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Scaling up controlled quantum systems to involve large numbers of qubits

remains one of the outstanding challenges of quantum information science. One path

toward scalability is the use of a modular architecture where adjacent qubits may be

entangled with applied electromagnetic fields, and remote qubits may be entangled

using photon interference. Trapped atomic ion qubits are one of the most promising

platforms for scaling up quantum systems by combining long coherence times with

high fidelity entangling operations between proximate and remote qubits. In this

thesis, I present experimental progress on combining entanglement between remote

atomic ions separated by ∼1 meter with near-field entanglement between atomic

ions in the same ion trap. I describe the experimental improvements to increase

the remote entanglement rate by orders of magnitude to nearly 5 sec−1. This is

the first experimental demonstration where the remote entanglement rate exceeds

the decoherence rate of the entangled qubits. The flexibility of creating remote

entanglement through photon interference is demonstrated by using the interference



of distinguishable photons without sacrificing remote entanglement rate or fidelity.

Next I describe the use of master clock in combination with a frequency comb to

lock the phases of all laser-induced interactions between remote ion traps while

removing optical phase stability requirements. The combination of both types of

entanglement gates to create a small quantum network are described. Finally, I

present ways to mitigate cross talk between photonic and memory qubits by using

different trapped ion species. I show preliminary work on performing state detection

of nuclear spin 0 ions by using entanglement between atomic ion spin and photon

polarization. These control techniques may be important for building a large-scale

modular quantum system.
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Chapter 1: Quantum information processors and modularity

During the twentieth century, there were tremendous technological advances

from the first quantum revolution. For example, the understanding of some solid

state systems at the quantum level allowed for, among other technologies, the con-

struction of the transistor and the laser which have revolutionized modern life.

With the increases in computational power, researchers began investigating strongly-

interacting, many-body quantum systems in pursuit of developing novel materials

such as high temperature superconductors. Unfortunately, simulating quantum me-

chanical many-body systems quickly becomes intractable on classical computers.

The number of bits needed generally grows as 2N where N is the number of two-

level particles, prohibiting the use of classical computation to simulate some quan-

tum systems. However, quantum information processors can take over, harnessing

the parallel processing ability of quantum mechanics by making use of quantum

entanglement, the central resource of a quantum computer [1, 2]. The construction

of a quantum computer would have a profound impact on scientific advancement.

Despite the dream of a universal quantum computer, it was not obvious such

a machine could realistically work. A brief history of some early developments in

quantum information theory is given in [3], which I will paraphrase here. In a
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1996 article titled “Quantum Computation: Dream or Nightmare,” Haroche and

Raimond wrote [4]

Such a dream scenario would require a machine completely isolated from

the outside world. But in fact, quantum coherence is exceedingly sen-

sitive to the unavoidable coupling with the environment... A single re-

laxation event affecting an excited qubit state can destroy the coherence

required by the computation.”

Landauer, one of the most prominent figures in information theory, explained in 1995

why quantum information processing seemed to face insurmountable road blocks [5]

There are manufacturing defects, i.e. the Hamiltonian will deviate slightly

from its intended form. Furthermore, coupling to the rest of the world

will manifest itself as friction and noise. This causes two problems...

First of all there is the likelihood, resulting from the irregularities in

the Hamiltonian, that the computation will be reflected in its progress

along the [computational path], and turned around prematurely. This

is familiar to condensed matter physicists... as localization. The second

problem relates to... the restandardization ... not available in a Hamil-

tonian system. Therefore, errors will pile up, and the computation will

go off track.

Issues surrounding calibration of a quantum system and the suppression of contin-

uous phase and bit-flip errors made a quantum computer seem like an analog com-

puter, a device with exponential accumulation of error [6]. Even with the promise
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of fast factoring algorithms [7], it was not clear the power of a quantum information

processor could be physically realized.

Progress in quantum information science continued. In 1995, Cirac and Zoller

proposed that a quantum gate could be accomplished with trapped atomic ions [8],

followed shortly by the first experimental demonstration of a quantum logic gate

by Chris Monroe and David Wineland using trapped Be+ ions [9]. In the same

year, Shor proved that decoherence could be handled by the use of quantum error

correction [10]. However, as pointed out by Haroche and Raimond in 1996, even

if error correction can be used to mitigate the effects of decoherence, the error

correction would have to be done perfectly [4]. Without perfect error correction,

the error correcting process will introduce decoherence and negate the utility of a

quantum information processor.

Shor answered this challenge in 1996 by proving that fault-tolerant quantum

computation is possible using error correction in the presence of decoherence and

imperfect qubit manipulations [11]. With this paper, the idea of a useful quantum

information processor was placed on solid theoretical footing. It would be possible

to attain speedups on some algorithms using a quantum information processor built

from noisy, faulty components and manipulated with imperfect controls. As pointed

out by Deutsch [3], these theoretical breakthroughs give insight in to the nature of

a quantum processor: a quantum information processor is both analog and digital.

Even though imperfect logic gates and decoherence turn the desired quantum states

in to statistical mixtures, error correction and fault-tolerance thresholds guarantee

that these continuous errors can be discretized and the resulting output of a quantum

3



Figure 1.1: Scaling quantum systems. Entanglement, the central resource of quan-
tum information processing, may be created between quantum bits (qubits). Gen-
erating entanglement between two qubits may be accomplished by applying a σxi σ

x
j

interaction with strength Jij between qubits i and j to produce the entangled state
|00〉+ eiφij |11〉 with phase φij. Scaling up a two qubit system to a many-qubit sys-
tem, as in the figure, introduces problems of qubit addressability in both space and
frequency. The diffraction of electromagnetic fields limits the qubit density by limit-
ing the spatial addressability of qubits. Addressing a particular entanglement mode
of interacting qubits in the frequency domain becomes challenging as the number of
qubits increases, introducing spectral crowding in the frequency domain. These lim-
itations suggest that such a system may reach a maximum manageable size before
cross talk limits the utility of adding more qubits.

algorithm can succeed with high probability [3].

With the dream of a quantum information processor backed up by theoretical

work, experimental quantum information scientists are confronting the nightmare

of scaling up small laboratory demonstrations to large scale information processing

devices.

1.1 Scaling up quantum systems using modular architec-

tures

Many different types of qubits are used as a means to store and process quan-

tum information such as atoms, ions, superconducting circuits, quantum dots, and
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nitrogen vacancy defects in diamond. The creation of entanglement between two

qubits directly interacting with each other can be thought of generically as a Jijσxσx

interaction with strength Jij between qubits i and j. The application of this inter-

action to two qubits prepared in the state |00〉 in the z-basis will evolve the system

to an entangled state |00〉 + eiφij |11〉 with entangled state phase φij (generally de-

termined by the time-dependent fields used to entangle the qubits). Scaling up

such experiments involves the use of more qubits in proximity to each other. En-

tanglement between any arbitrary pair of qubits is accomplished by applying gated

electromagnetic fields, and qubit control relies on addressing the qubits of interest.

Addressing arbitrary pairs of qubits can involve both spatial and frequency selec-

tivity; lasers can be focused down in space to address qubits while control fields

can be used to tune individual qubit energy levels allowing for adressability in the

frequency domain.

Scaling up these systems typically involves making more complex devices for

the storage and the manipulation of many qubits [12–16]. As the number of qubits

grow, the number of electromagnetic modes available to make entanglement between

an arbitrary pair of qubits increases. Addressing one entanglement-generating mode

without cross talk to other modes thus becomes more challenging. High-quality, fast

optics can be used to focus a Gaussian laser beam down to diameter (4λ/π)(F/D) by

using laser at wavelength λ with diameter D and lens with focal length F. The spa-

tial adressability, and thus the qubit density, is therefore limited by the diffraction

of electromagnetic fields. In addition, spontaneous emission of photons associated

with initializing the qubits to a pure quantum state can impose severe limitations on
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the qubit density (see Chapter 6). Addressing particular qubit entanglement modes

in the frequency domain is limited by the finite frequency bandwidth over which the

qubits can be tuned. Increasing the number of qubits increases the entanglement

mode spectral density, resulting in off-resonant cross talk between different entan-

glement modes from the gated electromagnetic control fields. This may be overcome

by decreasing the intensity of the electromagnetic fields used to create entanglement

at the cost of entangling gate speed, potentially giving back algorithmic speedups

associated with increasing numbers of qubits.

These significant challenges suggest implementations of large scale quantum

information processors may reach a maximum “manageable” number of qubits be-

fore spectral crowding and cross talk limit further scaling. It will likely be useful to

limit the interactions between qubits by placing a manageable number of qubits into

elementary logic modules. Each module could then be connected by a flexible and

re-configurable quantum network as shown in Fig. 1.2. The number of qubits could

then be increased by adding more modules without increasing spectral crowding or

cross talk between qubits in different modules. The reduced qubit connectivity will

result in overhead, but the ability to reconfigure the connectivity may prove useful

[17].

Trapped atomic ions confined in multi-zone ion traps provide one type of mod-

ular architecture. Large collections of qubits may be shuttled to different interaction

zones and re-arranged in complex, junction ion traps [9, 18, 19]. Limiting cross talk

and spectral crowding may be accomplished by shuttling ions away from interaction

zones in the ion trap array. The elementary modules of multizone ion traps are
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different trapping zones, and the reconfigurable interactions are realized by adiabat-

ically moving the qubits throughout the ion trap. Physically adjacent trapped ion

qubits may be entangled using laser fields and the coulomb interaction. In addition

to using the coulomb interaction between ion qubits, the interference of photons on

a beam splitter and subsequent photon detection can herald entanglement between

remote ion qubits in different vacuum chamber modules. Though this second type of

entanglement generation is necessarily probabilistic, the remote entanglement rate

may be faster than the decoherence rate of the qubits [20]. In this architecture,

each ion trap serves as an elementary module. The modules are connected through

photon interference, and this network may be reconfigured with the aid of photonic

interconnect switches (see Fig. 1.2).

This thesis presents some experimental work on realizing a modular archi-

tecture composed of trapped 171Yb+ ions in separate, remote ion trap modules.

Chapter 2 of this thesis summarizes work on designing a segmented, four blade ion

trap that is both small (facilitating quantum gates between proximate qubits) and

optically open (facilitating efficient light collection for fast entanglement of remote

qubits). In addition, Chapter 2 reviews some coherent manipulations of 171Yb+ ions

in this ion trap. Chapter 3 shows experimental progress on increasing the remote

entanglement rate between distant 171Yb+ ions by orders of magnitude to nearly 5

sec−1. This is the first experimental demonstration where the remote entanglement

rate exceeds the decoherence rate of the entangled qubits [20]. The flexibility of

quantum networks for creating remote entanglement through photon interference is

demonstrated by using the interference of distinguishable, non-identical photons to
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Figure 1.2: Modular network for large scale quantum information processing sys-
tems. Cross talk in both space and the frequency domain may limit the maximum
number of manageable proximate qubits in a quantum system. Quantum systems
may still be scaled up to encompass more qubits by making use of modular archi-
tectures. Interactions between qubits in different modules may be limited by sepa-
rating and isolating the qubits. Qubits in different modules may still be entangled
by making use of heralded photon interference. Single photons emitted from qubits
in different modules can interfere on a beam splitter, and subsequent measurement
of the single photons can project qubits in remote modules into an entangled state.
The use of a reconfigurable photonic interconnect switch allows different modules
to be entangled in a quantum network with a flexible architecture.

create entanglement between remote qubits without sacrificing remote entanglement

rate or fidelity. Chapter 4 shows experimental work on locking the entangled state

phases throughout a modular architecture to a single, high quality master clock

despite using two different entanglement buses (lasers and spontaneously emitted

photons) for entanglement. Chapter 5 shows experimental work done on combining

both photon and phonon interactions to create entanglement within and between

ion trap modules to create a small quantum network. Chapter 6 shows early exper-

imental work on combining two different types of qubits in a modular architecture

8



to avoid cross talk between the two different entanglement buses. One type of qubit

serves as the photonic link qubit for generating entanglement between modules while

the other serves as quantum memory for information processing within each module.

9



Chapter 2: Experimental considerations

2.1 Experimental system considerations

Operating a modular quantum information processor using trapped ions re-

quires special attention to ion trap and vacuum chamber design as an integrated

system. This kind of architecture has two competing requirements; the ion trap

should be small, facilitating high secular frequencies, and the ion trap should be

optically open to collect single photons with high efficiency. Trapped ions with high

secular frequencies result in lower mean vibrational number n̄, making entangling

gates using the Mølmer-Sørensen interaction less sensitive to noise [21]. The relative

stability to noise is important given the time-scales involved in the experiment; the

Mølmer-Sørensen entangling gate between proximal qubits must be stable to typical

laboratory noise sources, such as slow drifts of the ion transverse motional modes

while remote qubits are being entangled through probabilistic photon interference.

In addition to efficient light collection, optically open ion traps facilitate flexible

laser access from multiple directions, allowing for the variety of qubit manipulations

necessary in modular architectures, particularly with multiple qubit species within

each module (see Chapter 6).

The work in this thesis makes use of high numerical aperture, free space col-

10
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Figure 2.1: Ion trap geometries for a modular quantum system. Alignment of a
single mode optical fiber to an atom through a high numerical aperture microscope
objective is challenging. With a NA = 0.6 objective, displacing the ion by ∼ 200 nm
decreases the total photon flux through the fiber by ∼50%. A geometry with optical
access through the ion trap to a lower NA objective is very useful for alignment of a
trapped ion to a fiber. Light can be sent through the fiber where it is focused near
the trapped ion. The low NA objective then images the fiber and the ion on a CCD
camera so that the fiber may be overlapped with the ion. (a) A slotted chip trap
geometry with a trapped ion. While there is optical access for initial alignment of
a fiber to an ion, laser access for qubit manipulations is severely hampered by the
large dimensions of the high NA collection optics. Laser access orthogonal to the
single photon collection axis is restricted by the ion trap substrate. (b) Surface chip
traps without a slot provide optical access for laser by skimming the trap surface,
but lack of a slot makes alignment of the optical fiber to the ion challenging. (c) A
slotted surface trap provides laser access orthogonal to the single photon collection
axis. The slotted design of the ion trap simplifies alignment of the fiber to the
ion. Care must be taken in the chip and chip carrier design to accommodate highly
converging and diverging laser beams for individual addressing of trapped ions. (d)
Three dimensional, segmented blade trap consisting of four blades (side on view
in figure). There is ample optical access along the single photon collection access.
In addition, there is ample room for laser access orthogonal to the single photon
collection axis.
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lection optics that focus light into single mode optical fibers. The requirements for

aligning the single photon collection optics so that the photons are efficiently cou-

pled in to an optical fiber are challenging; alignment requires adjusting 10 degrees

of freedom (3-D translation, pitch, and yaw of the optical fiber and the high NA ob-

jective) per ion trap. Making use of an ion trap with optical access for two imaging

systems sharing a common axis facilitates alignment of the high NA objective to

the fiber. Using this type of geometry places important restrictions on the classes of

ion traps useful for modular architectures (see Fig. 2.1). Ion traps without optical

access in one direction make alignment of the high NA objectives challenging. The

use of a high NA objective (single photon collection) and a low NA objective (for

alignment of the high NA objective) along a common axis severely restricts laser

access along this axis. Transverse laser access to this imaging axis is important for

addressing the ions’ modes of motion with Raman transitions to realize an entan-

gling interaction. Additionally, each ion trap should be able to control chains of ions

necessitating a segmented ion trap.

A large effort to fabricate scalable ion traps on chips has produced a wide

variety of ion trap designs that can be broadly broken down in to several classes.

Slotted planar traps (see Fig. 2.1a) confine ions in a slot of a surface electrode

structure. Though this geometry provides an open optical axis, there is no azimuthal

laser access and laser access along the collection direction is highly restricted by the

objective optics. Non-slotted surface traps confine ions above a surface patterned

with electrodes. Non-slotted traps will be challenging to use in this architecture

due to lack of optical access along the single photon collection axis. The final class
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of traps is a slotted surface trap where the ion is trapped above a slotted chip.

This geometry provides through access and azimuthal laser access, but care must

be made to account for the free space propagation of a Gaussian laser beam. The

chip carrier must be etched back significantly to allow clearance for tightly focused

beams. At the commencement of this research, such an ion trap did not exist.

A natural solution to these design requirements is to use a variation on a four

rod ion trap: a segmented blade trap design. This geometry is optically open, can

be made small, and has optical access for a single photon collection system as well

as azimuthal access for laser beams to carry out physics experiments. Because the

electrode structure is three dimensional, the trap depth can be several electronvolts

and trapping lifetime is measured in days. However, this ion trap is hand assembled

and scaling up to many modules will be challenging. Further development of chip-

based ion traps with appropriate geometries will be crucial for realizing a scalable

version of the architecture presented in this thesis.

2.2 Design of a segmented blade trap

Each blade is made out of alumina and was laser machined by Laser Micro

Machining Lt’d. There are four cuts in each blade to define five segments for con-

trolling the confining pseudopotential. Two of the blades are for application of RF

and are completely gold coated so each segment is electrically shorted. The other

two blades have a patterned gold coating so each segment is electrically isolated.

The gaps between electrodes is 50 µm and was limited by the smallest slot available
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from the laser machining company.

The blades were gold coated by Sandia National Labs. A thin titanium layer

was applied to the ceramic blades followed by a 1 µm layer of evaporated gold. Harsh

cleaning of the blades at high temperatures was necessary because of a surface finish

applied to the ceramic substrate during the laser machining process.

The blade trap used in the experiments in this thesis could have been improved

by lengthening the outer segments on each blade to reduce stray RF fields along the

axial direction of the ion chains. An updated design was constructed and is currently

being used (see Appendix).

Figure 2.2: Ion trap collection optics and geometry. The common axis shared by
the high NA microscope objective and the low NA objective are shown with their
relationship to the ion trap and re-entrant vacuum viewports. Light from an optical
fiber is focused by the high NA objective on to the ion, and the low NA objec-
tive simultaneously images the fiber and the ion to facilitate alignment. The high
NA microscope objective is held in place by two ring clamps or by a single nylon
tipped screw in a vee-block as shown in the figure. The high NA objective and free
space collection objectives define an optical axis. Laser beams may be brought in
orthogonal to this axis for manipulation of trapped ions.
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2.3 Vacuum system pump down and non-evaporable getters

The use of non-evaporable getters (NEGs) for achieving ultra high vacuum

has proved useful in ion trap chambers as a replacement for tradition titanium

sublimation pumps. TiSub pumps are activated by heating a titanium filament,

spraying titanium in the vacuum chamber. Gases like molecular hydrogen stick to

the surface of titanium, and the hydrogen can be buried by subsequent heating of

the titanium filament. High pumping speeds are achieved by covering a large surface

area with the metal. The pumping speed and capacity are determined by the surface

area. In order to maintain high pumping speeds, the sublimation pump filament

needs to be heated several times per year, resulting in down time of order one day

as the pressure recovers.

NEGs are typically made of metal alloys containing zirconium, vanadium, and

iron. The getter material is activated by heating the material. Gas is ejected from

the surface and the bulk of the material, and upon cooling, the NEG metal alloy acts

as a pump. These materials have very high pumping speeds for molecular hydrogen,

but the capacity of the material is given by the volume of the getter. The hydrogen

molecular bond is broken when it comes in to contact with the metal surface, and

the hydrogen atoms migrate into the bulk of the material. The pump speed remains

roughly constant. Once activated, NEGs will need re-activation every few decades

given the background pressure typical in ion trap experiments. The vacuum cham-

bers used in experiments described in this thesis made use of Capacitorr D400 NEG

cartridges from SAES. These NEGs have a hydrogen pumping speed of ∼400 liters
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/ sec at pressures below 0.01 Torr at room temperature and a capacity of 900 Torr

liters.

A test vacuum chamber was constructed for testing NEG cartridges. The

test chamber had an NEG cartridge from SAES (Capacitorr D 400), an ion pump,

and an ion gauge that could be valved off from the central part of the chamber

with vacuum valves. The test chamber was heated to 200 C while being pumped

with a turbo pump. The ion gauge was turned on at high temperature, and the

chamber was baked at 200 C for 14 days to test the cartridge activation without

further heating of the NEG element. Upon cooling the test chamber, the pressure

fell to < 1.0 × 10−11 Torr when the vacuum chamber temperature reached room

temperature. The ion pump was switched off to allow only the NEG to pump the

vacuum chamber. The pressure remained below 1.0×10−11 Torr for 48 hours before

the experiment was terminated.

All pumping sources were valved off and the pressure inside the chamber was

allowed to increase to ∼ 2×10−10 Torr. If the getter cartridge pumped the chamber

and the ion pump was valved off, the pressure decreased below 1 × 10−11 Torr in

about 3 min. If the getter cartridge was valved off and the ion pump was the allowed

to pump the chamber, the pressure fell from 1.8 × 10−11 Torr to below 1 × 10−11

Torr in ∼40 seconds.

Full activation of the getter cartridge was attempted at UHV pressures by

running current through the NEG material and using the ion pump the remove the

ejected gas from the bulk of the getter material. The pressure spiked to 10−3 Torr,

and the vacuum pressure did not recover to UHV pressures for the next 72 hours.
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Figure 2.3: Segmented four blade geometry. This ion trap can have small dimensions
for tightly confining the ions while being optically open. The photo shows the trap
mounted in the vacuum chamber. Schematics with dimensions are in the appendix.

While fully activating the getter cartridge, a turbo pump should be used to pump

out the gas ejected from the getter bulk material.

The vacuum chambers used for experimental work in this thesis did not have

titanium sublimation pumps. NEG cartridges were used as an alternative. The

cartridges were activated while the chamber was at room temperature and being

pumped by a turbo pump. The getter cartridge was activated using 4 A of current

for 60 min. The vacuum chambers were then slowly heated to 195 C over a period

of 24 hours while being pumped with a turbo pump. After reaching 195 C, the

chamber was switched over to an ion pump. After being baked for 10 days at 195 C,

the chamber was allowed to slowly cool while the vacuum pressure was monitored.

The resulting pressure decrease can be seen in Fig. 2.4. At ∼65 C, the pressure

began to decrease sharply and fell below the 10−11 Torr limit of the ion gauge.

2.4 The 171Yb+ hyperfine qubit

The 171Yb+ isotope has nuclear spin 1
2

and thus has two hyperfine manifolds.

The 2S1/2 ground state manifold has |F,mF 〉 = |0, 0〉 ≡ |0〉 and |1, 0〉 ≡ |1〉 levels
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Figure 2.4: Ion trap vaccuum chamber cool down with and without non-evaporable
getters (NEG). The three data sets show the vacuum pressure as a function of
cooling down of vacuum chambers of ∼ 200 C to room temperature with a titanium
sublimation pump and with an NEG. The squares and triangles show the pressure
of two vaccum chambers with an ion pump and a TiSub pump. After reaching
room temperature, the TiSub pump is fired several times over the course of a few
days to bring the pressure from 10−10 Torr to 10−11 Torr. A chamber with an
NEG (no TiSub pump) starts with lower pressure and experiences a sudden drop
in vacuum pressure around 65 C as the NEG begins to act as a pump. Although
measuring pressures lower pressures than 2.0 × 10−11 Torr was possible with this
vacuum chamber, the pressure dropped faster than the ion gauge updated near the
final diamond-shaped data point.
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that are magnetic field independent at zero field and have a relatively small second-

order Zeeman shift at finite magnetic field of 311B2 Hz with the magnetic field

measured in Gauss [22]. The hyperfine frequency of the two levels is 12.642812118

GHz.
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Figure 2.5: Doppler cooling, optical pumping, and state detection of 171Yb+ ions.
(a) Doppler cooling of 171Yb+ ions. The dotted circles indicate π and σ± laser
light between the level manifolds. Doppler cooling drives all allowed transitions to
maximize laser scatter from the trapped atom. (b) Optical pumping to the |0〉 state
is accomplished by exciting the F = 1 to F = 1 transition between the S1/2 and P1/2

manifolds. Each F = 1 excited state level has probability 1/3 to decay to the |0〉
state. Re-pump levels are indicated in the figure to account for the small branching
ratio to the low lying D3/2 level. (c) State detection of an atom in the state |1〉.
Laser light resonant with the F = 1 to F = 0 transition from the S1/2 to P1/2 states
results in differential fluorescence between the |1〉 and |0〉 states.

This hyperfine qubit may be laser cooled using standard techniques by stabi-

lizing a laser resonant with the to the F = 1↔ F = 0 electronic transition between

the S1/2 and P1/2 levels. The addition of frequency sidebands at 12.6 + 2.1 GHz

are required to bridge the hyperfine splitting in the 2S1/2 ground state and 2P1/2

excited state so the trapped ion is not off resonantly pumped to the |0〉 state. All

laser polarizations are needed for laser cooling (σ± and π polarization), and a finite

magnetic field must be applied to avoid coherent population trapping [22, 23]. In

addition, a laser near 935 nm is needed, along with frequency sidebands, to depop-

ulate the 2D3/2 state through the 3[3/2]1/2 state. Decay from the |0, 0〉 state in the
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P1/2 excited state to the F = 1 levels of the 2D3/2 state occurs with probability

0.005, so addition of light resonant with the F = 1↔ F = 0 transition between the

2D3/2 and 3[3/2]1/2 is needed. The atom will decay from the 3[3/2]1/2 F = 0 state

back to the F = 1 levels in the S1/2 state. The population in the F = 1 states of

the P1/2 manifold can decay to the F = 2 level of the 2D3/2 state, and this state

can be transferred to the F = 1 states in the 3[3/2]1/2 electronic state. These levels

decay back to F = 1 and F = 0 levels in the S1/2 ground state.

