opping, and the solution is

the same, except replacing the two levels with |↑〉 |n′〉 and |↓〉 |n〉. Note that the same
�eld can also couple |↑〉 |n′ + 1〉 and |↓〉 |n+ 1〉. In fact, a �eld tuned to δω = (∆n)ω1

will simultaneously couple any two levels |↑〉 |n〉 and |↓〉 |n+ ∆n〉. However, the

Debye-Waller factor Dn+∆n,n is di�erent for each one of these transitions, and the

population of each pair of coupled levels oscillates at Rabi frequency

(3.3.4) Ωn,n+∆n = Dn,n+∆nΩ0.

If the initial state is not in a single vibrational level, this could result in dephasing as

each vibrational level Rabi oscillates at a di�erent frequency. Sometimes a revival of

spin oscillation can be observed after the dephasing as the di�erent Rabi oscillations

become in phase again. This e�ect is noticeable when considering the e�ects of

temperature, which will be discussed in section 3.9.

3.3.1. Lamb-Dicke Limit. One of the interesting regimes to consider is when

the ion's position spread is small compared to the wavelength, i.e.
√
〈k2
z ẑ

2
T 〉 � 1.

This is called the Lamb-Dicke limit, which is a more stringent condition than saying

the Lamb-Dicke parameter η is much less than 1, since η accounts only for the ground

state, but the vibrational level distribution of the ion is included in the Lamb-Dicke
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Figure 3.4.1. Orientation of the microwave horn. The microwave
horn is the grey rectangular waveguide on the right oriented 45◦ with
respect to the trap axis and the imaging optics supported by the black
cylinder extending to the left. The quantization axis is 90◦ with respect
to the microwave horn, angled in between the imaging tube and the trap
axis (magnetic coils not visible in this picture). The copper coil on the
top of the trap and another coil in an orthogonal direction are used to
adjust the magnetic �eld so that the quantization axis is parallel to the
detection beam. The microwave horn is approximately 4cm from the
ion(s).

limit. In this limit, η2n � 1 is small and only terms up to the lowest order in η are

evaluated.

We want to consider three types of transitions here: the carrier (n′ = n), the �rst

red sideband (n′ = n−1), and the �rst blue sideband (n′ = n+1). In the Lamb-Dicke

Limit, the Debye-Waller factor is Dn,n = 1 for the carrier, Dn,n+1 = η
√
n+ 1 for the

�rst red sideband, and Dn,n−1 = η
√
n for the �rst blue sideband. The Debye-Waller

factor for the j-th order sideband scales as ηj. As η approaches zero, the sideband

strengths also diminishes to zero. This con�rms the results from the case in section

3.2 where η = 0 and therefore has no sideband coupling. In general, η
√
n needs to

be su�ciently large to retain a reasonable sideband transition strength in order to

couple to motion. Therefore, perturbation from higher order terms can sometimes

be observed. For example, we can experimentally detect the changes in the carrier

transition strength with respect to temperature, which closely follows the calculation

that includes the next order in the Debye-Waller factor: Dn,n = 1− 2η2.
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Figure 3.4.2. Rabi oscillations driven by microwaves. The frequency
of the microwave is resonant with the S1/2 ground state |F = 0,mF =
0〉 ↔ |F = 1,mF = 0〉 clock transition (top) and the |F = 0,mF =
0〉 ↔ |F = 1,mF = 1〉 transition (bottom). The horizontal axis indi-
cates the length of the microwave pulse, and the vertical axis shows the
probability of detecting the ion in the | ↓〉 state, with the ion starting
in the | ↑〉 state initially. The bottom graph shows decoherence due to
�uctuations in the magnetic �eld on the time scale of 1ms. The applied
magnetic �eld is 3.75 gauss, producing a Zeeman shift of 5.25MHz.

3.4. Microwave Transitions

Single qubit transitions in cadmium ions can be driven by microwaves via mag-

netic dipole coupling. The ground state hyper�ne qubit levels
∣∣S1/2, F = 0,mF = 0

〉
and

∣∣S1/2, F = 1,mF = 0
〉
have a net zero change in the total angular momentum

∆mF = 0, thereby requiring a π-polarized magnetic �eld for the transition according

to the dipole selection rule. In the actual experiments, an ampli�ed microwave signal

is broadcasted by a horn aimed perpendicular to the quantization axis with the polar-

ization lying parallel to the quantization axis. The trap axis (zT ) and the quantization

axis (z) form a 450 angle, and the Lamb-Dicke parameter η = kz0/
√

2 = 5× 10−6 for

a frequency of ω = 2π × 14.530GHz and a trap strength of ω1 = 2π × 1MHz. This

means the sideband strengths are weaker than the carrier transition by a factor of

10−6, making it impractical to couple to the motion using microwaves.
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Figure 3.4.2 is an example of Rabi �opping using microwaves. The ion is initialized

in the |↑〉 =
∣∣S1/2, F = 0,mF = 0

〉
state, and a pulse of microwave resonant with

the transition is turned on for time t. The probability of �nding the ion in the

|↓〉 =
∣∣S1/2, F = 1,mF = 0

〉
state oscillates at frequency Ω = 2π × 16.7kHz as t

increases, with about 1W of power applied to the horn. The amplitude of oscillation

between clock states does not decay even at �nite temperature since microwaves does

not couple to motion and the Debye-Waller factor is the same for all vibrational

levels. Commercial microwave synthesizers are also extremely stable, maintaining

phase coherence for more than 50ms, which is much longer than the experiments

require.

A drawback of this scheme, besides having nominally no coupling to the motion,

is that individual addressing of the ions is not possible since microwaves can not be

focus to the millimeter level or below. Even in traps with multiple storage regions,

the separation between ions in di�erent trap zones is still on the order of a millimeter

or less. Therefore, microwaves do not satisfy the requirement of arbitrary individual

single qubit rotation for quantum computation when there is more than one ion

present. A better method that avoids both problems is to drive stimulated Raman

transitions, which is discussed in the next section. However, qubit transitions via

microwaves is still a useful tool in the experiments for one or two qubit operations and

for diagnostic purposes. For example, a scan of the microwave frequency enables us

to pinpoint the exact energy separation of the qubit levels without Raman transitions

and without the e�ects of light shift, and also measures the Zeeman splitting of the

F = 1 triplet (with a mixed polarization).

3.5. Stimulated Raman Transitions

Stimulated Raman transition is a two photon process involving three levels: in

this case, two qubit levels |↑〉 and |↓〉 in the ground state and an excited electronic

state |e〉 having respective optical frequency spans ω̃↑,e and ω̃↓,e = ω̃↑,e + ω0. Two

optical �elds El(r) = Ẽl(r) cos(kl·r − ωlt − φl)εl with l = α, β, connect each of the

qubit levels |↑〉 and |↓〉, respectively, to state |e〉 through electric dipole operators µ↑

and µ↓ (analogous to the magnetic dipole). We assume that the optical �elds have a

di�erence frequency ωβ − ωα = ω0 + δω near the frequency splitting of the two spin

states, and are both detuned from the excited-state resonance by ∆ = ω̃↑,e − ωα, as
drawn in Figure 3.5.1.

The dipole interaction H = −µ · E can be transformed to a rotating frame at

frequency ωα in order to remove all terms varying with optical frequencies, and under

the usual optical rotating wave approximation (RWA), the interaction Hamiltonian
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Figure 3.5.1. Stimulated Raman transition via an excited state.
Fields at frequency ωα and ωβ couple the qubit levels | ↑〉 and | ↓〉
via the excited state |e〉. The �elds are detuned from the excited state
resonances ω̃↑,e and ω̃↓,e by frequency ∆.

between the �elds and the ions is

ĤI =
~g↑,α

2

(
eikα·r̂+iφα |e〉 〈↑|+ h.c.

)
(3.5.1) +

~g↓,β
2

(
eikβ ·r̂+iφβe−i(ω0+δω)t |e〉 〈↓|+ h.c.

)
+

~∆

2
|e〉 〈e| .

In this expression, the dipole coupling strengths between qubit state |m〉 = |↑〉 , |↓〉
and excited state |e〉 from laser �eld l are given by ~gm,l = −µm · εlẼl(r)/2.

When the detuning ∆ of the optical �elds from electronic resonance is much larger

than the excited state linewidth γ and the coupling strengths |gm,l|2, spontaneous
emission during the optical coupling is negligible [26] and the excited state |e〉 can
be adiabatically eliminated. Applying RWA on the microwave frequencies, we �nd

ĤI =
~Ω

2

(
ei(∆k·̂r−(δω)t+∆φ) |↑〉 〈↓|+ h.c

)
+
~χ↓
2
|↓〉 〈↓|+ ~χ↑

2
|↑〉 〈↑|(3.5.2)

where ∆k = kβ−kα and ∆φ = φβ−φα are the di�erences in the wave-vector and the
phase of the two applied �elds, Ω = g↑,αg

∗
↓,β/2∆ is the �base Rabi frequency� directly

coupling the qubit states, and χm =
(
|gm,α|2 + |gm,β|2

)
/2∆ corresponds to the light
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shift on the qubit level |m〉 by both optical �elds. In terms of spin operators,

(3.5.3) ĤI =
~Ω

2

(
σ̂+e

i(∆k·r̂−(δω)t+∆φ) + σ̂−e
−i(∆k·r̂−(δω)t+∆φ)

)
+

~χ−
2
σ̂z,

where χ− = (χ↑ − χ↓)/2 is the di�erence in the light shift on both levels. The

common light shift (χ↑ + χ↓) /2 has no real e�ect on the spin system and is removed

from the Hamiltonian. In the interaction frame of the vibrational levels, Equation

3.5.2 becomes

(3.5.4) ĤI =
~Ω

2
(σ̂+e

iη(âe−iωt+â†eiωt)e−i(δω)tei(∆kr0+∆φ) + h.c.) +
~χ−

2
σ̂z.

This interaction Hamiltonian appears to be similar to eq 3.3.1, with the phase φ

replaced by the phase di�erence ∆φ, the Lamb-Dicke parameter η = ∆kzz0, and an

extra term for the light shift [35].

3.5.1. AC Stark shift. The interaction Hamiltonian from eq 3.5.4 contains a

term that shifts the relative energy of the two qubit levels by an amount ~χ pro-

portional to the intensity of the �elds. This light shift (also called AC Stark shift)

in turn changes the resonant coupling frequency for stimulated Raman transitions.

Transforming into a new rotating frame with eiω
′
0σ̂zt/2H1e

−iω′0σ̂zt/2, the interaction

Hamiltonian becomes

(3.5.5) ĤI =
~Ω

2
(σ̂+e

iη(âe−iωt+â†eiωt)e−i(δω
′)tei(∆kr0+∆φ) + h.c.)

where δω′ = ωβ − ωα − ω′0 is the detuning from the new Stark-shifted resonance

ω′0 = ω0 +χ− in the presence of the optical �elds Eα and Eβ. This now has the same

form as eq 3.3.1, except the detuning δω is replaced by δω′ the detuning from the

Stark-shifted resonance. This interaction Hamiltonian now guides the qubit in the

Stark-shifted rotating frame, satisfying Schrödinger's equation i~
∣∣∣ψ̇(t)

〉
= ĤI |ψ(t)〉

for the coe�cients {c̃↑,n(t), c̃↓,n(t)} in

(3.5.6) |ψ(t)〉 =
∞∑
n=0

{
c̃↑,n(t)eiω

′
0t/2 |↑〉+ c̃↓,n(t)ei−ω

′
0t/2 |↓〉

}
einω1t |n〉 .

Note that this also advances the relative phase between the two qubit levels by

ei(ω
′
0−ω0)t with respect to the natural rotation frequency after the �eld has been turned

on for time t.

3.5.2. Copropogating Raman Fields. For copropagating Raman �elds, the

wave-vector di�erence ∆k is zero, as is the Lamb-Dicke parameter η. Therefore, this

interaction provides no coupling to the motion. This can be considered in terms the

momentum transfer as the ion absorbs a photon from one �eld and emits a photon

into the other �eld in the process of making the transition. If the absorbed photon
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Figure 3.5.2. Stimulated Raman transition between vibrational lev-
els. Coupling depends on the beat note of the two Raman �elds ωβ−ωα:
a) ω′0 for carrier transition, b) ω′0 − ων for the �rst red sideband tran-
sition, and c) ω′0 + ων for the �rst blue sideband transition. The qubit
frequency splitting shifts from ω0 to ω′0 due to AC Stark e�ect when
the �elds are turned on.

and the emitted photon propagate in the same direction, there is no net momentum

transfer to the ion. Similarly, if the vector di�erence ∆k is not zero but ∆k · zT = 0

has no component in the direction of oscillation, there is no coupling to the motion. In

these cases, the Raman �elds can only drive carrier transitions where the vibrational

state is unchanged (∆n = 0). When δω′ is zero, i.e. the frequency di�erence is equal

to the Stark shifted resonance ωβ−ωα = ω′0, then the Hamiltonian in eq 3.5.5 couples

the qubit states |↑, n〉 ↔ |↓, n〉 resonantly with Rabi frequency |Ω| for all n.

3.5.3. Non-copropagating Raman Fields. In the experiments, the non-copro-

pagating Raman beams form a 900 angle and are both 450 with respect to the trap

axis zT (see �gure 3.5.3). Due to the beam geometry, the wave vector di�erence

becomes ∆kz =
√

2k. The �nal result is η = 0.39/
√
ν1/MHz for a wavelength of

λ = 214.5nm, ion mass M = 111× (1.67× 10−27kg), and a trap frequency ν1 in MHz.

This is a reasonable value for driving the �rst few sideband transitions for typical

trap frequencies on the order of MHz.

3.5.4. Polarization. For the cadmium ion qubit, stimulated Raman transition

couples to the excited P states through electric dipoles. Since both qubit states must

couple to the same excited state, the available channels are restricted by the selection
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Figure 3.5.3. Diagram of non-copropagating Raman beam setup.
The Raman �elds propagate in orthogonal directions, and each beam
form a 45◦ angle with the trap axis zT . The wave vector di�erence
∆k = k2 − k1 has a component in the direction zT and therefore can
transfer momentum to the ion's vibration in that direction. ∆k also has
no component in the xT and yT directions and therefore do not couple
to transverse motion. The quantization axis provided by the applied
magnetic �eld is also 45◦ with respect to the trap axis zT , and the po-
larization of the two Raman �elds are perpendicular to each other as
shown in the diagram to maximize the transition rate.

rule, which demands the �elds to be polarized in speci�c directions. The P state has

two �ne structure manifolds with total electronic angular momentum J = 1/2 and

J = 3/2, separated by 74 THz. The only excited states that couple to both qubit levels

S1/2(F = 0,mF = 0) and S1/2(F = 1,mF = 0) are PJ(F = 1,mF = ±1) levels for

J = 1/2 and J = 3/2. Figures 3.5.4 and 3.5.5 show the Clebsch-Gordon coe�cients

for all electric dipole couplings between the S ground states and the excited P states.

Note that if the photons in both �elds have angular momentum +1 in the direction of

the quantization axis, then the �elds drive stimulated Raman transitions via PJ(F =

1,mF = 1) state. If the photons in both �elds have angular momentum −1 in the

direction of the quantization axis, then the �elds drive stimulated Raman transitions

via PJ(F = 1,mF = −1) state. Since the absorbed photon and the emitted photon

have the same angular momentum, the total angular momentum of the ion remains

unchanged ∆mF = 0.

In the experiment setup, one of the Raman �elds travels parallel to the quanti-

zation axis while the other travels perpendicular to it (along the x-axis). The latter

must be linearly polarized along the y-axis, which contains both σ+ and σ− polariza-

tion, since π-polarized light can not be used to drive transitions. The �eld parallel to

the quantization axis can be circularly polarized, but the transition rate is reduced
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Figure 3.5.4. Branching ratios of the S1/2 ↔ P1/2 transitions

by 1/
√

2 because only half the intensity (1/
√

2 of the �eld) in the other beam with

the same polarization is utilized in driving the transition. Alternatively, both beams

can be linear polarized. The Clebsch-Gordon coe�cients show that coupling through

the mF = 1 state (2/3× 1/6 for P3/2, −1/3× 1/3 for P1/2) has equal amplitude but

opposite phase compared to the coupling through the mF = −1 state (2/3×−1/6 for

P3/2, −1/3×−1/3 for P1/2). Therefore, the product of the �eld components driving

transitions via one path E+,αE
∗
+,β must have a π phase shift relative to the the prod-

uct of the �eld components driving transitions via the other path E−,αE
∗
−,β. If both
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Figure 3.5.5. Branching ratios of the S1/2 ↔ P3/2 transitions

�elds are polarized along y, then the product of the �eld components have the same

sign E+,αE
∗
+,β = E−,αE

∗
−,β and the transition amplitudes cancel each other. However,

if the �eld traveling parallel to the quantization axis is polarized along x, then the σ+

component and the σ−component have the same phase while the �eld polarized along

y have the two circular components phase shifted by π. Therefore, the �eld products

E+,αE∗+,β = −E−,αE∗−,β also have a π phase shift relative to each other, resulting

in the transition amplitudes to add. This polarization turns out to be as e�cient as

having counter-propagating beams with pure σ+ polarization of the same intensities,
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since the intensities in each σ component is exactly one half of the total intensity in

each beam, which contributes one half the coupling strength from each path. This is

true only because the coupling strength is proportional to the product of the electric

�eld rather than the product of the intensities. However, the Lamb-Dicke parameter

η at 90◦ geometry is still smaller than the counter-propagating geometry by a factor

of
√

2.

3.5.5. Spontaneous Emission. Spontaneous emission is an unavoidable source

of decoherence since the coupling between the ion and the vacuum �eld can never be

turned o�, but the spontaneous emission rate is dependent on the �eld intensity and

detuning which can be varied to our advantage. To quantify the amount of error

per Rabi cycle due to spontaneous emission, we can compare the spontaneous emis-

sion rate to the Raman transition rate. For a large detuning ∆ where (2∆/γ)2 �
(1 + s), the spontaneous emission rate can be approximated as γp = sγ3/(4∆2) where

s = I/Isat is the saturation parameter. Compared to the Raman transition rate

Ω = sγ2/∆, the ratio between the spontaneous emission rate and the Raman transi-

tion rate is γp/Ω = γ/(4∆). This means in the time to make a spin �ip, the qubit

has a γ/(2∆) chance of decaying. Therefore, the further the detuning ∆, the lower

the decoherence per Rabi cycle from spontaneous emission. However, this approxi-

mation is only valid when the detuning ∆ is much smaller than the P excited state

�ne structure splitting of 74THz and coupling to the other PJ state is negligible. If

the detuning is on the order of the �ne structure splitting, then cancellation between

couplings via the two PJ states become signi�cant and the Rabi frequency is greatly

reduced. In general, the detuning should be balanced between keeping the sponta-

neous emission rate per cycle low and maintaining a reasonable actual Rabi frequency

so that other sources of decoherence (such as laser �uctuations) can also be kept low.

In the experiments, the detuning varies from 150GHz to 12THz, with spontaneous

emission rates of 10−3 or less per Rabi cycle. However, the actual observed spon-

taneous emission rate is higher by almost an order of magnitude than the expected

values, and the reason for this di�erence remains unknown.

In a recent experiment, Ozeri et al showed that coherence between hyper�ne levels

can be preserved in the presence of spontaneous photon scattering [36]. Spontaneous

scattering is the sum of elastic Rayleigh scattering, which leaves the particle in the

same internal state, and inelastic Raman scattering, which transfers the particle to

a di�erent internal state. Therefore the coherence of a hyper�ne superposition is

preserved in the event of Rayleigh scattering, but not spontaneous Raman scattering.

In the limit where detuning is much larger than the hyper�ne splitting ∆� ωHF , the

total scattering rate decreases as 1/∆2, while Raman scattering alone scales as 1/∆4.
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The AC Stark shift of the two levels also decreases according to 1/∆2. Therefore the

number of spontaneous Raman scattered photons during a Rabi cycle is proportional

to 1/∆2 for ∆ � ωHF . This means at detunings larger than the �ne structure

splitting, decoherence from spontaneous emission per Rabi cycle continues to decrease

with detuning, even as the Rabi frequency decreases as 1/∆2 (compared to 1/∆ in

the limit of ∆ < ωHF ).

3.6. Generating Coherent Optical Fields with a Microwave Frequency

Splitting

The large ground state hyper�ne splitting, while excellent for the detection �delity,

poses a technical challenge in the laboratory. Phase-locking two UV lasers is extremely

di�cult, and conventional AOMs can not operate at such a large frequency (ω0 =

14.5GHz). While electro-optic modulators (EOM) can typically operate at up to 10

GHz, the modulated �eld requires additional modi�cation in order to drive stimulated

Raman transitions [37].

Since a 14.5GHz EOM is not available commercially, nor is a high frequency EOM

for a 229nm (or 214.5nm) ultraviolet (UV) carrier, consider the following setup in the

laboratory: a 458nm (or 429nm) laser is phase-modulated with a resonant EOM at

ω′0/2. The optical �eld following the EOM can be written as [38]

(3.6.1) E1 =
E0

2
ei(kx−ωt)

∞∑
n=−∞

Jn(φ)ein((δk)x−ω′0t/2) + c.c.,

where E0 is the unmodulated �eld amplitude, Jn(φ) is the n-th order Bessel function

with modulation index φ, and δk = ω′0/2c. The �eld is subsequently frequency-

summed in a build-up cavity containing a BBO crystal, where the free spectral range

(fsr) of the cavity is carefully tuned to be a subharmonic of the modulation frequency

(ωfsr = ω′0/8 in the actual experiments) so that the carrier and all the sidebands

resonate simultaneously (see appendix B for details of the cavity modi�cations). The

resulting UV radiation consists of a comb of frequencies centered at 229nm and sep-

arated by ω′0/2 and has an electric �eld

(3.6.2) E2 = ζE1E1 = ζ
E2

0

4
e2i(kx−ωt)

∞∑
n=−∞

Jn(2φ)ein((δk)x−ω′0t/2) + c.c.,

where ζ is the harmonic conversion e�ciency (assumed constant over all frequencies

considered). This is e�ectively the same as modulating the UV at frequency ω′0/2

with twice the modulation index. All pairs of spectral components of electric �eld

separated by frequency ω′0 can individually drive a stimulated Raman transition in
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the ion, and the total Rabi frequency is the sum of all transition amplitudes

Ω =
µ1µ2

〈
E2E

∗
2e
iω′0t
〉

~2∆
= 2Ω0

∞∑
n=−∞

Jn(2φ)Jn+2(2φ)ei2(δk)x = 0.

where µ1 and µ2 are the matrix elements of the electric dipole moment for a transition

between the respective hyper�ne states and the excited state, and the �elds are time-

averaged under the rotating wave approximation (Ω << ω′0 << ∆). The base Rabi

frequency Ω0 = µ1µ2
~2∆
|ηE2

0/4|
2
pertains to the usual case of stimulated Raman transi-

tion with a pair of monochromatic Raman beams separated in frequency by ω0 and

each with �eld amplitude ηE2
0/4. Unfortunately, the properties for in�nite sums of

Bessel functions are such that the net Rabi frequency always reduces to zero. In fact,

this is true for any pairing of n-th nearest neighbors (see appendix C for properties

of in�nite sums of Bessel functions). The following subsections contain three schemes

that modify the relative phases and/or amplitudes of the spectral components in Eq

3.6.2 in order to avoid complete cancellation in the total transition rate.

