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Spin-spin couplings

The spin-spin couplings described in Eq. 1 result from applying a spin-dependent optical

dipole force in the σx basis with the Raman lasers. The wavevector difference ∆k of the

two laser beam paths is along one of the principal transverse axes of the trap, allowing the

lasers to couple to the collective motional modes and virtually excite phonons that mediate

the spin-spin interaction. A pair of beat frequencies are symmetrically detuned from the

resonant transition between the spin states, at ν0 = 12.642819 GHz, by an amount µ

which is of the same order as the motional mode frequencies. In the Lamb-Dicke regime,

this generates a Mølmer-Sørensen-type interaction (33) given by

HMS =
N∑

i,m=1

ηi,mΩi sin(2πµt)σxi
[
âme

−2πiνmt + â†me
2πiνmt

]
. (S1)

Here, i and m index the ions and motional modes, respectively; Ωi represents the equiva-

lent resonant carrier Rabi frequency at ion i, νm the frequency of the mth collective mode
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of motion, âm (â†m) the annihilation (creation) operator for mode m, ηi,m = bi,m
∆k
2π

√
h

2Mνm

is the Lamb-Dicke factor, coupling ion i to mode m, bi,m is the normal mode matrix and

M is the mass of a single 171Yb+ ion (34).

In the limit of a large detuning, |µ− ν| � ηi,mΩ, the motion is only virtually excited

and the effective Hamiltonian is the spin-spin interaction,

H =
∑
i<j

Ji,jσ
x
i σ

x
j . (S2)

Here the spin-spin couplings are given by (14)

Ji,j = ΩiΩjΩR

N∑
m=1

bi,mbj,m
µ2 − ν2

m

, (S3)

where ΩR = h(∆k/2π)2

2M
is the recoil frequency. We note that for the experiments reported

here, the detuning from the center-of-mass mode µ−ν1 was between 3ηΩ and 4ηΩ, where

η is the Lamb-Dicke factor for the COM mode (which is the highest in frequency of the

transverse modes), and Ω is assumed to be uniform for each ion. Thus, excitation of the

COM mode is less than 10% (and excitation of the other modes is even lower).

The frequencies and eigenvectors of the transverse motional modes used above can be

fully characterized (in the limit where the trapping potential can be well approximated by

a 3-dimensional harmonic oscillator) by the secular frequencies characterizing the potential

in the x transverse direction and the z axial direction (34). For the experiments reported

in this work, the transverse trapping frequency is roughly ν1 =4.8 MHz and the axial

trapping frequency is varied between 0.59 MHz – 1.05 MHz.

When the beatnote is tuned to µ > ν1, the interaction profile varies between a uniform

all-to-all coupling (Ji,j ∼ J0) in the limit where the µ is close enough to ν1 to neglect

contributions from other modes, to a dipolar falloff (Ji,j ∼ J0/|i− j|3) in the limit where

µ is far detuned from all the modes. In between these limits, numerical calculations
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show that the interaction profiles can be roughly approximated by Ji,j ∼ J0/|i− j|α with

0 < α < 3. The exponent α depends on the relative detunings from all the modes, and

can be varied either by changing µ or by changing the axial trap frequency.

In our experiments, the main causes of drifts in the Hamiltonian are due to laser

intensity noise (e.g., from pointing instability), which directly affects Ωi, and to drifts in

the transverse trap frequency νCOMx (e.g., due to slight internal temperature changes in

the resonator delivering RF voltage to the trap), which affects all the mode frequencies

νm and hence the detunings µ− νm.

Measurement of spin states

The detection cycle for each experiment consists of exposing the ions to ‘detection’ light,

resonant with the |↑〉z (‘bright’) state but not the |↓〉z (‘dark’) state, for 3 ms. An objective

with a numerical aperture of NA=0.23 collects the resulting fluorescence, which is imaged

onto an intensified CCD camera. To calibrate the readout, we perform 1000 cycles of

preparing and measuring an all-dark state, |↓↓↓ · · ·〉z, and 1000 cycles of an all-bright

state, |↑↑↑ · · ·〉z. Single-shot discrimination is performed by summing the columns of the

resulting image into a 1-dimensional row, since the vertical direction yields no additional

information in a linear chain, and fitting the resulting profile to a sum of Gaussians whose

positions and widths are determined from the calibration images. The individual ion

states are then discriminated by comparing the fit amplitudes to calibrated thresholds

(see below).

The calibration also allows us to determine the detection errors for each ion, i.e. the

probability of misdiagnosing a dark state as bright or vice versa for a given threshold.