State preparation of a pure quantum state |0〉 is done by switching off the

Doppler cooling laser sidebands at 14.7 GHz and switching on frequency sidebands

at 2.105 GHz to excite the atom to the F = 1 levels in the P1/2 manifold. These

levels can decay to the |0〉 state, and while in this state, the laser is detuned from

the atom by 12.6 GHz. The atom remains in the state |0〉 with high probability.

State detection makes use of differential fluorescence between the |0〉 state

and the F = 1 levels, one of which is the qubit state |1〉. If a laser is resonant

with the F = 1 ↔ F = 0 electronic transition between the S1/2 and P1/2 levels,

the F = 1 levels scatter photons while the F = 0 state is detuned by 12.6 GHz

and scatters photons with low probability. Error in state detection is dominated by

the off-resonant excitation of the F = 1 levels in the S1/2 manifold to the F = 1

levels in the P1/2 state, where the atom can decay to |0〉, mixing the qubit states.

Many references discuss state detection based on differential fluorescence and errors

associated with off-resonant excitation in great detail [13, 22, 24–26].

The probability the atom is in the |1〉 state is measured by analyzing the

histogram of number of photons detected over multiple experimental trials. Figure
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2.6a shows the number of photons detected in 300 µs after optically pumping the

atom to |0〉 and preparing the |1〉 state with a resonant microwave π pulse. Zero

photons are detected with high probability if the |0〉 state is prepared. The minimum

overlap of the two histograms occurs at two photons; if two or more photons are

detected, the atom is in the state |1〉.

The work in this thesis used PMTs without spatial resolution for counting

photons, so the two atom states |01〉 and |10〉 could not distinguished from each

other. In addition, there is significant overlap of the single atom |1〉 state and the

two atom |11〉 state. The histograms are not Poisson distributions because of off-

resonant scattering by coupling to the F = 1 states in the 2P1/2 state [26]. The

probability of correctly identifying the state |01〉 or |10〉 is measured as a function

of discriminator value and is shown in the red data in Fig. 2.6b with a detection

time of 300 µs. The figure also shows the probability of incorrectly identifying the

state |11〉 as a function of discriminator value in blue. The optimum discriminator

value for discerning |10〉 or |10〉 from |11〉 is where the data meet. The disciminator

value can be optimized for each detection time and is shown in Fig. 2.6c.

2.5 Coherent Manipulations in an ion trap

Resonant rotations of a qubit may be described by |ψ′〉 = R(θ, φ)|ψ〉 where the

initial qubit wavefunction |ψ〉 is multiplied by a rotation matrix R(θ, φ) to produce
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Figure 2.6: State detection of 171Yb+ ions. (a) State detection of a 171Yb+ ion
after optical pumping to |0〉 followed by a resonant π microwave rotation on the
|0〉 → |1〉 transition to prepare the state |1〉. The histogram shows the distribution
of the number of photons detected in 300 µs. The |1〉 state detection fidelity in
the figure is 0.98. (b) Error associated with detecting one and two ions in the |1〉
state. The red data shows the probability the |10〉 state is correctly identified as
a function of discriminator value. The blue data shows the probability the |11〉
state is misidentified as a function of discriminator value. The error is equal at a
discriminator value of 15 if the detection time is 300 µs. (c) Detection fidelity of
|11〉 as a function of detection time where the discriminator value is optimized to
discriminate between |11〉 and |01〉 with maximum probability.

the rotated state |ψ′〉. The rotation matrix is

R(θ, φ) = cos

(
θ

2

)
σ0 + i sin

(
θ

2

)
cos(φ)σx + i sin

(
θ

2

)
sin(φ)σy (2.1)

where the angle θ is the Rabi angle Ωt, a product of the Rabi frequency Ω and the

time the rotation is applied t. The matrices σi are the usual Pauli matrices. The

angle φ is the phase angle of the applied electromagnetic field. When applying a

rotation to a qubit, the phase may be defined to be zero, but all subsequent oper-

ations will depend on the phase relationship of the operations to the first rotation.

With trapped 171Yb+ qubits distributed across spatially separated ion trap modules,

maintaining the phase relationship of rotations requires the use of a master phase

reference that is distributed across all ion trap modules. A system for doing this is

shown in Chapter 4.
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The qubit can also be manipulated using stimulated raman transitions. The

atom can absorb a photon from one laser beam at frequency ω and undergo stimulate

emission in to the other laser beam at frequency ω±ωij where ωij is the energy level

difference between qubit state |i〉 and state |j〉. The laser is detuned from an excited

state by an amount ∆ where the excited state population is negligible, making the

three-level “λ-system” behave like a two level system between qubit state |i〉 and

state |j〉. The Raman transitions in this thesis were carried out with a mode-locked

pulsed laser, but the resulting frequency comb may be treated like a collection of

coherent, continuous wave lasers. A complete treatment of 171Yb+ interactions with

mode-locked pulsed lasers can be found in [27].
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Figure 2.7: Two photon Raman transitions in 171Yb+ . (a) A mode-locked, tripled
Nd:YVO4 laser at 355 nm can be used to drive Raman transitions between qubit
states |0〉 and |1〉 and can also be used to address the Stokes and anti-Stokes tran-
sitions. Transitions between the qubits states occur if the frequency difference of
a pair of comb teeth match ωHF . The 355 nm laser couples to the P1/2 and P3/2

levels, resulting in constructive interference of the Rabi frequency and destructive
interference of the differential Stark shift [28]. (b) Coupling coefficients defined by
Eqn. 2.3.

The interaction Hamiltonian for an atom at position x = 0 interacting with a

laser pulse with time dependent envelope E(t) at frequency ω with complex polar-
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ization vector ε is an electric dipole interaction [29]

Hint = −µ ·
(

1

2
ε̂E(t)e−i(ωt+φL) +

1

2
ε̂∗E(t)ei(ωt+φL)

)
(2.2)

where the atom has electric dipole moment µ. If the laser is purely σ+ polarized,

it will induce stimulated Raman transitions between the states |0〉 and |1〉 through

the |F,mF 〉 = |1, 1〉 ≡ |2〉 level of the 2P1/2 excited state and the |1, 1〉 level of the

2P3/2 excited state, denoted |3〉. (see Fig. 2.7). The single photon Rabi frequency

of this process is simplifies to [27]

gij = γ

√
I

2Isat

√
2J ′ + 1Cije

iφL (2.3)

where φL is the optical phase of the laser field, I/Isat is the saturation parameter, Cij

is the coupling coefficient for the single photon Rabi frequency between the states i

and j (see Fig. 2.7b), and γ is the linewidth of the excited state. The Raman Rabi

frequency for a transition between |0〉 and |1〉 is

Ω =
g∗02g12

2∆2

+
g∗03g03

2∆3

=
γ2

2

2∆2

I2

2Isat2
C02C12 +

γ2
3

2∆3

I3

2Isat3
C03C13 (2.4)

with detuning from each level ∆i = ωL − ωi. In the above equation, the coefficients

C02C12 = 1/
√

3 ·−1/
√

3 and C03C13 =
√

2/3 ·1
√

6. Note that since the linewidth of

the atom is proportional to ω3 and the saturation intensity is proportional to γω3 ∝
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ω6, the ratio γ2
i /Isat,i is independent of the dipole transition. If we assume both

Raman laser fields have the same intensity, the Raman Rabi frequency simplifies to

Ω =
γ2s

12

(
−1

∆2

+
1

∆3

)
(2.5)

where the linewidth γ and the saturation parameter s = I/Isat both refer to either

to P1/2 or the P3/2 level. Note that for Raman transitions at 355 nm in 171Yb+ ,

the detuning ∆2 is positive (∼+33 THz) while the detuning ∆3 is negative (∼-66

THz), resulting in constructive interference for the Rabi frequency. If a 532 nm

laser is used, both detunings are positive, resulting in destructive interference of

the Rabi frequency. The ratio of the Rabi frequencies Ω355/Ω532 = 39 assuming

equal intensities from both laser fields. If 1064 nm light is used, the ratio of the

Rabi frequencies Ω355/Ω1064 = 208. In the far detuned limit where ∆3 = ∆2 − ωFS

where ωFS is the fine structure splitting of the P1/2 and P3/2 states, the Raman Rabi

frequency is

Ω ≈ γ2s

12

ωFS
∆2

2

(2.6)

and the Rabi frequency falls off as 1/∆2.

Raman transitions were observed using 532 nm light from a mode-locked

Nd:YVO4 laser by driving |1〉 ↔ | ± 1〉 transitions in 171Yb+ . A 171Yb+ ion

was optically pumped to |0〉 and transferred to |1〉 by a microwave π pulse. A co-

propagating Raman laser beam at 532 nm was directed through an acousto-optic

modulator (AOM) where two different frequencies separated by ∆ωRaman were ap-
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plied. After application of the Raman laser, another microwave π pulse was applied

to transfer any remaining population in the |1〉 state back to |0〉 followed by state

detection to discriminate between population in the F = 1 manifold and |0〉. A

Raman spectrum of the |1〉 ↔ |±1〉 transitions is shown in Fig. 2.8a. There are two

peaks owing to the higher order corrections to the Zeeman shift of ∼10 kHz at an

applied field of ∼5.4 Gauss. Fig. 2.8b shows Rabi flopping on one of the transitions.

A Rabi of frequency of 5 kHz was achieved with ∼300 mW average power focused

down to a waist of ∼30 µm with a linear combination of σ± and π polarization,

consistent with the known laser detuning.
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Figure 2.8: Raman transitions with a mode locked 532 nm laser. After optically
pumping to |0〉, a microwave π pulse prepares the state |1〉. Copropagating Raman
lasers with beatnote ∆ω/2π at 532 nm drive transitions between |0〉 ↔ |1,±1〉 states.
The two transitions are at different frequencies due to the non-linear Zeeman effect.
Any remaining population in |1〉 is transferred back to |0〉 and state detection is
performed. (b) Rabi flopping on a Zeeman transition. A Rabi frequency of ∼5 kHz
was observed with ∼300 mW of average power focused down to a ∼30 micron waist.
If 1064 nm light was used with equal intensity, the observed Rabi frequency would
be approximately 1 kHz.
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Chapter 3: Photon entanglement of remote qubits

Cloning an unknown quantum state is forbidden by unitary evolution [30], so

quantum networks rely on teleportation as a means to transmit quantum information

over long distances [31]. Teleportation proceeds by creating entanglement between

two quantum systems, one system prepared the specific superposition state α|0〉 +

β|1〉 while the second is prepared in in a simple superposition state state like |0〉+|1〉.

After entangling the two systems, the first system is measured. The second system

is rotated depending on the outcome of the measurement of the first system. The

state of the second system is α|0〉+ β|1〉, thus teleporting the quantum state.

In classical communication networks, attenuation of information is overcome

by the use of repeaters; information is measured, amplified, and re-transmitted.

Quantum communication networks also suffer from attenuation of quantum infor-

mation; single photons cannot be sent over arbitrary distances. In addition, the

quantum state of single photons cannot be measured if entanglement between the

photon and its parent qubit is to be maintained. However, like their classical counter-

part, quantum repeaters may be used to extend the distance of a quantum network.

Long distance communication may be broken up over shorter distances between

modules with quantum memories. Entanglement between modules may be accom-
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plished in parallel using photon interference, and entanglement swapping in each

node can extend the distance between entangled systems [32, 33].

Entanglement over large distances involving many particles has many potential

uses such as testing the non-locality of quantum mechanics [34], giving insight in

to delayed choice experiments [35, 36], and even the creation of secure, distributed

clocks [37]. There are many proposals for constructing quantum networks [38–41],

but useful quantum networks have the commonality that the photons serve as means

to generate entanglement between remote quantum memories with long coherence

times.

Optical photons are natural carriers of quantum information as they can tra-

verse large distances in room temperature optical fibers and through the atmosphere

[42], and spontaneously emitted photonic degrees of freedom are naturally entangled

with their parent qubit (see Fig. 3.1a). Photons have several degrees of freedom

that may be entangled with its parent qubit including polarization, frequency, and

arrival time, offering a flexible platform depending on the application [43]. En-

tanglement between emitted photons and qubits has been demonstrated in a wide

variety of systems including trapped ions [44], quantum dots [45], nitrogen vacancy

(NV) centers in diamond [46], and neutral atoms [47, 48].

Remote entanglement of qubits is typically accomplished by interfering the

emitted photons on a beam splitter. By detecting the output states of the beam

splitter, the photons can be detected in the Bell state basis, thus projecting the re-

mote qubits into an entangled state. Remote entanglement between distant qubits

has also been demonstrated in many systems including ions [49, 50], NV centers [51],
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between remote atomic ensembles [52], and between remote neutral atoms [53]. En-

tanglement between adjacent qubits in the same cavity using photon interference has

also been demonstrated [54]. In addition, the interference of non-identical, entan-

gled single photons has been analyzed [55–57] and recently demonstrated [58]. This

work has been extended to include the entanglement of distinguishable quantum

memories through the interference of distinguishable photons [59], demonstrating

the flexibility and utility of photons as an entanglement bus.

Generation of entanglement has lead to the successful demonstration of tele-

portation of quantum information between proximate qubits [60, 61] and remote

qubits such as trapped ions [62, 63], neutral atoms [64, 65], and NV centers [66].

Though it is possible to teleport a quantum state deterministically [60], the crucial

remote entanglement generation step is probabilistic due to the finite collection and

detection efficiency of single photons. In order to enable quantum repeater net-

works and distributed information processing, the remote entanglement generation

rate should be as fast as possible compared to the coherence time of the qubits or

the remote entangled state coherence time. In order to operate a scalable quantum

network at fault tolerant levels, even with perfect gates, the resource requirements

depend on the ratio of the mean remote entanglement generation time τE and the

coherence time τD. The resource scaling is super-exponential: (τE/τD)τE/τD [17].

The first experiment to realize τE/τD < 1 is one of the primary results of this thesis

[20].

This chapter is organized as follows. Generating and measuring entanglement

between a trapped 171Yb+ ion and photon polarization is discussed followed by prac-

29



tical considerations for aligning an interferometer for entangled photon interference

on a beam splitter. The physics of photon interference on a beam splitter is re-

viewed, including the interference of distinguishable photons. Data showing fast

entanglement between remote 171Yb+ ions is shown where the average remote en-

tanglement rate is 4.5 sec−1 and the remote entangled state coherence time is 1.12

sec, resulting in τE/τD = 0.2. Finally, experiments using interference with photons

whose frequency difference more than the photon linewidth are shown with the final

result that distinguishable photons can be used to create high-fidelity entanglement

without sacrificing entanglement rate.

3.1 Atom Photon Entanglement

An atom prepared in a pure state in its ground state manifold may be excited

with an ultrafast laser pulse with duration much shorter than the excited state

lifetime τ , typically of order 10 ns for dipole allowed transitions of single atoms. The

atomic excited state will undergo spontaneous emission and emit a single photon,

and some degrees of freedom of the photon may be entangled with the resulting

ground states to which the atom decays. The general form for the atom-photon

state is

|ψ〉 =
∑
i,j,∆m

αij|Si〉|γ∆m, ωj〉 (3.1)

where the sum is over the excited states j of the atom before emitting a photon

of frequency ωj and returning the ground state |Si〉. The photon state |γ∆m, ωj〉

depends on the decay channel of the radiation. For a ∆m = 0 transition, the
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polarization state of the photon is − sin θ|θ̂〉 and for a ∆m = ±1 transition, the

polarization state of the photon is e±iφ
(

cos θ|θ̂〉 ± i|φ̂〉
)

. The angles θ and φ are the

polar and azimuthal angles with respect to the quantization axis with unit vectors |θ̂〉

and |φ̂〉 [67]. If the atom and spontaneously emitted photon states can be measured

in multiple bases, entanglement between the atom and the photon can be verified.

For example, Fig. 3.1a shows a 171Yb+ ion energy level diagram. If an ion

is prepared in the |F,mF 〉 = |0, 0〉 ≡ |0〉 of the S1/2 manifold and excited to the

|1, 0〉 state of the P1/2 manifold, the atom can decay to the states |1,−1〉 ≡ | − 1〉,

|1,−1〉 ≡ |+1〉, and |0〉 with equal probability. The resulting state has entanglement

between the atom state and the photon polarization

|ψ〉 =
1√
3

(
−|σ+〉| − 1〉+ |σ−〉|+ 1〉+ |π〉|0〉

)
. (3.2)

Tracing over the state of the photon results in classical mixed atomic state, so de-

tecting the state of the photon and the atom is critical for probing entanglement.

Detection of the photon is inherently probabilistic because of both the finite photon

collection solid angle of the atom radiation field and the use of single photon detec-

tors with quantum efficiency less than unity. It is possible to increase the photon

collection efficiency by putting the atom in a cavity. However, in order to generate

deterministic entanglement at fault-tolerant levels, the photon collection efficiency

and the single photon detector efficiency will have to meet fault tolerant thresholds,

typically higher than 0.9999 [68, 69].

Entanglement between the photon and its parent atom can be verified through
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post selection upon detecting a single photon in two orthogonal photon bases and two

orthogonal atom bases. Equation 3.2 has three terms, but the photon polarization

emission pattern is not isotropic as shown in Fig. 3.2b. If the photon collection is

directed along the quantization axis, σ± polarization is more likely to be detected

than π polarization. As the numerical aperture of the collection optics increases

along the quantization axis, more π polarized light will be collected. As viewed

along this axis, π polarized light has a toroidal intensity pattern (see Fig. 3.1c)

with radial electric field polarization. This electric field mode will not couple to the

TEM00 mode of a single mode optical fiber if the fiber is mutually aligned to the

optical axis and to the quantization axis set by an externally applied magnetic field

[70].

The ability of a single mode fiber to filter out π polarized light can be directly

observed using a trapped 171Yb+ ion. An ultrafast laser pulse excites an ion prepared

in |0〉 to the |1, 0〉 state in the P1/2 manifold. The atom spontaneously decays to

the states | − 1〉, | + 1〉, and |0〉 with probability 1/3 for each state. Performing

state detection after spontaneous emission of a single photon without detecting the

state of the photon results in detecting the atom in the F = 1 manifold of the

S1/2 ground state with probability 2/3. If a resonant microwave pulse is performed

on the |0〉 to |1〉 transition before state detection, Rabi flopping with contrast 1/3

should be observed, and the probability of detecting the atom in the F = 1 state

should oscillate between 2/3 and 1. This behavior is show in the red data in Fig.

3.2. The data drops below 2/3 because of the non-unit excitation probability of the

ultrafast laser excitation pulse. Instead of performing a microwave pulse of variable
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Figure 3.1: Fiber coupling single ions. (a) Energy level diagram of 171Yb+ ion. Af-
ter optically pumping the ion to the |F,mF 〉 = |0, 0〉 state, an ultrafast laser pulse
excites the ion to the |1, 0〉 exited state in the P1/2 manifold. The atom undergoes
spontaneous emission to |1,±1〉 levels by emitting a σ± single photon and back to
the |0, 0〉 level by emitting a π polarized single photon. (b) If the magnetic field that
defines the quantization axis points at a single mode fiber, the σ± modes of light are
directed toward and away from the fiber in a “peanut” shape. The π polarized light
is toroidal shaped with a node along the optical axis. The light from the atom is col-
lected with a high numerical aperture microscope that subtends approximately 10%
of the total solid angle. (c) As the solid angle of the microscope objective increases,
the power incident on the single mode fiber from all three photon modes increases.
The intensity map shows the spatial distribution of the π polarized light on the
fiber face. However, since the electric field is radially polarized, the π-polarized
mode does not couple to a single mode fiber with cylindrical symmetry. The photon
collection solid angle may be increased without mixing σ± and π polarization in
the optical fiber. The single mode fibers can be strained to map |σ+〉 → |H〉 and
|σ−〉 → |V 〉.

33



duration after all ultrafast atomic excitations, the microwave pulse may performed

only after detecting a single photon that traverses a single mode optical fiber. The

blue data shows the atom is in the F = 1 state with high probability regardless

of the polarization of the detected photon for variable application of the resonant

microwave field. The detected photons are thus not π polarized and not correlated

with the |0〉 atomic state after the optical fiber. The amplitude of the oscillation of

the blue data is < 1%.
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Figure 3.2: Filtering π polarized light with a single mode optical fiber. Excited
171Yb+ ions decay by emitting σ± and π polarized photons (see Fig. 3.1a) with
probability 2/3 and 1/3 respectively. If the ion is excited with unit probability,
undergoes spontaneous emission, and subjected to a resonant microwave pulse on
the |0〉 to |1〉 transition with variable duration, the probability the ion is in the
F = 1 manifold will oscillate between 2/3 and 1. The red data and fit show this
phenomenon clearly. If the microwave pulse is conditioned on detecting a photon of
any polarization that passes through an optical fiber and is detected by a PMT, the
atom is detected in the F = 1 state with near unit probability. The optical fiber
therefore filters out π polarized photons.

Entanglement between the photon σ± polarization and the atom | ± 1〉 states

may be probed with rotations of the photon polarization and the atom state. Cor-

relations between the atom and the photon polarization state can be measured by

performing a microwave π pulse on either the | − 1〉 → |0〉 or | + 1〉 → |0〉 tran-
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sition after detecting the photon polarization in one basis. The phase coherence

of the entangled state can be probed by rotating the photon polarization by π/4

and measuring the photon in the |H〉 + |V 〉 and |H〉 − |V 〉 bases. After detecting

the state of the photon, the qubit is manipulated with a microwave π pulse on the

| − 1〉 ↔ |0〉 transition followed by a π/2 pulse with a phase shift φ relative to the

first microwave pulse. The probability of detecting the qubit in the state F = 1 state

is proportional to cos(∆ω∆t′ + (φ1 − φ2) + φD) where the phase difference between

the two microwave pulses is φ1 − φ2, ∆ω∆t′ is the free evolution of the atom after

the photon is detected at the frequency difference of the |− 1〉 and |+ 1〉 states, and

φD is zero or π/2, depending on if the photon is detected in the |H〉 ± |V 〉 basis.

Note that since the two microwave pulses are at different frequencies and the single

photon is detected at random times, the phase difference between the two oscillators

needs to be reset upon detecting the photon. A simple way to ensure this is to use

a microwave oscillator mixed with an arbitrary waveform generator.

The results of these measurements can be used to place a lower bound on the

atom-photon polarization entanglement [44, 67]. The results presented here give

F ≥ 0.93. The infidelity of the microwave pulses and state detection along with

imperfect polarization filtering of the photons in the interferometer do not account

for the observed infidelity. The measured atom-photon polarization correlations do

not depend on phase stability of the entangled state, and these correlations were

unexpectedly low (∼ 0.95). Spatially inhomogeneous birefringence from stress on

the vacuum viewport glass or misalignment of the photon collection axis orthogonal

to the vacuum viewport glass may account for mixing of the polarization modes of
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the photon. This is not a fundamental source of decoherence and could be corrected

with a phase mask.
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Figure 3.3: Ion photon polarization entanglement. A λ/2 waveplate is inserted
before the thin film polarizers as shown in Fig. 3.4. The waveplate rotates the
horizontal and vertical polarization by 45 degrees so that measurement of a photon
after the thin film polarizers is in the diagonal and anti-diagonal photon basis.
Measurement of a photon projects the ion in to the state |−1〉+|+1〉 and |−1〉−|+1〉
respectively. A microwave π pulse moves population from the |− 1〉 to the |0〉 state,
followed by a second microwave π/2 rotation with variable phase φ on the |0〉 to
|+1〉 transition. The interference of the quantum state with itself gives an oscillatory
dependence on the probability of detecting the atom in the F = 1 state that depends
on the phase difference of the two microwave pulses. The contrast of the data shown
in the plot combined with measurements without the second microwave pulse and
without rotating the photon polarization bound the fidelity of the entanglement
between the atom and the photon polarization.

3.2 Practical interferometer alignment considerations

A diagram of the interferometer used in the experiments in this thesis is shown

in Fig. 3.4. Light from each atom is directed on to a 50/50 beam splitter. The

incidence angle on the beam splitter is kept shallow. At large angles, beam splitters

are not equal 50/50 beam splitters for all polarizations for ultraviolet light. After the

photons interfere on the beam splitter, the photon polarization is sorted using thin

film polarizers, denoted TFP1 and TFP2 in the figure. These polarizers transmit
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50/50 BS

TFP TFP

TFP 2TFP 1

PMT A PMT D PMT C PMT B
fiber from 
blade trap

fiber from 
4 rod trap
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mode 1mode 2

mode 3 mode 4
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Figure 3.4: Single photon interferometer. Single photons entangled with its parent
ion from a four blade and four rod ion trap are mode matched on a beam splitter
where they interfere. The photons are converted to the horizontal and vertical
polarization basis by straining the optical fibers. Thin film polarizers TFP 1 and
TFP 2 are attached to motorized flip mounts. These thin film polarizers sort the
photon polarization by reflecting vertical polarization and transmitting horizontal
polarization. An additional thin film polarizer is added to each |V 〉 channel to filter
out the small amount of |H〉 photons reflected from TFP 1 and 2. A half wave plate
λ/2 is attached to a motorized flip mount for characterizing ion photon polarization
entanglement. The mirror M1 may be inserted to direct beam splitter output port
4 to a photodiode PD for spatial mode matching on the beam splitter. The |ψ+〉
photonic Bell state results in coincidence measurement of single photons by PMTs A
and D or C and B. The |ψ−〉 photonic Bell state results in coincidence measurement
of single photons by PMTs A and C or D and B. If the photons are identical and the
single photons are perfectly mode matched on the beam splitter, photon coincidence
measurements by PMTs A and B or D and C should not occur.
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polarization in the plane of the page (|H〉) and reflect vertical polarization (|V 〉).

