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Trapped atomic ion systems are currently the most advanced platform for

quantum information processing. Their long coherence times, pristine state ini-

tialization and detection, and precisely controllable and versatile interactions make

them excellent quantum systems for experiments in quantum computation and quan-

tum simulation. One of the more promising schemes for quantum computing consists

of performing single and multi-qubit quantum gates on qubits in a linear ion crystal.

Some of the key challenges of scaling such a system are the individual addressing of

arbitrary subsets of ions and controlling the growing complexity of motional mode

interactions as the number of qubits increases or when the gates are performed

faster. Traditional entangling quantum gates between ion qubits use laser pulses to

couple the qubit states to the collective motion of the crystal, thereby generating a

spin-spin interaction that can produce entanglement between selected qubits. The

intrinsic limitations on the performance of gates using this method can be allevi-



ated by applying optimally shaped pulses instead of pulses with constant amplitude.

This thesis explains the theory behind this pulse shaping scheme and how it is im-

plemented on a chain of 171Yb+ ions held in a linear radiofrequency ‘Paul’ trap.

Several experiments demonstrate the technique in chains of two, three, and five ions

using various types of pulse shapes. A tightly focused individual addressing beam

allows us to apply the entangling gates to a target pair of ions, and technical issues

related to such tight focusing are discussed. Other advantages to the pulse shaping

scheme include a robustness against detuning errors and the possibility of suppress-

ing undesirable coupling due to optical spillover on neighboring ions. Combined

with ion shuttling, we harness these features to perform sequential gates to different

qubit pairs in order to create genuine tripartite entangled states and demonstrate

the programmable quantum information processing capability of our system.
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Foreword

The work presented in this thesis encompasses only the last two years of my

graduate research at the University of Maryland. I joined the lab just as my advisor

moved his research group from the University of Michigan to join the Joint Quantum

Institute at Maryland. The first three years were devoted to building a cavity

QED experiment literally from the ground up. While I worked on the design and

machining of the novel ion trap and Fabry-Pérot optical cavity assembly, we were

also building shelves and setting up an entire table of lasers and optics from scratch.

There were many risks associated with combining a novel ion trap, the electrodes of

which could be moved independently in situ, with a high finesse optical cavity with

dielectric mirror coatings for both ultraviolet and infrared wavelengths. The dream

of distributed quantum networks of trapped ions, where material quantum memories

are connected by photonic links via heralded entanglement, is significantly hindered

by low photon collection efficiencies. Our goal was to couple a single ion to an optical

cavity mode in order to use the Purcell effect to extract fluorescence much more

efficiently than what is possible with free-space emission. Unfortunately, after years

of building the lab and bringing the project to fruition, the combination of several

independent problems put an end to the project. We were able to publish one paper

from the ion cavity research [1] before retiring it. The next year I worked on a project

more closely related to the work in this thesis: the realization of an entangling gate

on a chain of trapped ions using a new micro-fabricated surface “chip” trap designed

and constructed by the ion trapping group at Sandia National Laboratory. There

is much hope surrounding the continuing advance of professionally microfabricated
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ion traps that can be plugged into a vacuum chamber socket assembly much like a

classical computer processor can be plugged into a motherboard. We successfully

trapped 171Yb+ ions and were on the verge of performing Raman transitions using

a 355 nm pulsed laser, but fundamental design limitations prevented us from going

further due to unavoidable charging from the Raman beams. So, we switched to an

old cadmium ion chamber designed for the first experiments shuttling ions around

a junction in 2006. The chamber was retrofitted with Yb ovens in 2009, but sat on

the shelf until November 2011 when we installed it on the table. By January 2012

we were loading 171Yb+ ions and beginning to align Raman beams. A few months

later we were performing entangling gates using the pulse shaping technique that is

the foundation of this thesis. Our progress from this point was fairly rapid, given

the complexity of the hardware and software development that the experiments

detailed in the following pages demanded. The next iteration of the experiment

coming online soon promises an exciting future for the lab.
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Chapter 1: Introduction

A century ago when George Mallory was asked why he climbed Mount Ever-

est, he tersely replied, “Because it’s there” [2]. Sometimes people are driven to

accomplish great things because there are compelling rational motivations. Some-

times they pursue lofty goals simply because they can, with the hope that they will

learn things along the way that justify their endeavors. Nowhere is this facet of the

human spirit more exemplified than in quantum information science. It is an ex-

citing nexus between the tangible march of technological progress and the esoteric

mysteries of our reality’s fundamental nature. The development of quantum me-

chanics revealed a remarkably different and in some ways unsettling description of

some basic concepts of nature. At the core of the theory is the idea of superposition.

In common experience at our macroscopic scale of existence, things can only be in

one mutually exclusive state at a time. A ball can be both round and red, but it

cannot be both round and cubic, just as it cannot be simultaneously here and there.

A quantum system, however, can be in multiple states simultaneously, with a very

precise probability associated with each of those possibilities. On first conception

this seems trivial, because a coin flipping in the air has a 50% chance of landing on

either side. This coin is not in a superposition, though, and the distinction is any-
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thing but trivial. Although we might not practically know which side the coin will

land on, the coin knows which side it will land on; in other words, given the mea-

surable quantities about the coin like its moment of inertia, rotation rate, velocity,

and so on, the way the coin will land is already determined by nature in accordance

with the laws of classical mechanics. When a quantum system is in a superposition

state, nothing can know which of the possibilities will manifest, including the system

itself, until an interaction (like a measurement) forces it to choose. This is the gen-

esis of Schrödinger’s absurd thought experiment about the cat in a superposition

of being both alive and dead [3, 4]. Aside from the bizarre nature of the idea of

superposition per se, the absurdity of Schrödinger’s famous feline derives from the

fact that superpositions on the magnitude of a cat have never been observed and

are astronomically unlikely, but not theoretically impossible. Understanding why

this is true leads directly to the quest of engineering such an unnatural system, a

task overwhelmingly more challenging than scaling the Earth’s tallest mountain yet

in many ways driven by the same attitude.

Modern atomic physics research is an expensive game, and there are precious

few resources allocated for so-called “pure” research, no matter how noble the pur-

suit may be. Fortunately for the “because it’s there” crowd, new insights into

nature often lead to new inventions when clever people are involved. The techno-

logical proposals of some very clever scientists over the years effectively launched

the field of quantum information science. These technologies promise revolutionary

and powerful capabilities for computation and communication, providing the moti-

vation for governments and industry to fund the research toward their realization.
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In 1981, Richard Feynman proposed that the best way to explore interesting quan-

tum systems in order to understand them might be to model and simulate them

with separate, controllable quantum systems [5]. After all, we have great success

using classical systems to simulate other classical systems, whether we mean con-

structing a physical model of an airplane and placing it in a wind tunnel or instead

writing sophisticated software to simulate the mechanics of the airplane according

to known material properties and theoretical models. Why would Feynman suggest

engineering complicated quantum systems to model other quantum systems instead

of utilizing and improving the far more advanced technology of classical computers?

To answer this question, we need to elaborate on the concept of superposition and

introduce a critical consequence of the idea: entanglement.

Consider the classical binary digit (bit) of modern computers. These are the

basic elements of information in the machine, which can be in one of two possible

states that we will call 0 and 1. The analogous quantum bit (qubit) is a quantum

system that can be in a superposition of the two states |0〉 and |1〉, so two numbers

are required to specify its state. For two qubits, four numbers are required, because

the state is some superposition of |00〉, |01〉, |10〉 and |11〉. For three qubits, eight

numbers are needed. The number of values needed to specify the state of N qubits

therefore scales exponentially as 2N . This is bad news for a classical computer based

on classical bits, because even a simple quantum system of 30 qubits would require

over a billion numbers, or ∼10 MiB, just to specify the state! A moderate increase

to 100 qubits requires a ludicrous ∼1000 YiB (yobibytes), which is already more

storage than is available in all the hard disks in the world. If you only triple the

3



number of qubits to 300, you need more numbers to specify the state than there

are estimated particles in the universe. This is why Feynman’s proposal is really a

necessity for the research of increasingly complex many-body quantum systems that

involve strongly correlated particles.

The potential power of this exponential increase in the state space of quantum

systems became even more exciting when in 1985 David Deutsch introduced a way

to use entanglement in such systems to allow parallel processing of all 2N superposi-

tion states to compute a function exponentially faster than a classical computer [6].

By 1994, Peter Shor had developed an algorithm based on this idea that could factor

numbers faster than the fastest known classical algorithm [7]. This got the attention

of security experts worldwide, because the asymmetric difficulty of factoring large

numbers versus multiplying large numbers is the foundation of modern encryption

techniques. Industry standard encryption protocols like RSA rely on the fact that

it is easy to multiply two very large secret numbers together, but the resources it

takes to determine what those secret factors are based solely on their product scale

exponentially with the size of the factors. Given that there is already a vast amount

of data encrypted in this way, anyone that possesses a quantum computer capable

of running Shor’s algorithm alone would have immense power. Other notable algo-

rithms are the Deutsch-Jozsa algorithm [8] and Grover’s search algorithm [9], both

of which have been demonstrated with trapped ions [10, 11]. Another important

theoretical contribution came from Shor [12] and Steane [13] concerning error cor-

rection. Due to the nature of wave function collapse, some worried that anything

other than passive stabilization techniques would destroy the delicate states required
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of a quantum computer and therefore be infeasible. This challenge can be overcome

by using sufficient numbers of extra qubits and error-correcting codes that tolerate

specified amounts of inaccuracy and decoherence in the quantum gate operations.

Entanglement is a special and profound type of superposition in which multiple

states are correlated in a way that is simply not possible classically. An entangled

state involving quantifiable aspects of what we consider “one thing” does not seem

exceptionally interesting. For instance, if a quantum ball is in an equal superposi-

tion of being red here and blue there, then it means that half the time we will find

it here and it will be red and vice versa. Although the state of being in two places

at the same time is not exactly easy to accept, the situation gets much more confus-

ing when the entangled states are those of entities we typically consider “separate

things”. In the experiments described in this thesis, for example, the two states

are the electronic configurations of two separate ytterbium atoms. Each atom can

exist in a superposition of two possible configurations, |0〉 and |1〉 (making them

qubits). We apply interactions that transform the state of the two atoms from |00〉

to |00〉 + |11〉. A consequence of being in this entangled state is that, regardless of

how far apart in spacetime these atoms are separated, their measured states will

always be perfectly correlated as either both 0 or both 1. Einstein called this seem-

ing paradox “spooky action at a distance” because it appeared that somehow the

qubits would have to coordinate by superluminal communication. Some wanted to

believe that the members of an entangled state contained some kind of shared hidden

information local to each that would predetermine which state they would choose

upon measurement. This rather conspiratorial but understandable idea was laid to
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rest by John Bell and other experimentalists that followed him, who pulled what

was thought to be metaphysics firmly into the clutches of science with a theorem

claiming that no local hidden variable theory is compatible with quantum mechan-

ics [14–17]. Although the philosophical consequences of this fact are as intriguing as

they are difficult to grasp, for the purposes of the work presented here, entanglement

can be considered a tool to be harnessed for the practical development of a quantum

information processor.

David DiVincenzo wrote a concise set of necessary criteria for any quantum

system striving to be a platform for quantum computing [18]. In abbreviated form,

they are

• A scalable physical system with well characterized qubits

• The ability to initialize the qubits to a particular simple state like |0000 . . . 〉

• Coherence times much longer than the time scale of the quantum operations

• A “universal set” of quantum gates

• Individual qubit rotation and measurement

A diverse and vibrant field of quantum information systems have blossomed

since these requirements were articulated. There are cold atomic systems like

trapped ions and neutral atoms in optical lattices, photonic systems, and a wide

range of solid state systems including superconductors, quantum dots, and nitrogen-

vacancy centers in diamond [19]. While typically discussed as “competing systems”,
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given the relatively primitive state of the art, the physics learned and the technol-

ogy developed by exploring each of these disparate systems inevitably benefits the

others. Still, the platforms are by no means equal in proven capability and feasible

scalability. In the context of DiVencenzo’s criteria and comparative metrics, trapped

ions are currently the most advanced quantum information processing (QIP) plat-

form, with the 171Yb+ ion specifically boasting several advantages. Individual qubits

can be arbitrarily rotated with exquisite precision, and they can be initialized and

detected with very high fidelity [20]. The extreme isolation of the qubits in ultra-

high vacuum environments and the insensitivity of the states to field noise grants

them extremely long coherence times (∼1 sec) many orders of magnitude longer

than the typical gate times (∼10-100 µs).

The thrust of the work presented in this thesis addresses the issue of scalability

with respect to the universal set of quantum gates [21] on linear ion crystals. Since

arbitrary single qubit gates as well as arbitrary two-qubit entangling gates can be

performed on qubits in a chain of trapped ions, it should be possible to execute an

arbitrary quantum algorithm with the system, limited only by the number of qubits

available. Thus, trapped ion chain QIP has demonstrated virtually all of DiVen-

cenzo’s criteria. Now the task is to ensure the system is scalable to large numbers of

qubits. A promising architecture for truly scalable QIP involves coupling relatively

small local qubit registers with photonic interconnects [22] to form a distributed

quantum network. This network would be capable of constructing arbitrarily large

entangled states across potentially long distances using quantum repeaters based on

heralded entanglement. In this grand vision, quantum gates are performed locally
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on the qubit registers that will range in size from 10-100 qubits. Some of the key

challenges of scaling our system this way are the individual addressing of arbitrary

subsets of ions and controlling the growing complexity of motional mode interactions

as the number of qubits increases. Traditional entangling quantum gates between

ion qubits use laser pulses to couple the qubit states to the collective motion of the

crystal, thereby generating a spin-spin interaction that can produce entanglement

between selected qubits. The inherent limitations on the performance of gates us-

ing this method can be alleviated by applying optimally shaped pulses instead of

pulses with constant amplitude. The experiments described in this thesis are the

first demonstration of this pulse shaping technique, and they represent a significant

advancement toward a scalable trapped ion quantum information processor.

The structure of the text consists of sections that generally build on concepts

and information from previous sections, with a didactic tendency aimed at benefiting

new members of the research group. Its goal is to both complement and supple-

ment the other excellent theses from previous graduates of the group. Chapter 2

details the experimental apparatus of the experiments, including the ion trap, the

optical systems and the relevant Yb atom properties. Chapter 3 explains how we

perform single and multi-qubit gates by deriving the relevant interactions as clearly

as possible. Chapter 4 introduces the theory of the pulse shaping scheme and our

experimental demonstrations of it on qubits in chains of various length. Chapter 5

describes the extension of the technique to improving the fidelity of gate sequences,

where we demonstrate tripartite entanglement using shuttling and individual qubit

addressing. Chapter 6 describes some interesting possibilities for the next iteration
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of the experiment, which promises to significantly improve the system’s capabilities.
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Chapter 2: Experimental system

The system required to perform these experiments involves many components

covering a wide range of hardware and software. This chapter describes these com-

ponents and what role they play in performing the experimental sequences and

acquiring the data. The structure of this description will be driven by the physical

requirements of the experiment itself, which should provide an intuitive and logi-

cal way to connect the tangible realities of the laboratory with the more complete

description of the physics in subsequent chapters.

2.1 171Yb+ qubit

From the requirements for quantum computation listed in the introduction,

it is clear that the fundamental element in the system is the qubit. The choice of

which physical system will be used to manifest the qubit is a complex one, with

many competing systems. Our qubit is represented by two hyperfine levels in the

ground state of an atomic 171Yb+ ion. The qubit states |0〉 and |1〉 are defined as

the atomic levels 2S1/2|F = 0,mF = 0〉 and 2S1/2|F = 1,mF = 0〉 as illustrated in

Figure 2.1. There are several reasons for choosing these states. One basic feature

is that the spontaneous decay rate from these levels is virtually zero since the |0〉
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Figure 2.1: 171Yb+ energy levels

state is the ground state and the only decay channel is magnetic dipole radiation

from the |1〉 state. In addition to long qubit state lifetimes, in order to be a useful

quantum memory a qubit must also maintain the relative coherent phase between

these populations. Because the qubit states are separated by a finite energy differ-

ence ∆E, this phase accrues relative to the lab frame at a rate equal to the inverse

of the energy gap:

|ψ〉 = A|0〉+Bei(φ0+∆Et/~)|1〉 (2.1)

where A and B are real numbers and φ0 is the initial qubit phase. In our case the

frequency splitting νqubit = ∆E/h = 12.642821 GHz. Stable microwave synthesiz-

ers ∗ that maintain phase coherence over time scales long compared to the coherent

∗Agilent HP 8672
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quantum operations are thus a necessity, and since multiple synthesizers are in-

volved in the experiment they must be synchronized by a single, pristine frequency

standard ∗. In general, qubit states defined by atomic levels suffer from dephasing

due to fluctuations in their splitting, often driven by uncontrolled magnetic fields.

The mF = 0 levels are the least sensitive to these fluctuations, where the change

in magnetic field induces only a second-order shift νqubit + δ, where δ = (310.8)B2

is in Hz and B is the magnetic field in gauss [23]. The consequently long qubit

coherence time of these 171Yb+ levels is largely why they are a competitive atomic

clock system and hence are typically referred to as “clock” states [23,24].

To be useful, the 171Yb+ qubits must be tightly confined at one position,

and they must be extremely well isolated from their surroundings. This harsh

imprisonment is accomplished using an ultra-high vacuum (UHV) system and an rf

“Paul” trap [25,26].

2.2 Vacuum system

Achieving the necessary UHV level is not a trivial endeavor. At 10−11 torr,

this is roughly equivalent to the pressure on the dark side of the moon [27]. Before

describing the methods used to reach such low pressures, the vacuum requirement

needs some justification. Under normal atmospheric conditions, the collision rate

between free neutral particles in the air and trapped ions is simply too high. The

task is to calculate how low the pressure needs to be in order to push the collision

rate below an acceptable level. We can determine an order of magnitude estimate by

∗Stanford Research Systems FS725 Rubidium Frequency Standard
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assuming that the ion and a neutral particle form a two-body system that undergo

a Langevin collision [28]. With the ion fixed at the origin, the Lagrangian of this

simple system is given in radial coordinates by

L =
1

2
µ
(
ṙ2 + r2θ̇2

)
− U(r) (2.2)

where µ ≡ m1m2

m1+m2
is the reduced mass and the interaction energy U(r) = − PQ2

8πε0r4
,

where Q is the electric charge and P is the neutral particle polarizability. Since L is

cyclic in θ, d
dt

(
dL
dθ̇

)
= d

dt

(
µr2θ̇2

)
= 0 means that l ≡ µr2θ̇2 is the constant angular

momentum. The other Lagrange equation,

dL

dr
− d

dt

(
dL

dṙ

)
= 0 (2.3)

yields the equation of motion

− dU

dr
+ µrθ̇2 + µr̈ = 0 (2.4)

Substituting l into the middle term and integrating over r transforms the equation

to

µr̈ = − d

dr

(
U(r) +

l2

2µr2

)
≡ − d

dr
Ueff (2.5)

This effective radial potential Ueff provides a criterion for collision; namely, the

maximum of the curve defines an impact parameter b that we can use to determine

a collisional cross section σ ≡ πb2. Setting the derivative of Ueff to zero and
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solving for b yields the relationship b4 = 4
µv2

(
PQ2

8πε0

)
, where we take l = mvb to

be the magnitude of the angular momentum of the incident neutral at speed v.

The collision rate can be estimated by multiplying the Langevin collision constant

k ≡ σv = πb2v by the particle density n = P
kBT

:

γ = nk =
PQ

kBT

√
Pπ
2µε0

(2.6)

Using the predominant background gas H2, where mass mH2 ∼ 10−27 kg and polar-

izability PH2 ∼ 10−32 m3, the collision rate is on the order of once per hour if the

pressure is ∼10−11 torr.

The vacuum system design is driven by the need to reach UHV and to provide

the necessary optical access for the experiment. Figure 2.2 depicts the components.

The stainless steel vacuum hardware is connected by ConFlat flanges using OFHC

copper gaskets. These components are typically cleaned with acetone then methanol

and baked separately before chamber assembly. The bakeable valve connects the

external pumps used in the initial stages of pumping and during the chamber bake.

This process involves several steps. The entire assembled chamber is placed in an

oven with the viewports covered tightly in metal foil to facilitate thermal equili-

bration in order to avoid cracking them. A high capacity ion pump and a turbo

pump are connected to the bakeable valve by a long bellows that passes through

the oven wall. The external turbo pump brings the pressure down to ∼10−7 torr at

room temperature. At this point, the titanium sublimation pump, the ion gauge,

and the atomic ovens are degassed. Degassing involves passing current through the
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pump

Figure 2.2: Drawing of the vacuum chamber.
The Ti:sublimation pump and bakeable valve are used during the initial pumping
process. The ion pump and ion gauge operate continuously to maintain and monitor
UHV.

elements to heat them enough to eject adsorbed material. The baking process is

performed next to vaporize the water in the system and enhance the evacuation

of contained gases. The temperature is increased slowly (∼0.2◦C/min, to maintain

thermal equilibrium throughout the chamber) up to ∼160◦C. Care must be taken

to check the maximum temperature rating for all system materials. For example,

UHV-compatible adhesives, feedthrough materials, capacitors and other circuit ele-

ments often have relatively low temperature limits. The chamber is maintained at

high temperature usually for a few weeks, during which time the turbo pump can

be valved off and the large external ion pump engaged. The internal ion pump is

also engaged during this phase. When the chamber has maintained a steady drop in

pressure and has reached ∼10−9 torr, the bakeable valve is closed (hand-tight) and
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the temperature is slowly decreased back to room temperature. A torque wrench

is used to ensure a proper seal of the bakeable valve. The titanium sublimation

pump can then be used to plaster residual gases to the walls to push below the

∼10−10 torr range. Our chamber also includes small non-evaporable getter (NEG)

pumping material positioned near the ion trap. The NEG materials we use are in

the form of small pellets as well as malleable strips that passively pump mostly by

adsorption. These pieces are activated during the bake, meaning that the high tem-

perature drives an absorption of previously pumped material deeper into the bulk

to make room for more particles on the surface, maximizing the pumping speed.

The pumping rate is actually comparable to the effective pumping rate of the ion

pump given the limited vacuum conductance between the main trapping zone and

the ion pump.

2.3 Ion trap

2.3.1 Photoionization

Once a suitable vacuum environment is created, the next task is to produce

171Yb+ qubits and localize them for use. We use a two-photon photoionization pro-

cedure to strip an electron from a neutral 171Yb atom, allowing it to see the trapping

potential and be captured. The description of this process will lead naturally to an

introduction to the laser systems and the ion trap itself.

