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Summary. — Laser-cooled and trapped atomic ions form an ideal standard for the
simulation of interacting quantum spin models. Effective spins are represented by
appropriate internal energy levels within each ion, and the spins can be measured
with near-perfect efficiency using state-dependent fluorescence techniques. By ap-
plying optical fields that exert optical dipole forces on the ions, their Coulomb
interaction can be modulated to give rise to long-range and tunable spin-spin inter-
actions that can be reconfigured by shaping the spectrum and pattern of the laser
fields. Here we review the theory behind this system, recent experimental data on
the adiabatic prepration of complex ground states and dynamical studies with small
collections of ions, and speculate on the near future when the system becomes so
complex that its behavior cannot be modeled with conventional computers.
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Introduction

The advent of individual atomic control with external electromagnetic fields, both

involving internal states through optical pumping and external states through laser cool-

c© Società Italiana di Fisica 1



2 C. Monroe, et. al.

ing and electromagnetic trapping, has proven to be an ideal playground for quantum

physics. This brand of physics has been well represented by the Enrico Fermi Courses

over the last 25 years: Laser Manipulations of Atoms and Ions (1991), Bose-Einstein

Condensation in Atomic Gases (1998), Experimental Quantum Computation and Infor-

mation (2001), Ultracold Fermi Gases (2006), Atom Optics and Space Physics (2006),

and Atom Interferometry (2013). The current 2013 course, Ion Traps for Tomorrow’s

Applications, specializes to the use of trapped atomic and molecular ions as probes of

individual quantum systems, with many applications directed towards quantum infor-

mation science. This lecture describes how a collection of laser-cooled atomic ions can

serve as a programmable quantum simulator. The techniques outlined here also form a

realistic basis for the development of a universal scalable quantum computer [1, 2, 3].

Quantum simulation, first promoted by Richard Feynman [4], exploits a controlled

quantum system in order to study and measure the characteristics of a quantum model

that may not be tractable using conventional computational techniques. A quantum

simulator can be thought of as a special purpose quantum computer, with a reduced

set of quantum operators and gates that pertain to the particular problem under study.

While large-scale and useful quantum computation may be far off, the simulation of

quantum problems that are difficult or even impossible to solve is just around the corner

[5].

Quantum information hardware is conventionally represented by quantum bits (qubits),

or controlled two-level quantum systems. A collection of interacting qubits directly maps

to interacting effective spin systems, and therefore the simulation of quantum spin mod-

els is an appropriate place to start. Here we describe the use of the most advanced

qubit hardware, trapped atomic ions, as effective spins [6, 7]. Trapped ion qubits en-

joy an extreme level of isolation from the environment, can be entangled through their

local Coulomb interaction, and can be measured with near-perfect efficiency with the

availability of cyclic optical transitions [8]. Below we describe the first experiments that

implement crystals of trapped atomic ions for the quantum simulation of spin models

[9, 10, 11, 12, 13, 14, 15, 16].

Trapped Ion Effective Spins: Initialization, Detection, and Interaction

We represent a collection of effective spins by a crystal of atomic ions, with two

electronic energy levels within each ion behaving as each effective spin or quantum bit

(qubit). In the experiments reported in this lecture, atomic 171Yb+ ions are stored in

a linear radiofrequency (Paul) ion trap, and the spin levels are the 2S1/2 ground state

“clock” hyperfine states, labeled by |↑〉z (F = 1,mF = 0) and |↓〉z (F = 0,mF = 0) and

separated by a frequency of ω0/2π = 12.64281 GHz [17].

The spins are initialized through an optical pumping process, where resonant radia-

tion tuned to the 2S1/2 (F = 1)−2P1/2 (F ′ = 1) transition at a wavelength around 369.5

nm quickly and efficiently pumps each spin to state |↓〉z after several scattering events,

resulting in a > 99.9% state purity of each spin in a few microseconds. Following the

controlled interaction between the spins depending on the particular quantum simula-
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Fig. 1. – Relevant energy levels and couplings in the 171Yb+atomic ion. The effective spin is
stored in the 2S1/2 (F = 1,mF = 0) and (F = 0,mF = 0) “clock” states, denoted by |↑〉z and
|↓〉z, respectively. The excited P states have a radiative linewidth of approximately 20 MHz.
(a) Resonant radiation on the 2S1/2(F = 1) −2 P1/2(F ′ = 1) transition near 369 nm (solid
lines) optically pumps each spin to the |↓〉z state through spontaneous emission (wavy dotted
lines). (b) Off-resonant radiation near 355 nm (solid lines) drives stimulated Raman transitions
between the spin states, and by virtually coupling each spin to the collective motion of the ion
chain, this coherent interaction underlies the spin-spin interaction as described in the text. (c)
Resonant radiation on the 2S1/2(F = 1) −2 P1/2(F ′ = 0) transition near 369 nm (solid lines)
causes the |↑〉z state to fluoresce strongly (wavy dotted lines), while the |↓〉z state is far from
resonance and therefore dark. This allows the near-perfect detection of the spin state by the
collection of this state-dependent fluorescence [17].

tion protocol described below, the spins are globally detected with laser radiation near

resonant with the 2S1/2(F = 1) −2 P1/2(F ′ = 0) transition at a wavelength near 369.5

nm (Fig. 1). The effective detection efficiency of of each spin can be well above 99% [18].

