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ABSTRACT

QUANTUM TELEPORTATION BETWEEN DISTANT MATTER QUBITS

by
Steven Matthew Olmschenk

Co-Chairs: Christopher R. Monroe and Luming Duan

Quantum information research is driven by the prospect of using the features of

quantum physics to tackle otherwise intractable computational problems. Systems

of trapped atomic ions have proven to be one of the most promising candidates for

the realization of quantum computation due to their long trapping times, excellent

coherence properties, and exquisite control of the internal atomic states. Integrat-

ing ions (quantum memory) with photons (distance link) offers a unique path to

large-scale quantum computation and long-distance quantum communication. In

this work, I present the implementation of a heralded photon-mediated quantum

gate between remote ions, and the employment of this gate to perform a telepor-

tation protocol between two ions separated by a distance of about one meter. A

quantum bit stored in the hyperfine levels of a single ytterbium ion (Yb+) is tele-

ported to a second Yb+atom with an average fidelity of 90% over a replete set of

states. The method demonstrated here avoids many of the issues associated with

previously demonstrated motional gates, while presenting a new set of challenges

and possibilities for integration to larger systems. Ultimately, this teleportation pro-

xii



tocol could form the elementary constituent of a long-distance quantum repeater.

Moreover, this heralded quantum gate could be used to establish large entangled

states for measurement-based quantum computation.
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CHAPTER I

Introduction

“Begin at the beginning,” the King said, gravely, “and go on till you come to the end:
then stop.”
–Lewis Carroll, Alice’s Adventures in Wonderland

Quantum information research has the potential to drastically alter the fields of

communication and computation. Efforts in quantum computation are driven by

the prospect of using the features of quantum physics to tackle otherwise intractable

computational problems. It was realized early on that controllable quantum systems

may be used simulate larger quantum systems far more efficiently than is possible

using conventional computers [1], and that individual quantum systems might be

used as quantum bits (qubits) for information processing [2]. While both of these

instances were crucial points, interest in quantum information increased dramatically

in 1994 when Peter Shor unveiled an algorithm that could be implemented on a

quantum computer that would enable an exponential speed-up in the factorization

of large numbers [3]. Given that current encryption techniques, such as the RSA

algorithm (App. A), rely on the relative inability of a conventional computer to

factor large numbers, Shor’s factorization algorithm linked quantum computation to

the immediate and important issue of code-breaking.

On the other hand, quantum information research has also yielded a new method

of secure communication, where the security of the encrypted information is guar-
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anteed not by a lack of efficient mathematical or computational algorithms, but by

the physical quantum properties of the information carriers. It has been shown that

entangled pairs of qubits can be used to securely transfer information, where the

presence of an eavesdropper is immediately detected by the measurements made

during the protocol [4, 5]. The essential component for this protocol is the quantum

no-cloning theorem (Sec. 2.2), which proves quantum physics prohibits the cloning

(copying) of an unknown quantum state [6]. Thus, by using a quantum commu-

nication protocol with pairs of correlated qubits, the presence of an eavesdropper

measuring the transmitted qubit destroys the correlations, thereby announcing their

presence before any information is transmitted.

Of course, the same features of quantum mechanics that are used to ensure the

security of communication also prevent a simple “read-and-send” approach to trans-

mitting quantum information. Any attempt to read or measure a quantum superpo-

sition state results in a single answer, and thereby lacks the information needed to

reconstruct the probabilities of the quantum superposition. While an estimation of

an unknown quantum state could be obtained by simply measuring a large number

of copies of that state, the quantum no-cloning theorem forbids generating identical

copies of a single unknown quantum state. Nevertheless, a quantum state can still be

transferred through the process of quantum teleportation [7]. In the quantum tele-

portation protocol, a quantum state initially stored in system A can be recovered at

system B without ever having traversed the space between the systems. The ability

to teleport quantum information is an essential ingredient for long-distance quantum

communication and may be a vital component to achieve the exponential processing

speed-up promised by quantum computation. The essence of quantum teleportation

lies in the non-local correlations, or entanglement, afforded by quantum physics.

2



Quantum communication and quantum computation both use entanglement as an

essential resource. Entanglement is the quantum correlations between systems that

do not have well-defined individual properties. Mathematically, an entangled state is

one that cannot be written as a product of individual quantum states; the state is not

separable (for examples, see Sec. 2.1). In addition to being useful for quantum com-

munication and quantum computation, entanglement embodies the counter-intuitive

depiction of nature predicted by quantum physics, and allows for explicit experimen-

tal tests of quantum theory [8]. Entanglement has been observed in a wide variety

of systems, including photons [9], atomic ions [10], superconducting Josephson junc-

tions [11], and neutral atoms in cavities [12], confined by an optical lattice [13], and

in small ensembles [12]. Hybrid systems composed of a single photonic qubit and a

matter qubit (ion [14], ensemble [15], or atom [16]) have also shown entanglement.

Here, we will focus on photons and atomic ions, both of which have already proven

amenable to applications in quantum information.

Atomic ions are one of the most promising systems for quantum information pro-

cessing due to their long trapping times, excellent coherence properties, and exquisite

control of the internal atomic states. To date, the largest entangled states of individ-

ually addressable qubits has been an 8-particle W-state [17] and a 6-particle GHZ

state [18], both of which were realized in systems of trapped atomic ions and used

the collective motion of the confined atoms to implement the entangling protocol.

Effort is now focused on scaling this system to larger numbers of qubits. One ap-

proach to scaling in this system [19], which was the focus of my earlier research,

is to use microfabricated ion traps [20, 21] and advanced ion trap arrays [22, 23].

Since these deterministic gate operations utilize the common modes of motion of

the trapped ions, an understanding of motional decoherence is also actively being

3



pursued [24, 25, 26].

Photons, on the other hand, are a natural choice of qubit for communication pur-

poses, as they can quickly traverse the distance between locations with only small

perturbations to the encoded quantum information. Already, a series of seminal ex-

periments have used photons in quantum communication protocols over distances

as large as 144 km [27]. Ultimately, though, the direct communication of quan-

tum information over long-distances is impeded by the attenuation of light traveling

through optical fibers; even at telecom wavelengths, which experience the least at-

tenuation in fiber, the probability of transmitting a single photon over 1000 km is

< 10−20. Current fiber-optic information transfer mitigates the loss in signal am-

plitude by introducing repeaters along the transmission path to “boost” the signal

along the way. Although application of the standard model of a repeater to quan-

tum information is prohibited by the no-cloning theorem, an analogous “quantum

repeater” has been suggested to enable the transfer of quantum information over ar-

bitrary distances [28, 29]. In this method, the distance between two points is broken

up into a series of shorter segments, with a quantum memory at each connection

point, or node. Entanglement can then be established between pairs of nodes, and

subsequent segments connected via entanglement swapping, which is used to extend

the entanglement over the entire length of the repeater. The final step is to use this

long-distance entanglement as a resource to transfer quantum information over that

distance by the process of quantum teleportation.

Integrating atomic ions (quantum memory) with photons (distance link) offers a

unique path to large-scale quantum computation and long-distance quantum com-

munication. Combining ions with photons enables long-distance quantum operations

between stable quantum memories. These photon-mediated operations are insensi-

4



tive to the motional state of the ions, and thus are unaffected by motional heating

and do not require ground-state cooling. Moreover, the two-photon scheme pre-

sented here is not interferometrically sensitive to the optical path length difference.

Large-scale implementation may also be simplified by avoiding the need for complex

trap arrays that allow for shuttling ions. In addition, since these operations are

mediated by photons, it may be possible to create hybrid matter quantum systems:

interfacing atoms with solid-state qubits, such as quantum dots or NV centers. Fi-

nally, while this photon-mediated operation is inherently probabilistic, it can still

be efficiently scaled to enable generation of the large entangled states required for

quantum information processing.

In the following chapters, I present the experimental implementation of prob-

abilistic quantum gate, and employment of this gate in a quantum teleportation

protocol to transfer a qubit between two atomic ions separated by one meter. We

begin in Chapter II by overviewing some basics of quantum information, including

the criteria for universal quantum computation. As indicated above, we have chosen

to perform these experiments using photons and trapped atomic ions, so in Chap-

ter III we explore the basics of trapping charged particles, and the construction of

our ion trap system. Next we delve into the specifics of our atomic qubit, the yt-

terbium ion (Yb+), in Chapter IV. Chapter V presents the two-photon interference

effect. In Chapter VII are the results of the experimental implementation of the

heralded quantum gate. Finally, Chapter VIII illustrates the use of this gate in the

long-distance teleportation protocol. Chapter IX concludes with an overview of the

potential practical application of these results to long-distance quantum communi-

cation and large-scale quantum computation.
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CHAPTER II

Quantum Information Basics

“There are 10 kinds of people in this world: those who understand binary, and those
who don’t.”
–Anonymous

2.1 Quantum computation requirements

The quantum bit (qubit) is the basic, fundamental component of a quantum

computer. While a binary digit, or bit, in a classical computer only assumes a

value of either “0” or “1”, quantum physics allows a qubit to be in an arbitrary

superposition of states:

|ψ〉 = α|0〉+ β|1〉

where α and β are two arbitrary complex numbers that satisfy |α|2 + |β|2 = 1.

These superpositions are what give quantum computation its power. Notice that

two classical bits can be in any one of the four possible configurations 00, 01, 10, or

11, but in any configuration is still only two bits of information. Two qubits, on the

other hand, can simultaneously be in all four possible states:

|ψ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉

In general, n qubits can be in 2n states simultaneously. The goal of quantum com-

putation is to exploit this massive encoding to perform deterministic information

processing.
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Of course, measurement of the quantum state |ψ〉 will only yield one of the states

|00〉, |01〉, |10〉, or |11〉, with probability |α|2, |β|2, |γ|2, and |δ|2, respectively. So

at first glance, it would appear that we have not really gained anything! Neverthe-

less, it turns out that it is possible to capitalize on the large encoding afforded by

quantum superpositions by tailoring the computation in such a way that the various

superpositions interfere. Interference allows the otherwise probabilistic measurement

process to yield a deterministic result. In analogy to current computer science, the

operations used to manipulate the qubits and invoke the interferences between them

are referred to as quantum gates.

The necessary and sufficient conditions required to implement universal quantum

computation protocols have been explicitly stated to be [30]:

• state initialization of the qubits

• long-lived coherences

• universal set quantum gates

• efficient qubit measurment

• scalable to large numbers of qubits

Of the requirements above, perhaps the most opaque is the stipulation of a “univer-

sal” set of quantum gates. Basically, this means we require a finite set of operations

that can be concatenated to perform any arbitrary operation. It has been shown

that a universal set of quantum gates consist of single-qubit gates and a two-qubit

controlled-NOT (CNOT) gate [31].

Single qubits gates, restricted to the their two-dimensional Hilbert space, can be
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simply written as combinations of the usual Pauli operators. As matrices, these are:

σ̂0 =

 1 0

0 1

 , σ̂1 =

 0 1

1 0

 , σ̂2 =

 0 −ı̇

ı̇ 0

 , σ̂3 =

 1 0

0 −1

 (2.1)

For instance, the action of a σ̂1 gate is σ̂1|0〉 = |1〉. A single qubit gate of particular

interest is the Hadamard gate, defined as Ĥd = 1/(
√

2)(σ̂1 + σ̂3). The action of the

Hadamard gate can be seen from Ĥd|0〉 = 1/(
√

2)(|0〉+ |1〉).

The two-qubit CNOT gate is defined as the operation Ûcnot such that

Ûcnot|00〉 = |00〉

Ûcnot|01〉 = |01〉

Ûcnot|10〉 = |11〉

Ûcnot|11〉 = |10〉 (2.2)

which can be succinctly phrased “if the first qubit is |1〉, flip the second.” The process

of implementing this two-qubit quantum gate is intimately related to the concept of

entanglement. As mentioned in the previous chapter, two systems are entangled if

the quantum state is not separable. As an example, the quantum state describing

systems a and b

|ψ〉un =
1√
2

(|0〉a|0〉b + |1〉a|0〉b) (2.3)

is not entangled because it can be factored to

|ψ〉un =
1√
2

(|0〉a + |1〉a) |0〉b (2.4)

and thus a measurement of system a does not impact the result of a measurement

on system b. On the other hand, the state

|ψ〉en =
1

2
(|0〉a|0〉b + |1〉a|1〉b) (2.5)
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is entangled. The relation between entanglement and the CNOT gate can be seen

by the action of the CNOT gate on the unentangled state of Eq. 2.3.

Ûcnot|ψ〉un = Ûcnot
1√
2

(|0〉a|0〉b + |1〉a|0〉b)

=
1√
2

(
Ûcnot|0〉a|0〉b + Ûcnot|1〉a|0〉b

)
=

1√
2

(|0〉a|0〉b + |1〉a|1〉b) (2.6)

Thus, the CNOT gate transforms the unentangled state |ψ〉un into the entangled

state |ψ〉en. In light of this relation, entanglement can be viewed as a fundamental

resource for quantum information processing.

The subsequent chapters detail how a qubit stored in a single ytterbium ion

(Yb+) satisfies the above criteria necessary for universal quantum computation. In

Chap. IV, we demonstrate efficient state initialization through optical pumping,

single-qubit gate operations using microwave radiation, long-lived coherences, and

high-fidelity measurement of the qubit state through state dependent fluorescence.

While the implementation in Yb+is relatively recent, all of these items have been

demonstrated previously in other atomic ion species [10]. The focus of this thesis is

the implementation of a heralded two-qubit quantum gate, which is an entirely new

approach to the trapped ion quantum computer. Ultimately, we use this quantum

gate to perform a quantum teleportation protocol between two atoms in independent

vacuum chambers, separated by a distance of about one meter. In addition to serv-

ing as a demonstration of a simple quantum algorithm, quantum teleportation can

be used to transfer fragile quantum information, in spite of the quantum no-cloning

theorem.
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2.2 Quantum no-cloning theorem

As aforementioned, the quantum no-Cloning theorem prohibits copying an un-

known quantum state [6]. Given the relevance of the theorem to the teleportation

protocol, we present a short proof below.

Theorem 2.2.1 (Quantum No-Cloning Theorem) If |ψ1〉 and |ψ2〉 are two non-

orthogonal distinct states, there does not exist a quantum evolution (unitary opera-

tion) that perfectly copies these two states.

Proof Given that |ψ1〉 and |ψ2〉 are distinct and nonorthogonal states, then

〈ψ1|ψ2〉 = a 6= 0, 1

Let’s do a proof by contradiction. Suppose there exists a unitary operator U such

that

U |ψ1〉 = |ψ1〉|ψ1〉

U |ψ2〉 = |ψ2〉|ψ2〉

Then,

a = 〈ψ1|ψ2〉 = 〈ψ1|I|ψ2〉 = 〈ψ1|U †U |ψ2〉 = 〈ψ1|〈ψ1|ψ2〉|ψ2〉 = a〈ψ1|ψ2〉 = a2

So, we have found

a = a2

which implies,

a = 0, 1

a contradiction. →←
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The essential point of the preceding proof is that an unknown quantum state cannot

be perfectly copied. As discussed earlier, this result is of fundamental importance

for the security of quantum communication protocols, and highlights the importance

of quantum teleportation for the transfer of quantum information.

2.3 Quantum teleportation

Quantum teleportation was first proposed by Bennett et al. in 1993 [7]. Teleporta-

tion aims to utilize a shared entangled state as a means to transfer quantum informa-

tion. Suppose we need to transfer the unknown quantum state |ψ〉t = α|0〉a1 +β|1〉a1

from our site at a to another site, b. Since we only have a single copy, we are unable

to estimate the probabilities |α|2 and |β|2 through measurement. Moreover, by the

quantum no-cloning theorem, we are unable to make this a possibility by generating

additional copies of the state. Fortunately, we are able to generate a maximally

entangled state between the sites a and b, and perform single-qubit gates and mea-

sure our two qubits at site a in the Bell state basis; enough to perform quantum

teleportation.

The maximally entangled Bell states, also called Einstein-Podolsky-Rosen (EPR)

states, are defined as:

|ψ−〉i,j =
1√
2

(|0〉i|1〉j − |1〉i|0〉j)

|ψ+〉i,j =
1√
2

(|0〉i|1〉j + |1〉i|0〉j)

|φ−〉i,j =
1√
2

(|0〉i|0〉j − |1〉i|1〉j)

|φ+〉i,j =
1√
2

(|0〉i|0〉j + |1〉i|1〉j) (2.7)

where the subscripts i, j denote the two systems. Although the act of measuring in

the basis defined by the Bell states can be experimentally challenging, we will just
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assume that we have that capability at site a for now.1

The teleportation protocol begins by entangling an auxiliary qubit at a with the

qubit at site b set to receive the information. At this time, we will assume we are

able to generate the |ψ−〉a,b state between a and b. After producing this state, we

can write the state of the entire system as:

|Ψ〉 = |ψ〉t|ψ−〉a,b

=
1√
2

(α|0〉a1 + β|1〉a1) [|0〉a|1〉b − |1〉a|0〉b]

=
1√
2

[α|0〉a1|0〉a|1〉b + β|1〉a1|0〉a|1〉b − α|0〉a1|1〉a|0〉b − β|1〉a1|1〉a|0〉b]

Using Eq. 2.7, we rewrite the states of the qubits at site a in the Bell basis.

|Ψ〉 =
1√
2

[
α

1√
2

(
|φ+〉a1,a + |φ−〉a1,a

)
|1〉b + β

1√
2

(
|ψ+〉a1,a − |ψ−〉a1,a

)
|1〉b

−α 1√
2

(
|ψ+〉a1,a + |ψ−〉a1,a

)
|0〉b − β

1√
2

(
|φ+〉a1,a − |φ−〉a1,a

)
|0〉b
]

=
1

2

[
(α|1〉b − β|0〉b) |φ+〉a1,a + (α|1〉b + β|0〉b) |φ−〉a1,a

+ (β|1〉b − α|0〉b) |ψ+〉a1,a − (α|0〉b + β|1〉b) |ψ−〉a1,a

]
Thus, we can see that if we perform a measurement at site a that allows us to

distinguish between the different Bell states, we will project the qubit at site b into

one of four possible states:

|φ+〉a1,a ⇒ α|1〉b − β|0〉b

|φ−〉a1,a ⇒ α|1〉b + β|0〉b

|ψ+〉a1,a ⇒ β|1〉b − α|0〉b

|ψ−〉a1,a ⇒ α|0〉b + β|1〉b

Of course, our Bell state measurement at site a yields one of these four possible

outcomes randomly. Thus, before quantum state can be recovered at site b, we need
1Alternatively, the issue of measuring in the Bell basis can framed as the capability to perform a CNOT gate and

single qubit gates [32].
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to relay the result of our measurement outcome at a. Since we need to communicate

one of four possible outcomes, this requires two classical bits of information.

After b knows the result of the measurement at a, a simple single qubit gate

operation can be performed to recover the state that was initially at a. If |φ+〉a1,a

was measured at a, then the operation ı̇σ̂2 is employed so that ı̇σ̂2 (α|1〉b − β|0〉b) =

α|0〉b + β|1〉b. Similarly, if |φ−〉a1,a is measured σ̂1 is implemented; if |ψ+〉a1,a, then

−σ̂3; and if |ψ−〉a1,a, then σ̂0 (the identity – nothing needs to be done in this case).

This final single qubit operation completes the teleportation protocol.

There are a couple of salient points to take away from the above discussion.

First, we required the ability to perform measurement in the Bell basis, a feat which

is not yet obvious how to accomplish. Second, the protocol required two bits of

classical information transfer. Without this classical communication, the state at b

is left in an unknown quantum state, and no information can be gleaned from it.

The classical communication requirement ensures that no information is transferred

superluminally. Finally, the act of measurement at site a destroys the quantum

superposition state, and thus the unknown quantum state is only transferred, not

copied, obeying the quantum no-cloning theorem.

Nevertheless, the information was transferred between sites a and b without actu-

ally traversing the space between these systems; hence the terminology “teleporta-

tion.” This non-local information transfer is enabled by the entanglement between

the two systems, and exemplifies the counter-intuitive aspects of quantum physics.

With a basic understanding of teleportation and its implications for quantum

information, we can now delve into its experimental realization.
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CHAPTER III

Ion Trap

“If we hit that bullseye, the rest of the dominoes should fall like a house of cards.
Checkmate.”
–Capt. Zapp Brannigan, Futurama

The radiofrequency (rf) ion trap is an essential tool for all of the experiments

presented in the following chapters. The rf ion trap was invented by Wolfgang Paul,

for which he shared the 1989 Nobel prize [33]. The first laser-cooling experiments

with atoms were reported independently by Wineland et al. [34] using Mg+, and

Neuhauser et al. [35] using Ba+.1 Since its introduction, the rf ion trap has been used

for a wealth of applications, including atomic clocks, measurements of fundamental

constants, mass and frequency spectroscopy [36, 37, 38, 39], and, of course, quantum

information [10].

3.1 Ion trap basics

Earnshaw’s Theorem states “a charged particle cannot be held in a stable equilib-

rium by electrostatic forces alone” [40]. This result is also embodied in the freespace

Maxwell equation ∇ · Ê = 0, which in words states electric field lines entering a

region also need to exit the region; thus, any configuration of static fields will always

be anti-trapping in some direction. Of course, it is still possible to confine charged

1The experiment by Wineland et al. used a Penning trap to confine the ions. Subsequent experiments by Wineland
et al. have used the type of rf trap presented here.
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particles with electromagnetic fields by using either a combination of electric and

magnetic fields (Penning trap) or dynamic electric fields (rf or Paul trap). In the

following, we concentrate exclusively on the rf trap.

3.1.1 Average force of a dynamic field First we shall briefly review how an oscillating

electric force can produce a time-averaged force on a charged particle, following the

discussion of Ref. [41]. For simplicity, consider a particle of mass m and charge

e residing in an effective homogenous, one-dimensional electric field, such as that

produced inside a large parallel-plate capacitor. If the potential difference between

the two plates separated by distance 2d is V0 cos(ΩT t), then the force exerted on the

particle is simply:

F = mz̈ = eE(z, t)

=
e

2d
V0 cos(ΩT t)

= eE0(z) cos(ΩT t) (3.1)

where we have written the electric field as a product of its spatial variation E0(z)

and its time variation cos(ΩT t). Also assumed is that the plates are parallel to the

x, y plane, yielding an electric field in the z-direction. By integrating this equation,

we find the solution:

z(t) = z0 −
eE0(z)

mΩ2
T

cos(ΩT t) (3.2)

with the initial conditions z(0) = z0 and ż(0) = 0. Clearly, the time-average of the

force in Eq. 3.1 reveals the average force felt by the particle is zero; there is no net

change in the position of the particle.

Now consider a field similar to the previous, except that it is an inhomogenous

field – achieved, for example, by bending the plates of the capacitor slightly. Clearly,

this will alter the spatial dependence of the field, E0(z), while the time dependance
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remains cos(ΩT t). For only a small perturbation of the field, we expect the position

of the particle over short times to be approximately constant. The electric field can

then be expanded around the point z0 to obtain:

E0(z) ≈ E0(z0) +
∂E0(z)

∂z

∣∣∣∣
z0

(z − z0)

≈ E0(z0) +
∂E0(z0)

∂z0

(
eE0(z0)

mΩ2
T

cos(ΩT t)

)
(3.3)

where in the last line we have made the approximation that the derivative of E0(z0)

is much smaller than E0(z0), so that a chain-rule expansion of ∂E0(z)
∂z

yields ∂E0(z0)
∂z0

.

With the same approximation, substitution of Eq. 3.2 for (z−z0) yields the expression

shown by neglecting higher order terms.

The equation for the force on the charged particle, Eq. 3.1, then becomes

F = eE0(z) cos(ΩT t)

≈ eE(z0) cos(ΩT t)− e
∂E0(z0)

∂z0

(
eE0(z0)

mΩ2
T

cos2(ΩT t)

)
(3.4)

Averaging this over one oscillation yields

F ≈ − e2

2mΩ2
T

∂E0(z0)

∂z0

E0

= −e∂ψp
∂z0

(3.5)

where we have defined the “pseudopotential,” ψp, as

ψp =
eE2

0

4mΩ2
T

(3.6)

Thus, we see that for an inhomogenous, oscillating electric field, the time-averaged

force on a charged particle does not vanish. Instead, the particle sees an effective

potential created by the inhomogenity of the field, resulting in a net force on the

particle towards the area of weaker field. Although we only derived this in one
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dimension, it is easily extended.

F = −e∇ψp with ψp =
e
(
Ê0(x, y, z)

)2

4mΩ2
T

(3.7)

We can now use Eq. 3.7 to determine the effective motion of a charged particle

confined by a trapping field.

3.1.2 Pseudopotential approximation In order to trap charged particles, we are

interested in dynamic quadrupole potentials. As an illustration in two dimensions,

consider the idealized hyperbolic electrode configuration shown in Fig. 3.1. Since

we know the equation for a hyperbola, then given that the left and right electrodes

have potential V0 cos(ΩT t) applied, while the top and bottom electrodes are held as

0, then the potential between the electrodes is simply given by

φhyp =
V0

2
cos(ΩT t)

(
1 +

x2 − y2

R2

)
(3.8)

which clearly satisfies the boundary conditions, and Laplace’s equation.

The electric field produced by this potential is

Ê(x, y, t) = −∇φhyp

= − V0

R2
(xx̂− yŷ) cos(ΩT t)

= −Ê0(x, y) cos(ΩT t) (3.9)

Plugging the expression for Ê0(x, y) defined by Eq. 3.9 into Eq. 3.7, we obtain

F = −e ∂
∂x

(
eV 2

0 x
2

4mΩ2
TR

4

)
x̂− e ∂

∂y

(
eV 2

0 y
2

4mΩ2
TR

4

)
ŷ

= − e2V 2
0

2mΩ2
TR

4
xx̂− e2V 2

0

2mΩ2
TR

4
yŷ (3.10)

Looking at just the equation of motion for x, we find,

ẍ = − e2V 2
0

2m2Ω2
TR

4
x (3.11)
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Figure 3.1: Hyperbolic electrodes. This two-dimensional view shows ideal hyperbolic electrodes
where the green electrodes are held at ground, and the red electrodes are at V0 cos(ΩT t).
The resulting potential is shown as a contour plot between the electrodes (shades of
blue) for t = 0.
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which is just the equation for a harmonic oscillator with frequency

ωx =
eV0

21/2mΩTR2
(3.12)

This oscillation is called the “secular motion” of the ion. The result for y is exactly

the same. Thus, we see that a charged particle near the center of an oscillating

quadrupole field experiences an effective harmonic potential, which traps the charged

particle.

3.1.3 Mathieu equation While the previous section presented a nice introduction

to trapping charged particles with dynamic electric fields, we will now seek a more

complete solution. As before, we will assume hyperbolic electrodes in the x, y-plane

that produce the potential given by Eq. 3.8, and the electric field shown in Eq. 3.9.

The force in the x-direction on a particle of mass m and charge e is then

Fx = mẍ = −eV0

R2
cos(ΩT t)x (3.13)

yielding the equation of motion

ẍ+
eV0

mR2
cos(ΩT t)x = 0 (3.14)

This is actually just a simplified version of a Mathieu equation. The general form of

the Mathieu equation is:

d2u

dτ 2
+ (au + 2qu cos(2τ))u = 0 (3.15)

Our Eq. 3.14 can be put in this form by making the substitution 2τ = ΩT t. By the

chain rule, we then have d
dt

= d
dτ

dτ
dt

= ΩT
2

d
dτ

, so that Eq. 3.14 can be written

d2x

dτ 2
+ 2qx cos(2τ)x = 0 (3.16)

where in the last line we have defined qx = (2eV0)/(mR2Ω2
T ). Note that compared

to the general form of Eq. 3.15, here we have ax = 0.2

2In the present case, we have neglected the third dimension of the problem. The ion can be confined in the third
dimension using static potentials, in which case ax 6= 0; a good review is Ref. [42].
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The Floquet Theorem suggests a general solution of the form [43]

x(τ) = A
∞∑

n=−∞

C2n cos((2n+ β)τ) + ı̇B
∞∑

n=−∞

C2n sin((2n+ β)τ) (3.17)

where A,B are determined by the initial conditions. We can solve for β and the

coefficients C2n by plugging Eq. 3.17 back into Eq. 3.16. We then find

A

∞∑
n=−∞

C2n (2n+ β)2 cos((2n+ β)τ)

+ı̇B
∞∑

n=−∞

C2n (2n+ β)2 sin((2n+ β)τ)

= 2qxA
∞∑

n=−∞

C2n cos(2τ) cos((2n+ β)τ)

+ı̇2qxB
∞∑

n=−∞

C2n cos(2τ) sin((2n+ β)τ) (3.18)

Using the trigonometric product-to-sum relation for cosine3, we get

A
∞∑

n=−∞

C2n (2n+ β)2 cos((2n+ β)τ)

+ı̇B
∞∑

n=−∞

C2n (2n+ β)2 sin((2n+ β)τ)

= qxA
∞∑

n=−∞

C2n (cos((2n+ β)τ + 2τ) + cos((2n+ β)τ − 2τ))

+ı̇2qxB
∞∑

n=−∞

C2n cos(2τ) sin((2n+ β)τ)

= qxA

∞∑
n=−∞

C2n−2 cos((2n+ β)τ)

+qxA
∞∑

n=−∞

C2n+2 cos((2n+ β)τ)

+ı̇2qxB
∞∑

n=−∞

C2n cos(2τ) sin((2n+ β)τ) (3.19)

where in the last step we just altered the indexing (allowed since the sum goes

between ±∞). This allows us to easily match the cosine terms, yielding a recursion

3The product-to-sum relation is cos(α) cos(β) = 1
2

(cos(α+ β) + cos(α− β)).
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relation.

−K2nC2n + C2n−2 + C2n+2 = 0, with K2n =
(2n+ β)2

qx
(3.20)

This recursion relation allows us to calculate some useful relations. By setting n = 0

in Eq. 3.20, we obtain an expression for β.

K0 =
β2

qx
=
C−2 + C2

C0

(3.21)

Rearranging Eq. 3.20, we also find

C2n

C2n+2

=
1

K2n − C2n−2

C2n

(3.22)

and we can then plug Eq. 3.22 back into itself recursively, and obtain the continued

fraction expression

C2n

C2n+2

=
1

K2n − 1
K2n−2− 1

...

(3.23)

Similarly, we also get

C2n

C2n−2

=
1

K2n − 1
K2n+2− 1

...

(3.24)

Plugging Eqs. 3.24 and 3.23 into Eq. 3.21 allow the calculation of β to any order in

qx. Explicitly, we have

β2 = qx

(
C−2

C0

+
C2

C0

)
= qx

(
1

K−2 − 1
K−4− 1

...

+
1

K2 − 1
K4− 1

...

)
(3.25)

To lowest order in qx, we find

β2 ≈ qx

(
1

K−2

+
1

K2

)
≈ qx

(qx
4

+
qx
4

)
=

q2
x

2
(3.26)

21



and thus

β ≈ qx√
2

(3.27)

Given the above expressions for β and the coefficients C2n, we can solve for the

trajectory of the ion, x(τ). Assuming qx � 1, we will take C±4 ≈ 0. By assuming

the initial condition B = 0, from Eq. 3.17 we then obtain

x(τ) ≈ AC0 cos(βτ) + AC−2 cos((β − 2)τ) + AC2 cos((β + 2)τ) (3.28)

Since qx � 1, Eqs. 3.23 and 3.24 can be approximated as

C0 ≈
C±2

K0 + 1
K∓2

=
C±2

β2

qx
− 1

(β∓2)2

qx

≈ C±2
qx
2
− qx

4

=
4C±2

qx
(3.29)

where in the second-to-last step, we used the approximation of Eq. 3.27 and (β∓2)2 ≈

4. Plugging this value for C±2 into Eq. 3.28 yields

x(τ) ≈ AC0

[
cos(βτ) +

qx
4

(cos((β − 2)τ) + cos((β + 2)τ))
]

= AC0

[
cos(βτ) +

qx
2

cos(βτ) cos(2τ)
]

= AC0 cos(βτ)
[
1 +

qx
2

cos(2τ)
]

(3.30)

We can finally put this back in terms of t by recalling our earlier substitutions

x(t) ≈ AC0 cos

(
qx

21/2

ΩT t

2

)[
1 +

qx
2

cos(ΩT t)
]

= AC0 cos

(
eV0

21/2mΩTR2
t

)[
1 +

qx
2

cos(ΩT t)
]

= AC0 cos(ωxt)
[
1 +

qx
2

cos(ΩT t)
]

(3.31)

where in the last step we have recalled the expression for the secular frequency

given in Eq. 3.12. Thus, we have obtained the same secular oscillation that was

derived by looking at the time-averaged force on the charged particle in Sec. 3.1.2.