Tiny shards of ytterbium are packed into a ceramic tube, which is resistively

heated by flowing current (1.4 A) through a tungsten coil wrapped around it. The
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single open end of the tube is aimed to ensure high atomic flux through the trapping

zone. In this region two UV beams intersect. The first is a resonant beam at 399nm

to excite population of the neutral atoms on the 1S0 ↔ 1P1 transition. Population in

the 1P1 state can be excited to the continuum by photons of wavelength shorter than

394 nm. Since we already have 369 nm light available for Doppler cooling, optical

pumping and state preparation (see Section 2.4), we use this color to complete the

ionization process.

2.3.2 Ion trap concepts

The newly ionized atom, or ion, is now strongly influenced by electrical forces.

It is not obvious how to trap a charged particle using electric fields alone. One

might imagine constructing a “box” of opposing fields by surrounding the ion with

electrodes, all at positive voltages to push the ion toward the center. Unfortunately,

this construction is incompatible with Maxwell’s equation ∇ · ~E = 0, which says

the divergence of the electric field must vanish at all points in space in the absence

of charge. Essentially, any set of electric fields converging on a point in space will

ultimately find a way to “squeeze out”, taking the ion with them. This fact is

called Earnshaw’s theorem [29]. The trick is to use dynamic fields [26]. To see how

this might work, imagine that we apply a sinusoidal voltage to two symmetrically

positioned electrodes. At the point precisely between these electrodes, the fields

cancel out and an ion feels no force. If the ion moves radially outward, it begins to

feel an increasing instantaneous force as the field magnitude increases. During the
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first half of the oscillation period, the ion might be pushed away from the center

of the trap. It will travel a certain distance outward before the field switches sign

and pushes it back closer to the center than it started. This restoring effect is

a consequence of the field inhomogeneity and is what gives rise to the so-called

ponderomotive force that creates the confining pseudopotential in our trap. An

important consequence of this kind of motion is that it is characterized by fast

oscillations on top of slower drifts. The rapid motion is termed “micromotion” while

the slower motion is referred to as the secular motion. Using this simple picture it

is also easy to conceptualize the stability parameters of such a trap. Clearly, if the

frequency of the oscillating field is too low, the ion will be ejected from the trap

before the field can turn around to push it back. If it is too high, the field will switch

back and forth so quickly that the ion will not have a chance to react, rendering the

field useless. The range of frequencies producing a stable trap therefore depends on

a ratio involving the force (ion charge and applied voltage), the resistance to that

force (mass of the ion), and the level of field inhomogeneity (characteristic distance

from the trap center to the electrodes).

2.3.3 Linear trap

While it is possible to confine an ion with only two electrodes as in the simple

picture above, the resulting pseudopotential has a quadrupole character with only

a single point in space where there is zero field. To hold a chain of ions, however,

we need a linear region in space where all the ions can rest at points of zero field.
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Figure 2.3: Drawing of the linear ion trap electrodes.

Traps of this geometry are appropriately called linear traps [30], and ours [31] is

illustrated in Figure 2.3. The trap has a three layered geometry. The middle layer

holds the radio frequency (rf) electrodes. By extending the rf electrodes along the

axial direction as depicted, there are negligible axial components to the rf field

lines near the center of the trap structure, and so the symmetry yields an “rf null

line” along the axis. The transverse position of this rf null line is determined by

the relative strength of the opposing rf voltages; thus, for equal voltages along the

extent, the resulting null line is very linear and geometrically centered between the

electrodes. The outer two layers of the trap are comprised of many independent

electrodes that apply static (dc) voltages. The most important function of these

dc electrodes is to provide the axial confinement of the ion chain by setting the

voltages on the end electrodes higher than the voltages on the middle electrodes.

Increasing this disparity strengthens the confinement and squeezes the ions together.
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Recalling Earnshaw’s theorem, the cost of increasing these voltages is a weakening

of the transverse confinement resulting from the dc field lines “squeezing out” in

that direction. The dc electrodes provide more than just axial confinement; they

also allow trimming stray fields for micromotion minimization and rotating the

principal axes of the trap. To understand these functions and how they are realized

experimentally, a more detailed analysis of the trap potential is needed.

2.3.4 Trapping theory

An equation for a simple static quadrupole potential has the form

V (x, y, z) = αx2 + βy2 + γz2 (2.7)

For Laplace’s equation to hold, ∇2V ≡
(

∂2

∂X2 + ∂2

∂Y 2 + ∂2

∂Z2

)
V = 0, which means

α + β + γ = 0 and hence the curvature of at least one direction of the potential

must be negative. The mechanical analogy often used to visualize how dynamic

fields can solve the anti-trapping component of this potential is a spinning saddle.

If you try to hold a marble on top of a saddle, it will simply roll off one of the

downward slopes. However, if you spin the saddle, then the upward slopes will

continually meet the marble to push it back toward the center before it has time

to roll off. The marble will remain on the saddle if it spins at the proper speed.

While not a perfect analogy, the imagery is tangible and instructive. Returning to

our linear trap, Eqn. 2.7 loosely describes the static part of the trap potential if we

take the z component to be the axial confinement, where the magnitude of α and
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β are relatively small. Throughout this thesis, the z direction will be defined as the

ion chain axial direction, y is the vertical direction connecting the two rf electrodes,

and the x direction is perpendicular to the three electrode planes. The xz plane is

thus horizontal and parallel to our optical table. To confine the ion in the transverse

xy direction, we apply an inhomogeneous oscillating field as described above. For

simplicity, assume this field is radially symmetric, which is approximately true, so

that the problem becomes one-dimensional. The force an ion of mass m will feel is

mr̈ = Fr(t) = eE(r) cos Ωt (2.8)

where Ω is the applied rf frequency and E(r) is the field magnitude at position r. If

the field is homogeneous, then E(r) = E is a constant and simple integration yields

the equation of motion

r(t)− r0 = − eE

mΩ2
cos Ωt (2.9)

assuming the ion was initially at rest at position r0. As expected, there is no

confining potential here, only simple driven motion at the rf drive frequency. Now

introduce a small inhomogeneity to the field, where the first derivative must be

included in the calculation using a Taylor expansion:

E(r) ≈ E(r0) +
∂E(r0)

∂r
(r − r0). (2.10)
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Here, the derivative is evaluated at the position r0. Substituting Eqn. 2.9 into Eqn.

2.10 and considering only small deviations from r0, the resulting form for E(r),

E(r) = E(r0)− ∂E(r0)

∂r

(
eE(r0)

mΩ2
cos Ωt

)
, (2.11)

can be used to evaluate the time-averaged force on the ion:

〈Fr(t)〉t =

〈
e

(
E(r0)− ∂E(r0)

∂r

eE(r0)

mΩ2
cos Ωt

)
cos Ωt

〉
t

=
e2

2mΩ2

∂E(r0)

∂r
E(r0)

= −e ∂
∂r

( e

4mΩ2
E2(r0)

)
(2.12)

The time-averaged force thus defines a pseudopotential

Ψrf ≡
e

4mΩ2
E2(r0) (2.13)

via 〈Fr(t)〉t = −e∇Ψrf , where Ψrf is in volts. The more rigorous derivation of

the equations of motion involves properly specifying the overall electric potential

as a superposition of both dc and rf voltages and casting Eqn. 2.8 in the form

of Mathieu’s equations, which have well-studied solutions. From an experimental

perspective, the most important results of the full analysis are the following:

• The motion of the ions can be approximately decoupled into three independent

spatial modes, i, each with an associated harmonic frequency ωi.

• There is a well-defined stability region parameterized by controlled quantities
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as discussed conceptually earlier. These transverse direction stability param-

eters are given by qr and ar,

qr = − 4eκV0

mΩ2d2
r

ar = − 8eκU0

mΩ2d2
r

(2.14)

where V0 and U0 are the rf and dc voltage amplitudes on the rf electrodes

for a trap with characteristic ion–electrode distance dr. The parameter κ

is a voltage efficiency factor that characterizes the deviation from the ideal

hyperbolic electrode geometry due to the particular electrode structure of the

actual ion trap.

• The harmonic secular motion is perturbed by an intrinsic micromotion as

evident in the lowest order approximation

ri(t) = r
(0)
i cosωit

[
1− qi

2
cos Ωt

]
(2.15)

where qi is the stability parameter for the direction i. The presence of a stray

static field Ei along direction i contributes an offset to the ion position as well

as a driven motion called “excess micromotion” at the rf drive frequency that

cannot be laser cooled. The ion position becomes

ri(t) = r
(0)
i cosωit

[
1− qi

2
cos Ωt

]
+

eEi
mω2

i

+

√
2eEi

mω2
i Ω

cos Ωt (2.16)
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The suppression of these terms is discussed in Sec. 2.3.9.

2.3.5 Trap simulation

In practice, we design the trap parameters according to the experimental re-

quirements by first modeling and numerically simulating the trapping potential using

Charged Particle Optics (CPO), a software package which uses a boundary element

method to solve Maxwell’s equations in a volume of space. After accurately modeling

the electrode geometry in a CAD application like AutoDesk Inventor, we convert the

model files to the CPO electrode specification format using a conversion tool. The

conversion process discretizes the geometry into triangular elements that CPO views

as the “electrodes”. Each of these triangles is specified with a number of subdivisions

depending on how precise the simulation needs to be. The most straightforward ap-

proach is to convert each physical electrode as a separate CPO file, alter the relevant

parameters like the “electrode label”, and then manually combine the files into a

single CPO file of the entire trap geometry. The next task is to apply 1 V to a

single electrode with the rest at ground and run the simulation to calculate a grid

of electric potential values as a function of position in space. This discrete matrix

is finally interpolated to create a “basis function” for that electrode. Performing

this process for each independent electrode accumulates a complete set of simulated

basis functions. By the superposition principle for electric fields, an arbitrary static

trap potential can be simulated by simply multiplying the applied voltage on each

electrode by its basis function and summing over all electrodes. The complete trap-
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ping potential, of course, includes the pseudopotential. The pseudopotential basis

function is calculated in a similar fashion, but in this case both rf electrodes are set

to 1 V and the simulated value is the square of the electric field magnitude. The

pseudopotential is then directly calculated according to Eqn. 2.13 and added to the

static potential to yield the complete trapping potential. Once the trapping poten-

tial simulation is complete, we can calculate all the relevant trap characteristics to

ensure that the trap design is adequate.

2.3.6 Helical resonator

At this point we have to consider the available applied voltage ranges in order

to determine the limits on the secular frequencies, rotation of principal axes, and

trap depth. At room temperature, particles have on the order of 25 meV of energy,

so trap depths on the order of 10 eV are desirable to ensure long trap lifetimes.

These depths typically require rf voltages on the order of 200 V at frequencies

around 30 MHz. Generating these high voltages at rf frequencies is not a trivial

task. To accomplish this, we design and manually assemble a helical resonator to

amplify the input rf voltage and deliver the filtered signal to the trap electrodes. The

helical resonator is a compacted form of a traditional quarter-wave coaxial resonator,

consisting of a grounded conducting tube surrounding an inner conducting coil that

is grounded to the tube on one end. A conceptual sketch of the geometry is shown

in Figure 2.3.6. Power from the amplified output of an rf frequency generator ∗ is

delivered via inductive coupling; that is, alternating current driven in a small loop

∗FPGA controlled Direct Digital Synthesizer (DDS) output
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Figure 2.4: Sketch of the helical resonator geometry.
The endcaps and rf coupling coil are not shown.
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generates a magnetic field that in turn drives alternating current in the resonator

coil. The geometry of the resonator is carefully designed [32, 33] such that the

electromagnetic energy in the resonator builds up at the resonant frequency, ν0,

causing an amplification of the voltage on the end of the coil connected to the trap

rf electrodes. The resonator is characterized by a quality factor Q that quantifies

how well it filters out unwanted frequencies and how efficiently it amplifies the

input voltage. This quality factor Q = ν0/∆ν, where ∆ν is the frequency range

between the -3 dB cutoff frequencies. Hence, the resonator also serves as an excellent

bandpass filter. The Q value used in practice refers to the quality factor of the

“loaded”, critically coupled resonator. Because in practice we do not measure the Q

using a ring-down method, but instead measure the reflected rf power as a function

of input frequency, the resonator is always loaded by the source. The unloaded Q

is twice the value of the measured Q, assuming the resonator is critically coupled.

The amplification is related to the input power P by

Vrf = ξ
√
PQZ0 (2.17)

where ξ is a factor (usually of order unity) specific to the individual resonator and

Z0 =
√

µ0
ε0
≈ 377 ohms is the impedance of free space. Part of ξ comes solely from

the geometry of the can. For example, in the case of the ideal, analytically solvable

straight coaxial quarter wave resonator, ξ is equal to 2
π

√
ln (b/a), where b/a is the

ratio of the outer to inner conductor radii [34]. Normal b/a ratios lie between 10 and

40, corresponding to 1.0 < ξ < 1.2. Actual values of ξ are slightly different due to
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the coiled nature of the helical geometry in addition to the fact that the impedance

is modified by the true permittivity ε and permeability µ that characterize the

resistance of the medium to electric and magnetic fields. Realistic imperfections and

additions to the resonator cavity, such as oxidation on the copper or Teflon mounting

pieces used to mechanically stabilize the conducting coil, introduce a “loss tangent”.

The loss tangent is a way to characterize the amount of electromagnetic energy lost

to dissipation in the medium. This loss is quantified by the imaginary part of the

permittivity/permeability, such that the ratio of the imaginary to real components

is geometrically a tangent in the complex plane. For a typical Q of around 200, we

require close to 1 W of rf power to apply 300 V to the trap electrodes.

The relationship between the input rf power and the secular frequencies, here-

after simply called the “trap frequencies”, can be determined experimentally with

the help of the numerical trap simulation. For a three-layer linear trap, the trap

frequencies are related to voltages on the electrodes in a more complicated way

than the hyperbolic idealization. Simplified yet useful expressions for the linear

trap secular frequencies are given by [35]

ω2
z =

2eU0ε

mz2
0

(2.18)

ω2
x,y =

(
κ0eV0√
2mΩr2

0

)2

± κ1eUrf
mr2

1

− eU0ε

mz2
0

(2.19)

where Urf is the dc voltage on the rf electrodes. This is the voltage that breaks the

symmetry to allow for control of the principal axes, which are explained in the next

section. In the four-rod linear trap on which these equations are based, κ0 = κ1 and
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r0 = r1 because the middle dc control geometry is the rf electrode geometry. In our

three-layer trap, this control is enabled by separate dc electrodes sandwiching the rf

electrodes instead of from dc bias on the rf electrodes (Fig. 2.3). Consequently, the

voltage efficiency factor κ1 and distance r1 are different. Regardless of the actual

values of these dc terms, the quadrature sum of the trap frequencies provides an

expression proportional only to the effective rf voltage (κ0V0)2:

ω2
x + ω2

y + ω2
z =

(
eκ0V0√
2mΩr2

0

)2

. (2.20)

Technically the precise distance r0 is also unknown, but can be consumed by a

related factor we will call κr ≡ κ0/r
2
0. Measuring the trap frequencies as a function

of known input rf power will therefore obey the equation

ω2
x + ω2

y + ω2
z =

(
eκrξ
√
PQZ0√

2mΩ

)2

(2.21)

The trap simulations in CPO can provide an estimate of κrV0 by adjusting the

“effective rf voltage” in the simulation until the measured frequencies are obtained.

If we define VCPO ≡ κrV0 and combine the CPO value with that obtained from

Eq. 2.21, we get

krξ =
VCPO√
PQZ0

(2.22)

Once measured, these parameters allow the estimation of what rf power should be

needed to achieve desired trap frequencies.
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2.3.7 Principal axes

The range of the expected trap frequencies ωi is calculated by fitting the

simulated potential near the rf null to a parabola and taking the quadratic coefficient.

The particular directions along which to make these fits are decided by the principal

axes of the trap. Essentially, these are the perpendicular directions along which the

potential has maximal and minimal curvatures. One of the three principal axes is

obvious; it is along the axial direction. The remaining two principal axes in the

transverse plane are not so obvious, but they can be ascertained using the Hessian

matrix [36],

H(φ(x0, y0)) =

 ∂2φ(x0,y0)
∂x2

∂2φ(x0,y0)
∂x∂y

∂2φ(x0,y0)
∂y∂x

∂2φ(x0,y0)
∂y2

 (2.23)

where φ(x, y) is the total transverse trapping potential. The eigenvalues of the Hes-

sian matrix determine the directions of greatest and least curvature about the point

(x0, y0), which is taken to be the trap center when finding the principal axes. Fig-

ure 2.3.7 shows a simulation of the transverse trapping potential with the calculated

principal axes. Two sets of principal axes are displayed, corresponding to points

separated by about 100 µm along the ion chain axis. This shows that in a realistic

geometry, there can be a “twisting” of the principal axes along the crystal that could

be a problem for very long chains. The orientation of principal axes is critical for

cooling the ion, as we will discuss shortly, as well as for alignment of beams that

coherently manipulate the qubits (see Section 2.5.3). Precise control of the principal

axes orientation is a necessity.
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Figure 2.5: CPO simulation of transverse potential with principal axes.
Contour plot of trap depth as a function of transverse position. The two sets of
calculated principal axes correspond to points separated by about 100 µm along

the ion chain axis. In practice, the axes are aligned to the x and y axes.

This brings us back to the functions of the dc electrodes. Apart from gener-

ating axial confinement for the trap, the dc electrodes are also used to rotate the

principal axes of the trap. Simulations provide a good estimate for how far they can

be rotated given the available static voltage range. The details of our dc voltage

source are elaborated in Section 5.1 about our shuttling procedure. Due to the three

layered geometry of our trap, we are able to deterministically rotate the principal

axes in the transverse plane using the outer layer electrodes alone [34]. For other

trap geometries, it might be necessary to independently bias the rf electrodes with

separate dc voltages in order to enable this control. A prominent example is the

“blade” trap design with only four blades [37, 38]. In order to apply independent

bias voltages to the rf electrodes, the helical resonator can must contain two coils
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in a “bifilar” arrangement, both of which terminate not on the grounded resonator

can itself but instead on SMA bulkheads for the dc voltage inputs.

2.3.8 Coupled dc control

It is apparent that there are multiple independent trap parameters that need

to be simultaneously controlled by the same set of dc electrodes. The efficient way

to accomplish this is by constructing a transformation matrix T that couples the

electrodes together in a practical way [39]:



e1

e2

e3

e4

...


= T ·



endcap average

central average

axes rotation

axial displacement

...


(2.24)

The natural way to construct this matrix is to build its inverse using linearly inde-

pendent combinations of electrode voltages. Figure 2.6 labels the front plane of dc

electrodes in blue and the back plane in red parentheses. In the following descrip-

tion, electrodes will be denoted by “eN”, where N is the labeled electrode number.

Four of the electrodes are electrically grounded and marked “G”. To control the

strength of the axial confinement, we need to control the average of the voltages

on the endcaps (e1 + e2 + e3 + e4) and the average of the voltages on the central

electrodes (e5 + e6 + e7 + e8). To control the principal axes rotation, we couple the
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Figure 2.6: Coupled DC voltage control.
Front plane (blue) and back plane (red, in parentheses) dc electrode labels.

central electrodes in a different way (e5− e6− e7 + e8). To push the ions along the

axial direction, the difference in the endcap averages suffices (e1 + e2− e3− e4). So

far the inverse transformation matrix, T−1, is

T−1 =



1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

0 0 0 0 1 −1 −1 1

1 1 −1 −1 0 0 0 0

...
...

...
...

...
...

...
...


(2.25)

The rest of the matrix is completed in a similar way, providing the necessary con-

trols to apply static offsets in all three directions to cancel stray fields, configure the

principal axes orientation, and set the axial trap frequency. In practice, the logi-

cal controls are adjusted via a National Instruments LabView interface, while the

transformation matrix is applied in real-time by the software to adjust the applied
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dc voltages (Sec. 5.1).

There is another important characteristic of our trap potential that deserves

explanation, and that is the criterion for linearity. The anisotropy A of our trap

potential is given by the ratio between the transverse and axial frequencies, A ≡

(ωr/ωz)
2. There is a relationship between this anisotropy and the maximum number

of ions, N , that can be trapped in a linear configuration before they buckle into a zig-

zag arrangement; it is given by
√
A > 0.77N/

√
logN , which is a good approximation

for N > 5 [13,40,41]. For a five ion chain, the criterion stipulates that A > 9, which

we clearly satisfy with an A ≈ 60. This imposes yet another constraint to consider

when we design our ion spacing and transverse motional mode splittings. These

issues will be discussed further in Section 3.2.1.

2.3.9 Micromotion compensation

Micromotion compensation is the procedure that detects excess micromotion

and minimizes it by compensating for a stray static field that is pushing the ions

away from the rf null. This static offset is the remaining function of the dc voltage

control, as there will always be an unintended finite stray electric field present in

an ion trap. In a well-designed trap, this stray field will remain relatively constant

so that it can be negated for long periods of time without adjusting the voltage set.

The reason it is so important to actually cancel this field, instead of just calibrating

for the resultant shift in the ion chain position, is that any position in space off the

rf null subjects the ion to “excess” micromotion. Recalling Eqn. 2.16, there is an
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intrinsic micromotion that is unavoidable. It can be minimized by engineering qr

within the bounds of the stability region and the desired trap frequencies, but it

will exist nonetheless. Fortunately, laser cooling reduces this intrinsic micromotion

amplitude because it is proportional to the secular motion. In contrast, excess

micromotion amplitude is proportional to the stray field amplitude and is driven by

the trap rf. This motion cannot be cooled directly and in some situations this can

be a significant source of motional mode heating [42].

In the reference frame of an ion subject to micromotion, the cooling beam

frequency is modulated at the driving rf frequency Ω, which causes a modulation of

the ion fluorescence according to Eqn. 2.28, where the shift k · v(t) is proportional

to Ω sin (Ωt) (suppressing the phase term) [42]. For half of the rf period, the ion

is moving toward the light and it is Doppler shifted blue; for the second half, the

opposite is true. Hence, the ion brightness is correlated with the rf phase. By

repeatedly measuring the time interval T between the beginning of an rf cycle and

the detection of a scattered photon using a time-to-digital converter (TDC), we

accumulate a histogram of counts as a function of T . Figure 2.7 shows an example

of two such histograms, acquired for an ion positioned on either side of the rf null.

The TDC start pulse is a phase-locked frequency reference TTL from the trap rf

source, and the stop pulse comes directly from the photo-multiplier tube (PMT)

when a photon is detected. The values of T that correspond to the turning points

of the micromotion will have the median number of counts because the beam is not

Doppler shifted and is thus detuned 10 MHz (that is, half width at half maximum

of the absorption profile where Doppler cooling is optimal; see Sec. 2.4.1). Likewise,
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Figure 2.7: Micromotion compensation.
Two histograms of TDC data are plotted for an ion displaced from the rf null in
opposite directions, yielding opposite phase relationships between the rf drive and
the ion motion. The start pulse is retriggered every four rf periods, every ∼4×30 ns.

the T associated with the rf phase at which the ion is moving towards the beam

will show the highest counts, and vice versa. In the limit of small micromotion, the

magnitude of the sinusoidal profile of this histogram is directly proportional to the

micromotion amplitude [42]. For convenience, we retrigger every four start pulses.