The transmitted horizontal polarization is well polarized, but the reflected vertical

polarization has a small horizontal component. A second thin film polarizer is used

to purify the vertical polarization channel.

Alignment of thin film polarizers must be set consistently in the interferometer.

After placing TFP1, TFP2 and the vertical channel thin film polarizers, all TFPs

should be set self consistently; rotating the polarization of the light exiting each

optical fiber should produce high extinction ratios between polarization channels.

After mutual alignment of all polarization detection channels, the polarization axes

of the interferometer are fixed. Any difference between the atom quantization axis

and the interferometer polarization axis can be corrected with fiber strain or wave

plates while monitoring state dependent detection of the atom as a function of

detected photon polarization.

Optimal fiber coupling is achieved by aligning the optical axis of the collection

optics perpendicular to the vacuum viewport. Aligning the pitch and yaw of the

collection optics can be accomplished in a variety of ways such as the use of an

autocollimator. After alignment of the collection optics is complete, the magnetic

field must be aligned to the quantization axis. The field may be grossly aligned by

adjustment of the magnetic field perpendicular to the optical axis and minimizing

the Zeeman shift of the atom. Final alignment of the quantization axis and the fiber

strain axis is accomplished directly by measuring the correlation of the atom state

with the photon polarization state.
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3.2.1 Micromotion compensation

Micromotion compensation along the optical axis is crucial for high fidelity

interference of the photons emitted by the atoms. Micromotion alters the photon

spectrum at the frequency used for RF confinement, and different ion traps typically

have different RF drives. In addition, differential micromotion amplitude between

modules alters the photon spectral density. Compensation of micromotion along

the optical axis necessitates the use of a laser along the photon collection axis. If

laser light is directed through the low NA, free space collection optics (See Fig.

2.1), the laser light can saturate the single photon detectors in the interferometer,

prohibiting detection of photons from the atom. Reflections off of surfaces in the low

NA objective were directed back in to the free space PMT and camera, preventing

measurement of the atom. Light can instead be directed off of a 50/50 beam splitter

through the high NA objective as shown in Fig. 3.5. The alignment of the light from

the micromotion fiber to the atom is accomplished by imaging the atom and the light

from the fiber through the low NA free space collection optics on to an intensified

CCD camera. The 50/50 BS also displaces the scattered light from the atom relative

to the fiber to the interferometer. The interferometer fiber can be re-aligned to the

atom by sending light back through the interferometer fiber where it is imaged by the

high NA objective on the ion. This is re-imaged by the low NA free space collection

optics on an intensified CCD camera. Simultaneous visualization of light exiting

the fiber to the interferometer, the micromotion fiber, and light scattered from the

atom on a CCD camera facilitates easy alignment of the micromotion optics. The
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light scattered from the atom is collected by the high NA objective and is focused

through the 50/50 BS into the fiber leading to the interferometer. Reflections of the

light from the micromotion fiber on the glass surfaces of the imaging optics do not

couple well to the small fiber core. Micromotion may be minimized by correlating

the photon arrival time of scattered light with the ion trap RF drive phase [71].

3.2.2 Interferometer mode matching

Spatial alignment of the interferometer mode is crucial for entangled state

fidelity; the entangled state fidelity is equal to 1/(2 − V 2) where V is the interfer-

ometer visibility [24]. Currently, there are no commercially available 50/50 fiber

beam splitters available at 369 nm, so spatial mode matching must be done in free

space. Spatial overlap may be accomplished by locking a resonant laser to an atomic

source and fiber coupling the laser light in to both interferometer inputs. The fiber

strain should be set to give a well defined polarization and may be easily verified

by observing the transmission and reflection of light from the thin film polarizers

TFP1 and TFP2. With the polarization set, the mirror M1 may be inserted and

the optical power exiting each fiber can be equalized by measuring the light on the

photodiode PD. With polarization and power equalized, the interference fringes of

the light may be observed when the fiber modes overlap on the beam splitter. It is

useful to attach the tilt adjustment of the optical fiber input stage (end of a fiber

not shown in Fig. 3.4) to a piezoelectric material driven by a high voltage sawtooth

wave. Time dependent interference fringes at the piezoelectric drive frequency may
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be observed, and the interferometer visibility may be maximized by adjusting the

overlap of the laser modes on the beam splitter. The interferometer visibility was

aligned to >0.97, and misalignment of the spatial mode overlap to V ∼ 0.95 was

observed on time scales of order one day. This imperfect spatial mode matching

contributes ∼5-9% to the infidelity of the remote atom entangled state.

3.2.3 Setting fiber strain

An optical fiber may be strained to induce birefringence. This feature of single

mode, non polarization maintaining fibers allows for control over the polarization of

a single photon exiting the fiber and entering the interferometer. The fiber strain

can be set individually for each ion trap, and the fiber strain can induce a phase

on the atom-photon polarization entangled state. After photon interference, the

fiber strain phase appears on the remote atom entangled state. When performing

experiments to entangle remote atoms, the fiber strain phase must be set consistently

while acquiring remote entanglement data. The phase imparted from fiber strain is

observed to drift on slow, presumably thermal, time-scales.

Fiber strain can be modeled by linear optics as a quarter-wave plate followed

by a half wave plate followed by a quarter wave plate. This model allows any input

photon polarization to be converted to any output polarization. A quarter and half
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wave plate at angle θ with respect to vertical can be modeled with matrices

HWP(θ) =

cos 2θ sin 2θ

sin 2θ − cos 2θ



QWP(θ) =

 cos2 θ + i sin2 θ (1− i) sin θ cos θ

(1− i) sin θ cos θ sin2 θ + i cos2 θ

 (3.3)

and the photon polarization states can be modeled with the Jones vectors

h =

1

0

 v =

0

1

 . (3.4)

The right circular, left circular, diagonal and anti-diagonal photon polarizations

expressed in the {h, v} basis are r = h− iv, ` = h+ iv, d = h+ v, and a = h− v. If

right circular polarization is put in to an optical fiber, multiple fiber strain settings

can map the photon polarization to vertical polarization, but with a different phase

values

QWP(0)HWP(0)QWP(π/4)r = −eiπ/4v

QWP(0)HWP(π/2)QWP(π/4)r = eiπ/4v

QWP(0)HWP(0)QWP(3π/4)r = eiπ/4v. (3.5)

If this phase difference is not accounted for while correcting fiber strain, the phase

of atom-photon entangled state will change, affecting the phase of the remote atom
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entangled state. Correcting for small drifts in fiber birefringence while acquiring

remote entanglement data can result in averaging over the fiber strain phase.

The phase of the atom-photon entanglement may be set by measuring the

polarization of the well polarized, test laser beam in two, non-orthogonal bases. If

the desired fiber strain is QWP(0)HWP(0)QWP(π/4), the fiber will map right and

left circular polarization to −eiπ/4v and eiπ/4h respectively. By changing the input

polarization of the test beam to h or v, the fiber strain will map the polarization

to eiπ/4a and e3π/4d respectively. Inserting a half wave plate after the beam splitter

as shown in Fig. 3.4 rotates diagonal and anti-diagonal polarization to the {h, v}

basis. Setting each ion trap module to map left or right polarization and horizontal

or vertical polarization (with a half wave plate inserted) to the same photon detectors

from each ion trap module ensures consistent atom-photon entangled state phases

across different modules.

3.3 Photon interference on a beam splitter

Photon interference on a beam splitter is the important ingredient in entan-

gling remote qubits. In 1987, Hong, Ou, and Mandel observed when identical pho-

tons interfere on a beam splitter, both photons exit the same port of a 50/50 beam-

splitter. The detection of “antibunched” photons, photons exiting different ports of

a beam splitter, are suppressed by quantum interference. The bunching of identi-

cal photons through a beam splitter is referred to as Hong-Ou-Mandel interference.

Figure 3.6 shows a 50/50 beam splitter with two input (mode 1 and mode 2) and two
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Figure 3.5: Fiber strain and micromotion compensation optics. (a) Fiber strain op-
tics. A well polarized, test laser beam is used to set the fiber strain in the lab frame.
The half waveplate HWP1 is used to adjust the amount of horizontally polarized
light (x direction in the figure) passing through thin film polarizer TFP1. Mirrors
M1 and M2 direct the test beam toward the fiber leading to the interferometer.
TFP2 is set by adjusting its angle in combination with HWP2 as a second stage
polarization purification. The quarter wave plate QWP1 is set to turn the polarized
light into to circular light. The fiber may be strained to map this polarization to
one set of PMT detectors in the interferometer (see Fig. 3.4). QWP1 was mounted
on a magnetic mount so it can be removed, and the halfwave plate in the interfer-
ometer may be flipped in to beam path to measure the light in the diagonal and
antidiagonal basis to set the entangled state phase. (b) Micromotion compensation
optics along photon collection axis. M2, TFP2 and QWP1, all attached to magnetic
or flip mounts, are removed from the beam path. A 50/50 beam splitter is inserted
on the M2 magnetic mount. The fiber to the interferometer is displaced along x
to compensate for the displacement in the optical path due to the 50/50 BS. Light
from the micromotion fiber is aligned on to the atom with the magnetic field is ro-
tated orthogonal to the z direction to avoid coherent population trapping [23]. The
scattered atom light is collected by the high NA objective and imaged through the
BS in to the fiber to the interferometer. The fluorescence may be correlated with
the RF phase to measure and minimize micromotion.
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output modes (mode 3 and mode 4). We consider the case where a single, identical

photon enters each input mode 1 and 2. The operation of a beam splitter is

a†3 = a†1 − a
†
2 a†4 = a†1 + a†2 (3.6)

where the minus sign comes from a photon in mode 2 reflecting off of a surface

where the index of refraction changes from low to high [72]. Written in terms of the

incoming photons in mode 1 and 2 as a function of the outgoing photons in mode 3

and 4, the field operators are

a†1 = a†3 + a†4 a†2 = −a†3 + a†4. (3.7)

Photon bunching can be seen by considering an identical photon impinging on

modes 1 and 2

|1112〉 = a†1a
†
2|0〉

= (a†3 + a†4)(−a†3 + a†4)|0〉

= (a†4a
†
4 − a

†
3a
†
3)|0〉

= |0324〉 − |2304〉 (3.8)

The two photons exit the same port with 50/50 probability, but the photons never

simultaneously emerge from opposite beam splitter ports. Coincidence measure-

ments of photons exiting different beam splitter ports will be perfectly suppressed
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by the interference of the identical photons. Measuring photon bunching (or lack

of photon anti-bunching) is a way to test if photons are identical. This analysis

makes the assumption that the identical photons are not entangled with any other

system, such as an atom. If identical photons are entangled with another system,

the identical photons will not exclusively display bunching upon exiting the beam

splitter. As will be shown, photon anti-bunching will occur with probability 1/4 if

the identical photons are perfectly mode matched to a 50/50 beam splitter.

mode 1

mode 2

mode 3

mode 4

50/50 BS

2P1/2

2S1/2
F = 0

F = 1

|1,1

|1,-1

σ+ σ-

a) b)

Figure 3.6: Photonic modes on a beam splitter. (a) A 50/50, non-polarizing beam
splitter has input modes 1 and 2 and output modes 3 and 4. The photons are
assumed to reflect off of the glass air interface as shown. Since the index of refraction
changes from low to high when a photon is reflected from mode 2 into mode 3, a pi
phase shift results. (b) Excitation and decay of a 171Yb+ qubit. After spontaneously
emitting a photon, the state of the atom is entangled with the polarization state of
the photon. This entanglement results in rich behavior when the photons interfere
on the beam splitter.

Consider an two atoms undergoing spontaneous decay and each emitting a

single photon as is depicted in Fig. 3.6b. The state of the atom 1 and atom 2 is

entangled with the polarization state of photon 1 and photon 2. Atom 1 is coupled

to beam splitter input port 1 while atom 2 is coupled to beam splitter input port 2.
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The photon polarization states are denoted |H〉 = a†i |0〉 and |V 〉 = b†i |0〉 for input

ports i = 1, 2. The joint atom-photon state is

|ψ1ψ2γ1γ2〉 = (α|0H〉+ β|1V 〉)1 ⊗ (γ|0H〉+ δ|1V 〉)2

= αγ|00HH〉+ αδ|01HV 〉+ βγ|10V H〉+ βδ|11V V 〉 (3.9)

where the kets define the state of qubit 1, the state of qubit 2, the state of photon

1 (entangled with qubit 1), and the state of photon 2 (entangled with atom 2)

respectively. This state can be re-arranged in terms of the Bell states of photons,

defined by

|ψ+〉 = |HV 〉+ |V H〉

|ψ−〉 = |HV 〉 − |V H〉

|φ+〉 = |HH〉+ |V V 〉

|φ−〉 = |HH〉 − |V V 〉
(3.10)

which results in the joint atom-photon state

|ψ〉 = αγ|00〉(|φ+〉+ |φ−〉) + βγ|10〉(|ψ+〉 − |ψ−〉)

+ αδ|01〉(|ψ+〉+ |ψ−〉) + βδ|11〉(|φ+〉 − |φ−〉)

= |φ+〉 (αγ|00〉+ βδ|11〉) + |φ−〉 (αγ|00〉 − βδ|11〉)

+ |ψ+〉 (βγ|10〉+ αδ|01〉) + |ψ−〉 (αδ|01〉 − βγ|10〉) (3.11)

The photon states impinging on the beam splitter input ports 1 and 2 can be rewrit-

ten in terms of the output modes of the beam splitter for both polarizations using
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Eqn. 3.7.

|φ±〉 =
(
a†1a

†
2 ± b

†
1b
†
2

)
|0〉

=
(
a†4a

†
4 − a

†
3a
†
3 ± b

†
4b
†
4 ∓ b

†
3b
†
3

)
|0〉

= |03(HH)4〉 − |(HH)304〉 ± |03(V V )4〉 ∓ |(V V )304〉. (3.12)

The |φ±〉 photonic Bell states differ only by a minus sign and involve two pho-

tons with identical polarizations in the same mode, making detection in the linear

{|H〉, |V 〉} basis difficult using detectors without photon number resolution. The

|ψ+〉 state also displays photon bunching

|ψ+〉 =
(
a†1b
†
2 + b†1a

†
2

)
|0〉

=
(
a†4b
†
4 − a

†
3b
†
3

)
|0〉

= |03(HV )4〉 − |(HV )304〉. (3.13)

The |ψ−〉 state is composed of antibunched photons

|ψ−〉 =
(
a†1b
†
2 − b

†
1a
†
2

)
|0〉

=
(
a†3b
†
4 − b

†
3a
†
4

)
|0〉

= |H3V4〉 − |V3H4〉. (3.14)

When rewriting each Bell state input mode of the beam splitter in terms of the out-

put modes of the beam splitter, interference of the photon creation operators occur
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for each Bell state. However, despite the perfect interference of identical photons

entangled with an atom, the photons exiting the beam splitter are antibunched with

probability 1/4. This behavior differs from the interference of identical photons on

a beam splitter that are not entangled with another system.

By using polarizing beam splitters, it is easy to detect both the |ψ±〉 photonic

Bell states after photon interference at the beam splitter; the |ψ+〉 photonic states

are composed of photons with opposite polarizations exiting the same port of the

beam splitter while the |ψ−〉 state is composed of photons exiting opposite ports of

the beam splitter with opposite polarizations. It is theoretically possible to measure

all four photonic Bell states with additional waveplates, photon-number resolving

detectors, and strongly birefringent materials to create delays between orthogonal

polarizations. The birefringent material would need to induce a relative delay be-

tween photon polarizations by more than the excited state lifetime (8 ns for 171Yb+

) and is not currently commercially available. Note that detecting all four photonic

Bell states is generally possible by coupling a photon degree of freedom to a time

delay [73]. Detecting a Bell state of light heralds entanglement between remote

atoms by projecting the remote atoms into a Bell state.

This treatment of photon interference makes an important assumption: the

photons are assumed to be identical. Even though the horizontally polarized pho-

tons and the vertically polarized photons may have a frequency difference (see Fig.

3.6b), these polarizations are orthogonal and do not interfere on the beam splitter.

Interference only occurs between photons of identical polarization. If photons with

identical polarization have a frequency difference, the photon creation operators can
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be modified to include a time dependent phase factor. Consider two otherwise iden-

tical photons with frequencies ω1,2 impinging on beam splitter input ports 1 and

2. The joint detection probability of anti-bunched photons at time t and t0 can be

calculated using the normal-ordered field operators for creation of a photon in beam

splitter output modes 3 and 4 [55].

P34(t, t0) = 〈0|a1a2a
†
4(t)a†3(t+ t0)a3(t+ t0)a4(t)a†1a

†
2|0〉

= 〈0|a1a2

(
a†1(t) + a†2(t)

)(
a†1(t+ t0)− a†2(t+ t0)

)
× (a1(t+ t0)− a2(t+ t0)) (a1(t) + a2(t)) a†1a

†
2|0〉 (3.15)

The time dependence of the field operators can be arbitrary functions a†i (t) = a†ifi(t),

but here the lineshape of the photons will be assumed identical but with different

center frequency ω1,2. The time dependent field operators are a†i (t) = a†ie
−iωit and

ai(t) = aie
iωtt. The normalized joint detection probability is then

P34(t, t0) =
1

4
|f1(t+ t0)f2(t)− f2(t+ t0)f1(t)|2 (3.16)

= e−∆t/τ

(
1

2
− 1

2
cos (∆ω∆t)

)
(3.17)

where the frequency difference between the two photons is ∆ω = ω2−ω1, the photon

detection time difference is ∆t, and the photon exponential lineshape with time

constant τ has been included. Note that the probability of detecting antibunched

photons approaches zero for photon detection time differences ∆t� 1/∆ω.

Analyzing the photons prior to detection can be accomplished in a similar
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manner. For example, the probability to find a photon in output port 3 is

P3(t) = 〈0|a1a2a
†
3(t)a3(t)a†1a

†
2|0〉

= 〈1112|(a†1f ∗1 (t)− a†2f ∗2 (t))(a1f1(t)− a2f2(t))|1112〉

=
|f1(t)|2 + |f2(t)|2

2
(3.18)

=
1

2
e−t/τ (3.19)

The probability of detecting a single photon in an output port of a beam splitter

depends only on the probability distribution of a single photon; there is no beating

of photon statistics prior to detecting a single photon. The time dependent photon

interference only appears upon detection of a single photon.

These facts can be used to simplify the above description of two non-identical

photons impinging on a beam splitter to avoid taking expectation values of long

products of photon field operators. The field operators can be modified to keep track

of the different frequency photons. One photon is denoted ã†1|0〉 = |1̃1〉 while the

other photon retains the notation a†1|0〉 = |11〉. Two photons of different frequency

impinging on a beam splitter can be described by

= ã†1a
†
2|0〉

=
(
ã†3 + ã†4

)(
−a†3 + a†4

)
|0〉

=
(
ã†4a

†
4 − ã

†
3a
†
3 + ã†3a

†
4 − a

†
3ã
†
4

)
|0〉

= |(11̃)4〉 − |(11̃)3〉+ |1̃314〉 − |131̃4〉 (3.20)
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The probability detecting an antibunched pair of photons can be directly calculated

by considering a measurement on the last two state vectors at time t = 0, followed

by free evolution of the remaining photon for time ∆t, followed by detection of the

second photon. For example, if a photon is detected in port 3, then the remaining

state vector with a photon in port 4 undergoes free evolution.

|ψ, t〉 = e−iω1∆t|14〉 − e−iω2∆t|1̃4〉

=
(
e−iω1t − e−iω2t

)
a†4|0〉 (3.21)

The probability of measuring a photon in port 4 after measuring a photon in port

3 is then 1/2 − 1/2 cos(∆ω∆t), agreeing with the more formal approach from [55].

The probability of detecting a photon in port 3 is time independent because the

square of the phase factors in front of each state vector is time independent. This

simplified, state vector picture will be useful when considering non-identical photons,

each entangled with a qubit, interfering on a beam splitter.

Consider two different 171Yb+ atoms in large, identical magnetic fields where

the Zeeman shift of the |1,±1〉 states are separated by more than the S1/2 → P1/2

transition linewidth. As before, a quarter waveplate is used to map the photon

state from atom A from |σ+〉 → |H〉 and |σ−〉 → |V 〉. However, atom B has the

opposite mapping: |σ+〉 → |V 〉 and |σ−〉 → |H〉. The interfering photons now differ

in frequency by 2ωB ≡ ∆ω and interfere with each other on a beam splitter. Each

photon, and its parent atom are spectroscopically distinguishable from each other.

Intuition about the subsequent time evolution of the joint atom-photon state may
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be gained by examining an energy level diagram of 171Yb+ (see Fig. 3.7). The sum

of the energy of the |1,−1〉 and the photon energy connecting the |1,−1〉 state to

the P1/2, |1, 0〉 excited state is equal to the sum of the energy of the |1, 1〉 state

and the photon state connecting the |1, 1〉 state to the P1/2, |1, 0〉 excited state for

any applied magnetic field in the linear Zeeman regime. The wavefunction of each

individual atom-photon pair therefore has a common time-dependent phase factor

which can be ignored. Each atom-photon state therefore does not undergo phase

evolution, and the product of two such pairs also undergoes no time-dependent

phase accumulation. The photons from these atoms impinge on the beam splitter

as before and interfere, and the single photon Fock states undergo no phase evolution

as before. After exiting the beam splitter, a single photon may detected. This single

photon detection breaks the energy symmetry of the atom-photon states, resulting

in time-dependent phase evolution at the photon frequency difference. After the

second photon is detected, only the entangled atom states remain and the atomic

entangled state undergoes free evolution.

This analysis can be verified by considerting the remote atom-photon state

(|1V 〉 − i|0H〉)⊗
(
|1H̃〉 − i|0Ṽ 〉

)
. The photons interfere on a beam splitter, and as

before, the output modes of the beam splitter may be written in terms of the input
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Figure 3.7: Phase evolution of ion photon and ion ion entanglement. The phase
evolution of an atom entangled with a photon may be read off by examining the
excitation and decay of the the atom. (a) When a 171Yb+ is prepared in the |0〉
state and excited to the |1, 0〉 state of the P1/2 manifold, the photon can decay
to the Zeeman states |1,±1〉 while emitting a σ± polarized photon. Other than a
common phase factor which may be ignored, there is no phase evolution of such
a system because the sum of the energies from the |0〉 state to the |1,−1〉 state
to the |1, 0〉P1/2 state is equal to the sum of the energy from the |0〉 state to the
|1, 1〉 state to the |1, 0〉P1/2 state. (b) When encoding atom-photon entanglement
in the frequency degree of freedom, a 171Yb+ atom is prepared in a superposition
of the |0〉 and |1〉 states. An ultrafast laser pulse excites the |0〉 state to the |1, 0〉
state in the P1/2 manifold while the |1〉 state is excited to the |0, 0〉 state in the P1/2

manifold. The sum of the energies of the atom and photon decays paths differ by the
P1/2 hyperfine splitting, so the joint two-atom, two-photon state undergoes phase
evolution while the photons are in flight. (c) Upon detection of a single photon after
the beam splitter, the disappearance of a photon breaks the energy symmetry of the
decay paths of the photons. If the photon degree of freedom entangled with the
atom is polarization, a frequency difference between the σ+ or σ− photons will turn
in to phase evolution of the atom entangled state after a single photon is detected.
If the frequency degree of freedom is used, there is phase accumulation at frequency
ωP1/2

+ ωHF .
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modes of the beam splitter

|H1Ṽ2〉 = a†1b̃
†
2|0〉

=
(
−a†3b̃

†
3 − a

†
4b̃
†
3 + a†3b̃

†
4 + a4b̃

†
4

)
|0〉

= −|(HṼ )304〉 − |Ṽ3H4〉+ |H3Ṽ4〉+ |03(HṼ )4〉 (3.22)

where the tilde differentiates the photon from atom 2 that was rotated by the half

wave plate and impinges on beam splitter input port 2. Similar analysis on the

remaining input states yields

|V1Ṽ2〉 = −
(
−b†3b̃

†
3 − b

†
4b̃
†
3 + b†3b̃

†
4 + b†4b̃

†
4

)
|0〉

= −|(V Ṽ )304〉 − |Ṽ4V4〉+ |V3Ṽ4〉+ |03(V Ṽ )4〉

|H̃1H2〉 = −|(HH̃)304〉 − |H̃3H4〉+ |H3H̃4〉+ |03(HH̃)4〉

|V H̃〉 = −|(V H̃)304〉 − |H̃3V4〉+ |V3H̃4〉+ |03(H̃V )4〉 (3.23)

The entangled state between the remote atoms and their emitted photons is

|ψ〉 = |11〉
(
−|(V H̃)304〉 − |H̃3V4〉+ |V3H̃4〉+ |03(H̃V )4〉

)
− |00〉

(
−|(HṼ )304〉 − |Ṽ3H4〉+ |H3Ṽ4〉+ |03(HṼ )4〉

)
− i|01〉

(
−|(HH̃)304〉 − |H̃3H4〉+ |H3H̃4〉+ |03(HH̃)4〉

)
− i|10〉

(
−|(V Ṽ )304〉 − |Ṽ4V4〉+ |V3Ṽ4〉+ |03(V Ṽ )4〉

)
(3.24)

By examining each term in Eqn. 3.24, the total energy of each term is equal to
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twice the sum of the energy of the |1,−1〉 state and the photon connecting the

|1,−1〉 to the |1, 0〉 state of the P1/2 excited state manifold. The time evolution of

this wavefunction has a common phase in front of each term and may be neglected.