This resonant optical interaction result in a small probability (∼ 0.5%) of populating the

metastable 2D3/2 state upon spontaneous emission, and this atomic “leak” can be easily

plugged with radiation coupling the 2D3/2 −3 D[3/2]1/2 transition at a wavelength near

935 nm [17]. In order to detect the spins in the σx or σy basis, previous to fluorescence

measurement the spins are coherently rotated by polar angle π/2 along the y or x axis

of the Bloch sphere.

Following the initialization of the spins but before their detection, spin-spin inter-

actions can be implemented through off-resonant optical dipole forces [1, 19, 20, 21].

Conventionally, such forces are applied to subsets of ions in order to execute entangling

quantum gates that are applicable to quantum information processing [8]. When such
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forces are instead applied globally, the resulting interaction network allows the quantum

simulation of a wide variety of spin models such as the Ising and Heisenberg spin chains

[6, 7, 9, 10, 11, 12, 13, 14, 15, 16].

We uniformly address the ions with two off-resonant λ ≈ 355 nm laser beams which

drive stimulated Raman transitions between the spin states [22, 23], with (carrier) Rabi

carrier frequencies Ωi on ion i. The beams intersect at right angles so that their wavevec-

tor difference ∆k points along the direction of the ion motion perpendicular to the linear

chain, which we denote by the X-direction Fig. 2. The effective interaction between

the ions is therefore mediated by the collective transverse vibrations of the chain. We

use the transverse modes of motion because their frequencies are tightly packed and

all contribute to the effective Ising model, allowing control over the form and range of

the interaction. Furthermore, the transverse modes are at higher frequencies, leading to

better cooling and less sensitivity to external heating and noise[24].

In general, when noncopropagating laser beams have bichromatic beatnotes at fre-

quencies ω0±µ, this can give rise to a spin-dependent force at frequency µ [6, 19]. Under

the rotating wave approximation (ω0 � µ� Ωi) and within the Lamb-Dicke limit where

∆k

√
〈X̂2

i 〉 � 1, with X̂i the position operator of the ith ion, the resulting interaction

Hamiltonian is [24]

(1) H(t) = ~
∑

i

Ωi(∆kX̂i)σ
(i)
x sin(µt).

Here, σ
(i)
x is the Pauli spin flip operator on ion i and ∆kX̂i =

∑
m ηi,m(ame

−iωmt +

a†me
iωmt) is written in terms of the normal mode phonon operators am and a†m at fre-

quency ωm. The Lamb-Dicke parameters ηi,m = bi,m∆k
√
~/2Mωm include the nor-

mal mode transformation matrix bi,m of the ith ion with the mth normal mode, where∑
m |bi,m|

2
=
∑
i |bi,m|

2
= 1 and M is the mass of a single ion.

The evolution operator under this Hamiltonian can be written as [25]

(2) U(τ) = exp


∑

i

φ̂iσ
(i)
x + i

∑

i,j

χi,j(τ)σ(i)
x σ(j)

x


 ,

where φ̂i(τ) =
∑
m[αi,m(τ)a†m−α∗i,m(τ)am]. The first term on the right hand side of Eq.

(2) represents spin-dependent displacements of the mth motional modes through phase

space by an amount

(3) αi,m(τ) =
−iηi,mΩi
µ2 − ω2

m

[µ− eiωmτ (µcosµτ − iωmsinµτ)].

The second term on the right hand side of Eq. (2) is a spin-spin interaction between ions
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i and j with coupling strength

(4)

χi,j(τ) = ΩiΩj
∑

m

ηi,mηj,m
µ2 − ω2

m

[
µsin(µ− ωm)τ

µ− ωm
− µsin(µ+ ωm)τ

µ+ ωm
+
ωmsin2µτ

2µ
− ωmτ

]
.

There are two regimes where multiple vibrational modes of motion contribute to the

spin-spin coupling, taking evolution times τ to be much longer than the ion oscillation

periods (ωmτ � 1) [26]. In the “fast” regime, the optical beatnote detuning µ is close to

one or more normal modes and the spins become entangled with the motion through the

spin-dependent displacements. However, at certain times of the evolution αi,m(τ) ≈ 0

for all modes m and the motion nearly decouples from the spin states, which is useful

for synchronous entangling quantum logic gates between the spins [27]. For the special

case of N = 2 ions, both modes in a given direction decouple simultaneously when the

detuning is set exactly half way between the modes, or at other discrete detunings, where

both modes contribute to the effective spin-spin coupling. For larger numbers of ions, only

the nearest few modes are coupled, and it is straightforward to calculate the appropriate

duration and detuning for the gate. Faster pulses that couple to many or all modes may

require more complex laser pulse shapes to suppress the residual entanglement to the

phonon modes [25, 28].

In the “slow” regime, the optical beatnote frequency is far from each normal mode

compared to that mode’s sideband Rabi frequency (|µ−ωm| � |ηi,mΩi|). In this case, the

phonons are only virtually excited as the displacements become negligible (|αi,m| � 1),

and the result is a nearly pure Ising Hamiltonian from the last (secular) term of Eq. (4):

Heff = ~
∑
i,j Ji,jσ

(i)
x σ

(j)
x , where

(5) Ji,j = ΩiΩj
~(∆k)2

2M

∑

m

bi,mbj,m
µ2 − ω2

m

.