3.6.1. Mach-Zehnder Setup. One approach to phase shift sidebands is to em-

ploy a Mach-Zehnder interferometer, where the modulated beam is split and recom-

bined at another location with path length di�erence ∆x (this is already true for

non-copropagating Raman beam geometry where the �eld is split and recombined at

the ion). The �eld in path A and B are given as follows

(3.6.3) EA = ζ
E2

0

4
e2i(kx−ωt)

∞∑
n=−∞

Jn(2φ)ein((δk)x−ω′0t/2) + c.c.,

EB = ζ
E2

0

4
e2i(kx−ωt)e2ik∆x

∞∑
n=−∞

Jn(2φ)ein((δk)x−ω′0t/2)ein(δk)∆x + c.c..

Note that the n-th sideband is phase shifted by a di�erent amount ein(δk)∆x propor-

tional to n. The expression for the Rabi frequency is

(3.6.4) Ω = Ω0e
i(δk)(2x+∆x)

∞∑
n=−∞

Jn (2φ) Jn−2 (2φ) cos [(2k + (n− 1)δk) ∆x] ,

For (δk) ·∆x = (2j+ 1)π, where j is an integer, the Rabi frequency can be as high as

Ω = 0.487Ω0 for φ = 0.764. The problem in setting this up in the laboratory is that

the k∆x factor in the cosine term in Eq 3.6.4 requires optical stability of the Mach-

Zehnder interferometer. This problem can be circumvented by introducing a relative

frequency shift ∆ω >> Ω between the two paths of the Mach-Zehnder. This shift

can be compensated by changing the modulation frequency of the EOM by ±∆ω/2,
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resulting in a Rabi frequency of

(3.6.5) Ω = Ω0e
−ik∆xe−2i(δk)∆x

∞∑
n=−∞

Jn(2φ)Jn−2(2φ)ein(δk)∆x

= Ω0e
−ik∆xe−2i(δk)∆xJ2

(
4φsin

(
δk∆x

2

))
,

where ∆ω << ω′0. Note that the k∆x factor in the cosine term has been replaced

by a phase factor e−ik∆x, thus eliminating the e�ects of small changes in ∆x on

the magnitude of the Rabi frequency. However, the phase of the Raman drive �elds

relative to a microwave �eld generated by a phase-locked synthesizer is still dependent

on k∆x and therefore is not stable, but in later chapters we will show that this phase

instability can be removed from quantum logic operations. In this case, the stimulated

Raman transition Rabi frequency can be as high as Ω = 0.244Ω0 for φ = 0.764 and

δk∆x = (2j + 1)π, where j is an integer.

3.6.2. Cavity Detuning. We can also shaped the sideband spectrum without

using a Mach-Zehnder interferometer by detuning the free spectral range of the fre-

quency doubling cavity slightly from a subharmonic of the EOM frequency. This

detuning modi�es the amplitude and phase of each sideband with respect to the

carrier, resulting in a Rabi frequency of

(3.6.6) Ω = 2Ω0e
2i(δk)x

∞∑
n=−∞

∞∑
m=−∞

∞∑
l=−∞

(
Jn−m(φ)

1− i2(n−m)δ

)(
Jm(φ)

1− i2mδ

)

×
(

Jn+2−l(φ)

1 + i2(n+ 2− l)δ

)(
Jl(φ)

1 + i2lδ

)
,

where δ < 1 is the number of cavity linewidths by which the �rst sideband is detuned

from a cavity resonance.

3.6.3. Sideband Suppression. Another possible scheme involves the suppres-

sion of certain spectral components. By setting the free spectral range of the cavity to

be ω′0/(2n+ 1) where n is an integer, only alternating sidebands will resonate. When

the even or odd sidebands are selected, we �nd

(3.6.7) Ωeven = Ω0e
−2i(δk)x

∞∑
n=−∞

∞∑
m=−∞

∞∑
l=−∞

J2(n−m)(φ)J2m(φ)J2(n+1−l)(φ)J2l(φ).

(3.6.8)

Ωodd = Ω0e
−2i(δk)x

∞∑
n=−∞

∞∑
m=−∞

∞∑
l=−∞

J2(n−m)+1(φ)J2m+1(φ)J2(n+1−l)+1(φ)J2l+1(φ).
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The maximum Ωeven is 0.230Ω0 at modulation frequency φ = 1.173, while the maxi-

mum Ωodd is 0.279Ω0 at φ = 1.603.

3.7. Experiment Details

The previous sections in this chapter contain the theory on how to implement

single qubit rotations and couple to the ion's motion in the trap through stimulated

Raman transitions. The discussion included the analysis of beam setup and how to

generate the necessary �elds. In this section, we describe the hardware used in the

experiments, and in the next section, compare the results from the experiments to

the theory.

3.7.1. Lasers and Optics. Two di�erent lasers have been successfully used to

drive Raman transitions. The �rst is a Melles Griot Nd:NVO4 laser operating at

457nm with a 400mW optical power. The output is phase modulated by an EOM

before harmonic frequency generation in a BBO cavity similar to the detection beam.

The second harmonic at 229nm is 12GHz detuned from the S1/2 to P1/2 transition

in 111Cd+ and contains about 7mW of optical power, though only 2.5mW in each

Raman beam actually enters the trap. The other is a Ti:Sapphire laser similar to

the detection laser described in section 2.3. The UV at 214.5nm is about 150GHz

detuned (858.15nm in the IR) from the S1/2 to P3/2 transition. Out of the 4.5mW

UV generated by the BBO, about 500µW in each Raman beam enters the trap.

3.7.2. rf sources. The rf sources for various modulators are a series of phase-

locked frequency synthesizers. Figure 3.7.1 lists the models used in the experiments

and the frequency range they operate at. A stable 10MHz clock signal from an DS345

arbitrary waveform generator with a 10ppb high stability timebase from Stanford Re-

search Systems is connected to each synthesizer, and each synthesizer must have

spectral purity of at least -100 dBc at 100Hz o�set from carrier frequency at 1Hz

bandwidth. The EOM is driven by a modi�ed HP8672A that uses an external local

oscillator (DS345) to obtain 1 Hz resolution. The AOM source is an octupled fre-

quency of DS345 generators, typically operating around 8× 26MHz=208MHz. With

extremely stable phase-locked signals from the DS345 and the spectral purity of the

octupler, their combined performance surpasses most frequency synthesizers at the

200MHz range (and more cost e�ective too). Multiple DS345 synthesizers are mul-

tiplexed through the rf switches so that di�erent frequencies can be accessed by the

Raman AOM during the experiment. An HP 8660C is used for the other Raman AO

and typically stay �xed in frequency.

A side note on the HP8672A: in fact, the phase lock at 7.266GHz and 14.5 GHz are

not stable on the order of a second, as veri�ed by mixing signals from two HP8672A
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model range function

HP8672A 3GHz-18GHz drives EOM and/or microwave horn; mod-
i�ed to use an external local oscillator for
better resolution

HP8660C 10kHz-400MHz drives AOM
DS345 DC-30MHz octupled frequency drives AOM

Figure 3.7.1. Synthesizers with phase lock capability for generating
coherent Raman beams

and comparing the frequency di�erence with the 10MHz clock. Therefore, for the

experiments to maintain phase coherence, a single HP8672A source provides the signal

to the EOM, and microwaves are generated by frequency doubling the 7.266GHz signal

and mixing with a lower frequency rf to reach the qubit frequency ω0.

3.7.3. Computer Software and Data Collection. As described in section

2.4, the LabView software controls the experiment through the National Instrument

pulser card and receives data from the counter card. Typical experiments follow

the pulse sequence outlined in section 2.4, starting with the basic Doppler cooling

pulse, the initialization pulse, and the detection pulse. This section describes how

the routine functions are implemented in the experiments.

Alignment. Pulse sequences are used daily for the alignment of the lasers on the

ions. The detection beam can be aligned by maximizing the photon counts received

during the detection pulse for a bright state, and the optical pumping beam can be

aligned by observing the e�ciency of pumping into the dark state, indicated by the

low photon counts. The Raman beams are aligned by adding a long Raman pulse

(typically 10ms, or several orders of magnitude more than the π pulse time) in the

pulse sequence before detection. This results in a high probability of spontaneous

emission when the ion interacts with the Raman �eld, providing an unmistakable

signature when the beam overlaps with the ion. The two Raman beams can be

aligned independently using this method.

Frequency Scan. Once the Raman beams are aligned, a spectrum is obtained to

allow �ne tuning of the frequencies. This is important since the Stark shift changes

depending on the exact optical power of the laser during the experiment, and the

most precise frequency for the experiment condition is the one measured during the

actual experiment. For the Raman spectrum, a scan range and step size is speci�ed

by the user. For each frequency step, the computer sets the user-de�ned frequency

synthesizer to that particular frequency via GPIB before running the pulse sequence,

and then the computer repeats the pulse sequence a number of times (typically set

to 50). The data is downloaded from the hardware bu�er, analyzed and plotted on
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a graph, before moving on to the next frequency setting. The real time feedback is

very helpful in observing anomalies such as the ion disappearing during the scan and

various other errors that may cause unexpected results in the data. The full data set

for the spectrum can be saved at the end of the scan. Each scan takes on the order of

a minute, depending on the number of experiments per step and the frequency range

and step size of the scan.

The spectrum taken using frequency scan often yields important information

about the appropriate frequency settings for that particular experiment setting. The

software is set up so that the user can set the frequency of a synthesizer by dragging

a cursor over the plotted graph for a quick tuning to resonance.

Time Scan. Instead of changing the frequency, the software can also scan the

timing of any pulse or pulses. The program stores the preset pulse sequence in a

list of chapters, and each line in a chapter indicates the timing for a speci�ed set

of 32-bit signal to be sent. The user can scan a line containing the stop signal for

a pulse over a range of delay times, e�ectively changing the length of time when

the pulse is on. When the scan starts, the computer programs the pulser to send

out pulses for the initial time delay, and before every time step the pulser card is

reprogrammed to send out pulses with the new time setting for that step. A user-

speci�ed number of experiments are repeated in each time step before the data is

downloaded to the hardware bu�er, and the averages and histograms are plotted real

time on the monitor. The user can also scan the chapter delay or a line containing

the start signal of a pulse to vary the time between pulses.

The software also allows �exibility in terms of managing the timing of the rest of

the pulses with respect to the event whose timing is being varied. Typically, the pulse

events following the scanned event track the scanned event, i.e. scanning the stop

signal of the �rst pulse will change the timing of the second pulse so that the time

between the end of the �rst pulse and the start of the next pulse remains constant.

However, there are situations similar to a Ramsey experiment where the timing of

later pulses should be �xed as a particular pulse is being scanned. In those cases, the

user can choose a setting where the pulses do not track the pulse event that is being

scanned.

Phase Scan. Phase scan is similar to frequency scan except rather than changing

the frequency at each time step, the phase of the selected frequency synthesizer is

varied. The computer sets the phase via GPIB before taking data during each time

step. The user also have the option to change the phase or reset the relative zero

phase using the graphical interface.

54



3.8. Experiment Data

3.8.1. Mach-Zehnder Interferometer. For the Mach-Zehnder setup described

in section 3.6.1, the cavity enclosing the BBO crystal is tuned such that the free

spectral range is exactly 1/4 of 7266MHz (to within 1MHz). The UV output of the

BBO cavity passes through two AOMs. The �rst order Bragg de�ection from the

�rst AOM is directed into the trap, while the zeroth order de�ection is modulated

by a second AOM with its �rst order Bragg de�ection also directed into the trap

at a 90◦ angle with respect to the other beam. Two mirrors at 90◦ retrore�ects one

of the beams for an easy change of the beam path length without requiring major

beam alignment. Typically, the frequency of one AOM is kept �xed (at 212MHz)

while the frequency of the other remains �exible depending on the requirements for

the experiment. The optical power of the two Raman beams are also balanced to be

approximately the same, typically around 300mW, and the beams are focused at the

ion with a beam waist of approximately 20µm diameter.

The Raman spectra become rather complicated since there are multiple frequency

settings that can drive the same transitions. For example, to drive a Raman transition

between two levels with an energy splitting of ~ωtransition, the modulation frequency

of the EOM can be set to 2ωEO < ωtransition. The modulated beam is split into two

paths, with the beam in path A frequency shifted by ωA and the beam in path B

frequency shifted by ωA + ωtransition − 2ωEO. The two beams are recombined at the

ion, with wave-vector kA and kB respective to beam path A and B. In this case the

wave-vector di�erence ∆k for the Raman transition is equal to kB−kA, since the

beam in path B has higher frequency. The beam in path B can also be frequency

shifted by ωA + 2ωEO − ωtransition instead, in which case the wave-vector di�erence

∆k would be kA − kB since the beam in path A would have the higher frequency.

Figure 3.8.1 shows a typical scan of the EOM frequency. In this experiment, the

Raman beams are applied for a 20µs pulse between the initialization and the detection

of the qubit, and the frequency of the EOM is scanned and the averages are plotted vs

frequency. For this spectrum, the AOM frequencies are set to 209MHz and 210MHz.

As shown in the �gure, two di�erent EOM frequencies 1MHz apart can drive the same

transition. The trap frequency is 2.1MHz, and the coupling to di�erent sidebands are

visible with non-copropagating Raman beams.

Figure 3.8.2 shows a typical scan of the AOM frequency. For this spectrum,

the EOM frequency is �xed at 7266GHz and the AOM frequency ωA/2π is �xed at

212MHz while the frequency of the other AOM ωB/2π is scanned. Again, two di�erent

frequencies can drive the same transition, but the two sets of transitions are mirrored

this time, as in ωB = ωA ± (2ωEO − ωtransition). Changing the AOM frequency is
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Figure 3.8.1. Single ion Raman spectrum from scanning the EOM fre-
quency. The non-copropagating Raman beams couple to the vibrational
sidebands spaced by 2.1MHz. The AOMs are set to 1MHz frequency dif-
ference, and the Raman beams are applied for 20µs in each experiment
before the qubit state is detected. The �uorescence from the ion indi-
cating the qubit is in | ↑〉 is collected by the CCD camera and the signal
is plotted versus the EOM frequency. Frequencies satisfying ωEO/2π =
(ωtransition/2π − 1MHz)/2 produce a carrier transition at 7264.7MHz,
a �rst red sideband transition at 7262.6MHz, a �rst blue sideband tran-
sition at 7666.8, and a second red sideband transition at 7260.5MHz.
Frequencies satisfying ωEO/2π = (ωtransition/2π − 1MHz)/2 produce
a carrier transition at 7265.7MHz, a �rst red sideband transition at
7263.6MHz, a �rst blue sideband transition at 7667.8, and a second
red sideband transition at 7261.5MHz. A weak copropagating Raman
transition is also visible at 7265.25MHz.

the preferred method of changing the Raman beat note frequency, since the di�erent

AOM frequencies can be preset before the experiment and multiplexed through the

rf switches, and the free spectral range of the BBO can remain matched to the static

EOM frequency.

The resonant frequency of a Raman transition including the AC Stark shift is

determined from the spectrum, and a scan of the Raman pulse length shows Rabi

oscillation in the probability of the qubit being in the |0〉 (or |1〉) state. Figure 3.8.3
shows a Rabi �opping curve using stimulated Raman transition coupling via the P3/2

excited state. From the Rabi �opping curve, the Rabi frequency can be extracted by

�tting the curve to sin2(Ωt/2).

To verify the theory in section 3.6.1, we set the di�erence in AOM frequencies to

be ∆ω=2π × 4MHz and measure the Rabi frequency Ω as the relative path length
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Figure 3.8.2. Single ion Raman spectrum from scanning the AOM
frequency. In this case, the EOM modulation frequency is set to
ωEO/2π = (ω0/2π + 1.5MHz)/2 = 7266MHz. The frequency of one
AOM is set to 212MHz, and the frequency of the other AOM is shown
on the x-axis. The trap frequency is 2.1MHz. The carrier transition ap-
pears at 212±1.5MHz (210.5MHz and 213.5MHz), with corresponding
�rst blue sideband transition at 212.6MHz and 211.4MHz, �rst red side-
band transition at 215.6MHz (not shown) and 208.4MHz, second blue
sideband transition at 209.3MHz, and second red sideband transition
at 206.3MHz.

∆x of the Mach-Zehnder interferometer is varied. We �t Ω to Eq 3.6.5 to extract

the modulation index φ, which is also independently measured with a Fabry-Perot

spectrum analyzer. The results are plotted in Figure 3.8.4. The dependence on gross

path length di�erence with spatial period ∆x = 2π/δk = 4.13cm is clearly visible [39].

3.8.2. Cavity Detuning. For the cavity detuning setup described in section

3.6.2, the free spectral range of the BBO cavity is set to 1/4 of 7262MHz (the linewidth

of the cavity is 1.5MHz, and the cavity detuning δ ∼ 3.25MHz/15MHz ∼ 0.2). Using

this scheme, only one Raman beam is required, with the EOM modulation frequency

satisfying ωEO = ω′0/2 = 2π × 7265.2MHz. The single Raman beam carries multiple

frequency components from the phase modulation from the EOM, and constitutes as

two copropagating Raman �elds. Therefore this setup can only drive carrier Raman
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Figure 3.8.3. Rabi �opping on a single ion using stimulated Raman
transition with motion sensitive, non-copropagating beam geometry.
The ion is initialized in the | ↑〉 state and the Raman beams couple to
the other hyper�ne level | ↓〉 via the P3/2 excited states (detuning ∆ =
2π×150GHz) without changing the vibrational level. The probability
of the ion in the | ↓〉 state vs. Raman pulse time t is plotted here, with
the Rabi frequency of Ω = 2π×55kHz. The data is taken using the
CCD camera with the discriminator set to distinguish the bright and
dark states, and each point represents an average of 50 experiments.

Figure 3.8.4. Rabi frequency vs. Mach-Zehnder path length di�er-
ence for two values of EOM modulation index φ. The lines are theory,
and the data are �tted to Eq 3.6.5 using the y-axis scale and modulation
index as parameters. The �ts agree with independent measurements of
the modulation index using a Fabry-Perot cavity.

Figure 3.8.5. Rabi �opping on a single ion driven by copropagat-
ing Raman beams. The cavity is detuned from resonance in order
to produce the non-zero Rabi frequency. The Rabi frequency here is
Ω = 2π×3.8kHz. The di�erence in the Rabi frequency compared to the
Mach-Zehnder setup is mainly due to the large detuning of the Raman
�eld (∆ = 2π×12THz) for this data, using the Melles-Griot 458nm
laser coupling via the P3/2 excited states.

transition (no change in vibrational level). Figure 3.8.5 shows the Rabi �opping of a

single ion using this cavity detuning setup.
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Figure 3.8.6. Rabi frequency vs EOM modulation index at di�erent
cavity detuning δ. The free spectral range of the BBO build-up cavity
is detuned by δ with respect to the EOM modulation frequency, scaled
to the cavity linewidth. The lines are theory, and the data are �tted
to Eq 3.6.6 using the y-axis scale and detuning as parameters. The �ts
agree with independent measurements of the cavity free spectral range
and EOM modulation frequency.

Figure 3.9.1. Rabi �opping at high temperature vs low temperature.
After Doppler cooling, the ion is in a thermal distribution of vibrational
states with average vibrational number n̄ = 13. Each vibrational has a
di�erent Rabi frequency due to the Debye-Waller factor, therefore the
Rabi oscillation dephases after several cycles (top). When the ion is
sideband cooled to near the ground state, the Rabi oscillation dephases
less (bottom). The decoherence in sideband cooled ion is most due to
spontaneous emission and beam instability rather than temperature
e�ect.

To verify the results from section 3.6.2, the Rabi frequency is extracted from the

Rabi �opping curves for di�erent modulation strength at di�erent cavity detunings.

Figure 3.8.6 displays the Rabi frequency Ω versus the modulation index φ for various

cavity detunings, and the data agree with Eq 3.6.6.
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Figure 3.9.2. Raman sideband cooling process: the ion is initialized
in the | ↑〉 state and a blue sideband transition reduces the vibrational
energy by ~ω1 as the spin is �ipped. The optical pumping beam is
then turned on to reinitialize the ion to the | ↑〉 state. This process is
repeated many times (typically 40 cycles) until the ion is cooled to the
ground state. When the ion is in the |n = 0〉 vibrational state, it can
no longer make a blue sideband transition since |n = −1〉 state does
not exist, and remains in the | ↑, n = 0〉 state.

3.9. Cooling to the Ground state of motion

At �nite temperature T, the system has average energy 〈E〉 = kBT = n̄~ω1 and

follows Maxwell-Boltzmann distribution with probability of being in vibrational state

n being [40]

(3.9.1) Pn =
1

1 + n̄

(
n̄

1 + n̄

)n
e−n~ω1/kBT .

The ion is in an incoherent mixture of vibrational states, leading to dephasing when

driving Raman transitions since each vibrational level has a di�erent Debye-Waller

factor and therefore a di�erent Rabi frequency. The e�ect is especially signi�cant

for sideband transitions which have strong dependences on n. For quantum logic

operations, the ion ideally should be in a single energy eigenstate of motion. In fact,

the original entangling scheme for ions proposed by Cirac and Zoller [10] requires that

the ion be initialized to the ground state of motion. However, more recent entangling

gate proposals only requires the ion to be in the Lamb-Dicke limit, thereby lessening

the error due to �nite temperature and heating. In either case, the gate errors can

be reduced by cooling to the ground state.
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As explained in chapter 2, ions are Doppler cooled in the trap to the Doppler cool-

ing limit of n̄ = 0.43γ/ω1. For a typical trap strength of 2MHz, the mean vibrational

number is n̄ = 13, which is not within the Lamb-Dicke Limit since 〈kzz〉 = n̄η2 ≈ 1.

To reach below Doppler limit, additional Raman sideband cooling is necessary. Ra-

man cooling has previously been shown to be e�ective for cooling trapped beryllium

ions [41], and the method used here is similar. The idea is to start with a Doppler-

cooled thermal state initialized to |↑〉. The blue Raman sideband transition �ips

the spin to |↓〉 while changing the vibrational state by ∆n = −1. The ion is then

optically pumped back to the |↑〉 state, on average broadening the energy distribu-

tion by a photon recoil of ~2k2/2M = 38kHz. This process is repeated many times.

When the ion reaches the lowest vibrational state n = 0, the Raman transition stops

automatically since there is no n = −1 state to couple to. [42]

In the experiments, a LabView subroutine accepts the trap frequency and π-pulse

time for n = 0 vibrational ground state blue sideband transition as parameters and

calculates the π-pulse time for each of the N iterations of Raman cooling. For a

typical N = 40 Raman cooling pulses, the program �rst optically pumps the ion

to the |↑〉 state and then turns on the Raman beams for the exact time to make

a complete transition from |↑, n = 40〉 to |↓, n = 39〉. In the second iteration, the

Raman beam pulse time is calibrated to make a complete transition from |↑, n = 39〉
to |↓, n = 38〉. In each subsequent iteration, the Raman pulse time matches the next

∆n = −1 step until the last pulse makes a π-pulse for |↑, n = 1〉 to |↓, n = 0〉. The

π-pulse times are computed using eq 3.3.4 to determine the Rabi frequency for the

|↑, n = 1〉 to |↓, n = 0〉 transition and take the inverse tn,n−1 = π/Ωn,n−1. The exact

expression with the Laguerre polynomials is used since the larger vibrational levels

are usually well outside of the Lamb-Dicke Limit and the approximation Ω ∼ η
√
nΩ0

fails. Typically, a separate frequency synthesizer needs to be calibrated to the blue

sideband resonance by taking a Raman spectrum. The frequency synthesizer is used

for Raman cooling only and is independent from the rest of the experiment. For

the experiment, a Raman pulse driving the �rst blue sideband transition is inserted

before the detection pulse, and a time scan of the length of the pulse yields the

transition time for an ion with an average vibrational number 〈n〉 at the Doppler

limit. From that piece of information, an estimate of the π-pulse time for n = 0 is

given (approximately twice as long as the observed time of maximum transition).