However, we now see superimposed on the secular motion a modulation at the driving
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Figure 3.2: The motion of a trapped charged particle, as given by Eq. 3.31, with R = 0.46 mm,
ΩT /(2π) = 38 MHz, m = 171 amu, and V0 = 1 kV. The slower, larger amplitude
oscillation at ωx/(2π) = 1.3 MHz is the secular motion of particle, resulting from the
time-averaged force of the inhomogenous electric field (red, dashed line). Superimposed
on the secular motion is the micromotion that occurs at the drive frequency of trap
(ΩT /(2π) = 38 MHz) with amplitude proportional to the excursion of the particle from
the center of the quadrupole field (blue, solid line).

frequency of the trap, ΩT . The oscillation at ΩT is known as the “micromotion,”

and has amplitude proportional to the distance from the center of the quadrupole

field. Given that qx � 1, the amplitude of the micromotion is typically much smaller

than the secular motion. However, if a static offset field causes the secular motion

to be centered a considerable distance from the center of quadrupole field, then it

is possible for the amplitude of the micromotion to be much larger than the secular

amplitude. In practice, static offset fields are carefully compensated to ensure the

particle executes its secular motion about the center of the quadrupole field.

A representative picture of the motion of a particle confined by the quadrupole

field of Eq. 3.9 is shown in Figure 3.2. In this case, we have taken R = 0.46 mm,

ΩT/(2π) = 38 MHz, m = 171 amu, and V0 = 1 kV. By the equations above, we see

this results in ωx/(2π) = 1.3 MHz and qx = 0.1.
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3.2 Trap simulations

The hyperbolic electrode structure presented in the previous section produces the

ideal quadrupole potential for trapping charged particles. However, in practice we

are often required to alter the structure of the trap electrodes to conform to other

design parameters, such as optical access, multiple trapping zones, etc. Nevertheless,

as long as we retain the overall symmetry presented in the previous section, then near

the trap center the potential can be approximated by the hyperbolic potential given

in Eq. 3.8 [42]. The effect of non-hyperbolic electrodes can be characterised by

the addition of a geometric scaling factor ηsc (generally of order unity), so that the

modified potential near the center of the trap is approximately represented by [44]:

φnonhyp =
ηscV0

2
cos(ΩT t)

(
1 +

x2 − y2

R2

)
(3.32)

Since ηsc is just a constant factor, it carries through the rest of the equations derived

in the previous section.

Before constructing an rf trap of arbitrary geometry, we usually perform a numer-

ical simulation of the candidate ion trap to ensure the expected properties are con-

sistent with the requirements of the experiment and the capabilities of the available

equipment. An electrostatic simulation is justified by the fact that the wavelength

of oscillation of the potential applied to the electrodes (order of meters) is typically

much larger than the size of the trap (≤ 1 mm).

The basic procedure will be to first enter the trap structure design into the appro-

priate numerical simulation software. We will then run the electrostatic simulation

with 1 V applied to one of the electrodes, while holding the rest at ground; this

process is iterated for each electrode in the trap structure, thereby producing a set

of “electrode basis functions” that describe the spatial properties of the potential
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Figure 3.3: Four rod trap. The trap design shown here is the type used for all experiments presented
in this work. Two of the four rods have radiofrequency (rf) potentials applied to create
an oscillating quadrupole field for confinement in the x, z-plane. The other two rods
are held at ground. Static potentials are applied to the needle electrodes to provide
confinement along the y-axis of the trap.

produced by each electrode. The simulated potential of each electrode is sampled

by a grid of points in the space, and exported to a file that can be used for further

analysis. In a (possibly separate) analysis program, the potential from each electrode

can be scaled to a voltage representing the proposed setup by simply multipling the

electrode basis function by the appropriate value (e.g. if 70.2 volts is supposed to

be applied, simply multiply the electrode basis function by 70.2). The total poten-

tial is then produced by simple summation of the separate electrode basis functions

(for applied static potentials). The effect of the rf drive potential is modeled using

the pseudopotential approximation of Eq. 3.7; so, the gradient of the electrode basis

functions to which the rf drive is applied is used. Making the simulation step mod-

ular by generating the electrode basis functions allows for rapid reconfiguration of

the applied voltages for testing a variety of experimental implementations. The fact

that simple summation of the electrode basis functions produces the full potential is

a simple consequence of the linearity of Laplace’s equation [45].

In the following section, we demonstrate this method of trap simulation using the

four-rod trap illustrated in Fig. 3.3 as an example. This is the design of the trap

used in all of the experiments presented in the following chapters.
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3.2.1 CPO four-rod numerical simulation One of the most popular electrostatic sim-

ulation software packages in our lab (and others) is the 3D Charged Particle Optics

program (CPO-3D) produced by CPO Ltd.4 In this section is a brief introduction

to using this software to model candidate trap structures.

After starting the software package, open an example data file to edit by clicking

File ⇒ Open for running and databuilding

and selecting a sample file from the list. It doesn’t matter which file you choose –

we’re going to delete whatever electrodes are present in it and draw our own. Before

doing so, though, be sure to save the file you’ve opened under a new name by clicking

File ⇒ Save As (data builder file)

and choosing a descriptive name for your project (e.g. FourRodTrap.dat).

Next, we want to design our trap structure by drawing the appropriate electrodes.

Start this by clicking

Databuilder ⇒ Electrodes

so that the “Edit electrodes” window appears, as shown in Fig. 3.4(a). Before en-

tering in our trap structure, delete all of the electrodes from the sample program

by clicking the Delete button as many times as necessary to get rid of the original

electrodes. We can then add our own electrodes by clicking the Add button. In the

subsequent dialog box, choose the type/shape of the electrode (e.g. for the four-rod

trap, we’ve selected “complete cylindrical surface”). The resulting window, shown in

Fig. 3.4(b), allows us to enter in the parameters for this electrode. In the first box,

“Comment line”: give the electrode a descriptive name (e.g. dc rod 1)

4A free evaluation version is available on the CPO website: http://www.electronoptics.com/.
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Define the dimensions of the electrode; for the case of the cylinder we have,

“Radius”: 0.25

“Centre of 1st end”: 0.71, -2.3, 0

“Centre of 2st end”: 0.71, 2.3, 0

where the three numbers separated by commas refer to the separate boxes for the

coordinates x, y, z. Choose the address of the voltages to be applied to this electrode,

“Addresses of two voltages that will be applied (usually the same)”: 2, 2

Inputing two separate addresses allows us to create a voltage gradient across the

electrode. However, for almost everything we do, these two addresses will be the

same (e.g. 2, 2). Note that this entry is a voltage address, not the actual voltage

being applied – we will define the voltages in a subsequent step. For now, we just

need to be sure that electrodes that will require different voltages are assigned to

separate voltage addresses.5 Finally, choose how to segment the electrode (for the

purposes of the solving for the potential in the space around the electrode – the

electrode is still considered one solid piece). In general, the larger the number of

segments, the more precise the simulation will be, and the longer the computation

time. As a side note, it is also generally not good practice to have small segments

near large segments (these may occur when two electrodes are segmented differently,

and placed near each other); CPO will usually produce a warning if this is the case.

In addition, different versions of CPO have different restrictions on the total number

of allowed segments. For simple electrodes far from the center of the trap (as in the

present case) just a few segments will usually suffice. For example,

“Total nr subdivs, or subdivs along axis”: 3

5Note: 0 is NOT a valid address – CPO will crash if you try to run it with this value.
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Figure 3.4: Adding electrodes in CPO.
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“0, or subdivisions around axis”: 7

is what was used in the present simulation. Click OK to complete the description

for this electrode, and then repeat the above steps until all electrodes have been

added (if your structure has a good deal of symmetry, read below before adding all

electrodes). Then click OK on the “Edit electrodes” window, and save your file (File

⇒ Save (data builder file)).

The next step is to check the symmetries being applied. Access the symmetries

options by hitting

Databuilder ⇒ Symmetries

The resulting window shows the symmetries you can choose to apply to your project

(Fig. 3.5(a)). The time needed to design a trap structure can often be vastly reduced

by choosing the appropriate symmetry options. In addition, CPO claims using sym-

metries improves the accuracy and reduces the computation time of the simulation.

In the present case, though, we will not use any symmetry options, so we set all

available options to “none”, and click OK.

As stated previously, we are interested in creating a set of “electrode basis func-

tions.” The basis functions will be generated by iteratively assigning 1 V to each

electrode, while holding the rest at ground.6 The simulation run then yields the

spatial variance of the potential produced by that electrode. The full potential of

the entire trap is obtained later offline, by multiplying each electrode basis function

by the actual voltage to be applied and summing the potentials produced by each

electrode (using the formula for the pseudopotential for electrodes with oscillating

voltages). A simulation that is modular in this way allows us to model a variety of

6Actually, in each simulation run we may assign voltage to more than one electrode, if voltage will be applied
symmetrically in the experiment: for instance, the rf electrodes.
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Figure 3.5: Adjusting symmetry and voltages in CPO.
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experimental setups with minimal simulation time.

Apply voltage to an electrode by going to

Databuilder ⇒ Voltages and magnetic fields

so that the “Editing applied voltages and magnetic fields” dialog box appears, as

shown in Fig. 3.5(b). For each voltage address assigned to an electrode (recall what

addresses you used when constructing your electrodes), input the desired applied

voltage in “Voltage”, and give it a descriptive name in the “Comment” box. For

example, to model the rf electrodes in our four-rod trap, we make the assignments:

“Voltage”: 1

“Comment”: rf rod voltage

Add additional voltages by pressing the Add button, until you’ve created and assigned

all of the voltage addresses used when you constructed your electrodes. Click OK to

exit the window; then save your file.

We are now ready to run the simulation to create the basis function for this

electrode. Run the simulation by hitting

Run ⇒ All 3 views

If no error messages appear, we’re in good shape! CPO is generally very fast; for the

very simple four-rod trap design, the simulation takes less than 10 seconds. After the

simulation has been run, a three-dimensional rendering of your electrode structure

can be viewed by clicking 3D; our example four-rod trap is shown in Fig. 3.6(a). Use

the buttons in the “3D view” window to change the perspective, and look at your

creation from any angle.

There are only a limited number of analysis tools in CPO. The full analysis of the

trap structure will be completed in Mathematica by importing all of the electrode
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Figure 3.6: Views and exporting data in CPO.
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basis functions. At this point, then, we need to export an array of potential values

calculated by CPO. Export a two-dimensional grid by first clicking 2D to return to

a planar view of the electrode structure. Next, view the plane you want to export

from by clicking (for example)

View ⇒ ZX

In our four-rod trap example, we designed the rods of the trap to be perpendicular to

the x, z-plane. Thus, in this plane we should see something resembling a quadrupole

potential. Export a grid of points by first hitting

Contour ⇒ Potential ⇒ Grid

making the “Output grid of values” window appear, as seen in Fig. 3.6(b). In the

available boxes, choose the point in the third dimension (for the x, z-plane, this

would be the value for y), the range of values to be used in the two dimensions of

the plane (x and z, in our case), the number of points to calculate in this range, and

the accuracy CPO should attempt to achieve (the default value of 10−4 is probably

fine). For the example of the four-rod trap, we choose:

“Value of the constant coordinate in the y direction”: 0

“Minimum and maximum in the z direction”: -0.3, 0.3

“Number of points in z direction”: 101

“Minimum and maximum in the x direction”: -0.3, 0.3

“Number of points in x direction”: 101

“Inaccuracy (for direct method)”: 1.00000E-04

and click OK to export the grid. If you’re running the full version of CPO, the grid

will output to a file in the CPO directory. On the other hand, if you’re just using
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the demo version, the grid will only appear in the “Information” window, and it will

be required to copy and paste the grid into a text document.7

Generate the remaining electrode basis functions by altering the applied voltages

(Databuilder ⇒ Voltages and magnetic fields), reruning the simulation (Run ⇒ All

3 views), and exporting a grid of potential values (Contour⇒ Potential⇒ Grid) for

each electrode.

3.2.2 Simulation analysis After completing the numerical simulation of the electrode

basis functions in CPO, we import the simulation data into a program with more

advanced mathematical manipulation tools for analysis. In this case we chose to

work with Mathematica, and a sample of the analysis code used is given in App. B.

In the present section, we simply outline the general procedure pursued, and the

results obtained.

We begin by importing the simulation data generated by CPO for each electrode

basis function. The total effective potential of the trap is created by converting the

potential of the rf electrode basis functions to the pseudopotential using Eq. 3.6,

multiplying it by a scale factor representing the amplitude of the rf voltage applied,

and adding this to the static potentials of the remaining electrode basis functions

(each also multiplied by a scaling factor equal to the static voltage applied to each

of these electrodes). The full potential is then given by

φsim =
e

4mΩ2
T

∇
Nrf∑
j=1

(Vrf,jφrf,j) +

Ndc∑
k=1

(Vdc,kφdc,k) (3.33)

where Nrf and Ndc are the number of rf and static electrodes, respectively; Vrf,j is

the rf voltage applied to the jth rf electrode, with numerically calculated electrode

basis function φrf,j; and Vdc,k is the static voltage applied to the kth electrode, with

7Note: when selecting text to copy, start from the beginning of the grid; otherwise, the program crashes when
Ctrl-C is pressed.
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Figure 3.7: Numerical simulation of four-rod trap potentials. (a) The quadrupole potential pro-
duced by application of voltage to the two rf rods, while the other electrodes are held
at ground (shown for the point of maximum amplitude in the oscillation). (b) The
pseudopotential derived from the quadrupole potential of (a), using Eq. 3.6.

basis function φdc,k. The simulated quadrupole potential for the four-rod trap is

shown in Fig. 3.7(a), with the resulting pseudopotential illustrated in Fig. 3.7(b).

Comparing Fig. 3.7(a) with the ideal quadrupole potential of Fig. 3.1, we see that

near the center of the trap the four rods produce a potential nearly identical to that

generated by ideal hyperbolic electrodes.

The motion of a charged particle in a trap can be viewed as a three-dimensional,

uncoupled harmonic oscillator along the principal axes of the trapping potential.

In other words, motion of the particle along one of the principal axes of a trap is

independent of the other two principal axes. Therefore, the principal axes of the

trap present a natural coordinate system for the electrode structure. In addition,

knowledge of the orientation of the principal axes is vital for efficient laser cooling;

if the incident light is perpendicular to one of the principal axes, the particle will

not be cooled along that direction. While in simple trap structures such as our
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four-rod trap, the orientation of the principal axes is clear from the symmetry of

the electrodes, in general we determine the principal axes of the trap by use of the

Hessian matrix of the potential, which in two-dimensions is [46]:8

H(φsim(x0, z0)) =

 ∂2φsim
∂x2 (x0, z0) ∂2φsim

∂x∂z
(x0, z0)

∂2φsim
∂z∂x

(x0, z0) ∂2φsim
∂z2

(x0, z0)

 (3.34)

Here x0 and z0 are the point where the Hessian matrix is evaluated, which in our

case would be the center of the trap. The eigenvalues of this matrix are related to

the angle by which the principal axes are rotated with respect to the coordinate axes

(used in the partial derivatives). In other words, the Hessian matrix seeks out the

directions of greatest and least curvature, which are precisely the principal axes.

After determining the principal axes of the trap, we fit the potential along this

axis to a parabola (other polynomial terms may be included in the fit, but if the trap

produces the potential we expect, the quadratic term of the fit should dominate).

The quadratic coefficient of the fit, Aprin, allows the determination of the secular

frequency along this axis.

ωprin =

√
2eAprin
m

(3.35)

where the factor of e was used to convert the electric potential to energy.

The four-rod trap can now be evaluated for specific parameters, and compared

to the ideal hyperbolic case to determine the geometric scale factor, ηsc. Taking

Vrf = 1 kV, Vdc = 80 V, m = 171 amu, R = 0.5
√

2− 0.25 = 0.46 mm, and ΩT = 38

MHz, we calculate a secular frequency ωx,sim/(2π) = 1.17 MHz for the four-rod trap.

Plugging these same parameters into Eq. 3.12 for the ideal hyperbolic trap, we find

ωx,hyp/(2π) = 1.26 MHz. Thus, the geometric scale factor is ηsc = ωx,sim/ωx,hyp =

0.93. The total depth of the trap can also be determined by the simulation from the
8In a linear trap, the third principal axis is always clear from structure of the trap. In Fig. 3.3, it is parallel to

the rods of the trap (along the line defined by the needle electrodes).
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depth of the pseudopotential-well, and for these parameters we find the trap depth

to be approximately 10 eV. This trap depth corresponds to a temperture of more

than 105 K, reiterating the fact that the rf trap provides excellent confinement of

charged particles.

3.3 Vacuum chamber and trap construction

The experiments presented in the following chapters were performed on atomic

ions trapped in an ultra-high vacuum (UHV) environment, to ensure isolation of the

atoms and long trapping lifetimes. At a pressure of about 10−11 torr, we expect an

average of 2 collisions with background gas every hour. Given the depth of the trap,

generally such collisions will not eject the ion from the trap. Moreover, since each

iteration of the experiment usually lasts between 1 µs and 2 ms, collsions should not

noticeably alter the experiment. On the other hand, inelastic collisions that result in

chemical reactions could limit the trapping lifetime.9 The lifetime of an atom in the

trap could also be limited by defective trap components, or be precluded altogether if

the atomic source does not produce the necessary atoms. Hence, proper construction

and assembly of the vacuum chamber, atomic source ovens, and trap are essential to

the atomic physics experiments.

3.3.1 Chamber assembly The vacuum chamber used in the experiments of the

subsequent chapters is shown schematically in Fig. 3.8. Standard ConFlat (CF)

vacuum components were used to construct the chamber. As the vacuum seal of a

CF component is all metal, consisting of stainless steel edges compressing a copper

gasket, they can be used at high temperatures. Given that baking the chamber

(outlined in Sec. 3.3.4) is vital to achieving UHV, CF components are a logical

9Indeed, the formation of molecules is a known loss mechanism in ion traps. Fortunately, the YbH+ molecule
actually has a photodissociation line near the wavelength used to Doppler cool the atoms [47]. We have seen that
application of strong laser light near 369.5 nm will renew the fluorescence of an ion that had gone dark.
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choice for the chamber construction. Before assembling the chamber, each all-metal

component is wrapped in aluminum foil and pre-baked at a temperature of 250

◦C for about a week. The pre-bake of these components establishes a chromium-

oxide layer on the surface of the steel that reduces outgassing of hydrogen [48].

The components are then thoroughly cleaned in an ultrasonic acetone bath, and

assembled into their final configuration. During assembly, strict care is taken to

prevent organic compounds (body oils, hair, etc.) from contaminating the chamber.

Specialty components include: the vacuum ion gauge; the 20 L/s ion pump; the

titanium sublimation (Ti-sub) pump; two vacuum feedthroughs, each with four pins,

for electrical connections to the ion trap and atomic source ovens; six small windows

and two large, recessed windows (viewports) for optical access; and, of course, the

ion trap.

3.3.2 Trap assembly The four-rod ion trap depicted schematically in Fig. 3.3 is held

inside the spherical octagon10 by an invar mounting bracket, shown in Fig. 3.9(a) and

visible in the image of Fig. 3.9(c). The electrodes of the trap are tungsten, with the

material chosen because it is nonmagnetic and has high tensile strength, high melting

point, and low vapor pressure [49]. Each of the four rods has a diameter of 0.25 mm

and is approximately 40 mm in length (greater than the length of the central cage of

the mounting bracket). The needles are simply short tungsten rods that have been

sharpened and then electropolished using sodium hydroxide to obtain a sharp point.11

The electrodes are isolated from the mounting bracket and the rest of the chamber

by two alumina spacers fit into the holes on either side of the mounting bracket.

Each alumina spacer has five holes, four of which are arranged symmetrically about

the perimeter, and the fifth directly through the center. The four rods of the trap

10Spherical octagon is from Kimball Physics, part number MCF450-SO20008.
11A helpful list of eletropolishing recipes is available at www.fischione.com/ product support/ model 110 appli-

cation notes.asp.
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Figure 3.8: Schematic of vacuum chamber employed in these experiments. The chamber was con-
structed using standard ConFlat (CF) vacuum components. Labeled in the figure are:
the vacuum ion-gauge, used to determine the pressure in the chamber; the 20 L/s ion
pump, which (after the bake) runs continuously to keep the chamber at ultra-high vac-
uum (≈ 10−11 torr); the titanium sublimation pump (Ti sub pump), which is run once
every few months; the bakeable valve that was the internal chamber’s last link to the
external environment; one of two vacuum feedthroughs that allow electrical connection
to the ion trap and atomic source ovens; two of the eight windows (six small, two large)
that allow optical access; and finally, the ion trap (not actually visible) which resides
inside the spherical octagon.
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Figure 3.9: Ion trap in mount and Yb ovens. (a) Schematic of the mount for the ion trap. (b)
Schematic of the Yb ovens. (c) Image of the ion trap in the mount, with the Yb ovens
visible in the background, during construction of the vacuum chamber.

are fit through the four outer holes of each spacer, while each needle is supported by

being fit through the center hole on one of the spacers and arranged such that the

tips are opposed to each other. A schematic of the final trap structure is shown in

Fig. 3.3, and one of the actual traps is shown in the image of Fig. 3.9(c).

3.3.3 Atomic ovens The atomic source ovens are fabricated from a small piece of

aluminum and a small stainless steel tube, as illustrated schematically in Fig. 3.9(b).

The aluminum block is used for mechanical mounting to the chamber, and is ma-

chined into the shape of a “T” to minimize its effect as a heat sink on the stainless

steel tube. The end of this tube is crimped shut so that the tube can be packed
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Time to Spot (min)
Current (amps) Natural Oven 171 Oven

6.0 n.a. 2.0
5.0 8.0 7.0
4.5 20.0 16.5
4.0 37.0 35.0
3.5 > 60 > 45

Table 3.1: East trap oven tests. The first column shows the operating current (amps). The second
and third columns show the time elapsed before a visible spot is seen from the ovens
containing ytterbium metal of natural abundance and isotopically enriched, respectively.
At an operating current of 3.5 amps, a spot was not observed from either oven; the time
given at this current is thus a lower bound.

partially (about a third full) with ytterbium metal. The open end of the tube is

situated in the chamber to aim through the center of the trap at one of the walls of

the chamber (not aimed at a window). An atomic “spray” is generated by passing

a current through the tube, resistively heating it. The thermal properties of each

such oven will depend critically on the size of the aluminum mount, the length and

thickness of the stainless steel tube, etc. Since too much atomic flux can have ad-

verse effects on the chamber, each atomic oven is charaterized before being mounted

in the vacuum chamber.12 The operation parameters of each oven is determined by

mounting the ovens temporarily in a bell jar that is pumped down to a pressure

of about 10−5 torr. The ovens are run with a range of different currents, with the

resulting atomic flux at each current level being (roughly) characterized by the time

it takes to produce a visible spot of ytterbium metal on the glass of the bell jar. An

example of the result of these oven tests is given in Table 3.1.

3.3.4 Vacuum chamber bake One of the most important procedures for attaining

UHV is the bake of the fully assembled vacuum chamber. The main purpose of

the bake is to remove water trapped in the stainless steel, as hydrogen is one of

the primary contributors to the pressure in UHV [48]. While the bake of a vacuum

12Ytterbium, in particular, sticks to almost everything. Thus, if the ovens are run too hard, you run the risk
making your windows opaque.
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Figure 3.10: East trap bake, showing pressure (torr) and temperature (◦F) versus time (days). The
pressures obtained during/after running the Ti-sub pump are not included in this plot.

chamber is often done using heater tape and fiberglass insulation, here we utilize a

large industrial oven. The basic procedure is: (1) evacuate the chamber to about

10−6 torr with a roughing pump; (2) degas various components (ion gauge, Ti-sub

pump, ovens) by running current through them for a short period of time; (3) close

off the roughing pump, and open up to the large (500 L/s) ion pump; (4) turn on

the oven, and slowly ramp (about 10 ◦F every twenty minutes) the temperature up

to 392 ◦F (200 ◦C); (5) bake for a few days, then switch on the small internal ion

pump, closing off the large ion pump by hand-tightening the bakeable valve; (6) after

baking a few more days, slowly ramp the temperature back to room temperature;

(7) close the bakeable valve with the proper torque; (8) evacuate the space behind

the bakeable valve with a pinch-off valve; (9) run the Ti-sub pump. A more detailed

bake schedule for the East trap is given in Table 3.2, and the pressure as a function

of time is shown in Fig. 3.10.

3.3.5 Trap operation Once the vacuum chamber is fully assembled and the bake is

complete, it is ready for operation. One more trick in the operation of the trap is
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Day Pi (torr) Pf (torr) Ti (◦F) Tf (◦F)
1 atmospheric – room room
2 2.2× 10−6 4.0× 10−7 room room

•helium leak-check with RGA
•degas ovens: 3.0 amps for 5 min each
•degas Ti-sub: all 3 filaments run with 20, 30,
and 35 amps for 1, 2 and 10 min, respectively
•ion gauge turned on
•roughing pump closed; opened to large ion pump

3 1.7× 10−7 1.5× 10−5 room 330
•degas ion gauge
•ramp temp up 10 ◦F every twenty minutes

4 1.4× 10−6 2.4× 10−6 330 392
•ramp temp up 10 ◦F every twenty minutes

5 1.1× 10−6 1.0× 10−6 392 392
6 – – 392 392
7 4.0× 10−7 – 392 392
8 3.5× 10−7 3.1× 10−7 392 392
9 3.0× 10−7 2.9× 10−7 392 392
10 2.7× 10−7 8.9× 10−8 392 392

•small ion pump turned on
11 6.9× 10−8 6.9× 10−8 392 392

•closed bakeable valve (handtight)
12 – – 392 392
13 – – 392 392
14 – – 392 392
15 5.1× 10−8 2.1× 10−9 392 230

•ramp temp down 10 ◦F every twenty minutes
16 1.0× 10−9 2.1× 10−10 230 room

•ramp temp down 10 ◦F every twenty minutes
•oven turned off
•oven doors opened

17 2.0× 10−10 2.0× 10−10 room –
•bakeable valve torqued closed
•pinch-off valve added behind bakeable valve

18-27 2.0× 10−10 6.3× 10−11 – –
•Ti-sub pump run a total of 18
times over the course of these days

Table 3.2: East trap bake schedule.
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the application of the oscillating voltages that create the harmonic pseudopotential.

Given that both the depth of the trap and the secular frequency of motion of a

trapped particle are proportional to the amplitude of the applied rf voltage, it is

usually desirable to have high rf voltages. One way of achieving this high voltage

is by using a resonant circuit. Of course, the wavelength of a 35 MHz signal is

8.6 meters, so to keep the size of the resonator reasonable, we use use the quarter-

wave helical design shown schematically in Fig. 3.11. The relations between design

parameters for this type of helical resonator is found in Refs. [50, 51]. The helical

resonator employed on one of our traps (east trap) is composed of a 3.75 inch long

copper shield (4.5 inches including endcaps) 2.5 inches in diameter, and two inner

11 AWG copper helical coils 65 mm in length with 8 turns.13 The helical coil is held

in place by three thin polystyrene spacers (cut from a CD case); polystyrene was

chosen because of its low loss-tangent, but other, less brittle materials such as teflon

also work well. With this design, we achieve a resonant frequency of 35 MHz and

loaded quality factor Q = 270 when the resonator is connected to the ion trap.14

The voltage out of the resonator is given by Vrf = ε
√
PrfQ, where Prf is the input

rf power, and ε is a geometric factor of about 20. Thus, by applying 8 W of rf at 35

MHz, we expect the amplitude of the oscillating voltage on the trap electrodes to be

0.9 kV.15 The static voltages (80 V) for the needle electrodes are passed through a

standard π-network filter to shunt any capacitively-coupled rf voltage.

The procedure for trapping and cooling ytterbium ions is presented in Chap. IV.

The atomic source oven of natural abundance is typically run for 30 seconds at a

13This two coil, or “bifilar,” helical resonator is used so as to apply th same rf voltage to both rf rod electrodes
(a capacitor connects the ends of each coil to ensure the phases are matched), but also to allow application of
independent static bias voltages.

14Before connecting the resonator the trap the resonance frequency was 55 MHz with a Q = 520.
15The coupling efficiency, determined by measuring the power reflected by the resonator, was 99.975% (reflection

-36 dB).
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Figure 3.11: Simple diagram of the type of helical resonator that can be use to apply high voltage
rf to the ion trap. The quarter-wave resonator consists of a copper helical coil inside a
cylindrical copper shield. The small loop coil on the left is used to inductively couple
the rf signal into the helical resonator. Note: for simplicity, shown is a single coil
(“monofilar”) resonator, not the two coil (“bifilar”) resonator actually used in the
experiment.

current of 2.75 amps to obtain a single ion, though this number depends on the

alignment, power, and frequency of the photoionization beam. A single ion has been

trapped for over 3 weeks without laser cooling, and we have observed retention times

of over 3 months when the ion is periodically laser-cooled. The excellent trapping

lifetimes of atomic ions are extremely beneficial for atomic physics experiments re-

quiring long integration times, such as those presented in the following chapters.
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CHAPTER IV

Ytterbium Ions

“There is a theory which states that if ever anyone discovers exactly what the Universe
is for and why it is here, it will instantly disappear and be replaced by something even
more bizarre and inexplicable.
There is another which states that this has already happened.”
–Douglas Adams, The Restaurant at the End of the Universe

Trapped atomic ions have long been recognized as a promising implementation of

quantum bits (qubits) for quantum information processing [52, 42], due in part to

long trapping lifetimes, long coherence times of particular internal electronic states,

and the exquisite control attained over both the internal and external degress of

freedom. The hydrogen-like ions that have been directly cooled and manipulated for

applications in quantum information include Ba+ [53, 54], Be+ [55], Ca+ [56, 57, 58],

Cd+ [59], Mg+ [60], Sr+ [26], and Yb+ [61, 62]. In Table 4.1 various properties of

these atomic ions are compared.
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The ytterbium ion (Yb+) is especially attractive because the strong 2S1/2 ↔ 2P1/2

electronic transition near 369.53 nm is suitable for use with optical fibers, making

schemes that require the coupling of atomic (hyperfine) qubits to photonic (optical)

qubits feasible [64, 29, 65, 14, 66, 15, 67, 68, 69, 16, 70, 71, 72, 12, 73]. Moreover,

the large fine structure splitting of Yb+makes it amenable to fast manipulation with

broadband laser pulses [74, 75, 76, 77]. Finally, the spin-1/2 nucleus of 171Yb+allows

for simple, fast, and efficient preparation and detection of the ground state hyperfine

levels.

4.1 Photoionization

Ytterbium ions (Yb+) are loaded into the trap by photoionization of neutral Yb.

A thermal, directional spray of Yb atoms is produced by resistively heating one of the

atomic source ovens (Sec. 3.3.3). A continuous-wave (cw) diode laser that provides

approximately 5 mW of light at 398.91 nm is tuned to the 1S0 ↔ 1P1 transition of

neutral Yb and is focused through the center of the trap with a waist of approximately

50 µm. A second beam near 369.53 nm is generated by frequency-doubling the light

produced by a cw amplified diode laser near 739.05 nm. Approximately 375 mW

of 739.05 nm light is sent to a resonant cavity containing a critically phase-matched

LBO crystal, producing more than 14 mW at 369.53 nm.1 During photoionization,

about 2 mW of this light at 369.53 nm is aligned counter-propagating to the beam at

398.91 nm, and is focused through the trap with a waist of about 30 µm. Neutral Yb

atoms passing through these beams are photoionized by way of a resonantly assisted,

dichroic, two-photon transition [61, 62]: the 398.91 nm light excites Yb atoms from

the 1S0 to the 1P1 level, from which the 369.53 nm light can promote the electron

to the continuum (Fig. 4.1). The atomic source ovens are aligned such that the

1The resonant cavity used for second harmonic generation is a commercial Spectra-Physics WaveTrain.
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isotope mass (amu)
170 171 172 174 176

Yb:
1S0 ↔ 1P1 – 398.9118 398.9116 398.9113 398.9111

Yb+:
2S1/2 ↔ 2P1/2 369.5236 369.5261 369.5243 369.5250 369.5255

2D3/2 ↔ 3[3/2]1/2 935.1982 935.1878 935.1874 935.1799 935.1724
2F7/2 ↔ 1[5/2]5/2 – 638.6101 – 638.6185 –

638.6151
2F7/2 ↔ 3[5/2]3/2 – – – 864.8430 –

Table 4.2: Ytterbium transitions by isotope, as measured by our wavemeter; determination of which
isotope these fluorescence signals correspond to was made by comparison of the relative.
All wavelengths shown are in nm. For the 171 isotope: the 2S1/2 ↔ 2P1/2 given is for
2S1/2|F = 1〉 ↔ 2P1/2|F = 0〉; the 2D3/2 ↔ 3[3/2]1/2 given is for 2D3/2|F = 1〉 ↔
3[3/2]1/2|F = 0〉; and the two values for 2F7/2 ↔ 1[5/2]5/2 are for the 2F7/2|F = 3〉 ↔
1[5/2]5/2|F = 2〉, 2F7/2|F = 4〉 ↔ 1[5/2]5/2|F = 3〉 transitions [82]. We have not
attempted to observe the 168 (natural abundance is only 0.0013 [63]) or 173 (requires
additional frequency sources to depopulate additional hyperfine levels) isotopes.

propagation direction of the neutral Yb atoms is approximately perpendicular to

the 398.91 nm beam to minimize Doppler shifts and allow for isotopically selective

loading (Table 4.2).