For the remainder of this lecture, we consider interactions in this slow regime in

order to engineer effective Hamiltonians that do not directly excite the normal modes of

vibration.

Quantum Simulations of Magnetism

Quantum simulations of magnetism with trapped ions are of particular interest be-

cause the interaction graph can be tailored by controlling the external force on the ions,

for instance by tuning the spectrum of lasers that provide the dipole force. This allows

the control of the sign of the interaction from Eq. (5) (ferromagnetic vs. antiferromag-

netic), the range, the dimensionality, and the level of frustration in the system. The

effective spin-spin Hamiltonian originates from modulations of the Coulomb interaction

and is therefore characterized by long-range coupling. The dynamics of the system can

therefore become classically intractable for even modest numbers of spins N > 30.
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Fig. 2. – (a) Schematic of the three-layer linear radio frequency (Paul) trap, where the top
and bottom layers carry static potentials and the middle one carries a radio frequency (rf)
potential. (b) Two Raman beams globally address the 171Yb+ ion chain, with their wavevector
difference (∆k) along the transverse (X) direction of motion, generating the Ising couplings
through a spin-dependent force. The same beams generate an effective transverse magnetic field
by driving resonant hyperfine transitions. A CCD image showing a string of nine ions (not
in present experimental condition) is superimposed. A photomultiplier tube (PMT) is used to
detect spin-dependent fluorescence from the ion crystal. (Reprinted from Ref. [12].)

We begin with the simplest nontrivial spin network, the Ising model with a transverse

field. The system is described by the Hamiltonian

(6) H =
∑

i<j

Ji,jσ
(i)
x σ(j)

x +Bx
∑

i

σ(i)
x +By(t)

∑

i

σ(i)
y ,

where Ji,j is given in Eq. (5) and is the strength of the Ising coupling between spins i and

j, Bx is the longitudinal magnetic field, By(t) is a time-dependent transverse field, and

σ
(i)
α is the Pauli spin operator for the ith particle along the α direction. The couplings

Ji,j and field magnitudes Bx and By(t) are given in units of angular frequency, with

~ = 1.

For global addressing (Ωi = Ω), the sum in Eq. (5) can be calculated exactly and

we find that the Ising interactions are long-range and fall off approximately as Ji,j ∼
J/|i−j|α. Even though the ions are not uniformly spaced and the couplings are somewhat

inhomogeneous, this power-law approximation is a useful way to describe the physics of

the simulated spin models. In the experiments, we realize a nearest-neighbor coupling

J ∼ 2π×0.6-0.7 kHz, and 0.5 < α < 1.5, although in principle the exponent can be tuned
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from 0 < α < 3.

The effective transverse and longitudinal magnetic fields By(t) and Bx in Eq. (6) drive

Rabi oscillations between the spin states |↓〉z and |↑〉z. Each effective field is generated

by a pair of Raman laser beams with a beatnote frequency of ωS , with the field amplitude

determined by the beam intensities. The field directions are controlled through the beam

phases relative to the average phase ϕ of the two sidebands which give rise to the σxσx
interaction in Eq. (6). In particular, an effective field phase offset of 0◦ (90◦) relative to

ϕ generates a σy (σx) interaction.

In principle, by controlling the spectrum of light that falls upon each ion in the linear

chain, we can program arbitrary fully-connected Ising networks in any dimension [29]. In

order to generate an arbitrary Ising coupling matrix Ji,j it is necessary to have at least

N(N−1)/2 independent controls. This can be accomplished by adding multiple spectral

beatnote detunings to the Raman beams, and through individual ion addressing, varying

the pattern of spectral component intensities directed to each ion. For simplicity, we

consider the spectrum to contain N Raman beatnote detunings {µn} that are the same

for all ions, where n = 1, 2, ...N . The coupling is therefore described by the N ×N Rabi

frequency matrix Ωi,n of spectral component n at ion i. Note that the relative signs of

the Rabi frequency matrix elements can be controlled by adjusting the phase of each

spectral component. This individual spectral amplitude addressing provides N2 control

parameters, and the general Ising coupling matrix becomes

Ji,j =

N∑

n=1

Ωi,nΩj,n

N∑

m=1

ηi,mηj,mωm
µ2
n − ω2

m

(7)

≡
N∑

n=1

Ωi,nΩj,nFi,j,n,(8)

where Fi,j,n characterizes the response of Ising coupling Ji,j to spectral component n. An

exact derivation of the effective Hamiltonian given a spectrum of spin-dependent forces

gives rise to new off-resonant cross terms, which can be shown to be negligible in the

rotating wave approximation, as long as the detunings are chosen so that their sums and

differences do not directly encroach any sideband features in the motional spectrum of

the crystal [24].