The Raman cooling routine is then inserted between the Doppler cooling pulse and

the initialization of the experiment, and to observe the e�ect of Raman cooling, a time

scan is performed on an additional Raman probe pulse in the experiment. Raman

cooling is actually quite robust even when the π-pulse time is o� by as much as a
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factor of 2. If Raman cooling works, the ion would most likely be in the ground state

before the time-varying pulse and no blue sideband transition would be observed. To

measure the π-pulse time for n = 0, a microwave π-pulse is inserted right before the

probe pulse. The time scan then starts out measuring the ion in the |↓〉 bright state,
and after a π-pulse time for the �rst blue sideband at n = 0, the ion is completely

transferred to the |↑〉 dark state. The contrast should be nearly perfect when the ion

is close to entirely in the ground state, and the Raman cooling pulse lengths can be

calibrated in this manner. It is also interesting to note that as sideband transition

strengths decreases as n decreases, and the sideband resonance have been observed

to shift on the order of several kHz, possibly due to a change in AC Stark shift from

beam steering by the changing duty cycle of the AOM. Therefore, the frequency of the

Raman probe pulse in the experiment (which is independent of the frequency used

in the Raman cooling) can be scanned to �nd the resonance with Raman cooling

on. The frequency used for Raman cooling is usually adjusted to match this new

resonance as well. The process of frequency scan, time scan to �nd the π-pulse time

for n = 0, and calibrating the actual Raman cooling routine pulse time may need

to be repeated several times until all parameters are consistent with one another for

optimal cooling.

The average vibrational number n̄ is extracted through the measured asymmetry

in the �rst upper and �rst lower sideband strengths; for a thermal distribution of

vibrational levels, the probability of making a red (or blue) sideband transition from

an initial |↑〉 state is

Prsb(↓) =
∞∑
n=0

Pnsin
2(Ωn,n−1t/2)

Pbsb(↓) =
∞∑
n=1

Pnsin
2(Ωn,n+1t/2)

=
∞∑
n=0

Pn+1sin
2(Ωn,n−1t/2)

where the initial probability distribution of vibrational levels Pn is de�ned in equation

4.2.6. From the ratio Pn+1/Pn = n̄/(1 + n̄), the ratio of the blue sideband strength to

the red sideband strength is calculated to be Pbsb(↓)/Prsb(↓) = n̄/(1+n̄) for any time t.

Raman spectra for the �rst red sideband and the blue sideband are shown in Fig. 3.9.3

for both Doppler cooling and with subsequent Raman cooling in the quadrupole trap

with ωx/2π = 5.8MHz (ηx ' 0.12). The change in the sideband asymmetries indicates

cooling from approximately n̄ ' 5(3) to n̄ ' 0.03(2), corresponding to a probability

of P0 ' 97% of ground-state occupation. No further cooling is observed when more

than about 40 Raman cooling cycles are used, and the results are largely independent

62



Figure 3.9.3. Raman spectra for Doppler cooling and sideband cool-
ing. The ion is in the quadrupole trap with a secular frequency of
ω1 = 2π × 5.8MHz. Both plots show the probability for population
transfer to the bright state P(↓) vs. frequency from the carrier tran-
sition. Both red sideband (left) and the blue sideband (right) are dis-
played following (a) Doppler cooling to n̄ ≈ 5(3) and (b)subsequent
Raman cooling to n̄ ≈ 0.03(2) where the blue sideband vanishes. The
strength of the transitions are Ω0 ≈ 2π × 100kHz and Ω0,1 ≈ 10kHz.
The Raman probe pulse is exposed for 80µs. The lines are a �t to the
data. [42]

of the details of the Raman cooling schedule. For instance, a uniform setting for

the Raman cooling sideband pulses works nearly as well as lengthening the Raman

pulses appropriately as the ion is cooled. Similar results are observed in both the
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Figure 3.9.4. An example of heating data taken in the quadrupole
trap, with trap frequency ω1 = 2π× 5.8MHz. Mean motional quanta n̄
is plotted vs. time delay. The insets show sideband Rabi oscillations,
from which is inferred; the black points represent the red sideband and
the open points represent the blue sideband. The solid line is a linear
�t to the data from which a heating rate of ˙̄n ≈ 0.0248(3)quanta/msec
is obtained. [42]

quadrupole and the linear traps for various frequencies between 1.3 and 5.8MHz. In

the linear trap with ωx/2π = 2.69MHz (ηx ' 0.17), we reach a probability P0 ' 83%

of ground-state occupation, requiring no more than 60 Raman cooling cycles.

Uncontrolled interactions with the environment can thermally drive the ion to

higher motional energies. In order to measure the heating rates, a time delay with no

laser interaction is introduced between the ground-state cooling and the measurement

of n̄. These measurements of n̄ are repeated with increasing time delay until a heating

rate can be extracted. An example of data from the quadrupole trap (ωx/2π =

5.8MHz) is shown in �gure 3.9.4, where a linear �t of the data (n̄ vs time delay)

yields a heating rate of ˙̄n = 0.0248(3) quanta/msec. In the three-layer linear trap,

the heating rate is measured to be ˙̄n ≈ 0.2 quanta/msec at 3.8MHz and ˙̄n ≈ 0.4

quanta/msec at 2.1MHz.
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CHAPTER 4

Spin-Dependent Forces

In the previous chapter, we have shown that stimulated Raman transitions can

couple the spin to the ion's vibrational levels. However, there is another way to entan-

gle spin and motion � through the application of spin-dependent forces that displace

the atomic wavepacket associated with orthogonal spin orientations by di�erent mag-

nitude and/or direction. Our interest in spin-dependent forces stems from several

quantum logic gate schemes [13,14,16,20] that utilize this mechanism to entangle

qubits stored in the internal states of the ions. These gates are less sensitive to �nite

temperature e�ects and vibrational heating compared to the Cirac-Zoller scheme [10],

where stimulated Raman transition mapping the qubit state to the vibrational levels

require the vibration to be initialized to the ground state. The focus here is on the

resolved-sideband limit, where a spin-dependent force is applied steadily over multiple

trap periods and couples to only a single mode of vibration.

A di�erential force can be applied to the eigenstates of any spin operator σ̂ · n̂,
where the unit vector n̂ points in an arbitrary direction on the Bloch sphere. The

interactions are classi�ed by the vector n̂: a �σz force� apply a di�erential force on

the energy eigenstates |↑〉 and |↓〉, while a �σ̂φ force� apply a di�erential force on the

eigenstates |↑φ〉 and |↓φ〉 of σ̂ · φ̂, where φ̂ = cosφx̂ + sinφŷ is a vector lying on the

equatorial plane of the Bloch sphere. In this chapter, we create Schrödinger's cat

states through the application of di�erential forces on a single trapped ion, and the

measurements from the experiments are compared to theoretical predictions. This

data reveal important systematic parameters for the entangling gates, which we will

further investigate in the next chapter.

4.1. Spin-Dependent Forces

In an analysis of a force applied to a quantum harmonic oscillator, the wavefunc-

tion can be best described in terms of coherent states. A force is represented by a

Hamiltonian of the form Ĥ1 ∼ F · ẑT = F (t)z0

(
â+ â†

)
, which is a generator of the

displacement operator D̂(α) = eαâ
†+α∗â. Coherent states, de�ned as

(4.1.1) |α〉 = e−
1
2
|α|

∞∑
n=0

αn√
n!
|n〉 ,
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are eigenstates of the creation and annihilation operators, and can be translated in

the momentum/position phase space by displacement operators using the property

(4.1.2) D̂(β) |α〉 = eiIm(α∗β) |α + β〉 ,

where the imaginary component Im(α∗β) is called the geometric phase. In other

words, an applied force translates a coherent state |α〉 in phase space by a vector

β = ∆z/2z0 + i∆p/2p0, where the vector β is controlled by the magnitude and the

duration of the applied force.

In the entangling gate schemes we are interested in, a periodic force F (t) =

|F | sin [(ω1 − δ) t+ φ] near resonant to the ion's vibrational frequency is applied (for

more than one ion, ω1 can be replaced with the frequency of any vibrational mode).

In the rotating frame of the harmonic oscillator, the interaction Hamiltonian is

(4.1.3) ĤI =
F ∗z0

2
âe−iδt +

Fz0

2
â†eiδt,

where F = |F | eiφ de�nes the magnitude and phase of the oscillating force. For an

ion in an initial ground state |0〉, the coherent state evolves as (see appendix C)

(4.1.4) α(t) =
Fz0

2~δ
(
1− eiδt

)
.

The coherent state has a circular trajectory in phase space with a diameter of Fz0/~δ
and a period of τ = 2π/δ. In each complete round-trip, the state also gathers a

geometric phase equal to the area enclosed by the trajectory:

(4.1.5) Φ = Im(

∫ τ

0

α(t′)∗dα(t′)) =
π |Fz0|2

2(~δ)2

When the force is spin-dependent, say an eigenstate |↑n〉 of σ̂ · n experiences a

force F↑n while the orthogonal eigenstate |↓n〉 experiences a di�erent force F↓n , the

interaction Hamiltonian is the sum over the interaction applied to each individual

spin state:

(4.1.6) ĤI =
∑

m=↑n,↓n

(
F ∗mz0

2
âe−iδt +

Fmz0

2
â†eiδt

)
|m〉 〈m| ,

In terms of the σ̂ · n operator, the Hamiltonian can be written as

(4.1.7) ĤI =

(
F ∗+z0

2
âe−iδt +

F+z0

2
â†eiδt

)
Î +

(
F ∗−z0

2
âe−iδt +

F−z0

2
â†eiδt

)
σ̂ · n,

where Î is the identity operator, F+ = (F↑n + F↓n)/2 and F− = (F↑n − F↓n)/2. The

�rst term involving the identity operator Î has no e�ect on the dynamics of the

system and therefore can be ignored, and the rest of the interaction Hamiltonian is
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Figure 4.1.1. A spin-dependent force applied to the eigenstates of
σ̂ · n. The eigenstate of a) σ̂ · z and b) σ̂ · φ corresponding to the
eigenvalue +1 are represented on the Bloch sphere. A spin-dependent
force creates two separate coherent states in phase space corresponding
to the eigenstates of σ · n, as represented in c), thus entangling the
internal spin with the external motion of the ion.

proportional to the operator σ̂ · n. The wavefunction as the result of this interaction

evolves in time as

(4.1.8) |ψ(t)〉 =
∑

m=↑n,↓n

ame
iΦ(t) |m〉 |αm(t)〉 ,

where am is the initial amplitude in the state |m〉, αm(t) = (Fmz0/2~δ)
(
1− eiδt

)
de-

�nes the coherent state associated with spin |m〉, and Φm(t) = Im(
∫ τ

0
αm(t′)∗dαm(t′))

is the geometric phase acquired by the coherent state |αm(t)〉.
The state de�ned in eq 4.1.8 is reminiscent of Schrödinger's thought experiment

where his cat is placed in a superposition of �dead� and �alive� states entangled with

the decay of a particle [43]. In this case, the position of the ion is placed in a

superposition of �here� and �there� entangled with the spin of the ion. When the

two entangled coherent states have very little overlap, i.e. |α↑n − α↓n| � 1, the

separation between the expectation values of position 〈ẑT 〉 of the two spin states is
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large compared to the uncertainty in the position associated with each spin state√
〈ẑ2
T 〉m. Experiments with Schrödinger-cat-like states in mesoscopic systems have

been demonstrated in superconductors [44], nanoscale magnets [45], cavity-QED [46],

C60 molecules [47], and trapped ions [48]. The study here is more in-depth than the

experiments in ref [48] in that the dynamic evolution of the wavefunction as each of

the spin-dependent forces is applied is observed using interference between the two

spin states, which o�er us precise control of the interaction parameters. In addition,

we use the Schrödinger's cat state to demonstrate phase control of the σφ force, which

is essential in its application towards a two-qubit logic gate, as we will see in the next

chapter.

4.2. The σ̂φ-force

The σ̂φ force is based on the entangling gate scheme proposed by Mølmer and

Sørensen [13, 20], which uses simultaneous addressing of a detuned red sideband

�eld and a detuned blue sideband �eld with equal coupling strengths and oppo-

site detunings. The interaction Hamiltonian of the σ̂φ force is simply the sum of a

Jaynes-Cummings Hamiltonian (produced by the red sideband) and an �anti-Jaynes-

Cummings Hamiltonian� (produced by the blue sideband):

(4.2.1) ĤI =
~ηΩ

2

(
σ̂+âe

−i(δt−φr) + σ̂−â
†ei(δt−φr)

)
+
~ηΩ

2

(
σ̂+â

†ei(δt+φb) + σ̂−âe
−i(δt+φb)

)
,

where δ is the detuning from the �rst sideband resonances, and φr and φb are the

phase from the driving �eld for the red and blue sidebands respectively. This assumes

the system is in the Lamb-Dicke Limit (η2n � 1), where η2 and higher order terms

can be neglected. With some rearrangement, this expression can be simpli�ed to

(4.2.2) ĤI =
~ηΩ

2

(
âe−i(δt+φM ) + â†ei(δt+φM )

)
σ̂ · φS.

where φS = −(φb +φr)/2 is the phase associated with the spin and φM = (φb−φr)/2
is the phase associated with the motion. The operator σ̂ · φS ≡ σ̂+e

−iφS + σ̂−e
iφS has

eigenstates

(4.2.3) |↑φS〉 =
1√
2

(
|↑〉+ eiφS |↓〉

)
|↓φS〉 =

1√
2

(
−e−iφS |↑〉+ |↓〉

)
,

corresponding to eigenvalues +1 and −1 respectively. We call this a σ̂φ force because

the Hamiltonian is proportional to σ̂ ·φS , where φS = cos(φS)x+ sin(φS)y is a vector

lying on the xy plane forming an angle φS with respect to the x axis. Eq 4.2.2 is

68



Figure 4.2.1. Optical �elds generating a σ̂φ-dependent force. A σ̂φ-
dependent force is driven by simultaneous coupling to two vibrational
sideband transitions. a) Two optical �elds separated in frequency by
ω′0 − ω1 − δ drive a detuned red sideband and a third optical �eld
whose frequency di�ers by ω′0 + ω1 + δ from one of the other �elds to
drive a detuned blue sideband. i) and ii) are two examples of possible
frequency con�gurations. The optical �elds can have overlapping wave-
vectors, but any pair of frequencies that drives a sideband must have
a non-zero wave-vector di�erence with a component in the x direction,
as shown in b).

analogous to eq 4.1.7 de�ning the Hamiltonian of a spin-dependent force, and here

the eigenstates of σ̂ · φS experience a force of equal magnitude in opposite directions.

When the ion is initialized in |↑〉 and the vibration is in the ground state |0〉, the
wavefunction evolves under the application of the σ̂φ force as

(4.2.4) |ψ(t)〉 =
1√
2
eiΦ(t) |↑φS〉 |α(t)〉 − eiφS√

2
eiΦ(t) |↓φS〉 |−α(t)〉 ,

where α(t) = α0

(
1− eiδt

)
with α0 = ηΩ/(2δ), and Φ(t) is the geometric phase

acquired from the displacement, which is the same for both |α(t)〉 and |−α(t)〉. The
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Figure 4.2.2. Fluorescence signal vs detuning of the σ̂φ force. Prob-
ability P (↓) is plotted versus detuning δ according to eq 4.2.5 for a)
t = π/ηΩ, b) t = 2π/ηΩ, c) t = 3π/ηΩ. The horizontal axis (detuning
δ) is normalized to ηΩ, i.e. α0 = 1 at δ = ηΩ/2. At δt = 2nπ where n
is an integer, the coherent state associated with each spin both return
to the initial position, resulting in P (↓) = 0. When the separation
between the two coherent states is large compared to the uncertainty
in position for each coherent state, then the two coherent states do not
interfere with one another and the probability P (↓) approaches 1/2. As
δ approaches zero, the separation 2α(t) = ηΩ(1− eiδt)/δ also increases.

probability of �nding the ion in the |↓〉 state becomes [49]

(4.2.5) P (↓) = |〈↓| ψ(t)〉|2 =
1

2

{
1− e−

1
2
|2α(t)|2

}
,

This transition probability has dependence on both the detuning δ and the duration t

of the applied force, which are two parameters that can be controlled in the laboratory.

This result can be used to con�rm the production of Schrödinger's cat states if the data

indeed agree with eq 4.2.5, and the size of α(t) can quantify the physical separation

of the two coherent states.

4.2.1. E�ects of temperature and heating. Thus far we have not considered

the decoherence caused by temperature and heating, which could result in deviations

in the experiment results from equation 4.2.5. Recall from section 3.9, the system at
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Figure 4.2.3. Fluorescence signal vs duration of the σ̂φ force. Proba-
bility P (↓) is plotted versus duration t of the σ̂φ force according to eq
4.2.5 for a) δ = ηΩ, b) δ = ηΩ/2. P (↓) returns to 0 at t = 2π/δ when
the two coherent states overlap each other.

�nite temperature T has average energy 〈E〉 = kBT = n̄~ω1 and follows Maxwell-

Boltzmann distribution with probability of being in vibrational state n being

(4.2.6) P (n) =

(
n

1− n̄

)n
e−n~ω1/kBT .

We note that each initial vibration level |n〉 is transformed by the displacement op-

erator and evolves as

|ψn(t)〉 =
1√
2
eiΦ(t) |↑φS〉 D̂(α(t)) |n〉 − eiφS√

2
eiΦ(t) |↓φS〉 D̂(−α(t)) |n〉 .

The probability of �nding the ion in the |↓〉 state from an initial thermal state can

then be determined by summing over the Maxwell-Boltzmann distribution of all initial

vibrational levels of a single mode:

(4.2.7) Pthermal(↓) =
∞∑
n=0

1

1 + n̄

(
n̄

1 + n̄

)n
|〈↓| ψn(t)〉|2

=
1

2
− 1

2
e−(n̄+ 1

2
)|2α|2 .

Background heating can be modeled as random displacements in phase space,

and the interference pattern for a given displacement can be calculated and averaged

over the distribution of the displacement. This is valid since the heating reservoir

is classical. If we assume the state |α〉 and |−α〉 were both displaced by a random

variable β at a random time t1 during the trajectory, then the state of the system
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Figure 4.2.4. Fluorescence signal from a thermal ion vs detuning of
the σ̂φ force. Probability Pthermal(↓) is plotted versus detuning δ accord-
ing to eq 4.2.7 for a) n̄ = 0, b) n̄ = 2. The horizontal axis (detuning
δ) is normalized to ηΩ, and t = 2π/ηΩ. At higher average vibrational
number n̄ (higher temperature), a small displacement can destroy the
coherence between the motion associated with each spin, resulting in
a higher probability of measuring the ion in ↓ state at higher values of
δ. In comparison, higher temperature produces a larger envelope over
the probability Pthermal(↓) and narrower fringes. Decoherence due to
vibrational heating ˙̄nt results in similar changes in P (↓).

Figure 4.2.5. Fluorescence signal from a thermal ion vs detuning of
the σ̂φ force. Probability Pthermal(↓) is plotted versus duration t of
the σ̂φ force according to eq 4.2.7 for a) n̄ = 0, and b) n̄ = 2. The
fringe contrast is narrower at higher temperature. Decoherence due to
vibrational heating ˙̄nt results in similar changes in P (↓).
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after the displacement becomes

(4.2.8) |ψβ(t1)〉 =
eiθ√

2
|↑φS〉

∣∣α↑φs (t1)
〉
− ei(φS−θ)√

2
|↓φS〉

∣∣α↓φs (t1)
〉
,

where

α↑φs (t1) = α0e
iφM (1− eiδt1) + β,

α↓φs (t1) = −α0e
iφM (1− eiδt1) + β,

θ = Im
{
α∗0e

−iφM
(
1− e−iδt1

)
β
}
.

Here θ is the geometric phase due to the displacement by β. For time t > t1,

(4.2.9) |ψβ(t)〉 =
ei(θ+µ1)

√
2
|↑φS〉

∣∣α↑φs (t)〉− ei(φS−θ+µ2)

√
2

|↓φS〉
∣∣α↓φs (t)〉 ,

where the coherent states evolve as

α↑φs (t) = α0e
iφm(1− eiδt) + β

α↓φs (t) = −α0e
iφm(1− eiδt) + β,

and the geometric phase from the displacement for each αm are

µ1 = Im

{∫ t

t1

α∗↑φs (t
′)dα↑φs (t

′)

}
,

µ2 = Im

{∫ T

t1

α∗↓φs (t
′)dα↓φs (t

′)

}
.

The random variable β has a Gaussian distribution with a variance of σ2 = ˙̄nt/2 for

both the real and the imaginary component, for a heating rate ˙̄n and duration time t

of the applied di�erential force. To �nd the probability of the ion in |↓〉 state, each of

the variables are integrated over all possible values of β with a Gaussian distribution:

(4.2.10) Pheating(↓) =

∫ ∞
−∞

dβP (β) |〈↓| ψβ(t)〉|2 =
1

2

{
1− e−

1
2

˙̄nt|4α0|2e−
1
2
|2α(t)|2

}
.

Combining the results from eq 4.2.5, eq4.2.7, and eq 4.2.10 to account for both tem-

perature and heating e�ects, the probability of the ion making a transition from |↑〉
to |↓〉 is

(4.2.11) Pc(↓) =
1

2

{
1− e−

1
2

˙̄nt|4α0|2−(n̄+ 1
2)|2α(t)|2

}
,

where α(t) = α0e
iφM (1− eiδt) and α0 = ηΩ/(2δ).

4.2.2. Experiment Setup. The simultaneous detuned �rst red and �rst blue

sidebands are generated using the existing non-copropagating Raman beam setup

described in chapter 3. As shown in �gure 4.2.6, the EOM frequency is �xed at

7266GHz and one arm of the Mach-Zehnder interferometer (designated by wave vector
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Figure 4.2.6. Vector and frequency con�gurations for applying the
σ̂φ force. In the experiment, the trap frequency is set to ν1 = 3.55MHz,
with the qubit frequency at ν0 =14530.5MHz. The EOM modulates
the optical �eds at 7266MHz, and two AOMs, one along each wave
vector kA and kB, act as beam switches and shifts the optical �elds
to the frequencies necessary to drive simultaneous Raman sideband
transitions. The modulation frequency of the AOM along wave vector
kA is kept �xed at 212MHz, while the AOM along wave vector kB is
modulating at both 209.95MHz an 206.95MHz to drive the red sideband
and the blue sideband transitions respectively. Alternative modulation
frequencies are 214.05MHz for the red sideband and 217.05MHz for
the blue sideband. The frequencies must satisfy ν0 − ν1 − δ = 2 ×
νEOM ± (νA − νB,red) for the detuned red sideband and ν0 + ν1 + δ =
2× νEOM ± (νA − νB,blue) for the detuned blue sideband.

kA) is frequency shifted by an AOM modulating at 212MHz. For a ω1 = 3.55MHz

trap frequency in the linear trap, the other arm of the Mach-Zehnder interferometer

(designated by wave vector kB) is frequency shifted by 214.05MHz or 209.95MHz to

drive the �rst blue sideband, and at 217.05MHz or 206.95MHz to drive the �rst red

sideband. The choice of frequencies a�ects the phase of the spin-dependent force,

which is important for a later discussion. For the moment, a 209.95MHz signal and

a 206.95MHz signal are multiplied using a mixer, and the output is used to drive the

AOM along vector kB. The two rf frequencies produce the bichromatic Raman �eld

for the interaction described by eq 4.2.1.