4.2 Doppler cooling

After photoionization of a neutral atom in the trap, the confined Yb+atom is

Doppler-cooled by the light at 369.53 nm, which is slightly red-detuned of the 2S1/2 ↔

2P1/2 transition depicted in Fig. 4.2. Doppler cooling relies on the frequency detuning

dependance of the photon scattering rate of the atom [83]:

Γsc =
I
Isat

Γ
2

1 + I
Isat

+
4∆2

l

Γ2

(4.1)

In this equation, I is the intensity of the incident light; Γ = 1/τ is the spontaneous

emission rate of the transition, with τ the natural lifetime of the excited state, and is

related to the natural linewidth γ = Γ/2π; and ∆l is the detuning of the incident light

from the transition resonant frequency. We have also used the saturation intensity

Isat, defined as the intensity necessary to create equal population in the lower and
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Figure 4.1: Partial level diagram of the neutral Yb atom (to scale). Level energies are given as
E = ch/λ, and are quoted from Ref. [63]. The transitions shown with solid lines are
driven by laser sources in the experiment to achieve resonant-assisted photoionization.
The lifetime and saturation intensity of the 1P1 level is from Ref. [78]; lifetimes of the
3D1, 3P1, and 3P0 levels are from Ref. [79], [80] and [81], respectively.
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upper levels of the transition, which is given by [84]:

Isat =
πhcΓ

3λ3Rbr

(4.2)

where Rbr is the branching ratio from the upper level to the lower level. As an exam-

ple, for the 2S1/2 ↔ 2P1/2 transition in Yb+, Γ = 1/τ = 123.2 MHz (measurement in

Chap. VI), λ = 369.53 nm, and Rbr = 1− 0.005 (measurement in Sec. 4.4), so from

Eq. 4.2 we find Isat = 51 mW/cm2.2 This means if the waist of the incident beam is

30 µm, then the power needed to saturate the transition is 1.4 µW.

Atoms propagating along or opposed to the incident light will see the frequency

of this light as shifted, due to the Doppler effect. Since Eq. 4.1 is a function of the

detuning ∆l, the scattering rate will depend on the velocity of the atom. By tuning

the incident light to be red of resonance (photons lower in energy), an atom moving

toward the light will scatter more photons than it does while moving away. Given the

restoring force provided by the ion trap, this allows a trapped ion to be cooled. In

fact, as long as the incident light is not aligned perpendicular to any of the principle

axes of the trap, a single beam of incident light can cool the motion of the atom in all

directions. The limit in temperature that can be achieved by Doppler cooling is set

by the photon recoil energy. Although the atom scatters preferentially while moving

in a particular direction, the spontaneous emission is still in a random direction, so

any particular scattering event can heat the motion of the atom, rather than cool it.

It can be shown that the minimum temperature is achieved at a detuning ∆l = −Γ/2,

resulting in [83]:

kBT =
~Γ

2
(4.3)

In the case of the 2S1/2 ↔ 2P1/2 transition in Yb+, this yields a Doppler cooling limit

2This assumes a two-level system. While assumption is approximately correct for the even isotopes of ytterbium
(e.g. π-polarized light), for 171Yb+we need to account for the effect of coherent dark states [85], as is done in Sec. 4.5.

51



Figure 4.2: Relevant levels of the Yb+atom (to scale). Transitions shown with solid lines are driven
by laser sources in the experiment. Numbers given in parentheses are branching ratios.
The lifetimes of some of the excited states are also given. Measurement of the lifetime
and branching ratio for the 2P1/2 level is given in Chap. VI and Sec. 4.4, respectively.
Wavelengths for decays shown in gray are from Ref. [63]. Lifetimes of the 2D3/2, 2D5/2,
3[3/2]1/2, and 2F7/2 levels are from Refs. [86], [87], [88], and [89], respectively. Branching
ratios out of 3[3/2]1/2 and 2P3/2 are from Ref. [90], while the 2D5/2 branching ratio is
from Ref. [87].
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of 470 µK. In Chap. III, we derived the classical equations of motion for a charged

particle in an rf trap, and found the particle underwent harmonic oscillations. Of

course, since this a quantum system, we could instead derive quantized motion of

the trapped particle [42]; but we know the energy of a quantum harmonic oscillator

is given by Eho = ~ω(n + 1/2). Thus, given the secular frequency of a trapped

171Yb+atom from Sec. 3.2.2 as ωx,sim/(2π) = 1.17 MHz, and equating kBT in Eq. 4.3

to Eho, we find the average motional state of a trapped 171Yb+atom at the Doppler

cooling limit to be n̄x ≈ 8. The spatial extent of the atomic wavefunction is given

by (
〈n|x̂2|n〉

)1/2
= x0 (2n+ 1)1/2 , with xo =

√
~

(2mωx)
(4.4)

where xo is the “zero-point” spread of the wavefunction. Given the parameters for

171Yb+above, at n̄x ≈ 8 this leads to the wavefunction having a spatial extent of

about 21 nm.

In the experiment, we typically Doppler cool the Yb+atom on the 2S1/2 ↔ 2P1/2

transition with about 500 nW of 369.53 nm light focused to a 30 µm waist.3 However,

efficient cooling of the atom requires addtional light, because the 2P1/2 state also

decays to the metastable 2D3/2 level with a measured probability of about 0.005 (see

Sec. 4.4 for this measurement). Light at 935.2 nm is used to drive the atom from

the 2D3/2 to the 3[3/2]1/2 level, from which it quickly returns to the 2S1/2 ground

state [91]. An additional complication arises from the presence of the low-lying

2F7/2 state. Despite the fact that there are no allowed decays from the four levels

used in cooling to 2F7/2, the ion falls into this state a few times per hour, probably

due to collisions with residual background gas [92, 93]. Laser light near 638.6 nm

3The 369.53 nm light generated by the frequency-doubling cavity is coupled into a single-mode fiber, and the
output of this fiber is focused onto the ion. The spatial-mode filtering of the fiber allows for a very small waist to be
achieved.
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depopulates the 2F7/2 level, returning the ion to the four-level cooling scheme.

The odd-looking notation of the 3[3/2]1/2 level is the result of a different coupling

scheme (not the usual LS-coupling), caused by the excitation of a second electron

from the f -shell of the ytterbium ion. In this coupling scheme, the 4f 13 shell is

LS-coupled to yield a total Jc for the core. The value K, given in brackets in the

notation, is the result of coupling the orbital angular momentum of the two outer

electrons L to the core angular momentum Jc, so that K = L + Jc. The spins of

the two outer electrons are coupled to form S, given by the superscript multiplicity

(2S + 1) in the notation. This value for S is then coupled to K to form the total J ,

given as the subscript in the notation [94, 95, 63].

Photons at 369.53 nm scattered by the ion are collected by an objective lens with

a numerical aperture of 0.27.4 An aperture at the intermediate image generated by

the objective reduces observed background light. This image is re-imaged using a

doublet lens and directed to either a photon-counting photomultiplier tube (PMT)

or camera. The image provided by the camera is used to monitor the loading process

and subsequently confirm the presence of a single Yb+atom in the trap. The PMT,

with its higher detector efficiency, is used to measure the ion fluorescence during

state detection.

The ion fluorescence can also be used to gauge residual micromotion at the rf drive

frequency using a fluorescence cross-correlation technique [96]. Careful adjustment

of static offset voltages applied to the trap rods aligns the equilibrium position of the

ion to the center of the rf quadrupole potential, and suppresses micromotion [41].

4The objective is from Special Optics, part number 54-17-29-370nm.
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4.3 Laser stabilization

Efficient quantum operations on Yb+atoms require that the 739.05 nm and 935.2

nm lasers are stable in frequency to well within the linewidths of the relevant tran-

sitions in the experiment. We accomplish this by locking the 739.05 nm laser to a

passively stable reference cavity using an rf (Pound-Drever-Hall) lock [97, 98]; the

design of this invar cavity is given in App. C. Saturated-absorption spectrocopy of

iodine is used for an absolute frequency reference to stabilize the length of the cavity.

Lastly, we lock the 935.2 nm laser to the same cavity using a side-of-fringe technique.

The relevant optics and electronics for the rf stabilization of the 739.05 nm laser

to the cavity are shown in Fig. 4.3(a). The current of the diode laser is weakly

modulated at 120 MHz, and approximately 120 µW of the main 739.05 nm beam is

sent to the reference cavity.5 The cavity reflection is measured with a photodiode

sensitive to rf signal modulation (about 1–150 MHz), and the consequent electronic

signal is sent through an amplifier and mixed with the 120 MHz signal. The resulting

error signal is used to stabilize the 739.05 nm laser to the reference cavity by feedback

control of the laser diode current and grating angle. The cavity is passively stable

on short time-scales, and for long-term stability it is locked to an absorption line of

molecular iodine.

Molecular iodine is often chosen as a frequency reference for wavelengths from

the near-infrared (e.g. 830 nm [99]) to the disassociation limit at 499.5 nm because

of the density of narrow absorption lines in this region [100, 101]. These lines can

serve as excellent frequency references for laser stabilization to a few parts in 10−9 or

5The free spectral range of the doubling cavity prevents this modulation frequency from appearing on the 369.53
nm light.
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Figure 4.3: (a) Apparatus for locking the 739.05 nm laser to an iodine stabilized cavity, as explained
in the text. The current of the diode laser is weakly modulated at 120 MHz to lock
the laser to a passively stable invar cavity. The cavity is stabilized to a reference line
in molecule iodine. PID is proportional-integral-derivative servo controller; rf-PD is
radio-frequency photodiode; PBS is a polarizing beamsplitter; λ/2 is a half waveplate;
and λ/4 is a quarter waveplate. (b) Setup for locking to molecular iodine via saturated
absorption spectroscopy, as explained in the text. The error signal generated from
this setup is used to stabilize the reference cavity shown in (a). EOM is electro-optic
modulator; AOM is acousto-optic modulator; VCO is voltage-controlled oscillator.
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better [102]. However, in the region applicable to Yb+(739.05 nm) most of the lines

are weak at room temperature. In order to thermally achieve sufficient population

of the rovibrational levels of the molecule that are the lower states of these (B → X)

transitions, the iodine must be heated to over 600 K [103]. In our setup, we employ

a homemade iodine vapor cell 20 cm in length with two quartz windows 25 mm in

diameter and a 5 cm long cold finger. The cold finger is isolated from the heating

elements such that it remains at room temperature, which is necessary to avoid

pressure broadening of the transition [103].

The reference cavity is stabilized to molecular iodine using standard saturated

absorption spectroscopy, as depicted in Figure 4.3(b). The 739.05 nm diode laser

produces about 400 mW of output power, 25 mW of which is diverted to the iodine

setup. This light is sent to a 10 kHz – 20 GHz fiber electro-optic modulator (EOM),

and one of the resulting first-order sidebands is used for iodine spectroscopy.6 At

739.05 nm, 25 mW of light can be safely sent through the EOM without photorefrac-

tive damage to the crystal. However, due to coupling and transmission losses, only

6 mW of this light is transmitted. The modulator receives approximately 10 dBm of

rf power, which transfers about 1/3 of the power (effectively about 2 mW) into the

first-order sideband used for spectroscopy. Since the fraction of power transferred

into the first-order sideband is given by (J1(θ))2, with θ the phase-shift induced by

the modulating voltage, this is the maximum amount that can be expected. The

remaining light at other frequencies is far detuned from any iodine feature, and

therefore does not contribute to the absorption signal. A feature of this setup is that

the large bandwidth of the fiber EOM allows the laser to be scanned over a wide

range while remaining locked to a given iodine absorption line.

6EOSPACE Inc., Model PM-0K1-10-PFU-PFU-740-UL. Complete specifications are available at the EOSPACE
website: http://www.eospace.com.
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We performed spectroscopy on three iodine reference lines to determine the best

absorptive feature for use as an absolute frequency reference. Absorption lines of

molecular iodine are observed at detunings of approximately 13 GHz, 10 GHz, and -

5 GHz from the target wavelength of 739.05 nm (twice the wavelength of the 2S1/2 ↔

2P1/2 transition of 171Yb+).7 The continuous tuning of the fiber EOM over nearly

20 GHz allowed us to perform spectroscopy to determine the hyperfine structure

of these absorption lines. For this measurement, we stabilize the 739.05 nm laser

to the fluorescence of a single 174Yb+atom using a side-of-fringe technique. We

estimate that this results in a stability of better than 5 MHz over the course of the

measurement. As the intensity of the 935.2 nm light on the ion was much greater

than the saturation intensity (∼20 × Isat) for this measurement, small fluctuations

in the frequency of the 935.2 nm laser had a negligible effect on the ion fluorescence.

With the 739 nm laser locked to a trapped ion, the rf applied to the fiber EOM

was varied in 0.5 MHz steps over the areas of interest, and the output of the lock-in

amplifier was recorded. Because of the weak nature of the lines being investigated,

each point was integrated for about 1.5 seconds using a lock-in time constant of 300

ms to achieve a reasonable signal-to-noise ratio. We mapped the hyperfine structure

of the three aforementioned absorption lines, with the hyperfine structure of the line

near a detuning of 10 GHz (739.03 nm) presented in Fig. 4.4. Later, we further

improved the signal by very careful alignment of the foci of the pump and probe

beams in the iodine cell. The strong doublet feature at a detuning of approximately

10.3 GHz is used to stabilize the reference cavity of Fig. 4.3(a).

After the cavity has been stabilized to iodine, a weak (approximately 500 µW)

7The absorption lines at detunings of approximately 13 GHz, 10 GHz, and -5 GHz from the target wavelength of
739.05 nm are the features listed in the atlas by Gerstenkorn, et al. [100], at 13531.2773 cm−1, 13531.1823 cm−1,
and 13530.6745 cm−1, respectively.
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Figure 4.4: Hyperfine structure of the iodine absorption line approximately 10 GHz detuned from
half the frequency of the 2S1/2 ↔ 2P1/2 transition of 171Yb+ (739.05 nm). Each point
is separated in frequency by 0.5 MHz, and was integrated for about 1.5 seconds. The
frequency axis in the figure is estimated to have an offset accurate to ±20 MHz, and
scaling to ±5 MHz.

beam at 935.2 nm is sent through a fiber EOM and then directed (about 50 µW) to

the cavity. The rf used to drive this fiber EOM is tuned such that one of the resulting

first-order sidebands is resonant with the cavity. The transmitted light is observed

with a photodiode, and the consequent signal sent to a PID controller. In this way,

we stabilize the laser at 935.2 nm to the cavity using a side-of-fringe technique.

4.4 Branching ratio of the 2P1/2 level

We measure the 2P1/2 branching ratio to the 2D3/2 level by observing the decay

in fluorescence of a single trapped 174Yb+atom. As in Sec. 4.3, the 739.05 nm laser

is stabilized to an absorption feature in iodine via a reference cavity. The 935.2

nm laser is stabilized to the same cavity, but here is tuned far (about 3 GHz) from

the 2D3/2 ↔ 3[3/2]1/2 transition. On the way to the ion, the 935.2 nm light is

passed through a fiber EOM that produces a first-order sideband resonant with the
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2D3/2 ↔ 3[3/2]1/2 transition of 174Yb+.

The measurement sequence begins with a 100 µs interval during which the fiber

EOM modulating the 935.2 nm light is on, and both the 935.2 nm light and 369.53

nm light are incident on the ion. In a subsequent interval of 95 µs, the fiber EOM

modulating the 935.2 nm light is switched off, resulting in population trapping in

2D3/2. During this time, photons scattered by the ion are collected and sent to the

PMT, with the arrival times of the photons recorded by a time-to-digital converter.

The fluorescence signal has an exponential decay arising from population trapping in

the 2D3/2 state, with functional form exp (−PP1/2
ΓRbrt). Here, Γ is the spontaneous

emission rate of the 2P1/2 state; Rbr is the branching ratio (probability of decay)

into 2D3/2; and PP1/2
is the population of the 2P1/2 state, which is a function of the

power (p) of the 369.53 nm light at the ion (for a constant beam waist), given by

PP1/2
= (p/psat)/(2(1+p/psat)) for resonant light. Decay out of the metastable 2D3/2

state is neglected because the lifetime of this state (52.7 ms [86]) is much longer than

the measurement time.

Figure 4.5(a) shows this exponential decay for 29 µW of incident 369.53 nm light,

focused to a waist of approximately 30 µm at the ion. We repeat the measurement

for a variety of 369.53 nm light intensities, with the resulting decay parameters

b = PP1/2
ΓRbr shown in Fig. 4.5(b). Given the expressions for b and PP1/2

above,

the data is fit to p = (2bpsat)/(ΓRbr − 2b) with two fit parameters: psat and ΓRbr.

Using Γ = 1/(8.12± 0.02 ns) (see Chap. VI), we determine the 2P1/2 branching ratio

to 2D3/2 to be Rbr = 0.0050(2). This number is consistent with prior theoretical

calculations [104] and experimental measurements [86]. Knowledge of this branching

ratio can be important in determining the theoretical limit on state detection of an

Yb+qubit, as discussed in Sec. 4.5.
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(b)
Decay parameter 

from (a)

(a)

brΓ

Figure 4.5: Data used to determine the branching ratio of the 2P1/2 level. (a) Exponential decay
in the fluorescence of a trapped 174Yb+atom, indicating population trapping in 2D3/2.
During this time, appproximately 29 µW of 369.53 nm light was incident on the ion, with
the 935.2 nm laser detuned about 3 GHz from the 2D3/2 ↔ 3[3/2]1/2 transition. The
data was integrated for 5 minutes, and is analyzed with 16 ns binning. The gray line is
an exponential (plus background) fit to the data. (b) Exponential fit decay parameters
b = PP1/2ΓRbr for a range of 369.53 nm laser intensities. Error bars are taken to be
±10% the measured 369.53 nm power, to account for possible intensity drifts of the
laser during the measurement. The line is a fit to the function p = (2bpsat)/(ΓRbr−2b)
with two fit parameters: psat and ΓRbr.
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4.5 Hyperfine qubit

As discussed in Chap. II, the requirements for the physical implementation of

quantum computation include state initialization of the qubits, qubit state detec-

tion, a set of universal gates, and long qubit coherence time [30]. The 2S1/2 hyper-

fine levels of the 171Yb+atom satisfy all of these requirements, making it an excellent

qubit for quantum information processing. Below, we show that with knowledge

of the hyperfine splitting of the relevant energy levels and the application of addi-

tional frequency sources, we are able to achieve fast, efficient state initialization and

state detection, reliable single-qubit operations, and a qubit coherence time that far

exceeds the duration of these processes.

The relevant energy levels for the 171Yb+atom are shown in Fig. 4.6. The qubit is

defined to be the two first-order magnetic field-insensitive hyperfine levels of the 2S1/2

ground state. We define the 2S1/2|F = 1,mF = 0〉 state as the logical qubit state |1〉,

and the 2S1/2|F = 0,mF = 0〉 state as |0〉. Here F is the total angular momentum

of the atom and mF is its projection along the quantization axis. The qubit states

are separated by a frequency of 12 642 812 118.5 + δ Hz, where δ = (310.8)B2 is the

second-order Zeeman shift, and B is the magnetic field in gauss [36].

4.5.1 Doppler cooling 171Yb+ The ion is Doppler-cooled in a way very similar to that

presented in Sec. 4.2, with the difference arising from the addition of the hyperfine

structure of the 171 isotope. In this case, light at 369.53 nm is slightly red-detuned

(about 10 MHz) of the 2S1/2|F = 1〉 ↔ 2P1/2|F = 0〉 transition in 171Yb+. During

cooling, there is approximately 500 nW of 369.53 nm light focused to a waist of

about 30 µm at the ion. Off-resonant coupling to the 2P1/2|F = 1〉 manifold results

in population trapping in |0〉. To prevent this during cooling intervals, the 369.53 nm
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Figure 4.6: The 171Yb+qubit (not to scale). The 2S1/2|F = 1,mF = 0〉 state is defined to be |1〉,
and the 2S1/2|F = 0,mF = 0〉 state is defined to be |0〉. (a) State initialization to |0〉
by application of light resonant with the 2S1/2|F = 1〉 ↔ 2P1/2|F = 1〉 transition. (b)
Detection of the qubit state. If the qubit state is |1〉, the 369.53 nm light applied for
detection is nearly on resonance, and the ion scatters many photons. If the state is |0〉,
very few photons are scattered. Measurements of the hyperfine splitting of the 2S1/2

and 2P1/2 levels are found in Ref. [36] and [105], respectively. Details regarding our
measurement of the hyperfine splitting of 2D3/2 and 3[3/2]1/2 are found in Sec. 4.6.
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cooling beam is passed through a bulk resonant EOM driven at 7.37 GHz, as shown in

Fig. 4.7. The resulting positive second-order sideband is resonant with the 2S1/2|F =

0〉 ↔ 2P1/2|F = 1〉 transition, which returns the ion to the cooling cycle.8 Population

trapping in the 2D3/2|F = 1〉manifold is avoided by application of a laser at 935.2 nm,

which rapidly returns the atom to the cooling cycle via the 3[3/2]1/2|F = 0〉 level [91].

As seen in Fig. 4.2, the 3[3/2]1/2 decays preferentially to 2S1/2 [90]. About 600 µW of

935.2 nm light is sent to the trap, focused to a spot with waist approximately 200 µm.

When the ion is excited to the 2P1/2|F = 1〉 manifold, which occurs off-resonantly

during cooling, the ion may decay to 2D3/2|F = 2〉. We depopulate this level by using

a fiber EOM driven at 3.07 GHz to add a frequency component to the 935.2 nm light

that is resonant with the 2D3/2|F = 2〉 ↔ 3[3/2]1/2|F = 1〉 transition (see Sec. 4.6).

Finally, the 2F7/2 hyperfine levels are depopulated by laser light that is switched

between the 2F7/2|F = 3〉 ↔ 1[5/2]5/2|F = 2〉 and 2F7/2|F = 4〉 ↔ 1[5/2]5/2|F = 3〉

transitions, both near 638.6 nm [82]. Nearly 1 mW of 638.6 nm light is present at

the trap, focused to about 200 µm. The ion resides in a magnetic field of about

3.4 gauss for definition of the quantization axis and to avoid coherent population

trapping [85].

4.5.2 State initialization Optical pumping initializes the state of the 171Yb+atom

into |0〉, as shown in Fig. 4.6(a). A beam at 369.53 nm is passed through a bulk

resonant 2.1 GHz EOM before reaching the ion. During state initialization, this 2.1

GHz EOM is switched on, generating a positive first-order sideband resonant with the

2S1/2|F = 1〉 ↔ 2P1/2|F = 1〉 transition.9 From the 2P1/2|F = 1〉 manifold, the ion

8The EOM is New Focus model 4851; the frequency is generated by an HP 8684D, and then amplified to send
approximately 1 W to the EOM (max spec. power is 3 W). This transfers only about 1% of the power into each of the
second-order sidebands, limited by technical difficulties with the EOM. Nevertheless, this appears to be sufficient.

9The 2.1 GHz EOM is from New Focus, model 4431. The driving frequency is provided by a PTS 3200 and is
amplified before reaching the EOM. Approximately 0.5 W of rf power is applied to the EOM, which almost completely
suppresses the carrier (max spec. power is 4 W).
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Figure 4.7: Experimental setup for initialization, manipulation, and detection of the 171Yb+qubit.
The 7.37 GHz EOM in the cooling beam is tuned so that the positive second-order
sideband is on resonance with the 2S1/2|F = 0〉 ↔ 2P1/2|F = 1〉 transition, preventing
population trapping in |0〉 during cooling. The EOM in the pump/detect beam at
2.1 GHz is used to optically pump the ion into |0〉 during state initialization. The
935.2 nm beam passes through a widely tunable fiber EOM, which is used to generate
a frequency component to depopulate the 2D3/2|F = 2〉 manifold during cooling and
optical pumping. The AOMs are used to quickly turn the beams on and off. The AOM in
the cooling beam is tuned such that the diffracted beam is about half a linewidth (about
10 MHz) away from resonance to achieve efficient cooling. The pump/detect beam is
tuned only about 3 MHz from resonance to generate more scattering events, reducing
the time needed to distinguish between qubit states with high fidelity. Microwaves
(µWaves) at about 12.643 GHz are sent to the trap for single-qubit manipulation.
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has a 1/3 chance of decaying to |0〉. Since 2P1/2|F = 1〉 also decays to 2D3/2|F = 2〉,

the aforementioned 3.07 GHz sideband in the 935.2 nm light is essential for efficient

state initialization. With approximately 8 µW of 369.53 nm light focused to about

30 µm at the trap, the ion is optically pumped to the |0〉 state in less than 1 µs with

near perfect efficiency.

4.5.3 State detection A critical step in quantum computation and communication

protocols is detection of the qubit state. In 171Yb+, state detection is accomplished

using standard ion fluorescence techniques, as illustrated in Fig. 4.6(b) [42, 106, 107].

The 369.53 nm light of the detect beam is tuned to be nearly on resonance with the

2S1/2|F = 1〉 ↔ 2P1/2|F = 0〉 transition. If the ion is prepared in the state |0〉, this

incident light is detuned from 2P1/2|F = 1〉 by 14.7 GHz, and thus the ion scatters

very few photons. Conversely, if the |1〉 state is prepared, then the impinging light is

nearly on resonance, and many scattered photons are observed. The state of the ion

is determined by the number of photons observed by the PMT during the detection

interval. In the experiments presented here, if more than one photon is observed

during detection, the ion is defined to be in the state |1〉; if one or zero photons are

detected, the ion is defined to be in |0〉.

The limiting source of error in state detection is off-resonant coupling to the

2P1/2|F = 1〉 manifold. A detailed study of the theoretical detection fidelity limit for

different ion species is presented in Ref. [107]. Given a photon collection efficiency of

0.001 (one out of every 1000 scattered photons is collected and detected) in the limit

of low intensity of the detect beam, the maximum detection fidelity is calculated to

be 99.52% for 171Yb+.10 The majority of the error is a consequence of off-resonant

excitation to the 2P1/2|F = 1〉 manifold when the ion has been prepared in |1〉, as

10In Ref. [107], a theoretical detection efficiency of 99.33% is given. The discrepancy here arises from using different
values for the lifetime of the 2P1/2 excited state. In present calculation, we use 19.6 MHz, as measured in Chap. VI.
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Theoretical
Photon collection efficiency state detection fidelity
0.001 98.58%
0.002 99.28%
0.003 99.52%
0.01 99.86%
0.02 99.93%
0.03 99.95%
0.1 99.985%

Table 4.3: Theoretical state detection fidelity in 171Yb+for various photon collection efficiencies
when the reduced scattering rate due to coherent dark states is included.

the hyperfine splitting of the 2P1/2 level is only 2.1 GHz. On the other hand, if

the initial state is |0〉, the incident light is detuned from the 2P1/2|F = 1〉 manifold

by 14.7 GHz and transitions to the 2P1/2|F = 0〉 level are forbidden by selection

rules. Taking into account decay into the 2D3/2 level in this calculation reduces the

total number of 369.53 nm photons scattered by the ion. In addition, off-resonant

coupling to the 3[3/2]1/2|F = 1〉 level may occur while depopulating the 2D3/2|F = 1〉

manifold. However, given the small branching ratio into 2D3/2, we estimate these

additions to the calculation constitute a negligible change in the theoretical detection

fidelity (< 0.01%). A far more important issue is the reduced scattering rate of the

171Yb+atom due to coherent population trapping in the 2S1/2|F = 1〉 manifold [85].

In optimal conditions, the scattering rate of the 2S1/2|F = 1〉 ↔ 2P1/2|F = 0〉

transition used for detection is reduced to about 1/3 the natural rate, while the error

rate remains virtually unchanged. Hence, for a photon collection efficiency of 0.001,

the theoretical detection fidelity is reduced to about 98.58% (Table 4.3).

We experimentally optimize state detection with respect to the intensity and dura-

tion of the light applied during the detect interval. As a result of the small branching

ratio into 2D3/2, we observe that the fidelity of state detection has negligible depen-

dence on the 935.2 nm intensity (above 500 µW, focused to about 200 µm). The

369.53 nm light was varied over a wide range of intensities and durations. Optimum

67



Figure 4.8: Histograms of detected photons after the ion is prepared in each of the two qubit states.
The detection interval is 800 µs, with 150 nW of 369.53 nm light focused to about 30
µm. If zero or one photon is detected, the state is determined to be |0〉; if two or
more photons, |1〉. Discriminating between the qubit states by this method yields a
state detection fidelity of 98.2(2)%. Blue histogram: the ion is initialized to the |0〉
state, and the atom scatters very few photons. The histogram is the result of 5000
measurements. Green histogram: the ion is initialized to |0〉, and then rotated to |1〉
by application of microwaves. During the detection interval the atom scatters many
photons. The histogram is the result of 4000 measurements.

state detection was realized with 150 nW of 369.53 nm light, focused to a spot of

radius about 30 µm at the trap, and incident on the ion for 800 µs. The resulting

histograms for state preparation in |0〉 versus |1〉 are presented in Fig. 4.8. Given

these parameters, the state detection fidelity is measured to be 98.2(2)%.

4.5.4 Microwave rotations We can rotate the state of the ion between |0〉 and |1〉

by applying microwaves resonant with the 12.643 GHz 2S1/2 hyperfine splitting. The

microwave radiation effectively adds the perturbative Hamiltonian

ĤI = −µ̂zBo cos(ωt+ δo) (4.5)

68



where we’ve assumed the polarization of the applied oscillating magnetic field is along

the z-axis. Here, µ̂z is the z-component of the magnetic moment of the atom, ω is

the angular frequency of the applied radiation, Bo is the amplitude of the radiation,

and δo is a phase. We assume this is only a small perturbation to the system, and

expand the wavefunction of the system in terms of the eigenstates of the unperturbed

Hamiltonian.

|ψ(t)〉 =
∑
m

cm(t)e−ı̇Emt/~|m〉 (4.6)

Recall the time-dependent Schrödinger equation is

ı̇~
d

dt
|ψ(t)〉 = Ĥ|ψ(t)〉 (4.7)

where we’ve defined the Hamiltonian as the sum of the unperturbed and perturbation

Hamiltonians, Ĥ = Ĥo + ĤI , with Ĥo|m〉 = Em|m〉. Plugging Eq. 4.6 into Eq. 4.7

and taking the inner product with 〈n| yields a set of coupled differential equations

for the time-dependent coefficients.

ı̇~ċne−ı̇Ent/~ =
∑
m

cme
−ı̇Emt/~〈n|ĤI |m〉 (4.8)

Now we make the magnetic dipole approximation, which amounts to assuming that

the wavelength of the magnetic radiation is much larger than the spatial extent

of the atomic wavefunction; given our earlier estimate for the spatial extent of a

trapped ion (Sec. 4.2), and a wavelength c/(12.643 GHz) = 2.37 cm, this is an excel-

lent approximation. The magnetic dipole approximation lets us write 〈n|ĤI |m〉 =

−Bo cos(ωt + δo)〈n|µ̂z|m〉. Since µ̂z is a vector quantity, it has odd parity, which

means 〈n|µ̂z|m〉 will be non-zero only for n 6= m. For simplicity, we will define the

number ℘nm = 〈n|µ̂z|m〉; note that ℘nm = ℘∗mn.