This acquires a histogram whose sinusoidal profile oscillates several times, making

the periodic signal easier to detect visually. The process of minimization involves

pushing the ion along orthogonal directions using the coupled electrode voltage

control illustrated by Eqn. 2.25 to find a position that minimizes the amplitude of

the histogram profile.

Three linearly independent beams are generally necessary to detect micromo-

tion in all three spatial directions. In practice, fewer beams can suffice based on the
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rf field line geometry. In a linear trap like ours, there is negligible rf field amplitude

in the axial direction because the field lines extend radially from the chain in the

transverse direction, so only two beams in the xy plane are needed. Optical access

through the trap restricts our cooling beam to instead lie almost parallel (∼5◦) to

the xz plane at approximately 45◦ to the x axis, giving us sensitivity to micromotion

along that axis but not along the vertical y direction. Our principal axes are rotated

such that the transverse modes of motion are virtually parallel to the x and y direc-

tions. Since we couple negligibly to the vertical modes during the entangling gates,

it is less critical to minimize micromotion along that dimension beyond the coarse

adjustment. The coarse adjustment is the process of positioning the ion based on its

image acquired by the intensified charge-coupled device (CCD) camera∗. We lower

the rf voltage (weakening the confinement), allowing any stray static field to push

the ion further away from the rf null. We adjust the dc voltages to compensate

until the ion position no longer changes as a function of confinement strength. This

method is coarse because it is limited by the resolution of the imaging system, typi-

cally limiting precision to ∼500 nm. After coarse positioning, the optimal x position

is discovered by moving the ion back and forth along that axis and measuring the rf

phase correlation histogram with the TDC. At the optimal position, the histogram

amplitude is minimal; additionally, the phase of the signal flips 180◦ because that is

precisely what the rf phase does at the rf null. To achieve the highest sensitivity, the

cooling beam is detuned 10 MHz with optical power below saturation to maximize

the modulation of the fluorescence for a given micromotion amplitude.

∗Princeton PI-MAX3
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Although high resolution TDCs can be purchased commercially, they are gen-

erally far more sophisticated and expensive than is necessary for this measurement.

Our rf drive frequency has a period of about 30 ns, necessitating a time interval

resolution of no more than a few nanoseconds to achieve a decent sinusoidal fit. We

constructed a TDC using an FPGA [43] over-clocked from its base clock frequency

of 50 MHz to an effective 200 MHz. A resolution on the order of 1 ns is achieved by

implementing dual counters. The coarse clock for the time intervals is implemented

by simply counting clock cycles (5 ns increments). The fine time measurement re-

quires the use of a “carry chain” to measure durations shorter than a clock cycle.

Essentially, a register of bits is initialized to the value 1, and when 1 is added to

this register at the beginning of a clock cycle, the bits flip to 0 sequentially as the

arithmetic is performed. The stop pulse terminates this sequence prematurely, such

that the number of bits flipped indicates the time elapsed. The unique details of

the physical FPGA circuitry cause the carry chain to progress non-uniformly. Since

this non-uniformity is constant, we can compensate for it in the software using a

calibration empirically determined by applying uncorrelated start and stop pulses

to the device. Deviations from zero in the resultant signal amplitude are suppressed

by appropriate weighting factors for the associated time interval values.

2.4 Qubit initialization and state detection

So far we have examined the vacuum environment, the trap potential and the

ion loading procedure. In all of the experiments, there is a sequence of optical pulses
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that initialize the qubits before the coherent operations, and there is an optical pulse

afterward to perform state detection.

2.4.1 Doppler cooling

The first step after loading the ions is to slow them down them using optical

Doppler cooling. The atomic flux from the heated oven has a thermal distribution of

velocities averaging hundreds of meters per second, corresponding to kinetic energies

on the order of the trap depth. At these initial energies, the ions execute large

orbits in the trap, where their collisions with one another make them susceptible to

rf heating. For the quantum gates to work properly, we need the ions to start near

their ground state of motion, where the quantized energy levels of the harmonic trap

have an average occupation number n̄ ∼ 0. At room temperature, n̄ ∼ 106, where

n̄ ∼ kBT/~ωi. Doppler cooling allows us to cool the ions from these high phonon

levels to n̄ ∼ 5, a value that depends on the trap frequency and the linewidth of the

optical transition. Conceptually, Doppler cooling works by preferentially imparting

momentum to the ion against its direction of motion, hence slowing it down. By

red detuning the incident Doppler cooling beam at wavelength λL from a resonant

atomic transition, the ion absorbs more photons when moving toward the light than

when it moves any other direction via the Doppler effect. Since the spontaneous

emission process causes isotropic radiation of photons, the average recoil due to

that process is zero, thereby reducing the ion momentum on average by h/λL per

scattering event and dissipating the kinetic energy in the form of slightly higher
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frequency light. An interesting feature of our trapping potentials is that a single

beam is sufficient to cool the ions, as long as there is a component of the beam wave

vector along each of the three principal axes corresponding to three non-degenerate

trap frequencies [44].

The strong 2S1/2 ↔ 2P1/2 transition at 369 nm in the 171Yb+ ion is the workhorse

of our incoherent qubit operations. Specifically, we tune the 369 nm “carrier” beam

to the 2S1/2|F = 1〉 ↔ 2P1/2|F = 0〉 transition (Fig. 2.8). It is the primary transi-

tion we use for Doppler cooling as well as optical pumping and state detection as

discussed below. Its linewidth, Γ/2π = 20 MHz, allows a Doppler cooling limit

of kBT = ~Γ/2 ∼ n̄i~ωi. For a trap frequency ωr/2π ≈ 3 MHz, we expect to

cool down to n̄ ∼ 4. To cool further, we must use Raman sideband cooling [45].

Optimal cooling occurs at a detuning where the slope of the absorption line shape

is maximal. This can be understood by considering the Doppler shift itself. The

slower the ion goes, the less the cooling beam frequency is shifted in its reference

frame. Since the cooling mechanism depends on the difference between scattering

rates at the shifted and unshifted frequencies, maximizing the line shape slope will

maximize this difference for a given velocity. This is consequently the reason that

the Doppler cooling limit can only be reached when the light intensity on the ion is

below saturation intensity, given by

Isat =
πhcΓ

3λ3Rbr

(2.26)

where Rbr = 99.5% is the branching ratio back to the 2S1/2 state. The linewidth
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Figure 2.8: 171Yb+ cooling, optical pumping, and detection transitions at 369 nm.
(a) Cooling. (b) Optical pumping. (c) Detection.

of an optical transition is power broadened according to Γ = Γ0

√
1 + I/Isat, where

Γ0 is the natural linewidth and I is the applied intensity. Lower intensities will

therefore produce linewidths approaching the natural linewidth, maximizing the

cooling rate [46].

Since the branching ratio above is not unity, the excited 2P1/2 state will decay

to the 2D3/2 state roughly once every 200 scattering events, where it will remain

for the 53 ms lifetime of that energy level. To prevent this population trapping,

we continuously apply a 935.2 nm repumper beam to the ions. This excites the

population to the 2[3/2]1/2 state [47], from which there is a 98.2% probability of

decay to the ground state within that state’s 38 ns lifetime. This method provides

a highly efficient way to return population back to the Doppler cooling transition.

The hyperfine structure of the 171Yb+ ion demands that both the 369 nm cool-

ing beam and the 935 nm repumper have polarization components along both the π̂

and σ̂ directions defined by our quantization axis to avoid optically pumping to the

2S1/2|F = 1,mF = ±1〉 Zeeman levels (see Figures 2.1 and 2.8(a)). Additionally,
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we must apply sidebands to both beams. We apply a 14.7 GHz sideband to the

369 nm beam using the second-order sideband from a 7 GHz resonant electro-optic

modulator (EOM) ∗ in order to excite population that decays to the |0〉 state via

the 2S1/2|F = 0〉 ↔ 2P1/2|F = 1〉 transition. The 3.1 GHz sidebands necessary for

the repumper are directly generated by a fiber-EOM †. The quantization axis is

determined by an applied magnetic field of 5.5 gauss in the vertical direction. We

use three linearly independent magnetic coils to control the magnitude and direc-

tion of the magnetic field at the trap. Direction control is important not only for

defining the polarization directions for Doppler cooling but also for the coherent

Raman transitions described in Section 2.5.3. The magnitude of the field is a com-

promise between the need to destabilize coherent dark states quickly by increasing

the Zeeman splitting [48] and the need to maximize the scattering rate by limiting

the detuning from the 2S1/2|F = 1,mF = ±1〉 Zeeman levels.

2.4.2 Qubit initialization

The Doppler cooling cycle of the experiments leaves the ion in a statistical

mixture of 2S1/2 ground states. To properly initialize the qubit to the pure |0〉 state,

we use an optical pumping procedure using optical fields almost identical to the

Doppler cooling beam (see Figure 2.8(b)). The only difference is that the applied

sideband is 2.1 GHz from the carrier to drive population from the 2S1/2|F = 1〉

manifold to the 2P1/2|F = 1〉 manifold. The high branching ratios from this state

∗New Focus 4851 resonant EOM
†EOSpace
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to the target 2S1/2|F = 0〉 state ensure that only a handful of scattering events are

required to transfer virtually 100% of the population to the |0〉 state. The efficiency

of initializing the 171Yb+ qubit is greatly enhanced by the fact that the optical

pumping frequencies are over 12 GHz off-resonant with the nearest transition from

the |0〉 state, because the 2S1/2|F = 0〉 ↔ 2P1/2|F = 0〉 transition is forbidden by

selection rules. We optically pump ∼99% of the population to |0〉 in less than 10 µs.

Once initialized to this pure state, coherent operations such as Raman sideband

cooling, single qubit rotations, and entangling gates can commence. These will be

described in the next chapter.

2.4.3 State detection

Qubit state detection is a critical step in every experiment. Regardless of

the coherent operation performed, we detect the qubit states the same way, using

fields similar to the cooling and optical pumping beams. Figure 2.8(c) shows the

frequencies involved. The detection beam has no sidebands and is resonant with the

2S1/2|F = 1〉 ↔ 2P1/2|F = 0〉 transition as in the Doppler cooling and optical pump-

ing cycles. Because selection rules prevent the excited state from decaying to the |0〉

state, if the qubit is in the |1〉 state, it will scatter many photons before eventually

leaking to the |0〉 state via off-resonant coupling to the 2P1/2|F = 1〉 manifold [49].

Conversely, if the qubit is in the |0〉 state, it will scatter no photons because the

nearest transition is over 14 GHz away. The relationship between the qubit state

and its brightness during detection inspires the terms “bright” and “dark” for the
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Figure 2.9: Theoretical state detection histogram.
The histogram plots detected photons over many experiments for the |0〉 state (red,
average = 0.01) and the |1〉 state (blue, average = 10).

|1〉 and |0〉 states. This stark contrast in fluorescence depending on the qubit state

allows high fidelity state detection for relatively short detection times. We collect

about 10 photons on average for a detection time of about 600 µs. During this

time, we apply the detection beam continuously while collecting the fluorescence

using a PMT. To a good approximation, the probability of a photon emission is

independent of when the previous photon was emitted, and so the distribution of

measured photons over many detection cycles obeys Poissonian statistics. Figure

2.9 shows a theoretical illustration of the histograms of detected photons over many

experiments for the two qubit states. The lack of significant overlap between the

distributions makes “single shot” state determination a relatively accurate method.

In a single experiment, the state of the qubit is measured to be bright if the number
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of photons is above an optimized discriminator value of one and dark if it is below

this threshold. Theoretically, the error in this method is below 2% using typical

collection efficiencies of 0.001 (1 out of 1000 photons) [49].

Errors in state detection and the associated detection fidelity are influenced

by a wide variety of factors. There are negligible errors associated with off-resonant

coupling to the 3[3/2]1/2|F = 1〉 manifold during the relatively infrequent depopu-

lation of the 2D3/2 levels by the 935 nm beam. The dominant error stems from the

off-resonant coupling to the 2P1/2|F = 1〉 manifold mentioned earlier, which “redis-

tributes” some bright state counts to the lower bins of the bright state histogram by

truncating the fluorescence of an initially bright ion [49,50]. This off-resonant pump-

ing is directly proportional to the saturation parameter s ≡ I/Isat and is minimized

by reducing the detection beam intensity.

In the experiments described in this thesis, the bright state histograms deviate

significantly from this theoretical ideal. Due to causes unknown, our bright state

appears to experience excess optical pumping to the dark state during the detection

cycle, even at low intensities. The bright state histogram displays a “shelf” of

counts in the first few bins much higher than theory predicts, decreasing our state

discrimination fidelity to ∼93%, where the optimal threshold value is two photons.

Fortunately, very few of our measurements require single shot detection. Most of the

data presented here determines state populations in the more classical sense of the

phrase, by fitting functions to the complete detection histogram. In other words, for

experiments where single shot detection is not required, it is more accurate to fit the

acquired histogram to basis functions experimentally measured after deliberate state
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preparation. For example, consider the case when light from two ions is collected

during detection. The two qubits can be in one of three possible states, |j〉, where

j = {0, 1, 2} denotes the number of qubits in the bright state. The measured

histogram will be composed of a linear superposition of these distinct distributions

Dj(n),

D(n) = P0D0(n) + P1D1(n) + P2D2(n) (2.27)

where D(n) is the fraction of M experiments where n photons are collected (hence,∑
nD(n) = M) and Pj is the fraction of population in the state |j〉. More specifi-

cally, P0 corresponds to ρ|00〉〈00|, P1 corresponds to ρ|01〉〈01| + ρ|10〉〈10|, and P2 corre-

sponds to ρ|11〉〈11|, where ρ|lm〉〈lm| are the diagonal elements of the two-qubit density

matrix. The basis states themselves are obtained by deliberately preparing each

|j〉 state using optical pumping and qubit rotations, typically using microwaves as

described in Section 3.1. Subsequent experimental populations Pj are then calcu-

lated by fitting the measured D(n) to the Dj(n) using standard numerical fitting

techniques.

The detector we use to count photons from the ions’ fluorescence is a 32-

channel PMT array ∗, combining the advantage of individual qubit state detection

with high quantum efficiency (>30%) and a low dark count rate (∼10 Hz). The

channels have 800 µm wide and 1000 µm tall active regions, partitioned by a

200 µm inactive area. We image the ions onto the channels as evenly as possible,

given that the ion spacing is not uniform. Since the optical spillover from one ion’s

∗Hammamatsu-7260-200
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fluorescence to adjacent channels is large, we magnify the ion chain to image the

ions onto every other channel to achieve an optical crosstalk of less than 2%. There

is a small ∼2% intrinsic crosstalk between adjacent channels, meaning that a photon

impinging on one channel can also register on the adjacent channel due solely to the

electronics, but this is negligible for non-adjacent channels. The PMT array raw

output is amplified and digitized for TTL output by a custom pre-amplifier board.

The TTL signals are ultimately relayed to the experimental control sequencer via

a field-programmable gate array (FPGA) that acts as a multiplexer, allowing our

experimental control software to combine arbitrary sets of channel data and send

the result to arbitrary output channels. This makes it easy in a programmatic way

to selectively measure, for example, the two-qubit populations |j〉 of different pairs

of ions in a chain.

2.5 Optical systems

This section details the generation and delivery of the laser beams described

above. For reference, the complete optical layout for the experiments is illustrated

in Figure 2.10

2.5.1 369 nm light

Our 369.5 nm (811.2888100 THz) light is generated by frequency doubling

the 739 nm output of a Toptica TA 100, an external cavity diode laser that uses a

tapered amplifier to output a total power of ∼250 mW. About 200 mW of this light
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Figure 2.10: Complete optical layout.
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pumps the doubler cavity in a Spectra-Physics WaveTrain frequency doubler. The

doubler outputs a clean Gaussian TEM00 collimated beam with 2 mW at 369 nm.

This output is distributed into three separate beams using polarizing beam cubes

and λ/2 waveplates. Refer to Figure 2.11 for the optics associated with the genera-

tion and delivery of the 369 nm light. The cooling and pumping beams pass through

their EOMs before the acousto-optic modulators (AOMs), which switch the beams

on and off throughout the experiment as well as provide frequency offsets between

the beams. The detection and pumping beam AOMs are driven at 300 MHz while

the cooling beam AOM is driven at 290 MHz ∗. The three beams are recombined

using two non-polarizing beam splitters. Although this method is power inefficient,

it allows for independent control of the beam polarizations. The colinear beams

are coupled into a fiber whose output coupler is mounted on a translation stage

aimed directly at the trap. The output divergence is shaped by a high numeri-

cal aperture MicroLaser fiber collimator and a cylindrical lens, creating a roughly

10 µm× 100 µm spot size at the ion crystal to apply uniform intensity across the

chain.

Both the frequency and the intensity of the 369 nm beam must be stabilized.

The 20 MHz linewidth is relatively narrow, and at the lower intensities used for

cooling and detection, the scattering rate γs will vary significantly if the laser fre-

quency drifts more than ∼1 MHz. According to the scattering rate equation for an

∗IntraAction ASM-3002B8
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Figure 2.11: 369 nm and 935 nm light generation and delivery.

50



ion moving at velocity v(t) in a wave with vector k,

γs =
s Γ/2

1 + s+
(

∆−k·v(t)
Γ/2

)2 , (2.28)

so a detuning ∆ = 5 MHz will decrease the ion brightness by over 10%. Likewise, a

10% fluctuation in the intensity will change the brightness ∼5%. The stabilization

of the frequency involves multiple locking mechanisms. For passive stability, we lock

the frequency of the 739 nm light to the length of a mechanically stable Fabry-Pérot

optical cavity using the Pound-Drever-Hall (PDH) technique [51]. The ∼50 µW for

the lock is picked off from the laser output through the first mirror at the output.

The ∼30 MHz sidebands on the 739 nm light are produced by directly modulating

the master diode current via a bias-T. The PDH error signal is split into high and

low frequency components using a low-pass filter. The high frequency signal is input

to a proportional-integral-derivative controller (PID) that controls the diode current

via a field-effect transistor. The low frequency component is input to a PID that

controls the master diode cavity grating angle via a piezo-electric transducer (PZT).

The PDH cavity body is machined Invar, a nickel-iron alloy notable for its uniquely

low coefficient of thermal expansion, typically ∼1 ppm/◦C. The resonance condition

for the cavity demands that its optical path length equal an integer multiple of half

wavelengths:

L = m λ/2 (2.29)

For λ = 739.05 nm and a PDH cavity length of 15 cm, m ' 41600. A 0.1◦C temper-
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ature drift will result in a length change of 15 cm×(1 ppm/◦C)×0.1◦C ' 1 nm. The

resonance wavelength is then shifted by 1 nm/41600, corresponding to a frequency

shift on the order of 100 MHz. Since the lab temperature can fluctuate by this

amount on the timescale of minutes, we require an additional lock to an absolute

frequency source. We use one of the myriad transitions in an iodine (I2) vapor for

this purpose. An iodine vapor cell is heated to over 500◦C in order to access a strong

transition that is 13.39 GHz blue of the 739 nm wavelength corresponding to the

2S1/2 ↔ 2P1/2 transition [52]. A portion of the 739 nm light is coupled through a

broadband fiber-EOM ∗, which we use to apply a 13.31 GHz sideband. This light is

then used for the Doppler-free absorption spectroscopy of the iodine lines. It is split

into counter-propagating pump and probe beams that overlap in the vapor cell. The

probe beam intensity is measured by a Nirvana auto-balanced photoreceiver that

suppresses common mode intensity fluctuations. To increase the signal to noise ratio

to an adequate level, we must use lock-in amplification to ultimately produce the

error signal. The probe beam is the first-order deflection of an 80 MHz AOM that is

amplitude modulated at 22 kHz. The lock-in amplifier then takes the photoreceiver

output and the 22 kHz frequency reference as inputs. Finally, the output of the

lock-in amplifier is input to a PID that controls the length of the PDH cavity via

its PZT voltage. When the iodine lock is engaged, the laser frequency is stable to

∼1 MHz over hours. It is more stable than the HighFinesse WSU wavemeter used

to measure all of our laser frequencies, which can drift tens of MHz over the course

of the day. Hence, we periodically calibrate the wavemeter to the locked 739 nm

∗EOSpace
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frequency. The iodine lock itself is very slow, on the order of 1 s due to the long inte-

gration time required for the lock-in amplifier, but the PDH lock has a much higher

bandwidth (> 1 kHz) for fast noise. Ultimately, our 369 nm frequency stays within

about ±500 kHz of resonance, which is sufficient to maintain a stable fluorescence

rate and consistent Doppler cooling.

The detection beam intensity must also be stabilized. We accomplish this using

a “noise eater” circuit [53]. The rf signal that drives the detection beam AOM passes

through a voltage-controlled attenuator (VCA). The detection beam leakage through

the non-polarizing beam splitter is measured using a photodiode that generates a

signal directly proportional to the detection beam intensity. This signal amplitude

is digitized and compared to a set point by an FPGA in the noise eater circuit. The

difference generates an error signal that is minimized by modulating the detection

beam AOM rf signal via the VCA voltage. The relatively long distance between the

detector and the optical fiber input coupler makes the output beam susceptible to

power fluctuations caused by air-driven beam steering and the sensitivity of fiber

mode matching. To mitigate this problem, we covered the detection beam as much

as possible along that path. Since the lock cannot feed back to suppress these fast

fluctuations, its primary purpose is to stabilize the intensity against slow power

drifts. Because the measured beam intensity is by necessity on the output side

of the AOM, the feedback must be activated only during the detection cycle of

the experiment when the detection beam is on. This toggle is controlled by the

experimental sequencer (see Section 2.6). During the majority of the time when the

beam is off, the noise eater circuit simply holds its current VCA voltage.
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2.5.2 935 nm light

The repumper at 935 nm is produced by a Toptica DL100 external cavity

diode laser very similar to the 739 nm laser, except there is no tapered amplifier

stage. The majority of the beam power is coupled into a fiber-EOM that produces

the 3.1 GHz sidebands. The output is overlapped with the photoionization beam

and ∼5 mW is delivered to the trapping zone. A small portion of the power before

the fiber-EOM is diverted to the wavemeter, which is used not only for frequency

monitoring but also for locking the laser. The abundance of power in the beam

broadens the transition linewidth so much that a more precise lock is unnecessary.

The wavemeter simply compares the measured value to a set point and a software

PID controls an analog voltage directly applied to the diffraction grating PZT of

the diode cavity. The feedback is very slow and the frequency typically fluctuates

±10 MHz, but this variation has no deleterious effects.