Before the experiment, Raman sideband cooling is setup according to the proce-

dures described in section 3.9. For the σ̂φ force, two frequency synthesizers separate

from the one controlling Raman cooling are frequency octupled independently to pro-

duce 209.95MHz and 206.95MHz frequencies before mixing. The mixed frequency has

an envelope at the di�erence frequency, and the power is attenuated such that the

maximum amplitude does not exceed the saturation power of the ampli�er, as to avoid

frequency distortion (the problem is similar for the octupler for both over-saturation

and under-saturation if the signal is mixed �rst). This change in the rf power also

changes the resonance of the transitions due to AC Stark e�ect, and each sideband

frequency is recalibrated for the spin-dependent force by scanning one rf frequency
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Figure 4.2.7. Calibration of sideband detunings δr and δb. The pulse
sequence is shown in a), where a π/2 carrier pulse is followed by the
application of the σ̂φ force with the red and blue sidebands having
opposite detunings δr = −δb = 2π × 5kHz. The frequency of the EOM
is scanned and the plot of P (↓) vs EOM frequency is shown in b).
The initial vibrational level is mostly in the ground state, and the π/2
carrier pulse places the ion in an equal superposition of ↑ and ↓, as
indicated by P (↓) = 1/2 in the background. When the EOM reaches
the resonant frequency of the red sideband transition, only a transition
from | ↓, n = 0〉 to | ↑, n = 1〉 is allowed but not | ↑, n = 0〉 to | ↓, n = 1〉,
resulting in a dip in the scan. The reverse is true when the EOM reaches
the resonant frequency of the blue sideband transition, resulting in a
peak in the scan. Using those two reference points, the EOM frequency
is set to exactly half way in between, thus calibrating the detunings δr
and δb to within 2π×100Hz di�erence.

while driving the AOM with both rf frequencies. The other rf frequency is detuned

from its associated sideband transition so that it is not driving any transition during

the frequency scan. The transition rates of the red sideband and the blue sideband

are also calibrated to be equal by a variable attenuator attached to one rf source.

The di�erence in the transition rates is caused by the optical separation in the two

frequencies (≤5% of the beam waist), and the di�erence in rf power caused by the

bandwidth of the octupler, the di�erence in cable lengths, and di�erent attenuation

from the rf switches. The transition rates are balanced to better than 10%.

Once the nominal rf frequencies are set, the detunings δr from the red sideband

and δb from the blue sideband are balanced even more precisely using the following

procedure. The frequencies are set to δr = −δb = 5kHz, or in this case, +5kHz from

resonance for both rf frequencies. A microwave π/2-pulse is turned on �rst before the

bichromatic Raman pulse, and the EOM frequency is scanned within a 20kHz range

centered around 7266MHz. Figure 4.2.7 shows a typical set of data collected from

the scan, with the dispersion shape indicating the precise red sideband resonance at

the peak and the precise blue sideband resonance at the valley. When the ion is in

the ground state, the red sideband transition is allowed from |↑ 0〉 → |↓ 1〉 but not
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Figure 4.2.8. Probability P (↓) plotted vs. detuning δ of the σ̂φ force
for (a) a ground state cooled and (b) a Doppler cooled ion, initially
prepared in |↑〉. The force is applied for 500µs. Data is run-time aver-
aged with 100 shots/point. Solid lines show �ts to Eq E.0.5 modi�ed
to include overall peak and contrast factors (for spontaneous emission)
and a detuning drift across the data. An initial �t for data in (a) with
n̄ = 0.05 �xed gives Ωsb/2π = 1.62(3)kHz and ˙̄n = 0.44(2)ms−1. A sub-
sequent �t for data in (b) with Ωsb/2π = 1.62kHz �xed n̄ = 5.6(1) and
˙̄n = 0.62(6)ms−1. The values of ˙̄n are 2-3 times larger than the directly
measured heating rate of 0.2ms−1 in the three-layer linear trap. Phase
space sketches (c)-(e) indicate ion evolution at detunings referenced in
(a). [49]

|↓ 0〉 → |↑ −1〉, resulting in the population gathering in the |↓〉 state. The inverse is
true for the blue sideband, resulting in the population gathering in the |↑〉 state. To
balance the detunings δr and δb, the EOM frequency is set to be exactly in between

the peak and the valley. This gives a precision between the two detunings δr and δb

to better than 100Hz.

4.2.3. Experiments. An experiment in which the duration T of the force is �xed

but the detuning is varied is shown in �gure 4.2.8. When the detuning is far from

resonance, the spin-dependent force is weak and the coherent states move in small but

fast circular trajectories. As the detuning gets closer to resonance, the diameter of the

orbit becomes larger, and the two coherent states become separated in space, as shown
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Figure 4.2.9. Single-ion evolution due to a spin-dependent bichro-
matic force. (a) Probability P c

↓ of measuring state |↓〉 plotted vs. force
duration τ . Ion is initially Doppler cooled. Data is run-time averaged
(100 shots/point) and smoothed. Solid line is a �t to eq E.0.5, modi-
�ed to include a linear change in peak and contrast (from spontaneous
emission) and a detuning drift across the data. Fit parameters include
Ωsb/2π = 2.2kHz (�xed), δ/2π = −5.46(3)kHz and n̄ = 8.1(3). (b)
& (c) Phase space sketches of the ion motion at points indicated in
(a). [49]

in �gure 4.2.8(c). In the measurement, the |↑φS〉 and |↓φS〉 no longer interfere with

each other since the overlap in position is small, and each state contributes a equal

mixture of |↑〉 and |↓〉 states, resulting in the probability P (↓) = 1/2. At detunings

δ = 2jπ/T where j is an integer, the coherent states complete their orbits and return

to their initial position, as shown in �gure 4.2.8(d). The two parts of the cat interfere

with each other to suppress the |↓〉 state, represented by a dip in the P (↓) signal.

This experiment is performed for two di�erent initial temperatures of the ion, a �hot�

case of a Doppler cooled ion and a �cold� case of a ion cooled to near the ground. The

data is �t to eq E.0.5 and temperature and heating rate are extracted from the �t.

On resonance where the force is strongest, the inferred cat state separation in 4.2.8

is ∆z ≈ 10z0, a factor of 2.8 larger than the rms size of the �hot� ion's thermal state.

The hot case has a broader envelope and narrower fringes because of the average over

the initial thermal distribution quickly draws the experiment outcome towards P (↓
) = 1/2, even for small displacements. Nevertheless, all initial states should return on

themselves at the same moment (within the Lamb-Dicke approximation) giving a full

revival. The overall decrease of contrast, particularly visible in the non-zero baseline,

is due to spin decoherence and optical pumping induced by spontaneous emission.

The detuning dependent fringe contrast is consistent with motional decoherence with

has a characteristic exponential sensitivity to the size of the cat state, largest near

resonance (δ ∼ 0).

Another experiment in which the duration of the force is varied before qubit

detection demonstrates the periodic entanglement in single ion evolution (see Fig
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4.2.9). In this case, the coherent states follow the same orbit, and the spin state is

measured at di�erent points along the orbit. A transition to P (↓) = 1/2 indicates

when a Schrödinger cat is formed. At this point, the motional wavepackets of the cat

state are su�ciently far separated that the spin interference is inhibited, yielding equal

probability of |↑〉 and |↓〉 in the measurement basis. At fringe minima corresponding

to δτ = 2jπ with j an integer, the motional states return to their original position

and overlap. The spin interference is restored, giving the initial state |↓〉 such that

P (↓) ≈ 0. This coherent process of periodic entanglement and disentanglement of the

spin and motional degrees of freedom continues with reasonable signal quality for at

least two oscillations.

4.2.4. Phase Coherence. Eq 4.2.2 contains two phases: φM = (φb−φr)/2 which
determines the orientation of the trajectory in phase space, and φS = −(φb + φr)/2

which determines the spin orientation to which the di�erential force is applied. Here

we want to investigate the stability of these phases and the e�ect on the coherence of

the entangling gate.

What is the stability of φS and φM? The component phases φr and φb have

dependence on the phase of the AOM modulation, the EOM modulation, and the

phase di�erence between the two Raman �elds. The �rst two can be controlled

reliably given a stable phase-lock loop between the di�erent frequency synthesizers.

The phase di�erence between two Raman �elds depend on kAxA − kBxB ' k∆x the

path length di�erence between the two arms of the Mach-Zehnder interferometer. To

keep k∆x stable to much less than a 2π cycle, the beam path length di�erence ∆x

must be stable at the sub-wavelength scale, a condition which is satis�ed on the time

scale of a single gate ∼ 100µs but di�cult to maintain on a longer time scale due

to mechanical vibrations of the optics and the trap. Therefore, the corresponding

phases φS and φM may not be stable beyond a gate pulse.

In the experiments described previously, the phases φS and φM need not be corre-

lated beyond the duration of an applied spin-dependent force pulse. However, for the

quantum entangling gate, these phases play a critical role. In a standard phase gate

construction, the spin-dependent force is applied with a detuning and duration where

every coherent state can complete an integer number of loops. At the �nish of the

gate pulse, the spin and motion are no longer entangled, but the internal states of the

two ions are now entangled. This prevents the loss of quantum information due to

motional decoherence outside the gate duration. In these scenarios, the subsequent

gates have no memory of the motion phase φM from previous gates, but the spin

phase φS from previous gates is retained in the internal states of the operated qubits.

Therefore, the spin phase φS need to be consistent throughout multiple experiments,
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Figure 4.2.10. Possible beam con�gurations for the σφ gate (in a
simpli�ed case where the Raman �elds have no sidebands). a) Phase
sensitive con�guration. The wave-vector di�erence for pairs of frequen-
cies driving the red sideband and the blue sideband travel in the same
direction ∆kr = ∆kb, using the frequency con�guration shown in Fig-
ure 4.2.1 a) i) ). A phase shift δφ in one beam path results in a phase
shift in the spin of the entangled state. b) Phase insensitive con�gu-
ration. The wave-vector di�erence for pairs of frequencies driving the
red sideband and the blue sideband travel in the opposite direction
∆kr = ∆kb, using the frequency con�guration shown in Figure 4.2.1 a)
ii). A phase shift δφ in one beam path results in no net phase shift in
the spin of the entangled state.

while the requirements for the motion phase φM is less stringent. However, both φS

and φM still need to be stable during a gate pulse.

Phase sensitive geometry. Consider the following scenario in the experiment: the

modulation frequency of the EOM is �xed at ωEO = 2π × 7266MHz and the modu-

lation frequency of the AOM in path A of the Mach-Zehnder interferometer is �xed

at ωA = 212MHz, and the AOM in path B of the interferometer is modulating at

ωB,r = ωA− (2ωEO−ω0−ω1−δ) = 2π×206.9MHz+δ for the red sideband transition

and ωB,b = ωA − (2ωEO − ω0 + ω1 + δ) = 2π × 214.1MHz − δ for the blue sideband
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transition. Each frequency component in path A combined with its second lower side-

band in path B drives a red sideband (or blue sideband) transition. Therefore the

phases φr and φb are both directly correlated with kAxA−kBxB = −k∆x. The phase

φS therefore also su�ers the same sensitivity to the path length di�erence −k∆x of

the Mach-Zehnder interferometer.

If the AOM in path B is instead modulating at ωB,r = ωA + 2ωEO−ω0−ω1− δ =

2π × 217.1MHz − δ for the red sideband and ωB,b = ωA + 2ωEO − ω0 + ω1 + δ =

2π × 209.9MHz + δ for the blue sideband, then each frequency component in path A

combined with its second higher sideband in path B drives a red sideband (or blue

sideband). This time the phases φr and φb are correlated to +k∆x, and the spin

phase φS still su�ers a sensitivity to changes in the path length di�erence, except in

the opposite direction as before.

Phase insensitive geometry. But what if the AOM modulates at opposite fre-

quency components for the two sideband transitions? For example, if the AOM

modulates at ωB,r = ωA − (2ωEO − ω0 − ω1 − δ) = 2π × 206.9MHz + δ for the red

sideband transition and ωB,b = ωA + 2ωEO−ω0 +ω1 + δ = 2π× 209.9MHz+ δ for the

blue sideband transition, then φr is correlated with −k∆x while φb is correlated with

+k∆x. Any change in ∆x will cancel itself in φS, allowing φS to remain independent

of �uctuations in the Mach-Zehnder interferometer beam path lengths, but the user

still maintains control of φS through phase of the rf frequencies driving the EOM and

the AOMs. Interestingly, the phase drift due to changes in the path length di�erence

∆x is now shifted to the motion phase φM = (φb−φr)/2. This means the trajectories
of the coherent states in phase space will rotate by a random angle depending on

k∆x, but as long as k∆x remains stable during the gate, the outcome of the gate

operation will remain the independent of k∆x.

Phase stability experiment. In order to observe the phase sensitivity of the Mølmer-

Sørensen force, an interference technique is required. Ramsey interferometry com-

bined with Schrödinger cat formation provides a �uorescence signal that is sensitive

to the orientation of the force's spin basis, characterized by the phase φs. The essence

of the procedure is to rotate the spin of the initial state |↑〉 with a π/2-pulse into the

xy-plane at some azimuthal angle φ0. This results in the state

(4.2.12)
1√
2

(
|↑〉+ eiφ0 |↓〉

)
= ei

(φ0−φS)
2 cos

(
φ0 − φS

2

)
|↑φS〉+ iei

(φ0+φS)
2 sin

(
φ0 − φS

2

)
|↓φS〉
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Figure 4.2.11. Phase sensitivity of the σφ force for di�erent beam
con�gurations. (a) Pulse sequence of a photon-echo experiment for
testing optical phase sensitivity of the σφ force. The echo pulses are
carrier transitions driven by non-copropagating Raman beams propa-
gating along the same wave-vectors as the σφ force, and an applied
phase shift φ0 is added using an acousto-optic modulator that controls
the timing of the pulse. The σφ force is applied for su�cient time such
that the two motional states corresponding to spin states |↑φ〉 and |↓φ〉
have very little overlap at time τ . A separate pulse in the other arm
of the echo experiment cancels the residual AC Stark shift induced by
the �eld driving the σφ force (the ratio ω0/∆ is signi�cant enough to
produce a non-negligible di�erential Stark shift between the two qubit
states in this experiment) . (b) Probability of detecting |↓〉 vs. applied
shift in the phase of the echo pulses φ0 using the phase sensitive con�gu-
ration described in section 2.3.1 and Figure 4.2.10a. The fringe contrast
shows coherence between the phase φ in the σφ force and the phase φ0

in the Raman carrier pulses (Probability should vary sinusoidally from
0 to 0.5 when there is no decoherence). (c) Same plot using the phase
insensitive con�guration described in section 2.3.2 and Figure 4.2.10b.
This time there is no coherence between the phase-insensitive σφ force
and the phase-sensitive non-copropagating Raman carrier pulses.

where φ0 is the reference phase associated with the π/2-pulse. The Mølmer-Sørensen

force is then applied, and the state after the pulse (factoring out an overall geometric

phase) is

(4.2.13)

ei
(φ0−φS)

2 cos

(
φ0 − φS

2

)
|↑φS〉 |α(τ)〉+ iei

(φ0+φS)
2 sin

(
φ0 − φS

2

)
|↓φS〉 |−α(τ)〉 .
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Finally a 3π/2 analysis pulse, represented by the operator in the {|↑〉 , |↓〉} basis

(4.2.14) R′ =

(
−1 −e−iφ0

eiφ0 −1

)
,

returns the spin to the z-axis before measurement, resulting in the state

(4.2.15)

{
−1

2
[1 + cos (φ0 − φS)] |↑〉+

ieiφ0

2
sin (φ0 − φS) |↓〉

}
|α(τ)〉

+

{
i

2
[1− cos (φ0 − φS)] |↑〉 − ieiφ0

2
sin (φ0 − φS) |↓〉

}
|−α(τ)〉 .

A signal sensitive to φs − φ0 is obtained as follows:

(4.2.16) P (↓) = Pc(↓)sin2(φ0 − φs)

where Pc(↓) is given by Eq E.0.5. As long as the detuning and duration of τ are

chosen to generate a signi�cant displacement (α(τ)� 1), the signal is approximately
1
2
sin2(φ0 − φs). If the initial π/2 pulse rotates the ion's spin into a state in which the

force is diagonal (φ0 = φs +mπ with m being an integer), a displacement occurs but

no entangled cat state is formed. Therefore following the analysis pulse, the ion's

spin returns to its initial state |↑〉 such that P (↓) = 0. On the other hand, if the

rotated initial state deviates from this special condition (φ0 6= φs + mπ), then the

state is a superposition of the force's spin basis and a Schrödinger cat is formed. This

is revealed by a net �uorescence signal on analysis.

For the experiment, we use the optical Raman carrier transition to drive the π/2

pulses. The actual pulse sequence for the interferometry employs a photon echo

scheme where the 3π/2 analysis pulse is divided into a πand a π/2 pulse (see �g

4.2.11(a)). This provides a convenient way to cancel the e�ect of Stark shifts (∼ 20

kHz) from the optical carrier pulses as well as from the MS force itself. The Stark-

induced phase from the MS pulse is canceled by introducing a bichromatic pulse,

far detuned from the motional resonance, into the second echo zone. For the data

shown in the top graph in �gure 4.2.11(b), the rf modulating frequencies are set to

ωB,r = 2π× 206.9MHz for the red sideband transition, ωB,b = 2π× 214.1MHz for the

blue sideband transition, and ωB,c = (ωB,b +ωB,r)/2 = 2π× 210.5MHz for the carrier

transition. The carrier must be exactly half way in between the red sideband and the

blue sideband frequency to maintain a consistent relative phase between the di�erent

rf signals for each trial in the experiment. The carrier pulses which act as a phase

reference are subject to the same optical phase drifts as the sidebands creating the

bichromatic force. Therefore the interferometric signal P (↓)is expected to be stable

for the phase sensitive Raman setup in Fig 4.2.10(a) where �uctuation in the force's

spin phase φs are common to the reference phase φ0. A scan of the reference phase
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Figure 4.3.1. Optical �elds generating a σ̂z-dependent force. A σ̂z-
dependent force is driven by electromagnetic �elds with two frequencies
separated by ων + δas shown in a). These �elds couple the two qubit
states to the excited states with di�erent coupling strengths (depending
on polarization), producing a di�erential AC Stark shift that oscillates
at ων + δ. The two �elds must have a non-zero wave-vector di�erence
∆k = kβ − kα with a component in the zT direction.

in Fig 4.2.11(b) shows interference fringes with nearly full contrast (maximum being

1/2). This remains the case even with a piezoelectric transducer slowly modulating

at 1Hz one Raman arm by an optical wavelength.

When the MS force is generated with the phase insensitive setup in Fig 4.2.10(b),

the phase correlation in the interferometric signal is washed out. In this case, the

force's spin dependence, now decoupled from instabilities, is no longer correlated with

the optical phase �uctuations on the carrier pulses. The data shown in the bottom

graph of Fig 4.2.11(b) uses the rf modulating frequencies at ωB,r = 2π×206.9MHz for

the red sideband transition, ωB,b = 2π × 209.9MHz for the blue sideband transition,

and ωB,c = 2π×212MHz−(ωB,b−ωB,r)/2 = 2π×210.5MHz for the carrier transition.

This con�guration did not require the addition of any Raman path-length modulation

to spoil the fringe contrast as inherent phase drifts on the optical table were a su�cient

source of noise over the 200ms experiment averaging time.

4.3. The σ̂z-force

When the interaction Hamiltonian has a term proportional to σ̂ ·z, the interaction
of equation 4.1.7 creates a di�erential force on the eigenstates of the unperturbed

Hamiltonian. This interaction is special because it does not directly couple the two

eigenstates of σz, and thus the Raman beam frequencies only need to di�er by the

vibrational frequency rather than the much larger qubit frequency. In this case, the
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Raman beams form a beating wave, and the ions sample the beats at a rate of the

frequency di�erence as they travel along the weakest trap dimension. Due to the AC

Stark e�ect, this wave becomes essentially a moving periodic potential, exerting a

near-resonant force on the ion in the direction of travel. If the AC Stark e�ect has

di�erent amplitudes on the qubit states, then the forces experienced by the two states

will also be di�erent.

The σ̂z force is driven by two non-copropagating beams with frequency di�erence

ω1−δ, where ω1 is the frequency of vibration and δ is the detuning from the vibration

frequency. We apply two �elds EAe
i(kA·x−ωAt−φA)εA + EBe

i(kB ·x−ωBt−φB)εB where the

frequency di�erence ωB − ωA = ω1 − δ is slightly detuned from the stretch mode

frequency. The �eld couples each of the spin states to the excited P state, and

is detuned by a large frequency ∆ (see Figure 4.3.1). Using the same RWA and

adiabatic elimination of the excited state used to obtain Equation ??, the interaction

Hamiltonian for a single ion becomes

ĤI =
~
2

{[
χ↑ +

(
Θ↑e

i(∆k·R̂−(ω1−δ)t−∆φ) + h.c.
)]
|↑〉 〈↑|

(4.3.1) +
[
χ↓ +

(
Θ↓e

i(∆k·R̂−(ω1−δ)t−∆φ) + h.c.
)]
|↓〉 〈↓|

}
where χm = (|gm,A|2 + |gm,B|2)/2∆ is the time-averaged Stark shift on the state

m =↑, ↓ and Θm = g∗m,Agm,B/∆ is the time-varying component in the Stark shift due

to the variation in the intensity formed by the interference pattern that pushes the

ion. Here gm,l = µm · εlEl/2~ is the single photon Rabi frequencies associated with

each �eld l coupling qubit state |m〉 to excited level |e〉, ∆k = kB − kA is the wave

vector di�erence, and ∆φ = φB−φA is the phase di�erence between the driving �elds.

The time-averaged Stark shifts can be equalized (χ↑ = χ↓) by carefully choosing the

Raman detuning ∆ (with coupling to auxiliary excited levels) and the polarizations

εA and εB [50]. The Θm terms result in a time-dependent force applied to each state.

For Θ↑ 6= Θ↓, a di�erential Stark shift creates a di�erential force between the qubit

states. In the Lamb-Dicke limit, assuming that the detunings ∆ are approximately

the same for the two spin states (∆� ω0), the interaction Hamiltonian for two ions

can be written as

(4.3.2) ĤI =
~
2

∑
m=↑,↓

ηΘmDn,n′
(
âe−i(δt−φ) + â†ei(δt−φ)

)
|m〉 〈m|

=
∑
m=↑,↓

(
F ∗mz0

2
âe−iδt +

Fmz0

2
â†eiδt

)
|m〉 〈m| ,

where Fmz0 = (~ηDn,n′/∆)Θme
iφ, and φ = ∆φ.
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This σ̂z force can be applied only when the instantaneous di�erential Stark shifts

are di�erent for the two qubit levels (Θ↑ 6= Θ↓ ), which is not true for all pairs of

qubit states. For example, magnetic �eld insensitive states have no di�erential Stark

shift in the limit of large Raman detuning ∆ � ω0 (see Appendix F). Therefore,

in order to apply this σ̂z force, we must either select magnetic �eld sensitive states

as qubit levels, or have a smaller Raman detuning approximately of the order of the

qubit frequency (∆ ∼ ω0). Here we choose to use magnetic �eld sensitive states as

qubit levels, with |↑〉 ≡ S1/2 |F = 0,mF = 0〉 and |↓〉 ≡ S1/2 |F = 1,mF = 1〉 as the
qubit states. The two driving �elds have a lin⊥lin polarization and wave-vectors as

shown in �gure 3.5.3, resulting in a balanced average Stark shift between the spin

states χ↑ = χ↓ in the limit of large detuning ∆� ω0. However, the contributions to

the di�erential Stark shift from the σ+ component of the �elds and the σ− component

of the �elds have opposite signs, resulting in a complete cancellation of di�erential

Stark shift Θ↑ = 0 for the |↑〉 state and a non-zero net force Θ↓ = (2/3)× g∗AgB/∆ for

the |↓〉 state, with the factor of 2/3 as the di�erence in the branching ratios of the

two polarization components.