Assuming single photon detectors without photon number resolution, only photon

states with opposite polarizations will be heralded. If a horizontally polarized photon

is detected out of port 3, the two-atom one-photon state when the detector fires

(t = 0) is

|ψ〉 = |11〉 (−|V3〉 − |V4〉)− |00〉
(
−|Ṽ3〉+ |Ṽ4〉

)
− i|01〉

(
−|H4〉+ |H̃4〉

)
(3.25)

This state undergoes time evolution which may be computed from the free evolution

of the atoms and the remaining photon.

|ψ,∆t〉 = −e−iω2∆te−2ωB∆t|11〉 (|V3〉+ |V4〉)− e−iω1∆t|00〉
(
−|Ṽ3〉+ |Ṽ4〉

)
− ie−iωB∆t|01〉

(
−e−iω1∆t|H4〉+ e−iω2∆t|H̃4〉

)
= −b†3|0〉

(
|00〉+ e−i∆ω∆t|11〉

)
− b†4|0〉

(
|00〉 − e−i∆ω∆t|11〉

)
+ −ie−i(ωB+ω1)∆t|01〉

(
e−i∆ω∆t + 1

)
a†4|0〉 (3.26)

While waiting for the second photon, the wavefunction accumulates phase at the

photon frequency difference (ω1−ω2)∆t = ∆ω∆t. The probability of detecting a hor-

izontally polarized photon out of port 4 of the beam splitter is 1/2−1/2 cos(∆ω∆t),

resulting in the atoms being projected in to the state |01〉, a state with no entan-
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glement. If the second photon detected is vertically polarized out of port 4, the

resulting atom state is entangled: |00〉− e−i∆ω∆t|11〉. If the second detected photon

is vertically polarized out of port 3 of the beam splitter, the resulting atom state

is also entangled: |00〉+ e−i∆ωt|11〉. Both of these entangled states acquire a phase

that depends on the photon frequency difference ∆ω and detection time difference

∆t. The decoherence mechanism from non-identical photons interfering on a beam

splitter becomes clear. If the photon detection time difference cannot be well de-

termined compared to 1/∆ω, repeated measurements result in averaging over the

entangled state phase. This averaging process is decoherence.

3.3.1 Heralded entanglement using photon frequency qubits

Photon polarization need not be used as the photon degree of freedom entan-

gled with the atom state. Atoms may be entangled with the frequency of an emitted

photon (see Fig. 3.7c), and the resulting photons can interfere on a beam splitter.

Entangling the photon frequency degree with a quantum memory is inherently more

resistant to decoherence than entangling a quantum memory with photon polariza-

tion. The polarization degree of freedom of the photon interacts with transparent

material which in general has spatially inhomogeneous birefringence. Photon fre-

quency is shifted by nonlinear processes and is highly suppressed at the single photon

level. As in the case of entanglement between atom spin and photon polarization,

detection of the |ψ−〉 photon state heralds entanglement between remote atoms

[33, 62, 63]. Previous experiments have treated the two photon colors as separate,
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non-interfering field modes on a beam splitter. However, since both photons have

the same polarization, the “red” and “blue” photons do interfere because they have

the same polarization, producing time dependent phase accumulation. In addition,

the sum of the energy of the atomic |0〉 state and the photon energy connecting the

|0〉 state to the |1, 0〉 state of the P1/2 manifold is not equal to the sum of the energy

of the |1〉 state and the photon energy connecting the |1〉 state to the |0, 0〉 excited

state in the P1/2 manifold. Since these energies differ by the hyperfine splitting ωP

of the P1/2 manifold, each atom-photon state will undergo phase evolution at this

frequency while the photons are in flight. In [62, 63], the single photon counting

PMTs did not have the bandwidth to track this phase evolution, but the heralding

of the |ψ−〉 remote atom state in these experiments makes all phase accumulation

cancel. This occurs, as will be shown below, because the |Ψ−〉 remote atom state

has common phase evolution at ωP as the photons are in flight, and heralding of

this remote atom state involves detection of the |ψ−〉 photonic Bell state. This state

is a superposition of “red” and “blue” photons exiting opposite beam splitter ports,

providing common phase accumulation between photon detection events.

Consider two 171Yb+ ions may be prepared in the state (α|0〉+ β|1〉)⊗(γ|0〉+ δ|1〉)

and excited by an ultrafast π-polarized laser pulse. The |0〉 and |1〉 qubit states are

excited to the |1, 0〉 and |0, 0〉 levels in the P1/2 manifold respectively where they

undergo spontaneous emission. If an experiment post selects on the π-polarized

emitted radiation, only the π radiation need be considered. The photons of differing

frequency are denoted |r〉 = a†r|0〉 for the lower energy (red) photon from the spon-

taneous decay of the |0, 0〉 P1/2 level and |b〉 = a†b|0〉 from the spontaneous decay of
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the |1, 0〉 P1/2 level (see Fig. 3.7). The resulting atom-photon frequency entangled

state is

|ψ〉 = (α|0〉|b〉+ β|1〉|r〉)⊗ (γ|0〉|b〉+ δ|1〉|r〉)

= αγ|00〉|bb〉+ βδ|11〉|rr〉+ βγ|10〉|rb〉+ αδ|01〉|br〉. (3.27)

Note that while the photons are in flight, there is time evolution of the joint atom-

photon entangled state at the P1/2 hyperfine splitting because the sum of each atomic

energy level and it’s associated photon energy up to the P1/2 energy level differs by

the excited state hyperfine splitting. The time evolution of the atom photon state

is

|ψ, t〉 = αγ|00bb〉+ βδe2iωpt|11rr〉+ eiωpt (βγ|10rb〉+ αδ01br) (3.28)

where the joint atom-photon wave function accumulates positive phase as time pro-

gresses. The beam splitter output modes written in terms of the input modes are

a†1ba
†
2b|00〉 = −|(bb)304〉+ |03(bb)4〉

a†1ra
†
2r|00〉 = −|(rr)304〉+ |03(rr)4〉

a†1ra
†
2b|00〉 = −|(rb)304〉 − |b3r4〉+ |r3b4〉+ |04(rb)4〉

a†1ba
†
2r|00〉 = −|(rb)304〉 − |r3b4〉+ |b3r4〉+ |04(rb)4〉 (3.29)

where the two photon modes {|r〉, |b〉} are not orthogonal but are separated in
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frequency by ωHF + ωP . After the 50/50 beam splitter, the resulting state is

|ψ, t〉 = αγ|00〉 (−|(bb)304〉 − |03(bb)4〉)

+ βδe2iωpt|11〉 (−|(rr)304〉+ |03(rr)4〉)

+ βγ|10〉eiωpt (−|(rb)304〉 − |b3r4〉+ |r3b4〉+ |03(rb)4〉)

+ αδ|01〉eiωpt (−|(br)304〉 − |r3b4〉+ |b3r4〉+ |03(br)4〉) (3.30)

Detecting the |ψ−〉 photon state corresponds to detecting photons exiting opposite

beam splitter output ports. Post selecting on these antibunched photon events, Eqn.

3.30 shows there is no differential time evolution of the |01〉 and |10〉 terms while the

photons are in flight: both terms have the same phase evolution at the P1/2 hyperfine

frequency. After one photon is detected, both terms have the same energy, so there is

no phase evolution while waiting for the detection of the second photon. Despite the

interference of photons of different color separated by ωHF + ωP , the phase cancels

upon detection of the |ψ−〉 photon state. This cancellation while the photons are in

flight and after detection of one of the two photons enabled early experiments with

remote entanglement with frequency qubits using PMTs with bandwidth of ∼500

MHz, less than the difference frequency scales of the photons and atoms [62, 63].

3.4 Fast remote entanglement of trapped ions

In order to generate remote entanglement between atoms in physically sepa-

rated ion traps, we optically pump both atoms to the |0, 0〉 state. A picosecond laser
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pulse resonant with the 2S1/2 → 2P1/2 transition excites trapped atoms in different

modules [49]. The atoms spontaneously emit photons, resulting in the entangled

photon-polarization, atom-spin state 1
2
(|1, 1〉|σ−〉− |1,−1〉|σ+〉)⊗2 due to atomic se-

lection rules (Fig. 5.2a). A large NA = 0.6 single atom microscope objective collects

∼10 % of the emitted photons, and the emitted photons pass through λ/4 wave-

plates to convert the photon polarization to linear horizontal (H) or linear vertical

(V) ((σ+ → H and σ− → V ), resulting in the atom photon state

|ψ〉 = (|1, 1〉|V 〉 − i|1,−1〉|H〉)⊗2

= |Φ+〉γ|Φ−〉ions − |Φ−〉γ|Φ+〉ions − i|Ψ+〉γ|Ψ+〉ions − i|Ψ−〉γ|Ψ−〉ions(3.31)

with |Ψ±〉ions = | − 1〉| + 1〉 ± | + 1〉| − 1〉. Each objective is mode matched to

a single-mode optical fiber which delivers the photons to an interferometer with a

50/50 beam-splitter as the central element. The interferometer effects a Bell state

measurement of the photon state, and we detect two out of the four possible Bell

states of light exiting the beam-splitter to herald the entanglement of the remote

atoms’ spins [33, 50]. We select the two-photon Bell states of light |HV 〉+eiφD |V H〉,

where φD is 0 or π depending on which pair of detectors registers the photons. The

phase φD is 0 if coincident photons are detected on PMTs 1 and 2 or 3 and 4 (see

Fig. 5.1a). The phase φD is π if coincident photons are detected on PMTs 1 and 3

or 2 and 4. Finally, a series of three microwave pulses transfers the atoms into the

{|0〉, |1〉} basis (Fig. 5.2b), ideally resulting in the heralded entangled state of the
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two remote atomic qubits

|ψ〉 = |01〉 − ie−i(φ1b−φ1a+φ2a−φ2b+φ3b−φ3a−∆ωBt
′+φD)|10〉

= |01〉 − eiφAB |10〉 (3.32)

with the intermodule phase φAB. In addition to the phase differences from the

microwave transfer pulses and the photon detector pair phase φD, several static

geometric factors determine the intermodule phase

φAB = φD + ∆ωABt+ kc∆τ + k∆x+ ∆φT . (3.33)

In this equation, the phase evolves with the difference in qubit splittings between

module A and B, ∆ωAB = ω0,A − ω0,B ≈ 2π × 2.5 kHz, owing to controlled Zeeman

shifts [22]. The stable geometric phase factors kc∆τ < 10−2 and k∆x < 10−2 result

from the difference in excitation time ∆τ < 100 ps and difference in path length

∆x < 3 cm between each atom and the beam-splitter. Here c is the speed of light

and k ∼ 0.33 m−1 is the wavenumber associated with the energy difference of the

photon decay modes (here, the energy difference between σ+ and σ− photons). The

final contribution is the stable phase difference of the microwave transfer pulses ∆φT

across the modules.

Given a heralded photon coincidence event, we verify entanglement between

ion trap modules by measuring atomic state populations and coherences following

standard 2-qubit tomography protocols [74]. Note that because the post-selected,
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Figure 3.8: Qubit manipulations for generating entanglement between and within
modules. a) Resonant excitation scheme and single photon emission in Yb+ atom
system. After optically pumping the atoms to the |F,mF 〉 = |0, 0〉 state of the 2S1/2

manifold, a frequency-doubled, mode-locked Ti:sapphire laser excites the atom to
the |1, 0〉 state of the 2P1/2 manifold whereby the atom decays to the |1,±1〉 states
via emission of σ∓ polarized photons into optical fibers. b). After interference
of the two photons on a 50/50 non-polarizing beam-splitter, we apply a series of
three microwave transfer π pulses to transfer the entangled state to the clock basis,
resulting in the state |01〉+ eiφAB |10〉 where φAB is the intermodular phase. (c) The
entangled state is analyzed with a fourth microwave π/2 pulse.
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two photon detection events are composed of two photons with opposite polarization,

the remote atoms will be anti-correlated even if the photons do not interfere on the

50/50 beam splitter. The resulting fidelity assuming perfect entanglement between

the photon-polarization and the ion spin would be 0.5. Verifying the phase coherence

of the two atom state is crucial to proving remote entanglement.

The fidelity of the entangled state is (ρ01,01 + ρ10,10)/2 + |ρ01,10| where ρij.kl =

〈ij|ρ|kl〉 with i, j, k, l ∈ (0, 1). The elements ρ00,00, ρ10,10, ρ01,01, and ρ11,11 are from

direct measurements of the entangled state after the microwave pulses transfer the

state to the {|0〉, |1〉} basis. The elements ρ̃ij,kl come from measurements after the

π/2 analysis pulse with phases φ4a and φ4b.

ρ̃00,00 + ρ̃11,11− ρ̃10,10− ρ̃01,01 = 2|ρ01,10| cos(φ4a−φ4b)+2|ρ00,11| cos(φ4a+φ4b) (3.34)

In this experiment, we control the relative phase difference of the analysis pulse

φ4a − φ4b, but have no control over the absolute phase sum φ4a + φ4b from shot to

shot. Therefore, the |ρ00,11| terms averages out and the measured parity oscillation

contrast comes entirely from the ρ01,01 term. The remote entangled state fidelity is

therefore F = (ρ01,01 + ρ10,10 + |ρ01,10|)/2 [49].

The probability of detecting odd parity after the three microwave transfer

pulses and the fourth, π/2 analysis pulse is

Podd =
1

2
+

Πc

2
cos
(

(φ1b−φ1a)+(φ2b−φ2a)+(φ3a−φ3b)+(φ4b−φ4a)−∆ωBt
′
)

(3.35)
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where the phase φia − φib is the microwave phase difference of the i-th microwave

pulse on ion a and ion b, and ∆ωBt
′ is the phase accumulation of the entangled

state from a magnetic field gradient for duration t′ before the microwave transfer

and analysis pulses. Fitting the observed parity oscillation with contrast Πc upon

varying the phase of one of the microwave pulses on one ion results in a measured

average entangled Bell state fidelity of 0.78 ± 0.03. Imperfect mode matching at

the beam-splitter contributes 0.08 ± 0.02 to the infidelity. The measured atom-

photon polarization entanglement is 0.92 ± 0.02 per ion trap which contributes

0.15 to the remote entangled state infidelity. We attribute the atom-photon po-

larization infidelity to spatially inhomogeneous rotations of the photon polarization,

polarization-dependent loss, and multiple excitations of the remote atoms from im-

perfect pulse picking of resonant fast laser pulses. Combining imperfect ion-photon

polarization entanglement with imperfect mode matching at the beam-splitter yields

an expected fidelity of 0.79 ± 0.02, consistent with observation. This fidelity could

be improved with the use of fiber beams-splitters to improve spatial mode match-

ing of the photons. In addition, the use of phase masks could correct polarization

error introduced by optical elements associated with single photon collection and

transmission. Electro-optic pulse pickers with higher extinction ratios could reduce

errors associated with multiple excitations of remote atoms in different modules.

Since the phase of the entangled state evolves in time (2nd term of Eq. 3.33),

the remote atomic entanglement coherence time can be measured with Ramsey

spectroscopy. Unlike a Ramsey experiment with a single atom, this measurement

is not sensitive to long-term stability of the local oscillator [22, 75]. We measure
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the remote entangled state coherence time by repeating the above experiment with

constant transfer pulse phase ∆φT while varying the Ramsey zone delay before a

final π/2 microwave rotation. We utilize a spin echo pulse in the middle of the

Ramsey zone delay to account for slow magnetic field gradient drifts, and measure

an entanglement coherence time of 1.12(2) seconds, well in excess of the required

time to create remote entanglement between modules (Fig 3.9c). Our experiment

thus crosses the threshold where fault-tolerant error correction can propagate en-

tanglement without a superexponential overhead in resources [17].

In previous experiments, entanglement between remote atom spins at rates of

0.002 sec−1 was accomplished using atom-photon frequency entanglement [62], and

at rates of 0.026 sec−1 using atom-photon polarization entanglement [50]. Here, we

dramatically increase the single photon collection efficiency by using high numerical

aperture microscope objectives and detecting two out of four Bell states of light

emitted by the atoms to achieve a heralded entanglement rate of 4.5 sec−1.

The remote entanglement rate is limited by the collection and detection effi-

ciency of emitted photons from the atoms. The probability for coincident detection

of two emitted photons upon exciting both atoms simultaneously with a resonant

laser pulse is P = pBell[PπPS1/2
QETfibTopt

Ω
4π

]2 = 9.7 × 10−6 where Pπ = 0.95 is

the probability of exciting the atom with a resonant 2S1/2 → 2P1/2 laser pulse,

2PS1/2
= 0.995 is the probability to decay from 2P1/2 → 2S1/2 (as opposed to the

2D3/2 state), pBell = 1/2 accounts for selecting two of the four possible Bell states

of light, QE ≈ 0.35 is the quantum efficiency of the single photon PMT detectors,

Tfib ≈ 0.14 is the fiber coupling and transmission probability of a single-mode op-
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Figure 3.9: Heralded entanglement fidelity and rate between modules. a) Popula-
tions of two remote atoms after heralding entanglement between modules. After
detecting the photon Bell states (φD = 0 or π), microwave transfer pulses rotate
the remote atom populations to the {|0〉, |1〉} basis. Subsequent detection of the
remotely entangled atoms results in measurement of odd parity, P (01) + P (10),
with high probability. b) Phase coherent time evolution of the remote entangled
state with the application of an intermodule magnetic field gradient. After herald-
ing remote entanglement between modules and applying microwave transfer pulses,
the addition of a time delay prior to a π/2 rotation on both atoms results in an
out-of-phase oscillatory behavior of the remote atom entangled state with φD = 0
or π (blue squares and red circles respectively, see Eq. 3.33). c) Remote entan-
gled state coherence and generation probability vs. time. We measure the remote
entangled state coherence time by adding a Ramsey zone delay in the presence of
an intermodular magnetic field gradient before application of a spin echo pulse and
a π/2 microwave rotation as described in the text. The decay of the fidelity from
the measured loss of phase coherence of the entangled state points to magnetic field
gradient noise as the dephasing mechanism. A fit to an exponential function yields a
coherence time of 1.12(2) seconds. The probability of generating entanglement after
a given time interval is shown in red. A fit (reduced χ2 = 0.94) to an exponential
function gives the average remote entanglement rate 4.5 sec−1. Error bars in a)-c)
(not shown for clarity) are ±1.4% due to state detection error.
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tical fiber, Topt = 0.95 is the photon transmission through optical components, and

Ω
4π

= 0.1 is the fraction of the solid angle each microscope objective subtends. The

experimental repetition rate of 470 kHz is limited by the need for Doppler cooling

(adding ∼500 ns on average to the repetition time), the atomic state lifetime of the

2P1/2 state (necessitating ∼1 µs of optical pumping for state preparation of the pure

quantum state |0〉), and sound wave propagation time in AOM crystals used in the

experiment. These factors result in a measured atom-atom entanglement rate of 4.5

sec−1.

The observed entanglement rate within and between modules is faster than

the observed entangled qubit decoherence rate. This is critical in quantum modular

architectures because the required resource scaling is superexponential in the ratio

of decoherence rate to entanglement rate [17]. This ratio is observed to be 0.2 in this

experiment, many orders of magnitude lower than previous experiments demonstrat-

ing remote entanglement [50, 65, 66]. Overcoming the resource scaling requirement

makes trapped ions a leading candidate for realizing a quantum network.

There are several ways in which the heralding rate of remote entanglement

could be made higher at the expense of remote entanglement fidelity. If the single

photon detectors have significant noise during the photon coincidence window, the

coincident click rate will increase. Secondly, if the photons are spatially mismatched

on the beam splitter, the two photon coincidence rate will also be higher. Neither

of these processes play a significant role in the experiments presented here.

In the presence of single photon detector noise, the photon coincidence rate

will increase at the expense of remote qubit entanglement fidelity. If the probability
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of collecting and detecting a single photon from a qubit is p, then there are 8

possible detector pairs that could fire to give a remote entanglement event. If

this process is attempted at a rate R, then the remote entanglement rate is 8p2R.

During the coincidence window T , the single photon detectors give a dark count

probability pdark = RdarkT if the average dark count rate is Rdark. There are 8

possible dark-count-single-photon pairs, so the rate of detecting a qubit photon and

a dark count photon is 8ppdarkR. The ratio of these processes can be used to estimate

the infidelity owing to single photon detector dark counts. The ratio of these two

processes is pdark/p. If one of the coincidence detection events is from a dark count,

it is uncorrelated with the state of the atom. The resulting two qubit state will show

no coherence but will show the correct anti-correlated population half of the time.

The resulting lowered fidelity from dark counts may be computed by consider-

ing N +M total photon coincidence events from which N events are from detection

of a photon from each qubit, and M events where at least detected photon is from

a dark count. The resulting modified fidelity F ′ in terms of the bare fidelity F (no

detector dark counts) is

F ′ = F
N

N +M
+

1

4

M

N +M
. (3.36)

The factor of 1
4

comes from the fact that uncorrelated atoms have a 0.5 probability

of being in an antisymmetric state and have zero phase coherence. The photon

coincidence rate will increase at the expense of remote atom entanglement. If the

modified fidelity F ′ is set to 0.5 + ε where ε is a positive number less than 0.5, and
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the modified entanglement rate Rent in terms of the bare entanglement rate R0
ent is

Rent

R0
ent

=
4F − 1

4ε+ 1
. (3.37)

The maximum increase of the entanglement rate, assuming a bare fidelity F = 1 and

taking the limit ε→ 0 is a factor of 3. The dark count probability for experiments

in this thesis and in [20, 59] is 10 sec−1 × 60 ns = 6 × 10−7 per entanglement

attempt, and the probability of detecting a single photon per entanglement attempt

is ∼ 5× 10−3.

If the photons are matched on the beam splitter, there are 16 possible detector

pairs that might fire, each of which heralds its appropriate remote atom entangled

state. The interferometer as shown in Fig. 3.4 in conjunction with non-photon

number resolving detectors is capable of detecting 12/16 possible detector pairs.

If the photons interfere perfectly, 8/16 possible pairs herald two out of the four

possible Bell states. If the photons are spatially misaligned on the beam splitter,

detectable two-photon coincidences will result from 12/16 possible detector pairs,

heralding a remote atom product state. The increase in two-photon coincidence

rate is 1.5. The typical interferometer visibility in the experiments presented here

is V = 0.95− 0.97, so the remote entanglement rate is not inflated significantly by

lack of photon interference.
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3.5 Entanglement of quantum memories using distinguish-

able photon interference

Most qubits systems to date that have been entangled using heralded photon

interference have relied on qubits emitting identical photons. Atoms naturally emit

identical photons, but solid state systems may emit distinguishable photons from

uncontrolled external fields coupling to the solid state qubits. The requirement of

using indistinguishable photons is an impediment towards constructing large scale

quantum networks composed of heterogeneous qubits. In addition, variation in

the qubits’ environments from manufacturing variability leads to variations in the

photon emission frequency.

The use of photons with frequency difference of order the photon bandwidth or

larger has been considered before [55–57]. The use of photons with large frequency

differences degrades the entangled state fidelity. One solution is to make use of

“quantum eraser” techniques where only photon interarrival times ∆t much less

than 2π/∆ω where ∆ω is the photon frequency difference. Because the detection

time is shorter than 2π/∆ω, the photon frequency difference cannot be measured in

principle. The entangled state fidelity is recovered while exponentially slowing the

entanglement rate [51, 65].

However, quantum mechanics guarantees unitary evolution of quantum sys-

tems will be observed if all degrees of freedom are accounted for. In addition, the

wave-like properties of photons with non-orthogonal polarization should always in-

71



terfere on a beam splitter regardless of the frequency difference of the photons. In

this light, there should be no need to slow the remote entanglement rate to recover

fidelity if the interference of distinguishable photons, with resulting time dependence

owing to the photon frequency difference, can be tracked.

If distinguishable photon interference is used, the remote atom state is pro-

jected in to an entangled state with a time dependent phase such as |01〉+e−i∆ω∆t|10〉

(see Eqn. 3.26). The reason for the infidelity of the atom state arising from the

interference of distinguishable photons becomes clear. If the entangled state phase

∆ω∆t is averaged over all experimental shots, the fidelity of the entangled atom

state will be poor. If single photon detectors are used with poor timing resolution

tr � 2π/∆ω, the entangled state phase cannot be determined shot to shot given the

exponential statistical distribution of the photon interarrival times. Averaging over

the photon interarrival time will result in measuring low entangled state fidelity.

“Quantum eraser” experiments work by selecting approximately zero phase on each

experimental shot by ensuring ∆ω∆t � 2π. Note that these eraser experiments

could also be modified to include any constant fixed photon interarrival time as

long as ∆t can be accurately determined much better than 2π/∆ω.

Assuming spectroscopy can be done on each qubit, the photon frequency differ-

ence can be measured precisely. In 171Yb+ experiments using polarization encoded

photons, microwave spectroscopy can easily determine the frequency difference be-

tween the |+ 1〉 and | − 1〉 states. The remaining limitation is the bandwidth of the

single photon detectors needed to accurately determine the entangled state phase

by localizing each photon in time to less than 1/∆ω. If these conditions are sat-
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isfied, all photon coincidence time differences can be used to generate high-fidelity

entanglement.
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Figure 3.10: Photon statistics from interference of identical photons entangled with
a qubit. Because the photons are identical (∆ω � 1/τ), there is no beating of
the photon number statistics as a function of interarrival time and no time evolu-
tion of the atom photon state while the photons are in flight or during the photon
interarrival time ∆t. (a) Photon interarrival times for detector pairs of opposite
polarization, totaling 458 out of 500 coincidence events. The normalized curve is a
exponential fit with characteristic lifetime of the P1/2 state τ = 8.12 ns. (b) Photon
interarrival times for detector pairs detecting photons of identical polarization exit-
ing the opposite beam splitter port. The number of observed photon coincidences
for these detector pairs is 42 out of 500 total coincidences owing to imperfect mode
matching of the photons on the 50/50 BS.