These known errors are used to correct the probability distributions for detection errors,

while also considering standard errors from shot noise (35).
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The optimal thresholds are determined by performing a Monte Carlo simulation in

which certain target states are ‘prepared’ by randomly choosing an amplitude from the

appropriate calibration ensemble (e.g., for the target state |1010 · · ·〉 the amplitude of the

first ion is chosen from the pool of amplitudes which were fit to the first ion in the bright

calibration), discriminated with a given threshold, and corrected for the detection error

given the chosen threshold. A threshold is then chosen that is insensitive to statistical

fluctuations and gives corrected probability distributions that match the known input

ensemble well; the recovered probability distributions are nearly identical for a wide range

of threshold choices.

Measurement of energy splittings

In the weak-field regime, we know that the only states that are coupled are those which

differ by a single spin flip. Thus, for a given input state, we know exactly which states

can be reached by the modulated transverse field (e.g., from |111 · · · 11〉 the only states

which are coupled to first order are |011 · · · 11〉, |101 · · · 11〉, · · ·, |111 · · · 10〉). For each

frequency scan, we extract the population of each coupled state as a function of modulation

frequency. These data sets are expected to show a peak at the actual energy splitting.

We fit Lorentzian functions to these peaks to determine each energy splitting:

L(x, x0, w,A, o) = A
w2

(x− x0)2 + w2
+ o, (S4)

where the offset o is included because in some cases the baseline population of a final state

may be nonzero due to, e.g., off-resonant coupling during the first excitation pulse. The

center frequency, x0, thus determined is a direct measure of the energy splitting between

the initial and final states. (Nearly identical results are obtained using a functional

form of A sechx−x0
w

+ o or A sinc2 x−x0
w

+ o to fit the peaks.) In some cases, especially

when multiple sequential excitations are performed, there may be insufficient population
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transfer to discern a peak above the noise floor. In most cases, there will be questions of

how to choose the best fit out of multiple possible fits, or whether any of the possible fits

are plausible. We will now describe our method for identifying the best fit, or the absence

of a good fit.

Seeding the fitting routine

We perform our fits in Mathematica using the NonlinearModelFit function. This function

allows us to input a data set, a fit function, a set of weights corresponding to the mea-

surement errors, and an initial guess for the fitting parameters, and can return parameter

standard errors in addition to best fit parameters. As with most fitting routines, it is

sensitive to the initial guess for the center value x0, and seeding the routine with different

values will return different guesses for the peak location. We therefore compare multiple

fits seeded with different initial guesses. For each data set, we calculate the mean and

standard deviation of the y values. Then, we select all of the points whose y value is more

than 1.5 standard deviations away from the mean, and use the x values of these points as

seeds to the fitting routine.

Identifying a bad fit

Some of the fits will be immediately implausible. E.g., since the y axis is a probability, the

amplitude of the Lorentzian should never exceed 1. We use several such criteria, where a

fit is considered “good” only if it meets all of the following conditions:

• 0 < A < 1 eliminates those fits where an unphysical probability occurs. (Typically

this is only violated when the fitter finds a local optimum in a spuriously narrow

peak with an amplitude many orders of magnitude larger than 1.)

• w < 0.6 kHz eliminates fits which key in on a slow variation in the background level.

5



For a 3 ms pulse (of a strength which drives less than a π pulse on resonance), each

peak is expected to be roughly 0.15 kHz wide (based on both numerical evolution

of the Schrodinger equation in our many-body system, and on the Rabi solution

for driving an isolated two-level system), so this leaves a large margin for typical

variation in the widths.

• w > ∆w/2, where ∆w is the standard error on the fit parameter, eliminates a few

fits which key in on two neighboring points that are slightly higher than the nearby

points but still within the noise, resulting in an implausibly tall and narrow peak

(which nevertheless tends to have A < 1); such fits typically have a large ∆w.

• A > 1.5 S, where S is the mean shot noise for the data set being fit, imposes the

requirement that the signal-to-noise ratio be at least 1.5.

These criteria, as with any criteria for discriminating good fits from bad, are necessarily

subjective, and are chosen to be reasonably permissive of plausible fits to noisy data

while still eliminating those fits which are blatantly bad on visual inspection, e.g., they

successfully eliminate all fits to those data sets which visually appear most consistent with

a (noisy) flat line. Of the remaining fits, should there be multiple good fits with different

x0 seeds for a single data set, the fit with the highest R2 is chosen for the remaining

analyses.