Our interest is transitions in the two-level system |0〉 and |1〉. In this case, Eq. 4.8
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yields two coupled differential equations:

ı̇~ċ0 = −c1℘10Boe
−ı̇ω10t cos(ωt+ δo)

ı̇~ċ1 = −c0℘
∗
10Boe

ı̇ω10t cos(ωt+ δo) (4.9)

where we have defined ω10 = (E1 − E0)/~. Rewriting the cosine as a sum of expo-

nentials yields:

ı̇~ċ0 = −1

2
c1℘10Bo

(
eı̇(ω−ω10)teı̇δo + e−ı̇(ω+ω10)te−ı̇δo

)
ı̇~ċ1 = −1

2
c0℘

∗
10Bo

(
eı̇(ω+ω10)teı̇δo + e−ı̇(ω−ω10)te−ı̇δo

)
(4.10)

We will now make the rotating wave approximation (RWA), the essence of which

is that the dynamics of the amplitudes change slowly with respect to the incident

frequency ω. Given the applied radiation is near resonance, this assumption results

in e±ı̇(ω+ω10)t ≈ 0. If we also define the resonant Rabi frequency Ω = ℘10Bo/~, and

the detuning of the field from resonance as ∆ = ω − ω10, the coupled differential

equations are simplified to:

ċ0 =
ı̇Ω

2
c1e

ı̇∆teı̇δo (4.11)

ċ1 =
ı̇Ω∗

2
c0e
−ı̇∆te−ı̇δo (4.12)

Taking a second derivative of Eq. 4.12:

c̈1 =
ı̇Ω∗

2
e−ı̇∆te−ı̇δo ċ0 + (−ı̇∆)

ı̇Ω∗

2
c0e
−ı̇∆te−ı̇δo (4.13)

and plugging-in Eq. 4.11 and Eq. 4.12 for the first and second terms on the right-hand

side of the equation, respectively, results in a second-order, homogenous differential

equation.

c̈1 + ı̇∆ċ1 +

∣∣∣∣Ω2
∣∣∣∣2 c1 = 0 (4.14)
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The general solution for this equation can be obtained by defining the operator

D = d
dt

, so that the equation becomes(
D2 + ı̇∆D +

∣∣∣∣Ω2
∣∣∣∣2
)
c1 = 0 (4.15)

The “characteristic equation”, D2 + ı̇∆D+
∣∣Ω

2

∣∣2 = 0, is then solved for the quadratic

roots αr and βr. Solving in this manner results in αr = −ı̇
2

(∆ +
√

Ω2 + ∆2) and

βr = −ı̇
2

(∆−
√

Ω2 + ∆2). For reasons that will become apparent in the final solution,

we will define the generalized Rabi frequency ΩR =
√

Ω2 + ∆2. The general solution

to Eq. 4.15 is then given by [108]:

c1(t) = aeαrt + beβrt

= ae−ı̇(∆+ΩR)t/2 + be−ı̇(∆−ΩR)t/2

= e−ı̇∆t/2
(
ae−ı̇ΩRt/2 + beı̇ΩRt/2

)
(4.16)

The constant coeffients a and b are determined by the initial conditions.

First, let’s assume the atom has been initialized to |0〉 by optical pumping at time

t = 0, giving the initial conditions c0(0) = 1 and c1(0) = 0. The latter condition on

Eq. 4.16 determines b = −a, so we have:

c1(t) = ae−ı̇∆t/2
(
e−ı̇ΩRt/2 − eı̇ΩRt/2

)
= −2aı̇e−ı̇∆t/2 sin(ΩRt/2) (4.17)

In order to utilize the former initial condition (c0(0) = 1), we need to take the

derivative of Eq. 4.17, and plug this into Eq. 4.12 for t = 0. Doing so yields a =

−Ω∗/(2ΩR)e−ı̇δo . Therefore, the final solution for c1(t) is:

c1(t) =
ı̇Ω∗

ΩR

e−ı̇∆t/2e−ı̇δo sin

(
1

2
ΩRt

)
(4.18)
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Figure 4.9: Theoretical Rabi oscillations given by Eq. 4.18 with detunings ∆ = 0, ∆ = Ω, and
∆ = 3Ω.

The solution for c0(t) is obtained by simply plugging Eq. 4.18 into Eq. 4.12.

c0(t) = eı̇∆t/2
[
cos

(
1

2
ΩRt

)
− ı̇∆

ΩR

sin

(
1

2
ΩRt

)]
(4.19)

Figure 4.9 shows the theoretical |c1(t)|2 of Eq. 4.18 for a variety of detunings, ∆.

If we had instead taken the initial conditions to be c0(0) = 0 and c1(0) = 1, the

procedure for obtaining the final solution would have been the same, but the results

would have been:

c0(t) =
ı̇Ω

ΩR

eı̇∆t/2eı̇δo sin

(
1

2
ΩRt

)
c1(t) = e−ı̇∆t/2

[
cos

(
1

2
ΩRt

)
+
ı̇∆

ΩR

sin

(
1

2
ΩRt

)]
(4.20)

These two sets of solutions are all that we need to describe arbitrary microwave

operations on the qubit. Any arbitrary initial state is simply a superposition of

|0〉 and |1〉; e.g. |ψ〉 = α|0〉 + β|1〉. The operation RµW acting on |ψ〉 is then

RµW |ψ〉 = αRµW |0〉+ βRµW |1〉. Thus, if we know the action of RµW on |0〉 and |1〉,
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we know the action of RµW on any state. If we write the states as matrices

|0〉 =

 1

0

 and |1〉 =

 0

1

 (4.21)

then the elements of the microwave operation matrix

RµW =

 aR bR

cR dR

 (4.22)

have already been determined by our results above. Using Eq. 4.18 and 4.19, we find

RµW |0〉 =

 aR bR

cR dR


 1

0


=

 aR

cR

 =

 eı̇∆t/2
[
cos
(

1
2
ΩRt

)
− ı̇∆

ΩR
sin
(

1
2
ΩRt

)]
ı̇Ω∗

ΩR
e−ı̇∆t/2e−ı̇δo sin

(
1
2
ΩRt

)
 (4.23)

Similarly, the other elements of the microwave operation matrix are determined by

Eq. 4.20.

RµW |1〉 =

 aR bR

cR dR


 0

1


=

 bR

dR

 =

 ı̇Ω
ΩR
eı̇∆t/2eı̇δo sin

(
1
2
ΩRt

)
e−ı̇∆t/2

[
cos
(

1
2
ΩRt

)
+ ı̇∆

ΩR
sin
(

1
2
ΩRt

)]
 (4.24)

Thus, we have defined operation of an arbitrary microwave pulse on an arbitrary

qubit state by the matrix

RµW =

 eı̇∆t/2
[
cos
(

1
2
ΩRt

)
− ı̇∆

ΩR
sin
(

1
2
ΩRt

)]
ı̇Ω∗

ΩR
e−ı̇∆t/2e−ı̇δo sin

(
1
2
ΩRt

)
ı̇Ω
ΩR
eı̇∆t/2eı̇δo sin

(
1
2
ΩRt

)
e−ı̇∆t/2

[
cos
(

1
2
ΩRt

)
+ ı̇∆

ΩR
sin
(

1
2
ΩRt

)]


(4.25)

Generally, this kind of operation is termed a “rotation” of the qubit states. The

terminology is a result of a geometric interpretation of the two-level system, where
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the two energy eigenstates |0〉 and |1〉 are positioned at either pole of the unit sphere

(the Bloch sphere), and equal superposition states lie on the equator with the phase

determining the azimuthal position.

With this geometric interpretation in mind, we define a couple of specific rotations

that will be useful throughout the rest of this thesis. We define rotations with

δo = 3π/2 as rotations about the y-axis of the Bloch sphere, and denote these

by Ry(θ), where θ = ΩRt is the rotation angle. Rotations about the x-axis then

correspond to δo = π and are written as Rx(θ). Of particular use will be the on-

resonance (∆ = 0) “π-” and “π/2”-rotations, since this amounts to:

Ry (π) |0〉 = |1〉

Ry (π) |1〉 = −|0〉

Ry

(π
2

)
|0〉 =

1√
2

(|0〉+ |1〉)

Ry

(π
2

)
|1〉 =

1√
2

(−|0〉+ |1〉) (4.26)

and

Rx (π) |0〉 = −ı̇|1〉

Rx (π) |1〉 = −ı̇|0〉

Rx

(π
2

)
|0〉 =

1√
2

(|0〉 − ı̇|1〉)

Rx

(π
2

)
|1〉 =

1√
2

(−ı̇|0〉+ |1〉) (4.27)

In all of the forthcoming discussion of the experiments using these rotations, the

applied microwave radiation will be near resonance. As such, in defining specific

forms of rotations, we retain the approximation that ∆ � Ω, so that ∆/ΩR ≈ 0

and Ω/ΩR ≈ 1. In addition, this means that during the typical time of a microwave

operation (order π/Ω) that the phase factor eı̇∆t/2 ≈ 1. However, if there is a long
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delay between two operations – such as in the Ramsey-type experiment explained

below – then the detuning must be taken into account. In this case, the net effect

of the detuning will be a rotation about the z-axis, as can be seen from Eq. 4.25 by

setting Ω = 0.

The microwave rotations are implemented experimentally in one of two ways.

Several watts of microwave power is either sent to a truncated waveguide that is

3 cm in length, located 7 cm from the center of the trap, or is applied directly to

one of the trap rod electrodes. The choice of implementation is simply a matter

of convenience; we have attempted both, with comparable results. The advantage

of applying the microwave radiation directly to one of the electrodes of the trap is

that, in principle, with the source closer to the atom the resulting Rabi frequencies

could be much greater. In practice, though, the trap was not designed with this in

mind, and so a lot of power is dissipated through parasitic capacitive couplings in

the vacuum feedthrough. Also, when applying the microwave radiation directly on

the trap the polarization is completely governed by the geometry of the structure,

and is fixed. On the other hand, the truncated waveguide can be repositioned to

optimize the coupling. Ultimately, these two methods resulted in approximately the

same Rabi frequencies. A typical experimental Rabi oscillation between |0〉 and |1〉

in the 171Yb+qubit is displayed in Fig. 4.10.

4.5.5 Coherence measurement We perform a Ramsey-type experiment to measure

the coherence time of the qubit states, |0〉 and |1〉. In previous atomic clock work [36],

a coherence time exceeding 15 minutes has been achieved with these same qubit

levels. Since the coherence time of the qubit exceeds the stability of our microwave

oscillator, we are unable to measure the coherence time of a single ion directly.

Instead, we measure the coherence of one ion with respect to a second trapped

75



Figure 4.10: Rabi oscillations between the |0〉 and |1〉 states by application of microwaves at
12.642821 GHz. As seen in the figure, the time required to drive a π-pulse is about
6.0 µs. Each point is the result of 1000 measurements.

ion. The two 171Yb+atoms are stored in two independent (nearly identical) traps

separated by about one meter. A deliberate disparity in the magnetic field between

the positions of the two ions alters the microwave transition frequency, which is

12.642821 GHz at one ion position, by about 2.43 kHz between the two ions. To

measure the qubit coherence time, both ions are first initialized to |0〉. We then

apply a microwave π/2 pulse to the two ions, wait for a time T/2, apply a microwave

π echo pulse to both ions, wait for another time T/2 + ∆t, apply a microwave π/2

analyzing pulse to both ions, and finally detect the state of each ion (see Fig. 4.11(a)).

The phase of the second microwave π/2 pulse is scrambled in order to eliminate the

effect of the stability of the microwave oscillator. As a consequence, no Ramsey

fringe is present in the signal from a single ion. However, a plot of the parity

(the correlation between the measured states of the two ions) as a function of the

additional delay ∆t displays a Ramsey fringe, as shown in Fig. 4.11(b). Lacking

entanglement between the two ions, the amplitude of this fringe cannot exceed 0.5.

As the delay time T is increased, the amplitude of the Ramsey fringe decreases
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(Fig. 4.11(c)). Assuming gaussian fluctuations of the transition frequencies of the

two ions, we fit the amplitude to a gaussian decay and obtain a 1/e coherence time of

2.5(3) seconds. The measured coherence time is likely limited by fluctuations of the

differential magnetic field between the two ion positions through the second-order

Zeeman shift. The coherence time should be significantly longer when lower static

magnetic fields are used.

Thus, in this section we have demonstrated fast, efficient state initialization of the

qubit through optical pumping; a state detection fidelity of 98.2(2)% through state-

dependent fluorescence; reliable single-qubit operations using microwave radiation;

and a qubit coherence time of 2.5(3) seconds. Overall, the 171Yb+atom has been

shown to be an excellent qubit candidate for applications in quantum information

and quantum communication.

4.6 2D3/2 and 3[3/2]1/2 hyperfine splittings

We measured the hyperfine splitting of the 2D3/2 and 3[3/2]1/2 levels of 171Yb+to

determine the frequency needed to drive the 2D3/2|F = 2〉 ↔ 3[3/2]1/2|F = 1〉 tran-

sition. For this measurement, the 935.2 nm laser was tuned far (about 3 GHz) from

the 2D3/2|F = 1〉 ↔ 3[3/2]1/2|F = 0〉 transition, stabilized to the reference cavity,

and the power is reduced to approximately 20 µW at the trap. We then scanned

the rf frequency applied to the fiber EOM in the 935.2 nm beam over a wide range

(6 GHz). During this frequency scan, the fluorescence of the trapped 171Yb+atom

was monitored using the PMT. As one of the first-order sidebands generated by

the fiber EOM scanned across either the 2D3/2|F = 1〉 ↔ 3[3/2]1/2|F = 0〉 or the

2D3/2|F = 1〉 ↔ 3[3/2]1/2|F = 1〉 resonance, many scattered 369.53 nm photons were

observed. The hyperfine splitting of the 3[3/2]1/2 level is the frequency difference

77



Pa
rit

y 
(t

w
o 

io
n 

st
at

e)

Additional delay ∆t (µs)

Delay time T (seconds)

Ra
m

se
y 

fr
in

ge
 a

m
pl

itu
de

 (p
ar

ity
)

(b)

(a)

(c)

π/2 pulse π/2 pulseπ pulse

T/2 T/2 ∆t

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  100  200  300  400  500

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  0.5  1  1.5  2  2.5  3

T = 800 ms

T = 0 ms

Figure 4.11: Measurement of the coherence time of the 171Yb+qubit. (a) The series of microwave
pulses used for this measurement. The two π/2 pulses are separated by a variable time
T , to measure the decay in the amplitude of the Ramsey fringe as a function of time.
(b) Observed Ramsey fringes in the parity of the states of the two ions for delay times
T = 0 ms and T = 800 ms. (c) Decay in the amplitude of the observed Ramsey fringe
as function of delay time T . The line is a gaussian fit to the data, with a 1/e decay
time of 2.5(3) seconds.
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between these two resonances, and was measured to be 2.2095(11) GHz.

Next, we stabilized the laser at the 2D3/2|F = 1〉 ↔ 3[3/2]1/2|F = 0〉 transition.

While the ion was cooled by the 369.53 nm light, we also applied a train of 1 ps

pulses near 369.53 nm, generated by frequency doubling the pulses from a mode-

locked Ti-sapphire laser. These broadband (300 GHz) pulses couple to both of the

hyperfine levels in 2S1/2. Thus, the ion is continuously excited to the 2P1/2|F = 1〉

manifold, which eventually decays to 2D3/2|F = 2〉, resulting in population trapping

in this level. The first-order sidebands produced by the fiber EOM in the 935.2

nm beam are now scanned until one of the generated frequency components passes

through resonance with the 2D3/2|F = 2〉 ↔ 3[3/2]1/2|F = 1〉 transition, signaled by

an increased fluorescence of the ion. Given the hyperfine splitting of the 3[3/2]1/2

level stated above, we determined the hyperfine splitting of the 2D3/2 level to be

0.86(2) GHz.
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CHAPTER V

Photon Interference

(Alice asked,) “Would you tell me, please which way I ought to walk from here?”
“That depends a good deal on where you want to get to,” said the Cat.
–Lewis Carroll, Alice’s Adventures in Wonderland

The interference of identical single photons was first observed by Hong, Ou, and

Mandel [109], and Shih and Alley [110]. In these experiments, pairs of photons

created by parametric down-conversion were directed to interfere at a beamsplitter.

It was observed that the interference of the photons at the beamsplitter resulted in

two simultaneously impinging photons always exiting the beamsplitter by the same

port. Thus, coincident detections behind the beamsplitter were highly suppressed.

This antibunching of photons is now commonly used to charaterize experiments using

single photons.

The quantum interference of two photons is an essential component of the quan-

tum gate presented in this thesis. In this chapter, we present the theory for the

interference of photons at a beamsplitter, and demonstrate the effect of this inter-

ference using single photons emitted by single trapped ions.

5.1 Theoretical interference of photons at a beamsplitter

We consider photons impinging on a 50:50, nonpolarizing beamsplitter, such as

the one shown schematically in Fig. 5.1. We can describe photons and the effect of
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Figure 5.1: Schematic of a 50:50, nonpolarizing beamsplitter (BS). Modes 1 and 2 are the two input
paths to the beamsplitter, while modes 3 and 4 are the exit paths from the beamsplitter.
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the beamsplitter using the usual photon creation operator â† and the vacuum state

|0〉. A single photon in mode n (as in Fig. 5.1) can than be written as |1n〉 = â†n|0〉.

The operation of the beamsplitter is then encompassed by [111]:

â†3 =
1√
2

(â†1 − â
†
2)

â†4 =
1√
2

(â†1 + â†2) (5.1)

Of note is the sign difference between the decomposition of modes 3 and 4 in terms

of modes 1 and 2. The minus sign is the result of the π-phase shift experienced by

light reflected at an interface where the index of refraction changes from low to high

(e.g. [112], pg. 306). We can also rewrite Eq. 5.1 as

â†1 =
1√
2

(â†3 + â†4)

â†2 =
1√
2

(−â†3 + â†4) (5.2)

which is then effectively a decomposition of incoming photons in terms of the exiting

photons.

The above formalism makes it easy to see the effect of the beamsplitter on im-

pinging photons. We first consider the trivial case of a single photon in mode 1:

|11〉 = â†1|0〉

=
1√
2

(â†3 + â†4)|0〉

=
1√
2

(|1304〉+ |0314〉) (5.3)

As expected, we find that there is an equal (50%) probability of detecting the photon

in mode 3 as in mode 4.1 Of course, there is zero probability of getting a detection

in both mode 3 and mode 4 simultaneously.
1On a sidenote, notice that Eq. 5.3 appears to indicate that the effect of the beamsplitter is to produce an entangled

state, yet only one photon is involved. The remedy to this apparent paradox is to realize that the entanglement here is
between two modes (mode 3 and mode 4) [113], although there is some controversy over this interpretation [114, 115].
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We next consider two photons impinging on the beamsplitter: one in mode 1 and

one in mode 2. Following the same procedure as above, we then find:

|1112〉 = â†1â
†
2|0〉

=
1

2
(â†3 + â†4)(−â†3 + â†4)|0〉

=
1

2
((â†4)2 − (â†3)2)|0〉

=
1√
2

(|0324〉 − |2304〉) (5.4)

and so we again find that there are no simultaneous detection of photons in modes 3

and 4. Instead, both photons either go into mode 3, or both photons go into mode

4, with equal probability. This simple analysis qualitatively explains the two-photon

interference effect observed by Hong, Ou, and Mandel [109], and Shih and Alley [110].

Now let’s generalize this formalism in a way that enables us to describe the

ideal expected signal of our experiment; we shall follow the treatment presented

in Ref. [111], but expand it to explicitly derive the signal expected from our exper-

imental implementation. As described in the following section, the experiment to

demonstrate this two-photon interference effect will consist of repetitive excitation

of two trapped atomic ions, and detection of the spontaneously emitted photons

behind a beamsplitter. If we assume that the repetitions of the experiment are well-

separated (as, indeed, is the design), then we can write the electric field operator of

the mode j for the nth repetition as

E
(n)+
j (t) =

A√
τ
ξ(r, t)e−

1
2

(t−ntp)/τΘ(t− ntp)â(n)
j (5.5)

where tp is the time between repetitions, τ is the natural lifetime of the excited

state, and Θ is the Heaviside step function. The exponential decay factor accounts

for the probability to detect a photon a given time interval following excitation.
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The 1/
√
τ factor ensures that the total probability of detecting a photon is unitless

(integral over time of Eq. 5.8 below). The factor A is an amplitude that depends on

the collection efficiency of the optics, quantum efficiency of the detectors, etc. The

function ξ(r, t) describes the spatial mode of the photons, and can also be used to

account for temporal offsets. For the remainder of this chapter, we shall ignore both

A and ξ(r, t).2 The full electric field operator for the mode j is then simply

E+
j (t) =

∑
n

E
(n)+
j (t) (5.6)

The electric field operator describes the probability of detecting a photon at any

given time.

The N+1 photons produced in the mode j by N+1 repetitions of the experiment

can be represented by the wavefunction

|ψN〉j =

(
N∏
n=0

â
(n)†
j

)
|0〉 (5.7)

where we have assumed that repetitions are sufficiently separated in time so that

overlap of photons produced by different repetitions of the experiment is negligi-

ble; this allows us to write photons produced by different repetitions as separate

“repetition modes” denoted by n with the same spatial mode j.

If there are a train of photons being produced in mode j, then the probability of

detecting a photon in mode j at time t is simply given by the first-order correlation

2We will find these factors to be useful later, when we calculate the error in the fidelity of the quantum gate and
teleportation protocol due to mismatch of the photon spatial modes at the beamsplitter.

84



function:

j〈ψN |E−j (t)E+
j (t)|ψN〉j = 〈0|

(
N∏
n=0

â
(n)
j

)(
N∑
k=0

1√
τ
e−

1
2

(t−ktp)/τΘ(t− ktp)â(k)†
j

)

×

(
N∑
m=0

1√
τ
e−

1
2

(t−mtp)/τΘ(t−mtp)â(m)
j

)(
N∏
n=0

â
(n)†
j

)
|0〉

=
1

τ

N∑
k,m=0

e−
1
2

(t−ktp)/τe−
1
2

(t−mtp)/τΘ(t− ktp)Θ(t−mtp)

×〈0|

(
N∏
n=0

â
(n)
j

)
â

(k)†
j â

(m)
j

(
N∏
n=0

â
(n)†
j

)
|0〉

=
1

τ

N∑
k,m=0

e−
1
2

(t−ktp)/τe−
1
2

(t−mtp)/τΘ(t− ktp)Θ(t−mtp)δkm

=
1

τ

N∑
k=0

e−(t−ktp)/τΘ(t− ktp) (5.8)

where, as mentioned above, we have ignored both A and ξ(r, t) from Eq. 5.5. Fig-

ure 5.2 illustrates this result for the case N = 10. As shown in the figure, the

probability of detecting a photon from the nth repetition of the experiment decays

exponentially with decay constant given by the natural lifetime of the excited state

(τ). The probability for a joint detection in both mode 3 and mode 4, given a train of

photons being produced in mode 1, is given by the second-order correlation function:

PJ(t, td) = 1〈ψN |E−3 (t)E−4 (t+ td)E
+
4 (t+ td)E

+
3 (t)|ψN〉1

= 〈0|

(
N∏
m=0

â
(m)
1

)(
N∑
k=0

1√
τ
e−

1
2

(t−ktp)/τΘ(t− ktp)â(k)†
3

)

×

(
N∑
n=0

1√
τ
e−

1
2

(t+td−ntp)/τΘ(t+ td − ntp)â(n)†
4

)

×

(
N∑
n=0

1√
τ
e−

1
2

(t+td−ntp)/τΘ(t+ td − ntp)â(n)
4

)

×

(
N∑
k=0

1√
τ
e−

1
2

(t−ktp)/τΘ(t− ktp)â(k)
3

)(
N∏
m=0

â
(m)†
1

)
|0〉 (5.9)

Notice that since in order to be non-zero the two halves of the above equation need
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Figure 5.2: Theoretical single photon first-order correlation function, given by Eq. 5.8. This shows
the relative probability of detecting a photon in mode j at time t following a series of
10 excitations. The charateristic exponential decay after each repetition/excitation in
the experiment is determined by the natural lifetime of the excited state of the atom
producing the spontaneously emitted photons. The repetition rate shown is about 20
times the natural lifetime (τ).

to be hermitian conjugates of each other, we can use the same summation index for

both the positive and negative components of the electric field operator of a given

mode; this is just to say that we need the same number of creation/annihilation

operators acting on the ’bra’/’ket’ for the term not to vanish. We can decompose

the creation and annhilation operators for modes 3 and 4 in terms of modes 1 and 2,

using Eq. 5.1. Of course, since in the above equation there are no photons in mode

2, it is clear that any term with an annihilation operator of mode 2 will immediately
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vanish. This allows us to simpifly Eq. 5.9 to obtain

PJ(t, td) =
1

4τ 2
〈0|

(
N∏
m=0

â
(m)
1

)(
N∑
k=0

e−
1
2

(t−ktp)/τΘ(t− ktp)â(k)†
1

)

×

(
N∑
n=0

e−
1
2

(t+td−ntp)/τΘ(t+ td − ntp)â(n)†
1

)

×

(
N∑
n=0

e−
1
2

(t+td−ntp)/τΘ(t+ td − ntp)â(n)
1

)

×

(
N∑
k=0

e−
1
2

(t−ktp)/τΘ(t− ktp)â(k)
1

)(
N∏
m=0

â
(m)†
1

)
|0〉

=
1

4τ 2

N∑
k=0

N∑
n=0

e−(t−ktp)/τe−(t+td−ntp)/τΘ(t− ktp)Θ(t+ td − ntp)

×〈0|

(
N∏
m=0

â
(m)
1

)
â

(k)†
1 â

(n)†
1 â

(n)
1 â

(k)
1

(
N∏
m=0

â
(m)†
1

)
|0〉

=
1

4τ 2

N∑
k=0

N∑
n=0

e−(t−ktp)/τe−(t+td−ntp)/τΘ(t− ktp)Θ(t+ td − ntp)

× (1− δkn) (5.10)

where the last step is simply a consequence of having an annihilation operator for

both k and n, but only one creation operator for m; thus, if k = n the term goes

to zero. Of course, we are interested in the total probability of a joint detection as

a function of the time delay td between the two photons. In order to obtain this
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function, we need to integrate Eq. 5.10 over t.

PJtot(td) =

∫ ∞
−∞

Pjoint(t, td) dt

=
1

4τ 2

N∑
k=0

N∑
n=0

(1− δkn)

×
∫ ∞
−∞

e−(t−ktp)/τe−(t+td−ntp)/τΘ(t− ktp)Θ(t+ td − ntp) dt

=
1

4τ 2

N∑
k=0

N∑
n=0

(1− δkn) e−(td−tp(k+n))/τ

×
∫ ∞
−∞

e−2t/τΘ(t− ktp)Θ(t+ td − ntp) dt

=
1

4τ 2

N∑
k=0

N∑
n=0

(1− δkn) e−(td−tp(k+n))/τ

×
∫ ∞
ktp

e−2t/τΘ(t+ td − ntp) dt

=
1

4τ 2

N∑
k=0

N∑
n=0

(1− δkn) e(td+tp(k−n))/τ

×
∫ ∞
td+tp(k−n)

e−2u/τΘ(u) du (5.11)

where in the last line we’ve set u = t + td − ntp. The integration is completed by

looking at two cases:

PJtot(td ≤ −tp(k − n)) =
1

4τ 2

N∑
k=0

N∑
n=0

(1− δkn) e(td+tp(k−n))/τ

×
∫ ∞

0

e−2u/τΘ(u) du

=
1

4τ 2

N∑
k=0

N∑
n=0

(1− δkn) e(td+tp(k−n))/τ

×
[
−τ

2
e−2u/τ

]∞
0

=
1

8τ

N∑
k=0

N∑
n=0

(1− δkn) e(td+tp(k−n))/τ (5.12)
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Figure 5.3: Theoretical single photon second-order correlation function, given by Eq. 5.14. This
shows the relative probability of detecting a photon in both mode 3 and mode 4 as a
function of the time delay (td) between the two photons for N = 4 (red, dashed) and
N = 20 (blue, solid). The repetition rate shown is about 20 times the natural lifetime
of the atomic excited state (τ). The lack of a peak at delay time td = 0 is characteristic
of a single-photon source.

and

PJtot(td ≥ −tp(k − n)) =
1

4τ 2

N∑
k=0

N∑
n=0

(1− δkn) e(td+tp(k−n))/τ

×
∫ ∞
td+tp(k−n)

e−2u/τΘ(u) du

=
1

4τ 2

N∑
k=0

N∑
n=0

(1− δkn) e(td+tp(k−n))/τ

×
[
−τ

2
e−2u/τ

]∞
td+tp(k−n)

=
1

8τ

N∑
k=0

N∑
n=0

(1− δkn) e−(td+tp(k−n))/τ (5.13)

By inspection it is then clear that Eq. 5.12 and 5.13 can be written succinctly as:

PJtot(td) =
1

8τ

N∑
k=0

N∑
n=0

(1− δkn) e−|td+tp(k−n)|/τ (5.14)

This result is plotted in Fig. 5.3. As expected from Eq. 5.3, the probability of

simultaneously detecting a photon in both mode 3 and mode 4 is zero, as indicated
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by the lack of a peak at delay time td = 0. Experimentally, the number of detection

events at td = 0 relative to the height of the adjacent peaks can be used to evaluate

the fidelity of single-photon generation [116, 70].

We now look at the signal we would expect from photons impinging on both input

ports of the beamsplitter. We use Eq. 5.7 to express the photonic wavefunction for

a train of pairs of photons in modes 1 and 2 as:

|ψN〉1,2 =

(
N∏
n=0

â
(n)†
1

)(
N∏
m=0

â
(m)†
2

)
|0〉

=

(
N∏
n=0

â
(n)†
1 â

(n)†
2

)
|0〉 (5.15)

where the second line follows from the fact that [â
(n)†
1 , â

(m)†
2 ] = 0 ∀ m,n. Here we

assume that the “repetition modes” are common to the two pulse trains; in other

words, we assume to have pairs of identical photons impinging on the beamsplitter.3

The second-order correlation function for pairs of photons can then be calculated

in a way similar to Eq. 5.9.

P2ph,J(t, td) = 1,2〈ψN |E−3 (t)E−4 (t+ td)E
+
4 (t+ td)E

+
3 (t)|ψN〉1,2

= 〈0|

(
N∏
m=0

â
(m)
1 â

(m)
2

)(
N∑
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1√
τ
e−

1
2
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3

)

×
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1√
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4

)
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(
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â
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2

)
|0〉 (5.16)

3The case of non-overlapping temporal modes 1 and 2 is a trivial extension of the single-photon result above.
Slight temporal mismatch between photons in modes 1 and 2 would need to be accounted for in the definition of the
electric field operator, Eq. 5.5. Since in the present section we are interested in deriving the ideal signal that would
be measured by this kind of photon interference experiment, we assume the ideal case of photons from the same
repetition having perfect temporal overlap.
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Of course, the time dependence of Eq. 5.16 appears identical to Eq. 5.10. Thus,

the integration over time will be identical to the single-photon case, and so for the

present calculation we only need to focus on the effect of the additional creation and

annihilation operators. Writing the operators for modes 3 and 4 in terms of modes

1 and 2 yields:

P2ph,J(t, td) ∝ 〈0|
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(n)
1 â
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(k)†
2 â
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(k)
1 + â
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(k)
2 + â
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Only the terms with an equal number of creation/annihilation operators for each

mode with be nonzero. Eliminating the unbalanced terms yields:
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(n)†
1 â
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(n)†
1 â
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= (1− δkn)− δkn + 1 + 1− δkn + (1− δkn)

= 4 (1− δkn) (5.17)
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The final solution, after integrating over t (with integrals identical to Eq. 5.11), is

P2ph,Jtot(td) =
1

2τ

N∑
k=0

N∑
n=0

(1− δkn) e−|td+tp(k−n)|/τ (5.18)

which is just Eq. 5.14 multiplied by a factor of 4. This indicates that there is

zero probability of obtaining simultaneous dectections in both modes 3 and 4 if the

incoming photons in modes 1 and 2 are identical, as was determined qualitatively in

Eq. 5.4. The additional factor of 4 results because in this case one photon in mode 3

and one photon in mode 4 separated by non-zero delay time td can be the result of:

2 sequential photons in mode 1; 2 sequential photons in mode 2; 1 photon in mode 1

followed by 1 photon in mode 2; 1 photon in mode 2 followed by 1 photon in mode

1.