4.3.1. Experiment. The σz force can be demonstrated similarly to the exper-

iment for the σφ force. The ion is �rst prepared in a superposition of the two spin

states (|↑〉+ |↓〉) /
√

2 and a pulse of σ̂z force is applied. The resulting state is

(4.3.3)
1√
2
|↑〉 |0〉+

1√
2
eiΦ(t) |↓〉 |α(t)〉 .

The coherent state associated with the |↑〉 component of the wavefunction is station-

ary because the force on |↑〉 is zero, while the coherent state associated with the |↓〉
translates in time as α(t) = α0e

−iφ(1 − e−iδt) with α0 = ηDn,n′Θ↓e
iφ/2δ∆, and ac-

cumulates a geometric phase Φ(t). To obtain an interference fringe between |0〉 and
|α(t)〉, a �nal 3π/2 carrier pulse is applied. The probability of the ion in |↓〉 state is

(4.3.4) P (↓) =

∣∣∣∣12 |0〉+ eiΦ(t) |α(t)〉
∣∣∣∣2

=
1

2

(
1− e−2|α(t)|2cos [Φ(t)]

)
.

Accounting for decoherence due to temperature and motional heating, the expected

signal from the experiment is

(4.3.5) P (↓) =
1

2

(
1− e−

1
2

˙̄nt|4α0|2−(n̄+ 1
2)|2α(t)|2cos [Φ(t)]

)
.

In the experiment, two beams from a monochromatic UV laser source ∆ = 150GHz

detuned from the P3/2 resonance are combined at the ion. The duration of the force

is �xed while the detuning δ is varied by scanning the rf modulation frequency of
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Figure 4.3.2. Probability P (↓) vs. detuning of the σ̂z-force. The
probability is plotted versus the AOM modulation frequency, with
209.98MHz corresponding to detuning δ = 0 of the σ̂z force. The
ion is initially prepared in |↑〉 and σ̂z force is applied for 56µs. Data
is run-time averaged with 50 shots/point. The solid line shows �ts to
equation 4.3.5 modi�ed to account for spontaneous emission.

an AOM in one beam path while holding the rf modulation frequency of the AOM

in the other beam path constant at 212MHz. The ion is Doppler cooled before each

trial of the experiment with no additional Raman sideband cooling. Microwaves

�elds are used to drive the carrier transitions, and the 3π/2 pulse is divided into a

π and π/2 pulse, and an additional optical pulse in the second echo zone cancels the

Stark-induced phase shift. The result is shown in �gure 4.3.2.

Because the σ̂z force can only operate on magnetic �eld sensitive states, �uctuating

magnetic �eld becomes the main source of decoherence. As the result of Ramsey

experiment in �gure 4.3.3 shows, the magnetic �eld sensitive qubit maintains its

coherence for less than 100µs. This indicates that a σ̂z force induced quantum logic

gate must operate in much less than 100µs, and the signal in �gure 4.3.2 demonstrates

that this time constraint can not be satis�ed unless a signi�cant increase in optical

power is available.
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Figure 4.3.3. Ramsey experiment to test the coherence of qubits. The
results for magnetic �eld insensitive clock qubit (top) and magnetic �eld
sensitive qubit (bottom) are shown in the graphs. The ion is initially in
the |↑〉 =

∣∣S1/2, F = 0,mF = 0
〉
state, and two carrier microwave π/2

pulses are applied at times separated by delay time t. The probability
of transfer to the |↓〉 (de�ned as

∣∣S1/2, F = 1,mF = 0
〉
for the top graph

and
∣∣S1/2, F = 1,mF = 1

〉
for the bottom graph) is plotted versus the

delay time. The magnetic �eld insensitive qubit su�ers almost no phase
decoherence after 1ms delay, while the magnetic �eld sensitive qubit has
no phase coherence after 100µs.
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CHAPTER 5

Two-Ion Entangling Gates

To understand the entanglement of two ions through their collective motion, we

examine the original entanglement scheme proposed by Cirac and Zoller, which imple-

ments a controlled-NOT (CNOT) gate through coupling of each qubit to a common

mode of motion in the trap. The CNOT gate �ips the state of a target qubit (e.g.

|↓2〉 ↔ |↑2〉) only when the control qubit is in state |↓1〉. This universal two qubit

logic gate yields the following truth table:

(5.0.1) |↑↑〉 → |↑↑〉

|↑↓〉 → |↑↓〉

|↓↑〉 → |↓↓〉

|↓↓〉 → |↓↑〉

How can the spin of one state be rotated coherently conditional on the state of

the other qubit? Upon closer examination of the scheme, the CNOT gate can be

decomposed into three steps:

(1) a carrier π/2 pulse on the target qubit with associated phase φ

(2) a π phase gate on two ions

(3) a carrier −π/2 pulse on the target qubit with phase φ (step (1) reversed).

Steps (1) and (3) are simply carrier couplings on the target qubit ion, and step (2)

contains the essential entangling process. In the original proposal, the internal qubit

state of the control ion is mapped onto the collective motion, and a 2π pulse coupling

a speci�c spin and motion state of the target ion to an auxiliary state outside of the

spin/motion system is applied, resulting in a π phase shift only for that particular

state. The motion is then mapped back to the control qubit. The key mechanism

here is to obtain a phase that is dependent on the qubits' state, which is satis�ed by

the resonance condition for accessing the auxiliary level. This π phase gate produces

a truth table:

(5.0.2) |↑↑〉 → |↑↑〉

|↑↓〉 → |↑↓〉
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|↓↑〉 → |↓↑〉

|↓↓〉 → − |↓↓〉

An alternative method for generating a π phase gate is to apply a spin-dependent

force on two (or more) ions simultaneously. The forces on the two ions add, creating

a state-dependent displacement in the momentum/position phase space. The spin-

dependent forces are designed such that upon completion of the displacement, each of

the phase space trajectories returns to the initial state, removing any entanglement

between the spin and motion while leaving a state-dependent geometric phase. The

geometric phase acquired by each trajectory contains a nonlinearity that can result in

an entangled �nal spin state that can not be separated into the two independent qubit

subspaces. This is the central concept in the σφ force gate proposed by Mølmer and

Sørensen [13,20], the σz force gate proposed by Milburn [14], and also in ultrafast

gates that operate on a time scale of less than a trap period [16]. The slower spin-

dependent force gates operating in the resolved sideband limit have previously been

demonstrated experimentally [15,17]. However, the σφ force gate was implemented

in a regime where the force is far detuned from the vibrational frequency, as described

in the original proposal by Mølmer and Sørensen. In our experiments, a near resonant

spin-dependent σφ force is applied to create Schrödinger's cat states similar to the

ones described in the previous chapter, and the spin states acquire the appropriate

geometric phases in one complete orbit that results in an operation equivalent to a

π phase gate. This method creates maximum entanglement in the shortest possible

gate time for a given optical power. In section 5.1, we will generalize the construction

of a phase gate using the spin-dependent forces described in the previous chapter,

followed by the experimental implementation of σφ gate in section 5.2.

5.1. Entanglement through geometric phases

For two ions in the same harmonic potential coupled through Coulomb interaction,

the normal modes of vibration are de�ned by the center-of-mass coordinate q̂1 =

(ẑ1 + ẑ2)/
√

2 and a �stretch� coordinate q̂2 = (ẑ1− ẑ2)/
√

2 [31]. The Hamiltonian for

the collective system is summed over both ions and both vibrational modes:

(5.1.1) Ĥ0 =
∑
i=1,2

~ω
2
σ̂(i)
z +

∑
ν=1,2

~ων â†ν âν ,

where ω1 (equal to the harmonic oscillator frequency) and ω2 =
√

3ω1 are the fre-

quencies associated with the center-of-mass and stretch modes, respectively, and â†ν
and âν are their respective harmonic oscillator creation and annihilation operators.
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The z component of the position operator r̂i for ion i can be rewritten in the normal

mode coordinates

(5.1.2) ẑi =
q1√

2

(
â1 + â†1

)
± q2√

2

(
â2 + â†2

)
,

where qν =
√

~/2Mων is the root mean square spatial spread of the ground state

wavepacket for the normal mode ν of oscillation in the trap, M is the single ion mass

and the plus (minus) sign refers to ion i = 1 (i = 2). The Lamb-Dicke parameters

are given by η1 = ∆kzq1/
√

2 and η2 = ∆q2/
√

2 = η1/
4
√

3, representing the strength

of coupling between the �elds and each normal mode.

A spin-dependent force applied simultaneously to two ions in the same trapping

potential must couple to one of the normal modes of vibration. In this case we choose

the stretch mode because of its lower heating rate (requires a �eld gradient to excite

the stretch mode) [51]. The total force on the system is now dependent on the spin

of both ions. The interaction Hamiltonian becomes

ĤI =
∑

m1,m2=↑n,↓n

(
Fm1,m2(t)q2

2
â†2 +

F ∗m1,m2
(t)q2

2
â2

)
|m1,m2〉 〈m1,m2| ,

where m1 and m2 denote the internal qubit states of ion 1 and ion 2, respectively,

and Fm1,m2 = Fm1 + Fm2 is the total force applied to the state |m1,m2〉. In an

enclosed loop, the geometric phase is Φm1,m2 = 2π |Fm1,m2q2|2 / (~δ)2. For simplicity,

we consider the special case where the force applied to both ions has equal magnitude

but opposite phase, i.e. Fm1 = −Fm2 for m1 = m2. Each spin state is transformed

after one enclosed orbit as:

(5.1.3) |↑n↑n〉 → |↑n↑n〉

|↑n↓n〉 → eiΦodd |↑n↓n〉

|↓n↑n〉 → eiΦodd |↓n↓n〉

|↓n↓n〉 → |↓n↑n〉

where Φodd = 2π |F↑n,↓nq2|2 / (~δ)2. When Φodd = π/2, the gate is equivalent to the

π phase gate in the σn basis states with a phase shift of π/2 on both qubits. This

entanglement operation from σn basis where n = sinθcosφx̂ + sinθsinφŷ + cosθẑ can

be converted to the standard π phase gate in the σz basis using the following steps:

(1) A rotation R(θ, φ+ π) that brings ↑ to ↑n
(2) perform the geometric phase gate in σn basis with Φodd = π/2

(3) A rotation R(θ, φ− π) that brings ↑n back to ↑
(4) Perform a phase shift Rz(−π/2)
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Figure 5.2.1. Two views of the Mølmer-Sørensen σ̂φ ⊗ σ̂φ entangling
gate, for two ions in (a) energy space [13], and (b) motional phase
space for the gate in diagonal spin basis [35]. The quantum number n
and phase space co-ordinates describe a given collective motional mode.
Red and blue Raman sideband couplings are labeled by r and b and
have detuning δb = −δr = δ. For a closed phase space trajectory, the
geometric phase Φ depends only on the area enclosed. The original pro-
posal by Mølmer and Sørensen operates in a regime where the detuning
δ su�ciently large such that coherent states are not far separated in
phase space but rather requires many orbits to acquire a π/2 geometric
phase, and therefore the o�-resonant coupling picture in (a) is more
appropriate. In our case where the coherent state separation is large,
the phase space picture in (b) is more appropriate.

5.2. σφ force gate

In the original gate proposal by Mølmer and Sørensen, the σφ force interaction is

described in the limit where the frequency of the force is detuned from the resonant

vibration frequency farther than the Rabi frequency, i.e. δ � Ω, where the orbits of

the coherent states are small and geometric phase is accumulated over many cycles

[13,20]. In such a regime, the operation can be viewed as a transition between |↑↑ n〉
and |↓↓ n〉 via o�-resonant couplings to |↑↓ n± 1〉 and |↓↑ n± 1〉 in a four-level ladder
system. Here we focus on the near resonant case where the orbits are so large that

the odd parity states acquire a π/2 geometric phase in one complete cycle t = 2π/δ.

Therefore, the interaction here is described in terms of spins and displaced motional

states as is done in chapter 4.

Recall the σφ force employs simultaneous addressing of both ions with bichromatic

�elds, one detuned from the red sideband of a vibrational mode (stretch mode in this

case) by frequency δ and the other from the blue sideband by−δ. The scheme assumes
uniform intensity across both ions, with no individual addressing necessary. The two

sidebands have equal strength η2Ω/2, and the detuning δ is small compared to the

vibration frequency spacing ω2 − ω1 such that we can assume the force couples only
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to the stretch mode. Similar to eq 4.2.1, the interaction Hamiltonian is the sum of

the red sideband and the blue sideband with detuning δ acting on both ions:

(5.2.1) ĤI = −~η2Ω

2

∑
i=1,2

(σ̂
(i)
+ â2e

−i(δt−φr,i) + σ̂
(i)
+ â†2e

i(δt+φb,i) + h.c.)

where Ωsb = η2Ω0D
′
n2,n′2

is the sideband Rabi frequency, and φr,i and φb,i are the

phases of the red and blue sidebands respectively at the position of ion i. We can

simplify this expression to:

(5.2.2) ĤI =
∑
i=1,2

Fiq2

2
σ̂φS,i(e

iφM,i â2e
iδt + e−iφM,i â†2e

−iδt),

=
∑

m1,m2=↑φS,1 ,↓φS,1

(
F ∗m1,m2

q2

2
â2e

iδt +
Fm1m2q2

2
â†2e
−iδt
)
|m1m2〉 〈m1m2|

where

(5.2.3) σ̂
(i)
φS,i

= σ̂i · [cos(φS,i)x + sin(φS,i)y] = σ̂
(i)
+ e−iφS,i + σ̂

(i)
− e

iφS,i .

Here Fi = ~η2ΩeiφM,i/q2 is the di�erential force on the i-th ion, φS,i = −(φb,i +φr,i)/2

is the spin phase of the i-th ion, φM,i = (φb,i − φr,i)/2 is the phase of the force on

the i-th ion, and Fm1,m2 = ±F1e
−iφM,1 ± F2e

−iφM,2 where +Fi (−Fi) corresponds to
the force on the spin state mi =↑φS,i (mi =↓φS,i) on the i-th ion. Following the

formula for a geometric phase gate prescribed in the previous section, we set the

phase of the force acting on the two ions to be opposite, i.e. F1e
iφM,1 = −F2e

iφM,2 , and

choose δ and F such that the round-trip geometric phase satis�es the condition Φ0 =

2π |F1q2|2 /(~δ)2 = π/2. The resulting state from the interaction is the transformation

in eq 5.1.3 with n = (φS,1 + φS,2)/2. Written in the σ̂z basis produces the following

truth table:

(5.2.4)

|↑↑〉 → 1√
2

{
|↑↑〉 − iei(φs1+φs2) |↓↓〉

}
|↑↓〉 → 1√

2
{|↑↓〉 − i |↓↑〉}

|↓↑〉 → 1√
2
{|↓↑〉 − i |↑↓〉}

|↓↓〉 → 1√
2

{
|↓↓〉 − ie−i(φs1+φs2) |↑↑〉

}
Note that after the gate, only the spin phase remains, while the motion phase has no

e�ect on the �nal state.

As we have shown in chapter 4, the frequency selection of Raman �elds can de-

termine whether there is a correlation between the spin phase φS,1 + φS,2 and the

random phase due to the interferometric instability of the Raman beams. Similar to

the Schrödinger cat experiments, phase stability between the σφ gate operation and

single qubit operations can be maintained by requiring the same phase dependence
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for both entangling gate and single qubit rotations. For the phase sensitive geometry,

the single qubit rotation should be performed using non-copropagating Raman �elds

with the same phase sensitivity as the red and blue sidebands, and for the phase in-

sensitive geometry, the single qubit rotations should be performed using microwaves

or copropagating Raman �elds. However, the phase insensitive geometry contains a

motion phase that is dependent on the interferometric �uctuations, and the relative

motion phase between the two ions needs to be calibrated using the ion spacing. To

ensure the force on the two ions are opposite in the stretch mode, the phase of the

Raman �elds must be the same at both ions' locations, which can be accomplished

by setting the ion spacing equal to an integer multiple of wavelengths (x1−x2 = nλ).

If the center-of-mass mode is used instead, then the ion spacing should be a half-

integer multiple of wavelengths (x1−x2 = (n+1/2)λ) so the ions experience opposite

phases of the Raman �elds and therefore an opposite force on the two ions in the

center-of-mass mode. Incidentally, the gate can operate with both integer and half-

integer multiple of wavelengths for ion spacing, though in some cases it is the even

parity states (↑↑ and ↓↓) that acquires the geometric phase rather than the odd parity
states. The phase sensitive geometry always has the same relative red/blue sideband

phases, and therefore the ions always experience a force in the opposite direction for

the stretch mode and in the same direction for the center-of-mass mode.

To establish long term phase stability of an extended sequence of quantum logic

operations, the spin phase dependence between multiple gates can be removed com-

pletely by recasting the σφ gate into a π phase gate in the σz basis using the procedure

outlined at the end of section 5.1. The π phase gate explicitly written in eq 5.0.2 is

independent of the reference qubit phase, and therefore the spin phase in the σφ gate

becomes irrelevant outside of the conversion to the π phase gate in σz basis. This

allows the computing algorithm to continue for longer than the coherence time of

the Mach-Zehnder interferometer even when the entangling gate is accomplished us-

ing the phase sensitive geometry, as long as the single qubit operations outside the π

phase gates maintain coherence (as can be achieved with microwaves or copropagating

Raman beams generated by a signal phase-locked to an atomic clock).

Similar to the Schrödinger cat experiment in the previous chapter, the generation

and the evolution of the entangled spin/motion state can be observed by varying the

time and detuning of the applied force. With an initial state of |↑↑〉, the state evolves
in time as

(5.2.5) |ψ(t)〉 =
1

2

{∣∣↑φs,1↑φs,2 ; 0
〉
− eiφS,1eiΦ(t)

∣∣↓φs,1↑φs,2 ;α(t)
〉

−eiφS,2eiΦ(t)
∣∣↑φs,1↓φs,2 ;−α(t)

〉
+ ei(φs,1+φs,2)

∣∣↓φs,1↓φs,2 ; 0
〉}
.
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Figure 5.2.2. Schematic of the noise eater feedback loop. The in-
tensity of the zeroth order di�raction of the AOM is monitored by a
photo-diode and stabilized around a set point. The noise eater circuit
outputs an error signal between 0 and 1 volt, which is mixed with the rf
modulation signal to control the modulation strength (di�raction e�-
ciency) of the AOM depending on how much correction in the power is
required. Excess optical power is removed by the �rst order di�raction
of the AOM.

where the coherent states are de�ned by α(t) = η2Ω(eiδt − 1)/δ and the geometric

phase is Φ(t) = (η2Ω)2(δt − sin(δt))/δ2. The measurement in the experiment is

the average number of atoms in the |↓〉 (bright) state, which is de�ned to be S̄ =

P (↑↓) + P (↓↑) + 2 × P (↓↓). From eq 5.2.5 we can calculate the probabilities in the

measurement to be

(5.2.6) P (↑↑) =
1

4

{
1 + 2e−

1
2
|α(t)|2cosΦ(t) +

1

2

(
1 + e−2|α(t)|2

)}
P (↑↓) =

1

8

{
1− e−2|α(t)|2

}
P (↓↑) =

1

8

{
1− e−2|α(t)|2

}
P (↓↓) =

1

4

{
1− 2e−

1
2
|α(t)|2cosΦ(t) +

1

2

(
1 + e−2|α(t)|2

)}
.

Therefore the expected average number of ions in the |↓〉 state is

(5.2.7) S̄ =
1

2

{
1− e−

1
2
|α(t)|2cosΦ(t)

}
.

5.2.1. Laser intensity stabilization. The spin-dependent force induced entan-

gling gates are extremely sensitive to laser intensity �uctuations, mainly because of

the long duration (on the order of 100µs) of the ion-�eld interaction compared to the
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Figure 5.2.3. Circuit diagram for the noise eater. The photodiode
biased at -12V produces about 0.01Amp per watt of optical power.
Typically, the photodiode receives about 300µW of optical power, pro-
ducing a 300mV signal at the monitor output. The input is locked to
the setpoint control, and the gain of the circuit (controlled by a discrete
coarse gain knob and a continuous tuning �ne gain knob as shown in
the diagram) is tuned to right below the point where the signal starts
to oscillate due to the feedback. The bandwidth of the entire feed-
back loop is ∼100MHz, limited by the rise time of the acousto-optic
modulator. The gain pro�le of the circuit rolls o� approximately as
9dB/octave, crossing unity gain at around 250kHz.

Raman transitions (on the order of 10µs for a π-pulse carrier transition). The �uctu-

ation in the intensity translates to a variation in the magnitude of the spin-dependent

force, resulting in a variation in the geometric phase that becomes a source of deco-

herence for the entangling gate. In the laboratory, we use several passive and active

methods to stabilize the laser intensity at the ions in order to improve the performance

of the entangling gate.

An important observation regarding the stability of the laser intensity is the signif-

icant beam steering of the 214.5nm UV light due to air currents. A simple experiment

is performed with a 214.5nm UV beam partially masked by an ion trap electrode. The

scattering pattern can be seen by the naked eye on a piece of paper covered in �uores-

cent dye. When the air around the laser beam path is fanned, the scattering pattern

�icker drastically compared to a slower movement in the scattering pattern when the

air is not being actively fanned. To reduce the amount of air current, plastic tubes

(∼ 1.5” in diameter) are constructed around the beam paths to shield the beams from

its surrounding environment. In addition, the section of the optics table containing

the UV beams is also enclosed in plexiglass and heavy plastic sheets, and curtains are

placed around the optics table to block the air�ow around the experiment.
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Figure 5.2.4. Noise spectrum comparison with and without the noise
eater The optical power is measured by an independent photo-diode,
and a spectrum analyzer samples the output voltage signal and per-
forms an FFT. The results are plotted as a function of frequency. The
top graph shows the spectrum when the noise eater is on, and the bot-
tom graph shows the spectrum when the noise eater is o�. The average
signal is ∼ 3V, and the bandwidth of the spectra is 0.0167Hz. The noise
between DC to 5Hz has been suppressed by ∼ −7dB. The bandwidth
of the feedback loop is ∼ 100kHz.

An active noise eater is placed at the output of the BBO frequency doubling

cavity to reduce the intensity �uctuation at the laser source (see �gure 5.2.2). The

optical power of the UV beam is monitored on a photo-diode, and the excess optical

power is removed by increasing the �rst order di�raction of the AOM. Thus the

optical power of the zeroth order beam at the output of the AOM is maintained at a

constant setpoint. The noise eater allows the user to control the gain and the setpoint
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to optimize its performance. The performance of the noise eater setup is shown in

�gure 5.2.4. The low frequency noise is strongly suppressed, and also observed but

not shown in the �gure is the suppression of an 80Hz modulation due to the etalon

lock signal in the MBR-110 Ti:Sapphire laser. The noise eater reduces noise up to

∼ 1MHz, though the gain drops o� with frequency to avoid oscillation.

The entangling gate experiment involves two ions in the same potential, and their

equilibrium position due to the mutual Coulomb repulsion are located along the

weakest trap axis zT with spacing

(5.2.8) |z1 − z2| = ∆z =

(
e2

2πε0mω2
1

)1/3

.