The remote ions are entangled using the polarization of single photons entan-

gled with the Zeeman states | ± 1〉. A π-polarized pulse of duration ∼2 ps excites

the atom to the P1/2 state, followed by spontaneous emission to the ground state

S1/2 manifold. The photons are collected along the quantization axis and coupled

to a single mode optical fiber. The photons pass through a quarter wave plate to

convert σ± polarization to linear polarization, and the pi-polarized photons do not

couple to Gaussian TEM00 modes. The fibers are strained to maintain the photon

polarization. The atom-photon state from each node is |+ 1〉|V 〉 − i| − 1〉|H〉.

Photons from each trapped ion impinge on the 50/50 beam splitter before
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being spatially sorted in the {|H〉, |V 〉} basis by thin film polarizers. The photons

are detected in a coincidence window of duration T = 60 ns that begins with the ul-

trafast excitation pulse to encompass >99 % of the photonic temporal profile. The

photon detection statistics corresponding to the interference of identical photons

with frequency difference ∆ω � 1/τ is shown in Fig. 3.10a. Detector pairs measur-

ing |H3H4〉 and |V3V4〉 are shown in Fig. 3.10b. Ideally, if identical photons interfere

on the beam splitter, these detector pairs do not detect coincident photons. The

small numbers of these detected photon pairs are from imperfect mode matching of

the photons on the beam splitter.

Detection of specific, identical photon pairs projects the atoms in to the state

|Ψ〉 = | − 1〉|+ 1〉+ e−i(∆ω∆t+2∆ωt′−φD+φ0)|+ 1〉| − 1〉 (3.38)

where t’ is the time elapsed following the detection of the second photon, φD is 0

or π depending upon detection of the |ψ±〉 photonic Bell state, and φ0 is a stable

phase that depends on geometry [24]. The probability of two-photon collection and

detection during the coincidence window T = 60 ns is ∼ 10−5, resulting in a remote

entanglement rate of order several per second.

In order to make the photon frequency difference ∆ω large, a large magnetic

field difference could be applied to each atom. However, a minimum magnetic field

must be applied to each atom to eliminate coherent dark states which reduce the

efficiency of doppler cooling, state preparation, and state detection [23]. On the

other hand, a large magnetic field which shifts the | ± 1〉 levels of order the excited
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state transition linewidth complicates Doppler cooling, optical pumping, and state

detection.

In order to maximize the photon frequency difference, a magnetic field of ∼ 10

Gauss is applied to both remote ions to induce a Zeeman shift of approximately

2π × 14 MHz, and a half wave plate is inserted in the path of a photon from one

ion trap to produce the state (| + 1〉|V 〉 − i| − 1〉|H〉) ⊗ (| − 1〉|V 〉 − i| + 1〉|H〉).

Photons of identical polarization have a frequency difference of twice the Zeeman

shift. Interference of these photons produces a significant number of photons with

identical polarization exiting opposite ports of the beam splitter. The beating of

the photon number statistics from these detector pairs projects the atoms into a

remote product state. Detection of the photons of opposite polarization imprints

the photon frequency difference to the remote atom entangled state phase and no

beating of the photon number statistics is observed (see Eqn. 3.26). This behavior

is shown in Fig. 3.11.

Upon coincident detection of non-identical photons, the remote ions are pro-

jected in to the entangled state

|Φ〉 = | − 1〉| − 1〉 − ei(∆ω∆t−2∆ωt′+φD+φ0)|+ 1〉|+ 1〉. (3.39)

The resulting states in Eqn. 3.38 and Eqn. 3.39 can be analyzed with microwave

rotations. Standard fluorescence techniques for state detection do not distinguish

between the |−1〉 and |+1〉 states, so a microwave π pulse transfers any population

in the | − 1〉 state to the |0〉 state in both ion traps. Standard state dependent
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Figure 3.11: Photon statistics from interference of distinguishable photons entangled
with a qubit. (a) Photon interarrival time for detector pairs measuring opposite
polarization. The interarrival time of distinguishable photons is an exponential
distribution because the photon beat frequency is imprinted on the entangled state of
the remote atoms. No beating of the photon statistics are observed. The normalized
fit is shown with no free parameters with characteristic decay time given by the atom
excited state lifetime of τ = 8.12ns. (b) Photon interarrival time for detector pairs
measuring the same polarization. Because the photons have a frequency difference
larger than 1/τ , beating of the photon interarrival time at the frequency difference
is observed. If the photons were identical, these detector pairs would not register
coincident detection. Coincident detection of photons with identical polarization
exiting opposite detector ports heralds a non-entangled remote qubit state.

fluorescence can then determine the populations P|0,0〉, P|0,+1〉, P|+1,0〉, and P|+1,+1〉.

In order to determine the phase coherence of the entangled state, an additional

analysis π/2 microwave rotation is applied to each atom resonant with the |0〉 ↔

| + 1〉 transition after the first microwave transfer pulse. The phase of the analysis

pulse on each atom is adjusted, and the probability the atoms are in an odd parity

state P o = P|0,+1〉+P|+1,0〉 is measured using state-dependent fluorescence. In order

to measure the coherences ρ|Ψ〉 and ρ|Φ〉, the amplitude of the odd parity oscillation

of the remote state Π|i〉 = |ρ|i〉|. The measured parity oscillations are fit to

P o
|Ψ〉 =

1

2
− Π|Ψ〉 cos (φa − φb + ∆ω∆t− φd + φ0)

P o
|Φ〉 =

1

2
− Π|Φ〉 cos (φa + φb + ∆ω∆t− φd − φ0) . (3.40)
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By choosing φa = −φb during the analysis pulse, we measure P o
|Ψ〉 and by choosing

φa = φb during the analysis pulse, we measure P o
|Φ〉. The fidelity of the entangled

states are FΨ = 〈Ψ|ρ|Ψ〉 = 1
2
(P|0,+1〉 + P|+1,0〉) + Π|Ψ〉 and FΦ = 〈Φ|ρ|Φ〉 = 1

2
(P|0,0〉 +

P|+1,+1〉) + Π|Φ〉

The entangled states using nearly identical and distinguishable photons are

analyzed using PMTs with a temporal resolution of 1 ns and an electronics circuit

with temporal resolution of 5 ns. With large but similar magnetic fields at both

remote ions, the nearly identical photons have frequency difference of ∆ω = 2π×1.35

MHz = 0.068/τ . With the half wave plate inserted, the distinguishable photons

have frequency difference ∆ω = 2π × 28.35 MHz = 1.45/τ . We separate out the

entanglement events by the photon interarrival time ∆t recorded by the photon

detection circuit and the odd parity probability P o to measure the phase φ′ =

±∆ω∆t + φ0 (see Eqn. 3.40). We calculate ∆ω from the slope of φ′ vs. ∆t and

average the ∆ω values measured for each detector pair phase φD = 0, π. For the

nearly identical photon case, we measure a photon mean frequency difference of

∆ω = 2π × 1.4(2) MHz. For the distinguishable photon case, we measure a photon

mean frequency difference of ∆ω = 2π × 27.1(1.7) MHz, which agrees with the

measured qubits splitting using microwave spectroscopy. The accrued phase also

has the correct sign.

Averaging over the entangled state phase results in decoherence of the entan-

gled state. To verify this behavior, the fidelity of the entangled state plotted for

entanglement events ∆t < ∆tmax where ∆tmax ≤ T is a variable, maximum pho-

ton interarrival time (see Fig. 3.13). No significant phase evolution is expected for
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Figure 3.12: Phase evolution from interference of distinguishable photons. (a) Fre-
quency lineshapes for indistinguishable (∆ω = 2π × 1.35 MHz) and distinguishable
photons (∆ω = 2π × 28.35 MHz) with linewidth Γ = 1/τ = 2π × 19.6 MHz. (b)
Extracted time-dependent phase evolution of the entangled state as a function of
photon interarrival time for heralding |ψ〉 atom states with indistinguishable photons
and for heralding |Φ〉 atom states with distinguishable photon interference. A fit to
the date for each Bell state gives ∆ω = 2π × 1.4(2) MHz and ∆ω = 2π × 27.1(1.7)
MHz. The entangled state phase has been offset in the figure so that φ′(0) = 0
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Figure 3.13: Remote atom fidelity using indistinguishable and distinguishable pho-
ton interference vs maximum time between photon detection events. For the in-
distinguishable case where the remote atom entangled state is |Ψ〉, the fidelity is
nearly constant regardless of the time between detector clicks. For the distinguish-
able photon case, there is a clear increase in fidelity if photon coincidences ∆tmax

less than 2π/∆ω ∼ 35 ns are accepted. The small time difference between detector
pairs corresponds to minimal phase evolution of the remote atom state.

photons with frequency difference ∆ω ∼ 1.4 MHz, and the fidelity remains approxi-

mately constant over for 0 < ∆tmax < T . However, the distinguishable photon case

phase advances by 2π for ∆t = 2π/∆ω ≈ 35 ns. Therefore, as ∆tmax increases, aver-

aging out-of phase contributions to the entangled state coherence become significant

and results in a low fidelity measurement.

This behavior can be seen in Fig. 3.13. The fidelity asymptotes to a value

slightly higher than the mixed state value of 0.5 because most of the entanglement

events occur with ∆t ≤ 10 ns due to the exponential distribution of ∆t from the

atom lineshape. For ∆t ≤ 5 ns, the measured fidelity of the |Φ〉 state does not

reach the same level as |Ψ〉 state for several reasons. The temporal resolution of

the photon detection circuit contributes a few percent to the infidelity of the state.
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In addition, the entangled |Φ〉 = |0〉|0〉 + | + 1〉| + 1〉 state is sensitive to common

mode magnetic field noise. Lastly, we observe significant dephasing of single atom

superposition states during the microwave transfer and analysis pulses owing the to

magnetic field noise at high field from the magnetic field bias coils.

In order to set a constant entangled state phase on every experimental shot

with sufficient photon detection bandwidth, either ∆tmax must be small or the pho-

ton interarrival time ∆t must be used to feedforward a phase adjustment when

measuring the remote entangled state [58]. By restricting ∆tmax << 2π/∆ω, the

maximum entangled state phase evolution is ∆ω∆tmax but the entanglement rate

slows exponentially. For example, by selecting ∆tmax = 5 ns in the experiment

presented here, the remote entanglement rate slows by a factor of 5. Alternatively,

selecting the coincidence window T to be equal to the temporal resolution of the

photon detection circuit slows the experimental entanglement rate by a factor of 14

[57].

Feeding forward the photon interarrival time with a known photon frequency

difference completely eliminates the need for post-selection at the cost of increased

overhead. In this experiment, the simplest method to convert the phase ∆ω∆t to a

constant phase φc consists of waiting a time t′ = 1
2∆ω

(φc±φD−φ0−∆ω∆t) following

each remote entanglement event where plus (minus) sign is associated with heralding

the |Φ〉 (|Ψ〉) state. In the experiments presented here, the wait time would be ≤ 18

ns (≤ 370 ns) for any photon interarrival time. Alternatively one could apply a stark

shift to one of the atoms or the photon interrival time ∆t could simply be used to

update the phase settings of any subsequent operations. These operations can be
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accomplished many orders of magnitude faster than remote entanglement rates [20],

but high temporal resolution may still be needed to track the phase evolution of the

remote atom state 2∆ωt′ (see Eq. 3.38, 3.39).

We post-process the entangled |Φ〉 state for φD = π by shifting the phase of the

parity oscillation for each photon interarrival time bin. Since the photon difference

frequency is known from spectroscopy analyzing the qubits, the phase shift ∆ω∆t

is known. The phase is shifted by φa + φb → φa + φb + ∆ω∆t. After shifting the

incoherent parity oscillations P o
|Φ〉 (See Fig. 3.14a) by the known phase shift, the

parity oscillations are clearly in phase, as is shown in Fig. 3.14b, for any photon

interarrival time of the distinguishable photons. The resulting fidelity as a function

of ∆tmax is shown in Fig. 3.14c. Without the phase shift, the fidelity of the |Φ〉

state decreases. Application of the known phase shift clearly increases the fidelity

of the entangled state without sacrificing the remote entanglement rate.

Using this time-resolved photon detection technique to generate entanglement

between non-identical emitters has a number of potential applications. These tech-

niques can be applied to a heterogeneous quantum network or other modular quan-

tum network constructed with non-identical components or whose components differ

because of their local environment. Single photon detectors with timing jitter of or-

der 10 ps are currently available as are stable oscillators and fast circuitry with

bandwidths of order 10 GHz. Utilizing these technologies, photons with identical

lineshapes with frequency difference of order 1 GHz could be used to generate high-

quality entanglement without sacrificing entanglement rate. In addition, if faster

detectors can be realized, qubits of differing physical origin, such as trapped ions

81



 0  2
0.2

0.3

0.4

0.5

0.6

0.7

abt

P



o

0 
2  3

2 2
0.2

0.3

0.4

0.5

0.6

0.7

ab

P



o

t 5ns 10ns 15ns 20ns 25ns 30ns 35ns b)a) t 5ns 10ns 15ns 20ns 25ns 30ns 35ns

c)

5 10 15 20 25 30 350.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

Fi
de

lit
y

tmax (ns)

ab
abt

Figure 3.14: Phase coherence of remote entangled atoms using interference of distin-
guishable photons. (a) Probability of detecting odd parity as a function of the phase
of the final π/2 microwave pulse for varying photon interarrival times ∆t. The time
dependent phase shift of the atom state at the photon frequency difference shifts the
phase of the parity oscillations by ∆ω∆t. The sinusoids are incoherent because of
the time-dependent phase shift, so averaging over these phase shifts is decoherence
of the atomic remote entangled state. (b) We post process the entangled state phase
by shifting the phases of the analysis π/2 pulses φa + φb → φa + φb + ∆ω∆t using
the experimentally measure photon frequency difference ∆ω and photon interarrival
time difference ∆t. The resulting parity oscillations are in phase. (c) Fidelity of
the remote entangled state averaging over photon interarrival times and the post-
processed data with applied phase shifts. The loss of fidelity is significantly reduced
by tracking the known phase shift from the interference of distinguishable photons
without sacrificing remote entanglement rate.
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and quantum dots or NV centers, may entangled using the interference of distin-

guishable photons.
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Chapter 4: Phonon entanglement of proximate trapped ion

qubits

4.1 Entanglement between interacting trapped ions with ra-

man lasers

Ions confined in close proximity to each other in the same ion trap interact via

the Coulomb force, resulting in normal modes of motion with anomalous dispersion.

In addition to changing the spin state of the ions, as discussed in Chapter 2, Raman

processes can change the spin state of the ions and raise or lower the phonon number

of the modes of motion. The interaction between the spin of the ions and their

normal modes of motion allows for Raman lasers to impart spin dependent forces

which can result in creating entanglement between two ions. This brief section

is meant to provide an overview of this type of entanglement and follows from a

synthesis of more complete material presented in [76–79].

The following treatment will also assume continuous wave (CW) optical fields

even though a frequency comb was used to obtain the experimental results shown

in this chapter. The use of a frequency comb is not very different from the use

of CW lasers for Raman interactions because the frequency difference of the lasers
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determines which Raman transition is driven in a three-level, λ-system. Although

the Rabi frequency of the transitions are modified slightly [79, 80], a frequency comb

may be viewed as a collection of phase coherent, CW lasers that add in phase to

drive Raman processes.

Two optical fields EL(r) = EL(r) cos(kL · r−ωLt− φL)εL with index L = α, β

and polarization εL drive transitions between qubit states |0〉 and |1〉 by coupling

to an excited state |e〉. Note that more than one excited state is actually involved,

and summing over the excited states is important for computing the Rabi frequency.

The optical fields have difference ωβ − ωα = ωHF + δω where the frequency δω can

be scanned using an AOM. The lasers are assumed to be detuned by an mount

∆ = ωe − ωα,β and the value of the electric field is evaluated at the ion position r.

The atom-laser interaction can be transformed in to the rotating frame at

the laser frequency ωα, and after making the rotating wave approximation and

transforming into the interaction picture, the interaction Hamiltonian is [77]

HI =
1

2

(
g1,αe

ikα·r−iφα|e〉〈1|+ h.c

+ g0,βe
ikβ ·r−iφβe−i∆ωt|e〉〈0|+ h.c + ∆|e〉〈e|

)
(4.1)

where the single photon Rabi frequency g0,L = −µL · εLEL/2. Since the detuning is

large compared to the excited state linewidth, spontaneous emission will be neglected

and the excited state can be adiabatically eliminated (see the appendix of [78]). The

rotating wave approximation may be applied again at the qubit frequency difference
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ωHF , resulting in

HI =
1

2

(
Ωe−i∆k·r−δωt−∆φ|1〉〈0|+ h.c

)
+ χ0|0〉〈0|+ χ1|1〉〈1| (4.2)

with ∆k = kβ − kα and ∆φ = φβ − φα are the phase differences of the two optical

fields and Ω is the Rabi frequency. The stark shift χ0 and χ1 will be neglected since

the differential stark shift of the 171Yb+ qubit levels from a laser at 355 nm is of

order 10−4Ω [28].

If there are only two ions (i = 1, 2), it is possible to couple to four transverse

modes of motion: the symmetric center of mass mode and the anti-symmetric mode

along the two transverse directions to the ion chain. For simplicity, assume the ∆k

vector points along only one transverse mode direction so only two transverse modes

ω1,2 are addressed by the optical fields. In the interaction frame of the vibrational

modes, the interaction Hamiltonian is

HI =
1

2

∑
i=1,2

[(
Ωie

−i[η1(a1e−iω1t+a
†
1e
iω1t)±η2(a2e−iω2t+a

†
2e
iω2t)]

× ei∆ωte−i(∆k·X0,i−∆φ)|1〉〈0|+ h.c
)

+ χ0,i|0〉〈0|+ χ1,i|1〉〈1|

]
(4.3)

The optical phase ∆φ = φα − φβ is the phase difference between the two Raman

laser fields. If the lasers are from a single laser, fluctuations in the optical phase

of the laser are common mode, fluctuations of the absolute optical phase of the

laser from shot to shot will not decohere the quantum state. However, the phase
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∆k ·X0,1 is sensitive to path length differences of order the optical wavelength for

non-copropagating laser geometries, as is typical with entangling gates that address

the ion modes of motion. Stabilizing this phase requires interferometric stability. In

most ion trap experiments with gate times of order 100 µs, this phase is passively

stable for a single experimental shot. In a modular quantum system, each ion trap

module may have phase fluctuations relative to other modules on each experimental

shot, resulting in decoherence if the wavefunction is delocalized over many modules.

Overcoming this issue with absolute phase control is addressed in the next section

of Chapter 4 and in [81].

If the optical fields have sufficiently low intensity such that the Rabi frequency

is less than the trap frequency, the difference frequency of the laser can be tuned

to address Raman transitions in the resolved sideband limit [76]. These transitions

are the “carrier” transition, where the |0〉 ↔ |1〉 transition is addressed, and the red

and blue sidebands, where the qubit state is changed and a phonon is subtracted or

added to a mode of motion. When the frequency difference of the optical fields is

tuned near the qubit frequency difference ωHF , the carrier interaction Hamiltonian

is

Hcarr
I =

1

2

∑
i=1,2

∑
n1,n2

(
ΩiDn1,n2e

i(∆k·X0,i−∆φ)σ
(i)
+ + h.c

)
× |n1, n2〉〈n1, n2| (4.4)

where σ+ = |1〉〈1|, σ− = |0〉〈1| = σ†+. The Debye-Waller factor Dn1,n2 exponentially

suppresses the carrier coupling due to the ion motion with quantum number nν and

is equal to Dn1,n2 = e−
1
2

(η21+η22)Ln1(η
2
1)Ln2(η

2
2). Lnν (η2

i ) is a Laguerre polynomial of
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order nη [76]. When the ions are well within the Lamb-Dicke limit, Dn1,n2 ≈ 1.

In a copropagating laser geometry, the Lamb Dicke parameter is very small, fixing

D ≈ 1.

When the difference frequency of the optical fields is tuned so that ωβ − ωα =

ωHF − ων , the atom is rotated from |0〉 → |1〉 and the collective mode of motion is

lowered by one quanta:

HRSB
I =

1

2

∑
i=1,2

ηνΩiDnν ,nν′e
i(∆k·X0,i−∆φ)σ

(i)
+ aν + h.c

)
(4.5)

This red sideband interaction couples the state |0, nν〉 to |1, nν−1〉 where the Debye-

Waller factor Dnν ,nν′ for the first sideband where ν 6= ν ′ [76, 77]. This Hamiltonian

is a two-qubit version of the Jaynes-Cummings Hamiltonian.

When the optical field frequency difference is tuned to ωβ − ωα = ωHF + ων ,

the blue sideband interaction Hamiltonian is

HBSB
I =

1

2

∑
i=1,2

ηνΩiDnν ,nν′e
i(∆k·X0,i−∆φ)σ

(i)
+ a†ν + h.c

)
(4.6)

where the atom is rotated from the |0〉 → |1〉 state while adding one quanta to a

collective mode of motion: |0, nν〉 → |1, nν + 1〉. This Hamiltonian is a two-qubit

version of the anti-Jaynes-Cummings Hamiltonian.

The Mølmer-Sørensen interaction makes use of two laser frequency beat notes.

The blue sideband is addressed off resonantly with a detuning +δ while the red

sideband is addressed off resonantly with a detuning −δ. Both sidebands have equal
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intensity on both ions νΩ. Typically, the coupling is to the anti-symmetric mode

due to the lower heating rate [77], denoted by ω2. The interaction Hamiltonian is

the sum of the red and blue sidebands

HI =
1

2

∑
i=1,2

η2ΩiDn2,n′2

(
ei(∆kr·X0,i−∆φr)σ

(i)
+ a2e

−iδt

+ ei(∆kb·X0,i−φb)σ
(i)
+ a†2e

iδt + h.c
)

(4.7)

where the sideband Rabi frequency is η2Ω and the phase factors depend on the k-

vector differences of the red sideband lasers and the k-vector difference of the blue

sideband lasers. Note that these two k-vector differences is an optical k-vector be-

cause each k-vector difference results from non-copropagating lasers. This equation

can be simplified for one ion:

Hms(t) = −iηΩ

2

(
σ+e

iφs − σ−e−iφs
) (
ae−iδteiφm + a†eiδte−iφm

)
(4.8)

where the spin phase is φs = (φr+φb)/2 and the motional phase is φm = (φr−φb)/2.

The spin phase is φS,i = −(∆kr ·X0,i −∆φr + ∆kb ·X0,i −∆φb)/2 and the motion

phase is φM,i = (∆kr ·X0,i −∆φr −∆kb ·X0,i + ∆φb)/2.