Given a desired Ising coupling matrix Ji,j , Eq. (8) can be inverted to find the corre-

sponding Rabi frequency matrix Ωi,n. In order to simplify the problem, each beat note

frequency can be tuned near a unique normal mode so that the response function Fi,j,n
has influence over all spins and modes. If we neglect the effect of each beatnode µn on

modes with n 6= m, Fi,j,n is separable in i and j and we can write Ji,j =
∑
nRi,nRj,n,

or in matrix form, J = RRT where the matrix Ri,n = Ωi,nηi,n
√

ωn

µ2
n−ω2

n
. This quadratic

equation can be inverted by diagonalizing the symmetric matrix J with some unitary

matrix U so that Jdiag = UJ, then we simply write R = U
√

Jdiag. As long as the

eigenvalues of J are not too large, the matrix elements Ri,n will be bounded. In practice
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FIG. 2: (a) Calculated Rabi frequency matrix Ωi,n to gener-
ate 2D square lattice shown in (b), using the linear chain of
N = 25 ions shown in (c). The ion index refers to the order
in the linear chain. The attained Ji,j nearest-neighbor is 27.6
Hz for fs = 0.1. (d) Calculated Rabi frequency matrix Ωi,n to
generate 2D Kagome lattice shown in (e) using a linear chain
of N = 36 ions. The attained Ji,j nearest-neighbor is 93.4 Hz
for fs = 0.03. In both cases the total optical intensity corre-
sponds to a Rabi frequency of 1 MHz if focused on a single
ion, the nearest-neighbor couplings are antiferromagnetic and
we impose periodic boundary conditions.

of the Raman beams. The first method (Fig. 3) splits a
single beam with a linear chain of N individual optical
modulators (e.g., acoustooptic or electrooptic devices),
driven by N independent arbitrary waveform generators.
The second method splits a single monochromatic beam
into aN×N square grid and directs them onto a 2D array
of N2 micromirrors [32] that are each individually phase
modulated at a single frequency (and phase) [33] and fi-
nally focused on the ion chain. The third method again
splits the beam into an N ×N grid of beams, this time
with the vertical direction split by a single acoustooptic
modulator, correlating beam position to frequency. This
beam is then directed into a spatial light modulator that
acts to mask (or phase shift) each of the N × N beams
independently, and again focused onto the ion chain. In
these implementations, it may be desirable to work with
a uniformly spaced array of ions in the linear trap, so
that the modulating elements are also uniformly spaced.
This can be accomplished by using a quartic or higher
order linear trap [34, 35].

As the number of spins N grows, the optical mod-
ulation scheme becomes more complex, with either N
or N2 elements required. We now estimate how the
Ising couplings are expected to scale with the number

f1

f2

f3 f4

f5
f6

f7

f8

FIG. 3: Schematic for individual spectral addressing a linear
chain of N ions. A laser beam is split into a linear array of
spots that each traverse N independent acousto- or electro-
optical modulators, driven by an N independent arbitrary
waveform generators (AWG). Alternatively, as discussed in
the text, the beam can be broken into an array of N2 beams
that strike a N×N array of micromirrors each independently
modulated, or a spatial light modulator.

of spins along with errors due to experimental fluctua-
tions, phonon creation and spontaneous emission scat-
tering, assuming a fixed transverse mode bandwidth.
The probability of phonon creation scales as pph =
∑
i,m

(
ηi,mΩi,m

ωm−µm

)2

. The off-resonant optical dipole forces

are accompanied by a finite rate of spontaneous emission
scattering, given by Γ = ε

∑
i,m |Ωi,m|, where ε� 1 is the

ratio of excited state linewidth to Raman detuning. The
scaling of these potential errors depends upon the par-
ticular graph, so we consider two extremes. A uniform
fully-connected interaction graph can be trivially gener-
ated with a single spectral component tuned close to the
COM mode with a detuning |ω1−µ|/ω1 � logN/N2. For
a fixed level of phonon error, the total optical intensity
should be reduced as logN/N , taking into account the
intensity reduction per ion as the beam is expanded to
accommodate the linearly expanding chain in space. In
this case the uniform Ising coupling is expected to scale
as N |Ji,j | ∝ logN/N2, and the spontaneous emission rate
per spin actually decreases with N . For a sparse interac-
tion graph, such as a 1D (nearest-neighbor) Ising model,
all modes are involved, and this time for a fixed phonon
error the total optical intensity can remain fixed, since
the typical mode splitting falls only as 1/N , while spon-
taneous emission per ion is fixed. The calculation in Fig.
4 shows that the resulting nearest-neighbor interaction
scales as Ji,i+1 ∝ 1/N . In either case of fully-connected
or local Ising model, we thus expect to be able to sup-
port significant Ising interaction strengths with up to a
few hundred spins.

For a general Ising graph, from Eq. 4 we find that
each pairwise interaction Ji,j depends upon a balance of
N terms, and errors will accumulate with N from fluctu-
ations of relative optical intensities of the various spectral
components of the beam (which should be stable if the
spectral components are generated with high quality ra-
diofrequency sources and modulators as shown in Fig.