2.5.3 355 nm light

The quantum gates and coherent operations are driven by the beat note be-

tween one or two pairs of Raman beams. The details of the atom-light interaction

are explained in the next chapter, but this section will describe the optical character-

istics of the Raman beams and how we control the beat note to maintain coherence

with the qubit.

The Raman beams are generated from the output of a 355 nm Spectra-Physics

Vanguard mode-locked laser. The UV light is produced by a neodymium-doped
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vanadate crystal (Nd:YVO4) that combines 1064 nm pump light with its separately

doubled 532 nm light to yield a 355 nm beam by sum frequency mixing. The output

average beam power is nominally 4 W. The beam consists of a train of ∼12 ps wide

pulses at a repetition rate of 80.5978 MHz. Our interactions with the light are slow

enough that the spectrum of the light is a frequency comb, where the comb teeth

are separated by the repetition rate with linewidths inversely proportional to the

interaction time (that is, inversely proportional to the number of pulses observed).

The overall bandwidth of the frequency comb is proportional to the inverse of the

pulse width, providing us with enough bandwidth to span the qubit splitting.

There are several significant advantages to using this 355 nm light for stim-

ulated Raman transitions in our 171Yb+ qubit system. The first advantage is the

available optical power. These Vanguard laser systems are industrial devices used

in the manufacture of semiconductors, where the high instantaneous intensity is a

critical requirement. This renders the systems more affordable and well-engineered.

Additionally, the uniform comb spacing and the phase relationship between the

comb teeth allows beat notes between multiple combs to add coherently, effectively

doubling the power efficiency [54,55]. The higher optical power enables stronger cou-

pling strengths for faster gates. Another advantage specific to our Raman transitions

in 171Yb+ involves the suppression of errors associated with unwanted spontaneous

emission and differential AC Stark shifts. At 355 nm, the nearest atomic transition

from the ground state is to the 2P1/2 state 33 THz away. Since the off-resonant

spontaneous emission rate is proportional to the ratio of the Rabi frequency to the

detuning, the spontaneous emission rate can be suppressed by detuning as far as
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Figure 2.12: Raman beam geometry.
The two beams intersect at 90◦ to each other and 45◦ to the ion crystal axis, im-
parting momentum in the transverse direction. The polarizations are linear and
mutually orthogonal to each other and the magnetic field out of the page.

possible while increasing the power to maintain the desired Rabi rate Ω. At 33 THz,

the spontaneous scattering rate is negligible at ∼10−6 Ω. With increased power, an-

other concern is the differential AC Stark shift of the qubit levels [37] that can

in principle lead to decoherence as the laser power experiences small fluctuations.

Serendipitously, 355 nm is almost the ideal wavelength for minimizing the differen-

tial shift, which is only ∼10−4 Ω. The near cancellation is due to competing shifts

from contributions from both the 2P1/2 and 2P3/2 levels, since the first is red detuned

and the other is blue detuned from 355 nm.
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Figure 2.10 shows the optical layout of our 355 nm beams. The Vanguard

output passes through two inline AOMs to make more efficient use of the available

power. The first Raman beam (RA) is generated by the first negative order of an

80 MHz AOM (AOMA). The undeflected portion passes through the second AOM

(AOMG), driven at ∼250 MHz, whose first positive order is the second Raman

beam (RG). Figure 2.12 illustrates the beam geometry at the ions. The addressing

beam, RA, passes through an objective that focuses it tightly (∼3 µm waist) at

the ion chain. The global beam, RG, first travels through a delay stage before

intersecting RA at the ions. The global beam is focused by cylindrical lenses to

have a tight (10 µm waist) vertical focus and a wide (∼100 µm) horizontal waist

to illuminate all the ions as equally as possible. AOMG is driven by the arbitrary

waveform (AWG) generator described in the next section. AOMA is driven by an

HP8640 frequency generator and is responsible for maintaining the precise beat note

between the Raman beams necessary for coherent control of the qubits.

The delay stage is critical for temporal overlap of the pulses. Even though we

operate in the frequency comb regime where many pulses interact with the ions over

the duration of the gate, the stimulated Raman transition is a two-photon process.

Two beams must be coincident to provide the atom with a photon to absorb from

one optical field and then coherently emit into the other. At 12 ps wide, the pulses

are only 3 mm long in space, with pulses separated along the beam path by 3.7 m.

Therefore the Raman beam optical path lengths must be identical to within a few

centimeters so that the displacement of a delay stage is sufficient to overlap the

pulses. In practice this coarse alignment is performed by scattering the beams off
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Figure 2.13: Tuning the beat note between 355 nm frequency combs.
The AOM frequencies νA and νG are adjusted to bring the beat notes between pairs
of comb teeth into resonance ν0 with atomic transitions, which are within a range
±5 MHz of the qubit frequency. The comb teeth are separated by the pulsed laser
repetition rate νrep.

an electrode and using a high-resolution TDC to compare the pulse arrival times.

We precisely tune the Raman beat note by controlling the frequency of AOMG.

Given a repetition rate νr and AOM frequencies νA and νG, the condition for resonant

beat notes is given by ν0 = mνr − |νA − νG|, where ν0 is the qubit splitting and the

sign of νA,G denotes the positive or negative diffraction orders. Figure 2.13 illustrates

the beat note between the two frequency combs. For the entangling gate described

in the next chapter, AOMG is actually driven with two frequencies simultaneously,

red and blue of ν0, such that there are three frequency combs involved.

Since the qubit frequency spans 157 comb teeth at our repetition rate, a small

fluctuation in the Vanguard cavity length causes the frequency comb to expand like

an accordion, magnifying a small shift in νr. For example, a 1 µm change in the

laser cavity length (or a ∼10−7 change in the repetition rate) would shift the beat

note over 5 kHz, which is a non-negligible shift in the detuning of our gates. Instead
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of feeding back to an active element in the Vanguard, we lock the beat note using a

feed forward approach to continuously adjust the frequency of AOMA [56, 57]. We

pick off the excess 532 nm light from the laser and direct it to a high frequency

photodiode that picks up the ∼13 GHz comb line signal. This passes through a

bandpass filter and a few amplifiers before mixing with local oscillator signal from

a microwave synthesizer ∗. The local oscillator is phase coherent with the qubit

and is set to a frequency that makes the output of the mixer, νref , within the

bandwidth of AOMA. Using a simple phase locked loop circuit, the instantaneous

drive frequency νA is mixed with νref to generate an almost DC signal (removing

the sum frequency with an appropriate filter). This signal is the error signal fed

into a PID, the output of which is input to the frequency modulation control of

the analog rf generator driving AOMA. This technique allows AOMA to continually

compensate for repetition rate fluctuations that would otherwise detune the beat

note.

2.6 Experimental control system

The experimental control system consists of a general purpose computer run-

ning custom software and an FPGA operating as both a sequencer and a data

acquisition device. The control software is almost completely written in LabView,

which directly interfaces with the experimental apparatus via USB, GPIB, and RS-

232 protocols, depending on the device. Direct computer control is only possible

when the operations can be executed slower than several milliseconds due to the

∗HP8672A 2-18 GHz frequency synthesizer

59



typical latency of communication. The time scales of our actual experiments are

several orders of magnitude faster than can be controlled by the computer directly,

which is why we use an FPGA for the sequencer. The purpose of the sequencer is

to execute a sequence of events repeatedly with fine timing precision and to acquire

and relay the resultant data. Once we specify a particular experimental sequence,

including how many times it should repeat, it is uploaded to the sequencer and

triggered. The sequencer executes the sequence by controlling devices via precisely

timed output TTL pulses. Some of the TTL signals toggle rf switches while others

act as trigger pulses. To toggle the application of laser beams, the rf signals driving

the associated AOMs are switched on and off by TTL-controlled rf switches prior to

their respective amplifiers. These rf switches typically provide a signal attenuation

on the order of 60 dB. Our experiments also require the synchronized output of two

digital waveforms. The first waveform is generated by an AWG ∗. This waveform

drives the AOM of the global Raman beam and so controls the coherent evolution

of the quantum state. The second waveform is generated by a high speed digital-

to-analog converter (DAC) †. The DAC supplies the dc electrode voltages both in a

static configuration and when they are smoothly varied between multiple configura-

tions in order to shuttle the ions. The synchronization of the operations controlled

and triggered by the sequencer requires that the FPGA, AWG and DAC clocks are

stable to within 1 µs over the course of a single experiment, which lasts ∼10 ms.

∗Chase Scientific Company DA12000-12-4M-PCI Arbitrary Waveform Generator
†National Instruments PXI-6713
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Chapter 3: Quantum gates

A general quantum algorithm consists of both single qubit quantum gates and

multi-qubit quantum gates. This chapter describes the theory behind these two

types of gates and how we implement them in the lab.

3.1 Single qubit gates

Single qubit gates are often called qubit “rotations” due to the concept of the

Bloch sphere. This picture can be a useful way to visualize qubits, so it is worth

introducing. A classical bit can exist in either of two discrete states, 0 or 1, with

associated real-valued probabilities a and b, where a + b = 1. The density matrix

specifying the state of this bit is given by

ρ =

 a 0

0 b

 =

 a 0

0 (1− a)

 . (3.1)

Since b = 1−a must be true to conserve probability, a single real number is all that

is required to unambiguously specify the state. One can define an “angle” θ such

that a = cos2 θ (and therefore b = sin2 θ), where θ ranges from 0 to π/2. A quantum

bit, however, can exist in a superposition of the two states. If this state is known
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with certainty, it is in a pure state, which can be written

|ψ〉 = α|0〉+ β|1〉. (3.2)

Now, the values of α and β are complex, and can be written in the form α = Aeiφα

and β = Beiφβ . The conservation of probability demands 1 = |α|2 + |β|2 = A2 +B2.

Similar to the classical bit case, A = cos θ (and therefore B = sin θ). The phases

remain free parameters, but because an overall quantum state phase is not physically

observable, it suffices to define the relative phase φ ≡ φβ − φα such that the pure

qubit state can be written

|ψ〉 = cos (θ/2)|0〉+ eiφ sin (θ/2)|1〉. (3.3)

Hence, two parameters are necessary to fully specify the pure qubit state, and be-

cause the ranges of θ and φ are 0 to π and 0 to 2π, respectively, the qubit state can

be pictured as a point on a sphere of unit radius as illustrated by Fig. 3.1.

We use either optical fields or microwaves to implement qubit rotations in the

lab. The rotations driven by optical fields are discussed in Sec. 3.2.2, as they are

necessary for multi-qubit gates or when individual rotations of qubits in an ion chain

are needed. They are also more complicated physically, so here it is instructive to

explain how microwaves are used to manipulate the qubits without getting lost in

those details yet. The 171Yb+ qubit states act very much like an ideal two-level

system when driven by a monochromatic microwave field because there is very little
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Figure 3.1: Bloch sphere

coupling to the other energy levels, which allows a simple model Hamiltonian to

yield a useful evolution operator for our single qubit gates.

To derive the single qubit rotation operator, we start with the unperturbed

Hamiltonian of a single qubit,

Ĥ0 =
~ω0

2
σ̂z (3.4)

where σ̂z = |0〉〈0|+ |1〉〈1| is the Pauli-Z operator and ω0 is the qubit splitting. We

perturb the qubit by a microwave field B(t) of frequency ω,

B(t) =
1

2
~B0e

i(ωt+φ) +
1

2
~B0e
−i(ωt+φ) (3.5)

63



which contributes the Hamiltonian term

ĤI = −µ̂ ·B(t). (3.6)

The magnetic moment operator µ̂ can be written in terms of the atomic raising and

lowering operators using its matrix elements in the qubit state basis:

~µ ≡ 〈1|µ̂|0〉

µ̂ = ~µ|1〉〈0|+ ~µ∗|0〉〈1|

= ~µσ̂+ + ~µ∗σ̂−

The interaction Hamiltonian becomes

ĤI = −1

2
(~µσ+ + ~µ∗σ−) ·

(
~B0e

i(ωt+φ) + ~B0e
−i(ωt+φ)

)
= −~

2

(
Ωe−i(ωt+φ) + Ωei(ωt+φ)

)
σ+ −

~
2

(
Ω∗e−i(ωt+φ) + Ω∗ei(ωt+φ)

)
σ−

where Ω ≡ ~µ · ~B0/~. The general qubit state is given by

|Ψ(t)〉 = c0(t)|0〉+ c1(t)|1〉 (3.7)

and can be expressed in the basis of the unperturbed Hamiltonian’s eigenstates

according to

|Ψ〉 =
∑
n

cn|ψn〉 (3.8)
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Before solving the Schödinger equation to obtain the state evolution, it should be

cast into a more useful form:

i~
∂

∂t
|Ψ〉 = Ĥ|Ψ〉

i~
∂

∂t

∑
n

cn|ψn〉 = Ĥ
∑
n

cn|ψn〉

i~
∑
n

ċn|ψn〉 =
∑
n

cnĤ0|ψn〉+
∑
n

cnĤI |ψn〉

〈ψm|
(
i~
∑
n

ċn|ψn〉
)

= 〈ψm|
(∑

n

cnĤ0|ψn〉+
∑
n

cnĤI |ψn〉
)

i~ċm = cmEm +
∑
n

cn〈ψm|ĤI |ψn〉 (3.9)

This is a set of coupled differential equations whose solutions cn(t) describe the

quantum state for all time via Eqn (3.8). For the two-level qubit, the equations are

simply

i~ċ0 = c0E0 + c0〈0|ĤI |0〉+ c1〈0|ĤI |1〉

i~ċ1 = c1E1 + c0〈1|ĤI |0〉+ c1〈1|ĤI |1〉

Evaluating the matrix elements with E0 = 0 and E1 = ~ω0, they become

iċ0 = −c1
Ω∗

2

(
ei(ωt+φ) + e−i(ωt+φ)

)
iċ1 = c1ω0 − c0

Ω

2

(
ei(ωt+φ) + e−i(ωt+φ)

)

Transforming to the frame rotating at the qubit frequency ω0 by using the change
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of variables c̃0 = c0 and c̃1 = c1e
iω0t produces

i ˙̃c0 =
Ω∗

2
c̃1

(
ei((ω−ω0)t+φ) + e−i((ω+ω0)t+φ)

)
i ˙̃c1 = c̃1ω0 +

Ω

2
c̃0

(
ei((ω+ω0)t+φ) + e−i((ω−ω0)t+φ)

)

At this point, the rotating wave approximation can be taken by discarding the terms

that are oscillating rapidly relative to the other terms, since such terms will quickly

integrate to zero when solving the Schödinger equation. The terms to drop are

(ω + ω0) terms, since δ ≡ (ω − ω0)� (ω + ω0) [58]. The equations finally become

i ˙̃c0 =
Ω∗

2
c̃1e

i(δt+φ)

i ˙̃c1 =
Ω

2
c̃0e
−i(δt+φ)

The solutions for the state amplitudes exhibit so-called Rabi oscillation during the

application of a nearly resonant beam. The Rabi frequency Ω′ =
√

Ω2 + δ2 is a

function of field intensity and detuning, and the amplitude of the oscillation scales

as 1/Ω′.

To construct the single qubit gate operator R̂(θ, φ), we apply it to the two basis

states to calculate the operator’s two rows, using the state amplitude solutions. For

example, for the |0〉 state, the initial conditions c0(0) = 1, c1(t) = 0 yield

c0(t) =
iΩ

Ω′
ei(δt/2+φ) sin

(
Ω′t

2

)
c1(t) = e−iδt/2

[
cos

(
Ω′t

2

)
+
iδ

Ω′
sin

(
Ω′t

2

)]
.
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The operation R̂(θ, φ)|0〉 should result in Eqn. 3.3. Solving similarly for the row

associated with |1〉 completes the operator,

R̂(θ, φ) =

 eiδt/2
[
cos
(
θ
2

)
− iδ

Ω′
sin
(
θ
2

)]
iΩ∗

Ω′
e−i(δt/2+φ) sin

(
θ
2

)
iΩ
Ω′
ei(δt/2+φ) sin

(
θ
2

)
e−iδt/2

[
cos
(
θ
2

)
+ iδ

Ω′
sin
(
θ
2

)]
 (3.10)

where the rotation angle θ = Ω′t and the basis state vectors are defined as

|0〉 ≡

 1

0

 , |1〉 ≡

 0

1

 (3.11)

Applied pulses that rotate the qubit 180◦ (90◦) are called “π pulses” (“π/2 pulses”),

regardless of what phase rotation φ is induced. These basic pulses are used exten-

sively in the experiments described later, where the notation R̂(θ, φ) typically refers

to resonant or nearly resonant pulses (δ = 0).

As mentioned earlier in Sec. 2.1, the qubit phase rapidly advances with re-

spect to the lab frame (Eqn. 2.1). The coherent operations on the qubits rely on

the phase coherence between the qubits and the synthesizers generating the fields

that drive the their rotations. Additionally, the intrinsic qubit dephasing time must

be much longer than the coherent operation time. Experimentally, these coherences

are inextricable and are measured together by performing a simple Ramsey mea-

surement. To measure the coherence time when using microwaves to globally rotate

the qubits, we evolve the state of a qubit initialized to the |0〉 state as follows:

|ψ(t)〉 = R̂(π/2, 0)Î(t)R̂(π/2, 0)|0〉, where Î(t) is the identity operator applied for
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time t, meaning that the qubit freely evolves during that time. The microwave

source is an HP8672A microwave synthesizer in conjunction with a PTS-310 rf syn-

thesizer, which boosts the frequency resolution to ∼1 Hz. Both synthesizers are

phase locked to an SRS FS725 rubidium frequency standard. A +35 dB ampli-

fier increases the signal to ∼1 W, which passes through a circulator to a truncated

waveguide ending in a horn aimed at the ions. Because the horn output is not per-

fectly mode-matched to free space, the third port of the circulator terminates in a

5 W dump so that the reflected signal does not feed back to the amplifier. Plotting

the |1〉 state population P1 = |〈1|ψ(t)〉|2 as a function of the free evolution time t

produces exponentially decaying Ramsey fringes, whose period is equal to the the

inverse of the microwave detuning (∼40 Hz). The coherence time is quantified by

the decay constant extracted from a numerical fit to the Ramsey data, as illustrated

in Fig. 3.2.

3.2 Multi-qubit entangling gates

Quantum computation requires more than just single qubit gates. Quantum

gates that entangle multiple qubits are also necessary. Entangling gates on trapped

ions are much more complicated than simple qubit rotations for two related rea-

sons. Fundamentally, if qubits are to become usefully entangled, they must interact

in some precisely controlled way. By design 171Yb+ qubits are well isolated from

each other and their environment so that they can be pristine quantum memories.

Instead of coupling to each other directly, the qubits interact via a quantum bus.
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Figure 3.2: Coherence time measurement example.
Ramsey delay scan data. Nearly resonant microwave π/2 pulses are applied to a
qubit initialized to the |0〉 state. The delay between the pulses is scanned while
measuring the |1〉 state population. The numerical fit indicates a 250 ms coherence
time.

In analogy to a classical computer bus, which is a communication system between

connected components yet distinct from them, a linear chain of trapped ions uses

their quantized collective motion to deterministically couple the qubits. To explain

how this works, we must first understand how the ions participate in the normal

modes of motion of the crystal. Then the central concept of spin-dependent forces

will be introduced in order to describe the entangling interaction that actually con-

stitutes the multi-qubit gate. In the process we will derive the stimulated Raman

transitions that create the spin-dependent forces.
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3.2.1 Normal modes of motion

The stable configuration of a linear ion crystal and the modes in which the ions

vibrate are determined by the strong Coulomb repulsion between the ions balanced

against the confining external potential. The criterion for maintaining a linear

configuration for a given number of ions discussed in Sec. 2.3.8 is a clear example

of the interplay of these opposing forces. Assuming the trap frequency ratio is

sufficient to maintain a linear crystal, we can sketch a derivation of the normal

modes of motion using a Lagrangian formulation from first principles, following the

derivations in [59] and [60]. In contrast to previous related work, the gate pulse

shaping described in the next chapter deliberately couples the qubits to multiple

modes of motion, and so a relatively detailed description of the mode structure is

necessary.

Before the normal mode frequencies and amplitudes can be calculated, the

equilibrium positions of the ions must be determined. Consider a chain of N ions of

mass M and charge e confined by an axial trap characterized by frequency ω. The

total potential energy V of the system is the sum of this external trapping potential

and the Coulomb repulsion between each ion pair,

V =
N∑
m=1

1

2
Mω2zm(t)2 +

N∑
n,m=1
m6=n

e2

8πε0

1

|zn(t)− zm(t)| (3.12)

where zm(t) are the ion positions along the axial direction. When crystallized, the

ions vibrate about their equilibrium positions z
(0)
m by small displacements qm(t) such

70



that zm(t) ≈ z
(0)
m + qm(t). For clarity, let us dimensionalize the position coordinates

by a parameter l3 ≡ e2

4πε0Mω2 such that um ≡ z
(0)
m /l are the static equilibrium posi-

tions. These positions are where the forces balance, meaning that the derivative of

the potential is zero:

0 =
∂V

∂z

∣∣∣∣
z=z

(0)
m

(3.13)

This generates a set of N coupled equations for the values um,

um −
m−1∑
n=1

1

(um − un)2
+

N∑
n=m+1

1

(um − un)2
= 0, (3.14)

that can be solved numerically.

Now that we have the equilibrium positions, the next task is to find the nor-

mal mode frequencies and the associated vectors that describe how each individual

ion participates in the modes. To keep the math simple, we will consider only ax-

ial motion first. This is possible because only trivial modifications to the resulting

equations are needed to solve for the transverse modes that we use in the experi-

ments. Assuming that the displacements are small enough to neglect terms of order

q3
m and higher, the Lagrangian for the motion can be written as

L =
M

2

N∑
m=1

q̇2
m −

1

2

N∑
n,m=1

qnqm
∂2V

∂zn∂zm

∣∣∣∣
qm,qn=0

(3.15)

where the second derivative is evaluated at the equilibrium positions um and un.

The partial derivatives actually contain all the information we need for now. Solving
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them and defining a matrix Anm, where

Anm =


1 + 2

∑N
p=1
p 6=m

1
|um−up|3 if n = m

− 2
|um−un|3 if n 6= m

(3.16)

the Lagrangian can be rewritten as

L =
M

2

N∑
m=1

q̇2
m − ω2

N∑
n,m=1

Anmqnqm. (3.17)

Obtaining the Lagrangian that includes the transverse motion follows a similar

derivation, but the math is more complicated. Conveniently, the analogous matrix

Knm associated with the transverse modes turns out to have a simple relationship

with the axial matrix Anm given by

Knm =

(
A+

1

2

)
δnm −

1

2
Anm (3.18)

where Knm is defined similarly by the partial derivatives of the potential V along the

transverse directions and A quantifies the trap anisotropy as defined in Sec. 2.3.8.