It might be assumed that the fidelity of a two-photon interference experiment can

then be evaluated by taking the ratio of the number of detection events at td = 0

to the number detected at a multiple of the experiment repetition rate td = ntp.

As it turns out, this is the right approach, but would overestimate the fidelity by

a factor of 2. In order to understand why, we need to calculate the second-order

correlation function for an incoming train of distinguishable photons. If we assume

the incoming photons in mode 1 can be distinguished from those in mode 2 (for

instance, by polarization), then we can rewrite the two-photon wavefunction from

Eq. 5.15 as:

|ψN〉1a,2b =

(
N∏
n=0

â
(n)†
1 b̂

(n)†
2

)
|0〉 (5.19)

with [â†i , b̂j] = 0 ∀ i, j. We can then calculate the second-order correlation function.

However, we need to be careful to allow the four possible (distinguishable) cases:

detecting an â† photon in mode 3 and a b̂† photon in mode 4; detecting a b̂† photon

in mode 3 and an â† photon in mode 4; detecting an â† photon in both mode 3 and
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mode 4; and detecting a b̂† photon in both mode 3 and mode 4. Thus,

Pa,b,J(t, td) = 1a,2b〈ψN |E−3a(t)E−4b(t+ td)E
+
4b(t+ td)E

+
3a(t)|ψN〉1a,2b

+1a,2b〈ψN |E−3b(t)E
−
4a(t+ td)E

+
4a(t+ td)E

+
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+
4a(t+ td)E
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where the last line follows from symmetry. In addition, since [â†i , b̂j] = 0 ∀ i, j, the

second term in Eq. 5.20 is equal to (two times) the second-order correlation function

for a train of single-photons (Eq. 5.9). As we can just quote the value found above

for this term, now we just need to calculate the first term.
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Writing the operators for modes 3 and 4 in terms of 1 and 2 yields:
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Plugging this into Eq. 5.20 and integrating over t (again, integrals identical to

Eq. 5.10), we obtain the final form for the second-order correlation function for

distinguishable photons.

P2ph,Jtot(td) =
1

4τ

N∑
k=0

N∑
n=0

(2− δkn) e−|td+tp(k−n)|/τ (5.23)

This result for distinguishable photons impinging on the beamsplitter is plotted

against the case of identical photons (Eq. 5.18) in Fig. 5.4.

With a clear understanding of the expected signal, we can now delve into the

experimental results.

5.2 Experimental interference of photons at a beamsplitter

The interference of single photons at a beamsplitter was accomplished by using two

trapped 174Yb+atoms as single photon emitters. A single ytterbium ion is confined

in each of two nearly identical four-rod rf traps that are contained in independent

94



-100 -50 0 50 100

delay time HtdL Hin units of ΤL

pr
ob

ab
ili

ty

Figure 5.4: Theoretical two-photon second-order correlation function, for identical (blue, solid line;
Eq. 5.18) and distinguishable (red, dotted line; Eq. 5.23) photons. Plotted is the relative
probability of detecting a photon in both mode 3 and mode 4 as a function of the time
delay (td) between the two photons for N = 20. The repetition rate shown is about
20 times the natural lifetime of the atomic excited state (τ). Interference between
identical photons impinging on the beamsplitter result in no detections at zero time
delay td = 0 (blue, solid line). In contrast, distinguishable photons do not interfere,
and thus coincident detections are allowed, as evidenced by the peak at td = 0 (red,
dotted line).
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vacuum chambers. As described in the previous chapter, the ions are Doppler-

cooled by cw laser light at 369.53 nm, and the presence of a single atom in each

trap is confirmed by imaging this fluorescence on a camera. In addition to the

objective lens used to observe the ion fluorescence on the camera, we position a

second objective of numerical aperture 0.23 on the other side of the vacuum chamber,

as illustrated in Fig. 5.5. Photons collected by this objective are coupled into a single-

mode optical fiber and directed to a 50:50 non-polarizing beamsplitter.4 The output

of the fiber is incident on the beamsplitter at a small angle (about 10◦) to ensure the

optic is polarization independent. The photons are detected by one of two PMTs,

positioned at each exit port of the beamsplitter. Polarizers on electronic flip-mounts

can be added to the beam path between the beamsplitter and each PMT to enable

detection of only identically (parallel) polarized photons. Conversely, distinguisable

(perpendicularly polarized) photons are detected by the addition of a λ/2-waveplate

to one of these beam paths. The arrival times of the photons are recorded by a

time-to-digital converter (TDC) with 4 ps resolution.5

Ultrafast excitation of an Yb+atom from 2S1/2 to 2P1/2 should result in the genera-

tion of a single spontaneously emitted photon. We use pulses of about 1 ps duration

with central wavelength at 369.5 nm to drive the 2S1/2 ↔ 2P1/2 transition in the

atom. Since the duration of the pulse is much shorter than the excited state lifetime

(8.12 ns), the probability that the atom scatters two photons during a single pulse is

approximately given by the probability of one spontaneous decay over the duration

of the pulse: 1− e−(1 ps)/(8.12 ns) ≈ 10−4.

The 1 ps ultrafast pulses are produced by an actively mode-locked Ti:sapphire

laser (Spectra-Physics Tsunami) operating at a central wavelength of 739 nm and a

4The optical fiber is StockerYale NUV-320-K1. The fiber is single-mode at 370 nm, with a specified attenuation
of approximately 0.1 dB/meter.

5The TDC is a PicoHarp, made by PicoQuant.
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Figure 5.5: Experimental setup for the two-photon interference experiment. Fluorescence of an
Yb+atom during Doppler cooling can be monitored by either a photon-counting pho-
tomultiplier (PMT) or a camera (the grayed mirror is removable by an electronic flip-
mount). The second-order correlation function (joint detection probability) is measured
by coupling spontaneously emitted photons from the ion into a single-mode optical fiber,
the output of which is directed to a 50:50 nonpolarizing beamsplitter (BS). Polarizers
(PBS) and a λ/2-waveplate (λ/2) are removable for the measurement of unpolarized,
parallel polarized, or perpendicularly polarized photons.

repetition rate of about 81 MHz. This pulse laser is pumped by approximately 5.75

W of 532 nm light (Spectra-Physics Millennia), producing an average output power

of 1 W at 739 nm. We measured the width of the pulses to be 1 ps by using a sim-

ple autocorrelator, consisting of a Michelson interferometer and a lithium triborate

(LBO) crystal with a photodetector. The pulses are passed through an electro-optic

pulse picker that has an average extinction ratio better than 100:1 in the infrared.

With the pulse picker synced to the intracavity acousto-optic modulator (AOM) of

the pulse laser, we reduce the effective pulse repetition rate to about 8.1 MHz by al-

lowing only one in every ten pulses to pass. A critically phase-matched LBO crystal

is used to frequency double each pulse, resulting in approximately 80 mW average

power at 369.5 nm. This second-harmonic light is separated from the fundamental

infrared by a prism. In addition to creating the wavelength needed to resonantly ex-
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Figure 5.6: Picosecond Rabi flopping. The scattering rate of a single 174Yb+atom is monitored as
a train of 1 ps pulses of variable power excite the atom. The Rabi frequency for driving
the atom from 2S1/2 to 2P1/2 is proportional to the square-root of the incident pulse
power. At maximum pulse energy, we achieve about a 3.5π rotation. The green curve
is a fit to the function A sin2(B

√
PPL/2), where PPL is the average power of the pulsed

laser incident on the ion, and A and B are the fit parameters.

cite the ion, frequency doubling increases the effective average extinction ratio of the

pulse picker to about 104:1.6 Even though the second-harmonic generation efficiency

is only about 8%, the resulting pulses at 369.5 nm have more than enough power to

excite an atom with unit probability. This is demonstrated in Fig. 5.6, where the

scattering rate of a single atom is measured as a function of the incident pulse power,

indicating each pulse has enough power to drive about a 3.5π rotation between the

2S1/2 and 2P1/2 levels. As the Rabi frequency is proportional to the square root of

the incident pulse power, this means that a single pulse could be split into about

12 pulses, each with enough power to drive a π rotation [77]. In the experiments

presented here and in the following chapters, each pulse is attenuated to achieve

approximately unit excitation probability (1π pulse).

6The immediately trailing pulse is not extinquished as well as the other pulses (only about 103:1), due to the
finite switching of the bias voltage applied to the pulse picker. Averaging over all pulses though yields an extinction
ratio of approximately 104:1.
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Before looking at the interference of two photons, we first demonstrate that the

ultrafast excitation of a single Yb+atom is an excellent source of single photons.

For this measurement, only the photons scattered by one of the two ions is incident

on the beamspitter (the other is blocked). The experiment consists of a repetitive

sequence of 10 µs of cooling followed by 40 µs of excitation/measurement. During

the cooling interval, the pulse picker is switched off so that the ion is illuminated

solely by the cw lasers used for Doppler cooling. For the excitation/measurement

interval the 369.53 nm cw light is switched off by an AOM, and the pulse picker is

gated open to allow a train of 1 ps pulses, separated in time by about 124 ns, to

sequentially excite the atom from 2S1/2 to 2P1/2. After each excitation, the atom

will spontaneously decay while emitting a single photon. Emitted photons at 369.53

nm are collected by the objective lens, coupled into the single-mode optical fiber,

directed onto the beamsplitter, and detected by the PMTs. The arrivals times of

the detected photons allow us to determine the joint detection probability, shown in

Fig. 5.7. The functional form of the experimental joint detection probability matches

the theorectical single-photon source illustrated previously (Fig. 5.3), with the lack

of a peak at delay time td = 0 indicating that at most a single photon is emitted

after each ultrafast excitation pulse [70]. Dark counts on the PMTs result in a small

background contribution at all delay times; coupling the light from the atom into a

single-mode fiber highly suppresses the contribution of background scattered light.

We observe the quantum two-photon interference effect by simultaneously excit-

ing both trapped Yb+atoms, and combining the two emitted photons on the beam-

splitter.7 The joint probability of detection for identical photons is measured by

7Of course, simultaneously excitation is not essential; we just need the emitted photons to arrive at the beam-
splitter simultaneously. As such, the path length of the excitation pulses are adjusted so that emitted photons from
each ion arrive at the beamsplitter within 100 ps of each other. Since the path lengths between each ion and the
beamsplitter are approximately equal, this means the ions are also excited at about the same time.
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Figure 5.7: Normalized experimental single-photon second-order correlation function. The lack of
a peak at time delay td = 0 is indicative of a source of single photons, confirming that
at most one photon is emitted by the atom following ultrafast excitation [70].

placing both polarizers in the beam path, while detection of distinguishable pho-

tons is evaluated by including the λ/2-waveplate in one of the two paths. As was

seen theoretically in Fig. 5.4, for identical photons we expect no detections at time

delay td = 0, while for distinguishable photons we expect a probability of joint de-

tection half as large as that from adjacent excitations. The data shown in Fig. 5.8

demonstrates this quantum two-photon interference effect. In the measurement of

parallel polarized photons, the residual counts at time delay td = 0 result from

both dark counts on the PMTs, and imperfect spatial mode overlap of the photons

on the beamsplitter. The data shown in Fig. 5.8 corresponds to an interferometer

contrast of approximately 95% [70]. The spatial filtering afforded by coupling the

spontaneously emitted photons into single-mode fibers was essential to achieving this

excellent two-photon interference.

The single-photon source and quantum interference effect demonstrated here are

an essential components of the probabilistic, heralded quantum gate that is used to
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Figure 5.8: Normalized experimental two-photon second-order correlation function for identical
(parallel polarized) photons (circles) and distinguishable (perpendicularly polarized)
photons (diamonds) [70]. As expected from the theorectical calculations of Sec. 5.1,
two identical photons incident on the beamsplitter always exit by the same port, result-
ing suppression of joint detections at time delay td = 0.

implement the teleportation protocol.
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CHAPTER VI

Lifetime of the 2P1/2 level in Yb+

“I want to share something with you: the three little sentences that will get you through
life. Number 1: Cover for me. Number 2: Oh, good idea, Boss! Number 3: It was like
that when I got here.”
–Homer Simpson, The Simpsons

Measurements of the properties of individual atoms are constantly being pursued.

Precise atomic measurements are used for a multitude of applications, including

tests of fundamental physical theories. The ytterbium ion, in particular, is a re-

markable, versatile atomic system. In addition to its use in quantum information

and computation, Yb+has been noted for the implementation of atomic frequency

standards [36, 82, 117, 118, 119] and tests of ab initio atomic structure calcula-

tions [120]. The spectrum of Yb+is also important in astrophysics for the of study

main sequence stars [121] and the solar photosphere [122, 123].

In this chapter, we present a precise measurement of the lifetime of the 6p 2P1/2

excited state of Yb+. While not strictly necessary for the teleportation protocol, the

experiment is naturally related to the two-photon interference experiment of the pre-

vious chapter, as the charateristic shape of the peaks in the second-order correlation

function are determined by the natural lifetime of the excited state. In addition, mea-

suring this excited state lifetime yields information concerning the temporal aspects

of the spontaneously emitted photons.
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Previous methods used to measure the excited states of Yb+include delayed coin-

cidence [124, 125], beam-foil [126], Hanle effect [126, 127], laser-induced fluorescence

of sputtered metal vapor [128] and laser-induced plasma [129], beam-laser [88, 130],

and quantum jumps in single ions [87, 86]. Here, we measure the 6p 2P1/2 excited

state of the Yb+ atom using a time-correlated single photon-counting technique [131]

adapted to utilize the features of our single atom system [132]. By using ultrafast

pulses to excite a single trapped Yb+atom and coupling the emitted photons into a

fiber, we were able to eliminate many of the systematics present in earlier measure-

ments. The lifetime of the 6p 2P1/2 state was measured to be 8.12± 0.02 ns.

6.1 Lifetime measurement

A single 174Yb+atom is trapped and Doppler cooled, as described previously IV. A

diagram of the experimental setup for the lifetime measurement is shown in Fig. 6.1.

As in the previous chapter, the 1 ps pulses produced by the actively mode-locked

Ti:sapphire laser are passed through an electro-optic pulse picker to control the

pulse repetition rate. In this experiment, the repetition rate is reduced to about 5.5

MHz by allowing only one in every fifteen pulses to pass. Essential to the lifetime

measurement is the extinction ratio of the pulse picker; as before, the effective average

extinction ratio of the pulse picker is about 104:1.

In this experiment, the ion is first Doppler cooled for 200 µs, and then the cw

369.5 nm light is blocked. The electro-optic pulse picker is then gated open for 390

µs, allowing a train of pulses to pass, where each subsequent pulse is separated from

the preceding by about 180 ns. Leakage of each pulse (in the infrared) through a

mirror strikes a trigger diode, which sends an electric pulse to one channel of the

TDC with a resolution of 4 ps. Each frequency-doubled laser pulse excites the ion
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Figure 6.1: The experimental setup used to determine the lifetime of the Yb+6p 2P1/2 excited
state. The 935.2 nm and 638.6 nm lasers used for depopulating the metastable 2D3/2

and 2F7/2 states, respectively, are not shown. LBO is a lithium triborate nonlinear
crystal; AOM is an acousto-optic modulator; TDC is a time-to-digital converter; PMT
is a photomultiplier tube; and B is the applied magnetic field.

from 2S1/2 to 2P1/2 with near unit probability. As seen in Chap. V the subsequent

spontaneous decay of the excited state produces a single photon [70]. The photons

emitted by the ion are collected with an objective lens with numerical aperature 0.23,

coupled into a single-mode fiber, and detected by a PMT. The arrival time of the

consequent electric pulses from the PMT are recorded by the second channel of the

TDC.

A histogram of the time difference between the arrivals of the two electric pulses

at the TDC displays the charateristic exponential decay of the excited atomic state

(Fig. 6.2(a)). However, several other factors contribute to the overall shape of the

histogram. The pulse propagation time (of both the light and electric pulses) results

in an overall offset along the time axis. Background counts result from PMT triggers

due to either a background scattered photon or a dark count. In fact, it might be

expected that background photons are most likely to be detected as a result of the
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laser pulse traversing the trap, producing a “prompt peak” in the data at the time of

excitation. Moreover, the finite response time of the PMT dictates that the observed

data is a convolution of all of these effects with the instrument response function.

Thus, the data shown in Fig. 6.2(a) is described by the function:

F (t) =
∑
tn

[
Ae−(tn−t0)/τΘ(tn − t0) +B + Cδn0

]
h(t− tn)

= B + Ch(t− t0) +
∑
tn

Ae−(tn−t0)/τΘ(tn − t0)h(t− tn) (6.1)

where A is the amplitude of the exponential decay of the atomic state, B is the

background counts, C is the amplitude of the “prompt peak,” h is the normalized

instrument response function, and t0 is the time of excitation (used as a fit parameter,

but shown in Fig. 6.2 as t0 = 0). The sum is over all possible time bins tn used in

the histogram of the data.

We measure the instrument response function by coupling a small fraction of the

light from the 369.5 nm pulse into an optical fiber, and directing the output onto the

PMT. Since the duration of the pulse (1 ps) is much smaller than the response time of

the PMT (order nanosecond), the pulse is effectively a delta function input, allowing

us to directly measure the instrument response function. The measured instrument

response function, h, is shown in Fig. 6.2(b). Also visible on the log-scale plot are the

subsequent, highly suppressed pulses from the mode-locked laser (average extinction

ratio of about 104:1), separated by the approximately 12 ns repetition rate.1

The differential nonlinearity of the TDC is characterized by directing light from

a flashlight to the fiber-coupler, and integrating this “white noise” input for several

hours. The differential nonlinearity of the TDC is found to result in intermittent

ripples with amplitude < 6% peak-to-peak. We use this measured signal (after

1While the suppressed, trailing pulses are not strictly part of the instrument response function, the effect of these
pulses is essentially the same as if they had been generated electronically, so we will continue to call this measurement
the instrument response function of the system, and treat it as such.
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Figure 6.2: Data used to determine the lifetime of the 6p 2P1/2 excited state. (a) The data after
correction for the differential nonlinearity of the TDC, with 4 ps binning, showing the
number of photons (stop pulses) detected a given time following pulsed laser excitation
(start pulses); the gray line is the fit, with functional form given by Eq. 6.1. (b) The
normalized instrument response function. Visible on the log-scale plot are the highly
suppressed pulses from the mode-locked laser (average extinction ratio of about 104:1),
separated by the repetition rate of about 12 ns. (c) Deviations of the data from the
fitting function (residuals).
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normalization) to correct for the differential nonlinearity of the TDC by dividing the

data (lifetime and instrument response measurements) by this signal.

The data analysis consists of computing Eq. 6.1 for a range of values for A,

B, C, and t0, and comparing this function to the data to determine χ2 for each

combination of parameters. The final fit is shown as the gray line in Fig. 6.2(a), and

the deviations of the data from this fit (residuals) are presented in Fig. 6.2(c). The

statistical uncertainty in the fit is 0.002 ns. The quoted uncertainty in the lifetime

is dominated by systematic errors.

Our experimental setup allows us to eliminate many possible systematics. By us-

ing a single trapped atom, systematic errors such as pulse pileup, radiation trapping,

subradiance and superradiance are eliminated [133, 134]. Exciting this atom with

an ultrafast pulse eliminates effects due to the application of light during the mea-

surement interval, including background scattered light, multiple excitations, and ac

Stark shifts. Using the pulse picker to reduce the effective repetition rate of the ul-

trafast laser enabled observation intervals much longer than the natural decay time

of the excited state, allowing a fit of the data all the way to the tail end of the

exponential where residual background events dominate. Finally, by coupling the

spontaneously emitted photons into a single mode fiber, we nearly eliminate detec-

tion of background scattered light, including “prompt peak” photons scattered while

the ultrafast pulse traverses the trapping region.

Two possible systematics that demand further investigation, though, are hyperfine

and Zeeman quantum beats.

107



6.2 Quantum beats

Quantum beats arise from a coherent superposition of excited states decaying to

a common final state. The quantum decay channels can then interfere and produce

a modulation in the fluorescence signal at the frequency difference of the two de-

cay channels. Quantum beats could thereby alter the observed fluorescence decay,

shifting the measured value of the excited state lifetime.

The fluorescence signal from the atom, including the contribution of quantum

beats, is given by [135]

I(t) ∝
(
α2a2 + β2b2 + 2αβab cos(ωqbt)

)
e−t/τ (6.2)

and thus the modulation depth of the quantum beat signal is

ηqb =
2αβab

(α2a2 + β2b2)
(6.3)

where α and β are the matrix elements of the two excitation paths for a given

polarization of the excitation light; a and b are the matrix elements for decay to

a common final state while producing a photon of a particular polarization; ωqb is

the frequency difference of the two excited states; and τ is the natural lifetime of

the excited states (here assumed to be the same for both excited states). The effect

of quantum beats on the fluoresence decay signal from the atom for a variety of

parameters is shown in Fig. 6.3.

By using an even isotope of ytterbium (nuclear spin 0), we avoid the possibility

of hyperfine beats. On the other hand, at a magnetic field of 3.4 gauss the excited

state Zeeman splitting is 3.1 MHz, so Zeeman beats could be significant. In order to

minimize the effect of quantum beats in the measurement of the lifetime of the 2P1/2

level in Yb+, we carefully adjusted two experimental parameters: (1) we attempted
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Figure 6.3: Theoretical quantum beats, given by Eq. 6.2. The figure shows the relative probability
of detecting a photon as a function of time (in units of the lifetime τ of the excited state)
with (red) and without (blue) quantum beats: (a) with full amplitude (β = α = a =
b = 1/

√
2) and period equal to the natural lifetime (ω = 2π/τ); (b) with experimentally

measured amplitude upperbound (β = 0.026) and period equal to the natural lifetime;
(c) with full amplitude and experimentally determined period (ω = 2π/(40.2τ)); and
(d) with experimentally measured amplitude (β = 0.026) and period (ω = 2π/(40.2τ)).
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to excite the ion using purely π-polarized light to prevent producing coherences in the

excited 2P1/2 manifold; and (2) we collected photons emitted along the quantization

axis, so that the collected photons were (ideally) σ-polarized only, and thereby only

observe decay channels which result in separate final states. In the ideal case, either

of these considerations would eliminate a quantum beat signal. Of course, in the

actual experiment these measures are not perfect, so we need to characterize the

expected quantum beat signal.

Although the polarization of the pulsed laser is carefully aligned with respect to

the magnetic field to induce only π-transitions in the atom, we estimate that the

polarization of the laser could be misaligned by as much as 1 degree. Given the

strength of the σ-transition is twice that of the π-transition, this then leads to as

much as 2| sin(π 1
45

)|2 = 0.01 of the total population being excited to the incorrect

Zeeman level in 2P1/2. This residual coherence could then result in the formation of

a quantum beat.

Due to the known numerical aperture of the observation optics (NA = 0.23),

we know that about 1.3% of all collected photons result from a π-decay (App. D).

Although coupling the collected photons into a single-mode fiber should eliminate the

contribution of π-polarized photons, due to possible misalignment of the quantization

axis with the observation axis, some contribution is expected.

An upperbound on the modulation depth of the quantum beat signal can be ob-

tained experimentally by measuring a novel single-photon second-order correlation

function. The setup for this correlation measurement is similar to that shown in

Chap. V, with two PMTs measuring the exit ports of a 50:50 beamsplitter, but with

laser polarization and magnetic field alignment as presented here. For this measure-

ment, a quarter-wave plate is inserted between the ion and the fiber-coupler, and
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polarizers are placed before the PMTs for detection of only σ+-polarized light after

the beamsplitter (the λ/2-waveplate shown in Fig. 5.5 is removed). Given detection

of a σ+-polarized photon, since the excitation light is π-polarized, the immediately

previous/subsequent spontaneously emitted photon should not be detected; this re-

sults in suppression of the first adjacent peaks of the correlation measurement (at

delay times of ±180 ns), as seen in Fig. 6.4. The same errors that contribute to the

generation of a quantum beat signal cause the first adjacent peaks of this second-order

correlation function to be nonzero. However, while in the second-order correlation

signal the probabilities for excitation to the wrong Zeeman level and detection of

π-polarized photons add, in the quantum beat signal the amplitudes of these effects

are multiplied [135]. The quantum beat signal would therefore be maximal if these

errors contribute equally to the height of the first adjacent peaks in the second-order

correlation signal, allowing us to place an upperbound on the modulation depth of

the quantum beat signal of < 0.03. Given this modulation depth, and a period of

oscillation determined by the Zeeman splitting, we determine quantum beats shift

the measured lifetime of the excited state by less than ±0.002 ns.

6.3 Conclusion

Ultimately, the dominant systematic error was determined to be the residual ripple

in the data due to the differential nonlinearity of the TDC. We estimate the contri-

bution to the error by truncating the data at various intervals in the decay/ripple

and performing a fit (Eq. 6.1) on this truncated data set. The fitted value of lifetime

shifts as the truncation point is varied. We therefore assign a systematic error large

enough to encompass all of these shifted values (although this is almost certainly

an overestimate of the error). The estimated systematic error due to the residual
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Figure 6.4: Second-order correlation function used to determine the amplitude of quantum beats.
Through a combination of a quarter-wave plate and polarizers, we arrange the setup
to observe σ+-polarized light after a beamsplitter. In using π-polarized pulses for
excitation, then two subsequent excitations should not both result in detection of a
σ+-polarized photon. This is evidenced by the suppression of the first adjacent peaks
in the joint detection probability (at delay times of ±180 ns).

differential nonlinearity of the TDC is then ±0.015 ns.

The final value of the lifetime of the 6p 2P1/2 state of Yb+ is measured to be

8.12± 0.02 ns. In Fig. 6.5, our measurement is plotted alongside other experimental

and theoretical values. As is apparent in the figure, our result is consistent with prior

measurements, with an improvement in the uncertainty by almost a factor of five.
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Figure 6.5: Comparison of values obtained for 6p 2P1/2 state lifetime. (a) M. L. Burshtein et al.
(1974), expt: delayed-coincidence [125]; (b) T. Andersen et al. (1975), expt: beam-
foil [126]; (c) K. B. Blagoev et al. (1978), expt: delayed-coincidence [124]; (d) B. C.
Fawcett et al. (1991), theory: Hartree-Fock [95]; (e) R. W. Berends et al. (1993), expt:
beam-laser [88]; (f) R. M. Lowe et al. (1993), expt: laser-induced fluorescence [128];
(g) R. M. Lowe et al. (1993), theory: many-body perturbation theory [128]; (h) E. H.
Pinnington et al. (1997), expt: beam-laser [130]; (i) E. H. Pinnington et al. (1997),
theory: Coulomb approximation calculation [130]; (j) E. Biémont et al. (1998), theory:
Hartree-Fock [90]; (k) E. Biémont et al. (2002), theory: Hartree-Fock [136]; (l) U. I.
Safronova et al. (2009), theory: relativistic many-body perturbation theory [137]; (m)
U. I. Safronova et al. (2009), theory: relativistic many-body perturbation theory [137];
(n) this work (also gray dashed line).
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CHAPTER VII

Quantum Gate

Arthur looked up. “Ford!” he said, “there’s an infinite number of monkeys outside who
want to talk to us about this script for Hamlet they’ve worked out.”
–Douglas Adams, The Hitchhiker’s Guide to the Galaxy

One of the vital components to quantum computation left to demonstrate in

this work is a scalable two-qubit quantum gate. The standard model of quantum

computation is the quantum circuit model, where a series of gate operations are

performed and at the output the qubits are measured as a final step. The quantum

circuit model is being pursued by several research groups using trapped atomic ions.

The deterministic, two-qubit gates that utilize the common modes of motion of

the trapped ions have already achieved an impressive 99.3% fidelity [57]. Effort in

this area is focused on scaling the system to larger numbers of qubits, as can be

done, for instance, by constructing complex trap arrays where ions can be stored

and interacted as various intervals and locations [19]. Crucial to the success of this

methodology will be an understanding of the motional decoherence that plagues all

ion traps [42, 24, 25, 26].

Another approach to scalable quantum computation is the cluster-state (or one-

way) quantum computing model, where the measurement process itself is an integral

part of gate operation [138]. In this scheme, a large entangled state is first prepared.

The computation is then executed by successive measurements of the qubits, with
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classical feed-forward of the measurements determining the single-qubit gates to be

performed on subsequent sets of qubits before measurement. This is an entirely new

approach that has been proven to be equivalent to the circuit model, and allows for

a new class of quantum gates to be considered for scalable quantum computation:

non-unitary, measurement-based gates.

Basic quantum operations applicable to the cluster-state model of quantum com-

putation have been carried out using entangled photons [139, 140]. However, the

photonic cluster states in these experiments were generated by spontaneous paramet-

ric down-conversion, relied on post-selection, and did not utilize a quantum memory,

making these implementations difficult to scale to larger systems [141].

We present the implementation of a probabilistic, heralded quantum gate between

two remote quantum memories. The gate is based on the interference and detection

of two photons [67]. Even though the gate is probabilistic, the incorporation of a

quantum memory allows this system to be efficiently scaled, potentially allowing for

the generation of the large cluster-states necessary for one-way quantum computa-

tion [142, 67, 143]. Moreover, since the operation is mediated by photons, this gate

could be used in any system of optically active qubits, such as neutral atoms, ions,

nitrogen-vacancy centers, or quantum dots. Indeed, hybrid systems are also envi-

sioned, where disparate quantum systems are connected via this photon-mediated

process to exploit the advantages of each individual quantum system.

In this implementation of the heralded quantum gate, two Yb+atoms at a distance

of about one meter are used as quantum memories [144]. The photon-mediated

approach to scalable quantum computing with trapped atomic ions has the advantage

that complex trap arrays may not be required, and that the operation is insensitive

to motional decoherence. In addition, the gate can be operated on qubits separated
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Figure 7.1: Experimental setup for the heralded quantum gate. Spontaneously emitted π-polarized
photons are coupled in a single-mode fiber and directed to interfere on a 50:50 non-
polarizing beamsplitter (BS). Coincident detection of two photons by photon-counting
photomultipliers (PMTs) announce the success of the gate between the two ions. PBS
are polarizers used to filter the photons so that only π-polarized photons are detected.
The state of each ion is measured by state-dependent fluorescence, detected by a PMT
on the opposite side of the vacuum chamber.

by an arbitrary distance.

7.1 Ion-photon entanglement

The implementation of the gate begins by confining and cooling two 171Yb+atoms

in two vacuum chambers, separated by a distance of about one meter. The exper-

imental setup, shown in Fig. 7.1, is similar to that employed for the two-photon

interference experiments of the previous chapter. In this case, though, the ions are

subjected to an external magnetic field of about 5.2 gauss that is aligned perpen-

dicular to both the observation axis and the impinging light from the picosecond

pulsed laser. Also, the polarizers are present in the interferometer setup, whereas

the optional λ/2-waveplate used previously is removed from the beam path.

After Doppler cooling, each ion is initialized to the state |0〉 by optical pumping.

Each of the two ions, ion a and ion b, are then prepared in a particular quantum
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state by resonant microwave radiation at 12.6 GHz applied directly to one of the

trap electrodes. As was derived in Chap. IV, this allows us to prepare the ions in

any state. Thus, after application of the microwave radiation we write the state of

the atoms as

|ψ〉a = α|0〉a + β|1〉a

|ψ〉b = γ|0〉b + δ|1〉b (7.1)

where the only restriction on α, β, γ, and δ are that |α|2 +|β|2 = 1 and |γ|2 +|δ|2 = 1.

For clarity, we will assume ideal state evolution throughout this discussion; for the

full phase evolution during the gate, see App. E.

After this state preparation, each ion is excited with near-unit probability to the

2P1/2 level by an ultrafast (1 ps) laser pulse having linear polarization aligned parallel

to the magnetic field (π-polarized) and central wavelength at 369.5 nm. Due to the

polarization of the pulse and atomic selection rules, the broadband pulse coherently

drives |0〉 to |0′〉 := 2P1/2|F = 1,mF = 0〉 and |1〉 to |1′〉 := 2P1/2|F = 0,mF = 0〉, as

illustrated in Fig. 7.2(a). Since the bandwidth of the 1 ps pulse is approximately 300

GHz, we are able to drive both of these transitions simultaneously [77]. The 100 THz

fine structure splitting of the 2P levels ensures that coupling to 2P3/2 is negligible.