Fig. 3. – (a) Calculated Rabi frequency matrix Ωi,n to generate the 2D square lattice shown
in (b), using a linear chain of N = 25 ions shown in (c). The ion index refers to the order
in the linear chain. (d) Calculated Rabi frequency matrix Ωi,n to generate the 2D Kagomé
lattice shown in (e) using a linear chain of N = 36 ions. In both cases the total optical power
corresponds to a Rabi frequency of 10 MHz if focused on a single ion, the nearest-neighbor
couplings are antiferromagnetic and we assume periodic boundary conditions over the unit cells
shown. The ion index refers to the order in the linear chain. (Reprinted from Ref. [29].)

we can impose an upper bound on the total optical power (proportional to
∑
i,n |Ωi,n|)

and implement numerical optimization techniques.

We now present two examples of solutions for Ωi,n that produce interesting interaction

graph topologies [29]. First we calculate a Rabi frequency matrix that results in a
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Fig. 4. – Adiabatic quantum simulation protocol in time (left to right). First, the spins are
initially prepared in the ground state of By

∑
i σ

i
y, then the Hamiltonian 6 is turned on with

starting field By(0)� |J | followed by an exponential ramping to the final value By, keeping the
Ising couplings Ji,j fixed. Finally the x− component of the spins is detected. (Reprinted from
Ref. [12].)

nearest-neighbor 2D square antiferromagnetic lattice with N = 25 ions (5× 5 grid with

periodic boundary conditions), shown in Figs. 3(a) and (b). Next we produce a 2D

Kagome lattice of antiferromagnetic interactions, a geometry that can support high levels

of geometrical frustration [30], shown in Figs. 3c-d. In both cases we assume that the

center-of-mass (COM) mode frequency is ω1/2π = 5 MHz, and the total optical power

corresponds to a Rabi frequency of 10 MHz if focused on a single ion. The beatnote

frequencies µm associated with mode m are each tuned blue of the mode m sideband

by 10% of the spacing ω1 − ω2 between the most closely-spaced modes (the COM and

“tilt” modes), which itself scales as (logN)/N2. In these examples, the sparse nearest-

neighbor nature of the interaction graphs requires that most of the Ising interactions

vanish, necessitating a high level of coherent control over all of the Ising couplings for

this destructive interference.

Adiabatic Evolution and Preparation of the Ground State

Our experiments begin with the ions polarized along an effective magnetic field By
transverse to long-range Ising couplings between the spins [9, 10]. The field is provided

by global Raman carrier transitions on all ions. Once in an eigenstate (e.g., the ground

state) of the transverse field, we experimentally ramp the field down, and given its final

value, we then turn off the interactions and directly measure the state of each spin with

a CCD camera, as depicted in the schematic of Fig. 4. If the field was ramped down

adiabatically, we expect the resulting spin order to reflect the properties of the more

interesting Ising couplings of the Hamiltonian.

Ferromagnetic order . – We realize effective ferromagnetic ground states by simply

initially preparing the highest excited state of the coupled spin system, essentially flip-
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ping the sign of the Hamiltonian. This is possible because there is little coupling to a

thermal bath, and the effective spin temperature is zero. For such effective ferromagnetic

couplings, we observe a clear phase transition from polarization along the transverse field

(paramagnetic state) to ferromagnetic order, and recognize a sharpening in the transition

point near the critical magnetic field as the number of spins is increased, as shown in

Fig. 5 [12].

One order parameter is the average absolute magnetization (per site) along the Ising

direction,

(9) mx =
1

N

N∑

s=0

|N − 2s|P (s),

where P (s) is the probability of having s spins along the Ising coupling direction. The

Ising Hamiltonian in Eq. (6) has a global time reversal symmetry of {σix → −σix, σiz →
−σiz, σiy → σiy} and this does not spontaneously break for a finite system, necessitating

the use of average absolute value of the magnetization per site along the Ising direction

as the relevant order parameter. For a large system, this parameter shows a second order

phase transition, or a discontinuity in its derivative with respect to By/|J |. On the other

hand, the fourth-order moment of the magnetization or Binder cumulant g [31, 32]

(10) g =

N∑
s=0

(N − 2s)4P (s)

(
N∑
s=0

(N − 2s)2P (s)

)2 ,

becomes a step function at the QPT and should therefore be more sensitive to the phase

transition. We illustrate this point by plotting the exact ground state order in the simple

case of uniform Ising couplings for a moderately large system (N = 100) in Fig. 5(a).

Here we scale the two order parameters to properly account for trivial finite size effects.

The scaled magnetization and Binder cumulant are denoted by m̄x and ḡ respectively.

In Fig 5(a) we also plot the exact ground-state order parameters for N = 2 and N = 9

spins. In Fig 5(b)-(d) we present data for these two order parameters as By/|J | is varied

in the adiabatic quantum simulation. Fig. 5(b) shows the scaled magnetization, m̄x for

N = 2 to N = 9 spins. The linear time scale indicates the exponential ramping profile

of the (logarithmic) By/|J | scale. Fig. 5(c) and (d) compare the two extreme system

sizes in the experiment, N = 2 and N = 9 and clearly shows the increased steepness for

larger system size. The scaled magnetization m̄x is suppressed by ∼ 25% in Figs. 5(b)

and (c), and the scaled Binder cumulant ḡ is suppressed by ∼ 10% in Fig. 5(d) from

unity at By/|J | = 0, predominantly due to decoherence from off-resonant spontaneous

emission and additional dephasing due to intensity fluctuations in Raman beams during

the simulation.