The eigenvalues (ωt,k/ωz)
2 and eigenvectors bk,m of the equation

N∑
n=1

Kmnbk,n =

(
ωt,k
ωz

)2

bk,m (3.19)

provide the transverse normal mode frequencies ωt,k and coupling parameters, re-

spectively, where k = {1, 2, · · · , N} and ωt ≡ ωt,1. The axial normal mode frequen-
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Figure 3.3: Motional mode spectrum.
Axial (red) and transverse (blue) mode frequencies for a five ion chain.

cies ωz,k are related to the transverse mode frequencies in a very simply way as well,

given by

2
(
ω2
t − ω2

t,k

)
= ω2

z,k − ω2
z (3.20)

where ωz ≡ ωz,1. This relationship shows an interesting difference between the trans-

verse and axial modes, illustrated in Fig. 3.3, which is that the higher transverse

modes have lower frequencies than the center of mass (CM) mode. Intuitively this

makes sense because any relative ion motion transverse to the chain axis increases

the distance between them, reducing their potential energy. Conversely for relative

ion motion along the axis, there are always ions that are pushed closer together than

when they move in the CM mode, increasing their potential energy.
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The coupling parameters bk,m, given by the eigenvectors of Kmn, describe how

ion m couples to, or participates in, the kth mode of motion. Figure 3.4 illustrates

these parameters by plotting the values for each mode as a function of ion index

for a five ion chain. The sign of each amplitude denotes the relative velocity of

the ions as they vibrate about their equilibrium positions; hence, in the CM mode,

all ions oscillate with the same phase and amplitude about the rf null, whereas in

the tilt mode the end ions oscillate exactly out of phase while the center ion is

stationary. These differences are important for understanding the entangling gates

driven by segmented laser pulses in Ch. 4. Before that, however, we need to see

how spin-dependent forces are used to generate the entangling interaction between

the qubits.

3.2.2 Two qubit entangling interaction

The fundamental prerequisite for coupling an ion’s qubit state (or its “spin”)

to its motion is applying a force to the ion. In the derivation of the single qubit gate

operator in Sec. 3.1, the spatial part of the microwave field was ignored for didactic

reasons. On a practical level this was justified because the wavelength (2.37 cm)

is so much larger than the ion spacing (∼5 µm) that there is no significant phase

difference across the chain to consider. More importantly, as will become evident in

the following derivation, the momentum imparted by microwave photons is simply

too small to provide sufficient spin-motion coupling. Consequently we must use

optical fields to drive Raman transitions to apply enough force to drive motion
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Figure 3.4: Normal mode parameters for a five ion chain.
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while coherently manipulating the qubit states. The complete description of how we

generate this interaction is incredibly complicated, partly because we use coherently

contributing beat notes between frequency combs generated from the pulse train of

a mode-locked laser instead of simple continuous wave beams [38,54,55], and partly

because the real atomic levels involved are not just the three simplistic levels used

below. These and other details will be discussed later in the context of how they

impact the experiment. They are not, however, necessary for understanding the

physics of the entangling interaction or how shaping the gate pulses improves the

gates.

Here, we will consider a simple system of three atomic levels coupled by two

continuous wave laser fields

E(r, t) =
1∑
j=0

Ej
2

(
ei(kj ·r−ωjt−φj) + e−i(kj ·r−ωjt−φj)

)
ε̂j (3.21)

as illustrated in Fig. 3.5. The two beams have a beat note approximately equal

to the qubit frequency, ω0 − ω1 = ω01 + δ, which will couple the qubit states |0〉

and |1〉 . They are both detuned from an auxiliary excited state |2〉 by an amount

∆ ≡ ω02−ω0. For clarity, we will consider only a single ion and delay the introduction

of the motional part of the interaction by neglecting the spatial part of the optical

fields by dropping the k · r terms. Also temporarily neglecting the motion of the
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Figure 3.5: Atom-laser interaction model for Raman transitions.
An auxiliary third level |2〉 is virtually excited by two laser beams to coherently
drive population between the qubit states.

ion, the unperturbed Hamiltonian is simply

H0 = ω01|1〉〈1|+ ω02|2〉〈2| =


0 0 0

0 ω01 0

0 0 ω02


where for convenience we set ~ = 1 and |0〉 defines the zero energy point. Define

the dipole moment operator matrix elements µ20 ≡ 〈2|µ̂|0〉, µ21 ≡ 〈2|µ̂|1〉, so that

the dipole moment operator can be expressed as

µ̂ = µ20|2〉〈0|+ µ02|0〉〈2|+ µ21|2〉〈1|+ µ12|1〉〈2| =


0 0 µ02

0 0 µ12

µ20 µ21 0
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The interaction part of the Hamiltonian is given by

HI = −µ̂ · E =


0 0 µ02 · E

0 0 µ12 · E

µ20 · E µ21 · E 0


bringing the full spin part of the Hamiltonian to

H = H0 +HI =


0 0 µ02 · E

0 ω01 µ12 · E

µ20 · E µ21 · E ω02

 .

The Hamiltonian can be transformed to one in a rotating frame, HRF , via unitary

operator U according to

HRF = U †HU − iU † ∂
∂t
U.

If U is given by

U =


1 0 0

0 e−iω01t 0

0 0 e−iω0t

 ,
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U †HU =


1 0 0

0 eiω01t 0

0 0 eiω0t




0 0 µ02 · E

0 ω01 µ12 · E

µ20 · E µ21 · E ω02




1 0 0

0 e−iω01t 0

0 0 e−iω0t



=


0 0 e−iω0tµ02 · E

0 ω01 e−i(ω0−ω01)tµ12 · E

eiω0tµ20 · E ei(ω0−ω01)tµ21 · E ω02

 and

−iU † ∂
∂t
U =


0 0 0

0 ω01 0

0 0 ω0


so the Hamiltonian in the rotated frame is

HRF =


0 0 e−iω0tµ02 · E

0 ω01 e−i(ω0−ω01)tµ12 · E

eiω0tµ20 · E ei(ω0−ω01)tµ21 · E ω02

−


0 0 0

0 ω01 0

0 0 ω0



=


0 0 e−iω0tµ02 · E

0 0 e−i(ω0−ω01)tµ12 · E

eiω0tµ20 · E ei(ω0−ω01)tµ21 · E ω02 − ω0



Evaluate elements H
(0,2)
RF and H

(1,2)
RF ,

e−iω0tµ02 · E = g02,0

(
1 + e−i2ω0t

)
+ g02,1

(
ei(ω1−ω0)t + e−i(ω1+ω0)t

)
e−i(ω0−ω01)tµ12 · E = g12,0

(
eiω01t + e−i(2ω0−ω01)t

)
+ g12,1

(
ei((ω1−ω0)+ω01)t + e−i((ω1+ω0)−ω01)t

)
,
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where the coupling parameters gij,k will be explicitly defined after a few more steps.

Apply the rotating wave approximation by discarding terms oscillating at frequencies

ω0 + ω1 and 2ω0 so that HRF becomes HI , where

HI ≡


0 0 g02,0 + g02,1e

i(ω1−ω0)t

0 0 2g12,0e
iω01t + g12,1e

i(ω1−ω0+ω01)t

c.c. c.c. ∆

 .

Identify the detunings ω1 − ω0 = ω01 + δ so that HI becomes

HI =


0 0 g02,0 + g02,1e

iω01teiδt

0 0 g12,0e
iω01t + g12,1e

−iδt

c.c. c.c. ∆


= ∆|2〉〈2|+

[(
g02,0 + g02,1e

iω01teiδt
)
|0〉〈2|+ h.c.

]
+
[(
g12,0e

iω01t + g12,1e
−iδt) |1〉〈2|+ h.c.

]

The far-off-resonant couplings g02,1 and g12,0 can be discarded, allowing us to simplify

the notation by defining the remaining complex Rabi parameters:

g02,0 =
E0

2~
〈0|µ̂ · ~ε0|2〉e−iφ0 ≡ g0e

−iφ0

g12,1 =
E1

2~
〈1|µ̂ · ~ε1|2〉e−iφ1 ≡ g1e

−iφ1 .

If we transform to a frame rotating at the qubit frequency using |0〉 → |0〉, |1〉 → e2iδt|1〉,
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and |2〉 → eiδt|2〉 the interaction Hamiltonian becomes

HI = ∆|2〉〈2|+ g0

[
e−i(δt+φ0)|0〉〈2|+ h.c.

]
+ g1

[
e−iφ1|1〉〈2|+ h.c.

]

The auxiliary state |2〉 can be adiabatically eliminated in the limit where negligible

population accumulates there. The Schrödinger equation is


ċ0

ċ1

ċ2

 =


0 0 g0e

−i(δt+φ0)

0 0 g1e
−iφ1

g0e
i(δt+φ0) g1e

iφ1 ∆




c0

c1

c2



By transforming with c2 → ei∆tc2 and approximating ċ2 ' 0 it becomes


ċ0

ċ1

0

 =


0 0 g0e

−i(φ0+(δ−∆)t)

0 0 g1e
−i(φ1−∆t)

g0e
i(φ0+(+δ)t) g1e

iφ1 ∆ei∆t




c0

c1

c2


By solving for c2 and substituting into the equations for c0, c1 to eliminate the

auxilliary state from the problem, it becomes

 ċ0

ċ1

 =

 −g20
∆

−g0g1
∆
e−i(δt+∆φ)

−g1g0
∆
ei(δt+∆φ) −g21

∆


 c0

c1
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where ∆φ ≡ φ1 − φ0. Hence, the interaction Hamiltonian becomes

HI =
~Ω

2

(
e−i(δt+∆φ)|1〉〈0|+ h.c.

)
+

~χ0

2
|0〉〈0|+ ~χ1

2
|1〉〈1|

where the “base Rabi frequency” coupling the qubit states is given by Ω ≡ g1g0/2∆

and χj ≡ g2
j/2∆ is the light shift (or AC Stark shift) on state |j〉. (The light shifts

actually have contributions from both Raman beams, but we have already assumed

that g02,1 and g12,0 are small.) Finally, by defining χ± ≡ (χ1 ± χ0)/2, HI can be

recast in spin operator form

HI =
~Ω

2

(
σ̂+e

−i(δt−∆φ) + σ̂−e
i(δt−∆φ)

)
+

~χ−
2
σ̂z

where the common light shift term proportional to (χ1 +χ0) is discarded because it

does not influence the spin system dynamics. Transform to a frame rotating at the

new shifted resonance frequency ω′01 ≡ ω01 + χ− and define µ ≡ ω0 − ω1 − ω′01:

HI =
~Ω

2

(
σ̂+e

−i(µt−∆φ) + σ̂−e
i(µt−∆φ)

)
(3.22)

This Hamiltonian has the same form as that derived for the microwave field interac-

tion; hence, the Raman transitions can be used to perform qubit rotations exactly

as in Eqn. 3.10.

To discover how the Raman transition also couples the spin to the motion,

we will now reinsert the spatial part of the optical fields. For the same reason the

relevant global phase became the difference phase between the Raman beams, ∆φ,
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ri(t)

x(t)

ri
(0)

i i+1 ... ...  i-1

x

z

y

Figure 3.6: Coordinate system for the position ~ri(t) of ion i.
The ion position ~xi(t) oscillates about an equilibrium position denoted by the dashed
line. This time-dependent position operator can be expressed in terms of the col-
lective motional mode raising and lowering operators.

the relevant spatial term in the exponentials becomes ∆k · ri for ion i. The ion

position ri(t) = r
(0)
i + xi(t), as shown in Fig. 3.6, so ∆k · ri = ∆kr

(0)
i + ∆k · xi(t),

where ∆kr
(0)
i simply contributes an additional phase specific to ion i. In the regime

where micromotion sidebands are not driven and the trap qr parameter is small

(Eq. 2.14), the operator xi(t) can be written in terms of the raising and lowering

operators of the normal modes of motion as

xj(t) =
N∑
k=1

bk,jx0,k

(
âke
−iωkt + â†ke

iωkt
)

where bk,j is the normal mode coupling parameter from Sec. 3.2.1 and x0,k ≡√
~/2mωk. This expression tacitly derives from a transformation to the frame of the

motional frequencies where the unperturbed Hamiltonian now includes the motional
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terms:

H0 =
N∑
j=1

~ω01

2
σ̂(j)
z +

N∑
k=1

~ωkâ†kâk

The dot product thus becomes

∆k · xj(t) =
N∑
k=1

ηk,j

(
âke
−iωkt + â†ke

iωkt
)

where ηk,j ≡ ∆kxbk,j
√

~
2mωk

is the coupling parameter between ion j and mode k in

the interaction. Using these equations to include the motional terms, the interaction

Hamiltonian is

HI =
N∑
j=1

~Ωj

2

(
σ̂

(j)
+ e−i(µt−∆φ+∆k·rj(t)) + σ̂

(j)
− e

i(µt−∆φ+∆k·rj(t))
)

(3.23)

=
N∑

j,k=1

~Ωj

2

(
σ̂

(j)
+ e−iηk,j(âe

−iωkt+â†eiωkt)e−i(µt−∆φ+∆kr
(0)
j ) + h.c

)

Unless specifically noted otherwise, the summation symbols with multiple indices

denote multiple uncoupled sums. The coupling parameter η characterizes the relative

spread of the ion wave packet compared to the wavelength of the radiation as well

as the strength of the spin-motion coupling. For a particular mode k, the common

part of η is the Lamb-Dicke parameter η0 ≡ ∆kx
√

~
2mωk

. This parameter cannot be

too small, or else there will be insufficient coupling. For counter-propagating waves,

∆k = 2k = 4π/λ, so an ultraviolet laser wavelength of 355 nm has ∼70000 times

the coupling strength of resonant microwaves. At the same time, η0 cannot be too

large. In the so-called Lamb-Dicke limit, η2(n+ 1)� 1 for vibrational level n such
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that the optical phase is nearly constant over the ion excursions. In this regime, the

exponential term can be expanded to first order in η simplifying the expression to

HI =
N∑

j,k=1

~Ω

2

(
σ̂

(j)
+

[
1− iηk,j(âe−iωkt + â†eiωkt)

]
e−i(µt+φj) + h.c

)
=

N∑
j,k=1

~Ωj

2
σ̂

(j)
+

[
e−i(µt+φj) − iηk,j

(
âe−i((ωk+µ)t+φj) + â†ei((ωk−µ)t−φj)

)]
+ h.c

(3.24)

where the optical phase term at each ion position is φj ≡ ∆φ + ∆kr
(0)
j . If µ is

0,−ωk, or +ωk, the Raman beams will drive a carrier, red sideband, or blue sideband

transition, respectively, for mode k. In each case, two of the exponential terms in HI

reduce to unity, and the other four terms can be discarded using another rotating

wave approximation as long as the interaction time is long compared to the trap

secular period (2π/ωx). This situation is called the resolved sideband limit. In this

regime, the sideband transitions are explicitly calculated very similarly to the simple

two-level system in Sec. 3.1, with the difference being that the coupled states include

vibrational levels |n〉 of a particular mode. The relevant state vector becomes

|ψ〉 = c0,n|0, n〉+ c1,n|1, n〉 (3.25)

which changes the matrix element in the interaction Hamiltonian to 〈1, n′|HI |0, n〉

that now includes a Debye-Waller factor [45],

Dn′,n =
∣∣〈n|eiη(â+â†)|n′〉

∣∣.
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This factor adjusts the original Rabi rate Ω between the qubit levels depending on

which vibrational transition is also driven. The corresponding sideband coupling

strength is given by Ωn′,n = Dn′,nΩ. This is the rate at which the state coherently

oscillates between |0, n〉 and |1, n′〉. In the Lamb-Dicke limit, the first red and blue

sidebands have Rabi frequencies Ωn,n−1 = η
√
nΩ and Ωn,n+1 = η

√
n+ 1Ω. The

modified Rabi rates are taken into account when we Raman sideband cool, where

the red sideband π pulse durations are lengthened with each successive cycle to

achieve efficient population transfer [45].

Thus far it is clear how tuning the beat note between the Raman beams can

either drive qubit rotations alone or flip the qubit while adding or removing a phonon

of energy to a mode of the collective motion. The final piece of the entangling

gate puzzle is the application of both a red and a blue sideband simultaneously.

Returning to Eq. 3.23 for the Hamiltonian prior to the applying any approximations,

apply two beams (called the “red and blue sidebands”) instead of the single beam

depicted in Fig. 3.5. The forms of the optical fields are similar to Eq. 3.21, but

the red (blue) sideband has frequency ωr = ω0 − ω01 + µ (ωb = ω0 − ω01 − µ)

and phase difference φr (φb) with the non-copropagating Raman beam. In our

experiment, the sideband beams are copropagating, so the signs of the ∆k terms

are the same. Letting βj ≡ ∆k·xi(t) for convenience, the resulting Mølmer-Sørensen
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type interaction [61,62] is

HMS =
N∑
j=1

~Ωj

2

[(
σ̂

(j)
+ e−i(µt−φr+∆k·rj(t)) + h.c.

)
+
(
σ̂

(j)
+ e−i(−µt−φb+∆k·rj(t)) + h.c.

)]
=

N∑
j=1

~Ωj

2

[
σ̂

(j)
+

(
e−i(µt−φ

M
j −φSj +βj) + ei(µt+φ

S
j −φMj −βj)

)
+ h.c.

]
=

N∑
j=1

~Ωj

2

[
σ̂

(j)
+ ei(φ

S
j −βj)

(
e−i(µt−φ

M
j ) + ei(µt−φ

M
j )
)

+ h.c.
]

=
N∑
j=1

~Ωj

2
cos (µt− φMj )

[
σ̂

(j)
+ ei(φ

S
j −βj) + h.c.

]
(3.26)

where φSj ≡ (φrj + φbj)/2 and φMj ≡ (φrj − φbj)/2 are the spin and motion com-

binations of the red and blue sideband optical phases that include the individual

ion position phase terms ∆kr
(0)
j . Returning to the Lamb-Dicke regime, the terms

e±iβj ≈ (1± iβj), and the Hamiltonian becomes

HMS =
N∑
j=1

~Ωj cos (µt− φMj )
[ (
σ̂

(j)
+ eiφ

S
j + σ̂

(j)
− e
−iφSj

)
+
(
σ̂

(j)
+ ei(φ

S
j +π/2) + σ̂

(j)
− e
−i(φSj +π/2)

)
βj

]
=

N∑
j=1

~Ωj cos (µt− φMj )σ̂
(j)
φ⊥

+
N∑

j,k=1

~ηk,jΩj cos (µt− φMj )
(
âe−iωkt + â†eiωkt

)
σ̂

(j)
φ (3.27)

where the spin operator σ̂
(j)
φ = cosφSj σ̂

(j)
x + sinφSj σ̂

(j)
y rotates the qubit j about an

arbitrary axis in the Bloch sphere equatorial plane specified by φSj , and σ̂
(j)
φ⊥

rotates

the same qubit about the perpendicular axis. This σ̂
(j)
φ⊥

term drives carrier transitions

so weakly that it is usually ignored safely. However, if Ω/µ were to grow too large,
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the effects on the dynamics would cease to be negligible. In our experiments we can

neglect the term, resulting in a final entangling interaction Hamiltonian

HMS =
N∑

j,k=1

~ηk,jΩj cos (µt− φMj )
(
âe−iωkt + â†eiωkt

)
σ̂

(j)
φ (3.28)

The evolution operator for the entangling interaction is obtained by applying

Magnus’ formula. Starting from time zero, the evolution operator is given by

Ug(τ) = exp

[
− i
~

∫ τ

0

dtHMS −
1

2~

∫ τ

0

dt2

∫ t2

0

dt1 [HMS(t2),HMS(t1)] + · · ·
]

(3.29)

The first term is a single integral equal to

− i
~

∫ τ

0

dtHMS =− i
N∑

j,k=1

ηk,j

[
â

∫ τ

0

Ωj cos (µt− φMj )e−iωktdt

+ â†
∫ τ

0

Ωj cos (µt− φMj )eiωktdt
]
σ̂

(j)
φ

=
N∑

j,k=1

(
αj,k(τ)â† + α∗j,k(τ)â

)
σ̂

(j)
φ

where the expression for αj,k(τ) is defined as

αj,k(τ) ≡ −ηk,j
∫ τ

0

Ωj(t) sin (µt− φMj )eiωktdt (3.30)
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The next term in the expansion is

− 1

2~

∫ τ

0

dt2

∫ t2

0

dt1 [HMS(t2),HMS(t1)]

= −
N∑

m,n,k=1

ηk,mηk,n
2

∫ τ

0

dt2

∫ t2

0

dt1Ωm(t2)Ωn(t1) cos (µt2 + φMj ) cos (µt1 + φMj )×

(
[âk, âk

†]eiωk(t2−t1) − [âk
†, âk]e

−iωk(t2−t1)
)(

2σ̂
(m)
φ σ̂

(n)
φ

)
= −2i

N∑
m,n,k=1

ηk,mηk,n

∫ τ

0

dt2

∫ t2

0

dt1Ωm(t2)Ωn(t1) sinωk(t2 − t1)×

cos (µt2 + φMj ) cos (µt1 + φMj )σ̂
(m)
φ σ̂

(n)
φ

Combining these terms, the evolution operator is finally given by

Ug(τ) = exp

[
N∑

m,k=1

(
αm,k(τ)â†k − α∗m,k(τ)âk

)
σ̂

(m)
φ + i

N∑
m,n=1

χm,n(τ)σ̂
(m)
φ σ̂

(n)
φ

]
(3.31)

where χm,n(t) is defined as

χm,n(τ) ≡
N∑
k=1

ηk,mηk,n

∫ τ

0

∫ t2

0

dt2dt1

(
Ωm(t2)Ωn(t1) sinωk(t2 − t1)×

sin (µt2 + φMj ) sin (µt1 + φMj )
)

(3.32)

where ∆φM ≡ φMm − φMn . (The negative cosine product was converted to a positive

product of sines by expressing the −1 factor as e−iπ/2e−iπ/2, casting the cosines in

exponential form, and using some algebra.)

It is instructive to consider the overall structure of this interaction. The evolu-

tion of the spin and motion state has a helpful geometric visualization that provides
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some physical intuition for the entangling operation. It is also useful for the more

complicated evolution when pulse shaping is added in the next chapter. The two

terms in the exponential neatly partition the evolution into the spin-dependent tra-

jectories in phase space (first term) and an accumulating geometric phase χm,n(t)

between pairs of qubits that is proportional to the area enclosed by the associated

trajectories (second term). The motional part of the first term has exactly the form

of the displacement operator D̂(α) = exp
(
α(t)â† − α∗(t)â

)
. The action of D̂(α) on

a coherent state of motion |β〉C ,

|β〉C ≡ e−|β|
2/2

∞∑
n=0

βn√
n!
|n〉F

where the coherent state is defined in terms of the Fock state basis |n〉F , is given by

D̂(α)|β〉C = D̂(α + β)eiIm(αβ∗).