As seen in Chap. V, each ion spontaneously emits only a single photon at 369.5

nm while returning to the 2S1/2 ground state. The emitted photons at 369.5 nm can

each be collected along a direction perpendicular to the quantization axis by objective

lenses of numerical aperture NA = 0.23 and coupled into single-mode fibers. Ob-

servation along this direction allows for polarization filtering of the emitted photons

because those produced by π and σ transitions appear as orthogonally polarized [14].

Considering only π decays results in each ion being entangled with the frequency of
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Figure 7.2: Pulsed excitation with π-polarized light to generate ion-photon entanglement. (a) Due
to the atomic selection rules, π-polarized light drives |0〉 to |0′〉 and |1〉 to |1′〉. The
pulse bandwidth of about 300 GHz allows both of these transitions to be driven si-
multaneously with near-unit excitation probability for each. (b) After excitation, the
ion spontaneously decays back to 2S1/2 and emits a single photon at 369.5 nm. If
we consider only π-polarized photons, then the frequency of the emitted photon is
entangled with the internal electronic state of the atom, with the separation of the
different frequency modes equal to the sum of the 2S1/2 and 2P1/2 hyperfine splittings
(νblue − νred = 14.7 GHz). Polarizers (PBS) are used to filter out the σ-polarized light.

its emitted photon such that

|ψ〉a = α|0〉a|νblue〉a + β|1〉a|νred〉a

|ψ〉b = γ|0〉b|νblue〉b + δ|1〉b|νred〉b (7.2)

where |νblue〉 and |νred〉 are the single photon states having well-resolved frequencies

νblue and νred, respectively. The bandwidth of each state is determined by the natural

linewidth of the excited state to be 1/(2πτ) = 19.6 MHz (Chap. VI). The two

frequency states are separated by the sum of the 2S1/2 and 2P1/2 hyperfine splittings,

so that νblue−νred = 14.7 GHz. The output of the single-mode fibers is then directed

to interfere at a 50:50 nonpolarizing beamsplitter.

7.2 Ion-ion entanglement

Although we looked extensively at the action of the beamsplitter on identical

and distinguishable photons in Chap. V, the case of superposition states yields a
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somewhat different result. In order to evaluate the action of the beamsplitter in the

present scenario, we first rewrite the state of the two ion-photon systems in the Bell

state basis introduced in Chap. II. The total state of the two ion-photon systems is

simply the product of the states in Eq. 7.2.

|Ψ〉 = |ψ〉a ⊗ |ψ〉b

= (α|0〉a|νblue〉a + β|1〉a|νred〉a)⊗ (γ|0〉b|νblue〉b + δ|1〉b|νred〉b)

= αγ|0〉a|0〉b|νblue〉a|νblue〉b + αδ|0〉a|1〉b|νblue〉a|νred〉b

+βγ|1〉a|0〉b|νred〉a|νblue〉b + βδ|1〉a|1〉b|νred〉a|νred〉b

= αγ|0〉a|0〉b
1√
2

(
|φ+〉ph + |φ−〉ph

)
+ αδ|0〉a|1〉b

1√
2

(
|ψ+〉ph + |ψ−〉ph

)
+βγ|1〉a|0〉b

1√
2

(
|ψ+〉ph − |ψ−〉ph

)
+ βδ|1〉a|1〉b

1√
2

(
|φ+〉ph − |φ−〉ph

)
=

1√
2

[
|φ+〉ph (αγ|0〉a|0〉b + βδ|1〉a|1〉b) + |φ−〉ph (αγ|0〉a|0〉b − βδ|1〉a|1〉b)

+|ψ+〉ph (αδ|0〉a|1〉b + βγ|1〉a|0〉b) + |ψ−〉ph (αδ|0〉a|1〉b − βγ|1〉a|0〉b)
]
(7.3)

Thus, we just need to determine the action of the beamsplitter on the four possible

Bell states. The evaluation will use the same terminology of Chap. V, in the simple

ideal case.1 Assuming photon a enters the beamsplitter via port 1 and photon b

enters the beamsplitter by port 2, and associating the creation operators â† and b̂†

with frequency modes |νred〉 and |νblue〉, respectively, we then find:

|φ±〉ph =
1√
2

[|νblue〉a|νblue〉b ± |νred〉a|νred〉b]

=
1√
2

[
b̂†1b̂
†
2 ± â

†
1â
†
2

]
|0〉ph

=
1

2
√

2

[(
b̂†3 + b̂†4

)(
−b̂†3 + b̂†4

)
±
(
â†3 + â†4

)(
−â†3 + â†4

)]
|0〉ph

=
1

2
√

2

[
−(b̂†3)2 − b̂†4b̂

†
3 + b̂†3b̂

†
4 + (b̂†4)2 ∓ (â†3)2 ∓ â†4â

†
3 ± â

†
3â
†
4 ± (â†4)2

]
|0〉ph

=
1

2
[−|2(νblue)304〉+ |032(νblue)4〉 ∓ |2(νred)304〉 ± |032(νred)4〉] (7.4)

1The spatial effect of the electric field operators was considered in calculating the error do to mode mismatch at
the beamsplitter.
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for the |φ±〉ph state, where in the last line the notation shows the number of photons

of a particular frequency in the spatial mode 3 or 4. Similarly, for the |ψ+〉ph and

|ψ−〉ph photon states, we find:

|ψ+〉ph =
1√
2

[|νblue〉a|νred〉b + |νred〉a|νblue〉b]

=
1√
2

[
b̂†1â
†
2 + â†1b̂

†
2

]
|0〉ph

=
1

2
√

2

[
(b̂†3 + b̂†4)(−â†3 + â†4) + (â†3 + â†4)(−b̂†3 + b̂†4)

]
|0〉ph

=
1

2
√

2

[
−b̂†3â

†
3 − b̂

†
4â
†
3 + b̂†3â

†
4 + b̂†4â

†
4 − b̂

†
3â
†
3 − b̂

†
3â
†
4 + b̂†4â

†
3 + b̂†4â

†
4

]
|0〉ph

=
1√
2

[|03(νblueνred)4〉 − |(νblueνred)304〉] (7.5)

and

|ψ−〉ph =
1√
2

[|νblue〉a|νred〉b − |νred〉a|νblue〉b]

=
1√
2

[
b̂†1â
†
2 − â

†
1b̂
†
2

]
|0〉ph

=
1

2
√

2

[
(b̂†3 + b̂†4)(−â†3 + â†4)− (â†3 + â†4)(−b̂†3 + b̂†4)

]
|0〉ph

=
1

2
√

2

[
−b̂†3â

†
3 − b̂

†
4â
†
3 + b̂†3â

†
4 + b̂†4â

†
4 + b̂†3â

†
3 + b̂†3â

†
4 − b̂

†
4â
†
3 − b̂

†
4â
†
4

]
|0〉ph

=
1√
2

[|(νblue)3(νred)4〉 − |(νred)3(νblue)4〉] (7.6)

The calculations above show the striking result that the only one of the four Bell

states that results in a single photon in both exit ports of the beamsplitter is the

antisymmetric, |ψ−〉ph state [145]. This crucial point is the final step in the quantum

gate.

We use the joint detection of two photons at the exit ports of the beamsplitter

to herald the success of the quantum gate. By the above derivation, a coincident

detection signals that the photons were in the |ψ−〉ph state. From Eq. 7.3, we see
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that the coincident detection thereby projects the ions into the state:

|ψ〉ions = ph〈ψ−|Ψ〉 =
1√
2ϑ

(αδ|0〉a|1〉b − βγ|1〉a|0〉b) (7.7)

where the factor ϑ = (|α|2|δ|2 + |β|2|γ|2)/2 in front is the usual renormalization term

present after a measurement [32]. In the case |α| = |β| = |γ| = |δ| = 1/
√

2, the ions

are left in a maximally entangled state. In terms of operators, this gate is written as

1

2
σa3(σa0σ

b
0 − σa3σb3) (7.8)

where σij is the jth Pauli operator acting on the ith qubit [67].

In contrast to our earlier demonstrations of remote ion entanglement [71, 146],

the initial state amplitudes are preserved by the heralded quantum gate and deter-

mine the form of the final ion-ion entangled state. This is a defining feature of a

gate operation, and is essential to establishing entanglement between more than two

qubits. However, unlike the CNOT gate introduced in Chap. II, the quantum gate

presented here is not unitary. Indeed, for certain initial states (e.g. α = γ = 1), a

coincident detection should never occur. While this behavior voids its application to

the quantum circuit model, cluster states can still be generated by having all qubits

initially in a superposition state. In this case, the gate succeeds with nonvanishing

probability, and scales favorably [67].
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7.3 Gate evaluation

We verify the operation of the gate by implementing it on a variety of input states.

The gate is characterized by determining the fidelity of the resulting output state

with respect to the ideal case described by Eq. 7.7. The fidelity is defined as the

overlap of the measured state with the ideal state:

F = |ideal〈ψ|ψ〉|2 = ideal〈ψ|ρ|ψ〉ideal (7.9)

where we have written our measured state as |ψ〉 and defined the density matrix

ρ = |ψ〉〈ψ|. The various input states used to characterize the quantum gate, to-

gether with the measurements made and the resulting fidelities for each, are given

in Table 7.1. As measurement of each ion is accomplished using the aforementioned

state fluorescence technique (Chap. IV), measurement in the remaining two bases

requires an additional microwave pulse before detection. As such, we define the ro-

tation {Ry(π/2), Rx(π/2), R(0)} before detection to correspond to measurement in

the basis {x, y, z}. Overall, we attain an average fidelity of 89(2)% [144].

To evaluate the gate, we do not make measurements of all combinations of possi-

ble input states around the equator of the Bloch sphere. The reason for this is that

input states that differ only by a global phase rotation are indistinguishable in the

lab. In other words, it is only the phase difference between the states that matters

experimentally, where the microwave oscillator is used as a reference. As an exam-

ple, consider the two possible combinations of input states 1/
√

2(|0〉a + |1〉a) and

1/
√

2(|0〉b + ı̇|1〉b) versus 1/
√

2(|0〉a + ı̇|1〉a) and 1/
√

2(−|0〉b + |1〉b). Experimentally,

the way both of these states are implemented is to apply a microwave π/2-pulse to

ion a, and apply a microwave π/2-pulse to ion b that is +π/2 out of phase with the

pulse that was applied to ion a.
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Figure 7.3: State tomography of |ψ−〉ions. The figure shows the real (a) and imaginary (b) elements
of the reconstructed density matrix. The density matrix was obtained with a maximum
likelihood method from 601 events measured in 9 different bases. From this density
matrix we calculate an entangled state fidelity of F = 0.87(2), a concurrence of C =
0.77(4) and an entanglement of formation EF = 0.69(6).

In addition to the fidelity measurements of Table 7.1, we also assess the genera-

tion of the maximally entangled antisymmetric Bell state |ψ〉ideal = 1/
√

2(|0〉a|1〉b −

|1〉a|0〉b) by full state tomography. The resulting density matrix shown in Fig. 7.3

is obtained using a maximum likelihood method [147]. From this density matrix we

calculate an entangled state fidelity of F = 0.87(2), a concurrence of C = 0.77(4)

and an entanglement of formation EF = 0.69(6) [144].

The observed entanglement and gate fidelity are consistent with known experi-

mental errors. The primary contributions to the error are imperfect state detection

(3%), spatial mode mismatch on the beamsplitter (6%), and detection of σ-polarized

light due to the finite solid angle of collection and misalignment of the magnetic

field (<2%). Other sources, including imperfect state preparation, pulsed excita-

tion to the wrong atomic state, dark counts of the PMT leading to false coincidence

events, and multiple excitation due to pulsed laser light leakage, are each estimated

to contribute to the overall error by much less than 1%. Micromotion at the rf-drive

frequency of the ion trap, which alters the spectrum of the emitted photons and can
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degrade the quantum interference, is expected to contribute to the overall error by

less than 1%.

7.4 Success probability

The quantum gate is a heralded, probabilistic process. The net probability for

coincident detection of two emitted photons is given by:

Pgate = ϑ [pπηTfiberTopticsξ(∆Ω/4π)]2 ≈ ϑ
(
8.5× 10−8

)
(7.10)

where pπ = 0.5 is the fraction of photons with the correct polarization (half are

filtered out as being produced by σ decays); η = 0.15 is the quantum efficiency of

each PMT; Tfiber = 0.2 is the coupling and transmission of each photon through the

single-mode optical fiber; Toptics = 0.95 is the transmission of each photon through

the other optical components; ξ = 1 − 0.005 = 0.995, where 0.005 is the branching

ratio into the 2D3/2 level; and ∆Ω/4π = 0.02 is the solid angle of light collection.

In the current setup, the attempt rate was limited to about 75 kHz, due the

time required for the state preparation microwave pulse. This resulted in about one

successful gate operation every 12 min. However, the expression for Pgate reveals

multiple ways to substantially increase the success rate. The most dramatic increase

would be achieved by increasing the effective solid angle of collection, which, for

instance, could be accomplished by surrounding each ion with an optical cavity.

Although improvements that increase the success probability of the gate operation

can enhance scalability, even with a low success probability this gate can still be

scaled to more complex systems [67].
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CHAPTER VIII

Teleportation

“One of the problems has to do with the speed of light and the difficulties involved in
trying to exceed it. You can’t. Nothing travels faster than the speed of light with the
possible exception of bad news, which obeys its own special laws.”
–Douglas Adams, Mostly Harmless

Quantum teleportation is the faithful transfer of quantum states between systems

that relies on the prior establishment of entanglement, but uses only classical com-

munication during the transmission [7]. Teleportation, where quantum information

is transferred between two disparate locations without traversing the space between

the systems, is a stark realization of the counter-intuitive aspects of quantum physics.

In addition, the ability to teleport quantum information is an essential ingredient for

the long-distance quantum communication afforded by quantum repeaters [28] and

may be a vital component to quantum computation [148].

Experimentally, teleportation has been accomplished in optical systems by using

photons from spontaneous parametric down-conversion [149, 150] and squeezed light

with continuous variable entanglement [151]. Teleportation has also been realized

between photons and a single atomic ensemble [152, 153]. Since photons are able

to carry quantum information and establish entanglement over long distances, these

experiments demonstrated the nonlocal behavior of teleportation. However, a quan-

tum memory is required at both transmitting and receiving sites in order to scale
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this protocol to quantum networks and propagate quantum information over multiple

nodes [29].

Deterministic teleportation between quantum memories has been implemented

experimentally using trapped atomic ions in close proximity to one another, relying

on the mutual Coulomb interaction to execute the necessary gate operations [154,

155, 156]. In contrast to the optical systems, these realizations feature long-lived

coherences stored in good quantum memories but lack the ability to easily transmit

quantum information over long distances.

In this chapter, we present the implementation of a heralded teleportation protocol

where the advantages from both optical systems and quantum memories are com-

bined to teleport quantum states between two trapped ytterbium ion qubits over a

distance of about one meter [157]. Tomography is performed on the teleported states

to fully characterize the system, and allow for complete process tomography of the

protocol. After performing the protocol on a complete set of mutually unbiased

basis states, we measure an average teleportation fidelity of 90(2)%. The fidelity

of the operation is well above the 2/3 threshold that could be achieved classically,

unequivocally demonstrating the quantum nature of the process [158, 159].

8.1 Teleportation protocol

The experimental setup for the teleportation is identical to the one used to demon-

strate the quantum gate (Fig. 7.1). A single 171Yb+atom is confined and cooled in

each of two nearly-identical traps separated by a distance of about one meter. The

atoms are initialized to the state |0〉 by optical pumping via a 1 µs pulse of 369.5 nm
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light. We then prepare the ion a and b in the states:

|ψ〉a = α|0〉a + β|1〉a (8.1)

|ψ〉b =
1√
2

(|0〉b + |1〉b)

by applying a resonant microwave pulse of controlled phase and duration (0–16 µs)

directly to one of the trap electrodes, where |α|2 + |β|2 = 1. The quantum state

written into ion a is the information we seek to teleport. While in the present case

the amplitudes are determined by the applied microwave radiation, in principle α

and β could be unknown.

Following state preparation, each atom is excited by a 1 ps pulse of π-polarized

light at 369.5 nm, and this broadband excitation coherently drives the population in

the hyperfine levels of the 2S1/2 state to complementary levels in the 2P1/2 state, as

shown previously (Fig. 7.2). As each atom decays back to the 2S1/2 levels, it emits a

single photon at 369.5 nm. Considering only π decays results in the frequency of the

emitted photon becoming entangled with the electronic state of the ion, such that:

|ψ〉a = α|0〉a|νblue〉a + β|1〉a|νred〉a

|ψ〉b =
1√
2

(|0〉b|νblue〉b + |1〉b|νred〉b) (8.2)

Spontaneously emitted photons are collected by an objective lens, coupled into a

single-mode fiber, and directed to interfere at a 50:50 non-polarizing beamsplitter.

As shown in Chap. VII, due to the quantum interference of the photons at the

beamsplitter, a simultaneous detection at both output ports of the beamsplitter

occurs only if the photons are in the |ψ−〉ph state, so that the action of this heralded

quantum gate is to project the ions into the entangled state:

|ψ〉ions = ph〈ψ−| (|ψ〉a ⊗ |ψ〉b) = α|0〉a|1〉b − β|1〉a|0〉b (8.3)
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Even though the gate is a probabilistic process, we do not require postselection be-

cause the coincident detection of the two photons is a heralding event that announces

the success of the quantum gate. In the teleportation protocol ϑ = 1/4 in Eq. 7.10,

so that the overall success probability for any α and β is about 2.2 × 10−8, limited

by the efficiency of collecting and detecting both spontaneously emitted photons.

Therefore, the previous steps (state preparation and pulsed excitation) are repeated

at a rate of 40 to 75 kHz, including intermittent cooling, until the gate operation is

successful (once every 12 min, on average). As each attempt is independent of all

others, this protocol allows for a sequence of unknown and unrelated input states.

After the success of the quantum gate has been confirmed by the heralding event,

ion a is subjected to another pulse of microwaves to execute the rotation Ry(π/2)

(Sec. 4.5.4). The microwave rotation transforms the state given in Eq. 8.3 to:

|ψ〉ions =
α√
2

(|0〉a + |1〉a) |1〉b −
β√
2

(−|0〉a + |1〉a) |0〉b

=
1√
2

(α|1〉b + β|0〉b) |0〉a +
1√
2

(α|1〉b − β|0〉b) |1〉a (8.4)

We then measure ion a using the state dependent fluorescence technique discussed

in Chap. IV. As is apparent from Eq. 8.4, measuring ion a projects ion b into one of

the two states:

If measured |0〉a ⇒ |ψ〉b = α|1〉b + β|0〉b

If measured |1〉a ⇒ |ψ〉b = α|1〉b − β|0〉b (8.5)

The result of the measurement on ion a is relayed through a classical communica-

tion channel and used to determine the necessary phase of a conditional microwave

π pulse applied to ion b to recover the state initially written to ion a. If |0〉a is

measured, the rotation Rx(π) is applied to ion b so that:

Rx(π) (α|1〉b + β|0〉b) = α|0〉b + β|1〉b
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On the other hand, if |1〉a is measured, the rotation Ry(π) is applied to ion b:

Ry(π) (α|1〉b − β|0〉b) = α|0〉b + β|1〉b

where we have ignored any global phase factors. Thus, the state amplitudes initially

written to ion a are now stored in ion b, which completes the teleportation of the

quantum state between the two distant matter qubits.

8.2 Experimental evaluation

We execute the teleportation protocol on a set of six mutually unbiased basis states

|ψ〉ideal ∈ {1/
√

2(|0〉+ |1〉), 1/
√

2(|0〉−|1〉), 1/
√

2(|0〉+ ı̇|1〉), 1/
√

2(|0〉− ı̇|1〉), |0〉, |1〉},

and evaluate the process by performing state tomography on each teleported state.

A single-qubit density matrix can be reconstructed by measuring the state in three

mutually unbiased measurement bases. Of course, measurement of the ion oc-

curs via the aforementioned state fluorescence technique, and therefore only dis-

tinguishes between |0〉 and |1〉 (z-basis); two states such as 1/
√

2(|0〉 + |1〉) and

1/
√

2(|0〉 − |1〉) (x-basis) are not distinguishable by fluorescence alone. Measure-

ment in the remaining two bases requires an additional microwave pulse before de-

tection. We define the rotation {Ry(π/2), Rx(π/2), R(0)} before detection to cor-

respond to measurement in the basis {x, y, z}. These measurements allow recon-

struction of the single-qubit density matrix, ρ, for each teleported state using a

simple analytical expression [160], with the results shown in Fig. 8.1. The fidelity

of the teleportation protocol, defined as the overlap of the ideal and measured den-

sity matrices F = tr(ρidealρ) = ideal〈ψ|ρ|ψ〉ideal, for this set states is measured to

be F = {0.91(3), 0.88(4), 0.92(4), 0.91(4), 0.93(4), 0.88(4)}. This yields an average

teleportation fidelity of F = 0.90(2) [157].

The reconstructed density matrices also facilitate full characterization of the tele-
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Figure 8.1: Tomography of the teleported quantum states. The reconstructed density matrices,
ρ, for the six unbiased basis states teleported from ion a to ion b: (a) |ψ〉ideal =
1/
√

2(|0〉 + |1〉) teleported with fidelity F = 0.91(3), (b) |ψ〉ideal = 1/
√

2(|0〉 − |1〉)
teleported with fidelity F = 0.88(4), (c) |ψ〉ideal = 1/

√
2(|0〉 + ı̇|1〉) teleported with

fidelity F = 0.92(4), (d) |ψ〉ideal = 1/
√

2(|0〉− ı̇|1〉) teleported with fidelity F = 0.91(4),
(e) |ψ〉ideal = |0〉 teleported with fidelity F = 0.93(4), and (f) |ψ〉ideal = |1〉 teleported
with fidelity F = 0.88(4). These measurements yield an average teleportation fidelity
F = 0.90(2). The data shown comprise a total of 1285 events in 253 hours.
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portation protocol by quantum process tomography. We can completely describe the

effect of the teleportation protocol on an input state ρin by determining the process

matrix χ, defined by [32]:

ρ =
3∑

l,k=0

χlkσ̂lρinσ̂k (8.6)

where to evaluate our process we assume ρin = |ψ〉ideal〈ψ|. For the teleportation pro-

tocol, the ideal process matrix, χideal, has only one nonzero component, (χideal)00 = 1,

corresponding to the identity operation on the input state. The experimentally de-

termined the process matrix χ, presented in Fig. 8.2, was reconstructed using a

maximum likelihood method [161]. Given this process matrix, we calculate the pro-

cess fidelity to be Fprocess = tr(χidealχ) = 0.84(2) [157]. Since the average fidelity

and process fidelity are related by Fprocess = (3F − 1)/2, this is consistent with the

average fidelity found above [162].

8.3 Error analysis

The experimental errors in the teleportation protocol differ slightly from just the

implementation of the quantum gate, due to the additional single-qubit operations

involved. The primary sources of error that reduce the average fidelity are photon

mode mismatch at the 50:50 beamsplitter (4%), imperfect state detection (3.5%), and

polarization–mixing resulting from the nonzero numerical aperture of the objective

lens and from misalignment with respect to the magnetic field (2%). Other sources,

including incomplete state preparation, pulsed excitation to the wrong atomic state,

dark counts of the PMT leading to false coincidence events, photon polarization

rotation while traversing the optical fiber, and multiple excitation resulting from

pulsed laser light leakage, are each expected to contribute to the error by much less

than 1%. Residual micromotion at the rf-drive frequency of the ion trap, which alters
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Figure 8.2: Process tomography of the teleportation protocol. Displayed in the figure is the absolute
value of the components of the reconstructed process matrix, |χlk|, with l, k = 0, 1, 2, 3.
The process matrix is reconstructed from the state tomography data (Fig. 8.1) using a
maximum likelihood method. The elements are given in terms of the Pauli operators
(Chap. II). As intended, the dominant component of χ is the contribution of the
identity operation, yielding an overall process fidelity Fprocess = tr (χidealχ) = 0.84(2),
consistent with the average fidelity cited above.
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the spectrum of the emitted photons and degrades the quantum interference, reduces

the average fidelity by less than 1%.

A detailed calculation of the two most prominent error contributions is presented

below.

8.3.1 Photon spatial mode-mismatch at the beamsplitter We determine the effect

of imperfect spatial mode-overlap of two photons incident on the beamsplitter by

utilizing the formalism presented in Chap. V. In this case, though, we will only

consider two photons impinging on the beamsplitter, rather than the train of photons

considered previously; in the experiment, we know we are looking for coincident

detections and that photons from different excitation pulses are well-separated in

time, so we can make this simplification without loss of generality.

First, we calculate the effect of the electric field operators on the four possible

input states |νred〉a|νred〉b, |νred〉a|νblue〉b, |νblue〉a|νred〉b, and |νblue〉a|νblue〉b. As an at-

tempt to unclutter the expressions a litte, we will also shift our notation slightly.

Hence forth we will not label the states with a or b unless there are possible ambi-

guities. Instead, we will write, e.g. |νred〉a|νblue〉b = |RB〉, where the ordering of the

frequencies determine to which subsystem they apply (e.g. in this case “R” indicates

a “red” photon as part of system a).

The four possible ways to get a photon in each exit port of the beamsplitter are:

E+
3bE

+
4b(td), E

+
3bE

+
4a(td), E

+
3aE

+
4b(td), E

+
3aE

+
4a(td) (8.7)

where the electric field operators are defined as in Eq. 5.5, with b̂† and â† as the

creation operators for a |νblue〉 = |B〉 and |νred〉 = |R〉 photon, respectively (as in

Chap. VII). In the subsequent calculation, though, we will suppress the exponential

decay factor, the Heaviside step function, and the normalization terms of Eq. 5.5.

Presently, we are concerned only with the resulting density matrix if a coincident
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detection of two photons occurs, and thus in this derivation these other factors can

just be regarded as part of a normalization term.

There are then 16 terms to calcuate; fortunately, many of them have an identical

form.

E+
3bE

+
4b(td)|RR〉 =

1

2
[ξ1â1 + ξ2â2] [−ξ1(td)â1 + ξ2(td)â2] â†1â

†
2|0〉

=
1

2

[
−ξ1ξ1(td)(â1)2 − ξ2ξ1(td)â2â1

+ξ1ξ2(td)â1â2 + ξ2ξ2(td)(â2)2
]
â†1â

†
2|0〉

=
1

2
[ξ1ξ2(td)− ξ2ξ1(td)] |0〉 (8.8)

This will also be the result for E+
3aE

+
4a(td)|BB〉, as can be seen by switching â with

b̂, and |R〉 with |B〉.

Next, we calculate:

E+
3bE

+
4b(td)|RR〉 =

1

2

[
ξ1b̂1 + ξ2b̂2

] [
−ξ1(td)b̂1 + ξ2(td)b̂2

]
â†1â

†
2|0〉 = 0 (8.9)

because b̂â†|0〉 = 0. Of course, the term will vanish whenever there are more anni-

hilation operators of a specific mode than creation operators. As such, the following

terms also vanish:

0 = E+
3aE

+
4a(td)|BB〉 = E+

3aE
+
4b(td)|BB〉 = E+

3aE
+
4b(td)|RR〉

= E+
3bE

+
4a(td)|BB〉 = E+

3bE
+
4a(td)|RR〉 = E+

3aE
+
4a(td)|RB〉

= E+
3aE

+
4a(td)|BR〉 = E+

3bE
+
4b(td)|BR〉 = E+

3bE
+
4b(td)|RB〉 (8.10)

The last combinations we need to calculate yield:

E+
3aE

+
4b(td)|RB〉 =

1

2
[ξ1â1 + ξ2â2]

[
−ξ1(td)b̂1 + ξ2(td)b̂2

]
â†1b̂
†
2|0〉

=
1

2

[
−ξ1ξ1(td)â1b̂1 − ξ2ξ1(td)â2b̂1

+ξ1ξ2(td)â1b̂2 + ξ2ξ2(td)â2b̂2

]
â†1b̂
†
2|0〉

=
1

2
ξ1ξ2(td) (8.11)
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The same result will result from E+
3bE

+
4a(td)|BR〉. We also calculate:

E+
3aE

+
4b(td)|BR〉 =

1

2
[ξ1â1 + ξ2â2]

[
−ξ1(td)b̂1 + ξ2(td)b̂2

]
b̂†1â
†
2|0〉

=
1

2

[
−ξ1ξ1(td)â1b̂1 − ξ2ξ1(td)â2b̂1

+ξ1ξ2(td)â1b̂2 + ξ2ξ2(td)â2b̂2

]
b̂†1â
†
2|0〉

= −1

2
ξ2ξ1(td) (8.12)

The result of Eq. 8.12 will also be the result for the term E+
3bE

+
4a(td)|RB〉.

Having calculated the terms we will need, we move on to actually looking at the

two ion-photon systems. As seen above, the system after excitation and spontaneous

emission of a π-polarized photon is:

|ψ〉ion,ph =
1√
2

[α|00〉|BB〉+ β|10〉|RB〉+ α|01〉|BR〉+ β|11〉|RR〉] (8.13)

We want to know the density matrix of the two ions after a coincident detection of

two photons. In the above calculations we calculated the sixteen (six non-vanishing)

ways to get a coincident detection. Using terminology similar to that in Ref. [32],

we will define the electric field measurement operator as:

Mph,jk = E+
3jE

+
4k(td) (8.14)

where j, k = a, b. In our previous discussion of the joint detection probability in

Chap. V, we wrote the probability of a coincident detection as:

PJ = ph〈ψ|E−4k(td)E
−
3jE

+
3jE

+
4k(td)|ψ〉ph

= ph〈ψ|M †
ph,jkMph,jk|ψ〉ph

= tr(M †
ph,jkMph,jk|ψ〉ph〈ψ|) (8.15)

where in the last two lines we have used our definition of the electric field measure-

ment operator and the usual properties of the trace [32].
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In this formalism, the density matrix of the two ions will be given by a partial trace

over the photon states of the electric field operators acting on the two ion-photon

system:

ρions = trph

[∑
j,k

M †
ph,jkMph,jk|ψ〉ion,ph〈ψ|

]

=
1

2

[
|α|2|00〉〈00|〈BB|M †

ph,jkMph,jk|BB〉

+αβ∗|00〉〈10|〈BB|M †
ph,jkMph,jk|RB〉+ |α|2|00〉〈01|〈BB|M †

ph,jkMph,jk|BR〉

+αβ∗|00〉〈11|〈BB|M †
ph,jkMph,jk|RR〉+ βα∗|10〉〈00|〈RB|M †

ph,jkMph,jk|BB〉

+|β|2|10〉〈10|〈RB|M †
ph,jkMph,jk|RB〉+ βα∗|10〉〈01|〈RB|M †

ph,jkMph,jk|BR〉

+|β|2|10〉〈11|〈RB|M †
ph,jkMph,jk|RR〉+ |α|2|01〉〈00|〈BR|M †

ph,jkMph,jk|BB〉

+αβ∗|01〉〈10|〈BR|M †
ph,jkMph,jk|RB〉+ |α|2|01〉〈01|〈BR|M †

ph,jkMph,jk|BR〉

+αβ∗|01〉〈11|〈BR|M †
ph,jkMph,jk|RR〉+ βα∗|11〉〈00|〈RR|M †

ph,jkMph,jk|BB〉

+|β|2|11〉〈10|〈RR|M †
ph,jkMph,jk|RB〉+ βα∗|11〉〈01|〈RR|M †

ph,jkMph,jk|BR〉

+ |β|2|11〉〈11|〈RR|M †
ph,jkMph,jk|RR〉

]
(8.16)

where in the last several lines, the sum
∑

j,k is implicit. Using our results for the

action of the different measurement operators on the states, we then get:

ρions =
1

8

[
|α|2|00〉〈00||ξ1ξ2(td)− ξ2ξ1(td)|2 + 0 + 0 + 0 + 0

+|β|2|10〉〈10|
(
|ξ1ξ2(td)|2 + |ξ2ξ1(td)|2

)
+βα∗|10〉〈01| (−ξ∗1ξ∗2(td)ξ2ξ1(td)− ξ1ξ2(td)ξ

∗
2ξ
∗
1(td)) + 0

+0 + αβ∗|01〉〈10| (−ξ1ξ2(td)ξ
∗
2ξ
∗
1(td)− ξ∗1ξ∗2(td)ξ2ξ1(td))

|α|2|01〉〈01|
(
|ξ2ξ1(td)|2 + |ξ1ξ2(td)|2

)
+ 0 + 0

+0 + 0 + |β|2|11〉〈11||ξ1ξ2(td)− ξ2ξ1(td)|2
]

(8.17)

After a coincident detection, the next step in the teleportation protocol was to
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rotate ion a with a Ry(π/2) microwave pulse, and then measure it. The ion-ion

density matrix after rotation of ion a is:

(Ry(π/2))a ρions
(
R†y(π/2)

)
a

=
1

16

[
|α|2|ξ1ξ2(td)− ξ2ξ1(td)|2(|0〉+ |1〉)|0〉(〈0|+ 〈1|)〈0|

+|β|2
(
|ξ1ξ2(td)|2 + |ξ2ξ1(td)|2

)
(−|0〉+ |1〉)|0〉(−〈0|+ 〈1|)〈0|

+βα∗ (−ξ∗1ξ∗2(td)ξ2ξ1(td)− ξ1ξ2(td)ξ
∗
2ξ
∗
1(td))

×(−|0〉+ |1〉)|0〉(〈0|+ 〈1|)〈1|

+αβ∗ (−ξ1ξ2(td)ξ
∗
2ξ
∗
1(td)− ξ∗1ξ∗2(td)ξ2ξ1(td))

×(|0〉+ |1〉)|1〉(−〈0|+ 〈1|)〈0|

+|α|2
(
|ξ2ξ1(td)|2 + |ξ1ξ2(td)|2

)
(|0〉+ |1〉)|1〉(〈0|+ 〈1|)〈1|

|β|2|ξ1ξ2(td)− ξ2ξ1(td)|2(−|0〉+ |1〉)|1〉(−〈0|+ 〈1|)〈1|
]

(8.18)

Now we measure ion a. Analogous to the electric field measurement operator, we will

define an operator for the measurement of the quantum state of the ion. At the mo-

ment, we will assume ideal measurement of the ion. The influence of imperfect state

detection on the fidelity is calculated in the next section; as both are independently

small, it is a good approximation to consider each separately.