We compare the data shown in Fig. 5(c) and (d) to the theoretical evolution taking

into account experimental imperfections and errors discussed below, including sponta-
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neous emission to the spin states and to other states outside the target Hilbert space,

and additional decoherence. The evolution is calculated by averaging 10, 000 quantum

trajectories. This takes only one minute on a single computing node for N = 2 spins

and approximately 7 hours, on a single node, for N = 9 spins. Extrapolating from this

calculation suggests that averaging 10, 000 trajectories for N = 15 spins would require 24

hours on a 40 node cluster, indicating the inefficiency of classical computers to simulate

even a small quantum system.

Antiferromagnetic order . – For antiferromagnetic simulations, we prepare the ground

state of the transverse field and ramp the field down as before. However, in the antiferro-

magnetic case, the gaps are much smaller and the adiabaticity criterion is more stringent.

Moreover, we must extract information on the spin positions, since the ground states are

expected to exhibit staggered instead of uniform order. This information is provided by

imaging the spins with an intensified CCD camera and recording the full configuration

of all spins. Figure 6 shows the order seen following a ramp to zero field for N = 10

ions, where excited states are clearly created. Of the 210 = 1024 possible configurations,

the two degenerate alternating-order ground states are produced about 18% of the time,

with low-lying excitations also prevalent, as shown in the figure. Figure 7 shows similar

data for N = 14 ions, with the resulting ground state population reduced to about 3%

owing to the closing gap between ground and excited states. We also observe that as

the interaction range is increased, the creation of excited states is more likely, since the

increased level of frustration closes the gap even further and hinders adiabatic evolution.

The magnetic-field ramp is controlled with a simple radiofrequency modulation source,

and we can easily program any type of evolution in time. In addition to using standard

exponential and linear ramps, we have also calculated the optimum ramp shape that

maintains a constant adiabaticity parameter throughout the evolution, provided through

prior knowledge of the many-body energy spectrum [14].

We have performed quantum simulations with up to N = 18 trapped ion spins. This

system holds great promise for the quantum simluation of fully-connected spin chains

with 50−100 ions, where many aspects of the system such as dynamical processes become

intractable.

By adding an axial field to an antiferromagnetic Ising Hamiltonian, we expect there

to be many different orders to emerge as the axial field competes with the Ising couplings.

We have been able to directly observe the steps between these orders by lowering the

transverse field as before, but to a final state where only the Ising couplings and axial

field remain. For N spins, we expect to see [N/2] distinct phases in the ground state,

owing to the long-range nature of the Ising interaction. Moreover, as N grows to infinity,

the “Devil’s staircase” structure [33] in magnetization becomes a fractal that arises since

every rational filling factor (of which there are infinitely many) is a ground state [15].

Figure 8 shows the emergent ground state as the final axial field value is varied from low

to high fields, with N = 10 ions.
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By/|J|

By/|J|

By/|J|
By/|J|

Fig. 5. – Observation of phase transition from paramagnetic phase (By � |J |) to ferromagnetic
order (By � |J |) as transverse field is ramped down. (a) Theoretical values of order parameters
m̄x and ḡ are plotted vs By/|J | for N = 2 and N = 9 spins for ideal adiabatic time evolution.
The order parameters are calculated by directly diagonalizing the Hamiltonian of Eq. (6).
Order parameters are also calculated for a moderately large system (N = 100) with uniform
Ising couplings, to show the difference between the behaviors of m̄x and ḡ. The scaled Binder
cumulant ḡ approaches a step function near the transition point By/|J | = 1 unlike the scaled
magnetization m̄x, making it experimentally suitable to probe the transition point for relatively
small systems. (b) Scaled magnetization, m̄x vs By/|J | (and simulation time) is plotted for
N = 2 to N = 9 spins. As By/|J | is lowered, the spins undergo a crossover from a paramagnetic
to ferromagnetic phase. The crossover curves sharpen as the system size is increased from N = 2
to N = 9, prefacing a QPT in the limit of infinite system size. The oscillations in the data arise
due to imperfect initial state preparation and non-adiabaticity due to finite ramping time. The
(unphysical) 3D background is shown to guide eyes. (c) Magnetization data for N = 2 spins
(circles) is contrasted with N = 9 spins (diamonds) with representative detection error bars.
The data deviate from unity at By/|J | = 0 by ∼ 20%, predominantly due to decoherence
from spontaneous emission in Raman transitions and additional dephasing from Raman beam
intensity fluctuation, as discussed in the text. The theoretical time evolution curves (solid line
for N = 2 and dashed line for N = 9 spins) are calculated by averaging over 10,000 quantum
trajectories. (d) Scaled Binder cumulant (ḡ) data and time evolution theory curves are plotted
for N = 2 and N = 9 spins. At By/|J | = 0 the data deviate by ∼ 10% from unity, due to
decoherence as mentioned before. (Reprinted from Ref. [12].)
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(a) 

(d) (c) 

(b) 

Fig. 6. – Magnetic ordering of N = 10 trapped atomic ion spins with long range antiferromag-
netic Ising coupling, conveyed by the spatial images of the crystal having a length of 22µm. (a)
Reference images of all spins prepared in state |↑〉z (top) and |↓〉z (bottom). (b) Ground-state
staggered order of spins after adiabatically lowering the transverse magnetic field (measurements
in the σx basis). These two degenerate states are produced a total of ∼ 18% of the time. (c)
Lowest (coupled) excited states, showing domain walls in green near the center of the crystal
(measurements in the σx basis). Any of these four degenerate states are produced a total of
∼ 4% of the time. (d) Next lowest (coupled) excited states, showing domain walls in green
near the ends of the crystal (measurements in the σx basis), with these four degenerate states
produced a total of ∼ 2% of the time.