Starting from the motional ground state, where the coherent and Fock state bases

intersect (|0〉C = |0〉F ), the resulting coherent state |α〉C = D̂(α)|0〉C follows a tra-

jectory in phase space α(t) = (1/2x0) (x(t) + ip(t)/mω), whose real and imaginary

components specify the position and momentum coordinates of the ion wave packet.

The actual expression for α(t) given by Eq. 3.30 denotes the carrier Rabi rate Ωj(t)

as a function of time. The conventional Mølmer-Sørensen interaction assumes that

Ωj(t) = Ωj is a constant. In Ch. 4 we will discover the limitations of this assumption

and how allowing it to vary in time can significantly improve the entangling scheme.
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Figure 3.7: Phase space trajectories for the first ion in a chain of five (arb units).
The CM frequency is 2.591 MHz and the detuning µ=2.564 MHz with an interaction
time τ =200 µs. The dots represent the final position of the wave packet. Only one
of the two trajectories associated with the σ̂φ eigenstates is plotted. The modes
closer to µ execute larger orbits, so the fine structure of the path is only evident in
the evolution of the fifth mode. In this example, the entangling interaction would
not perform an acceptable gate because the trajectories do not return to the origin.

For the remainder of this chapter, however, we will restrict it to a constant value.

In this case, the integral can be immediately solved to give

αk,j(τ) =
ηk,jΩj

µ2 − ω2
k

[
eiωkτ

(
µ cos (µτ − φMj )− iωk sin (µτ − φMj )

)
−
(
µ cosφMj + iωk sinφMj

) ]
(3.33)

Under this harmonic force of constant amplitude, the overall shape of the trajectory

is circular, with a radius proportional to ηk,mΩm/δk. On top of the circles are smaller

circular excursions. Figure 3.7 illustrates these trajectories for an ion participating

in the five modes of a chain of five ions. When δk � µ+ ωk, the trajectory reduces

to a perfect circle (let φMj → 0)

αk,j(τ) ≈ ηk,jΩj

2

(
e−iδkτ − 1

δk

)
(3.34)

The spin-dependence of the force propelling the ions along these trajectories
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comes from the presence of the σ̂φ operator. The eigenstates of this operator are

|±〉φ =
(
±ie−iφS |0〉z + |1〉z

)
/
√

2 with eigenvalues ±1; hence, if the qubit is in a

superposition of these eigenstates, it will simultaneously execute two equal but op-

posite trajectories in phase space. The resulting entanglement between the qubit

states and the collective motional modes is the underlying mechanism for the en-

tanglement between the qubits themselves, which brings us to the second term in

the evolution operator. The motional part of this term, χm,n(t), keeps track of the

accumulating area encompassed by the phase space trajectories. This area is pro-

portional to a “geometric phase” acquired by each qubit, which directly generates

a spin-spin interaction via the σ̂
(m)
φ σ̂

(n)
φ operator.

To perform a useful entangling gate, the evolution described so far must be

controlled precisely to satisfy two criteria [61–64]:

• The value of χm,n must be π/4.

• The qubits must disentangle from the motion by the end of the

interaction. Since we do not measure the motional state of the ions, that

information is lost and is therefore a source of decoherence. More formally, the

full state density matrix for the system includes both the qubit and motional

states. We trace over the motional part of this density matrix to account for

our ignorance, and by doing so, any extant spin-motion entanglement con-

tributes to a statistical mixture of states that degrades the desired spin-spin

entanglement.

Consider the simplest case of two ions. When both of these criteria are satisfied,
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the resulting evolution operator becomes

Ug = exp
[
i
π

4
σ̂(1)
x σ̂(2)

x

]
. (3.35)

In the σ̂z basis, the gate in matrix form is

Ug =
1√
2



1 0 0 −i

0 1 −i 0

0 −i 1 0

−i 0 0 1


(3.36)

and applying it to two qubits initialized to the |0〉 state yields

ρfinal = Ug · ρinitial · U †g

= Ug ·



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


· U †g =

1

2



1 0 0 i

0 0 0 0

0 0 0 0

−i 0 0 1


|ψ〉final =

1√
2

(|00〉 − i|11〉)

This is a Bell state: a pure, maximally entangled state between the two qubits.

In the derivation of the evolution operator above, the phases of the red and blue

sidebands were meticulously tracked. In most situations these phases can actually

be set to zero by definition, but there are subtleties involved in doing so. At the
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beginning of the coherent evolution of the system, all of the φrj and φbj phases

can be defined as zero, even if the absolute values of the optical phases at each

ion are different. This is possible because the initial value of the individual qubit

phases are arbitrary and hence the σ̂φ can be set without loss of generality to σ̂x for

each qubit. However, a subsequent gate pulse could apply sidebands with different

optical phases, for example, either deliberately via the AOM phase or incidentally

by shuttling the ions to new positions relative to a focused beam that has a non-

uniform phase profile. In this case, one cannot redefine the phases to zero because

the qubit phase is already defined relative to the initial phase. The consequence is

that the σ̂x operators become unique σ̂φj operators for each ion. Fortunately, the

φMj would typically remain zero because the red and blue sideband phases should

normally shift by the same amount, even if in general this is not true. If a perfect

entangling gate is performed, the phase space trajectories will close, so for nulling

that term in the evolution operator it does not matter on what particular eigenbasis

the spin-dependent force operates. However, the φSj that specify the new eigenbases

for each qubit get mapped onto the resulting entangled states depending on the

initial state according to

|00〉 → 1√
2

(
|00〉 − ie−i(φS1 +φS2 )|11〉

)
|01〉 → 1√

2
(|01〉 − i|10〉)

|10〉 → 1√
2

(|10〉 − i|01〉)

|11〉 → 1√
2

(
|00〉 − iei(φS1 +φS2 )|11〉

)
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In the next chapter, we will discuss how to determine the optimal two-qubit entan-

gling gate parameters and how we assess the performance of the gate by analyzing

the entanglement of the resulting state. The need for better control over the quan-

tum system will become apparent, and we will discover how shaping the gate pulse

can improve the gate performance and ultimately enable scalability for the scheme.
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Chapter 4: Gate pulse shaping

Using the spin-dependent force derived in the previous chapter to successfully

generate a proper entangling gate (Eq. 3.35) demands precise control over the gate

parameters. This chapter explains what those parameters are, how we determine

their optimal value, and how we assess the performance of the gate. In certain

regimes of gate time and detuning when there are only a few ions in the chain, a

constant laser pulse amplitude is sufficient to perform an excellent gate. In order for

linear chains of trapped ions to be a scalable platform for quantum computation,

however, the number of qubits in the register must increase significantly and the

fidelity of quantum gates performed must approach a fault-tolerant threshold [12,

13]. Even a simplistic view of a quantum algorithm is enough to demonstrate the

necessity of this; if each entangling gate fidelity is F , and n gates compose an

algorithm for some computation, then the overall fidelity of the operation will be

proportional to Fn. For a seemingly good fidelity of 99%, an algorithm of just 20

gates would have an overall fidelity of 0.9920 = 82%, which is unacceptable. As we

will see in the next section, the limits on the gate fidelity stem from the fact that the

number of motional modes involved in the interaction increases with the number of

ions. This means that more and more phase space trajectories must be controlled,
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and this requires more control parameters than a constant amplitude pulse allows.

This limitation can be overcome by rudimentary pulse shaping. Partitioning the

gate pulse into multiple segments with independent amplitudes provides the extra

“control knobs” to engineer the trajectories. Depending on the number of segments

composing the pulse, the criteria for a perfect gate (Sec. 3.2.2) specify a standard

control problem, where an optimization algorithm is used to calculate the pulse

shape that will generate the highest fidelity gate.

4.1 Theory

Before launching into the formal definition of the control problem, it is helpful

to again consider the simplest case of an ion chain with only two qubits. In this

case there are two motional modes involved: the CM and the tilt mode, where

the ions move together (CM) or oppositely (tilt). The traditional thing to do is

to choose a detuning nearly resonant with one of these modes such that the other

mode is barely driven. For this example, we couple predominantly to the tilt mode

by choosing δ2 � δ1. From the two trajectory equations given by Eq. 3.34, α1,j(τ)

will be much closer to the origin than α2,j(τ) regardless of the gate time because the

radius is ∝ 1/δk. That means we only need to worry about timing the gate to close

α2,j(τ). Solving e−iδ2τ − 1 = 0, we get the gate times τ = m(2π/δ2), where m is an

integer. Now that the phase space trajectories are approximately at the origin, the

other criterion to satisfy is that the accrued geometric phase is χ1,2 = π/4. It is clear

from Eq. 3.32 that the only remaining free parameter is the product of the constant
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coupling strengths Ωj, which are directly proportional to the Raman beam intensity,

or pulse amplitude. Adjusting this value to set the radius of the α2,j(τ) trajectory

appropriately, the geometric phase criterion is satisfied. The result is a gate that

can approach perfection in the limit that δ2 → 0 and τ → ∞ (in increments of

2π/δ2).

The two ion example is also useful for illustrating how commensurability of

mode frequencies plays a fundamental role in the gate performance, because this is

the only case where µ can be chosen such that both phase spaces close perfectly for

a constant pulse amplitude. Define parameters rT and rC that specify the detuning

in terms of the ratio of δ1 to δ2 such that

µ = ω1 + rC

(
ω1 − ω2

rT − rC

)
. (4.1)

As long as δ1/δ2 is an integer (equivalently, rC/rT is an integer), then the gate time

chosen based on δ2 in our example will always return α1,j(τ) to the origin as well.

By detuning far away from both modes, the gate can be made much faster at the

expense of an increase in the required pulse amplitude.

If we now consider just one additional ion in the chain, it is impossible to find a

gate time commensurate with all three frequencies. This is because the eigenvalues

of the Amn matrix from Sec. 3.2.1 are nowA+1/2−{1, 3, 29/5}/2, yielding irrational

mode frequency ratios due to the square root in Eq. 3.20. As more ions are added

to the chain, the number of transverse modes increase linearly while their spacing

does not. This results in increasingly worse gates as there is more and more residual
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spin-motion entanglement, assuming of course that the optimal values of detuning

and gate time are employed.

At this point, we must identify the equations to satisfy in order to perform

a perfect gate for any number of ions. Throughout the following derivations we

will assume that only two out of a chain of N ions are simultaneously illuminated

by the Raman beams with equal intensity, such that Ω(t) ≡ Ωm(t) = Ωn(t) for

illuminated ions m and n and Ω(t) = 0 for the rest. Clearly, for a chain of N

ions there are N trajectories for each of the two ions with independent real and

imaginary components (corresponding to x and p coordinates) that must each equal

zero at the end of the gate. Since the Rabi rates are equal, there are 2N equations

to satisfy from the phase space closure criterion:

∫ τ

0

Ω(t) sin (µt) cos (ωkt) = 0∫ τ

0

Ω(t) sin (µt) sin (ωkt) = 0 (4.2)

There is one additional equation from the geometric phase term

N∑
k=1

ηk,mηk,n

∫ τ

0

∫ t2

0

dt2dt1Ωm(t2)Ωn(t1) sinωk(t2 − t1) sin (µt2) sin (µt1) = π/4

(4.3)
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If we partition the gate pulse into P flat segments such that

Ω(t) =



Ω1 0 ≤ t < τ/P

Ω2 τ/P ≤ t < 2τ/P

...
...

ΩP (P − 1)τ/P ≤ t < τ

(4.4)

then we introduce P independent control parameters. Since the system of equations

is linear in this parameter, we are guaranteed to find a unique solution to the set if

P = 2N + 1. In this case the phase space closure criterion becomes

αk,m(τ) = −
P∑
p=1

Ωpηk,m

∫ pτ/P

(p−1)τ/P

sin (µt)eiωktdt

=
P∑
p=1

ΩpC
m
k,p

where the coefficient Cm
k,p is a number pre-calculated from measured mode frequen-

cies and desired gate parameters µ and τ . Similarly, the geometric phase is given

by

χm,n(τ) =
P∑
p=1

P∑
p′=1

ΩpΩp′Dp,p′
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where the pre-calculated coefficients Dp,p′ are given by

Dp,p′ ≡
N∑
k=1

∫ pτ/P

(p−1)τ/P

dt2

∫ p′τ/P

(p′−1)τ/P

dt1ηk,mηk,n sinωk(t2 − t1) sinµt2 sinµt1

If we represent the pulse shape Ω(t) as a column vector Ω, the gate criteria can be

written concisely as

 Cm

Cn

Ω = 0 (4.5)

ΩTDΩ = π/4 (4.6)

which represents a linear system of equations in Ω. Defining the C coefficients in

this way, in terms of the two ion indices instead of the real and imaginary parts

of the α(τ) equations as described above, appears to be misleading; however, from

a numerical perspective the two approaches are equally valid since the real and

imaginary components will vanish the same. It is important to note here that since

the trajectory equations are linear, if Ω0 is a solution, then so is fΩ0, where f is

an arbitrary scale factor. This means that as long as Ω0
TDΩ0 6= 0, then Ω0 can be

scaled as necessary to ensure that the geometric phase equals π/4.

One of the important features of this scheme is how the detuning and gate

time become arbitrary parameters. In our two ion example above, the gate time

and detuning were interdependent. Shaping the pulses removes this dependency.

Before we can appreciate the significance of this by comparing the performance of a
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constant pulse versus a segmented pulse, we must quantify the performance of the

gate. In the experiments detailed below, this is done not by analyzing the gate per

se, but instead by measuring the fidelity of preparing the target maximally entangled

Bell state. The fidelity F of preparing a state is given by the overlap of the actual

state with the ideal final state. Since the actual final state will in general be a mixed

state, it must be represented by a density matrix ρf , such that

F ≡ 〈ψideal|ρf |ψideal〉 (4.7)

where the ideal final state is |ψ〉ideal = 1√
2

(
|00〉 − ie−iφg |11〉

)
for some gate phase

φg = φS1 + φS2 . Since we do not measure the motion, the final state ρf is actually

a reduced density matrix. A theoretical expression for the gate fidelity is obtained

by applying the gate operator Ug(τ) to the initial state ρi = |ψi〉〈ψi| ⊗k ρk, where

the initialized spin state |ψi〉 = |00〉z = 1
2
(|0〉x + |1〉x)m ⊗ (|0〉x + |1〉x)n for the two

target ions m and n and the initial motional state is assumed to be in a thermal

distribution characterized by the distribution’s average phonon number, n̄k, such

that

ρk =
∞∑
n=0

(
nk

1− n̄k

)nk
e−nk~ωk/kBT |nk〉〈nk|

where the average energy in phonon mode k is kBT = n̄k~ωk. The other N − 2

ions are also initialized to spin down, but for now they are assumed to stay in that

state throughout the interaction. The resulting state is the reduced density matrix

ρf = Trmotion

[
Ug(τ)ρiU

†
g (τ)

]
, where the motional states have been traced over. The
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fidelity expression is then [63]

F =
1

8

[
2 + i

(
e−2i|χm,n| − e2i|χm,n|

)
(Γm + Γn) + Γ+ + Γ−

]
(4.8)

where

Γm(n) ≡ exp

[
−

N∑
k=1

|αm(n),k(τ)|2βk/2
]
,

Γ± ≡ exp

[
−

N∑
k=1

|αm,k(τ)± αn,k(τ)|2βk/2
]
,

and

βk ≡ coth

[
1

2
ln(1 + 1/n̄k)

]
. (4.9)

4.2 Optimization calculation

When all of the required 2N + 1 pulse segments are used, the fidelity is guar-

anteed to be unity when the optimal pulse shape Ω(t) is calculated for an arbitrary

detuning and gate time. The problem becomes more interesting when fewer seg-

ments are used, because the problem then becomes an over-constrained one that

calls for an optimization procedure∗. Qualitatively this procedure can be defined by

requiring that, whatever the pulse shape might be, the gate phase must be π/4. In

other words, any infidelity in the final state should be a result of the residual spin-

motion entanglement and not because we simply did the wrong type of gate. The

quantity to be optimized is obviously the fidelity, because that is what ultimately

∗The optimization formalism described here is based on private correspondence with Dr. Zhex-
uan Gong.
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matters. Unfortunately, the expression for the fidelity is not quadratic in Ω as the

geometric phase is, which means that a complex nonlinear optimization algorithm

in general needs to be applied. In the solution space of interest – namely, pulse

shapes that achieve high fidelity gates – we can approximate the infidelity (1− F)

by assuming it is small and expanding the exponential terms in α(τ) to derive an

expression that is quadratic in Ω. Since we will always be able to scale the optimal

solution to achieve the proper geometric phase, even when the optimal fidelity is

less than unity, the fidelity simplifies to

F =
1

8
[2 + 2 (Γm + Γn) + Γ+ + Γ−] (4.10)

and, discarding terms of higher order than |α(τ)|2, the infidelity is

1−F ≈ 1

4

N∑
k=1

βk
(
α∗k,m(τ)αk,m(τ) + α∗k,n(τ)αk,n(τ)

)
≡

P∑
p=1

P∑
p′=1

ΩpΩp′Bp,p′

= ΩTBΩ

To minimize this infidelity subject to the constraint that the geometric phase is

π/4, we use the method of Lagrange multipliers to define a scalar quantity Λ as a

function of Ω and the multiplier λ,

Λ(Ω, λ) = ΩTBΩ− λ
(
ΩTDΩ− π/4

)
(4.11)
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where by design, the stationary points satisfy ∂Λ
∂Ω

= 0 and ∂Λ
∂λ

= 0. The form of

∂Λ
∂Ω

is not so obvious in the tensor representation, but looking at a few terms of the

derivative and rearranging terms shows that

∂

∂Ω
ΩTBΩ =

P∑
p=1

P∑
p′=1

∂

∂Ω
Bp,p′ΩpΩp′ =(B1,1Ω1 +B1,1Ω1) + (B1,2Ω2 +B1,2Ω1) + · · ·

+ (B2,1Ω2 +B2,1Ω1) + (B2,2Ω2 +B2,2Ω2) + · · ·

=(B1,1Ω1 +B1,1Ω1) + (B1,2Ω2 +B2,1Ω2) + · · ·

+ (B1,2Ω1 +B2,1Ω1) + (B2,2Ω2 +B2,2Ω2) + · · ·

=
(
B + BT

)
Ω,

yielding the set of equations

∂Λ

∂Ω
= (B + BT )Ω− λ(D + DT )Ω = 0

∂Λ

∂λ
= ΩTDΩ− π

4
= 0

The first equation is equivalent to a generalized eigenvalue problem, F~V = λG~V ,

whose solution consists of two matrices V and L. The columns of V are the vector

solutions ~V associated with the scalar eigenvalues λ in the corresponding column of

the diagonal matrix L. Identifying F = B+BT , G = D+DT , and ~V = Ω, the global

minimum fidelity is obtained by calculating the exact (not approximated) fidelity

corresponding to each of the eigenvectors in the solution matrix V and selecting the

one with the highest value.
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A caveat to this optimization method is that the fidelities associated with the

pulse shape solutions must be viewed as lower bounds on the actual theoretical

fidelity for the specified gate, because the function being minimized is an approxi-

mation to the true infidelity. Thus, the solutions based on the approximate infidelity

will not in general be truly optimal. Clearly, though, the exact fidelity associated

with a given pulse shape is calculated independently of how that shape was deter-

mined; hence the calculated fidelity is at worst a lower bound. Furthermore, the

approximation is automatically more accurate in the parameter space supporting

high fidelity solutions, so for practical purposes this caveat is not important.

The obvious system with which to begin analyzing this segmented pulse scheme

is the simplest case of a two ion chain. Now that we have an optimization algorithm

to determine the optimal pulse amplitude for a constant pulse regardless of gate

parameters, we can make a fair comparison. Figure 4.1 shows the theoretical fidelity

versus the gate detuning µ (using the optimal pulse amplitude for each detuning).

Using the trap frequencies ωz = 2π × 600 kHz and ωt = 2π × 4.38 MHz, the gate

time is set to 2× 2π/((ω1 − ω2)/2) ≈ 100 µs. The plot shows three fidelity curves,

for initial phonon excitations n̄1 = {0, 2, 10}. The corresponding plots for the five

segment pulses are all unity for all detunings. This shows that when “full control”

is applied, meaning 2N + 1 segments are utilized, the gate is much less sensitive

to the initial crystal temperature. The commensurate points at unit fidelity in the

plot are not affected by the temperature, of course, but the bandwidth about which

a high fidelity is possible shrinks as n̄ increases.

An immediate concern with the pulse shaping scheme is how much optical
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Figure 4.1: Theoretical two ion gate fidelity for a constant pulse.
The colors {blue, green, red} show the fidelity for different values of initial temper-
ature n̄ = {0, 2, 10}.

power is required compared to the constant pulse gate. Figure 4.3 shows the required

power in terms of the carrier Rabi frequency. The single value plotted for the five

segment pulse solutions is the maximum amplitude of each pulse. There is not a

significant difference in the required optical power. Figure 4.4 shows all five pulse

amplitudes as a function of detuning. As evident in the figure, since the value of Ωp is

a real number, it can be negative. A negative amplitude indicates a π phase shift on

the spin-dependent force, causing an abrupt reversal of the direction of the trajectory

for each spin component of the ion wavepacket. The resulting trajectories have kinks

in them producing “star” and “flower” patterns compared with the coiled patterns

of the pulse shapes with uniform sign, as illustrated in Fig. 4.2. The restriction of Ωp

to the real numbers can also be visualized as preventing the phase space trajectories
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Figure 4.2: Phase space trajectory shapes
Example trajectories for pulse solutions with segments of (a) alternating sign and
(b) uniform sign.
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Figure 4.3: Two ion gate optical power comparison.
The constant pulse amplitudes are shown in blue and the maximum amplitude of
the five segments is shown in red.

from bifurcating as they would if the eigenbasis upon which the spin-dependent force

acted was suddenly changed. It is interesting that there is a great deal of symmetry

to the shapes, which probably reflects the temporal symmetry of the interaction

itself. In other words, since there are no dissipative processes in our model of the

entangling interaction, the optimal trajectories should have the same form whether

time flows forward or backward. Hence, for five segment pulses, two pairs of segment

amplitudes should roughly overlap to cause the plot to seemingly show only three

curves.

The theoretical expression for the fidelity is not particularly helpful when

actually trying to measure the fidelity. Experimentally we measure the fidelity by

measuring the populations of the state as well as the contrast of a parity curve,

which we will define in the following derivation. A general two qubit density matrix
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Figure 4.4: Pulse segment amplitudes.
Amplitudes are in terms of carrier Rabi rate for the optimal five segment solutions
of the two ion entangling gate. Negative values indicate a π phase shift on the
spin-dependent force.