Define our (ideal) measurement operators for the ion state to be [32]:

M0j = |0〉j〈0|, M1j = |1〉j〈1| (8.19)

where here j = a, b denotes operation on the jth ion. Since with the final rotation

on ion b, conditioned on the measurement of ion a, the states will be equivalent, we

only work out the case for |0〉a below. Measurement of ion a is defined similarly to

the case for the photons, where the density matrix of ion b is given by the partial
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trace of a on the measurment operator and the quantum state of the ions. We get:

ρb = tra

(
M †

0aM0a (Ry(π/2))a ρions
(
R†y(π/2)

)
a

)
=

1

16

[(
|α|2|ξ1ξ2(td)− ξ2ξ1(td)|2 + |β|2

(
|ξ1ξ2(td)|2 + |ξ2ξ1(td)|2

))
|0〉〈0|

−βα∗ (−ξ∗1ξ∗2(td)ξ2ξ1(td)− ξ1ξ2(td)ξ
∗
2ξ
∗
1(td)) |0〉〈1|

−αβ∗ (−ξ1ξ2(td)ξ
∗
2ξ
∗
1(td)− ξ∗1ξ∗2(td)ξ2ξ1(td)) |1〉〈0|

+
(
|α|2

(
|ξ2ξ1(td)|2 + |ξ1ξ2(td)|2

)
+ |β|2|ξ1ξ2(td)− ξ2ξ1(td)|2

)
|1〉〈1|

]
(8.20)

and recall that in the teleportation protocol, if |0〉a is measured then ion b has a

Rx(π) microwave pulse applied to it. Since this just flips the state of the ion, the

final density matrix for ion b is given by:

ρb =
1

16

[(
|α|2

(
|ξ2ξ1(td)|2 + |ξ1ξ2(td)|2

)
+ |β|2|ξ1ξ2(td)− ξ2ξ1(td)|2

)
|0〉〈0|

−αβ∗ (−ξ1ξ2(td)ξ
∗
2ξ
∗
1(td)− ξ∗1ξ∗2(td)ξ2ξ1(td)) |0〉〈1|

−βα∗ (−ξ∗1ξ∗2(td)ξ2ξ1(td)− ξ1ξ2(td)ξ
∗
2ξ
∗
1(td)) |1〉〈0|

+
(
|α|2|ξ1ξ2(td)− ξ2ξ1(td)|2 + |β|2

(
|ξ1ξ2(td)|2 + |ξ2ξ1(td)|2

))
|1〉〈1|

]
(8.21)

In order to make sense of this, we need to determine the spatial mode factors ξ in

terms of a measured quantity in the lab. The quantity we measure is the visibility

of the interferometer. The visibility is defined as:

V =
Imax − Imin
Imax + Imin

(8.22)

where Imax and Imin are the maximum and minimum intensities of the incident light.

If two fields are incident, with amplitudes E1 and E2, then we know Imax = |E1+E2|2

and Imax = |E1 − E2|2. On the other hand, the intensity of a single field is just

I1 = |E1|2.

Suppose now that we have a function e(r) that describes the amplitude of the

incident light as a function of position. However, the detector measures the intensity
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I incident over the area of the detector. If we assume the detector area completely

covers the incident mode, then the registered intensity will be the integral over space:

Ie =

∫
|e(r)|2 dr (8.23)

If two fields are incident, e(r) and f(r), then we can define the maximum and mini-

mum intensities as:

Imax =

∫
|e(r) + f(r)|2 dr

Imin =

∫
|e(r)− f(r)|2 dr (8.24)

and thus,

Imax =

∫
(e(r) + f(r)) (e∗(r) + f ∗(r)) dr

=

∫ (
|e(r)|2 + |f(r)|2 + f(r)e∗(r) + e(r)f ∗(r)

)
dr

= Ie + If +

∫
(f(r)e∗(r) + e(r)f ∗(r)) dr (8.25)

Similarly,

Imin = Ie + If −
∫

(f(r)e∗(r) + e(r)f ∗(r)) dr (8.26)

Therefore, we can write the visibility of the interferometer as:

V =

∫
(f(r)e∗(r) + e(r)f ∗(r)) dr

Ie + If
(8.27)

Of course, we defined the relative phase between e(r) and f(r) when we defined the

maximum and minimum intensities, and therefore it must be the case that f(r)e∗(r)

is real. If we also assume that the total incident intensities of the two fields are equal,

Ie = If = I, then we can write the visibility of the interferometer in the simple form:

V =

∫
f(r)e∗(r) dr

I
(8.28)
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This expression allows us to derive a number of relations∫ ∫
|e(x)f(y)|2 dx dy =

∫
|e(x)|2 dx

∫
|f(y)|2 dy = I2 (8.29)∫ ∫

e∗(x)f(x)e(y)f ∗(y) dx dy =

∫
e∗(x)f(x) dx

∫
e(y)f ∗(y) dy = I2V 2 (8.30)

∫ ∫
|e(x)f(y)− f(x)e(y)|2 dx dy =

∫ ∫
(e(x)f(y)− f(x)e(y))

× (e∗(x)f ∗(y)− f ∗(x)e∗(y)) dx dy

=

∫ ∫ (
|e(x)|2|f(y)|2 + |f(x)|2|e(y)|2

−e∗(x)f(x)e(y)f ∗(y)

−e(x)f ∗(x)e∗(y)f(y)) dx dy

= 2I2 − 2I2V 2

= 2I2
(
1− V 2

)
(8.31)

that will be useful below.

Using the relations derived above, we can now write the spatial modes ξ appearing

in the density matrix of ion b in terms of the measureable parameters I and V . As

above, we will assume the incident intensities are equal. We then get:

ρb =
I2

8

 |α|2 + |β|2 (1− V 2) αβ∗V 2

βα∗V 2 |β|2 + |α|2 (1− V 2)

 (8.32)

Of course, the factor of I2/8 in front should just be part of the normalization term

we’ve been neglecting throughout this derivation. We will therefore discard it, and

just use the condition tr(ρb) = 1 to determine the proper normalization. After doing

so, we finally end up with the density matrix for ion b as:

ρb =
1

2− V 2

 |α|2 + |β|2 (1− V 2) αβ∗V 2

βα∗V 2 |β|2 + |α|2 (1− V 2)

 (8.33)
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The above allows us to calculate the expected reduction in fidelity for any teleported

state as a function of the visibility of the interferometer. For any given input state,

we know the ideal density matrix is simply:

ρideal =

 |α|2 αβ∗

βα∗ |β|2

 (8.34)

Earlier, we defined the fidelity as simply the overlap of the two states; this can be

written succinctly as F = tr (ρbρideal). Therefore, using the expressions above we

find:

F = tr

 1

2− V 2

 |α|2 + |β|2 (1− V 2) αβ∗V 2

βα∗V 2 |β|2 + |α|2 (1− V 2)


 |α|2 αβ∗

βα∗ |β|2




=
1

2− V 2

(
|α|4 + |β|4 + 2|α|2|β|2(1− V 2) + 2|α|2|β|2V 2

)
=

1

2− V 2

(
|α|2 + |β|2

)
=

1

2− V 2
(8.35)

We see that if the visibility of the interferometer is perfect V = 1 then the fidelity is

1; whereas if the spatial mode-overlap is nonexistent, V = 0, then the fidelity drops

to 1/2 (exactly what would be expected for a totally mixed state).

In the experiment, we measure the visibility of the interferometer by coupling

laser light into the single-mode fibers used for transferring the spontaneously emitted

photons from the atom to the beamsplitter. We find a visibility V > 0.98. By the

above derivation, we can thereby estimate that the spatial mode-mismatch at the

beamsplitter reduces the fidelity of the teleportation protocol by at most about 4%.

8.3.2 Imperfect state detection We calculate the expected degradation in fidelity

due to imperfect state detection of the atomic qubit using the formalism of the

measurement operators [32] used above. Let εj be the error in the measurement of
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the qubit state of ion j = a, b. The measurement operators may then be defined as:

M0j =
√

1− εj|0〉〈0|+
√
εj|1〉〈1|

M1j =
√
εj|0〉〈0|+

√
1− εj|1〉〈1| (8.36)

Note that these satisfy the completeness relation Ij =
∑

mM
†
mjMmj.

In this calculation we will assume the interference of the photons at the beam-

splitter is perfect, so that the state of the two ions after a coincident detection of the

photons and rotation of ion a by Ry(π/2), we have the state (Eq. 8.4):

|ψ〉ions =
1√
2
|0〉a (α|1〉b + β|0〉b) +

1√
2
|1〉a (α|1〉b − β|0〉b)

=
1√
2
|0〉 (α|1〉+ β|0〉) +

1√
2
|1〉 (α|1〉 − β|0〉) (8.37)

where in the second line we have again invoked the shorter notation of the prior

section and suppressed the subscripts, instead designating the subsystems by the

ordering of the states (the left-most always being a, the right-most b); if there is any

chance of ambiguity, we will reinsert the subscripts at that point.

We now measure ion a using our imperfect measurement operator. The following

shows the explicit derivation for measuring the state |0〉a; the derivation for the |1〉a

is analogous, and after the conditional microwave rotation on ion b, yields exactly

the same result. As in the previous section, the measurement is completed by taking

the partial trace over the measurement operator and the quantum state, so that the
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density matrix for b is given by:

ρb = tra

(
M †

0aM0a|ψ〉ions〈ψ|
)

=
[√

1− εa(a〈0|) (α|1〉b + |0〉b) +
√
εa(a〈1|) (α|1〉b − β|0〉b)

]
⊗
[√

1− εa|0〉a (α∗b〈1|+ β∗b〈0|) +
√
εa|1〉a (α∗b〈1| − β∗b〈0|)

]
= (1− εa)

(
|α|2|1〉〈1|+ βα∗|0〉〈1|+ αβ∗|1〉〈0|+ |β|2|0〉〈0|

)
+εa

(
|α|2|1〉〈1| − βα∗|0〉〈1| − αβ∗|1〉〈0|+ |β|2|0〉〈0|

)
= |β|2|0〉〈0|+ (1− 2εa)βα

∗|0〉〈1|+ (1− 2εa)αβ
∗|1〉〈0|+ |α|2|1〉〈1| (8.38)

After measurement of ion a, a microwave pulse conditioned upon the measurement

is applied to ion b. In the case of measuring |0〉a, the rotation Rx(π) is applied to

ion b. Then density matrix is then:

ρb =

 |α|2 (1− 2εa)αβ
∗

(1− 2εa)βα
∗ |β|2

 (8.39)

Determining the effect on the fidelity in this case is not as straight-forward as in the

previous section. Here the fidelity of the teleported state depends critically upon

the state amplitudes. As can be seen in Eq. 8.39, if either α or β is zero, then

the imperfect detection on ion a plays no role in the final density matrix of ion b.

Intuitively, this is correct because the influence of imperfect measurement of ion a is

propagated by the conditional rotation on ion b. In the case that α or β is zero, then

the two possible rotations Rx(π) and Ry(π) perform the same action, and therefore

the measurement on ion a is inconsequential in this case.

The fidelity of the operation with imperfect measurements can be evaluated by

reconstructing the density matrix following measurement of ion b in the same fashion

as is done with the actual experimental data. We define the probability of measuring

a particular state |ψ〉 as P|ψ〉. Since all the measurements occur via state dependent
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fluorescence, measurement in bases other than the z-basis are completed by perform-

ing a microwave rotation prior to detection. The six possible probabilities are then

given by:

P|0〉 = tr
(
M †

0bM0bρb

)
P|1〉 = tr

(
M †

1bM1bρb

)
P|0〉−|1〉 = tr

(
M †

0bM0b

[
Ry(π/2)ρbR

†
y(π/2)

])
P|0〉+|1〉 = tr

(
M †

1bM1b

[
Ry(π/2)ρbR

†
y(π/2)

])
P|0〉−ı̇|1〉 = tr

(
M †

1bM1b

[
Rx(π/2)ρbR

†
x(π/2)

])
P|0〉+ı̇|1〉 = tr

(
M †

0bM0b

[
Rx(π/2)ρbR

†
x(π/2)

])
(8.40)

These probabilities allow us to calculate the Stokes parameters:

S0 = P|1〉 + P|0〉 = 1

S1 = P|0〉+|1〉 − P|0〉−|1〉

S2 = P|0〉+ı̇|1〉 − P|0〉−ı̇|1〉

S3 = P|0〉 − P|1〉 (8.41)

These parameters are the coefficients of the Pauli matrices in a simple analytical

formula for the reconstruction of the density matrix [160]:

ρb,recon =
1

2

3∑
j=0

Sjσ̂j (8.42)

The reconstructed density matrix contains the effect of imperfect measurement on

ion b. We can then calculate the fidelity of the teleported state, taking into account

imperfect detection, by F = tr(ρb,reconρideal). Taking the state detection fidelities

εa = 0.985 and εb = 0.975, we calculate the fidelity of the states { |0〉, |1〉, (|0〉 +

|1〉)/
√

2, (|0〉− |1〉)/
√

2, (|0〉+ ı̇|1〉)/
√

2, (|0〉− ı̇|1〉)/
√

2 } to be { 0.975, 0.975, 0.961,

0.961, 0.961, 0.961 }, yielding an average reduction in fidelity of about 3.5%.
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Given that the fidelity of teleporting the two states |0〉 and |1〉 depend only on the

measurement imperfection on ion b, it would have been beneficial to have reversed

the roles of the two ions in this experiment. Doing so could have improved the

average fidelity by 0.003%. However, this change is within the error of the results

presented here; the improvement would only be noticed in a much larger sample of

events.

8.4 Discussion

As in the original teleportation proposal reviewed in Chap. II, the successful im-

plementation of our teleportation protocol requires the transmission of two classical

bits of information [7]: one to announce the success of the heralded quantum gate

and another to determine the proper final rotation to recover the teleported state at

ion b. While these classical bits do not convey any information about the quantum

states of either ion a or b, in the absence of this classical information ion b is left in a

mixed state (Eq. 8.5), and the protocol fails. The required classical communication

ensures that no information is transferred faster than the speed of light.

However, the heralded teleportation protocol demonstrated here differs from the

original proposal in several respects. In this case, we use four qubits (two atoms and

two photons) rather than three, and our implementation is intrinsically probabilistic

because the two–photon Bell states are not all deterministically distinguishable [149,

145, 65]. Nevertheless, the teleportation protocol succeeds without postselection, due

to the two-photon coincident detection that serves as a heralding event [159]. The

protocol presented here has the additional advantage of establishing the quantum

channel between the (atomic) quantum memories using photons and entanglement

swapping, allowing the atoms to be separated by a large distance from the outset.
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Ultimately, the teleportation scheme demonstrated here has the potential to form

the elementary constituent of a quantum repeater capable of networking quantum

memories over vast distances, and may be an essential protocol for the realization of

scalable quantum computation.
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CHAPTER IX

Conclusions and Outlook

“What smells like blue?”
–Philip J. Fry, Futurama

The high fidelities obtained in the teleportation and quantum gate experiments

is evidence of the excellent coherence properties of the photonic frequency qubit and

the ”clock” state atomic qubit. Together, these complimentary qubits may provide

a robust system for applications in quantum information. In this final chapter, we

explore the possible methods for scaling this system for practical quantum commu-

nication and quantum computation.

9.1 Quantum gate with infrared photons

In principle, any arbitrary distance can be bridged using a quantum repeater based

on the entanglement protocols reviewed in prior chapters. However, the number

of nodes needed to efficiently implement the quantum repeater is approximately

proportional to the inverse of the attenuation length of the photons [29]. In order

to establish quantum channels across long-distances, it may be more practical to

use photons with wavelength in the infrared region of the spectrum (rather than

the 369.5 nm photons used here), as these photons experience less attenuation in

fiber. Moreover, access to additional optical frequencies may facilitate entanglement

between disparate optically active systems, such as atoms and quantum dots.
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The rich atomic structure of the Yb+atom results in transitions across the opti-

cal spectrum. Two additional transitions that appear particularly amenable to the

photon-mediated heralded gate described in Chapter VII are the 935 nm 3[3/2]1/2 ↔

2D3/2 transition, and the 1.3 µm 2P3/2 ↔ 2D3/2 transition.

Spontaneously emitted photons at 935 nm that are entangled with the internal

electronic states of the atom can be generated as outlined below and illustrated in

Fig. 9.1(a). For this protocol, we will initialize the atom in the 2S1/2 ground state,

and excite the atom using ultrafast pulses at 297.1 nm. Pulses at 297.1 nm could be

generated by the third-harmonic generation of a mode-locked Ti:S laser operating

at 891.4 nm. Detection of the atomic state could still take place at 369.5 nm. As

long as the two atomic states are mapped to separate hyperfine manifolds in the

2D3/2 level, then selection rules can be exploited to transfer only population in the

2D3/2|F = 1〉 manifold to 2S1/2|F = 1〉 for state dependent fluorescence detection of

the atom. Given the 52 ms natural lifetime of the 2D3/2 level, it should be possible

to obtain state detection fidelities > 98% [62].

A heralded quantum gate can be performed using 935 nm photons (Fig. 9.1(a))

by first preparing the atom in a superposition of |0〉 and |1〉:

|ψ〉a = α|0〉+ β|1〉 (9.1)

A π-polarized ultrafast pulse at 297.1 nm is used to coherently transfer the popu-

lation from 2S1/2 to 3[3/2]1/2. Due to the selection rules involved, this will transfer

|0〉 = 2S1/2|F = 0,mF = 0〉 to 3[3/2]1/2|F = 1,mF = 0〉 and |1〉 = 2S1/2|F =

1,mF = 0〉 to 3[3/2]1/2|F = 0,mF = 0〉. The 3[3/2]1/2 level can then decay to

2D3/2 by spontaneously emitting a 935 nm photon. By collecting photons at 935

nm emitted perpendicular to the quantization axis, we can use polarization filters to

distinguish π- and σ-polarized photons. A π-polarized 935 nm photon is the result
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Figure 9.1: Quantum gate protocols utilizing infrared transitions 171Yb+. (a) Procedure for gener-
ating photons at 935 nm with frequency mode entangled with the 2D3/2|F = 1, 2,mF =
0〉 atomic state. As this protocol retains initial coherence in the atom, it is suitable
for the implementation of a heralded quantum gate. (b) Method of generating 1.3 µm
photons for the implementation of a heralded quantum gate.
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of a 3[3/2]1/2|F = 1,mF = 0〉 to 2D3/2|F = 2,mF = 0〉 or 3[3/2]1/2|F = 0,mF = 0〉

to 2D3/2|F = 1,mF = 0〉 transition, resulting in the frequency of the emitted photon

being entangled with the internal state of the atom:

|ψ〉ap = β|F = 2,mF = 0〉|νr〉+ α|F = 1,mF = 0〉|νb〉 (9.2)

where here |F,mF 〉 refer to states in the 2D3/2 level, and ∆ν = νb − νr = 3.07 GHz

is the sum of the 2D3/2 and 3[3/2]1/2 hyperfine splittings (Chap. IV). As the ion-

photon entanglement process preserved the coherence initially present in the ion, the

interference and detection of these photons can be used to implement a heralded

quantum gate [67, 144]. Detection of the atomic state can be accomplished by

transferring the 2D3/2|F = 1,mF = 0〉 to the 2S1/2|F = 1〉 for fluorescence detection

at 369.5 nm. Light from a 935 nm cw laser could be used drive the 2D3/2|F =

1〉 ↔ 3[3/2]1/2|F = 0〉 transition to transfer population in the 2D3/2|F = 1〉 manifold

to 2S1/2|F = 1〉. The state of the atom is then determined by resonantly driving

the 2S1/2|F = 1〉 ↔ 2P1/2|F = 0〉 transition, and detecting photons at 369.5 nm;

detecting fluorescence at 369.5 nm indicates the atom was originally in the |F =

1,mF = 0〉 state, whereas the absence of fluorescence indicates the atom is in |F =

2,mF = 0〉.

The disadvantage of generating 935 nm photons is that the branching ratio of the

3[3/2]1/2 level between 2S1/2 and 2D3/2 has been calculated to be about 55:1 [90],

decreasing the probability of generating a 935 nm photon and thereby reducing the

overall success probability of the entanglment and gate protocols outlined above.

Due to this reduced success probability, dark counts of the single-photon detectors

could become a significant source of error. However, there is a way to “veto” the

contribution of dark counts in this protocol. After a photon detection event, a

microwave pulse at the 2D3/2 hyperfine splitting of 0.86 GHz can be used to transfer
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the 2D3/2|F = 1,mF = 0〉 atomic state to, for instance, the 2D3/2|F = 2,mF = 1〉

state. If the fluorscence detection procedure outlined previously is now performed, no

369.5 nm photons should be detected.1 The population transfered from 2D3/2|F = 1〉

to 2D3/2|F = 2〉 can be returned by a second microwave pulse, and the remainder of

the protocol completed. On the other hand, detection of 369.5 nm photons during

this detection interval would indicate that the 935 nm “detection” was a false event,

and should be discarded.

The gate protocol outlined above could also be implemented at 1.3 µm, where

attenuation in optical fiber is near a minimum (Fig. 9.1(b)). In this case, the atom

is initially prepared 2S1/2, and then excited to 2P3/2 by an ultrafast pulse at 329 nm.

Decay from 2P3/2 to 2D3/2 results in the emission of a 1.3 µm photon. While the

above protocol can be implemented in an analogous fashion at this wavelength, the

branching ratio from 2P3/2 to 2S1/2 versus 2D3/2 is about 475:1 [90]. Thus, while

the wavelength is more amenable to long-distance transmission, the decrease in the

protocol success probability is even more dramatic. In addition, 2P3/2 can also decay

to 2D5/2, which can subsequently decay to the long-lived 2F7/2. Depopulating these

additional metastable states would require additional optical frequencies and/or limit

the repetition rate of the experiment.

9.2 Scalability

The primary impediment to scaling the current setup to more qubits is the success

probability of the heralded quantum gate. As discussed in Chap. VII, there are

several avenues that can be pursued to improve the success rate. Given that the

effective solid angle of collection is about an order of magnitude smaller than the

1Here, the 14.7 GHz sideband usually used during Doppler cooling can be applied to the impinging 369.5 nm light
during this detection interval, to ensure population left in the |0〉 state also results in emitted 369.5 nm photons.
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other contributing factors in Eq. 7.10, improvements here are bound to have the

greatest impact.

The effective solid angle of collection can be increased through several mechanisms.

The first proposal is to situate reflective or refractive optics near the trapped atomic

ion. Indeed, this route is already being pursued both within our research group

and elsewhere [163, 164]. Perhaps one of the most intriguing approaches would

be to place the trapped ion at the focal point of a parabolic mirror, allowing the

collection efficiency to approach unity [165, 166]. If properly segmented, the mirror

(assumed metallic for this scenario) could also serve as the electrodes for the ion

trap. Alternatively, the spontaneous emission into free space could be replaced by

the induced emission into the small mode volume of a high finesse cavity, which

can reach near unit efficiency [167, 168]. Even though the free spectral range of the

cavity would have to be 14.7 GHz to simultaneously support both frequency modes,

choosing a near-concentric design could still result in a small mode volume and thus

in a high emission probability into a well-defined Gaussian mode. In any case, the

placement of optics near the ion will require careful assessment to ensure the added

structures do not destabilize the quadrupole trap.

While improvements that increase the success probability of the gate operation

can enhance scalability, even with a low success probability, this gate can still be

efficiently scaled to more complex systems. In a quantum repeater architecture

that allows for local deterministic gates to be performed at each node, the photon-

mediated operations between nodes can be attempted simultaneously. The require-

ment for scaling to more nodes is therefore only that the coherence time of the atoms

exceed the time needed to connect all the nodes of the quantum repeater. Given all

connections can be attempted simultaneously, then the time needed to connect all
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nodes is approximately given by Tsuccess ln(N − 1), where Tsuccess is the average time

needed to connect two nodes and N is the total number of nodes in the repeater

(N ≥ 2). With a measured coherence time of 2.5 seconds for the 171Yb+hyperfine

qubit (Chap. IV), this means that to establish entanglement over a quantum repeater

with 10 nodes, we require the average success rate to be greater than about 1 Hz.2

With modest improvements in the photon collection efficiency and repetition rate of

the experiment (limited by the microwave π time) it should be possible to achieve

this success rate.

The stipulations on the success probability for generating large cluster states for

scalable quantum computing are more stringent. The time needed to construct an n

qubit 1D cluster state is approximately given by [143]:

T (n) ≈ ta

(
1

Psuccess

)log2(nc+1)

+

(
ta

Psuccess

)
log2 (n− nc) (9.3)

where nc ≈ 4/Psuccess is the critical number of qubits in a single 1D cluster state

chain that must be generated before multiple chains can be fused together. Clearly,

even if we assume the repetition rate of the experiment can be improved to 100 ns, at

our current success probability of 2.2× 10−8 the time to generate a 100 qubit cluster

state is prohibitively long (> 1036 years). However, if the improvements suggested

above are able to increase the gate success probability to 10%, then a 100 qubit

cluster state could be generated in less than 25 ms.

9.3 Summary

We have demonstrated teleportation of quantum information between quantum

memories over a distance of about one meter. The protocol relied upon the im-

plementation of heralded quantum gate based on the interference and detection of
2In this estimate, we have assumed only one photon-mediated connection is being attempted between each node.

Multiplexing this operation further relaxes the required success rate.
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spontaneously emitted photons. The high fidelity attained in these experiments

demonstrates the applicability of the photonic frequency qubit and the Yb+atomic

qubit to quantum information science. Ultimately, the quantum gate and teleporta-

tion protocol demonstrated here could be essential to realizing long-distance quantum

communication and scalable quantum computation.
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APPENDIX A

RSA Algorithm

A.1 Number Theory Basics

One of the motivations for quantum computation is the unprecendented code-

breaking it could enable. As mentioned earlier, this is because many encryption

methods rely on the relative inability of a conventional computer to factor large

numbers. However, it not intuitively obvious what factorization has to do with

encryption. Therefore, in this appendix we outline the methodology employed by

the RSA algorithm to send encrypted messages via prime factorization.

Most of the material covered here can be found in [169], as well as many other

introductory texts on number theory. Since number theory deals with the set of

integers, all numbers referred to in this appendix should be assumed to be an integer,

unless otherwise stated. We now start with some definitions.

Definition Given two integers, a and b, a is said to be a divisor of b (or a divides

b) if there exists some integer x such that b = ax; we then write a|b. If there is no

such x, then a does not divide b, and we write a - b.

Clearly, any number greater than a (or smaller than −a) will not divide a. Since

there are a finite number of divisors of a, there is a maximum or greatest divisor of

a.
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Definition An integer a is defined to be a common divisor of b and c if a|b and a|c.

As there are only a finite number of common divisors for any given b and c, there is

a greatest common divisor (gcd), denoted by (b, c).

We are all familiar with the concept of a prime number: a number divisible only

by itself and 1 (among the positive integers). Put another way, a prime number

p is a number such that given any other integer a, if p - a, then (p, a) = 1. The

generalization of this idea is our next definition.

Definition If (a, b) = 1, then we say a and b are relatively prime (also called co-

prime).

As it turns out, the concept of prime and relatively prime is vital to a large portion

of number theory. There is even a function defined to say how many numbers are

relatively prime to a given number.

Definition The number φ(m), known as Euler’s φ-function or the totient, is the

number of positive integers less than or equal to m that are relatively prime to m.

Definition Given an integers a, b, and m (m 6= 0), we say a is congruent to b modulo

m if m|(a− b), and write a ≡ b(mod m).

Perhaps the easiest way to explain the idea of a modulus is via analogy with a

clock. Basically, every hour of the day is congruent to one of the numbers in the set

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} mod 12. Comparing 24 and 12 hour clocks, we all

know 13 is the same as 1pm. Alternatively, we could say 13 ≡ 1 (mod 12). Generally,

working modulo some number simplifies things (after all, you’re then working with

a finite set of numbers, instead of the infinite set of integers) and can be used the

exhibit some general properties of a particular set or class of numbers. An important

result is stated (without proof) below.
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Theorem A.1.1 (Euler’s Generalization of Fermat’s Little Theorem) Given two in-

tegers a and m, if (a,m) = 1 then

aφ(m) ≡ 1(mod m)

The above theorem is an essential result of number theory, and will be used in

the proof of the key lemma used in the RSA algorithm (RSA comes from Rivest,

Shamir, and Adleman, the last names of the MIT inventors).

A.2 Mathematics of Public-Key Cryptography

Given the definitions and proofs above, we can now discuss how to transmitted

an encrypted message over a public communication channel, where the encoding is

accomplished through prime factorization. The method results from the following

lemma.

Lemma A.2.1 Suppose m is a positive integer and (a,m) = 1. If k and k̄ are

positive integers such that kk̄ ≡ 1(mod φ(m)), then akk̄ ≡ a(mod m).

Proof By the definition of congruence, we know there exists some positive integer r

such that kk̄ = 1 + rφ(m). Then, using Thm. A.1.1, we find

akk̄ = a · arφ(m) = a
(
aφ(m)

)r ≡ a · 1r ≡ a(mod m)

And this completes the proof.

How do you use the lemma above to transmit encrypted data? Well, consider the

following the scenario. Suppose you want to send a message to the Secret Intelligence

Service (SIS). The SIS is, of course, receiving secret message all the time. To make

the transfer of information simple for their agents, they have made two numbers, k

and m publicly available. What numbers did they choose? Well, basically, they just
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picked two really big prime numbers, p1 and p2 (say, 100 digits each), and multiplied

them together to get p1p2 = m. Since they know the prime factorization of m,

they also know what φ(m) is, and choose some number k such that k < φ(m) and

(k, φ(m)) = 1. Again, after doing all of this, they make k and m publicly available.

Knowing the SIS’s method, and being well-versed in number theory yourself, you

would first convert your message to numeric form (say, using the three digit American

Standard Code for Information Interchange: ASCII). Let’s call the numeric form of

your message a. You then look up the current k and m being used by the SIS, and

quickly calculate the unique number b, where 0 ≤ b < m, such that b ≡ ak(mod m).

You then send the number b to the SIS. You could even use a public channel; for

example, you may just post it on the internet. Upon receiving the number b from you,

the SIS simply uses Lemma A.2.1 to decode the message. Since the SIS knows φ(m),

they quickly calculate k̄, and then employ Lemma A.2.1 to find bk̄ ≡ a(mod m).

In principle, of course, some random guy may come across b, k, and m, and may

try to figure out the original message a. All he needs to do is factor m, and that would

yield φ(m) and therefore k̄. In practice, though, the task of factoring a 200 digit

number, even using the best algorithms and the fastest classical computer available,

would take prohibitively long.