Quantum Dynamics and Quenches

As seen above, the adiabatic following of a many-body Hamiltonian requires a suf-

ficiently large energy gap between the target state and the others states in the many

body spectrum. For frustrated systems, this is generally a poor assumption and usually

results in exponentially long ramp times to ensure adiabaticity. Here we now purpose-

fully induce quantum dynamics in the system. The prediction of quantum dynamical

processes in a many-body quantum system with long-range interactions is often more

computationally difficult than the prediction of ground-state phases, and thus represents

a new frontier of quantum simulations. Below we describe one of the first many-body

quantum dynamical experiments, where a spin-spin interaction is suddenly switched on

(a “quantum quench”). We are interested in the propagation of quantum correlations as

they build up in space and time throughout the system.

For systems with only short-range interactions, Lieb and Robinson derived a constant-

velocity bound that limits correlations to within a linear effective light cone [34]. In cold

atomic systems such behavior was verified with quasiparticle short-range interactions

in optical lattices [35]. However, for long-range quantum interactions, the speed with

which correlations build up between distant particles is no longer guaranteed to obey the

Lieb-Robinson prediction. In the case of strongly long-range interactions, for instance,

the system behavior is highly non-local and can lead to effectively infinite propagation

velocities. Breakdown of the Lieb-Robinson bound means that comparatively little can

be predicted about the growth and propagation of correlations in long-range interacting

systems, though there have been several recent theoretical and numerical advances [36,
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Fig. 7. – Distribution of configurations of N = 14 trapped atomic ion spins in the σx basis with
long-range antiferromagnetic Ising couplings. The spins are initialized to be in the ground state
in a strong effective magnetic field, and the field is ramped down to zero as the spins arrange
according to the remaining Ising interactions. The top figures are images of the two expected
ground states under the Ising couplings (measurements in the σx basis). The plot below is the
measured probability of all 214 = 16, 384 configurations, ranked by their binary index. The two
ground states are most prevalent, with other states populated due to dynamics during the ramp.

37, 38, 39, 40, 41].

Here we report an experiment that directly measures the shape of the causal region

and the speed at which correlations propagate within interacting spin chains [42]. To

induce the spread of correlations, we perform a global quench by suddenly switching on

the spin-spin couplings across the entire chain and allowing the system to coherently

evolve. The dynamics following a global quench in a long-range interacting system can

be highly non-intuitive; one picture is that of entangled quasi-particles at each site which

propagate and interfere with one another, correlating distant parts of the system in a

complicated way. This process differs substantially from local quenches, where a single

site emits quasi-particles that travel ballistically [37, 43], resulting in a different causal

region and propagation speed than in a global quench (even for the same spin model).

A more detailed study of local quenches appears in Ref. [44].

In the experiments, we initialize a chain of 11 ions by optically pumping to the
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Fig. 8. – (a) Magnetization along the σx direction, in a chain of 10 ions for increasing axial field
strength. The red, blue, and black curves correspond to the theoretical magnetization, average
measured and simulated magnetization, and magnetization of the most probable state (respec-
tively) for increasing Bx. Gray bands show the measurement uncertainty of the phase transition
locations. (b) Linearly interpolated camera images of the ground-state spin configuration at
each magnetization (measurements in the σx basis). (Reprinted from Ref. [15].)

product state |↓↓↓ . . .〉z. At t = 0, we quench the system by suddenly applying the

Ising couplings at full strength, with the Ising couplings falling off with a particularly

chosen power-law exponent α. We then allow coherent evolution for various lengths of

time before measuring the spin state of each ion. The experiments at each time step are

repeated 4000 times to collect statistics. To observe the buildup of correlations, we use

the measured spin states to construct the connected correlation function Ci,j(t) defined
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as

(11) Ci,j(t) = 〈σzi (t)σzj (t)〉 − 〈σzi (t)〉〈σzj (t)〉,

between any pair of ions i and j at any time t. Since the system is initially in a product

state, Ci,j(0) = 0 everywhere. As the system evolves away from a product state, evaluat-

ing Eq. (11) at all points in space and time provides the shape of the light-cone boundary

and the correlation propagation velocity for our long-range spin models. We vary the in-

teraction range over the values of the power-law exponent α = {0.63, 0.83, 1.00, 1.19} for

these experiments, with the space-time correlations shown in Fig. 9. For values α < 1,

the system is strongly long-range, power law interactions are no longer reproducing, and

even the generalized Lieb-Robinson bound [38] breaks down.
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Fig. 9. – Spatial and time-dependent correlations (a), extracted light-cone boundary (b), and
correlation propagation velocity (c) following a global quench of a long-range Ising model with
α = 0.63. The curvature of the boundary shows an increasing propagation velocity (b), violating
the constant-velocity Lieb-Robinson prediction vLR (c). Solid lines give a power-law fit to the
data. Complementary plots are shown for α = 0.83 (d-f), α = 1.00 (g-i), and α = 1.19
(j-l). As the interaction range is made shorter, correlations do not propagate as far or as
quickly through the chain, and the Lieb-Robinson velocity is followed. (m,n) Nearest- and
10th-nearest neighbor correlations for our shortest- and longest-range interaction compared to
the exact solution (solid). The dashed blue curves show a generalized long-range bound for
commuting Hamiltonians [41] (Reprinted from Ref. [42].)