The time evolution of this Hamiltonian can be computed by making use of

the time evolution operator. Since the Hamiltonian is time-dependent, the Magnus-

expansion must be used. In general, this expansion is infinite, but because the com-

mutator of harmonic oscillator raising and lowering operators is a complex number,

this infinite series terminates at second order. The time evolution operator to second
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order is

U(t, 0) = exp

[∑
k

Ôk

]
(4.9)

Ô1 = − i
~

∫ t

0

dt′H(t′) (4.10)

Ô2 = − 1

2~2

∫ t

0

∫ t′

0

dt′dt′′[H(t′), H(t′′)]. (4.11)

Defining the spin operator Ŝ ≡ −i
(
σ+e

iφs − σ−e−iφs
)
, the first term in the

Magnus expansion is

Ô1 =
ηΩ

2
Ŝ

∫ t

0

dt′
(
ae−iδt

′
eiφm + a†eiδt

′
e−iφm

)
= Ŝ

(
α(t)a† − α∗(t)a

)
(4.12)

α(t) =
ηΩ

2

eiδt

iδ
e−iφm . (4.13)

The second term in the Magnus expansion is

Ô2 = −1

2

∫ t

0

∫ t′

0

dt′′dt′[H(t′), H(t′′)]

= −1

2

(
ηΩ

2

)2

Ŝ2

∫ t

0

∫ t′

0

dt′′dt′(e−iδ(t
′−t′′) − eiδ(t′−t′′))

= −
(
ηΩ

2

)2
1

iδ

(
t− sin(δt)

δ

)
Ŝ2, (4.14)
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with the resulting the time evolution operator

Ums(t) = exp
[
Ŝ(α∗(t)a† − α(t)a) + iŜ2Φ0(t)

]
(4.15)

Φ0(t) ≡ −
(
ηΩ

2δ

)2 (
δt− sin(δt)

)
(4.16)

α(t) =
ηΩ

2

eiδt

iδ
e−iφm . (4.17)

The Mølmer-Sørensen operation is a spin dependent force. This can be seen

by expressing the spin operator in its eigenbasis and computing the time dependence

of a state such as |0, β〉 where β describes the motional state of the atomic ion. The

spin operator Ŝ = −i(σ+e
iφs−σ−e−iφs) has eigenstates 1√

2
(±ie−iφs |0〉+|1〉), denoted

| ↑φs〉 and | ↓φs〉, with eigenvalues ±1. The time evolution operator in this basis is

UMS(t) = exp
[
(α∗(t)a† − α(t)a)(| ↑φs〉〈↑φs | − | ↓φs〉〈↓φs |)

+iΦ0(t)(| ↑φs〉〈↑φs |+ | ↓φs〉〈↓φs |)
]
, (4.18)

and its action on the state |0, β〉 is,

UMS(t)| ↓z, β〉 = UMS(t)
(
−ieiφs| ↑φs , β〉+ ieiφs| ↓φs , β〉

)
/
√

2 (4.19)

= − i√
2
eiΦ0(t)eiφs

(
D̂(α(t))| ↑φs , β〉

−D̂(−α(t))| ↓φs , β〉
)
/
√

2, (4.20)

with displacement operator D̂(α(t)) = exp[α∗(t)a† − α(t)a]. The displacement op-

erator in the coherent state basis is |β〉 = D̂(β)|0〉 where |0〉 is the ground state
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of a quantum harmonic oscillator. For a single ion, the phase Φ0 + φs is a global

phase and can be ignored. Using the identity, D̂(α)D̂(β) = eiϕα,βD̂(α + β), where

ϕα,β ≡ Im[αβ∗]

Ums(t)| ↓z, β〉 =
1√
2

(
eiϕα,β | ↑φs , β + α(t)〉 − e−iϕα,β | ↓φs , β − α(t)〉

)
. (4.21)

The Mølmer-Sørensen interaction becomes clear; an ion prepared in the state |0〉 is

a superposition of states in the {| ↑φs〉, | ↓φs〉} basis. These states are displaced by

equal but opposite amounts |±α(t)〉 in phase space. The phase space closes when the

detuning from the sidebands of motion δ = 2ηΩ after time t = 2π/δ. This treatment

can easily be extended to two ions where the Mølmer-Sørensen Hamiltonian is

H(2)
ms = −iηΩ

2

(
Σ+e

iφs − Σ−e
−iφs

) (
ae−iδteiφm + a†eiδte−iφm

)
, (4.22)

where Σ± ≡ σ
(1)
± + σ

(2)
± is the total spin operator. If the atoms are prepared in the

state |00〉, and the gate time is fixed so the phase space trajectories close at the end

of the gate operation, the state evolves as

Ums(t)|00〉 = eiŜ
2Φ0(t) (| ↓↓φs〉+ | ↑↑φs〉 − | ↓↑φs〉 − | ↑↓φs〉)

2
(4.23)

=
ei4Φ0(t) (| ↓↓φs〉+ | ↑↑φs〉)− | ↓↑φs〉 − | ↑↓φs〉

2
. (4.24)

With gate time and laser detuning tg = 2π
δ

= 2ηΩ, the phase is ei4Φ0(tg) = −i and
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the final state is the maximally entangled state,

Ums(tg)|00〉 = e−iπ/4
|00〉 − iei2φms |11〉√

2
. (4.25)

4.2 Quantum gates with absolute phase stability

In a quantum information processor, the control and entanglement of quan-

tum bits is usually accomplished with external electromagnetic fields, whose phase

is directly imprinted on the qubits [82]. Generating large-scale entanglement for

applications in quantum information science therefore relies upon the spatial and

temporal coherence of phases throughout the system. As the system grows in com-

plexity to many qubits and many quantum gate operations, likely requiring a mod-

ular architecture [17], it will become crucial to control and coordinate the phases

between modules and between qubits within a module. In one module, the start

of every experiment defines the equatorial axes on the Bloch sphere; the start of

a single experiment defines zero phase. In most ion trapping experiments to date,

path length fluctuations on time scales longer than a single experiment are unimpor-

tant. However, in a modular architecture composed of many modules where qubits

are manipulated with optical fields, and the resulting optical phase differences at

each module define different phases at each module at the start of each experiment.

Averaging over these phases differences between modules over many experiments re-

sults in decoherence of a quantum state spread out between modules. It is possible

to set up interferometers at each node between modules to ensure relative optical
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phase stability between modules, but appropriate choice of laser geometry and the

distribution of a reference clock signal obviates the need for optical phase stability,

resulting in absolute phase control in a modular system [81].

We restrict the consideration of designing an absolute phase control system

where to qubit states with RF or microwave frequency splittings, as opposed to

optical qubit splittings which require absolute optical phase stability [83]. In a

quantum information processing systems, qubits are sensitive to the absolute qubit

phase evolution, and thus optical qubits will require controlling the absolute optical

phase of the control fields. Absolute phase control in the RF or microwave regime

can be accomplished with commercially available electronics, and phase fluctuations

from changes in control field path lengths are passively stable on microwave and RF

wavelength scales. We demonstrate the absolute control of qubit phases in both

space and time using a collection of trapped atomic ion qubits driven by optical

fields. We choose appropriate laser beam geometries that eliminate the dependence

of qubit phases on absolute optical path lengths from the driving field, and we use

a common high quality master oscillator as a reference for all operations. These

techniques are applicable to many other quantum computing platforms such as NV-

centers in diamond [84], optical quantum dots [85], and optical lattices containing

neutral atoms [86].

We use qubits encoded in the hyperfine clock states of trapped 171Yb+ atoms

|F = 0,mF = 0〉 ≡ |0〉 and |F = 1,mF = 0〉 ≡ |1〉 of the 2S1/2 manifold with

a hyperfine splitting of ω0/2π = ν0 = 12.64282 GHz. Standard photon scattering

methods are used for Doppler cooling, state initialization and detection [22].
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The qubit state can be rotated between |0〉 and |1〉 with optical or microwave

fields, and we demonstrate phase coherence between these fields by using them

sequentially on a qubit. The use of continuous-wave (CW) lasers is technically

difficult for systems with qubit splittings more than a few GHz since it requires

phase-locking two monochromatic sources or the use of modulators with limited

bandwidths. Alternatively, the large bandwidths of ultrafast laser pulses easily

spans such splittings [80]. We use a mode-locked 355 nm (νPL ≈ 844.48 THz)

pulsed laser with repetition rate νr for driving stimulated Raman transitions by

using a copropagating geometry [76]. An acousto-optic modulator (AOM B) is

driven with frequencies νB,1, νB,2 that are adjusted to bring the beat-note between

the copropagating Raman beams on resonance with the qubit hyperfine splitting

(Fig. 4.1a):

ν0 = pνr + νB,1 − νB,2 (4.26)

where p is an integer. Due to atomic selection rules, transitions may be driven when

the two beams have the same circular polarization. The use of optical fields to drive

rotations and create entanglement between qubits imprints an optical phase on the

quantum states. In two-photon Raman processes, the imprinted phase is equal to

the k-vector difference of the lasers (multiplied by the qubit position x0) that drive

the process. Since these beams from AOM B are nominally copropagating, drifts of

the path length on length scales of order the optical wavelength are nearly common

mode, result in negligible phase errors on the qubit.

In order to stabilize the remaining phase resulting from the frequency difference
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Figure 4.1: Simplified diagram for absolute phase control in a modular quantum sys-
tem. a) The qubit is driven from atomic levels |0〉 to |1〉 via two-photon stimulated
Raman process by absorbing from the νB,1 comb and emitting into the νB,2 comb.
The phase written to the qubit in this transition is ΦB,1−ΦB,2, where ΦB,1 and ΦB,2

are the optical phases of the two combs at the ion position. The inverse process
from |1〉 to |0〉 reverses these phases. This coherent transition can also be driven
directly with microwaves at frequency ν0. b) Simplified experimental diagram. The
master microwave oscillator and pulsed laser repetition rate are locked through a
feed-forward system. Acousto-optic modulator (AOM) B is used for copropagat-
ing transitions, and AOM A is used in conjunction with AOM B for multi-qubit
entangling gates.

96



of the co-propagating laser beams, we feed-forward fluctuations in the measured

repetition rate of the pulsed laser to AOM B an external master oscillator (see Fig.

4.1b) [87]. This oscillator serves as a clock for referencing phases upon rotations and

entangling gates in a modular system. By distributing this clock signal in a modular

architecture, absolute phase control across a modular architecture is possible. In

addition, this feed-forward technique may be more useful than directly stabilizing

the laser cavity length because of the limited bandwidth of mechanical transducers

and the possible inaccessibility of the laser cavity. Locking the beatnote of a mode-

locked pulsed laser at microwave frequencies was accomplished by measuring the

laser intensity with a fast photodiode. The electrical signal is amplified and beat

against a microwave oscillator. The resulting beat note could be low passed and

fed directly in to an oscillator controlling the frequency of an AOM, but bandwidth

limitations of available phase locked loops results in significant phase noise on qubit

operations. The microwave oscillator is therefore detuned from the qubit frequency

by the desired AOM frequency, and an additional phase lock loop is added. Addition

of this phase lock loop reduces the fractional spectral noise density of the optical

power to ∼ −120 dB/Hz [87], resulting in a coherence time between the 171Yb+

qubit and laser beatnote of greater than 1 second.

The insensitivity co-propagating Raman transitions to differential path length

fluctuations may be demonstrated by performing a Ramsey experiment on the qubit

with one π/2 pulse from the laser and the second π/2 pulse from a relatively long-

wavelength microwave source. Since the microwave oscillator serves as the reference

clock in the laser-beatnote stabilization circuit, the microwave and laser π/2 pulses
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should be in phase with each other over long time scales in the absence of any de-

pendence on the optical phase. Fig. 4.2 demonstrates the phase coherence between

the laser and microwaves over long time scales compared to typical qubit opera-

tions. With this scheme, microwaves can be used for global qubit rotations, while

focused Raman beams can address individual qubits in a long chain for single qubit

rotations.
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Figure 4.2: Optical phase insensitivity of copropagating Raman transitions. (a) A
Ramsey experiment with a π/2 microwave pulse followed by a π/2 copropagating
Raman pulse with variable phase. The two curves show the microwave phase set to
φµ = 0, π and the Raman laser phase φR is scanned. The microwave and Raman
lasers are phase coherent because the state of the qubit can be controlled by the
phase of either the microwaves or the laser. (b) With the microwave and laser
phases set so the qubit state is |1〉, the time delay between π/2 rotations is varied.
A Gaussian fit to the data gives a 1/e time of 1.8 seconds, demonstrating phase
coherence between the microwaves and Raman lasers over long time periods.

4.2.1 Multi-qubit entangling gates

Entangling trapped atomic qubits through their Coulomb interaction requires

external field gradients that provide state-dependent forces. The absolute phase

and amplitude of microwave or RF fields can easily be controlled for this purpose,

but generating sufficiently high field gradients requires specialized trap geometries
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and high currents [88]. Instead, optical fields can be used where non-copropagating

Raman beams are required to generate large field gradients [8, 89, 90].

νBcarrierRSB BSB carrierBSB RSB

∆nνr + νB - νA = νHF ∆mνr +νA - νB = νHF 

phase sensitive gate phase insensitive gate

να
δ

Figure 4.3: Raman spectrum diagram for phase sensitive and phase insensitive en-
tangling gates. The diagram shows only a single collective mode of motion for
simplicity. There are two carrier (|0〉|n〉 → |1〉|n〉) transitions shown, corresponding
to two different Raman transitions (nBνr+νB)−(nAνr+νA) = ∆nvr+νB−νA = νHF
and (mAνr + νA)− (mBνr + νB) = ∆mvr + νA− νB = νHF with νA,B corresponding
to the frequencies applied to AOM A,B and directing the positive diffracted order
on to the atom (see Fig. 4.1b). By applying two frequencies to AOM B, the red and
blue sidebands of motion (RSB, BSB) may be addressed with detuning δ, depicted
as dotted purple lines in the figure. This frequency configuration corresponds to an
entangling gate where the entangled state phase retains sensitivity to the optical
phase of the Raman lasers. If the frequency configuration shown by the solid purple
lines are used to perform an entangling gate, the resulting entangled state phase is
not sensitive to the optical phase of the Raman laser.

We utilize a particular geometry of non-copropagating beams to realize gates

insensitive to the optical phase of the laser beams. Such gates have been demon-

strated on magnetic field sensitive states [91]; however, their susceptibility to mag-

netic field noise results in shorter coherence times compared to clock states. Phase

insensitive gates on clock states have been realized with CW lasers to provide a state-

dependent force by addressing both red and blue sideband transitions; |0〉|n〉 →

|1〉|n−1〉 and |0〉|n〉 → |1〉|n+1〉 respectively where |n〉 is the vibrational eigenstate

of the ions in a harmonic trap potential [76, 77, 92]. This has also been accomplished
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by simultaneously driving a carrier, |0〉|n〉 → |1〉|n〉, and a single sideband transi-

tion [93, 94]. However, this approach requires very large carrier Rabi frequencies to

prevent additional gate errors [95].

Here, we experimentally demonstrate a phase insensitive gate on the clock

states of two qubits, where two sidebands of a vibrational mode are excited simulta-

neously by an optical frequency comb generated from a pulsed laser. The beat-note

of the frequency combs is locked to the master oscillator to provide phase coherence

between quantum gates performed over long time scales and at different locations

while maintaining phase coherence of the entangling gates with microwave and co-

propagating Raman rotations. The techniques demonstrated here can also be used

to maintain long coherence times on simultaneous carrier and single sideband gates

[93], where the carrier transition is induced either by microwaves or Raman beams.

Two-qubit entanglement is generated following the Mølmer-Sørensen protocol

[90, 96, 97], in which optical driving fields are tuned near the red and blue sidebands

of a vibrational mode. In order to obtain the desired optical spectra for the phase

insensitive gate [80, 87], each Raman beam passes through AOMs A and B of Fig.

4.1b to generate a relative frequency offset (νA, νB,r, νB,b) and allow phase control

of the various frequency elements (Fig. 4.4a):

νHF − να + δ = ∆nνr − νA − νB,r

νHF + να − δ = ∆mνr + νB,b + νA (4.27)

where ∆n is a positive integer and ∆m is a negative integer, να is the frequency of
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Figure 4.4: Representation of the optical combs in the frequency domain (a, b) and
orientation of the Raman beams with respect to the addressed vibrational mode, X,
and magnetic field, B (c, d). Beam kA is polarized perpendicular to B, while beams
kB,r and kB,b have σ+ polarization. This orientation allows copropagating Raman
transitions to be driven by AOM B and the entangling gates to be driven by AOMs
A and B. In order to drive the gate, AOMs A and B shift the reference 0th comb
tooth by νA, νB,r and νB,b from the 0 modulation line (vertical dashed line) and the
negative shift for νA is obtained by taking negative first order diffracted beam. The
beat-note between the combs, represented by the dashed arrows, have the required
frequencies for the gate and the optical field gradient (purple shading) addresses
the transverse modes. a) In the optical phase insensitive geometry, off-resonant
blue sideband transition is driven by absorption from the mth comb tooth of the
kB,b beam and emission into the 0th comb tooth of the kA beam. The absorption
and emission directions of the red sideband transition is opposite that of the blue
sideband transition such that the gate is driven by absorbing from the nth comb tooth
of the kA beam and emitting into the 0th comb tooth of the kB,r beam. b) In the
optical phase sensitive geometry, off-resonant red and blue sideband transitions are
driven by absorption from the mth comb tooth of the kB,r,kB,b beams and emission
into the 0th comb tooth of the kA beam. c) In the Mølmer-Sørensen protocol, the
gate phase φG = −(φrsb + φbsb), where φrsb, φbsb are phases associated with the red
and blue sideband transitions. Drifts of the optical path length from the source to
the ions, δx, along the kB,r, kB,b beam path change the optical phases of these fields
at the ion position resulting in a phase shift of φrsb and φbsb by δφ = kB,rδx ≈ kB,bδx
(see Fig. 4.1a and Eq. 4.29). In the optical phase insensitive geometry, since the
direction of the red and blue sideband transitions are opposite, the phase changes
nearly cancel out so that φ

′
G = (φrsb − δφ) + (φbsb + δφ) ≈ φG, providing optical

path length independence to the gate. d) For the optical phase sensitive case, this
change is directly imprinted onto the ions: φ

′
G = (φrsb+δφ)+(φbsb+δφ) ≈ φG+2δφ.

Similar uncorrelated phase sensitivity is also present on path length drifts of the kA
beam.
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the vibrational mode of interest and δ is the symmetric detuning from this mode.

Note that νB,r and νB,b are applied to the same AOM, resulting in two nearly

copropagating beams. With να ≈ 2.5 MHz, δ = 10 kHz, νr ≈ 80.57 MHz and νA

= 77.5 MHz, these equations can be satisfied by n = 160, νB,r ≈ 173.4 MHz and

m = 154, νB,b ≈ 160.0 MHz.

After application of the optical fields for the gate time, the collective motion

of the ions factors and the qubit states evolve as [77, 90]:

|00〉 → |00〉 − ie−iφG |11〉

|11〉 → |11〉 − ieiφG|00〉

|01〉 → |01〉 − i|10〉

|10〉 → |10〉 − i|01〉
(4.28)

The gate phase is φG = φS,i + φS,j with individual “spin” phases:

φS,i = −(φrsb,i + φbsb,i)

= −1

2
(∆kr · Xi −∆φr + ∆kb · Xi −∆φb).

(4.29)

Here φrsb,i and φbsb,i are the phases associated with the red and blue sideband transi-

tions and Xi is the position of the ith ion [77]. The two optical field pairs address the

red (kA, kB,r) and blue (kA, kB,b) vibrational sidebands. To drive the red sideband

using a mode-locked pulsed laser, a photon is absorbed from the kA comb tooth and

emitted into the kB,r comb tooth. The opposite process takes place for the blue

sideband, resulting in ∆kr = kA− kB,r and ∆kb = kB,b− kA. Since the ∆k vectors

point in opposite directions, ∆kr ≈ −∆kb, small fluctuations of the optical path

length cancel to a high degree, leaving the gate phase unchanged (Fig. 4.4c,d). The
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gate phase retains sensitivity to the rf signals applied to the AOMs and may be

modified by modulating the applied phases φA, φB,r and φB,b to set ∆φr = φA−φB,r

and ∆φb = φB,b − φA to any desired value.

During an entangling gate, the motion correlated with particular eigenstates

of the two qubits are separated in phase space with application of a state-dependent

force. Without loss of generality, we consider a single collective mode of motion,

and the relative displacements are described by the motional phase [77]

φM,i =
1

2
(∆kr · Xi −∆φr −∆kb · Xi + ∆φb) . (4.30)

In the optical “phase insensitive” geometry [77], the optical path length dependence

of φS,i is transferred to φM,i; however, the phase dependence of φM,i on the optical

path is identical for the two ions and thus global fluctuations do not affect the

entangling gate [92].

The static motional phase difference between two ions φMi
− φMj

determines

the gate time [77] to produce the evolution of Eq. 5.1. If axial vibrational modes

are used, the distance between the ions must be carefully controlled and the gate

fidelity becomes susceptible to changes in ion spacing [92, 94]. Moreover, entangling

longer ion chains becomes problematic as the distance between ions may vary along

the chain. These issues are circumvented by using the transverse modes for gate

operations [98]. Since the phase fronts created by the optical fields are ideally

uniform across the trapping axis when the transverse modes are addressed, the

motional phase is the same for all ions (Fig. 4.4c,d). However, misalignment between
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the ∆k vectors and the transverse axis by an angle θε would introduce a motional

phase difference ∆φε = ∆klsin(θε) between the ions where l is the ion separation

(Fig. 4.5a).

Optical fields can be aligned to better than θε < 0.05◦ by measuring the varia-

tion of the resonant photon scattering rate across the ions due to the AC Stark shift

induced by the optical field gradient [99]. Since this technique relies on obtaining

sufficiently large AC Stark shifts, it requires tuning the Raman beam frequencies

close to the Doppler cooling transition which may be impractical with pulsed lasers

due to their large bandwidths and limited tuning capabilities. Furthermore, achiev-

ing good alignment relies on using large ion crystals; while an ion crystal diameter

of hundreds of µm can be maintained in Penning traps [99], it can be challenging

to hold similar length ion crystals in rf Paul traps. An alternative technique in-

corporates shuttling and utilizes the phase differences of non-copropagating Raman

rotations at different points along the trapping axis. The phase differences could

be directly measured using a single ion for the alignment of the Raman beams with

respect to the transverse axis (see Fig. 4.5b). Although not implemented in this

work, high accuracy alignment can be achieved in principle with this technique.

Long term phase coherence can be maintained with an extension of the beat-

note stabilization technique by feeding forward changes in νr to νB,r, νB,b. Even in

the absence of drifts in νr, this technique can be used to synchronize pulsed laser

operations with a master oscillator to maintain phase coherence with microwaves

or operations by other pulsed lasers in the system. A free-running frequency source

can be used to generate the AOM frequency νA as φA cancels in the gate phase,
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Figure 4.5: Alignment of Raman wavevectors to trapped ion chain. a) If the wave
fronts of the optical field gradient (purple lines) are misaligned with respect to the
trapping axis by an angle θε, the ions experience different state-dependent force
phases resulting in gate errors. The wave fronts are separated by λ

′
= 2π

∆k
≈ 2π√

2k
≈

250 nm. As an example, in order to realize a phase variation of <10◦ along a 30 µm
ion chain, θε must be <0.02◦. b) Experimental sequence for wave front alignment
and expected signal. A single ion in the state |0〉 is rotated by a resonant non-
copropagating Raman π/2 pulse and shuttled by d along the trapping axis. In the
new position, the ion is rotated again by another non-copropagating Raman π/2
pulse before fluorescent detection of the final state. The blue (red) curve shows the
expected ion brightness corresponding to a 1◦ (0.05◦) misalignment. The oscillation
on the final qubit state is a result of the phase difference between the resonant π/2
rotations and is given by P (|1〉) =cos2(πdsin(θε)/λ

′
).

φG = ∆φr + ∆φb = (φA − φB,r) + (φB,b − φA). In order to maintain phase co-

herence between entangling gates, copropagating Raman transitions and microwave

rotations that have differing drive frequencies, an AWG may be used for these op-

erations rather than free-running frequency sources, where phase relations between

different frequency components must be tracked resulting in increased system over-

head.

We characterize the optical phase sensitivity of entangling gates by measuring

the fidelity of various entangled states through extraction of the density matrix

elements of the prepared state [74]; we measure the populations along with the

parity contrast in order to extract a fidelity of F ≈ 0.86. The parity contrast is

obtained by scanning the phase of the analysis microwave and Raman π/2 pulses
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Figure 4.6: Entangling gate phase coherence. The above parity oscillation curves
show the entangling gate is phase coherent with both rotations with the entangling
gate laser and a microwave oscillator. Parity, P (|00〉)+P (|11〉)−P (|01〉)−P (|10〉) =
A cos(φG+2φ+φ

′
) , of the two qubit entangled state. Ions are first optically pumped

to the |00〉 state and following the phase insensitive gate, a π/2 analysis rotation
with phase φ is applied. Blue circles are the result of analysis with a copropagating
Raman rotation and red squares are analyzed with a microwave rotation. The phase
shift between the parity curves is due to different φ

′
static offsets between the gate

and the π/2 analysis rotations.
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after the entangling gate (Fig. 4.6). For the gate, Walsh modulation is implemented

to suppress detuning and timing errors [21]. The imperfect fidelity is not a limitation

of the phase insensitive gate; we observe similar fidelities using a phase sensitive

geometry (Fig. 4.4b,d) for the gate. Thermal populations of the motional states

contribute an error of ∼ 8% and histogram fitting of two ion combined brightness

for parity measurements contributes an additional ∼ 5% [80].

We further characterize and compare the phase insensitive and sensitive gates

by directly measuring how the phases of the driving fields are imprinted on the

entangled states. In the case of a phase insensitive gate, the phase of the red and blue

sideband frequencies modify the gate phase with opposite signs, φG ≈ φB,b − φB,r.

The phase of the parity oscillation shift in opposite directions for red and blue

sideband phase shifts. In the phase sensitive case, φG ≈ φB,r + φB,b − 2φA, which

results in the parity phase moving in the same direction for both sideband phase

shifts (Fig 4.7a,b). To simulate a relative optical path length change at the ion

position, a random phase is added to both sidebands driven by the AWG. The

phase insensitive gate parity is not affected by this randomization process, while

loss of contrast is observed for the phase sensitive gate as expected (Fig 4.7c,d).

Lastly, we test the stability of our system over long time scales by monitoring

the phase of parity oscillations following analysis of the phase insensitive gate by a

microwave pulse. We observe phase fluctuations of <8◦ of the parity curve over a

period of 24 hours. Therefore, once relative phase relations have been characterized

between different quantum operations sharing the same master oscillator, regular

monitoring of these phases is not necessary. This long term stability will be necessary
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Figure 4.7: Entangling gate phase sensitivity. (a), (b) Gate phase change as a
function of red and blue sideband phase advance. The gate phase is measured as
the offset of the parity oscillation from the π/2 analysis pulse. Changes in the phase
of the red (φsb ≡ φB,r) and blue (φsb ≡ φB,b) sideband addressing frequencies cause
φG to shift in opposite directions for the phase insensitive gate while φG shifts in
the same direction for the phase sensitive gate. (c), (d) To simulate a change in the
relative optical path length, a random phase is added to frequencies provided by the
AWG during the gate at each point. The parity curve is not affected for the phase
insensitive gate, while the phase sensitive gate parity curve becomes randomized
from point to point as verified by three data sets.
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for long computations.

4.3 Phase Stabilization Circuit

Cavity length changes cause drifts in the repetition rate of the pulsed laser,

νr + δr(t), which result in fluctuations of the separation between comb teeth (Fig.

4.4a,b) and thus phase and frequency drifts that can cause gate errors. Since two

different comb tooth solutions are used to drive the gate (Eq. 4.27), separate phase

locked loops (PLLs) are necessary to lock the ∆mνr and ∆nνr frequency splittings

between the comb teeth (see[87] for details on the PLL). Moreover, phase coherence

between quantum operations is needed for full qubit control and can be achieved

with the circuit given in Fig. 4.8. By adding a third PLL, coherent copropagating

Raman carrier transitions can also be incorporated.