ρgen is given by

ρgen =



ρ00 ρ01 ρ02 ρ03

ρ∗01 ρ11 ρ12 ρ13

ρ∗02 ρ∗12 ρ∗22 ρ23

ρ∗03 ρ∗13 ρ∗23 ρ33


(4.12)

where the subscripts are binary code abbreviations indicating the matrix elements

ρ00 ≡ ρ|00〉〈00|, ρ01 ≡ ρ|00〉〈01|, ρ23 ≡ ρ|10〉〈11|, etc. In a two qubit Hilbert space the

rotation operator R̂(θ, φ) on the first qubit is represented by a 4 × 4 matrix given

by the Kronecker product R1(θ, φ) = R(θ, φ)⊗ I of the single qubit 2× 2 matrices,

where I is the identity operator. Likewise, R2(θ, φ) = I ⊗ R(θ, φ). A global π/2

rotation RG(π/2, φ) = R2(π/2, φ) ·R1(π/2, φ), often called the “analyzer pulse”, on
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the general state ρgen yields an output

ρf = RG(π/2, φ) · ρgen ·R†G(π/2, φ)

The parity of the state ρ is defined as the sum of the even parity populations minus

the sum of the odd parity populations, which for two qubits is

Π2(ρ) ≡ (ρ00 + ρ33)− (ρ11 + ρ22)

Using the convenient form ρxy = Axye
−iφxy for the “coherences” (off-diagonal density

matrix elements), the parity of ρf becomes a function of the analyzer pulse phase φ

with the form

Π2(ρf , φ) = A12 cosφ12 − A03 cos (2φ− φ03) (4.13)

If ρgen = ρideal, the parity curve resulting from a scan of the analyzer pulse phase φ

will look like Fig. 4.5. The fidelity of the general state ρgen with respect to our ideal

final state ρideal is given by F = Tr
[
ρideal · ρgen · ρ†ideal

]
. Recalling the ideal state

from Sec. 3.2.2, the fidelity expression simplifies to

F =
1

2
(ρ00 + ρ33 + A03 sin (φg − φ03)) (4.14)

where the diagonal elements are real valued probabilities. The utility of the parity

signal is now obvious. In conjunction with the populations of the |00〉 and |11〉 states,

the amplitude of the parity curve (generated by scanning the identical phases of the

111



1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

φ

Π2(φ)

Figure 4.5: Ideal two qubit parity curve.
The parity function is plotted as a function of the analyzer pulse phase, scanned
from 0 to 2π. The ideal coherence ρ03 = 1

2
eiπ/2.

global rotation) provides the quantities necessary to determine the state fidelity.

This rigorous form of the fidelity expression includes the absolute value of the gate

phase φg with respect to the phase of the coherence ρ03. For the purposes of proving

whether or not the final state is entangled, this phase is irrelevant, as all it does

is shift the phase of the parity curve. Moreover, for the purpose of characterizing

the gate performance in the experiments it is also unimportant. What is important

is the parity curve contrast. We thus treat the phase offset as a free parameter,

simplifying the fidelity to the form used in the experimental data below,

F =
1

2
(ρ00 + ρ33 + A03) (4.15)

If F > 0.5, the two qubits are verifiably entangled, meaning that their states are

non-classically correlated [14]. If it drops to 0.25, the state has become a complete

statistical mixture.
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Figure 4.6: Two ion constant vs five segment pulse data.

4.3 Two ion data

We tested this pulse shaping scheme with a chain of two 171Yb+ ions using the

same trap frequencies as above. Figure 4.6 displays the results. The shapes of the

constant pulse fidelity curve shows good qualitative agreement with the theory plot,

with the five segment data showing dramatic improvement across the entire range

of detunings as expected. Each data point in the plot is generated by the following

procedure. First, the two ion crystal is Doppler cooled for a few milliseconds before

being initialized to the |0〉 state by optical pumping for 10 µs. Then the coherent

operations begin, starting by resolved sideband cooling both of the normal modes

to near the ground state. Figure 4.7 shows the relative red sideband amplitudes

before and after cooling. At this point the ions should be in a pure initial state of

spin and motion |ψi〉 = |00〉 ⊗k |0〉k, where k = {1, 2}. The initialization is followed
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Figure 4.7: Two ion sideband cooling.
A Raman sideband scan shows the strength of the red sideband transition with (red)
and without (blue) sideband cooling both modes.

immediately by the gate. For the data plotted in Fig. 4.6, the gate duration is

100 µs. The shaped pulses consist of five concatenated 20 µs flat segments. The

last coherent operation before detection is the application of the global analyzer

pulse described in the previous section, which effectively rotates the measurement

basis by rotating the qubits themselves. Finally, the detection beam is applied

for 500 µs while the collected fluorescence photons are counted. This sequence is

repeated 1000 times to acquire a statistically accurate histogram (see Sec. 2.4.3).

The populations are calculated by fitting the measured histogram to a superposition

of dark, single bright, and double bright state Poissonians. These three basis state

histograms are separately measured prior to the experiment using appropriate state

preparation with resonant microwaves.

All coherent operations are controlled by the AWG driving the global Ra-

114



man beam (see Sec. 2.5.3). For the two ion chain, the addressing beam is not

tightly focused in order to equally illuminate the ions. For the constant pulse gates,

the optimal pulse amplitude was found empirically by simply varying the 355 nm

power in real time while equalizing the |00〉 and |11〉 populations. The worse the

gate performance, the higher the odd parity population is as the result of resid-

ual spin-motion entanglement. For the five segment pulse experiments, the optimal

amplitudes applied at each detuning are calculated based on the measured trap

frequencies obtained from a sideband scan. Similar to the constant pulse case, we

apply the calculated pulse profile given by the relative segment amplitude values,

but empirically find the optimal absolute optical power by equalizing the even parity

state populations. To accurately implement the segmented pulse gate, the calcu-

lated segment amplitudes must be calibrated against the nonlinearity of the AWG

amplitude values. The AWG output rf power is controlled by a simple digital num-

ber ranging from 0 to 2047. By varying the AWG amplitude and measuring the

carrier Rabi rate for a single ion corresponding to each value (at a constant optical

intensity), we establish a calibration curve that maps the calculated optimal pulse

shape to the corresponding AWG amplitude values that are actually input to the

control software.

A detuning with a particularly stark contrast between the constant and seg-

mented pulse gates is given by rC = 23, rT = 1, which is very close to the tilt mode.

Figures 4.8 and 4.9 plot the measured parity curves for these two gates. The

constant pulse parity curve shows a small offset in addition to its small amplitude.

Recalling the form of the parity function, this offset ideally represents undesired
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Figure 4.8: Low contrast two ion parity for a constant pulse.
Gate detuning is rC = 23, rT = 1 for the 0.1 ms gate. F = 30%.
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Figure 4.9: High contrast two ion parity for a five segment pulse.
Gate detuning is rC = 23, rT = 1 for the 0.1 ms gate. F = 94%.
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population in the odd parity states |01〉 and |10〉; hence, such an offset can only

appear when the fidelity is low by conservation of probability. In our experiments,

however, this offset is usually explained by the more mundane fact that the his-

togram fit to the single bright histogram is more sensitive to minor drifts in ion

brightness.

4.4 Three ion data

The two ion data from the previous section was the simplest test of the pulse

shaping scheme without the additional complications from individual addressing

and individual qubit state detection. When working with three and, in the next

section, five ion chains, we use the multi-channel PMT array described in Sec. 2.4.3

to measure the state of each qubit individually. The ion spacing was set to 5.2 µm,

with transverse trap frequencies 2π × {2.60, 2.55, 2.48} MHz and a 2π×400 kHz

axial frequency. In order to address only two of the three, we focus the addressing

beam tightly between the pair using a Ronar Smith 115 mm doublet such that the

Rabi rates for the two ions are equal. The resulting beam waist of w0 = 2.8 µm was

determined by measuring single ion fluorescence as a function of the lateral position

of the doublet, shown in Fig. 4.4. Since the beam is incident at 45◦ to the chain, the

effective waist focused between the target pair is w = w0

√
2 ≈ 4 µm. The theoretical

spillover assuming a perfect Gaussian beam is 3% for these crystal parameters.

The beam profile was not ideally Gaussian, however. Due to spherical aberrations

introduced by the lens system and diffraction from unavoidable clipping of the beam
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Figure 4.10: Addressing beam profile.
Relative intensity plotted as normalized ion brightness vs doublet displacement in

microns.

on part of the ion trap assembly inside the vacuum chamber, half of the beam profile

is steeper than it should be with a significant bump in the intensity. To avoid this

feature, we positioned the third ion on the smoother side of the profile.

The spillover on the third ion is defined as the fraction of the third ion’s Rabi

rate to the target pair Rabi rate. This value is measured on a daily basis by driving

carrier Rabi oscillations on the target pair and independently measuring each ion’s

Rabi frequency by aligning each ion to a separate PMT channel. The spillover

was minimized by adjusting the beam focus and alignment and ranged typically

between 2% and 5%. Figure 4.11 shows an example of a carrier pulse duration scan

over 300 µs, where the third ion Rabi rate is much lower than the target pair. The

sideband scan of the motional mode frequencies shown in Fig. 4.12 illustrates both

the addressing as well as the motional mode coupling parameters. The third ion

(blue) remains dark while the first (green) and middle ion (red) are excited. Both

the target ions participate equally in the center of mass mode, but the middle ion
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Figure 4.11: Spillover measurement for three ion chain.
Rabi oscillations for three ions over 300 µs show a spillover of 3% on the third ion
(red).
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Figure 4.12: A sideband scan for three ions.
The individual state detection shows the coupling of the two target ions (ion 1:
green, ion 2: red) to the three motional modes. The third ion (blue) is dark because
the spillover is low.
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does not couple to the tilt mode, so it remains dark at that frequency. The middle

ion couples more strongly to the zig-zag mode than the outer ions, so the middle

qubit rotates further during the 300 µs pulse than the first qubit does.

Similar to the two ion crystal data, the data taken with the three ion chain

consists of measuring the two-ion entangled state fidelity at various detunings for

different numbers of pulse segments. Theoretically the optimal fidelity should ap-

proach unity as the number of segments increases to the 2N + 1 = 7 segments

required for “full control”. The theoretical fidelity curves for the 100 µs gate time

are shown in Fig. 4.13. In contrast to the theoretical curve for the constant pulse

solutions on a two ion chain, these optimal constant pulse solutions never quite

achieve a perfect gate. This is a direct result of the incommensurability of the three

mode frequencies. The best detuning for the constant pulse gate turns out to be just

blue of the CM mode, and this is true as the number of ions increases as well. This

is the detuning where the coupling is predominantly to the CM and tilt mode and

where the higher modes are far enough away not to trace large trajectories in phase

space. Considering the required optical power curves, however, the lower power

solutions are found within the transverse mode bandwidth, where the performance

of the constant pulse suffers the most due to the more equal coupling to all the

modes. As the gate time decreases, the best detuning for the constant pulse mode

gets pushed further blue into increasingly high power solutions.

The three ion data is plotted in Fig. 4.14, encompassing 25 separate entangled

state fidelities for various detuning and numbers of segments. The experimental

procedure was the same as in the two ion data. Overall the trend of improvement
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Figure 4.13: Three ion theoretical fidelity and maximum power plots.
Theoretical fidelity and maximum carrier Rabi rate for the optimized pulse shapes
on a three ion chain given a 100 µs gate time. Number of segments: 1 (black), 3
(blue), and 5 (red).
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Figure 4.14: Complete three ion data.
The theoretical and measured fidelities are plotted for gates between ion pair {1, 2}
with a gate time 100µs. Pulse shapes with 1, 3, 5, and 7 segments were applied for
comparison.
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with segment number is clear, but the seven segment pulses are conspicuously worse

than the five segment pulses. This was due to the fact that the required power

increased such that 355 nm beam scatter was inducing charge that pushed the ions

during the course of the gate.

All of the measured fidelities fall short of theory on an absolute scale. Some of

the this is because not all the data points shown had proper sideband cooling, as we

discovered after the fact. Recalling Fig. 4.1, the higher the initial temperature, the

worse the optimal fidelities are, getting worse as the number of ions increases. Much

of the shortcoming can be contributed to errors due to simple beam steering. The

addressing beam is focused to effectively ∼2.8
√

2 µm in the z direction due to the

beam geometry and is aligned directly between the ions. This means that they are

each on the slope of the beam profile, where they are most sensitive to fluctuations

in position. This kind of beam steering is caused by air currents across the optical

table, due in large part to the HEPA air filters that continually blow clean air across

the optics from above. Although the Raman beam paths are enclosed in boxes to

protect from these small currents, they still drive intensity fluctuations at the ions.

The amplitude of the beam steering can be estimated by performing carrier Rabi

oscillations and fitting the decaying sinusoid to a simulated curve. We find that the

target ions’ Rabi oscillations decay to about 60% after four to five flops. The Rabi

rate is proportional to
√
IAIG for the two-photon Raman transition, so assuming

the global beam is broad enough to be unaffected by beam steering, the single qubit

rotations will be proportional to Ω ∝ √IA ∝ e−z
2/w2

. The scale factor for the

123



5 10 15 20 25 30

0.2

0.4

0.6

0.8

1.0

B
rig

ht
 st

at
e 

pr
ob

ab
ili

ty

Resonant pulse duration (arb units)

Figure 4.15: Simulated decay of carrier Rabi oscillations.
The black curve assumes no beam steering. The red curve simulates a ±200 nm

beam steering amplitude.

intensity at each ion can be written as

g(z, y) = g0e
−(d+z)2/w2

e−y
2/w2

(4.16)

where g0 ≡ ed
2/w2

and d is half of the distance between the target ion pair. In

the actual experiment, the intensity fluctuations occur on a timescale on the order

of 1 ms, and since each experimental cycle is several milliseconds long, the decay

manifests itself in the average over many experiments. To produce the simulated

Rabi oscillation in Fig. 4.4, the value of z and y are selected by a random number

generator between {−s, s}, where s is the beam steering amplitude. The evolution

of the |0〉 state is calculated as a function of time by applying the single qubit

rotation operator with the intensity g(z, y) over a duration of several flops. The

plotted curve is simply the average of this calculation repeated a sufficient number
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(∼300) of times. For s ≈ 200 nm, the decay matches our observations. Assuming

for simplicity that the beam steering only effects the single qubit rotations of the

analyzer pulse, the next task is to estimate the reduction in parity contrast we

expect for a given beam steering amplitude. The calculation is similar, except that

the rotation angles for the two qubits are now interrelated. In the z direction, a

beam deflection toward one ion is identically away from the other. In the y direction

they are decoupled. Assuming the qubits start in the ideal final entangled state,

then, the state after the analyzer pulse is given by

|ψ〉 = R̂2

(π
2
e−(d+z)2/w2+d2/w2

e−y
2/w2

, φ
)
R̂1

(π
2
e−(d+z)2/w2+d2/w2,φe−y

2/w2
)
|ψideal〉

where the parity is defined as above for the pure state density matrix,

ρ(y, z) = |ψ(y, z)〉〈ψ(y, z)|.

The parity Π thus becomes a function of y and z as well, with the measured parity

curve being the average parity function given by

Π =
1

(2s)(2s)

∫ s

−s

∫ s

−s
dydz Π(y, z) (4.17)

Figure 4.4 shows simulated parity curves for an ideal final state followed by an ana-

lyzer pulse that has an increasing beam steering amplitude. In actuality, the beam

steering affects the gate itself as well, but since the coupling strength is proportional

to the square root of the product of the intensities on the ions, the coupled nature
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Figure 4.16: Simulated decay of two ion parity from beam steering.
No steering: red, 200 nm amplitude: blue, 400 nm amplitude: green, 600 nm

amplitude: purple.

of the z deflection error pushes the error to second order. This is not true for the

vertical direction, but even with that error, the effect on the gate evolution operator

is only to add a slight error to the geometric phase term. All together, beam steering

alone contributes an offset of ∼5% to the measured fidelity. This remains true for

the five ion data in the next section.

4.5 Five ion data

For the next set of experiments, we increased the number of ions in the chain

to five (Fig. 4.17). For five ions, the superiority of the multi-segment pulse scheme

is even clearer. Instead of scanning a range of detunings to verify the theory as in

the two and three ion data, with the five ion chain the goal was to show more of a

practical advantage to the technique by demonstrating that the best multi-segment

gate is significantly better that the constant pulse gate, regardless of detuning.
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Figure 4.17: Image of five ion chain on intensified CCD camera.

Along the way we discovered some additional advantages to the scheme, including

the robustness against detuning fluctuations and the opportunistic suppression of

optical spillover effects. These topics are covered in the next few sections. Finally,

we used the pulse shaping technique to perform sequential two-ion entangling gates

to create a genuinely tripartite entangled “cat” state of three ions out of the five ion

chain. This last demonstration required us to shuttle the ions between the coherent

operations to pairwise and individually address the qubits.

The theoretical plots for constant, five segment, and nine segment pulses for

a ∼200 µs gate are shown in Fig. 4.18 for ion pairs {1, 2} and {2, 3} for transverse

trap frequencies 2π × {2.47, 2.51, 2.54, 2.57, 2.59} MHz and a 2π×315 kHz axial

frequency. We found that there was no noticeable improvement in the entangled

state fidelity when using more than nine segments across a range of detunings.

This is expected, because the theoretical difference between the eleven segment

“full control” pulse shapes and the nine segment pulses is less than a percent for

almost all detunings, which is unresolvable given our experimental errors. The best

fidelities we achieved for the nine segment gates were 95% for both the {1, 2} and

the {2, 3} pairs, as shown in Fig. 4.19. The best constant pulse gate performance

we attained was a fidelity of 81% for pair {1, 2}. Each of these gates were driven
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Figure 4.18: Theoretical fidelity and power curves for a five ion chain.
Fidelity and associated maximum pulse amplitudes for optimized constant (black)
gate pulses, and five (blue) and nine (red) segment gate pulses on ion pair {1, 2}.
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Figure 4.19: High fidelity entanglement of different pairs in a five ion chain.
(a) Ion pair {1, 2} detuning and corresponding pulse shape and parity curve. (b)
Ion pair {2, 3} detuning and corresponding pulse shape and parity curve.

at different detunings, selected to maximize both the two-qubit fidelity as well as to

optimize the sequential gate performance. The gate on {1, 2} was performed at a

gate detuning given by (rC , rT ) = (-3.3125, -1). The gate on {2, 3} was performed

at a gate detuning given by (rC , rT ) = (-2.701, -1). And the constant pulse gate on

{1, 2} was performed at a gate detuning given by (rC , rT ) = (1, 5).

4.6 Robustness to detuning fluctuations

The constant pulse gate performed significantly worse than the theoretical

curve predicts. Part of this is explained by beam steering as detailed above, but

part of it has to do with the fact that our trap frequencies drifted in unpredictable
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ways during the course of the experiments. Due to an unfortunate feature of the

trap assembly design, heat from the Yb ovens has a conductive path to the trap

structure. During loading, the trap frequencies shift on the order of 10 kHz and

slowly drift back as the trap structure cools. The random duty cycle of loading

ions throughout the day causes the speed and even direction of the sideband drift

to be unpredictable, making it infeasible to characterize and compensate for it. To

perform gates, we monitored the sideband frequencies and waited until the drift

speed was about 1 kHz/min or slower if possible. Even so, the drift effectively

created a detuning error on most of the operations.

One of the practically useful features of the segmented pulse gates is that they

are typically more robust against detuning errors or fluctuations. As the number

of segments increases and the gate performance approaches the ideal, there is more

detuning bandwidth within which the optimal pulse shape solutions do not rapidly

change. Figure 4.20 shows a theory plot comparing a constant (blue) vs a nine

segment (black) pulse. The upper portion is the optimal fidelity curve for each.

The lower portion is a plot of a parameter that characterizes the stability of the

solutions against detuning fluctuations. To simulate a detuning fluctuation, each

pulse shape is applied to neighboring detunings within a small bandwidth. The

resulting fidelities are fit to a second order polynomial, and the quadratic coefficient

is taken to characterize the stability of the solution. For the regions of interest,

where the optimal fidelity curve is maximal, the stability parameter will therefore

be small negative numbers, approaching zero for increasingly stable solutions. In the

figure, the blue dashed line shows the detuning for the best constant pulse gate, and
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Figure 4.20: Detuning stability comparison.
The detuning stability for constant (blue) vs nine segment (black) pulses on ion
pair {2, 3}. The bottom curves represent the robustness of the pulse solutions to
fluctuations in detuning. The magnitude is proportional to the sensitivity of the
solution to detuning errors, so closer to zero is more stable. The bandwidth sampled
for the polynomial fit is ±2 kHz.
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the black dashed line shows the detuning at which the high fidelity nine segment

gate was performed. In the constant pulse case, the stability parameter is very

large (literally off the chart), while the nine segment pulse solution is much more

stable. It is not surprising then, that given an equal amount of detuning drift in our

experiments, the constant pulse gate suffered significantly more. When selecting

a detuning to perform a gate, sometimes compromises must be made between the

detuning stability and minimizing the required power; hence, the chosen detuning

for the nine segment pulse is not quite the most stable point, but it demands less

optical power. Fortunately, as the number of segments increases, it is easier to

satisfy both of these criteria.

4.7 Suppression of optical spillover effects

As described above, the focused beam profile was not ideal, and the inten-

sity lobe on the one side resulted in significant spillover on the first ion when ion

pair {2, 3} was addressed. The consequence of spillover is the unintended spin-spin

coupling produced between the spillover ion and the target pair. Instead of only

one geometric phase term in the gate evolution operator, χ2,3, there are now two

additional terms χ1,2 and χ1,3. Given a spillover fraction f , the Rabi rates involved

in the terms are simply Ω1Ω2 = Ω1Ω3 = fΩ2Ω3. The resulting undesired entangle-

ment with the spillover qubit degrades the fidelity, as this introduces uncontrolled

spin-motion entanglement to the system.

The multi-segment pulse scheme provides an opportunistic way to suppress the
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effects of this kind of spillover. Using a constant pulse restricts us to effectively one

detuning, which couples strongly to the CM mode. The mode coupling parameter

for the first ion to this mode is relatively large, so spillover intensity will cause it

to accrue non-negligible geometric phase. To suppress this, we choose a detuning

between the fourth and fifth modes, to which the first ion couples most weakly.

Mathematically, the effective scale factor f is reduced by the additional factor η4,1

or η5,1 in the evolution operator.