In the limit of large transverse magnetic field By � J , processes in the σxi σ
x
j coupling

which flip two spins (e.g. σ+
y σ

+
y ) are energetically forbidden, leaving only the energy

conserving flip-flop terms (σ+
y σ
−
y + σ−y σ

+
y ). At times t = 1/B, the dynamics of the

transverse field rephase and leave only a pure “XY” Hamiltonian

(12) HXY =
1

2

∑

i<j

Ji,j(σ
x
i σ

x
j + σzi σ

z
j ).
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In the limit By > |ηi,mΩi|, phonon contributions from the large transverse field can lead

to unwanted spin-motion entanglement at the end of an experiment. Therefore, this

method of generating an XY model requires the hierarchy J � B � ηΩ for all spins i

and modes m. For our typical trap parameters, J/2π ≈ 400 Hz, B/2π ≈ 4 kHz, and

|ηi,mΩ/2π| ≈ 20 kHz.

We repeat the quench experiments for an XY model Hamiltonian using the same set

of interaction ranges α, as shown in Fig. 10. Dynamical evolution and the spread of

correlations in long-range interacting XY models are much more complex than in the

Ising case since the Hamiltonian no longer commutes with itself. As a result, no exact

analytic solution exists for the XY model.

Compared with the correlations observed for the Ising Hamiltonian, correlations in

the XY model are much stronger at longer distances – particularly for short-range inter-

actions. The multi-hop processes which were disallowed in the commuting Ising Hamilto-

nian now play a critical role in connecting distant spins. These processes also explain our

observation of a steeper power-law scaling of the light-cone boundary in the XY model.

However, we note that without an exact solution, there is no a priori reason to assume

a power-law light-cone edge (used for the fits in Fig. 10), and deviations from power-law

behavior might reveal themselves for larger system sizes.

An important observation in Fig. 10(j)-(l) is that of faster-than-linear light-cone

growth for the relatively short-range interaction α = 1.19. Although faster-than-linear

growth is expected for α < 1 (see previous section) and forbidden for α > 2 [37, 41], no

theoretical description of the light-cone shape exists in the intermediate regime 1 < α < 2.

Our experimental observation has prompted us to numerically check the light-cone shape

for α = 1.19; we find that faster-than-linear scaling persists in systems of up to 22 spins

before our calculations break down. Whether such scaling continues beyond ∼ 30 spins

is a question that at present only quantum simulators can hope to answer.

Outlook

While useful quantum computation may be years or even decades away, a restricted

type of quantum computer with reduced connectivity will likely allow the simulation of

quantum models that cannot be solved using classical computational methods. Such a

quantum simulator will likely involve engineered interactions between qubits that may

have a high degree of symmetry or involve certain global interactions. Trapped atomic

ions are poised to become the platform for such demonstrations, with existing methods for

engineering many-body quantum interactions whose graph is engineered through the use

of external state-dependent dipole forces. Current experiments outlined in this lecture

represent the state-of-the-art in the quantum simulation of spin models such as the

transverse Ising and XY models, with up to ∼ 20 interacting spins stored in trapped

ions.

Soon, the trapped-ion platform may approach the level of 50− 100 interacting spins,

where certain many-body phenomena cannot be modelled using classical physics or con-

ventional computation. In this realm, it will become critical to verify and validate the
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Fig. 10. – Global quench of a long-range XY model for four interaction ranges. (a-l): Panel de-
scriptions match those in Fig. 9. In each case when compared with the Ising model, correlations
between distant sites in the XY model are stronger and build up more quickly. For the shortest-
range interaction ((j-l)), we observe a faster-than-linear growth of the light-cone boundary,
despite α > 1; no analytic theory predicts this effect. (m,n) Nearest- and 10th-nearest neigh-
bor correlations compared to a solution found by numerically evolving the Schrödinger equation
of an exact XY model with experimental spin-spin couplings. (Reprinted from Ref. [42].)

quantum simulator [5]. To this end, it may be useful to exploit some degree of re-

configurability of the spin system in order to test special (easy) cases of the target spin

model, and the versitility of the trapped-ion system may prove useful for such an indirect

verification of the simulator.

In the long run, scaling such ion trap systems to thousands or even larger numbers of

qubits, for applications beyond quantum simulation will likely require some type of mod-

ular architecture. This may be afforded through the shuttling of ions between modules

and through advanced trap structures [2] or the propagation of quantum information

beween modules through photonic channels [3]. This ambitious venture will combine

the current efforts in quantum simulation with many other techniques represented in

this volume, in order to fulfill the ultimate ion trap application of tomorrow: universal

quantum computation.
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