In order to monitor and feed-forward the repetition rate drift δr(t), the signal

from the fast photodiode is mixed with the master oscillator, νMO = 12.606 GHz,

to produce beat-notes. The PLLs output a signal that is phase locked with the

relevant input beat-note frequencies:

νPLL1 = ∆n[νr + δr(t)]− νMO

νPLL2 = νMO −∆m[νr + δr(t)] (4.31)

where ∆m = 154 and ∆n = 160 in this experiment. These output signals are mixed
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Figure 4.8: Absolute phase control circuit. (a) Phase coherence circuit. An AWG is
used to provide the necessary frequencies for quantum operations while at the same
time maintaining phase relations between different frequency components. Filters
are used throughout the circuit to remove undesired frequency components of the
mixer output. The second harmonic light of a mode locked Nd:YAG laser at 532
nm is directed to a fast photodiode which generates a frequency comb with tooth
separation νr. The third harmonic at 355 nm is used to drive atomic transitions.
(b) The photodiode signal is mixed (#1) with the master oscillator (HP 8672A) and
sent to three different PLLs which use this signal to output ∼ 198 MHz and ∼ 285
MHz, matching the difference between the oscillator and the m = 154, n = 160
comb teeth. (c) The PLL 1 and 2 signals are first combined and then mixed (#2)
with the AWG to address the detuned sideband frequencies of the trapped ions.
During the gate, switch a → 3 and switch b → 1. (d) Phase coherent microwave
rotations with gates are realized by mixing (#3) the AWG signal with the master
oscillator to drive carrier transitions. For the microwave rotations, switch a → 1.
The third PLL provides phase coherent copropagating carrier transitions using the
p = 157 comb tooth and AOM B, with switch a → 2 and switch b → 2.
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with the AWG signal to provide driving frequencies for AOM B:

νB,r = νPLL1 − νAWG,r

νB,b = νPLL2 − νAWG,b (4.32)

Both frequencies should be within the bandwidth of AOM B for optimal diffraction

efficiency. Inserting Eq. 4.31 and 4.32 in Eq. 4.27 with νA = 77.5 MHz, the AWG

frequencies for driving the entangling gate are:

νAWG,r = νPLL1 −∆n[νr + δr(t)] + νA + ν0 − να + δ

= −νMO + νA + ν0 − να + δ (4.33)

νAWG,b = νPLL2 + ∆m[νr + δr(t)] + νA − ν0 − να + δ

= νMO + νA − ν0 + να + δ (4.34)

with νAWG,r ≈ 116.8 MHz, νAWG,b ≈ 43.2 MHz. As can be seen from Eq. 4.34,

feed-forward to the PLLs not only eliminates sensitivity to δr(t) but also utilizes the

master oscillator νMO as a reference for qubit transitions. To generate microwave

rotations that are phase coherent with the Raman transitions, the master oscillator

is mixed with the AWG, νAWG,µ = ν0 − νMO, and sent to a microwave horn. The

achievable coherence time between quantum operations with this technique can be

increased by using oscillators with lower phase noise.

It is also possible to realize the set of operations presented in this paper by

using only one comb tooth solution, ∆n = ∆m = 157, with νA = 160 MHz, νB,r ≈
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169.2 MHz and νB,b ≈ 155.7 MHz. Through the appropriate use of mixers, a single

PLL can provide the correct feed-forward to lock these two Raman transitions to

the master oscillator (Fig. 4.9). This approach has the advantage of using fewer

electronic elements.

In Fig. 4.8 and 4.9, AOM B is used for both entangling gates and copropa-

gating Raman rotations for optimal use of resources. Since the AOMs only work

efficiently in a certain rf range, conversion of the rf signals might be necessary to

obtain high efficiency beam diffraction for the copropagating Raman rotations. This

can be achieved by mixing the rf signals with a DDS to convert signals to the cor-

rect frequency range (not shown in Fig. 4.8 and 4.9 for simplicity). As this mixing

will result in a common-mode phase and frequency change in both AWG and PLL

signals, the DDS signal has no effect on the phase of the rotations so a free-running

source can be used.
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Figure 4.9: Simplified lock circuit for a modular quantum system. This circuit uses
a single PLL for phase-coherent qubit operations in a modular architecture.
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4.4 Implications towards scalability

The techniques presented here can be useful in a large scale modular quantum

processor architecture [17, 20]. In this proposal, modules hold ion chains of man-

ageable sizes and entanglement within a module is generated with mutual Coulomb

interactions while photonic interfaces [49, 100] establish connections between sepa-

rate modules. As shown here, the use of a common master oscillator for all quantum

operations and insensitivity to optical path length fluctuations can be implemented

to realize phase coherent operations across this architecture.

In the shuttling model proposed for a large-scale quantum processor, ions are

transported between various trapping regions in order to perform specific operations

[12]. These phase stabilization techniques might be beneficial in this model as it is

important to maintain phase coherence between the operations performed at differ-

ent regions of the processor and at different times. Moreover, coupling to transverse

modes for multi-qubit gate operations instead of axial modes would eliminate errors

that might stem from small changes in ion separation after shutting between regions.

Finally, the complexity of the device electrode structure might be reduced as it is

not necessary to keep a uniform ion spacing with the use of transverse modes [98].

In summary, we demonstrate long term coherence between various qubit oper-

ations utilizing optical and microwave fields referenced to a single master oscillator.

The setup presented here effectively eliminates any optical path length related phase

drifts from these operations, obviating the need for optical interferometric stabil-

ity in a quantum system. Moreover, the use of a master oscillator as a reference
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provides coherence between qubit operations done at different times and at differ-

ent locations which is central to realizing a large-scale, distributed and modular

quantum computer. By using a stable master oscillator, the long coherence times

of trapped atomic ions can be harnessed effectively to execute many subsequent

operations on the system and preserve quantum information for long times while

operations are performed on other qubits.
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Chapter 5: Entanglement using photons and phonons

Quantum entanglement is the central resource behind quantum information

science, from quantum computation and simulation [1, 101] to enhanced metrology

[102] and secure communication [1]. These applications require the quantum con-

trol of large networks of quantum bits (qubits) to realize gains and speedups over

conventional devices. However, propagating entanglement becomes difficult or im-

possible as the system grows in size, owing to the inevitable decoherence from the

complexity of connections between the qubits and increased couplings to the envi-

ronment. Here, we demonstrate the first step in a modular approach [17] to scaling

entanglement by utilizing complementary quantum buses on a collection of three

atomic ion qubits stored in two remote ion trap modules. Entanglement within a

module is achieved with deterministic near-field interactions through phonons [13],

and remote entanglement between modules is achieved through a probabilistic in-

teraction through photons [41]. This minimal system allows us to address generic

issues in the synchronization of entanglement with multiple buses, while pointing the

way toward a modular large-scale quantum infromation architecture that promises

less spectral crowding and thus potentially less decoherence as the number of qubits

increases [17]. We generate this modular entanglement faster than the observed re-
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motely entangled qubit decoherence rate, showing that entanglement can be scaled

by simply adding more modules.

Small modules of qubits have been entangled through native local interactions

in many physical platforms, such as trapped atomic ions through their Coulomb

interaction [13], Rydberg atoms through their electric dipoles [103, 104], nitrogen-

vacancy centers in diamond through their magnetic dipoles [105], and supercon-

ducting Josephson junctions through capacitive or inductive couplings [106, 107].

However, each of these systems is confronted with practical limits to the number

of qubits that can be reliably controlled, stemming from inhomogeneities, the com-

plexity and density of the interactions between the qubits, or quantum decoherence.

Scaling beyond these limits can be achieved by invoking a second type of interaction

that can extend the entanglement to other similar qubit modules. Such an architec-

ture should therefore exploit both the local interactions within the qubit modules,

and also remote interactions between modules (an example architecture is shown in

Fig 1). One promising approach is to directly move qubits between different modules

[12, 60], but this approach is limited by the difficulty of moving qubits over large dis-

tances. Optical interfaces provide ideal buses for extending entanglement between

modules [38, 39], as optical photons can propagate over macroscopic distances with

negligible loss. Several qubit systems have been entangled through remote optical

buses, such as atomic ions [49], neutral atoms [65], and nitrogen-vacancy centers in

diamond [66].

In the experiment reported here, we juxtapose local phonon and remote photon

entanglement buses utilizing trapped atomic ion qubits, balancing the requirements
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of each interface within the same qubit system. The observed entanglement rate

within and between modules is faster than the observed entangled qubit decoherence

rate. This is critical in quantum modular architectures because the required resource

scaling is superexponential in the ratio of decoherence rate to entanglement rate

[17]. This ratio is observed to be 0.2 in this experiment, many orders of magnitude

lower than previous experiments demonstrating remote entanglement [50, 65, 66].

Overcoming the resource scaling requirement makes trapped ions a leading candidate

for realizing a quantum network.

Scaling this system will also require mitigating crosstalk within modules. For

example, when generating photons for intermodular entanglement, laser scatter and

radiated light will disturb neighboring qubits within a module. This may require

the use of different species of atoms as photonic and memory qubits (see Chapter

6). Quantum information could then be transferred from the photonic qubits to the

memory qubits via the Coulomb bus [108]. The second (photonic) species can also

be used for intermittent sympathetic cooling [109].

The modular architecture demonstrated in this experiment can be expanded

to include many modules. Here an optical cross connect switch can create a flexible,

reconfigurable photonic network between modules (Fig. 5.1b) and thus be made

fault tolerant for the execution of extended quantum circuits [17]. Modular archi-

tectures may be used as the backbone of a quantum repeater network [32] and of a

quantum network of clocks [37]. The distance between nodes may be increased with

the development of low-loss UV fibers or the efficient down-conversion of photons to

telecommunication wavelengths without affecting the entanglement rate and enable
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long distance quantum networks [110].
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Figure 5.1: Experimental setup and a modular architecture for large scale quantum
network. a) Two modules separated by ∼1 meter each contain an ion trap. High
numerical aperture objectives couple spontaneously emitted photons from a single
atom into a single-mode optical fiber. The photons from atoms in separate traps
interfere on a 50/50 beam-splitter, are sorted by polarizing beam-splitters then
detected by photomultiplier tubes (PMTs). Coincident detection of photons on
specific PMT pairs heralds entanglement of atomic spins. b) Schematic of a large-
scale, modular quantum network of trapped ions. Ion trap modules (red boxes)
confine atoms coupled together through their Coulomb bus, and entanglement within
modules is accomplished with the application of spin dependent forces to the trapped
atoms [4]. Probabilistic, heralded entanglement is generated between modules via
interference of emitted photons from each module. A reconfigurable N x N cross
connect switch links arbitrary modules. Photon interference occurs at fiber beam-
splitters, and a single photon detector array heralds entanglement of atomic spins
between modules.

5.1 Juxtaposition of two entanglement buses

In this experiment, ion trap module A is a segmented, four blade design useful

for holding chains of trapped atoms. A trap drive frequency of 37.15 MHz is used to

achieve secular transverse frequencies of∼2.4 MHz. Module B is a four rod Paul trap

that confines a single atom. This trap is driven at 37.72 MHz to achieve secular

frequencies of ∼1.5 MHz. The qubits in this experiment are defined by the two

hyperfine ‘clock’ states, |F = 0,mF = 0〉 ≡ |0〉 and |F = 1,mF = 0〉 ≡ |1〉, which are
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Figure 5.2: Qubit manipulations for generating entanglement between and within
modules. a) Resonant excitation scheme and single photon emission in Yb+ atom
system. After optically pumping the atoms to the |F,mF 〉 = |0, 0〉 state of the 2S1/2

manifold, a frequency-doubled, mode-locked Ti:sapphire laser excites the atom to
the |1, 0〉 state of the 2P1/2 manifold whereby the atom decays to the |1,±1〉 states
via emission of σ∓ polarized photons into optical fibers. b). After interference of the
two photons on a 50/50 non-polarizing beam-splitter, we apply a series of microwave
transfer pulses to transfer the entangled state to the clock basis, resulting in the state
|01〉+ eiφAB |10〉 where φAB is the intermodular phase. c) We entangle atomic spins
within module A through spin dependent optical dipole forces [13, 74].
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separated by ω0 = 2π×12.64282 GHz in the 2S1/2 manifold of trapped 171Yb+ atoms.

Laser cooling, optical pumping, and readout occur via standard state-dependent

fluorescence techniques [22]. The qubits are trapped in two independent modules

separated by ∼1 meter as shown in Fig. 5.1a. (The ion traps, light collection optics,

and interferometer could in principle be part of a modular, scalable architecture as

shown in Fig. 5.1b.)

In order to generate remote entanglement between atoms in physically sep-

arated ion trap modules, we synchronously excite each atom with a resonant fast

laser pulse [49]. A fraction of the resulting spontaneously emitted light is collected

into an optical fiber, with each photon’s polarization (σ+ or σ−) entangled with its

parent atom due to atomic selection rules (Fig. 5.2a). Each photon passes through a

quarter-wave plate that maps circular to linear polarization (σ+ → H and σ− → V ),

and then the two photons interfere on a 50/50 beam-splitter, where detectors mon-

itor the output (see Fig. 5.1a) [50]. We select the two-photon Bell states of light

|HV 〉+ eiφD |V H〉, where φD is 0 or π depending on which pair of detectors registers

the photons [33]. Finally, a series of microwave pulses transfers the atoms into the

{|0〉, |1〉} basis (Fig. 5.2b), ideally resulting in the heralded entangled state of the

two remote atomic qubits |01〉+ eiφAB |10〉.

In addition to using a photonic interconnect between ion traps, we use the

Coulomb-coupled transverse phonon modes of the atoms to create entanglement

within one module (see Fig. 5.2c). Off-resonant laser beams drive stimulated Raman

transitions between the qubit levels and impart spin-dependent forces detuned from

the phonon modes. Following conventional Coulomb gate protocols [13, 90], after a
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certain time the motion returns to its original state, and the four two-qubit basis

states are ideally mapped to the following entangled states

|00〉 → |00〉 − ie−iφA|11〉

|11〉 → |11〉 − ieiφA|00〉

|01〉 → |01〉 − i|10〉

|10〉 → |10〉 − i|01〉,
(5.1)

where φA is the intramodular phase from this optical Raman process in module A

[77]. This phase depends on the relative optical phases of two non-copropagating

lasers (see Chapter 4). Using the above gate operation on two Doppler-cooled atoms

within a module (n̄ ∼ 3), we create the state |00〉 − ie−iφA|11〉 with a fidelity of

0.85 ± 0.01, excluding detection error, as shown in Fig. 5.3a,b. Cooling below the

Doppler limit was not implemented in this experiment in order to keep the exper-

imental repetition rate high for fast generation of remote entanglement. Higher

fidelity Coulomb gates may be achieved by better control of the RF amplitude ap-

plied to the ion trap and through the use of ground state cooling to reduce sensitivity

to small detuning errors from the trapped atoms sidebands of motion. The Coulomb

entangling gate makes use of Walsh function modulation W [1] to reduce the sensi-

tivity of the gate to detuning and timing errors [21]. We pick a detuning δ from a

transverse mode of motion and set the gate time tg = 2/δ with a π phase advance

of the sidebands at t = tg/2. We adjust the average Raman laser intensity power

to make sideband Rabi frequency ηΩ satisfy δ = 23/2ηΩ to complete the entangling

gate |00〉 → |00〉 − ie−iφA|11〉 in ion trap module A.

We now describe the integration of both photonic and phononic buses to gen-
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erate entangled 3-particle states. The three atoms are first prepared in the state

|ψ1ψ2〉A|ψ3〉B = |00〉A|0〉B with atoms 1 and 2 in module A and the remote atom 3 in

module B (see Fig. 5.1a). After heralding entanglement between atom 2 in module

A and atom 3 in module B using photons, we re-initialize atom 1 to the state |0〉A

with an individual addressing optical pumping beam, and then we entangle atoms

1 and 2 within module A using phonons. Ideally, this produces the state

|ψ1ψ2〉A|ψ3〉B =
(
|00〉A − ie−iφA|11〉A

)
|1〉B

+eiφAB
(
|01〉A − i|10〉A

)
|0〉B (5.2)

The above state is equivalent to a GHZ state [111], and the parity of any pair of

atoms is correlated with the spin state of the third atom. We take advantage of this

property to probe the parity of atoms 1 and 2 in module A, and correlate it with the

state of remote atom 3 in module B. After making photon and phonon connections

between the atoms, we apply a π/2 Raman rotation to atoms 1 and 2 with a variable

phase φ followed by state detection of all three atoms. When the remote atom is

measured in state |ψ3〉B = |1〉, the spin parity of atoms 1 and 2 in module A is

Π = Πc cos(φA − 2φ). When the remote atom is measured in state |ψ3〉 = |0〉B, the

atoms in module A should be mapped to a state with zero average parity, regardless

of the phase of the π/2 Raman rotation. We observe this correlation with a remote

entangled state generation rate of ∼4 sec−1 as shown in Fig. 5.3b,c. The fidelity of

detecting the state |00〉A − ie−iφA|11〉A of atoms 1 and 2 conditioned on detecting

the remote atom 3 in the state |1〉B is 0.63± 0.03.
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Figure 5.3: Entanglement between qubits in the same module without and with
heralded entanglement between modules. a) After preparing the atoms in the state
|00〉 and applying an entangling gate through phonons within a module (Eq. 5.1),
we measure the parity of the entangled state following π/2 qubit rotations with
variable phase φ with respect to the intramodular phase φA of the two atoms. The
amplitude of the parity oscillation is 0.79 ± 0.02 and the fidelity of the entangled
state is 0.85± 0.01 excluding state detection errors. b) Populations of two atoms in
ion trap module A after remote entanglement between atoms 2 and 3 followed by
entanglement between atoms 1 and 2 as described in the text. After measuring the
resulting three particle state (see Eq. 5.2), if the remote atom is in the state |1〉,
atoms 1 and 2 should be in an even parity state. If the remote atom is in the state
|0〉, atoms 1 and 2 should be in an odd parity state. We observe this correlation
with the remote atom with probability 0.71±0.04 and 0.75±0.05 respectively after
averaging over detection of the entangled photon states. c) Parity oscillation of
atoms 1 and 2 conditioned on detecting the remote atom in the state |1〉B (red
squares) and |0〉B (blue circles). After remote entanglement between modules and
entanglement within one module, we apply a Raman π/2 rotation with variable
phase φ to atoms 1 and 2 in module A and measure the state of all three atoms.
If the remote atom is in the state |0〉B, a π/2 rotation on atoms 1 and 2 maps
|ψ1ψ2〉A = |01〉A − i|10〉A to a state with zero average parity for any phase φ of the
rotation. If the remote atom is in the state |1〉B, a π/2 rotation with variable phase
φ of |ψ1ψ2〉A = |00〉A− ie−φA|11〉A maps the parity of this state to cos(φA−2φ). We
observe such a parity oscillation correlated with the state of the remote atom. The
fidelity of the two qubit entangled state |00〉A−ie−iφA|11〉A conditioned on detecting
the remote atom in |ψ3〉B = |1〉B is 0.63 ± 0.03. Error bars in a)-c) are the fit error
of experimental histograms of the two qubits’ four basis states.
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Detection error of a single atom in an ion trap module is limited by off-resonant

pumping from the F = 1 to the F = 0 manifold of the 2S1/2 ground state through

the F = 1 manifold of the 2P1/2 excited state [22], and is ∼ 1% in the experiments

presented here. Detection error of two qubits in the same module is limited by the

use of a single PMT detector where the photon detection histograms of a single

qubit in the state |1〉 and two qubits in the state |11〉 may overlap. This overlap is

∼ 8% in these experiments.

5.2 A modular quantum system

Scaling this architecture to many modules can vastly simplify the complexity

of phases to be tracked and controlled. For N � 1 modules each with n� 1 qubits

and m � n optical ports at each module, the number of overall phases is reduced

by a factor of 1/N+(m/n)2 compared to that for a fully connected set of nN qubits

[17]. Of course, in a modular architecture there may be overheads associated with

the reduced connectivity, but it will be useful to have flexibility in this tradeoff.

Though the connectivity of the qubits is reduced, the use of two different in-

teractions to generate entanglement necessitates phase referencing the intramodular

phases to the intermodular phases within and across all modules. The intermodule

phase φAB in the experiment is easily controlled by setting the phase difference of

microwave rotations between the two modules. The intramodule phase φA is de-

termined by the optical phase difference of the two Raman lasers and is passively

stable for a single entangling experiment for typical gate times of order 100 µs.
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Tracking and controlling the optical phases between many entangled pairs in spa-

tially separated modules at different times can be accomplished by utilizing “phase

insensitive” gates [77]. All phases introduced by qubit rotations and entangling op-

erations between and within modules can be referenced to a common, high-quality

master oscillator as discussed in chapter 4 [81].

In previous experiments, entanglement between remote atom spins at rates of

0.002 sec−1 was accomplished using atom-photon frequency entanglement [62], and

at rates of 0.026 sec−1 using atom-photon polarization entanglement [50]. Here, we

dramatically increase the single photon collection efficiency by using high numerical

aperture microscope objectives and detecting two out of four Bell states of light

emitted by the atoms to achieve a heralded entanglement rate of 4.5 sec−1. This is

critical in quantum modular architectures because the required resource scaling is

superexponential in the ratio of decoherence rate to entanglement rate [17]. This

ratio is observed to be 0.2 in this experiment, many orders of magnitude lower than

previous experiments demonstrating remote entanglement (See Table 5.1). Over-

coming the resource scaling requirement makes trapped ions a leading candidate for

realizing a modular quantum network.

The experiments here suggest a figure of merit for a quantum repeater net-

work with maximum separation between nodes: the coherent entanglement distance

Dent = dqRτ , where the physical qubit separation dq is multiplied by the entangle-

ment rate R and the entangled state coherence time τ . This figure of merit indicates

the maximum entanglement distance between modules of a quantum network with

a positive output entanglement rate. The experiments presented here give Dent = 1
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technology entanglement coherence xx resource
rate (sec−1) time (sec) scaling

ions [20] 4.5 1.1 0.72
neutral atoms [65] 10 1× 10−4 [53] 103000

superconductors [61] 104 1.7× 10−6 10104

NV centers [66] 0.004 10−3 10100000

Table 5.1: Resource scaling of modular architectures across different platforms. For
fault tolerant operation of a modular network, the resource scaling has superexpo-
nential dependence on the ratio of the mean remote entanglement generation time

to the qubit coherence time [17], denoted xx ≡
(
τE
τD

) τE
τD . The superexponential

resource scaling highlights the importance of creating remote entanglement at rates
exceeding the decoherence rate of the qubits. When the entangled state coherence
time is not provided in the listed reference, the single qubit coherence time is sub-
stituted.

m × 4.5 sec−1 × 1.12 sec ≈ 5 meters, orders of magnitude larger than previous

experiments in any platform (see Table 5.2). The coherent entanglement distance

in this experiment can be increased by increasing the remote entanglement rate and

entangled state coherence time. In addition, the qubit separation may be increased

by many orders of magnitude without affecting the entanglement rate. The develop-

ment of low-loss UV fibers or the efficient down-conversion of the entangled photons

emitted by the atoms to wavelengths compatible to commercially available optical

fibers could enable long distance quantum repeater networks [110].
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technology entanglement coherence remote qubit Dent

rate (sec−1) time (sec) separation (m)
ions [20] 4.5 1.1 1 5 m
neutral atoms [65] 10 1× 10−4 [53] 21 2 cm
superconductors [61] 104 1.7× 10−6 6× 10−3 100 µm
NV centers [66] 0.004 10−3 3 12 µm

Table 5.2: Coherent entanglement distance across different platforms. The coherent
entanglement distance Dent is the product of the physical qubit separation multiplied
by the entanglement rate and coherence time of the entangled state. When the
entangled state coherence time is not provided in the listed reference, the single
qubit coherence time is substituted. Dent indicates an upper bound on the maximum
distance between modules in a quantum network with positive output entanglement
rate.

Chapter 6: Dual species ion trap

Modular systems may have cross talk between photonic link qubits and the

neighboring memory qubits if the two types of qubits are identical. Even with the

high numerical aperture objectives used in experiments described in this thesis, the

probability of generating remote entanglement after resonant excitation of two pho-

tonic qubits is ∼ 10−5. While attempting to make remote entanglement, resonantly

scattered light by photonic link qubits can be absorbed by neighboring memory

qubits with relatively high probability. By integrating over the solid angle, the

probability that a photon enters a the solid angle subtended by a lens with NA =

0.6 is 0.1. The maximum theoretical coupling of the atom σ± modes to a Gaussian

TEM00 fiber mode is Pfiber = 0.5 [70]. Although two out of the four possible Bell

127



states of light were detected in this thesis, it is possible to detect all four Bell states

of light emitted by the remote atoms [73], so PBell could be equal to 1. The atoms

emit σ± polarized light with probability 2/3, fixing Pbranch = 2/3. The quantum

efficiency of the detectors used in this experiment were PPMT = 0.35, but future

technological developments could increase the quantum efficiency to nearly unity. If

the atoms are resonantly excited and emit a photon with unit probability, an opti-

mistic estimate of the probability of heralding entanglement between remote qubits

is P = (PΩ/4πPfiberPPMTPbranch)2PBell =
(
0.1× 0.5× 1× 2

3

)2 × 1 = 1.1× 10−3.