A.3 RSA Today

A leader in encryption today is RSA laboratories. In an effort to maintain the

highest level in encryption, RSA labs used to post ’challege numbers’ on their website

and offered cash prizes to the first person or team to factor them correctly. The

largest number factored before the challenge was closed was RSA-200, which had
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200 decimel digits:

RSA-200 =

27997833911221327870829467638722601621070446786955

42853756000992932612840010760934567105295536085606

18223519109513657886371059544820065767750985805576

13579098734950144178863178946295187237869221823983

The factors were found to be:

35324619344027701212726049781984643686711974001976

25023649303468776121253679423200058547956528088349

and

79258699544783330333470858414800596877379758573642

19960734330341455767872818152135381409304740185467

The team that factored it used a cluster of 80 2.2 GHz CPUs and the general number

field sieve (GNFS) algorithm. The factorization began in late 2003 and was com-

pleted in May 2005, with an equivalent time of about 55 years on a single 2.2 GHz

CPU.
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APPENDIX B

Simulation Analysis in Mathematica

In section 3.2.2, we outlined how to perform the analysis of the electrostatic sim-

ulation data obtained from CPO to model the properties of the ion trap. This

appendix presents an example of the code used to perform this analysis in Mathe-

matica.

First, the simulation data generated by CPO is imported:

ClearAll[RFTable,RFfunc,DCTable,DCfunc];

SetDirectory["C:\Users\Olmschenk\Documents\TIQC\cpo\FourRodTrap"];

RFTable:=Import["rf_rods_xz.txt","Table"];

RFfunc=Interpolation[RFTable];

DCTable:=Import["dc_needles_xy.txt","Table"];

DCfunc=Interpolation[DCTable];

Note that for this example, we’ve only taken two planes of the simulation. Addi-

tional slices/planes would be required to model the full 3D potential.

Next we define a few parameters for use in the analysis code.

Clear[qe,Omegat,mion,RFvolt,dcorrection,freq,RFEmag2,DCvolt];

qe=1.602/10^19;
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Omegat=2 pi 38 10^6;

mion=(171 1.66)/10^27;

RFvolt=1000;

DCvolt=80;

dcorrection=1/10^3;

freq[a2_]:=Sqrt[(2 a2 qe)/(dcorrection^2 mion)]/(2 pi);

where the term “dcorrection” is used to account for the fact that the simulation was

performed in mm, and here we use standard SI units for all other parameters. The

function “freq” will be used to calculate the resulting secular frequency from the

coefficient of a the quadratic term in a fit to the pseudopotential.

We now create the pseudopotential.

RFEmag2[x_,z_]=(Abs[D[RFfunc[x, 0, z],x]

Conjugate[D[RFfunc[x, 0, z],x]]]+Abs[D[RFfunc[x, 0, z],z]

Conjugate[D[RFfunc[x, 0, z],z]]])/Evaluate[dcorrection]^2;

Clear[Poten];

Poten[x_,y_,z_]:=((RFvolt^2 qe^2) RFEmag2[x,z])/(4 mion Omegat^2)

+(qe DCvolt) DCfunc[x,y,0];

As discussed in Chap. III, the Hessian matrix can be used to determine the prin-

ciple axes.

AllBlue[s_]:=Hue[0.5+0.4 s];

Clear[vHessn,Hessn,eigenH,Theta1,Theta2,

principle1,principle2,plotpotenNN,myrange];

vHessn=D[Poten[x, 0, z],{{x, z}, 2}];

Hessn = vHessn/.{x->0,z->0};

163



eigenH = Eigenvectors[Hessn]

Theta1 = ArcTan[eigenH[[1,1]]/eigenH[[1,2]]];

Theta2 = ArcTan[eigenH[[2,1]]/eigenH[[2,2]]];

Finally, we do a quadratic fit along the principle axes, and use this fit to determine

the expected secular frequencies.

Clear[P1axis,a2p1,P2axis,a2p2,myfitr];

myfitr=0.2;

myfits=0.01;

Print["The secular frequencies along the principle axes..."]

P1axis[w_]:=Fit[Table[{v,Poten[v Cos[Theta1],0,v Sin[Theta1]]/qe},

{v,-myfitr,myfitr,myfits}],{1,w,w^2},w];

a2p1=1/2 D[(Evaluate[P1axis[ww]]/.ww -> x),{x, 2}]/.x->0;

P1freq=freq[a2p1];

P2axis[w_]:=Fit[Table[{v,Poten[v Cos[Theta2],0,v Sin[Theta2]]/qe},

{v,-myfitr,myfitr,myfits}],{1,w,w^2},w];

a2p2=1/2 D[(Evaluate[P2axis[ww]]/.ww -> x),{x, 2}]/.x->0;

P2freq=freq[a2p2];

P3axis[w_]:=Fit[Table[{v,Poten[0,v,0]/qe},

{v,-myfitr,myfitr,myfits}],{1,w,w^2},w];

a2p3=1/2 D[(Evaluate[P3axis[ww]]/.ww -> x),{x, 2}]/.x->0;

P3freq=freq[a2p3];

Print["...are ",Style[P1freq,FontColor->Hue[0.]],", ",

Style[P2freq,FontColor->Hue[0.3]]," and ",

Style[P3freq,FontColor->Hue[0.6]]," Hz."];
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APPENDIX C

Reference Cavity

A simple invar optical cavity is used for stabilization of the 739 nm and 935.2 nm

lasers (Sec. 4.3). The cavity mirrors are housed in a machined invar 36 (iron-nickel

alloy containing 35-36% nickel) rod, due to the extremely low thermal expansion of

this metal [170].

A diagram of the final constructed cavity is shown in Fig. C.1, and a technical

schematic is given in Fig. C.2. The first mirror is held in place by standard Thorlabs

retaining rings. A tube piezo can be ramped by a high-voltage supply to scan the

cavity and observe the transmission of incident light, or may be locked to a particular

cavity length by the PID using the error signal from the iodine saturated absorption

setup (Chap. IV). The second mirror is initially mounted external to the cavity, and

aligned so that the cavity is confocal. It is then secured into place by a small amount

of epoxy, and the external mount is removed.
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Figure C.1: Invar cavity assembly diagram. The components on the left (mirror, piezo tube, rubber
o-ring and nylon washer, all held in place by two retaining rings) are assembled prior
to alignment. The second mirror is initially mounted on an external optics mount that
can be controllably translated along the axis of the cavity. As the cavity is scanned
with light incident on the back face of either mirror, the secondary mirror is adjusted
to make the cavity confocal. It is then secured with a dab of epoxy, and the external
mount removed.
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Figure C.2: Invar cavity dimensions. AutoCAD schematic of the invar cavity, with all dimensions
in inches. Note the thread is a standard Thorlabs tap.
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APPENDIX D

Radiation Polarization

When the ion decays, it spontaneously emits a photon. If we define the quan-

tization axis using an external magnetic field aligned along the z-axis, then the

polarization and intensity of a given decay has an angular distribution governed by

the type of multipole radiation associated with it. For a semi-classical, intuitive

picture, see pages 244-245 of Ref. [171].

We define the angular momentum operator to be

L = −ı̇(r×∇) (D.1)

Given this definition, note that r ·L = 0 (see Ref. [112], pages 428-429 for additional

formula). Using the angular momentum operator, we define the normalized, vector

spherical harmonics to be

X`m(θ, φ) =
1√

`(`+ 1)
LY`m(θ, φ) (D.2)

Then, according to [112], page 437, the time-averaged power radiated per unit solid

angle is

dP

dΩ
=

Z0

2k2

∣∣∣∣∣∑
`,m

(−ı̇)`+1 [aE(`,m)X`m × n + aM(`,m)X`m]

∣∣∣∣∣
2

Since we are interested in the electric multipole fields, the angular distribution is

dP

dΩ
∝ |X`m × n|2 (D.3)
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Figure D.1: The radiation patterns of |X10 × r|2 (inner, “donut” shape) and |X1−1 × r|2 +
|X11 × r|2 (outer, “peanut” shape). Notice that |X1−1 × r|2+|X10 × r|2+|X11 × r|2 =
1 for all angles, as one would expect.

for a pure multipole.

D.1 Radiation from ∆` = 1,∆m = 0 transitions

In spherical coordinates, the propagation of the radiation is along r̂, so n = r̂.

Then, for ` = 1,m = 0, we find

X10(θ, φ)× r =
1√
2

[−ı̇(r×∇)Y10(θ, φ)]× r̂

=
−ı̇√

2

[
(r×∇)

√
3

4π
cos θ

]
× r̂

= −ı̇
√

3

8π

(
rr̂×

[
r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ

]
cos θ

)
× r̂

= −ı̇
√

3

8π

[(
φ̂
∂

∂θ
− θ̂ 1

sin θ

∂

∂φ

)
cos θ

]
× r̂

= −ı̇
√

3

8π

[
φ̂(− sin θ)

]
× r̂

= ı̇

√
3

8π
sin θθ̂ (D.4)

As a check, note that |X10 × r|2 = 3
8π

sin2 θ as on page 437 of [112], and illustrated

in Fig. D.1.
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Now let’s assume we have a detector set up that measures π-polarized light. As-

suming this involves a lens capturing light from the radiating multipole, and recalling

that we chose our magnetic field to be parallel to the z-axis, we should see light po-

larized along θ̂ as π-polarized. So,

(X10(θ, φ)× r) · θ̂ = ı̇

√
3

8π
sin θθ̂ · θ̂

= ı̇

√
3

8π
sin θ (D.5)

which means the angular distribution of π-polarized photons is∣∣∣(X10 × r) · θ̂
∣∣∣2 =

3

8π
sin2 θ (D.6)

Thus, if you are observing an X10 multipole with a perfect detector for π-polarized

light, the probability you detect an emitted photon at a given angle is:∣∣∣(X10 × r) · θ̂
∣∣∣2

|X10 × r|2
=

3
8π

sin2 θ
3

8π
sin2 θ

= 1 (D.7)

Of course, the number of photons you collect is determined by the radiation pattern.

All the above states is that if you are looking for π-polarization, and you’re looking at

an X10 multipole, you’ll see every photon reaching your detection optics, no matter

what angle you view it from.

Next, we look at how much of the X10 radiation appears to be σ+-polarized.

While it may be correct to define σ+-polarization as

σ̂+ =
1√
2

(x̂ + ı̇ŷ)

=
1√
2

(
sin θ cosφr̂ + cos θ cosφθ̂ − sinφφ̂

+ ı̇ sin θ sinφr̂ + ı̇ cos θ sinφθ̂ + ı̇ cosφφ̂
)

=
1√
2

(
sin θ[cosφ+ ı̇ sinφ]̂r + cos θ[cosφ+ ı̇ sinφ]θ̂

−[sinφ− ı̇ cosφ]φ̂
)

(D.8)
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The two polarizations that we can distinguish in lab (using waveplates and polarizers)

are σR and σL. Only at θ = 0, when

σ̂+ =
1√
2

(
[cosφ+ ı̇ sinφ]θ̂ − [sinφ− ı̇ cosφ]φ̂

)
=

1√
2

(
eı̇φθ̂ + ı̇eı̇φφ̂

)
(D.9)

is it true that σR = σ+. Here we define (by simple geometric arguments) that

σ̂R =
1√
2

(
θ̂ + ı̇φ̂

)
(D.10)

which accurately defines the rotating electric field polarization at every angle, irre-

spective of φ (which is fine, as this is just an overall phase, and we end up taking

the absolute value squared of everything in the end anyways). Given this, note that

at θ = 0, σR = σ+.

Similarly, we define σL-polarization as

σ̂L =
1√
2

(
θ̂ − ı̇φ̂

)
(D.11)

by the same arguments given above.

Given the above, we now calculate the scalar product of σL and X10.

(X10 × r̂) · σ̂L =

(
ı̇

√
3

8π
sin θ θ̂

)
1√
2

(
θ̂ + ı̇φ̂

)
= ı̇

√
3

16π
sin θ (D.12)

where in the first line of the previous equation, recall that the scalar product involves

the complex conjugate of the second vector. The distribution of σL-polarized photons

is then ∣∣∣(X10 × r̂) · σ̂L
∣∣∣2 =

3

16π
sin2 θ (D.13)

and therefore the probability that a detector for σL-polarization will detect a photon

emitted by X10 as a function of θ is∣∣∣(X10 × r̂) · σ̂L
∣∣∣2

|X10 × r|2
=

3
16π

sin2 θ
3

8π
sin2 θ

=
1

2
(D.14)
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And this makes sense. If the thing you’re observing only produces linearly polarized

light, and you observe with something that only sees circular polarization, you’re

going to see exactly half of the light.

Clearly, the result for σR-polarization will be the same.

D.2 Radiation from ∆` = 1,∆m = 1 transitions

Similar to the previous section, for ` = 1,m = 1 we find

X11(θ, φ)× r =
1√
2

[−ı̇(r×∇)Y11(θ, φ)]× r̂

=
−ı̇√

2

[
(r×∇)

(
−
√

3

8π
sin θeı̇φ

)]
× r̂

= ı̇

√
3

16π

(
rr̂×

[
r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ

]
sin θeı̇φ

)
× r̂

= ı̇

√
3

16π

[(
φ̂
∂

∂θ
− θ̂ 1

sin θ

∂

∂φ

)
sin θeı̇φ

]
× r̂

= ı̇eı̇φ
√

3

16π

[
cos θφ̂− ı̇θ̂

]
× r̂

= ı̇eı̇φ
√

3

16π

[
cos θθ̂ + ı̇φ̂

]
(D.15)

As a check, note that |X11 × r|2 = 3
16π

(cos2 θ + 1), as on page 437 of [112], and

illustrated in Fig. D.1.

Now we calculate the angular distribution of π-polarized light from X11 radiation.

(X11 × r) · θ̂ = ı̇eı̇φ
√

3

16π

[
cos θθ̂ + ı̇φ̂

]
· θ̂

= ı̇eı̇φ
√

3

16π
cos θ (D.16)

So the distribution of π-polarized photons is

∣∣∣(X11 × r) · θ̂
∣∣∣2 =

3

16π
cos2 θ (D.17)
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Figure D.2: The angular distribution of probability of detecting a photon emitted into X11 as (a)
π-polarized, (b) σL-polarized, and (c) σR-polarized.

And therefore, the probability that you will detect a photon emitted from a X11

multipole with a detector for π-polarized light is given by∣∣∣(X11 × r) · θ̂
∣∣∣2

|X11 × r|2
=

3
16π

cos2 θ
3

16π
(cos2 θ + 1)

=
cos2 θ

cos2 θ + 1
(D.18)

The result (Eq. D.18) is plotted in Fig. D.2(a). As shown, while looking perpendicular

to the quantization (z) axis, zero photons will be detected. This because, at this

angle, all of the light emitted by a X11 multipole should appear as linearly polarized in

the x−y plane, and therefore orthogonal to π-polarized light, which has polarization

parallel to the z-axis. See, e.g. page 245 of Ref. [171].

To find the distribution of σL-polarization, we need to take the scalar product of

the polarization vector with the electric multipole vector.

(X11 × r) · σ̂L = ı̇eı̇φ
√

3

16π

[
cos θθ̂ + ı̇φ̂

]
· σ̂L

= ı̇eı̇φ
√

3

32π

[
cos θθ̂ + ı̇φ̂

] (
θ̂ − ı̇φ̂

)∗
= ı̇eı̇φ

√
3

32π

[
cos θθ̂ + ı̇φ̂

] (
θ̂ + ı̇φ̂

)
= ı̇eı̇φ

√
3

32π
[cos θ − 1] (D.19)
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The angular distribution of σL-polarized photons emitted by X11 is then

∣∣∣(X11 × r) · σ̂L
∣∣∣2 =

3

32π

(
cos2 θ − 2 cos θ + 1

)
(D.20)

Therefore, the probability that a photon emitted by a X11 multipole will be detected

as having σL-polarization is given by∣∣∣(X11 × r) · σ̂L
∣∣∣2

|X11 × r|2
=

3
32π

(cos2 θ − 2 cos θ + 1)
3

16π
(cos2 θ + 1)

=
(cos2 θ − 2 cos θ + 1)

2 (cos2 θ + 1)
(D.21)

The angular distribution of Eq. D.21 is shown in Fig. D.2(b). As shown, in the x-y

plane, half of the photons emitted into X11 are detected as being σL-polarized, but

no σL-polarized photons are seen along the +z-axis.

Lastly, we delve into a final calculation to reveal the extent of σR-polarization

detected from X11 radiation.

(X11 × r̂) · σ̂R = ı̇eı̇φ
√

3

16π

(
cos θθ̂ + ı̇φ̂

)
· σ̂R

= ı̇eı̇φ
√

3

32π

(
cos θθ̂ + ı̇φ̂

)(
θ̂ + ı̇φ̂

)∗
= ı̇eı̇φ

√
3

32π

(
cos θθ̂ + ı̇φ̂

)(
θ̂ − ı̇φ̂

)
= ı̇eı̇φ

√
3

32π
(cos θ + 1)

(D.22)

The angular distribution of σR-polarized photons is then

∣∣∣(X11 × r̂) · σ̂R
∣∣∣2 =

3

32π

(
cos2 θ + 2 cos θ + 1

)
(D.23)

and the probability of detecting a photon emitted by a X11 multipole as σR-polarized

is given by∣∣∣(X11 × r̂) · σ̂R
∣∣∣2

|X11 × r|2
=

3
32π

(cos2 θ + 2 cos θ + 1)
3

16π
(cos2 θ + 1)

=
(cos2 θ + 2 cos θ + 1)

2 (cos2 θ + 1)
(D.24)
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The plot of Eq. D.24 is shown in Fig. D.2(c). As is expected, when viewed along

the quantization (+z) axis, all of the emitted photons are seen as σR-polarized; here,

σR = σ+. However, in the x-y plane, 50% of the time the photons are measured to be

σL-polarized, and 50% of the time they are measured as σR. The reason behind this is

that the light emitted by a X11 multipole appears linear when viewed perpendicular

to the quantization axis (see, e.g. page 245 of [171]). Finally, when looking along

the −z-axis, we see σL only, because in this direction σ+ = σL.

D.3 Implications for Polarization-Encoded Photons

Using the knowledge gained in the previous sections, since we know the numerical

aperature of our collection optics, we can calculate the error in the experiment due

to polarization mixing. While taking measurements in the recent entanglement ex-

periment utilizing polarization-encoded photons [146], we could distinguish between

σR and σL photons. However, in the experiment, we want to be able to equate a

right-handed circularly polarized photon with ∆m = 1; in other words, we assume

every right-handed circularly polarized photon we detect was a σ+-polarized photon.

From the calculations of the previous section, we know that this is not completely

true, so let’s find out the error.

The question is: if we measure a σR photon, what is the probability it was emitted

by either X1−1 or X10?

To calculate this, we simply need to add up (integrate) all of the σR photons from

X1−1 and X10, and divide by the total number of σR photons. For X1−1, the number

of σR photons is proportional to the integral of Eq. D.20 over the solid angle sub-

tended by our optics (although we never calculated X1−1 explicitly, it should be clear

that the results are just the mirror of X11). Similarly, the number of σR photons
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detected from X10 and X11 will be given by integrating Eq. D.13 and Eq. D.23, re-

spectively. Therefore, the total error in the polarization-encoded photons experiment

due to polarization mixing is given by

Errorσ+ =

∫ α
0

(∣∣∣(X1−1 × r̂) · σ̂R
∣∣∣2 +

∣∣∣(X10 × r̂) · σ̂R
∣∣∣2) sin θ dθ

∫ α
0

(∣∣∣(X11 × r̂) · σ̂R
∣∣∣2 +

∣∣∣(X1−1 × r̂) · σ̂R
∣∣∣2 +

∣∣∣(X10 × r̂) · σ̂R
∣∣∣2) sin θ dθ

(D.25)

Calculating these integrals, for X1−1 we get

2(2π)

∫ α

0

∣∣∣(X1−1 × r̂) · σ̂R
∣∣∣2 sin θ dθ = 4π

3

32π

∫ α

0

(
cos2 θ − 2 cos θ + 1

)
sin θ dθ

=
3

8

∫ α

0

(cos θ − 1)2 sin θ dθ

(letting u = cos θ − 1, du = − sin θ dθ)

= −3

8

∫ cosα−1

0

u2 du

= −3

8

[
1

3
u3

]cosα−1

0

=
1

8
(1− cosα)3 (D.26)

And for X10 we have

2(2π)

∫ α

0

∣∣∣(X10 × r̂) · σ̂R
∣∣∣2 sin θ dθ = 4π

3

16π

∫ α

0

sin2 θ sin θ dθ

=
3

4

∫ α

0

(
1− cos2 θ

)
sin θ dθ

=
3

4

∫ α

0

sin θ dθ − 3

4

∫ α

0

cos2 θ sin θ dθ

=
3

4
− 3

4
cosα +

3

4

(
1

3
cos3 α− 1

3

)
=

1

4

(
2− 3 cosα + cos3 α

)
(D.27)
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Figure D.3: Error in the discrimination of photon polarizations. (a) The probability that a photon
measured as σR (σ+, assumed to come from X11) was emitted by X1−1 or X10 as a
function of 1/2 the angle subtended by the observation optics, α. (b) The probability
that a photon measured as linear along the magnetic field (π, assumed to come from
X10) was emitted by X1−1 or X11.

And, finally, for X11 we find

2(2π)

∫ α

0

∣∣∣(X11 × r̂) · σ̂R
∣∣∣2 sin θ dθ = 4π

3

32π

∫ α

0

(
cos2 θ + 2 cos θ + 1

)
sin θ dθ

(letting u = cos θ)

= −3

8

∫ cosα

1

(
u2 + 2u+ 1

)
du

= −3

8

[
1

3
u3 + u2 + u

]cosα

1

= −3

8

(
1

3
cos3 α + cos2 α + cosα− 1

3
− 1− 1

)
=

1

8

(
7− 3 cosα− 3 cos2 α− cos3 α

)
(D.28)

Plugging Eqs. D.26, D.27, and D.28 into Eq. D.25, we get

Errorσ+ =
5− 9 cosα + 3 cos2 α + cos3 α

12− 12 cosα
(D.29)

which is plotted in Fig. D.3(a).

Thus, given a numerical aperature of 0.23 (the CVI triplet), α = arcsin(0.23) =

0.232, we get Errorσ+(0.232) = 1.33%. In Fig. D.3, Errorσ+(α) is shown all the way

out to π/4. As is seen from the graph, the error hits 1% around α ≈ 0.2.
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D.4 Implications for Frequency-Encoded Photons

In the quantum gate experiment, we will want to detect π-polarized light, and

therefore set the observation axis at θ = π
2
. Thus, we repeat the calculation of the

previous section for this configuration.

The error in this case will be:

Errorπ =

[
4

∫ π/2+α

π/2

∫ α cos(arcsin( 1
α

(π
2
−θ)))

0

(∣∣∣(X1−1 × r̂) · θ̂
∣∣∣2

+
∣∣∣(X11 × r̂) · θ̂

∣∣∣2) sin θ dθ dφ

]
÷

[
4

∫ π/2+α

π/2

∫ α cos(arcsin( 1
α

(π
2
−θ)))

0

(∣∣∣(X1−1 × r̂) · θ̂
∣∣∣2

+
∣∣∣(X10 × r̂) · θ̂

∣∣∣2 +
∣∣∣(X11 × r̂) · θ̂

∣∣∣2) sin θ dθ dφ

]
(D.30)

A numerical integration of the above equation is plotted in Fig. D.3(b). Hence, for the

CVI triplet lens (numerical aperture 0.23), the error in polarization discrimination

will again be approximately 1.3%.

D.5 Other Considerations

The calculations above are done for photons in freespace. However, in the actual

experiment we couple the spontaneously emitted photons into a single-mode optical

fiber. At particular angles of observation with respect to the quantization axis, light

from some radiation patterns will not couple into the single-mode fiber. Therefore,

the results presented above should be viewed as an upper bound on the expected

contribution of error due to polarization-mixing.
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APPENDIX E

Phase of the Gate

In Chap. VII and VIII, we ignored the phase evolution of the two-qubit state in

the implementation of the gate. Here, we include this phase evolution, showing that

the final state of the two ions in contingent only upon the initial states of the two

ions and the path length of the photons to the beamsplitter. Moreover, the path

length dependance is sensitive only on the scale of the frequency difference of the

two photonic frequency states: 14.7 GHz. Stability on this scale (2 cm) is easily

achieved.

After state preparation, at time t = 0, the state of the two ion system is simply:

|ψ(t = 0)〉ions = (α|0〉a + β|1〉a)⊗ (γ|0〉b + δ|1〉b) (E.1)

In order to keep tabs on all the phases involved, we assume atom a is excited at

time tea and atom b is excited at time teb, so that quantum state after excitation is

|ψ(t > tea, teb)〉ions =
(
αe−ı̇ωp(t−tea)|0′〉a + βe−ı̇ωstea|1′〉a

)
⊗
(
γe−ı̇ωp(t−teb)|0′〉b + δe−ı̇ωsteb|1′〉b

)
(E.2)

The additional phase factors are simply from the state evolution between the two

states, where we have written the energy splitting of the 2S1/2 hyperfine states as
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ωs = 2π × 12.6 GHz and the 2P1/2 hyperfine levels as ωp = 2π × 2.1 GHz.1 We have

not made any assumptions on the time ordering of tea and teb.

If at time tpa (tpb) ion a (b) emits a π-polarized photon while returning to the

2S1/2 ground state, then then state of the system at time t > tpa, tpb is:

|ψ(t > tpa, tpb)〉ions,ph =
(
αe−ı̇ωp(tpa−tea)|0〉aeı̇(kbluexa−(ωred+ωs+ωp)(t−tpa))|νblue〉a

+ βe−ı̇ωs(t−tpa+tea)|1〉aeı̇(kredxa−ωred(t−tpa))|νred〉a
)

⊗
(
γe−ı̇ωp(tpb−teb)|0〉beı̇(kbluexb−(ωred+ωs+ωp)(t−tpb))|νblue〉b

+ δe−ı̇ωs(t−tpb+teb)|1〉beı̇(kredxb−ωred(t−tpb))|νred〉b
)

(E.3)

where we have defined the optical frequency of the 2P1/2 |F = 0,mF = 0〉 to 2S1/2

|F = 1,mF = 0〉 transition as ωred = 2πc/(369.5 nm) = 2π×811 THz; kred = ωred/c;

kblue = (ωred + ωs + ωp)/c; and xa, xb as the (time-dependent) distance traversed by

photons a, b, respectively.

1In writing the phases this way, we have assumed the phase evolution during the excitation pulse is negligible.
Since the duration of the pulse is much less than the periods in the phase factors, this is justified.
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Gathering terms of equal phase rotation, we can rewrite Eq. E.3 as:

|ψ(t > tpa, tpb)〉ions,ph =
(
αeı̇ωp(tea−t)eı̇ωred(tpa−t)eı̇ωs(tpa−t)eı̇kbluexa |0〉a|νblue〉a

+ βeı̇ωs(tpa−t−tea)eı̇ωred(tpa−t)eı̇kredxa|1〉a|νred〉a
)

⊗
(
γeı̇ωp(teb−t)eı̇ωred(tpb−t)eı̇ωs(tpb−t)eı̇kbluexb|0〉b|νblue〉b

+ δeı̇ωs(tpb−t−teb)eı̇ωred(tpb−t)eı̇kredxb|1〉b|νred〉b
)

= eı̇kredxaeı̇ωred(tpa−t)eı̇ωs(tpa−t)

×
(
αeı̇ωp(tea−t)eı̇(kblue−kred)xa |0〉a|νblue〉a

+βe−ı̇ωstea|1〉a|νred〉a
)

⊗eı̇kredxbeı̇ωred(tpb−t)eı̇ωs(tpb−t)

×
(
γeı̇ωp(teb−t)eı̇(kblue−kred)xb|0〉b|νblue〉b

+δe−ı̇ωsteb|1〉b|νred〉b
)

Dropping all global phases, we can then write the state of the system as:

|ψ(t > tpa, tpb)〉ions,ph =
(
αeı̇ωp(tea−t)eı̇(kblue−kred)xa|0〉a|νblue〉a

+βe−ı̇ωstea|1〉a|νred〉a
)

⊗
(
γeı̇ωp(teb−t)eı̇(kblue−kred)xb|0〉b|νblue〉b

+δe−ı̇ωsteb|1〉b|νred〉b
)

= αγeı̇ωp(tea+teb−2t)eı̇(kblue−kred)(xa+xb)|0〉a|0〉b|νblue〉a|νblue〉b

+αδeı̇ωp(tea−t)e−ı̇ωstebeı̇(kblue−kred)xa |0〉a|1〉b|νblue〉a|νred〉b

+βγeı̇ωp(teb−t)e−ı̇ωsteaeı̇(kblue−kred)xb|1〉a|0〉b|νred〉a|νblue〉b

+βδe−ı̇ωs(tea+teb)|1〉a|1〉b|νred〉a|νred〉b (E.4)

As we saw in Chap. VII, ideally, only the |ψ−〉ph state of the photons will yield coin-

cident detections. Of course, if there is temporal mismatch of the photon wavepackets
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at the beamsplitter then the resulting state of the two-ion system will have other

contributions that will degrade the overall fidelity of the process. Since the contri-

bution of these other elements is approximately 1 − e−∆t/τ , and we have arranged

for the photon wavepackets to arrive at the beamsplitter within 100 ps of each other

(so 1− e−0.1/8.12 ≈ 0.01), for the purpose of determining the phase of the entangled

state we ignore the contribution of this temporal mismatch.

We will write t = tBS as the time the photons are incident at the beamsplitter.

After the beamsplitter, each photon is in a superposition of the two output modes of

the beamsplitter, and so the phases acquired by each photon term after the beam-

splitter are equal. As such, we can ignore the propagation after the beamsplitter,

and just assume the two photons are measured immediately upon exiting the beam-

splitter (at t = tBS). Thus, the state the ions are projected into following coincident

detection of the two photons is:

|ψ(t > tBS)〉ions = ph〈ψ−|ψ(t)〉ions,ph

= αδeı̇ωp(tea−t)e−ı̇ωstebeı̇(kblue−kred)x0a |0〉a|1〉b

−βγeı̇ωp(teb−t)e−ı̇ωsteaeı̇(kblue−kred)x0b|1〉a|0〉b

= αδ|0〉a|1〉b − βγeı̇(ωp+ωs)(teb−tea)eı̇(kblue−kred)(x0b−x0a)|1〉a|0〉b

= αδ|0〉a|1〉b − βγeı̇c∆k(teb−tea)eı̇∆k∆x|1〉a|0〉b (E.5)

where we have again dropped global phase factors. Here, x0a, x0b are the total path

length from ion a, b to the beamsplitter, respectively; ∆x = x0b−x0a is the difference

of the two path lengths; and ∆k = kblue − kred = 2π/(2 cm) is the difference in the

wavenumbers.

Thus, we see that the phase of the final entangled state depends only upon the

difference in excitation times of the two ions and the difference in the path lengths to
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the beamsplitter. Moreover, the phase acquired as a result of these disparities goes

as ∆k = kblue − kred = 2π/(2 cm), so that passively stability of the phase is easily

achieved.

In the ideal case, the two photon wavepackets are incident on the beamsplitter at

the same time (tBS), in which case:

c (tBS − tea) = x0a

c (tBS − teb) = x0b

⇒ ∆x = x0a − x0b = c (tea − teb) (E.6)

in which case the argument of the exponential is zero, and the final entangled state

is:

|ψ(t > tBS)〉ions = αδ|0〉a|1〉b − βγ|1〉a|0〉b (E.7)

as expected. In the lab, though, our preliminary calibration measurement only allows

us to determine the photon wavepackets arrive at the beamsplitter within 100 ps

of each other. Since the success of the heralded quantum gate depends critically

on knowledge of this phase, a more precise calibration is performed by repeatedly

performing the heralded gate on a given input state (here α = β = γ = δ = 1/
√

2)

and implementing an additional microwave π/2 rotation on each ion before detection.

The phase of this second microwave pulse is varied (with respect to the initial pulse

phase) and the probability of detecting |01〉 or |10〉 at each phase shift measured. As

shown in Fig. E.1, a sinusoidal fit to these measurements allow us to determine the

phase of the entangled state.
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Figure E.1: Measured phase of the entangled state of the two ions after implementation of the
quantum gate. Plotted is the probability of finding the two ions in the state |01〉 or
|10〉 versus the phase of the second (measurement) microwave pulse. The data is a total
of 290 events taken over a total of about 60 hours of measurment.
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