For a 2MHz trap, the ion spacing ∆z = 2.5µm is a signi�cant fraction of the beam

waist size of ∼ 10µm. Therefore it is important to keep the intensity equal at both

ions' locations. A Ramsey experiment measuring the AC Stark shift of each ion

due to the �elds is used to analyze the �eld intensity di�erence. The beam to be

measured is turned on for a duration between two microwave π/2-pulses before the

ions are measured. The AC Stark e�ect shifts the qubit phase between the π/2

pulses, creating an oscillation in the �nal state as the duration of the pulse is varied.

A di�erential AC Stark shift between the two ions creates a beat note at the di�erence

frequency. Figure 5.2.5 shows a plot of a beam alignment with unequal intensity at

the two ions' locations (top), and a plot where the intensity at the ions' locations are

equal (bottom). Each Raman beam is aligned to have equal intensity at both ions'

locations.

The Raman spectrum for two ions also appears more complicated due to the

additional stretch mode sideband transitions. For a ω1 = 2.1MHz trap, the stretch

mode frequency is ω2 =
√

3ω1 = 3.6MHz. Figure 5.2.6 shows the two-ion Raman

spectrum as the AOM frequency is varied. For the experiment, the phase insensitive

geometry is used, with the modulation frequency of the AOM in one Raman beam

path set to 212MHz and the modulation frequency of the AOM in the other Raman

beam path to be 212MHz+1.5MHz−3.6MHz = 209.9MHz for the �rst blue sideband

of the stretch mode and 212MHz − 1.5MHz − 3.6MHz = 206.9MHz for the �rst red

sideband of the stretch mode. Both vibrational modes are Raman cooled to near the

ground state before each experiment.

5.2.2. Results. In the �rst experiment, we apply the bichromatic �eld for time

τ to the initial state |↑↑〉 while scanning the detuning δ, and the average number

of bright ions is compared to the predicted values from eq 5.2.7. The results are

shown in �g 5.2.7. When the time τ is set to 2π/η2Ω, this plot allows us to pinpoint

the required gate detuning to η2Ω, which is exactly when S = 1. The initial τ is
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Figure 5.2.5. Measurement of the di�erential AC Stark shifts on two
ions, induced by a non-uniform optical power across the ions' posi-
tions. A Ramsey experiment, where two π/2 carrier microwave pulses
surrounds a pulse of o�-resonant UV radiation, measures the induced
AC Stark shifts. The duration of the applied UV �eld is varied, and
the results are plotted versus the pulse duration. The top graph shows
a ∼ 5kHz di�erential AC Stark shift between the two ions, as indicated
by the beat note of the sinusoid. The bottom graph shows no measur-
able di�erential Stark shift, which is the aim when aligning the Raman
beams.
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Figure 5.2.6. Raman spectrum of two ions in the trap, using a fre-
quency comb generated by an electro-optic modulator (modulation fre-
quency ωEO − ω0 = 1.5MHz in this case). The x-axis shows the fre-
quency di�erence between the �elds along the two beam paths. The car-
rier transition appears at±1.5MHz (C), with corresponding �rst center-
of-mass blue sideband transition at ∓0.6MHz (B1) (ω1/2π = 2.1MHz)
, �rst center-of-mass red sideband transition at ±3.6MHz (R1), �rst
stretch mode blue sideband at ∓2.1MHz (B2) (ω2/2π = 3.6MHz), and
�rst stretch mode red sideband at ±5.1MHz (R2).

Figure 5.2.7. Average brightness S versus σφ force gate detuning δ
(�t to eq 5.2.7) . Applied gate time (75µs) is within 10% of the ideal.
Dotted line indicates expected signal modi�ed to include an initial
temperature n̄s = 0.3 as measured in the experiment. Solid line is a
�t including o�set and contrast factors to account for imperfections
such as spontaneous emission. The �t gives a sideband Rabi frequency
η2Ω/2π=6.3kHz and initial stretch mode temperature n̄s=0.3. Vertical
line shows ideal gate operation point δ=2η2Ω, roughly at S= 1. Each
point is the average of 150 PMT measurements.
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determined by driving the sideband transition under an identical set of experiment

conditions. Note that a complete two ion sideband transfer occurs at t = π/
√

6η2Ω

(see Appendix G).

The average brightness S exceeds 1 at certain detunings in the two ion case while

the average brightness never exceeds 1/2 in the single ion case (see �gure 4.2.8)

because the geometric phase acquired by each of the four eigenstates of σ̂φ⊗σ̂φ are not
the same. In the single ion case, the two eigenstates of σ̂φ have the same geometric

phase even though they experience opposite forces, and therefore the interference

can not result in P (↓) > 1/2. For two ions, the two eigenstates of σ̂φ ⊗ σ̂φ that

are displaced in phase space acquire the same geometric phase while the other two

stationary eigenstates acquire no geometric phase. The interference is similar to the

peaks seen in �gure 4.3.2 where the applied σ̂z force results in the two eigenstates

having unequal geometric phase.

In the second experiment, the detuning δ is set to η2Ω as determined from the

detuning scan in the �rst experiment, and the duration of the gate pulse is scanned.

The result is shown in �gure 5.2.8. The peaks of the parity signal

(5.2.9) Π = (P↑↑ + P↓↓)− (P↑↓ + P↓↑) = 1/2(1 + e−2|α(τ,δ)|2)

in �g. 5.2.8(b) indicates when the phase-space trajectories return to the initial po-

sition. The gate operation time (80µs in the �gure), corresponds to the �rst return

when the initial state |↑↑〉 has evolved ideally to Ψ1 =1/
√

2(| ↑↑〉 − iei(φs,1+φs,2)| ↓↓〉.
After two consecutive gate pulses, the ion evolves to state |↓↓〉.

The performance of the gate can be measured by the �delity F = 〈Ψ|ρ|Ψ〉 of the
actual density matrix ρ compared to the ideal entangled state |Ψ〉. The �delity for

creating the Bell-like state Ψ1 =1/
√

2(| ↑↑〉− iei(φs,1+φs,2)| ↓↓〉 is simply the sum of the

two relevant diagonal population terms of ρ and the corresponding pair of o�-diagonal

coherences. Explicitly, the �delity is

(5.2.10) F =
(
|ρ↑↑,↑↑|2 + |ρ↓↓,↓↓|2 + |ρ↑↑,↓↓|2 + |ρ↓↓,↑↑|2

)
where ρm1m2,m′1m

′
2

= 〈m1m2|ρ|m′1m′2〉. The density matrix elements for a perfect Bell

state Ψ1 are ρ↑↑,↑↑ = ρ↓↓,↓↓ = 1/2 and ρ↑↑,↓↓ = ρ∗↓↓,↑↑ = ie−i(φs,1+φs,2)/2, with all other

matrix elements being zero. Each of the four diagonal elements contributes 1/4 to

the total �delity F = 1.

The sum of the diagonal elements of the density matrix for the actual Bell state

produced by the σ̂φforce can be extracted from the �uorescence signal on the PMT

after the entangling gate pulse produces the target state. Fig 5.2.9 shows a histogram

of the photon counts collected by the PMT after the entangling gate. The |↑↑〉 and
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Figure 5.2.8. Time scan of σφ force gate showing (a) average bright-
ness S (eq 5.2.7) and (b) parity Π. Ideal gate evolution shown as dotted
lines with best �t including exponential damping shown with solid line.
The �t gives a sideband Rabi frequency η2Ω/2π=6.6kHz and detun-
ing δ/2π = 12.8kHz ≈ 2η2Ω/2π with other parameters the same as in
�gure 5.2.7. Vertical line shows gate operation time τ=2π/δ≈80µs.

Figure 5.2.9. Histogram of photon counts collected from the entan-
gled state |↑↑〉 + ei(φS,1+φS,2) |↓↓〉 generated by the σφ force. When the
discriminator is set to 3 and 38 for distinguishing between 0, 1, and 2
bright (|↓〉) ions, the probabilities are P (↑↑) = 0.383 and P (↓↓) = 0.449
for the even parity states, and P (↑↓) + P (↓↑) = 0.168 for the odd par-
ity states. These numbers also represent the diagonal elements of the
density matrix ρm1m2,m1m2 = P (m1m2).
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Figure 5.2.10. Parity vs phase of analysis π/2 pulse applied to the
Bell state Ψ1.The solid line is a sinusoidal �t yielding an amplitude
0.79(2). The �delity of the state shown is 0.81(2). Each point is an
average over 50 PMT measurements and other parameters are as in
text.

|↓↓〉 states can be distinguished from the odd parity states. The data show the ion has

a 0.83 probability of being in |↑↑〉 or |↓↓〉 after the entangling gate has been applied.

The o�-diagonal elements of the density matrix require an additional π/2 analysis

pulse applied to both ions after the gate. For a rotation R(π/2, φ) (as de�ned by eq

3.2.8) operating on both qubits in the Bell state Ψ1, the �nal state becomes

(5.2.11) Ψf =
1

2
√

2

[
1 + iei(φs,1+φs,2−2φ)

] (
|↑↑〉 − iei2φ |↓↓〉

)
− ie

iφ

2
√

2

[
1 + iei(φs,1+φs,2−2φ)

]
(|↑↓〉+ |↓↑〉) .

The parity depends on φ as

Π = cos (φs,1 + φs,2 − 2φ) ,

which oscillates as cos(2φ). In general, the density matrix after a rotation is applied

to ρ is

ρf = R⊗2
(π

2
, φ
)
ρR⊗2

(
−π

2
, φ
)
,

which produces a parity signal oscillating at frequency π with respect to phase φ and

with amplitude equal to the sum of the o�-diagonal elements ρ↑↑,↓↓ + ρ↓↓,↑↑ [15,52].

In the experiment, the π/2 pulse must be phase correlated to the spin phase of

the gate pulse. Fig. 5.2.10 shows the corresponding parity oscillation versus phase

of the analysis pulse, for an amplitude of 0.79 (which must exceed 0.5 to achieve

entanglement [15, 53]). Combining the diagonal and o�-diagonal elements of the

density matrix, we conclude that the �delity of the Bell state is 0.81(2).
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CHAPTER 6

Quantum State Tomography

In previous chapters, we have demonstrated the necessary components for uni-

versal quantum computation. The σφ force entangling gate combined with arbitrary

single qubit rotations are su�cient to perform any set of logic instructions [54]. How-

ever, several issues arise when a sequence of multiple logic gates are applied to two

qubits. While the necessity of calibrating and maintaining phase coherence between

the qubits and the logic operations may seem self-evident, the technical aspects of

enforcing an absolute phase across all parts of the experiment can be rather compli-

cated. For instance, the AC Stark e�ect contributes an energy shift to the qubits

during interaction with optical �elds, and the resulting phase shift must be factored

in for the subsequent operations. Since the rf/microwave frequencies generating the

Raman beat note are locked to the Stark shifted frequency ω′0 instead of the qubit's

unperturbed frequency ω0, great care must be taken to ensure a consistant relative

phase between the Raman beat note and the qubit's phase in every optical pulse.

Although the AC Stark e�ect can be reduced with increasing Raman detuning ∆, an

increase in the power of the Raman beams is required to maintain the speed of the

entangling gate (as well as Raman cooling). At the maximum optical power of the

existing laser system in our laboratory, the AC Stark shift induced on the ions is ap-

proximately 50kHz, which is still signi�cant compared to the gate speeds. Therefore,

these phase issues must be addressed in order for successful operation of multiple

logic gates.

On top of managing phase shifts due to the AC Stark e�ect, performing a single

qubit operation on an individual ion in the presence of a second ion also poses a

challenge, since the ion traps available for this thesis work lack the ability to shuttle

ions to separate trapping zones as the scalable architecture demands. Individual ion

addressing is also impractical since as the σφ force entangling gate requires uniform

illumination across both ions. Our solution is to introduce an intensity gradient

between two ions and take advantage of the di�erential phase shift in composite

pulse sequences to rotate the two ions separately.
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In this chapter, we explore some of these technical challenges and present speci�c

solutions to address these problems. The solutions allow us to combine logic gate op-

erations to perform tomographic analysis of qubit states, including Bell states formed

by the σφ force as a gauge on the performance of the entangling gate.

6.1. Tracking the phase

In the discussion of phase stability in chapter 4, we showed that the phase of logic

gate operations can be controlled by either the rf/microwave modulation from the

EOM and the AOMs only, or with additional sensitivity to the phase of the optical

�elds as determined by the relative beam path lengths of the two Raman �elds. When

the execution time of a sequence of logic gate operations is within the coherence time

of the e�ective Mach-Zehnder interferometer formed by the Raman �elds, one can

choose to perform gate operations completely independent of the phase of the optical

�elds, or perform gate operations completely dependent on the phase of the optical

�elds. Although the reference phase in the latter scenario is arbitrary relative to the

phase of the rf/microwave modulation, it is consistant throughout the computation

sequence, and therefore the probability of measuring the qubits in a particular state

at the end of the computation will be consistant despite the phase instability of the

optical �elds between each trial of the experiment. However, when the exceeds the

coherence time of the Mach-Zehnder interferometer, the computation will no longer

yield the desired result if the gate operations are dependent on the �uctuating phase.

Therefore, it is best to use only logic gates that retain no memory of the phase of the

optical �elds when the gate operation is �nished, as to avoid the limitation imposed

by the di�culty in stabilizing the Mach-Zehnder interferometer. In an ideal situation,

the rf and microwave frequency synthesizers are phase-locked to an atomic clock, and

the coherence of the qubits are limited only by �uctuating magnetic �elds, which is

a second order e�ect for clock qubits. But for the experiments in this thesis and

any experiment in general, the minimum requirement is a reference clock signal that

is stable over the execution time of each experiment in the phase-lock loop of the

frequency synthesizers.

In the implementation of the two qubit quantum algorithms, we use a microwave

signal at the qubit frequency ω0 as our reference phase. At the beginning of each

computation sequence, every qubit is initialized to ↑ state. The microwave frequency
is calibrated to the qubit frequency ω0 using a Ramsey experiment with a 5ms delay,

to within 10Hz of the actual ω0. When the ions interact with optical �elds and their

phases are shifted due to the AC Stark e�ect, the phase shifts are immediated negated

and the qubits are returned to the reference phase. This can be accomplished by a
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photon echo method using auxiliary beams calibrated to induce the same Stark shift

but provided no other interactions [55]. A spin �ip is applied to the qubits after the

intended operation, and the auxiliary beam is applied for the same amount of time as

the intended operation, resulting in both spin states acquiring an overall phase that

can be ignored. The qubits are then returned to their original state with a second spin

�ip. This method is robust against �uctuation in the �eld intensity provided that

the auxiliary �elds and the interacting �elds originate from the same laser source.

However, prolonged exposure to optical �elds increases the likelihood of spontaneous

emission. Therefore, we use an alternative phase shifting sequence to compensate for

the Stark shift, with the assumption that the laser intensity is stable and the induced

phase shift for each gate operation is repeatable over the overall experiment. The

induced phase shift for each type of operation used is measured before the execution

of a given quantum algorithm, and the classical computer controlling the experiment

adds a qubit rotation Rz around the z-axis that cancels the induced phase shift after

each operation. The phase shift Rz can be constructed using a composite pulse

sequence

(6.1.1) Rz(φ) = R
(π

2
,−π

2

)
R (φ, 0)R

(π
2
,
π

2

)
=

(
e−iφ/2 0

0 eiφ/2

)
.

Another alternative in accounting for the AC Stark shift is to add the phase shift

to all subsequent logic gate operation instead of removing the phase shift from the

qubit. The capability of phase shifting rf frequencies without the large overhead in

time, if available, would allow the reference phase of any signal generator to be shifted

to the qubit's phase at any point in the algorithm rather than constantly shifting the

qubit's phase to align with the reference phase. For a large number of qubits, this

method also has an additional cost of keeping a careful record of the relative phase of

each qubit. Based on these considerations, we elect to use compensating qubit phase

rotations Rz to maintain a consistent reference phase for all qubits.

A separate issue that arise from the AC Stark e�ect is generating rf/microwave

signals with speci�c phases when the signals are oscillating at di�erent frequencies. As

mentioned earlier, the modulation frequency generating the coherent Raman �elds is

not equivalent to the qubit frequency ω0 but instead is at frequency ω
′
0, which includes

the AC Stark shift. This means the phase of a qubit rotation using Raman transition

is revolving in time with respect to the reference/qubit phase, at a frequency equal to

the AC Stark shift frequency ω′0− ω0. To solve this problem, �rst we ensure that the

reference microwave signal and the Stark shifted modulation signals have the same

relative phase at the start of each computation sequence by triggering the experiment
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on a periodic signal oscillating at the AC Stark shift frequency ω′0 − ω0. The σφ

entangling gate is calibrated to have a de�nite spin-phase φs,1 + φs,2 = 0 relative to

the reference phase of the microwave at time t0 after the start of the experiment. All

entangling gate pulses must start at time t0 + 2π/(ω′0 − ω0) where n is an integer

to guarantee that the phase of the entangling gate remain the same. The single

qubit rotations in the experiments are driven by microwave radiation through direct

magnetic dipole coupling, and therefore the frequency of the drive is resonant with

the qubit frequency splitting ω0. If instead the single qubit rotations are driven via

copropagating Raman transitions, then a phase calibration similar to the entangling

gate would be required for the copropagating Raman transitions as well since the

optical �elds also induce an AC Stark shift on the qubits they operate on.

In certain cases, such stringent requirements on the phase of all operations may

be unnecessary and some of the phase compensation or calibration procedures can be

dispensed with when a priori knowledge about the algorithm or the possible input

states suggest that the procedures do not a�ect the outcome, examples of which are

included in the following sections. In general, the AC Stark shifts must be treated

carefully to ensure that the interactions provide the intended quantum logic operation

for the system.

6.2. Individual qubit rotation

Given only a single trap region that con�nes two ions in the same harmonic po-

tential, how can the qubit stored in the internal state of one ion be rotated coherently

without altering the state of the other qubit? Although the �elds are not focused to

a beam waist size smaller than the ion spacing to address each ion individually with-

out disturbing the other, the solution to this dilemma lies in the non-uniformity of

the optical illumination between two ions, which was evident from �gure 5.2.5. This

intensity gradient across the ions' locations can be exacerbated by an intentional mis-

alignment of an incident �eld, and the di�erential phase shift caused by the AC Stark

e�ect combined with common mode rotations can be utilized in a composite pulse

sequence to yield the desired individual rotations.

Figure 6.2.2 is an example of a Ramsey experiment that measures the di�erential

AC Stark shift on the ions. A global π/2 pulse is applied to both ions, and then an

optical �eld induces a di�erential AC Stark shift on the ions. A second π/2 pulse

again applied to both ions rotates the two qubits into di�erent states since the two

qubits have di�erent phases. The �nal state of each ion at the end of the experiment

is measured using a CCD camera, and the results are plotted as the phase of the

second π/2 pulse is scanned. The di�erential phase shift between the two ions is
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a) initial state

b) after step 1: R(θ2/2, φ2)

c) after steps 2 and 3: phase shift qubit #2 by π

d) after step 4: R(θ2/2, φ2)

e) after steps 5 and 6: phase shift qubit #2 by π

Figure 6.2.1. Composite pulse sequence for individual qubit rota-
tions. Qubit #2 is rotated by R(θ2, φ2) (with φ2 = 0 here for simplicity)
while leaving qubit #1 in its original state. The rotations R(θ2/2, φ2)
in steps 1 and 4 are applied to both ions. Steps 2 and 3 (or 5 and 6)
combined e�ectively phase shift qubit #2 by a phase π while leaving
the phase of ion #1 unchanged. The diagram shows the rotation of all
three initial axes after each step.

extracted from the data and can be controlled by varying the duration of the optical

pulse.
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Figure 6.2.2. Measurement of the di�erential AC Stark shift between
two ions. A Ramsey experiment is conducted where the optical �eld
is turned on for 54µs between two π/2 pulses, and the probability of
each ion being in the |↓〉 state is plotted against the phase of the second
π/2 pulse. The �lled circles indicate the state of ion #1 and the open
circles indicate the state of ion #2. The �t shows that the optical �eld
induced a 1.09π di�erential phase shift between ion #1 and ion #2.

As an exercise, we can examine an arbitrary qubit rotation R(θ1, φ1) as de�ned

by eq 3.2.8 on the �rst qubit while leaving the second qubit in its original state. This

can be accomplished by the following composite pulse sequence:

(1) Rotate both qubits by R(θ1/2, φ1)

(2) Apply di�erential AC Stark shift such that ion 1 is phase shifted by ϕSS and

ion 2 is phase shifted by ϕSS + π

(3) Apply a rotation around the z axis Rz(−ϕSS)

(4) Rotate both qubits by R(θ1/2, φ1)

(5) Apply di�erential AC Stark shift such that ion 1 is phase shifted by ϕSS and

ion 2 is phase shifted by ϕSS + π

(6) Apply a rotation around the z axis Rz(−ϕSS)

To rotate the second qubit by R(θ2, φ2) without disturbing the �rst qubit, a similar

pulse sequence can be applied, replacing θ1 with θ2 and φ1 with φ2, and replacing

step 3 and 6 with Rz(−ϕSS + π). A graphical example is shown in �gure 6.2.1.

In the laboratory, individual rotations in quantum algorithms can often be sim-

pli�ed further when restrictions can be placed on the input states or when the phase

after the rotation is inconsequential. For example, in tomographic analysis, mea-

surements of the qubits' projection along an axis can be obtained by rotating the
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measurement axis to the z axis and collapse the wavefunction into the eigenstates of

σz regardless of the exact orientation of the orthogonal axes. In those cases, steps 5

and 6 can be ignored since the phase shifts induced do not a�ect the outcome of the

measurement. Therefore, individual rotations are tailored to suit the requirements of

each experiment using the principles for rotation of a single ion by an arbitrary angle

and phase described above.

6.3. Tomography

Quantum state tomography can be used to characterize the gate performance for

the creation of all four entangled Bell-like states. Previous applications of quantum

state tomography with ions include the reconstruction of non-classical states of motion

[56�58] as well as entangled states of optical ion-qubits composed of electronic levels

[59]. A tomographic analysis maps the full density matrix of a state without making

any assumptions about the density matrix. Following the tomographic approach

previously demonstrated in photonic systems as outlined in refs [60,61], the density

matrix can be decomposed in terms of a tensor product basis ρ =
∑3

i,j=0 rijσi ⊗ σj
where σ0 ≡ I, σ1 ≡ σx, σ2 ≡ σy and σ3 ≡ σz are the usual single-qubit Pauli matrices.

In the experiment we choose to perform projective measurements in the nine basis

combinations {σi⊗σj, i, j=x, y, z} each yielding four possible outcomes for a total of

twenty-seven independent measurements accounting for normalization. Independent

single-qubit rotations are used to transform the measurement basis into the σz basis

before making a measurement in the σz basis.

The experiment is setup with resonant microwaves set to three di�erent phases:

0, π/2, and −π/2. An o�-resonant laser beam detuned by 200GHz from resonance

and with a moderate waist (. 10µm compared with the 2.5µm ion spacing) is aligned

to be o�-center with respect to the two ions, giving rise to a phase shift di�erence

between the two qubits of π/2 in a 10µs exposure. The di�erential Stark shifts are

calibrated using the following Ramsey experiment: a di�erential Stark shift pulse

sandwiched between two π/2 pulses of the same phase is varied in duration, and the

probability of each ion resulting in the ↓ state is plotted versus the pulse duration.

From the di�erence in the Stark shift frequency of the two ions due to the pulse, the

time tπ/2 for ion 1 to advance in phase by π/2 relative to ion 2 can be extracted.

The pulse duration is set to time tπ/2, and an additional phase shift Rz(φ) is added

between the Stark shift pulse and the �nal π/2 pulse, and the phase shift φ is scanned.