The probability of an ion scattering a resonant photon toward a memory qubit

can be estimated from the resonant absorption cross section from a memory qubit

in close proximity to a photonic link qubit. The fraction of the total 4π solid angle

subtended by the resonant absorption cross section σ = 3λ2/2π of an atom a distance

d away from the photonic link, assuming an isotropic radiation pattern, is

Ω

4π
=

1

2

∫ θ

0

sin θ′dθ′ =
1

2

1− 1√
1 + 3λ2

2π2d2

 (6.1)

where the limit of integration θ = tan−1

(
1
d

√
3λ2

2π2

)
. For typical ion spacings of a

few µm, the probability that an ion scatters into the memory is nearly of order the

maximum remote entanglement probability per attempt as is shown in Fig. 6.1. If

single species qubits are used throughout a modular architecture, achieving fault-

tolerant remote entanglement given perfect optical addressing of the photonic qubit

will require separating the photonic link qubits from the memory qubits by large

distances.
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Figure 6.1: Probability of spontaneous emission from photonic qubits absorbed by
neighboring memory qubits. (a) If a laser beam is focused down to resonantly
excite a qubit with zero intensity on a neighboring qubit a distance d away, the
resulting spontaneously emitted photon may still be absorbed by an adjacent qubit.
The relative probabilities of collecting a single photon or scattering a photon in
to the memory are given by the area subtended by the collection optics and the
resonant absorption cross section respectively. (b) The probability of a memory
qubit a distance d away from the photonic qubit absorbing a photon is shown in the
figure. Low errors required for fault tolerance will require large separations between
photonic and memory qubits in a single-species system.

Shuttling memory qubits away from the photonic link qubits can mitigate

cross talk, but the shuttling trapped atoms over large distances or around corners in

junction ion traps may prove challenging in large scale systems. Alternatively, the

use of two different ion species can mitigate cross talk due to widely different resonant

frequencies of two different ion species. After establishing a remote entanglement

between the photonic link qubits, the entangled state can be swapped to the memory

qubits, freeing the photonic link qubits to re-establish remote entanglement.

There are many potential choices for a photonic link ion, but paramount in

selecting a second ion should be the maximizing remote entanglement rate while

using photons with appropriate wavelengths for fiber transmission. Since remote

entanglement is a probabilistic process, the remote entanglement rate is the prod-

uct of the success probability per attempt and the number of attempts per unit
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time. Much effort and progress has been made putting qubits in cavities [54, 65] or

using high numerical aperture systems for efficient light collection. However, fast

experimental repetition rates are beneficial to the entanglement rate. With trapped

ions and making use of entanglement between the ion spin and the photon polar-

ization, the repetition rate is ultimately limited by the speed of preparing a pure

quantum state via optical pumping. In order to prepare a pure quantum state with

high fidelity, a few 10s of photons must be scattered for optical pumping. The time

scale for this is set by the lifetime of the pumping transition and is of order a few

hundred nanoseconds, resulting in a remote entanglement attempt rate of a ∼ 5

MHz.

Atomic isotopes with nuclear spin 1/2 are particularly useful for high re-

mote entanglement attempt rates. The preparation of the pure quantum state

|F,mF 〉 = |0, 0〉 by optical pumping is accomplished by switching on frequency

sidebands; the fidelity of the |0, 0〉 state need not be determined by pure polariza-

tion control. In addition, ultrafast excitation of the qubit may proceed without

need to upload coherence to the remote atoms as the remote atoms can decay via

σ± decay to produce heralded |ψ±〉 entangled Bell states. Finally, spin 1/2 ions

have relatively simple schemes for state detection without the need for shelving to

metastable atomic levels. Unfortunately, nuclear spin 1/2, single valence electron

atoms are fairly rare. Cadmium and mercury both half spin 1/2 isotopes, but the

deep UV transitions of these ions pose significant technical challenges to using these

qubits as a photonic link in a modular quantum system. Barium has a spin 1/2

radioactive isotope with a half-life of ∼10 years and is used in medical imaging
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applications. Because 133Ba+ and 171Yb+ have similar charge to mass ratios (thus

facilitating co-trapping in a single ion trap zone), this isotope of barium may prove

highly useful as a photonic link qubit while simultaneously offering simple state de-

tection of the photonic link qubit for diagnostic purposes. In addition and unlike

171Yb+, 133Ba+ has a D5/2 metsastable state outside of the Doppler cooling cycle

with a decay rate of 1/80 sec−1 without other low lying F states, simplifying shelving

if ultra-high state detection fidelity is needed. Barium also has strong transitions at

493 nm and 650 nm, thus potentially offering a path to efficient down conversion of

the photon to telecommunication wavelengths [110]. To date, no qubit manipula-

tions of 133Ba+ have been demonstrated. Other isotopes of Barium, such as 138Ba+,

also serve as a good photonic link qubit in conjunction with 171Yb+ memory qubits.

6.1 Entanglement swapping between photonic link qubits

and memory qubits

After creating remote entanglement between photonic qubits, the coherence

should be transferred to the memory qubits. There are a wide variety of entan-

gling schemes to perform this entanglement swap. One such direction is the use of

quantum logic spectroscopy [108], where entanglement is swapped between qubits

using the collective modes of motion. This algorithm starts with two ions in the

ground state of a collective mode of motion |0〉m. One qubit stores a superposi-

tion state α|0〉 + β|1〉, while the other memory qubit is in the state |0〉. The total

state is then (α|0〉+ β|1〉)|0〉|0〉m. A red sideband π pulse is performed on the first
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qubit, resulting in the state α|00〉|0〉m + β|00〉|1〉m = |00〉(α|0〉m + β|1〉m). Another

red sideband π pulse is performed on the memory qubit, and the resulting state is

|0〉(α|0〉+β|1〉)|0〉m, thus transferring coherence from the photonic link qubit to the

memory qubit. Unfortunately, this scheme relies on the qubit being in the ground

state of motion |0〉m making this scheme practically difficult. The photonic link is

probabilistic, and photon recoil and anomalous heating of the qubits will require

cooling and which may slow the remote entanglement attempt rate.

Another entanglement swapping scheme relies on the use of two Mølmer-

Sørensen gates with appropriate relative phase control of the two gates. If the

photonic and memory qubit states are (α|0〉+β1)|0〉 = α|00〉+β|10〉, then a Mølmer-

Sørensen gate results in the state

|ψ〉 = α(|00〉 − ie−iφG1 |11〉) + β(|10〉 − i|01〉) (6.2)

where the gate phase φG1 is from the stimulated Raman transitions that drive the

gate. Application of a second Mølmer-Sørensen gate imprints phase φG2 and results

in the state

|ψ〉 = |0〉
(
α(1− eiφG2e−iφG1)|0〉 − 2iβ|1〉

)
+ |1〉

(
− iα(e−iφG2 + e−iφG1)

)
|1〉 (6.3)

If the phase of the second gate is shifted by π relative to the first gate (φG2 = φG1+π),
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then the resulting state is

|ψ〉 = |0〉
(
α|0〉 − iβ|1〉

)
(6.4)

which moves the coherence into the memory up to a single qubit rotation. Since this

scheme makes use of a Mølmer-Sørensen gate, it does not rely on being in the ground

state of motion and may offer practical advantages over quantum logic spectroscopy.

It is likely that the state of the photonic link qubit will need to be read out for

various diagnostic purposes, although once a gate between the photonic link qubits

and the memory qubits is functional, the state of the photonic link qubit can be

read out via entanglement swapping in to the memory. Alignment of an entangling

gate between photonic and memory qubits will be simpler with state detection of

the photonic qubit. Consider the case of a Mølmer-Sørensen gate between barium

ions (photonic link) and ytterbium ions (memory qubit). If the initial state of the

systems is |ψYbψBa〉 is |0〉|0〉, an entangling gate produces the state |00〉+ ieiφG |11〉

after the gate time tg = 2π/δ. The time evolution of the Mølmer-Sørensen gate,

including the motional state (denoted by the semi-colon in the ket) is

2|ψ, t〉 = | ↓φ1↓φ2 ; 0〉 − eiφS1eiΦ| ↑φ1↓φ2 ;α〉 − eiφS2eiΦ| ↓φ1↑φ2 ;−α〉

+ eiφS1eiφS2| ↑φ1↑φ2 ; 0〉 (6.5)

with | ↑φ〉 = (−e−iφS |0〉+|1〉)/
√

2 and | ↓φ〉 = (|0〉+eiφS |1〉)/
√

2 and |α〉 is a coherent

state of motion, and the time dependence of the states is in the phase factors φS1,2
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and Φ. Making the substitution in to basis states |0〉, |1〉, the time dependence is

4|ψ, t〉 = |00A〉+ eiφS1eiφS2|11B〉+ eiΦeiφS2|01C〉+ eiΦeiφS1|10D〉 (6.6)

where the time-dependent, motional state amplitudes are denoted by the letters

|A〉 = 2|0〉+ eiΦ(|α〉+ | − α〉)

|B〉 = 2|0〉 − eiΦ(|α〉+ | − α〉)

|C〉 = |α〉 − | − α〉

|D〉 = −|α〉+ | − α〉 (6.7)

The square of the motional states give the time dependence of the populations.

Note that 〈α|α〉 = 〈−α| − α〉 = 1, 〈−α|α〉 = 〈α| − α〉 = e−2|α|2 , and 〈0| ± α〉 =

〈±α|0〉 = e−|α|
2/2 . Using these relations, the squares of the time-dependent motional

amplitudes give the probability of finding the ions in their qubit states. Specifically,

the time dependent qubit states are

P00 =
3

8
+

1

8
e−2|α|2 +

1

2
e−|α|

2/2 cos Φ

P11 =
3

8
+

1

8
e−2|α|2 − 1

2
e−|α|

2/2 cos Φ

P10 = P01 =
1

8
− 1

8
e−2|α|2 (6.8)

Aligning a Mølmer-Sørensen gate can be done by examining these time-dependent

populations and verifying that P00 = P11 while P01 = P10 = 0 while scanning the
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symmetric detuning from the motional modes δ.

If the photonic link qubit (Ba+) is not directly measured, tracing over the

photonic qubit after producing the state |00〉 + |11〉 results in the density matrix

ρYb = |0〉〈0| + |1〉〈1|, a classical mixed state with no quantum coherence. Proving

dual species entanglement without detecting the state of both of the qubits will be

indirect at best. There are subtle changes to the two ion spectrum upon tracing

over a single ion while scanning the Mølmer-Sørensen gate detuning for fixed gate

time. This can be shown by tracing over the state of one the barium photonic link

qubit in Eqn. 6.6. The resulting reduced density matrix ρYb = TrBa (|ψ, t〉〈ψ, t|) =∑
m=0,1 Ba〈m|ρ|m〉Ba is equal to a statistical mixture of pure states, each with prob-

ability 1/2.

ρYb = |0A〉〈0A|+ |0A〉〈1C|+ |1B〉〈1B|+ |1B〉〈0D|

+ |1C〉〈0A|+ |1C〉〈1C|+ |0D〉〈1B|+ |0D〉〈0D| (6.9)

The probabilities of measuring the memory (171Yb+) qubit states |0〉 and |1〉

are given by 〈A|A〉+ 〈D|D〉 and 〈B|B〉+ 〈C|C〉 respectively, yielding

P(|1〉Yb) =
1

2
− 1

2
e−|α|

2/2 cos Φ

P(|0〉Yb) =
1

2
+

1

2
e−|α|

2/2 cos Φ (6.10)

The equations for the time evolution of the qubit state probabilities of a dual species

Mølmer-Sørensen gate (Eqn. 6.6) differ slightly if one of the qubits is traced over
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(Eqn. 6.10). Fig. 6.2 shows these differences, and it can be seen that scanning the

symmetric detuning from the sidebands of motion with constant laser intensity and

time produces different probabilities of detecting |1〉 or |11〉. Seeing these qualitative

differences may prove useful in determining the calibration of an entangling gate,

but the observation of such a spectrum does not prove entanglement between the

two different qubit species. The phase coherence of the qubits must be probed to

determine fidelity, requiring state detection of both qubits.
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Figure 6.2: State detection of a barium-ytterbium Mølmer-Sørensen gate. The laser
intensity is set to ηΩ = 2π × 5kHz, and the probability of detecting qubit states
is shown vs. symmetric detuning from the red and blue sidebands of motion. The
red curve shows the probability of detecting the 171Yb+ qubit in the |1〉 state with
no spin interaction with the barium ion. In this case, there is only entanglement
between the spin and the motion of the 171Yb+ ion. The blue curve shows the
probability of measuring both qubits in the state |1〉 and would be seen if the both
qubits are measured. The green curve shows the probability of measuring the 171Yb+

ion in the state |1〉 if the state of the barium ion is traced over. All three curves
assume both qubits are in the motional ground state |0〉m
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6.2 State detection of qubits based on entanglement

Nuclear spin 1/2 ion qubits have have relatively simple schemes for state de-

tection based on differential fluorescence of the qubit levels. Laser light resonant

with the F = 1→ F = 0 levels of the S1/2 → P1/2 electronic transition will produce

scattered photons if the qubit is in the state |F,mF〉 = |1, 0〉 while the state |0, 0〉

will be off-resonant with the laser light, producing no scattered photons. The qubit

states do not mix because of electric dipole transition selection rules. State detec-

tion based on differential fluorescence of qubit levels can be further improved by

using Bayes’ theorem and photon arrival time information to update the estimated

qubit state [112, 113]. In qubits with nuclear spin greater than 1/2, it is possible

to create differential fluorescence between qubit levels by using a laser to shelve one

of the qubit states to a metastable electronic state, often a D5/2 state with trapped

ions. This shelving process has the drawback of using a relatively narrow laser to

drive an electric quadrupole transition from S1/2 → D5/2.

In addition to using photon number and photon arrival time information for

state detection, it is possible to use more photonic degrees of freedom to make mea-

surements of the qubit state. Since the state of a single scattered photon is entangled

with its parent atomic state, atom-photon entanglement can be used to determine

the qubit state by measuring the photon state. This measurement technique re-

lies on the fidelity of the atom-photon entanglement and must be independently

calibrated. The use of a single photon for state detection of a qubit is necessarily

probabilistic because single photons are sampled from the full solid angle and single
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photon detectors typically have quantum efficiency below unity.

The architecture of a modular system is naturally amenable to perform state

detection based on atom-photon entanglement on the photonic link qubit. A reso-

nant, ultrafast laser pulse excites the photonic link atom to generate a single photon.

The single photon is collected with a high numerical aperture objective and coupled

into a single mode optical fiber where the photon degree of freedom is subsequently

measured.

A proof of principle experiment showing state readout by using qubit-photon

entanglement was carried out using a trapped 172Yb+ ion. This isotope has no

nuclear spin; the qubit levels are the electron spin projection along the quantization

axis defined by an external magnetic field: |0〉 = |1/2,−1/2〉 and |1〉 = |1/2, 1/2〉.

After Doppler cooling, this ion is optically pumped to the state |0〉 with circularly

polarized light. This light is directed along the quantization axis through the free-

space, low NA objective, through the ion trap, and through the high NA microscope

objective toward the single photon collection fiber (See Fig. 6.3). Because some of

this laser light is coupled to the optical fiber and is detected by the PMTs, a delay

of 30 µs is added to allow the PMTs to recover. Raman lasers or rf radiation can

be used to manipulate the qubit, and detection proceeds via ultrafast π-polarized

excitation of the S1/2 levels to the P1/2 levels. The resulting spontaneously emitted

photon’s polarization is entangled with the qubit state (see Fig. 6.3). The optical

fiber filters out π-polarized radiation from the qubit; only σ± polarized light enters

the fiber. This single photon is converted from the |σ±〉 basis to the {|H〉, |V 〉}

basis, sorted by thin film polarizers, and detected by PMTs.
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Figure 6.3: Laser geometry and state detection scheme for nuclear spin 0 ion. (a)
The magnetic field and laser geometry for optical pumping and resonant excitation.
The magnetic field is oriented along the optical fiber direction for collection of σ±

photons from an atom in to an optical fiber. State preparation is performed with
circularly polarized light along the quantization axis to optically pump the ion. An
ultrafast, resonant laser excites the S1/2 → P1/2 transition at 369 nm to generate
a single photon. (b) The excited state decays, resulting in entanglement between
the photon polarization and the qubit state. Detection of the photon polarization
state projects the atom into the resulting spin state. Comparing the fraction of σ±

photons detected gives statistics about the atom state.
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Fig. 6.4 shows manipulation of the spin-qubit by driving a four photon Ra-

man transition. The laser impinges on the trapped ion at a 90 degree angle from the

magnetic field with circular polarization viewed from the laser propagation direc-

tion. In the basis defined by the magnetic field, the trapped ion sees a rotating field

with time dependent x-polarization and π-polarization. Because of the laser beat-

note between the copropagting Raman lasers, the x-polarization and π-polarization

beat at the laser frequency difference with timescale much shorter than the Rabi

frequency. The ion therefore experiences both x-polarization and π-polarization on

average, thus enabling multi-photon Raman transitions.

A Raman spectrum showing the |mJ〉 = | − 1
2
〉 ↔ |1

2
〉 four photon transition

as a function of the Raman laser beatnote is shown in Fig. 6.5a in addition to

Rabi flopping on the transition in Fig. 6.5b. Interestingly, the number of photons

involved in the transition may be read out directly using Ramsey interferometry

as shown in Fig. 6.5c. A Ramsey experiment was performed with a π/2 pulse

followed by a second π/2 pulse with a phase advance of one of the copropagating

Raman lasers. The transition shown in the figure shows two Ramsey fringes in 2π of

phase advance of the second π/2 pulse. The two fringes arise from the phase of the

second π/2 pulse being written twice to the atom; the transition is a four-photon

transition. Note this is generally applicable to any Raman transition and may be

used to directly read off the number of photons involved in the Raman transition.

The state detection fidelity shown in the figures is limited by several factors.

Optical pumping is sensitive to the polarization of the laser, and we observe a ∼2

% error due to imperfect polarization control of the optical pumping laser. In addi-
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Figure 6.4: Qubit manipulations of a 172Yb+ ion. (a) After optically pumping the
ion to the |0〉 = |1/2,−1/2〉 state, a copropagating Raman transition is driven by a
mode locked laser at 355 nm. The incident light is orthogonal to the magnetic field
is is circularly polarized with respect to the propagation direction. The resulting
electric field polarization in the atom’s quantization basis has time dependent σ±

polarization and π polarization. The relative polarizations at frequency ω1,2 beat
at the laser frequency difference ω1 − ω2. (b) When the beatnote of the laser
matches half of the frequency difference between the |0〉 = |1/2,−1/2〉 and |1〉 =
|1/2, 1/2〉 levels, a four-photon Raman transition can be driven between |0〉 and |1〉.
Because the Rabi frequency is much less than the laser beatnote, the atom sees all
polarizations from both frequency components of the light. The figure depicts a
single, four photon path for a Raman transition.
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tion, the ion-photon entanglement fidelity, and integral part of this state detection

method, is limited to ∼0.92, likely due to inhomogeneous stress on the vacuum win-

dow glass. Both of these hurdles may be overcome to increase the state detection

fidelity. Because of the probabilistic nature of this state detection method, this ex-

periment is repeated as quickly as possible, but the repetition rate of the experiment

was limited by the PMT recovery time after optical pumping. With an experimen-

tal repetition rate of ∼ 30 kHz, collecting 300 photons required about 60 seconds of

time.

Though the demonstration of this state detection technique has relatively low

fidelity compared to other standard state detection methods, including shelving to

a metastable electronic state, this detection method makes use of existing hardware

(without adding more) likely in a modular system to detect the photonic qubit.

This method relies on optically pumping the photonic qubit, a necessity for making

remote entanglement, and then exciting the qubit with a resonant, ultrafast laser

pulse to make single photons which are subsequently collected and detected. In ad-

dition, this technique may find other uses on transitions that quench or are pumped

to a dark state after scattering only one or a few photons.
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Figure 6.5: Raman spectrum and Rabi flopping between qubit levels of a 172Yb+ ion.
(a) Scan of co-propagating Raman laser beatnote incident on a 172Yb+ ion. When
the laser beatnote ω1 − ω2 = ωB/2, a resonant, four-photon Raman transition can
be driven between qubit levels. With an applied magnetic field of ∼5.4 G, the four
photon transition can be found at ωB/2 ≈ 7.62 MHz. (b) Rabi flopping between
qubit levels using a four photon transition. (c) A Ramsey experiment is performed
on the transition by performing a π/2 rotation on the qubit, followed by a second
π/2 rotation with variable phase set by an AOM. The resulting two Ramsey fringes
show the four photon nature of the transition: the phase is written on the atom
twice in a four photon transition.
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Chapter 7: Outlook

The experiments in this thesis suggest that the use of high quality clocks

may be important in the operation of a modular quantum network. Manipula-

tion of qubits using optical fields among and between different modules introduces

challenges in controlling the optical phase. However, as presented in Chapter 4, the

sensitivity to the optical phase can be eliminated through appropriate geometry and

RF frequency generation. The modular phase control system presented in Chapter

4 is a flexible, expandable control system and can be expanded to include different

modules in different locations while maintaining phase coherent operations across

the entire quantum network. The distribution of the clock signal and the phase

insensitive laser geometry ensure that different modules, perhaps separated by large

distances, can be used. Each module may have its own separate laser system and

may be completely independent of other modules. The addition of the modules to

a quantum network requires using the clock signal to stabilize the RF or microwave

domain of the laser system (a frequency comb in this thesis). If a frequency comb

is used, stabilization of the Raman laser beatnote at the qubit frequency may be

accomplished by directly locking the beatnote near the qubit frequency using the

clock signal. In 171Yb+ ions, this lock is near 12.6 GHz [87], necessitating distri-
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bution of the microwave signal over long distances in a quantum network. Direct

broadcast through the atmosphere may prove challenging at this frequency over long

distances. Alternatively, if a frequency comb clock standard is developed, frequency

combs with large bandwidth at telecommunication wavelengths could be used. The

telecomm comb could then be filtered and the microwave frequency components

could be used as the clock at each module. Alternatively, the repetition rate of the

laser may be stabilized [80]. In this scenario, the distributed clock signal must be

of order the laser repetition rate, typically of order ∼100 MHz, and may be directly

broadcast through the atmosphere.

Figure 7.1: A modular quantum system of trapped atomic ions. A master clock
distributes a phase reference signal to control the absolute phase of all coherent
operations, including entanglement, within and between each module. The laser
geometry is chosen to cancel the optical phase from the pulsed laser frequency
combs, so separate pulsed lasers may be used for coherent operations in such an
architecture. The number of qubits may be increased by adding more modules. The
photonic link (blue) and the memory qubits are non-identical to limit cross talk
between the photon and phonon mediated entanglement buses.

As discussed in Chapter 6, the use of at least two trapped ion species appears

necessary in a modular system that is connected by a photonic network. Multiple
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trapped ion species help prevent cross talk from resonant photon scattering between

the optical link qubits and the memory qubits. In addition, using multiple ion species

allows for intermittent laser cooling of ions not storing superposition states. Optical

frequency combs that span the UV and visible spectrum may play an important role

in such a system. Diffraction gratings may be used to split up the frequency comb,

and the phase coherence of such a comb locked to an external clock would allow

for entangling gates and entanglement swapping between different ion species. An

early demonstration of the phase coherence between different parts of the optical

spectrum is shown in Fig. 7.2. A Ramsey experiment is performed on an ion using

co-propagating Raman lasers. A π/2 pulse at 355 nm is followed by a π/2 pulse at

532 nm with variable phase shows a clear oscillation in the figure, demonstrating

cancellation of the optical phase.
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Figure 7.2: Phase coherent 171Yb+ qubit manipulations across the optical spectrum
of a frequency comb. Using a copropagating laser geometry to cancel dependence of
the optical laser phase, a Ramsey experiment is performed using a π/2 rotation
at 355 nm followed by a π/2 rotation at 532 nm. The absolute phase control
architecture may be expanded across the optical domain of a frequency comb for
coherent control of multi-species qubit modules.

The photonic connection between nodes through the interference of distin-
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guishable photons may also be extended to include qubits of differing physical origin

with the development of ultrafast single photon detectors in combination with the

use of optical clocks as outlined in Chapter 3. In addition, the lineshape of the

distinguishable photons may be matched by using media with high dispersion to

provide high-fidelity entangled states. Current single photon detector bandwidths

are limited to ∼100 GHz, preventing the bridging of photon frequency differences

in the optical domain. Given currently available technology for single photon de-

tectors, the techniques described in Chapter 3 would likely be of use in some solid

state systems, such as NV centers and quantum dots. Slow differential drifts in the

photon frequency can be accounted for by performing spectroscopy periodically on

the qubit and following the phase correction scheme outlined in Chapter 3.

Extending the distance of the quantum network will also be important for

scaling up the number of qubits in the system. The collection of single photons from

171Yb+ atomic ions in this thesis have typical attenuation of ∼100 dB/km at 369 nm

in a high-quality single mode fiber for UV and visible light. The high attenuation of

these photon wavelengths prohibit their use for long distance communication, even

in a quantum repeater network. The transmission of light at visible wavelengths is

considerably better. Trapped barium ions emit light at 493 nm (see Fig. 7.3) which

has an attenuation of ∼10 dB/km, and at 650 nm which has an attenuation of ∼ 5

dB/km. Efficient down-version of these wavelengths to the telecommunication band

should improve the distance between modules in a quantum network.

Finally, in order to make a fault-tolerant modular quantum system, the fidelity

of the operations presented in this thesis will have to be vastly improved. Several
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research groups have made significant progress on fault tolerant state detection,

single qubit rotations, and two qubit entangling gates between ions in the same

module [113, 114]. Demonstrating higher fidelity remote entanglement and the

integration of the techniques used for high fidelity operations in a single ion trap

should be an exciting area in the future.

Figure 7.3: Color photograph of a single barium atom. The blue green dot (λ = 493
nm) is a single 138Ba+ atom. The view is down a high numerical aperture microscope
objective. A standard, commercial SLR camera was used to take this photograph.
This photograph has not been retouched and is not a composite photo. The exposure
time is 25 seconds so that some of the optical bench is visible. The atom is also
easily visible with the naked eye from the same vantage point. Image credit: Volkan
Inlek and Emily Edwards.
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Chapter A: Appendix
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Figure A.1: Ion trap blades used in this thesis
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Figure A.3: Improved ion trap blade design
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