Measuring coupling profiles

For each coupling profile, frequency scans are performed with initial states of |11111111〉

and all single-defect states thereof, i.e. |01111111〉, · · ·, |11111110〉. The single-defect

states are prepared with a pulse of the modulated transverse field. Using the methods

described above, we extract all of the measurable energy splittings. For each energy
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Figure S1: (a): Sketch of protocol for driving sequential excitations. (b)-(d): plots of the
measured populations in each of the 2N states in a system of N = 8 spins. We apply sequential
pulses of the modulated transverse field to an initial polarized state, shown in (b). The first
pulse drives transitions into states with single defects, |01111111〉 and |11111110〉 (c), and the
second pulse can then create states with two defects (d). (e): Population in either of the states
with a single defect on the end vs. the frequency of the first pulse. (f): Fixing the first pulse
on resonance from (e), we show the population of a state with two defects, |01111110〉, vs. the
frequency of the second pulse.
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Trace Trace Trace Trace Number ions
over 1? over 2? over 3? over 4? 〈Wss〉 involved, N 〈Wss〉min

No No No No -1.62(22) 4 -3
Yes No No No -0.382(121) 3 -2
No Yes No No -0.847(96) 3 -2
No No Yes No -0.735(101) 3 -2
No No No Yes -0.300(114) 3 -2
Yes Yes No No -0.115(40) 2 -1
Yes No Yes No -0.111(41) 2 -1
Yes No No Yes -0.001(44) 2 -1
No Yes Yes No -0.279(37) 2 -1
No Yes No Yes -0.081(38) 2 -1
No No Yes Yes -0.055(39) 2 -1

Table S1: Measured values of the spin-squeezing-type witness Wss described in the text, com-
pared to theoretical values for a perfect 4-spin state |ΨW 〉 (rightmost column); a negative value
certifies that the state is nonseparable and hence that at least two of the spins are entangled. By
tracing over individual spins, we see that all pairs except ions 2 and 3 are at least 1σ below zero,
showing that these pairs are entangled; entanglement between each possible pair is consistent
with the multipartite entanglement that would be expected for a perfect W state.

splitting, we know the initial and final spin ordering and so know how to relate the

energy difference to the spin-spin couplings, as described in the main text. We use these

relations to build a design matrix A and a response vector ~y such that A.~x = ~y, where

~y is a vector consisting of the measured energy splittings, ~x is a vector consisting of the

spin-spin couplings, and A is a matrix with rank equal to or greater than the number of

independent couplings (i.e., A has
(
N
2

)
columns corresponding to the

(
N
2

)
couplings, and

at least
(
N
2

)
independent rows). Mathematica’s LinearModelFit routine is then used to

perform a linear least-squares analysis determining which vector ~x minimizes the sum of

squares of residuals, min |A~x − ~y|. Additionally, the data points (i.e. energy splittings)

are weighted according to 1/σx0 , where σx0 is the estimated error in the fit center x0 that

was used to determine each splitting. As a side note, we have taken advantage of the

knowledge that our couplings are roughly of the form J0/r
α (and in particular, all share
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the same sign), which means that single-defect states will always be lower energy than the

polarized state in our system, and (for the systems presented here) two-defect states are

lower in energy than single-defect states. Without this knowledge it would be necessary

to determine not only the magnitude of the energy splittings, as we do here, but also

the sign, in order to fully constrain the coupling matrix. This is however achievable by

making a second set of measurements with a known longitudinal field Bx
∑N
i=1 σ

x
i , which

will shift the energies in a known direction. Comparison between the two data sets to

determine whether Bx shifts the levels closer together or further apart would yield the

sign of the energy splitting.

Scalability considerations for characterizing power-law-

like interaction profiles

It is important to consider how well our technique will scale to larger systems. Char-

acterizing all NxN interactions among N spins requires N + 1 scans using the method

we describe in the text. However, the various energy splittings may become more closely

spaced for large systems, and hence the interaction time per scan will also depend on the

system size. Here we estimate the interaction time necessary to resolve the most closely

spaced energy splittings in a system with homogeneous power-law interactions,

H =
∑
i,j

Ji,jσ
x
i σ

x
j (S5)

Ji,j =
J0

|i− j|α
, (S6)

assuming that the system starts in the |↓↓ · · · ↓〉x state. In this case, the energy required

to flip the ith spin from the end of an N spin chain is:

Ei = 2

 i−1∑
k=1

Ji,k +
N∑

k=i+1

Ji,k

 = 2J0

(
i−1∑
k=1

1

kα
+

N−i∑
k=1

1

kα

)
. (S7)
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The energy cost is lowest for flipping the spin on the end. In this case, the energy

is simply 2×(nearest neighbor coupling + next nearest neighbor coupling + ... ) = 2

(1 + 1/2α + 1/3α + · · ·+ 1/(N − 1)α). For flipping the second spin, the contribution of the

final coupling J1,N = 1/(N − 1)α is replaced by another nearest neighbor contribution, as

we now have 2(J1,2 + J2,3 + J2,4 + ...+ J2,N) = 2(1 + 1 + 1/2α + ...+ 1/(N − 2)α). Since

1 ≥ 1/(N − 1)α for our limitation of 0 < α < 3, it will always cost more energy to flip

the second spin than the first. By induction, we can see that due to the monotonic falloff

of the couplings, it will always cost more energy to flip a spin closer to the center than a

spin closer to the edge.