The phase correction for the common mode Stark shift is set to the phase where ion 2

returns to its initial state ↑ and ion 1 has an equal probability of being in ↑ and ↓. The
di�erential Stark shift pulse with a π/2 relative phase advance and the phase shift
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projection basis rotation DD DB BD BB

σz ⊗ σz none ↑z↑z ↑z↓z ↓z↑z ↓z↓z
σz ⊗ σy R(π

2
, π

2
);DS;R(π

2
, 0) ↑z↓y ↑z↑y ↓z↓y ↓z↑y

σz ⊗ σx R(π
2
, 0);DS;R(π

2
, π

2
) ↓z↑x ↓z↓x ↑z↑x ↑z↓x

σy ⊗ σx DS;R(π
2
, π

2
) ↑y↑x ↑y↓x ↓y↑x ↓y↓x

σx ⊗ σx R(π
2
, π

2
) ↓x↓x ↓x↑x ↑x↓x ↑x↑x

σx ⊗ σy DS;R(π
2
, 0) ↑x↓y ↑x↑y ↓x↓y ↓x↑y

σx ⊗ σz R(π
2
, 0);DS;R(π

2
, 0) ↑x↑z ↑x↓z ↓x↑z ↓x↓z

σy ⊗ σz R(π
2
, π

2
);DS;R(π

2
, π

2
) ↑y↑z ↑y↓z ↓y↑z ↓y↓z

σy ⊗ σy R(π
2
, 0) ↑y↑y ↑y↓y ↓y↑y ↓y↓y

Figure 6.3.1. Projective measurements for tomography. The second
column contains the composite pulse sequence to transforms the pro-
jection basis to the σz basis before measurement. A π/2 di�erential AC
Stark shift pulse is denoted by DS, which includes the phase correction
for common mode phase shift of the two ions using an Rz rotation. The
last four columns list the projection of the states corresponding to a
measurement of both ions dark, �rst ion dark and second ion bright,
�rst ion bright and second ion dark, and both ions bright.

Rz(φ) correction combined to be the di�erential Stark shift (DS) pulse referred to in

table 6.3.1. After di�erential Stark shift is calibrated, the projective measurements

on a prepared state are acquired by performing the nine rotations listed in table

6.3.1. Repeated preparation of a target state followed by tomographic measurement

is performed for 200 shots per measurement basis. The total reconstruction time

takes about 60s, dominated by the cooling cycle and camera readout time.

A fast, direct inversion for the density matrix can be made with a minimum com-

plete measurement set of �fteen values rij. However, this process in general leads to

an unphysical density matrix due to experimental error. Instead, maximum likeli-

hood estimation is used to �t the data to a density matrix form constrained to be

Hermitian, normalized and positive semide�nite. The inclusive and mutually exclu-

sive nature of the four measurement outcomes for each basis is taken into account by

least-squares weighting according to a multinomial distribution [62]. The probability

of measuring a success xn times in N trials in one of four possible outcomes n = {1..4}
given a probability of success pn is

(6.3.1) P (x1, x2, x3, x4) =
N !

x1!x2!x3!x4!
px11 p

x2
2 p

x3
3 p

x4
4 .

The density matrix de�nes the probabilities {p1, p2, p3, p4} of measuring {DD, DB,

BD, BB} for each projective measurement σi⊗σj, where D indicates the ion is in the

dark state |↑〉 and B indicates the ion is in the bright state |↑〉. Using the multinomial
distribution in eq 6.3.1, a numerical algorithm �nds the density matrix with the
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DD DB BD BB

σz ⊗ σz 0.965(1.00) 0.010(0.00) 0.025(0.00) 0.000(0.00)
σz ⊗ σy 0.610(0.50) 0.295(0.50) 0.060(0.00) 0.035(0.00)
σz ⊗ σx 0.010(0.00) 0.025(0.00) 0.420(0.50) 0.545(0.5)
σy ⊗ σx 0.200(0.25) 0.215(0.25) 0.225(0.25) 0.360(0.25)
σx ⊗ σx 0.210(0.25) 0.215(0.25) 0.225(0.25) 0.360(0.25)
σx ⊗ σy 0.405(0.25) 0.170(0.25) 0.230(0.25) 0.195(0.25)
σx ⊗ σz 0.400(0.50) 0.020(0.00) 0.520(0.50) 0.060(0.00)
σy ⊗ σz 0.430(0.50) 0.010(0.00) 0.510(0.50) 0.050(0.00)
σy ⊗ σy 0.265(0.25) 0.295(0.25) 0.220(0.25) 0.220(0.25)

Figure 6.3.2. Tomography of |↑↑〉 state. The projective measure-
ments are performed using the rotations listed in 6.3.1, and the results
are shown in the table, with the expected values listed in the parenthe-
sis. The reconstructed density matrix is shown in the plot, with D=|↑〉
and B=|↓〉.

highest probability of producing the set of results {x1, x2, x3, x4} that corresponds to
the nine projective measurements.

6.3.1. Tomography of the basis states. In an experiment, qubit states |↑↑〉
and |↓↑〉 are generated using individual spin rotations and tomography is performed

on each of these states. The ions are initialized in the |↑↑〉 state, and no additional

rotation is required before each projective measurement. To generate the |↓↑〉 state,
the following sequence of pulses is performed: 1) R(π/2, π/2); 2) a π di�erential AC
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DD DB BD BB

σz ⊗ σz 0.065(0.00) 0.010(0.00) 0.850(1.00) 0.075(0.00)
σz ⊗ σy 0.030(0.00) 0.005(0.00) 0.525(0.50) 0.440(0.50)
σz ⊗ σx 0.490(0.5) 0.405(0.5) 0.045(0.00) 0.060(0.00)
σy ⊗ σx 0.280(0.25) 0.275(0.25) 0.205(0.25) 0.240(0.25)
σx ⊗ σx 0.225(0.25) 0.195(0.25) 0.290(0.25) 0.290(0.25)
σx ⊗ σy 0.340(0.25) 0.100(0.25) 0.410(0.25) 0.150(0.25)
σx ⊗ σz 0.450(0.50) 0.045(0.00) 0.445(0.50) 0.060(0.00)
σy ⊗ σz 0.475(0.50) 0.040(0.00) 0.430(0.50) 0.055(0.00)
σy ⊗ σy 0.115(0.25) 0.480(0.25) 0.060(0.25) 0.345(0.25)

Figure 6.3.3. Tomography of |↓↑〉 state. The projective measure-
ments are performed using the rotations listed in 6.3.1, and the results
are shown in the table, with the expected values listed in the parenthe-
sis. The reconstructed density matrix is shown in the plot, with D=|↑〉
and B=|↓〉.

Stark shift pulse; 3) Rz(φ) where φ is the AC Stark shift induced on ion #1 in step 3;

4) R(π/2, π/2). The projection measurements and the reconstructed density matrix

for these two states are shown in �gures 6.3.2 and 6.3.3. For this set of data, the

�delity of the |↑↑〉 is F = 0.97, limited by the detection error of the CCD camera,

and the �delity of the |↓↑〉 is F = 0.85, with the calibration and the stability of the

di�erential AC Stark shift being the main source of error.
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Figure 6.3.4. Tomographically reconstructed density matrices for the
four Bell-like entangled states (a)�(d) corresponding to Ψ1 through Ψ4

as per Eq. 6.3.2. Each state reconstruction uses 27 independent projec-
tive camera measurements averaged over 200 runs [49].

6.3.2. Tomography of Bell states. The σφ force is applied to four initial com-

putational states followed by a Stark shift phase correction to generate four Bell
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states:

(6.3.2)

|↑↑〉 → Ψ1 = 1√
2
{|↑↑〉+ |↓↓〉}

|↓↓〉 → Ψ2 = 1√
2
{|↑↑〉 − |↓↓〉}

|↑↓〉 → Ψ3 = 1√
2
{|↑↓〉+ |↓↑〉}

|↓↑〉 → Ψ4 = 1√
2
{|↑↓〉 − |↓↑〉}

Figure 6.3.4 shows their reconstructed density matrices. The reconstructed density

matrices are rotated into the real coordinate to allow direct comparison of diagonal

and o�-diagonal elements. Systematics of the tomographic process are assessed after

the fact based on tomographic control runs of input states |↑↑〉 and |↓↓〉 assumed to

be ideal. The results from the controls are used to extract detection biases (on the

order of a few percent), microwave Rabi frequency and applied AC Stark shifts used

for qubit rotations.

The inferred �delities for the target states Ψ1 through Ψ4 are F = {0.82(3),
0.89(3), 0.78(3), 0.66(3)}. The tomographically obtained �delity for Ψ1 agrees well

with a simple parity-based assessment like that discussed above. The �delity for

creating the odd-parity states Ψ3,4 is worse because of inaccurate preparation of the

input states |↑↓〉 and |↓↑〉 (F ≈ 0.85). Accounting for this factor, the �delities of all

states are on par. Inseparability (entanglement) of the reconstructed two-qubit states

can be tested by performing a partial transpose of the density matrix and searching

for a negative value in the resultant eigenvalue spectrum [63, 64]. For example,

the eigenvalue spectrum obtained for the Ψ2 case is {-0.42(3),0.40(3),0.49(2),0.53(2)}
compared with the ideal case {-0.5,0.5,0.5,0.5}. The negativity N [65, 66], twice

the absolute value of the negative eigenvalue, is obtained for all four target states

Ψi with values N = {0.74(6), 0.84(7), 0.60(5), 0.42(6)}. Ranging from zero for a

separable state to one for a maximally entangled one, the value gives an indication

of the degree of the entanglement. Several quantitative measures of entanglement

exist in the literature [67], although lacking a closed form they are in general di�cult

to calculate. One standard measure that is directly calculable for two qubits is the

entanglement of formation EF [68] again ranging from zero for a separable state to

one for a maximally entangled one. In the context of pure states, the value of EF

can be interpreted as the number nEF of maximally entangled states required to

reconstruct n copies of a given state [53]. The experimental values for the four states

shown in Fig. 6.3.4 are EF = {0.65(8), 0.77(9), 0.49(6), 0.32(6)}. The entanglement
of formation is a manifestly more strict indicator for the quality of an entangled

state than the �delity and drops quickly with decreasing �delity. Statistical errors for

parameters calculated from the reconstructed density matrix are di�cult to extract

directly and so are obtained using a simple numerical bootstrap method [69]. The raw
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shot-by-shot data are randomly resampled with replacement to generate successive

data sets from which a distribution of a parameter's value can be obtained [70].
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CHAPTER 7

Conclusion

In this thesis, a two-qubit quantum computer has been implemented in a new ion

species, cadmium 111. Qubits stored in particular ground state hyper�ne levels of

cadmium ions have long coherence times due to their insensitive to magnetic �eld

�uctuations. The experiments have shown that these qubits can be initialized and

detected at a �delity of greater than 99%. Universal quantum logic gates have been

demonstrated by driving single qubit rotation with stimulated Raman transitions and

entangling two ions through the application of a spin-dependent force. The outcomes

of the quantum logic gates have been analyzed with tomography of the density matrix,

establishing phase control of the quantum logic gates developed here.

While the interactions used to manipulate cadmium ion qubits have been proposed

and implemented previously in other species of trapped ions, signi�cant improvements

have been made in the phase control of entanglement through the σ̂φ force. We have

shown that the dependence of the σ̂φ force on the optical phase of the control �elds

can be removed, thereby enabling the phase of the gate to be governed solely by the

modulation applied to the �elds. Entanglement based on spin-dependent forces are

inherently robust against temperature and heating compared to the original Cirac and

Zoller proposal, but the σ̂φ force can also provide protection against phase decoherence

due �uctuating magnetic �elds by operating on magnetic �eld insensitive clock states

in the limit of large �eld detuning. These considerations suggest that the σ̂φ force

may be the most robust entangling gate against decoherence in the resolved-sideband

limit.

The atomic properties of cadmium ions also motivated the development of a

cw laser at a wavelength of 214.5nm with several milliwatts of optical power, and

new methods to drive stimulated Raman transitions at a large frequency spacing

(14.5GHz) using electro-optic phase modulator. These techniques can be applied

towards coherent manipulations of other quantum systems. However, the limited op-

tical power currently restricts the size of the Raman detuning, resulting in signi�cant

decoherence per gate operation due to spontaneous emission. With additional optical

power in the future, the potential for high �delity quantum logic gates operating on

cadmium ion qubits can be fully realized. It may also be worthwhile to investigate
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the practicality of using a high power, far detuned laser to drive Raman transitions

in cadmium ions for further suppression of spontaneous emission.

Since the start of this thesis work, quantum information processing in trapped

ions in our laboratory as well as other research groups around the world has gone

from a stage of developing the required tools for computation to a stage where simple

quantum algorithms on two or three qubits can be realized. E�orts in constructing

scalable ion traps are underway for the next stage where more qubits can be added

to the processor. The possibility of engineering a fully-controllable macroscopic en-

tangled system from smaller accessible subsystems is an exciting challenge, and many

applications of quantum computation are likely still undiscovered at this point. The

work in this thesis is part of the e�ort in making quantum computing a reality, o�ering

another stepping stone for future progress in this area.
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APPENDIX A

Interaction Picture

Given a Hamiltonian H = H0 + H1 where the steady-state Hamiltonian is given

by

H0 =
~ω0

2
σ̂z + ~ω1â

†â

and the interaction term given by

H1 = ~Ω (σ̂+ + σ̂−) cos (k · r̂− ωt+ φ) ,

the transformation to the interaction picture results in a simple-looking formula

i~
d

dt

∣∣∣ψ̃(t)
〉

= HI

∣∣∣ψ̃(t)
〉

where HI = U0(t)H1U
†
0(t) is the �interaction Hamiltonian� ,

∣∣∣ψ̃(t)
〉

= U0(t) |ψ(t)〉 is
the transformed state vector, and U0(t) = eiH0t/~ is the time evolution operator in

steady-state. To obtain the interaction Hamiltonian using this transformation, we

apply a useful relation in quantum mechanics

(A.0.1) eαÂB̂e−αÂ = B̂ + α
[
Â, B̂

]
+
α2

2!

[
Â,
[
Â, B̂

]]
+
α3

3!

[
Â,
[
Â,
[
Â, B̂

]]]
...

Since the spin operators and the creation and annihilation operators commute, the

two components can be treated separately:

(A.0.2) HI = ~Ω
{
ei
ω0t
2
σ̂z (σ̂+ + σ̂−) e−i

ω0t
2
σ̂z
}{

eiω1â†âcos (k · r̂− ωt+ φ) e−iω1â†â
}
.

For the spin part, it is left as an exercise for the reader to prove that [σ̂z, σ̂+] = 2σ̂+

and [σ̂z, σ̂−] = 2σ̂−. Applying eq A.0.1,

eiασ̂z σ̂+e
−iασ̂z = σ̂+ + 2ασ̂+ +

(2α)2

2!
σ̂+ +

(2α)3

3!
σ̂+ + ...

= ei2ασ̂+

Similarly,

eiασ̂z σ̂−e
−iασ̂z = σ̂− − 2ασ̂− +

(−2α)2

2!
σ̂− +

(−2α)3

3!
σ̂− + ...

= e−i2ασ̂−.
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So terms in the �rst parenthesis in eq A.0.2 becomes

ei
ω0t
2
σ̂z (σ̂+ + σ̂−) e−i

ω0t
2
σ̂z = eiω0tσ̂+ + e−iω0tσ̂−.

The part concerning motion can be separated into two terms

eiω1â†âcos (k · r̂− ωt+ φ) e−iω1â†â =
1

2
ei(kr0−ωt+φ)eiω1â†âeiη(â+â†)e−iω1â†â

+
1

2
e−i(kr0−ωt+φ)eiω1â†âe−iη(â+â†)e−iω1â†â

where eik·r̂ = eikr0ek·ẑT can be separated into a phase factor due to the position of

the ion and an operator k · ẑT = (k · zT ) z0

(
â+ â†

)
= η

(
â+ â†

)
. The phase factor

eikr0 is sometimes absorbed in the phase factor eiφ by de�ning the phase as relative

to the ion's position φ′ = kr0 + φ. We can Taylor expand the exponents in eiη(â+â†)

and consider each term independently. With some algebra one can show that

eiω1â†â
{
iη
(
â+ â†

)}n
e−iω1â†â =

{
iη
(
âe−iω1t + â†eiω1t

)}n
.

Summing over all terms in the Taylor expansion again and we get

eiω1â†âeiη(â+â†)e−iω1â†â = eiη(âe
−iω1t+â†eiω1t).

The second parenthesis in eq A.0.2 becomes

eiω1â†âcos (k · r̂− ωt+ φ) e−iω1â†â =
1

2
ei(kr0−ωt+φ)eiη(âe

−iω1t+â†eiω1t) + c.c.

When the spin and motion components are combined, the terms involving e±i(ω0+ω)t

are discarded in the rotating wave approximation. Keeping only e±i(δω)t terms for

δ = ω − ω0,

HI =
~Ω

2

{
σ̂+e

i[η(âe−iω1t+â†eiω1t)+kr0+(δω)t+φ] + σ̂−e
−i[η(âe−iω1t+â†eiω1t)+kr0+(δω)t+φ]

}
.

This is the full interaction Hamiltonian for the system.

When the frequency di�erence in the �elds is tuned to δω = (n − n′)ω1 + δ, the

matrix element in the interaction Hamiltonian coupling the states |↑, n′〉 and |↓, n〉 is

〈↑, n′|HI |↓, n〉 =
~Ω

2
ei(kr0+(δω)t+φ)

∞∑
j=0

〈n′|
[
iη
(
âe−iω1t + â†eiω1t

)]j |n〉
j!

.

Only terms with the right number of creation and annihilation operators in the sum

has non-zero values, and those terms are left with a phase factor e−i(n−n
′)ω1t, conve-

niently reducing the phase in ei(δω)t to become eiδt. So the sum is equivalent to

∞∑
j=0

〈n′|
[
iη
(
âe−iω1t + â†eiω1t

)]j |n〉
j!

=
∞∑
j=0

〈n′|
[
iη
(
â+ â†

)]j |n〉
j!

= 〈n′| eiη(â+â†) |n〉 = Dn′,n.
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The Debye-Waller factor in explicit terms is

Dn′,n = e−η
2/2

(
n<!

n>!

)1/2

η|n
′−n|L

|n′−n|
n< (η2),

where n<(n>) is the lesser (greater) of n
′ and n, and Lαn is the generalized Laguerre

polynomial de�ned as

Lαn(X) =
∞∑
m=0

(−1)m

(
n+ α

n−m

)
Xm

m!
.
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APPENDIX B

Cavity Modi�cations

In the laboratory, the BBO frequency-doubling cavity from Spectra-Physics re-

quires slight modi�cation from its factory setting. For the Raman laser, the free

spectral range must be exact (7266MHz/4 for the Mach-Zehnder interferometer setup

and 7263MHz/4 for the cavity detuning setup). The free spectral range of the cavity

is simply

νfsr =
c

L
where L is the round-trip length of the cavity. Figure B.0.1 shows the schematic

of the WaveTrain cavity, utilizing a �delta� con�guration instead of the traditional

bow-tie con�guration. The positions of the input (M1) and the output (M2) mirrors,

which are mounted on the casing of the doubler, can be adjusted to change the cavity

size. For e�cient harmonic conversion, the mode of the cavity should be such that

the focus is inside the crystal, and preferably, a small waist size.

To understand the e�ect of cavity modi�cations, we must consider the stability of

the cavity and the size and position of the focus. Following the derivation in chapter

20 and 21 of ref [ [71]], the propagation of geometric optical rays through a round

trip in the cavity can be described using ABCD matrices:

(B.0.1)

(
r2

r2′

)
=

(
A B

C D

)(
r1

r1′

)
.

The stability of the cavity is determined by the stability parameter m de�ned as

(B.0.2) m ≡ A+D

2
.

The cavity is stable if and only if −1 ≤ m ≤ 1. For Gaussian beams, we can write

the wavefront in terms of the q̃-parameter

(B.0.3) u(x) = exp

(
−iπx

2

qλ

)
,

where

(B.0.4)
1

q̃
≡ 1

R
− i λ

πx2
0

.
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R is the radius of curvature, λ is the wavelength in the medium, and x0 is the beam

spot size. The complex q̃ parameter propagates according to the relationship

(B.0.5)
q̃2

n2

=
A(q̃1/n1) +B

C(q̃1/n1) +D
.

We can de�ne a reduced q parameter as

(B.0.6)
1

q
≡ n

q̃
=

1

R̂
− i λ0

πx2
0

,

where R̂ = R/n is the reduced radius of curvature and λ0 = nλ is the optical wave-

length in vacuum. The paraxial wave transformation using the ABCD matrix ele-

ments and the q Gaussian beam parameters becomes

(B.0.7) q2 =
Aq1 +B

Cq1 +D
.

We can �nd self-consistent Gaussian q values by equating the parameter after a cavity-

round-trip to its initial value:

(B.0.8) q2 =
Aq1 +B

Cq1 +D
= q1.

The solutions are (only one solution is real; the other corresponds to a nonphysical

Gaussian beam with a transversely increasing intensity)

(B.0.9)
1

q
=
D − A

2B
∓ i
√

1−m2

B
=

1

R̂
− i λ0

πx2
0

.

Therefore the radius of curvature of the beam at the reference plane is

(B.0.10) R =
2B

D − A
.

and the waist size at the reference plane is

(B.0.11) x2
0 =

|B|λ
π
√

1−m2
.

Figure B.0.1 shows the schematic of the BBO cavity. The dimensions are listed

in table B.0.2 for both the factory setting and the modi�ed cavity. Based on the

calculations, the modi�ed cavity can satisfy the constraint on the free spectral range

while maintaining a stable cavity with the focus inside the crystal. The increase in

the size of the beam waist reduces the e�ciency of harmonic generation, but still

produces su�cient optical power for Raman transitions.

The free spectral range of the cavity can be measured by noting the correlation

between the optical power of the output and the modulation frequency of the EOM.

When the free spectral range and the modulation frequency are the same, all sidebands

generated by the EOM are resonant with the cavity and the harmonic output has
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Figure B.0.1. Schematic of the WaveTrain BBO cavity. The Wave-
Train uses a delta cavity with a factory setting free spectral range
(fsr) of approximately 1.7GHz. The cavities can be modi�ed to sup-
port 6.8GHz sidebands from the electro-optic modulator, and 7.266GHz
sidebands (fsr=1.8GHz) for Raman �elds. However, the conversion ef-
�ciency drops when the cavity size changes by a signi�cant proportion.
The cavity has a 15MHz linewidth. A prism mounted on a piezo allows
the electronics to lock the cavity.

factory setting modi�ed cavity

x1 4.64 cm 4.05 cm
x2 1.64 cm 1.57 cm
x3 4.56 cm 4.49 cm
x4 4.56 cm 3.97 cm
m 0.97 0.2
νfsr 1.68 GHz 1.818GHz

position of focus from M1 5.18 cm / 15.56 cm 4.57 cm / 14.55 cm
beam waist at focus 23.10 µm / 16.76 µm 48.65 µm / 33.04 µm

Figure B.0.2. Cavity parameters for the WaveTrain doubler, before
and after modi�cation. The round-trip length of the cavity is short-
ened to match the fourth subharmonic of the qubit frequency, and the
resulting beam waist is about twice as large as the factory setting. The
e�ciency of frequency doubling by the cavity decreases by a factor of
∼ 3 after the adjustment. The cavity remains stable with −1 ≤ m ≤ 1.

maximum power. When the sidebands are slightly o� resonant in the cavity, the

output decreases. In the limit where the modulation frequency is tuned beyond the

bandwidth of the EOM (≈ ±25MHz), the sideband strength decreases and the optical

power returns to the carrier, resulting in e�cient harmonic generation again. This

produces a �W� curve on a plot of UV power versus modulation frequency, with the
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Figure B.0.3. Optical power of the BBO output vs modulation fre-
quency of the EOM. The free spectral range of the BBO cavity is a)
7266MHz/4 (ideal for the Mach-Zehnder setup), and b) 7272MHz/4
(when the cavity is too far detuned). The plots only show the middle
peak of the �W� curve that indicates the free spectral range of the
cavity.

middle peak in the W aligned on an integer multiple of the free spectral range of the

BBO cavity.
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APPENDIX C

Mixing of EOM Frequency Sidebands

The �eld modi�ed by an electro-optic phase modulator (EOM) can be written in

terms of individual frequency components with Bessel functions as their coe�cients.