While this method of suppression is not generally available, it was crucial

for allowing us to overcome a technical challenge with the beam focusing, and it

was accomplished simply by exploiting the freedom of detuning provided by the

segmented pulse scheme.
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Chapter 5: Gate sequences with shuttling

After demonstrating the power and versatility of the pulse shaping technique

by entangling various pairs of ions in chains of different lengths, we combined the

scheme with ion shuttling to demonstrate the programmable nature of our plat-

form by executing sequences of single qubit and pairwise entangling gates. First,

we concatenated the two nine segment gates described in the previous chapter to

generate a tripartite entangled state of three qubits in a chain of five ions, and we

used a method of post-selection to measure all six coherences of the state needed to

calculate the state fidelity. Next, we followed the two entangling gates by individual

qubit gates to transform the state into a “cat” state. By directly measuring the

contrast of the three-qubit parity, we were able to prove that the state exhibited

genuine tripartite entanglement. For fun, we also demonstrated a simple Grover

search on a two-qubit state immersed in a five ion chain using the same system.

5.1 Tripartite entanglement via sequential gates

In order to execute sequences of gates on different sets of ions in the chain,

we had to implement ion shuttling. That is, we displaced the ions along the axial

direction by smoothly varying the trapping potential. For this purpose we switched
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away from the Iseg EHS-80-05XK3 dc voltage supply used in the two and three ion

experiments and instead used a National Instruments PXI-6713 card. The PXI-

6713 is a high-speed DAC that can update eight independent output analog voltage

channels at a maximum speed of 740 kS/s, which corresponds to a minimum update

interval of 1.56 µs. It has a 14-bit DAC, and since the output ranges from ±10 V,

the available resolution provides a precision of 10/(2(14−1)) ≈ 1 mV. The card is

powered by a PXI-1000 chassis that connects it to the control computer via a PXI-

to-PCI interface card. Normally the DAC runs in a static output operating mode.

To shuttle the ions, an array of voltages, separated by uniform time intervals, is

specified for each electrode. These arrays of voltages as a function of time comprise

individual waveforms for the electrodes. The DAC is switched to a triggered output

modes such that upon receiving a trigger pulse from the sequencer FPGA, the DAC

outputs the waveforms and holds on the final value until it receives another trigger

to output the waveform again. Thus, the sequencer FPGA outputs a trigger pulse

for each execution of the experimental sequence.

The shuttling waveform is calculated automatically in a relatively simple way.

After specifying the voltage sets corresponding to each ion chain configuration in

the gate sequence, the voltages are linearly interpolated according to the specified

shuttling time, ts. The duration tm over which the DAC changes the output from

one voltage set to the next is given by tm = ts − tb, where tb is a buffer that allows

the ions to complete their motion. In most of the gate sequences, ts = 100 µs and

tb = 30 µs. The discrete jumps between the points in the linear ramp are made

as small as possible by updating the voltage at the maximum update rate of the
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DAC. The π filters before the dc electrodes have a cut-off frequency of ∼100 kHz

to ensure as little rf voltage leaks onto the dc electrodes as possible. This filter has

the side effect of smoothing out voltage changes driven by the DAC. Thus, even

though the slew rate of the DAC is on the order of 10 V/µs, a stepwise change to

the input voltage takes about 10µs to occur. This works to our advantage. The

primary concern when shuttling ions is that the act of applying the static force

will heat the motional modes, either directly or indirectly by pushing them off the

rf null where the trap rf can add heat [65]. Once the gate sequence has begun

after sideband cooling, it is currently impossible for us to cool the qubits again

without destroying the quantum state. Theoretically this could be accomplished

with ancilla ions in the chain whose sole purpose is to cool the crystal [66], but we

do not have this capability. The ions must therefore be moved adiabatically to avoid

direct heating. If the shuttling time is much longer than the trap period, and the

acceleration is small and smooth at the beginning and end of the transport, then

mode heating is avoidable. Our slow, linear ramp between voltages, coupled with

the smooth interpolation between the discrete DAC output voltages due to the π

filters, satisfies the adiabaticity criteria. Additionally, any small amount of heating

would predominantly be to the axial modes, since that is the direction of travel,

which would not significantly affect the transverse modes used by the gate.

The voltage sets corresponding to the single and two-qubit gates are deter-

mined prior to executing the sequence by statically setting them and adjusting the

voltages manually according to the performance of each gate. For the two entan-

gling gates, the position of the ions is adjusted to equalize the carrier Rabi rates
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on the target ion pairs. Then the first entangling gate on pair {1, 2} is performed

to determine the required 355 nm power. Using this optical power, the second gate

on pair {2, 3} is performed, scaling the pulse shape as necessary to achieve a good

gate. This is necessary because the ion spacing is not uniform, so the equalized in-

tensity on pair {2, 3} is lower than for {1, 2}. Single qubit rotations require aligning

a single ion to the center of the addressing beam and relaxing the axial confinement

to separate the ions enough to reduce spillover. The alignment of the ions to the

addressing beam is very sensitive to the voltage, and since the ion position drifts on

the order of 500 nm/min, the voltage sets need to be optimized as fast as possible

before immediately executing the gate sequence.

The state resulting from the application of two sequential entangling gates

U1(φ1) on ion pair {1, 2} and U2(φ2) on {2, 3} is (neglecting the normalization fac-

tors)

|ψGHZ〉 = U2(φ2)U1(φ1)|000〉

= U2(φ2)
(
|00〉 − ieiφ1|11〉

)
|0〉

= |000〉 − ieiφ2|011〉 − eiφ1|101〉 − ieiφ1|110〉

=
(
|00〉 − ieiφ1|11〉

)
|0〉 − ieiφ2

(
|01〉 − iei(φ1−φ2)|10〉

)
|1〉 (5.1)

This state is genuinely tripartite entangled [67–69] and is in the GHZ class of tri-

partite entangled states. It has the same type of entanglement as the well known

“Schrödinger cat” state with the form |ψcat〉 =
(
|000〉+ eiφ|111〉

)
/
√

2, where φ is

just some phase. These two states share the same class of entanglement because one

137



can be transformed to the other by only local operations and classical communica-

tion [69]. To transform our state |ψGHZ〉 to the cat state, we must shift the phase of

the second qubit by π/2 and then apply a global π/2 pulse to the three qubits. The

qubit phase shift operator R̂z(φ) rotates the qubit around the z axis of the Bloch

sphere, thereby advancing its phase only. Since our σ̂φ interaction does not allow

this operation directly, we can produce the same result using two R̂x and one R̂y

operators:

R̂z(φ) = R̂−x(π/2)R̂y(φ)R̂x(π/2)

= R̂(π/2, π)R̂(φ, π/2)R̂(π/2, 0)

Setting the gate phases to zero for clarity, and defining the global rotation opera-

tor R̂G(θ, φ) ≡ R̂1(θ, φ)R̂2(θ, φ)R̂3(θ, φ), the transformation is performed by (again

neglecting normalization factors)

|ψcat〉 = R̂G(π/2, 0)R̂2
z(π/2)|ψGHZ〉 (5.2a)

= R̂G(π/2, 0)R̂2
z(π/2) (|000〉 − i|110〉 − i|011〉 − |101〉) (5.2b)

= R̂G(π/2, 0) (|000〉 − |110〉 − |011〉 − |101〉) (5.2c)

= |000〉+ i|111〉 (5.2d)

The next few sections describe how we measured the fidelity for the state

|ψGHZ〉 in Eq. 5.1 by using post-selection to extract the required coherence ampli-

tudes from two-qubit parity curves (see Fig. 5.1). Then we applied the transfor-
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mation in Eq. 5.2d followed by a global analyzer pulse to measure the three-qubit

parity to prove the state was genuinely tripartite entangled (see Fig. 5.2).

5.2 Fidelity measurement using post-selection

The last line of Eq. 5.1 is written the way it is to highlight the structure of the

entangled state |ψGHZ〉. Any pair of qubits out of the three are in one of two Bell

states depending on the state of the remaining qubit. One of the Bell states has

odd parity (|01〉+ |10〉) and the other has even parity (|00〉+ |11〉). This structure

makes it possible to measure the necessary coherences of the three-qubit density

matrix using parity curves in order to calculate the fidelity of the state. To see how

this works, first we look at the ideal state density matrix,

ρideal =



1
4

0 0 i
4

0 −1
4

i
4

0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

− i
4

0 0 1
4

0 i
4

1
4

0

0 0 0 0 0 0 0 0

−1
4

0 0 − i
4

0 1
4
− i

4
0

− i
4

0 0 1
4

0 i
4

1
4

0

0 0 0 0 0 0 0 0



(5.3)

and identify the six coherences ρ03, ρ05, ρ06, ρ35, ρ36, and ρ56. Given a general three-

qubit density matrix ρgen defined similarly to the two-qubit density matrix in Eq. 4.12,
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the fidelity of the experimentally created state is given by F = Tr
[
ρideal · ρgen · ρ†ideal

]
,

which can be written

F =
1

4
(ρ00 + ρ33 + ρ55 + ρ66) +

1

2
(A03 + A05 + A06 + A35 + A36 + A56) (5.4)

if the phases of the coherences are allowed to be free parameters. In other words,

for the purpose of measuring how well the tripartite entangled state was produced,

the amplitudes of the coherences are all that really matter. The phases are critically

important, however, for the transformation to the cat state as discussed in the next

section.

Post-selection is the process of reducing the density matrix based on knowledge

of a qubit state. In the pure state of Eq. 5.2b, a post-selection of the third qubit in

the |1〉 state means that the first two qubits were in the state |01〉− iei(φ1−φ2)|10〉. A

post-selection of the third qubit in the |0〉 state means that the first two qubits were

in the state |00〉 − ieiφ1|11〉. This method is distinct from projection, in which the

state of the third qubit is measured before disturbing the coherence of the other two,

resulting in the probabilistic collapse of the two-qubit state into either of the Bell

states depending on the measured state of the third. Post-selection is performed

after the qubit states have all been measured.

To extract the coherences for the fidelity, we generated six unique two-qubit

parity curves after creating the ρGHZ state by scanning the phase of one or both

of the analyzer pulses we applied to each two-qubit subset of the three entangled

qubits. For example, if we apply analyzer pulses to qubits 2 and 3 of the general
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state ρgen and scan the phases of both, then post-select the data in which qubit 1 is

in the |0〉 state, the resulting parity curve is:

Π(φ) = Select[|0〉1]R̂2(θ, φ)R̂3(θ, φ)|ψGHZ〉

=
1

ρ00 + ρ11 + ρ22 + ρ33

2 (A12 cos (φ12)− A03 cos (2φ+ φ03))

As before, the two-qubit parity curve is a sinusoid of period π with an amplitude

proportional to a coherence, with an offset given by the amplitude and phase of

another coherence. For the ideal state, this operation yields a sinusoid with an

amplitude equal to that of the coherence ρ03. If instead we post-select the |1〉 state

for qubit 1, and only scan the phase of one of the analyzer pulses, the parity curve

becomes

Π(φ) = Select[|1〉1]R̂2(θ, φ)R̂3(θ, 0)|ψGHZ〉

=
1

ρ00 + ρ11 + ρ22 + ρ33

2 (A56 cos (φ+ φ56)− A47 cos (φ+ φ47))

This parity curve is slightly different, in that the periodicity of the sinusoid is 2π

instead of π, and the undesired coherence ρ47 contributes a competing sinusoid

(depending on its phase) instead of simply adding an offset. The important point

is that for small values of ρ47, the parity curve amplitude measures the desired

coherence ρ56. The other four permutations of post-selecting the state of qubits 2

and 3 in states |0〉 and |1〉 yield parity curves proportional to the remaining four

coherences required to measure the fidelity of the state |ψGHZ〉.
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Figure 5.1: Post-selected parity curve and the measured populations.
(a) The gate sequence, including the analyzer pulse to generate the parity curves.
(b) An example of the population and parity curve contrast data to measure two
coherence amplitudes.

The parity curves required individual addressing of two out of the five qubits,

due to the fact the post-selected qubit could not be allowed to rotate while the

analyzer pulse was applied to the other two. Figure 5.1(a) illustrates the procedure

by showing the gate sequence for measuring the two-qubit parity between qubits 1

and 2 while post-selecting on qubit 3. The ideal state populations have 75% in a

state with two bright ions and 25% in a state with all dark. Part (b) of the figure

shows the measured populations and the two parity curves measured.

The final state fidelity we calculated after measuring the populations and the

six coherences was 79%. This value is very close to what we expected, given that each

gate fidelity was about 95% and the post-selection procedure had a 7% error (95%×

95%× 93% = 84%). The error in the post-selection was a direct consequence of our

pathological bright state histogram (see Sec. 2.4.3). The post-selection process is a

“single shot” determination of the state of a qubit based on the number of photons
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collected during the detection cycle. Our optimized state detection fidelity using this

method of discrimination was abnormally low due to the mysterious optical pumping

of the bright state during the detection cycle that we were unable to suppress.

5.3 Proving genuine tripartite entanglement

To demonstrate the programmable nature of our system, we performed the

gate sequence in Eq. 5.2d to create a cat state and then proved that the state was

genuinely tripartite entangled by measuring the amplitude of the three-qubit parity

curve. The successful application of this gate sequence required careful calibration

and control of the optical phase at each ion for each gate. As mentioned in Ch. 3,

the optical phase is mapped onto the entangled state and also directly determines

the phase of the individual qubit rotations. For ions in a constant position relative

to the Raman beams, the phases can simply by defined as zero and are no longer a

concern. For our gate sequences, however, the two-qubit entangling gates and the

single qubit gates see different optical phases because the ion positions change with

respect to the laser beam for each gate.

We measured the phase shift across the addressing beam profile by applying

two π/2 pulses to a single ion at different positions relative to the center of the

beam, compensating for the variation in Rabi rate due to the drop in intensity. By

scanning the phase of the π/2 pulse at the displaced position, the resulting Ramsey

type fringes are shifted by the difference in optical phase between the two positions.

A simple sinusoidal fit yields the phase offset as a function of displacement. The
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measured profile was consistent with a misalignment of the ∆k by about 1◦, for

which the optical phase shifts about 45◦ over ∼2 µm, with some distortion due to

spherical aberrations on the beam.

In addition to the operations required to create the cat state in Eq. 5.2d, we

applied an analyzer pulse to each qubit as shown in Fig. 5.2. The parity curve in

the figure was produced by scanning the phase of these analyzer pulses together and

plotting the three-qubit parity given by

Π3(ρ) ≡ (ρ00 + ρ33 + ρ55 + ρ66)− (ρ11 + ρ22 + ρ44 + ρ77)

The fitting of the state detection histograms for the three-qubit state required the

additional basis histogram for the |111〉 state. Thus, the parity is calculated experi-

mentally by the sum P0 +P2−(P1 +P3), where the populations Pj are determined by

fitting the histograms as described in Sec. 2.4.3. If the contrast of this parity curve

is above 50%, the coherence ρ07 of the three qubit density matrix is large enough to

prove that the state has genuine tripartite entanglement. By fitting the measured

parity curve to a simple sinusoid of periodicity 2π/3, we calculated a contrast of

∼70%.

The parity curve contrast is the strictest possible measure of the entanglement

and is highly susceptible to the various gate errors. Figure 5.2 also shows a simulated

curve (blue) of the parity curve we would expect given a perfect cat state but

including known errors in our single qubit gates. Specifically, these errors are the

result of the fact that the ion position drifted due to charging issues as mentioned
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Figure 5.2: Three-qubit parity curve showing genuine tripartite entanglement.
(top) Gate sequence on the five ion chain. XX denotes the entangling gate and Rz

denotes the R−xRyRx rotations that produce a z rotation. (bottom) The cat state
parity curve. The red curve is a strict sinusoid fit with frequency 3. The dashed
blue curve is a simulated parity curve assuming a perfect cat state but accounting
for known gate errors.

145



earlier. This drift caused errors in the rotations because the the intensity at the

ions changed, leading to under-rotations on the order of 5-10%. Additionally, the

position drift shifted the optical phase on the ion, causing a phase error on the

order of 10◦. The resulting curve manifests asymmetries in the shape that are not

intuitively obvious but that match our measured curve fairly well. This leads us to

conclude that our actual cat state fidelity was significantly higher than the strict

parity curve fit would suggest.

5.4 Simple Grover search algorithm on two qubits

The gate sequence we used to perform the cat state experiment is similar in

complexity to the sequence required to execute the simplest Grover search algorithm

on two qubits in a chain of five ions. Without going into more detail than neces-

sary, the Grover search algorithm is a method of searching an unsorted database

quadratically faster than any current classical algorithm [9]. The perhaps over-used

analogy is searching a phonebook of N entries for a name based given a known

phone number. Classically this would take on the order of N queries, but if the cor-

relation between the names and numbers were encoded in qubits, the Grover search

algorithm would only require on the order of
√
N queries. Brickman describes in

her thesis [70] how to implement the algorithm in a simple way on a two-qubit sys-

tem. We reproduced a small portion of her results using the method she details.

The gate sequence is shown in Fig. 5.3, displaying only the two target qubits since

the other three are simply spectators that complicate the mode structure in this
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Figure 5.3: Grover search algorithm on two qubits.
The red dashed box comprises the “oracle” that marks the desired state by inverting
its phase relative to the other states. The blue dashed box is the amplification stage.

demonstration. The algorithm is as follows: After initializing the qubits to the |0〉

state, a π/2 pulse is applied to both ions to place them in an equal superposition of

all four two-qubit basis states. This state represents the database of four elements

that will be searched. The rotations R̂(α, α) and R̂(β, β) select which of the four

entries are to be found. The values α = β = 0 correspond to a search for the

state |11〉. The next sequence of gates, enclosed by the dashed red line, execute a

controlled-Z gate that “marks” the desired state by flipping its phase relative to the

other states. This part of the algorithm is called the “oracle”. Once marked, an

amplification step is performed that increases the population in the search query

state (if the state is indeed in the database). This step is repeated as many times

as necessary to reach a sufficient level of certainty about whether or not the query

was found. In the two-qubit case, only one amplification step is required to provide

100% certainty about whether or not the state has been found. This step is outlined

by the dashed blue line. It consists of another π/2 pulse on each ion followed by a

second entangling gate.

The resulting population in state |11〉 was measured to be 70(2)%, with 16(2)%

in the odd parity states and the remainder in the |00〉 state. The search was thus
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successful, and the algorithm unambiguously exceeded the classical limit of 50%. It

is unclear why the value is so much lower than the ∼90% expected based on the gate

fidelity and the fact that this search did not require shuttling. Unfortunately, we did

not have much time to troubleshoot this fun side project as we were beginning work

on the next version of our linear trapped ion crystal quantum information processor,

which is described in the next chapter.
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Chapter 6: Outlook

Virtually all of the errors and limitations of our current system are due to

the ion trap and chamber design; the chamber was simply not designed for these

experiments. We are in the process of constructing a new ion trap and chamber

suited beautifully to our needs, and in this brief chapter a description of the new

apparatus is presented.

6.1 Improved ion trap and vacuum chamber

The new ion trap is a “blade” trap, consisting of four planar electrodes ar-

ranged into a geometry with a cross section resembling an ‘X’. The angle and spac-

ing of the blades are configured to provide high numerical apertures for both the

counter-propagating Raman beams, which are aligned in the horizontal direction

perpendicular to the ion chain, and the imaging objective, which collects fluores-

cence perpendicular to the chain in the vertical direction. Two opposing blades each

have five dc electrodes, with a total length sufficient to ensure a high degree of lin-

earity to the trap potential. Five electrodes will allow for the application of a quartic

term to the axial potential to enable uniform ion spacing in chains with more ions,

which will be critical for both individual addressing and individual state detection
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with the multichannel PMT array. The other two blades supply the rf voltages and

are independently dc biased to provide principal axis rotation. Reentrant viewports

will allow the focusing objectives for both Raman beams to achieve sub-micron spot

sizes for ideal individual addressing with exceptionally low spherical aberration on

the beams, drastically reducing spillover on neighboring qubits and charging from

355 nm scatter on the trap electrodes and assembly. Optical access along the ion

chain axis will allow for extremely uniform intensities of the 369 nm optical pumping

and detection beams with maximally efficient use of available optical power. This

will be important as more of the 369 nm power must be diverted to the cooling

beam for holding long chains. The vacuum chamber sports a new ion pump with an

integrated NEG cartridge ∗, as well as vastly superior vacuum conductance between

the ion pump and the spherical cube that houses the ion trap. Additionally, strips

of NEG material will be placed nearby the ion trap assembly to add strong local

pumping. The enhanced quality of the vacuum will be necessary for longer chains to

remain crystallized long enough to perform complex gate sequences. The Yb ovens

will be small resistively heated metallic tubes positioned relatively far from the trap

assembly and having no thermal contact with it. This should aid in maintaining

stable motional mode frequencies independent of loading duty cycles.

6.2 True arbitrary pair entanglement

Currently there is only one addressing beam, limiting us to performing entan-

gling gates between adjacent pairs only. True arbitrary two-qubit gates require two

∗SAES NEXTorr pump
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addressing beams, assuming the counterpropagating Raman beam is still a global

one. Given that the act of cleanly focusing onto single ions should be relatively triv-

ial in the new design, there are multiple ways we can implement arbitrary sequences

of single and two-qubit gates. The first way is by combining our shuttling capability

with a stationary addressing beam and a dynamic addressing beam steered by an

EO deflector∗. One ion in the target pair can be aligned to the stationary beam

by shuttling the entire chain. The other ion would be addressed by deflecting the

dynamic beam using the EO deflector. Since the beam deflection is proportional to

a ±2 V analog signal input to the EO deflector controller, the DAC system that

generates the shuttling waveforms can be duplicated to drive the EO deflector in

identical and parallel fashion.

Alternatively, we are exploring the possibility of using a unique multi-channel

AOM† that could produce up to 32 independently controllable 355 nm beams from

a single input. The array of beams could be focused in parallel with fixed alignment

to each ion in the crystal, with one or more AWGs multiplexed to simultaneously

drive the appropriate channels for a specified gate. The obvious advantage to this

scheme is that the slow down and complications associated with shuttling disappear,

but probably at the cost of focused beam quality. There is a recent proposal [71]

that would be perfectly suited to this system. Using multiple phase coherent beams

to address ions neighboring the target ions, it should be possible to cancel spillover

from the primary beam by careful calibration of the extra beam amplitudes. These

∗ConOptics Model M310A
†Harris Model H-601
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compensation beams need not be perfectly aligned or have ideal mode profiles either;

they simply need to be coherent and stationary. Such a scheme would require some

additional laser power as well as either additional AWGs or low-noise, dynamic rf

attenuators since the compensation beam amplitudes should have fixed ratios with

respect to the primary beam.

6.3 Conclusion

The experiments detailed in this thesis are exciting for both the trapped ion

quantum information community and for our lab’s future. They benefit the commu-

nity by conclusively demonstrating the power and versatility of the pulse shaping

technique for improving the fidelity of entangling gates on trapped ion chains. For

our research group, the hardware and software developed to make the experiments

possible comprise an essentially complete toolbox for performing arbitrary gate se-

quences in future experiments. The potential for the variety of physics we can do

with such a system is limited only by our creativity and the support of theorists.
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