The energy of flipping spin i monotonically increases with i (1 ≤ i ≤ N/2). However,

to estimate the interaction time necessary to resolve neighboring energy splittings, we

must estimate the spacing between these energy splittings. From Eq. S7, this is:

Ei − Ei−1 ≡ ∆i = 2J0

(
1

(i− 1)α
− 1

(N − i+ 1)α

)
. (S8)

One can show that |∆i| = 0 at i = N/2 + 1, which intuitively makes sense for even N

since the energy of flipping either of the middle two spins should be the same. Further-

more, the derivative is negative:

d∆i

di
= −2J0α

(
1

(i− 1)α+1
+

1

(N − i+ 1)α+1

)
, (S9)

so the two (nondegenerate) resonances which will be closest together are those with i =

N/2 and i = N/2− 1. In this case,

∆N/2 = 2J0

(
1

(N/2− 1)α
− 1

(N/2 + 1)α

)
, (S10)

which can be rearranged as

∆N/2 = 2J0

(
2

N

)α ( 1

(1− 2
N

)α
− 1

(1 + 2
N

)α

)
, (S11)
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or, for large N ,

∆N/2 ≈ 8J0

(
2

N

)α α
N
. (S12)

We therefore see that the smallest energy splitting scales like 1/Nα+1, which sets the

scale for the frequency resolution necessary to excite individual resonances (as opposed to

driving multiple resonances simultaneously). This means that the necessary interaction

time for resolving the energies scales like 1/∆N/2 ∼ Nα+1/J0. Thus, the total time neces-

sary to perform N frequency scans will scale polynomially as Nα+2. This is a conservative

estimate; adaptive techniques which increase the interaction time only in regions of high

energy state density could decrease the total time necessary to characterize the entire

system.

For smaller systems, Eq. S11 can be used to estimate this characterization time

quantitatively – for example, comparing the 8 spin system characterized experimentally

to a 30 spin system, which is sufficiently large that numerical simulation of its dynamics

will be infeasible. Typical values for the coupling profile might be J0 = 1 kHz and α = 1,

for which the necessary probe time 1/∆N/2 to fully resolve neighboring eigenstates is

roughly 4 ms in an 8 spin system or 50 ms in a 30 spin system. In the absence of factors

such as background gas collisions that limit the experimental repetition rate, this means

an 8 spin system could be fully characterized in roughly an hour (assuming (A) only 5

frequency scans are required due to left-right symmetry considerations, (B) each scan

probes 50 frequencies, and (C) 1000 repetitions of each experiment are performed). A

similar calculation for a 30 spin system leads to an estimate of 22 hours, still less than a

day. We note that the tactic of resolving each energy level negates the need to perform

more repetitions of each experiment to decrease quantum projection noise; so long as the

initial state can be created with sufficient fidelity, the population driven into the state of

interest should be the same regardless of the number of spins.
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This estimate can be compared to alternative techniques, such as that demonstrated

in (27), where each pair is addressed separately to directly measure its coupling strength.

There, the idea is to initialize all ions other than the pair of interest into an auxiliary

state that does not participate in the spin dynamics, then characterize the frequency

of oscillation between e.g. |↓↑〉 and |↑↓〉. To accurately estimate a frequency J in this

manner, the system must be allowed to evolve for a time of at least 1/J , so the longest

interaction time will be given by 1/J1,N = (N − 1)α/J0. To characterize N(N − 1)/2

interactions will therefore take a total time of order N(N − 1)α+1/J0, leading to the same

scaling behavior of Nα+2/J0. Thus, though our method shows similar scaling behavior

in this analysis, it still compares favorably due to the lack of overhead for individual

addressing. Additionally, the method in (27) will need to probe each pair for varying

lengths of time in order to reliably estimate the frequency of oscillation in the time

evolution, so it will have a larger constant prefactor associated with the scaling behavior.

For these reasons, spectroscopic methods for characterizing fully connected spin systems

are a useful and scalable addition to the toolbox of verification techniques.
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