For the purpose of understanding the mixing of these �elds and their interactions with

the ion, this chapter will derive in detail the equations describing the �elds using some

properties of Bessel functions.

An rf signal V sin(ωmt) applied to an electro-optic phase modulator changes an

incident optical �eld E0cos(kx− ωLt) to

(C.0.1) E1 = E0cos (kx− ωLt+ φsin(ωmt)) ,

where φ is the modulation index, which depends on the amplitude of modulation V .

The modulated �eld contains frequency sidebands equally spaced by ωm, and can also

be expressed as

(C.0.2) E1 =
E0

2
ei(kx−ωLt)

∞∑
n=−∞

Jn(φ)ein((δk)x−ωmt) + c.c.

where Jn(φ) is the n-th order Bessel function with modulation index φ, and δk =

ωm/c. The �eld amplitudes of the n-th sideband is thus Jn(φ).

When the modulated �eld passes through a nonlinear medium, the χ(2) mixing

results in frequency sum generation,

E2 = χ(2)E1E1 = χ(2)E2
0cos

2 (kx− ωLt+ φsin(ωmt))

= χ(2)E
2
0

2
[1 + cos (2kx− 2ωLt+ 2φsin(ωmt))] .

This optical �eld is equivalent to modulating a harmonic �eld E2
0cos(2kx − 2ωLt)/2

with frequency ωm and modulation index 2φ, or alternatively can be written as

E2 = χ(2)E
2
0

4
ei(2kx−2ωLt)

∞∑
n=−∞

Jn(2φ)ein((δk)x−ωmt) + c.c.

When the �elds along one arm of a Mach-Zehnder interferometer is delayed by

a distance ∆x with respect to the �eld in the other arm, the recombined �eld has
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intensity

I = EAE
∗
B =

∣∣∣∣χ(2)E2
0

4

∣∣∣∣2 {ei2φsin(δkx−ωmt)e−i2φsin(δk(x+∆x)−ωmt)ei2k∆x + c.c.
}
.

Using sine addition formula sin(x)−sin(y) = 2sin [(x− y)/2] cos [(x+ y)/2], the above

equation can be simpli�ed to

I = EAE
∗
B =

∣∣∣∣χ(2)E2
0

4

∣∣∣∣2 {ei4φsin(δk∆x/2)cos(δkx−ωmt)ei2k∆x + c.c.
}

=

∣∣∣∣χ(2)E2
0

4

∣∣∣∣2 cos [4φsin(δk∆x

2

)
cos(δkx− ωmt) + 2k∆x

]
Again, this expression can be represented as a sum of frequency components with

Bessel functions as the amplitudes:

I = EAE
∗
B =

1

2

∣∣∣∣χ(2)E2
0

4

∣∣∣∣2 eik∆x

∞∑
n=−∞

Jn

(
4φsin

(
δk∆x

2

))
ein(δkx−ωmt) + c.c.

When the modulation frequency ωm = ω′0/2 is half of the AC Stark shifted qubit

frequency, only components of EAE
∗
B oscillating at frequency 2ωm = ω′0 contribute to

the stimulated Raman transition. Therefore, the stimulated Raman transition rate

is proportional to J2 (4φsin(δk∆x/2)). Note that the transition rate vanishes at the

zero crossings of J2(b), including when the parameter b = 0 is zero. To maximize the

transition rate, the operand 4φsin(δk∆x/2) should be set to the maximum of J2(b).

For example, the �rst local maxima of J2(b) is at b = 3.054, by setting δk∆x = π and

φ = 0.764.
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APPENDIX D

Forced Harmonic Oscillators

In order to understand the spin-dependent force, we start by considering the

e�ects when a force is applied to a harmonic oscillator. In general, a forced harmonic

oscillator has a Hamiltonian of the form [72]

(D.0.1) Ĥ = ~ω(â†â+
1

2
) + f ∗(t)x0â+ f(t)x0â

†,

where â and â† are the annihilation and creation operators respectively, and x0 =√
~/(2Mω) is the root mean square spatial spread of the ground state wavepacket.

The �rst term is the unperturbed Hamiltonian for the harmonic oscillator, and the

last two terms correspond to an external time-dependent force f(t) applied to the

system. In the interaction picture

(D.0.2) ĤI(t) = f ∗(t)x0âe
−iωt + f(t)x0â

†eiωt.

Assuming f(t) = Fe−i(ω−δ)t/2 (corresponding to a classical force f(t) = F sin[(ω−δ)t]
) is detuned from the resonant frequency ω by a frequency δ � ω much smaller than

the trap frequency, then the interaction Hamiltonian can be rewritten as

(D.0.3) ĤI(t) =
F ∗x0

2
âe−iδt +

Fx0

2
â†eiδt.

The state after an interaction time t is prescribed by the time-evolution operator

(D.0.4) Û(t) = exp

{
− i
~

(∫ t

0

ĤI(t
′)dt′ +

1

2

∫ t

0

dt′
∫ t′

0

dt′′[ĤI(t
′), ĤI(t

′′)] + ...

)}
.

If we consider only the �rst term in the exponent of the evolution operator and

substituting in the interaction Hamiltonian from Equation D.0.3, the resulting oper-

ator is exactly the displacement operator

(D.0.5) D̂(α) = eαâ
†+α∗â,

with α de�ned as

(D.0.6) α(t) = − i
~

∫ t

0

Fx0

2
eiδt

′
dt′.

The displacement operator translates motional states in position/momentum phase

space without distortion. For example, a displacement on an initial ground state of
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motion results in a coherent state |α〉 = D̂(α) |0〉, where the �nal state is de�ned in

terms of number states as

(D.0.7) |α〉 = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n〉 .

In terms of x-p coordinates, α = (1/2x0)(x+ ip/Mω).

The remaining higher order terms in the time-evolution operator originate from

the non-commutative property of the interaction Hamiltonian at a given time with

itself at di�erent times. This can be understood by considering the displacement

operators, which do not commute with one another but rather follow the commutation

rule D̂(α)D̂(β) = D̂(α+ β)eiIm(αβ∗). Therefore the complete time-evolution operator

can be constructed by integrating over in�nitesimal displacements in time:

(D.0.8) Û(t) = eiΦ(t)D̂(α(t)),

with the geometric phase accumulated over the entire path from time 0 to t expressed

as

(D.0.9) Φ(t) = Im(

∫ t

0

α(t′)∗dα(t′)).

For a near-resonant driving force with detuning δ (Equation D.0.3), the initial mo-

tional state moves in a circular trajectory of radius F/(2~δ) with periodicity T = 2π/δ

in the rotating frame of harmonic motion, following the path (from Equation D.0.6)

(D.0.10) α(t) =
Fx0

2~δ
(
1− eiδt

)
.

In one period of evolution under this force, the motional state returns to its original

phase space coordinates, but acquires a geometric phase of

(D.0.11) Φ0 =
π |Fx0|2

2(~δ)2

equivalent to the area enclosed by the trajectory.
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APPENDIX E

Quantum Interference between Coherent States

The interference fringes of the Schrödinger's cat state in our experiments usually

depend on the overlap of two separate coherent states. Here we include detailed

calculations for the setup in section 4.2 using some properties of coherent states.

Start with the wavefunction in eq 4.2.4

|ψ(t)〉 =
1√
2
eiΦ(t) |↑φS〉 |α(t)〉 − eiφS√

2
eiΦ(t) |↓φS〉 |−α(t)〉 ,

where α(t) = α0

(
1− eiδt

)
with α0 = ηΩ/(2δ), the probability of �nding the ion in

the |↓〉 state becomes
P (↓) = |〈↓| ψ(t)〉|2

=

∣∣∣∣ 1√
2
〈↓| ↑φS〉 |α(t)〉 − eiφS√

2
〈↓| ↓φS〉 |−α(t)〉

∣∣∣∣2
=

∣∣∣∣12 |α(t)〉 − 1

2
|−α(t)〉

∣∣∣∣2
=

1

4
{〈α(t) |α(t)〉 − 〈−α(t) |α(t)〉 − 〈α(t) |−α(t)〉+ 〈−α(t) |−α(t)〉} .

Using the property

(E.0.1) 〈α |β〉 = eα
∗β− 1

2
|α|2− 1

2
|β|2 ,

the result is eq 4.2.5:

(E.0.2) P (↓) =
1

2

{
1− e−2|α(t)|2

}
.

For the thermal state, we �rst consider the displacement of each initial vibration

level |n〉 individually:

|ψn(t)〉 = a↑φS (0) |↑φS〉 D̂(α↑φS (t)) |n〉+ a↓φS (0) |↓φS〉 D̂(−α↑φS (t)) |n〉 .

where D̂(α) is the displacement operator that translates a coherent state in phase

space by α. The probability of �nding the ion in the |↓〉 state is

(E.0.3) Pthermal(↓) =
∞∑
n=0

1

1 + n̄

(
n̄

1 + n̄

)n
|〈↓| ψn(t)〉|2
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=
∞∑
n=0

1

1 + n̄

(
n̄

1 + n̄

)n ∣∣∣∣12D̂(α(t)) |n〉 − 1

2
D̂(−α(t)) |n〉

∣∣∣∣2 .
Here we note that D̂†(−α) = D̂(α) and use the commutation rule for displacement

operators:

(E.0.4) D̂(β)D̂(α) = eiIm(α∗β)D̂(α + β).

Equation E.0.3 becomes

Pthermal(↓) =
∞∑
n=0

1

1 + n̄

(
n̄

1 + n̄

)n [
1

2
− 1

4
〈n| D̂(2α(t)) |n〉 − 1

4
〈n| D̂(−2α(t)) |n〉

]
.

The part of a wavefunction initially in |n〉 still remaining in the vibrational state |n〉
after a displacement D̂(2α(t)) is (see ref [73])

〈n| D̂(2α(t)) |n〉 = e−
1
2
|2α(t)|2Ln(|2α(t)|2)

where

Ln(X) =
n∑

m=0

(−1)m

(
n

n−m

)
Xm

m!
.

are the Laguerre polynomials. Summing over the Laguerre polynomials, we arrive

at eq 4.2.7:

Pthermal(↓) =
1

2
− 1

2
e−

1
2
|2α(t)|2

∞∑
n=0

1

1 + n̄

(
n̄

1 + n̄

)n
Ln(|2α(t)|2).

=
1

2

(
1− e−(n̄+ 1

2
)|2α|2

)
.

For calculating the decoherence of the interference signal due to background heat-

ing, we start with eq 4.2.9:

|ψβ(T )〉 =
ei(θ+µ1)

√
2
|↑φS〉

∣∣α↑φs (T )
〉
− ei(φS−θ+µ2)

√
2

|↓φS〉
∣∣α↓φs (T )

〉
.

where θ, µ1, µ2, α↑φs (T ) and α↓φs (T ) are all dependent on the displacement β. The

probability of measuring the state |↓〉 at time T for a given displacement β is:

Pβ(↓) = |〈↓| ψβ(t)〉|2

=

∣∣∣∣ei(θ+µ1)

2

∣∣α↑φs (T )
〉
− ei(−θ+µ2)

2

∣∣α↓φs (T )
〉∣∣∣∣2

=
1

2
− 1

4

{
ei(2θ+µ1−µ2)

〈
α↓φs (T )

∣∣α↑φs (T )
〉

+ c.c.
}
,

where

α↑φs (T ) = α0e
iφM (1− eiδT ) + β,
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α↓φs (T ) = −α0e
iφM (1− eiδT ) + β,

and the overlap is 〈
α↓φs (T )

∣∣α↑φs (T )
〉

= e−2|α(T )|2eiϕ,

where α(T ) = α0e
iφM (1− eiδT ) and ϕ = 2Im

{
α0β

∗eiφM (1− eiδT )
}
. The result is

Pβ(↓) =
1

2

{
1− e−

1
2
|2α(T )|2cos (2θ + µ1 − µ2 + ϕ)

}
.

The dependences on β for the variables are

θ = Im
{
α∗0βe

−iφM
(
1− e−iδt1

)}
= −Im

{
α0β

∗eiφM
(
1− eiδt1

)}
.

µ1 = Im

{∫ T

t1

[
α∗0e

−iφM (1− e−iδt) + β∗
] [
−iδα0e

iφM eiδt
]
dt

}
,

µ2 = Im

{∫ T

t1

[
−α∗0e−iφM (1− e−iδt) + β∗

] [
iδα0e

iφM eiδt
]
dt

}
,

µ1 − µ2 = −2Im

{∫ T

t1

iδα0β
∗eiφM eiδtdt

}
,

= −2Im
{
α0β

∗eiφM
(
eiδT − eiδt1

)}
.

cos (2θ + µ1 − µ2 + ϕ) = cos
(
−4Im

{
α0β

∗eiφM
(
eiδT − eiδt1

)})
= cos

(
−4Im

{
α0β

∗eiφM eiδT
(
1− e−iδ(T−t1)

)})
The random variable β has a Gaussian distribution uniform in phase with variance

σ2 = ˙̄nT , and the variable t1 is also random. Therefore by symmetry we can remove

the phase from the expression

Pheating(↓) =

∫ ∞
−∞

dβeβ
2/2σ2 1

2

{
1− e−

1
2
|2α(T )|2cos (4 |α0| β)

}
.

For an independent Gaussian random variable x with variance σ2 , the expectation

value of a function cos(ax) is

〈cos (ax)〉 = e−
1
2

(a2σ2).

So the contribution from decoherence due to heating is

〈cos (2θ + µ1 − µ2 + ϕ)〉 = e−8|α0|2 ˙̄nT

and the probability due to heating is

Pheating(↓) =
1

2

{
1− e−

1
2
|2α(T )|2− 1

2
|4α0|2 ˙̄nT

}
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Accounting for both temperature and heating e�ects,

(E.0.5) P (↓) =
1

2

{
1− e−

1
2

˙̄nt|4α0|2−(n̄+ 1
2)|2α(t)|2

}
.
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APPENDIX F

Di�erential Stark Shift on Magnetic Field Insensitive States

In this appendix we will show that magnetic �eld insensitive states have no dif-

ferential Stark shift in the limit where the detuning from the excited state is much

larger than the hyper�ne splitting, i.e. ∆HF/∆ → 0. To �nd the �eld insensitive

states for a system in the S1/2 ground state with some nuclear spin I, we write down

the Hamiltonian for the hyper�ne interaction in the presence of a magnetic �eld B:

(F.0.1) Ĥ = µ ·B + AÎ · Ĵ = gJB · Ĵ + gIB · Î + AÎ · Ĵ,

where Ĵ is the total angular momentum of the electron, Î is the nuclear spin,

and AÎ · Ĵ is the contact term. gI and gJ are the Lande g-factors for the nucleus

and the electron. The eigenstates of the Hamiltonian are linear combinations of

the mF states, and can be represented as |Ψi〉 = ai
∣∣g;mJ = 1

2
,mI = mF,i − 1

2

〉
+

bi
∣∣g;mJ = −1

2
,mI = mF,i + 1

2

〉
. The coe�cients a and b are functions of the mag-

netic �eld. If two states |Ψ1〉 and |Ψ2〉 are magnetic �eld insensitive, then

(F.0.2)
∂

∂B
(E1 − E2) = 0.

Applying Ehrenfest theorem,

(F.0.3)
∂Ei
∂B

= 〈gJJz + gIIz〉 = |ai|2
[
gJ
2

+ gI(mF,i −
1

2
)

]
+ |bi|2

[
gJ
2

+ gI(mF,i +
1

2
)

]
.

Normalization of the eigenstates and solving F.0.2 gives the result|a1|2 = |a2|2 +

gI∆mF/(gJ − gI). Since the dipole moment of the electron dominates the dipole

moment of the nucleus, i.e. gI/gJ ≈ 10−3, we can approximate it as

|a1|2 = |a2|2

(F.0.4) |b1|2 = |b2|2 .

Now consider the Stark shift for each of these magnetic �eld insensitive states.

The AC Stark shift is given by

(F.0.5) χi =
∑
mJ ,mI

〈Ψi|E · d |e,mJmI〉 〈e,mJmI |E · d |Ψi〉
∆− E1 + Ei

,
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where |e;mJ ,mI〉 is the excited state with the corresponding z-component of the

electron and nuclear spins. Since the electric dipole only couples the orbital angular

momentum of the electron, Ψi only couples to the states with the same mI . So the

expression can be simpli�ed to

(F.0.6)

χi = |ai|2
∑
mJ

∣∣〈g;mJ = 1
2

∣∣E · d |e,mJ〉
∣∣2

∆− E1 + Ei
+ |bi|2

∑
mJ

∣∣〈g;mJ = −1
2

∣∣E · d |e,mJ〉
∣∣2

∆− E1 + Ei
.

If the energy di�erence between the two states Ψ1 and Ψ2 is small compared to ∆,

and applying the results from equation F.0.4, then we �nd that χ1 = χ2. So we

conclude that the energy shift due to Stark e�ect is the same for any two magnetic

�eld insensitive states.
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APPENDIX G

Two-ion Interactions

For small oscillations, there are two normal modes de�ned by the center-of-mass

coordinate q̂1 = (ẑ1 + ẑ2)/
√

2 and a �stretch� coordinate q̂2 = (ẑ1 − ẑ2)/
√

2. The

Hamiltonian for the collective system now sums over both ions and both vibrational

modes:

Starting with the general Hamiltonian for two ions:

(G.0.1) Ĥ0 =
∑
i=1,2

~ω
2
σ̂(i)
z +

∑
ν=1,2

~ων â†ν âν ,

where the normal modes of oscillation are de�ned by the center-of-mass coordinate

q̂1 = (ẑ1 + ẑ2)/
√

2 and a �stretch� coordinate q̂2 = (ẑ1 − ẑ2)/
√

2, with oscillation

frequency of each mode being ω1 and ω2 =
√

3ω1 respectively, and â†ν and âν the

harmonic oscillator creation and annihilation operators for the normal modes ν = 1, 2.

The interaction Hamiltonian for two ions becomes

(G.0.2) ĤI =
∑
i=1,2

~Ωi

2

(
σ

(i)
+ ei(∆kr̂i−(δω′)t+∆φi) + σ

(i)
− e
−i(∆kr̂i−(δω′)t+∆φi)

)
.

In the interaction frame of the vibrational levels, eq G.0.2 becomes

(G.0.3)

ĤI =
∑
i=1,2

~Ωi

2

(
σ

(i)
+ ei[η1(â1e

−iω1t+â†1e
iω1t)±η2(â2e−iω2t+â†2eiω2t)]e−i((δω

′)t−∆φi)
)

+ h.c.

The Lamb-Dicke parameters are given by η1 = ∆kzq1/
√

2 and η2 = ∆q2/
√

2 = η1/
4
√

3,

representing the strength of coupling between the �elds and each normal mode.

G.1. carrier transition

When the di�erence frequency of the optical sources is tuned to the free ion qubit

resonance δω′ = 0 (compensating for possible di�erential Stark shifts, assumed to be

equal for the two ions), then

(G.1.1) ĤI =
∑
i=1,2

∑
n1,n2

(
~ΩiDn1;n2

2
σ̂

(i)
+ ei(∆kz

(i)
0 −∆φi) + h.c.

)
|n1, n2〉 〈n1, n2| ,

where the Debye-Waller factor Dn1;n2 = Dn1,n1 ×Dn2,n2 = e−(η21+η22)/2Ln1 (η2
1)Ln2 (η2

2)

accounts for both modes. Assuming the Rabi frequencies are the same for both ions,
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Figure G.2.1. Vibrational sideband transition with two ions. The red
sideband �eld shown above couples |↑↑ n〉 to |↑↓ n+ 1〉 and |↓↑ n+ 1〉,
which in turn are coupled to |↓↓ n+ 2〉 by the same driving �elds.

Therefore, the transition from |↑↑ n〉 to |↓↓ n+ 2〉 is
√

2(2n+ 3) times
faster than for a single ion to transfer from |↑ n〉 to |↓ n+ 1〉.

an initial state |↑↑〉 evolve as

|ψ(t)〉 =

(
cos

(
Ωt

2

)
|↑1〉 − ie−iφ1sin

(
Ωt

2

)
|↓1〉
)

×
(
cos

(
Ωt

2

)
|↑2〉 − ie−iφ2sin

(
Ωt

2

)
|↓2〉
)
|n1, n2〉 .

Each ion oscillates between the qubit states independently at the same Rabi frequency

Dn1;n2Ω0, each with its own phase that depends on the phase of the �elds at each

ion's location ∆kz
(i)
0 .

G.2. First sideband transitions

The dynamics of sideband transition for two ions is very di�erent from that of

one ion because both ions are trying to change the same collective vibrational mode
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simultaneously. The transition now couples |↑↑ n〉 to |↑↓ n+ 1〉 and |↓↑ n+ 1〉, which
in turn are coupled to |↓↓ n+ 2〉 by the same driving �elds. The Hamiltonian is

ĤI =
∑
i=1,2

∑
n1,n2

(
ην~ΩiD

′
n1;n2

2
σ̂

(i)
+ âνe

i(∆kz
(i)
0 −∆φi) + h.c.

)
,

where D′nν ;nν′
= e−(η21+η22)/2(nν−1!)−1L1

nν−1(η2
ν)L

1
nν−1(η2

ν) is the Debye-Waller factor for

the �rst sideband, with ν ′ 6= ν the 'spectator' mode of motion. The evolution follows

the set of equations:

i~ȧ↑↑n =
√
n+ 1Ω′a↑↓n+1 +

√
n+ 1Ω′a↓↑n+1,

i~ȧ↑↓n+1 =
√
n+ 1Ω′∗a↑↑n+1 +

√
n+ 2Ω′a↓↓n+2,

i~ȧ↓↑n+1 =
√
n+ 1Ω′∗a↑↑n+1 +

√
n+ 2Ω′a↓↓n+2,

i~ȧ↓↓n+2 =
√
n+ 2Ω′∗a↑↓n+1 +

√
n+ 2Ω′∗a↓↑n+1,

where Ω′ = ηD′nν ;nν′
Ω0. For an initial condition of a↑↑n(0) = 1 and a↑↓n+1(0) =

a↓↑n+1(0) = a↓↓n+2(0) = 0, the solution is [51]

a↑↑n(t) = 1− n+ 1

2n+ 3

[
1− cos

(√
2(2n+ 3)t

)]
,

a↑↓n+1(t) = a↓↑n+1(t) =

√
n+ 1

2(2n+ 3)
sin
(√

2(2n+ 3)t
)
,

a↓↓n+2(t) =

√
(n+ 1)(n+ 2)

2n+ 3

[
cos
(√

2(2n+ 3)t
)
− 1
]
.

For n = 0 ground state of vibration, the ions transfer from |↑↑ 0〉 to |↓↓ 2〉 in time

t = π/Ωsb, where Ωsb =
√

6ηΩ.
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spin-dependent force, 65

σφ, 91

σz, 133

σφ, 68
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thermal distribution, 58, 71
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