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Abstract

Harnessing the laws of Quantum Mechanics, Quantum Computers can po-
tentially outstrip the performance of classical computers.

The ion trap is a promising scheme for quantum computation. Ions are
trapped via a combination of static and oscillating electric fields and each quan-
tum bit is stored in the hyperfine level of an atomic ion. However, due to the
extremely delicate nature of quantum computing, severe technical problems
have limited the demonstrations of quantum computation protocols to only a
few qubits(<10).

This thesis documents major steps made towards scaling the ion trap quan-
tum computer to a large number of qubits. Laser cooled atomic ions are stored
shuttled and swapped in a 2-dimensional, 11-zone ion trap array. The trap con-
sists of two linear rf-trap sections joined together in a T-shaped geometry. Of
particular interest, single ions were shuttled around a 90◦ corner using control
voltage sequences accounting for the complicated electric potential in the junc-
tion region. This thesis also details general design strategies which were used
to create the non-trivial control voltage sequences used to execute the shuttling
protocols.
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1. INTRODUCTION

Don’t Panic

-Douglas Adams

The research field of quantum computing is a marriage of quantum mechanics

and computer science. The field began when Deutsch realized that by taking

advantage of quantum phenomenon, certain computations could be done more

efficiently than any classical computer [1], [2].

The power of a quantum computer over a classical computer comes from

quantum parallelism. Unlike classical bits, which can only be in one state at a

time, a quantum bit (qubit) in general exists as a superposition of all possible

states. Therefore, a set of n qubits will in general exist as a superposition of

2n states. A quantum computer takes advantage of this and acts on ALL of

these states simultaneously. In contrast, a classical computer can only evolve

one set of inputs at a time. Therefore, a quantum computer can potentially

exponentially speed up certain calculations.

A ”killer application” for quantum computing is Shor’s algorithm [3]. Shor’s

algorithm efficiently factorizes large numbers that are products of two primes.

Shor’s algorithm is of great importance since modern encryption schemes, most
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notably RSA, all rely on the computational intractability of factorizing large

numbers.

On a more fundamental level, Feynman [4] also showed that a classical com-

puter will in general not be able to efficiently simulate a quantum system. On

the other hand, a quantum simulator will be able to efficiently simulate such

systems. This is of particular interest in calculating the dynamics of strongly

interacting quantum systems, for example, condensed matter systems.

Having considered the motivation to build a quantum computer, we must

now think of how to actually build one. The ion trap stands out as a compelling

quantum computing architecture [5]. The qubits are well isolated from the

environment, the qubits can be measured with near perfect efficiency and the

coulomb interaction between qubits allows for the implementation of Universal

Quantum Gates [6].

One of the chief challenges for ion trap quantum computing is scalability.

Several key quantum algorithms have been demonstrated using a small number

of qubits, for example Shor’s algorithm [7] and Grover’s algorithm [8]. However,

these algorithms were implemented with only a small number of qubits (<10).

For a quantum computer to do a meaningful calculation, we will need many

more ions. For example, to factorize the 193 digit number known as RSA-640,

we would need to deterministically control at least 640 qubits.

The first proposal for a quantum computer by Cirac and Zoller [9] proposed

having a linear crystal of ions held in a single harmonic trap, however, severe

technical difficulties indicate that this scheme may only be good for computa-

tions involving only approximately 10 qubits.
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To get around these technical problems, Kielpinski et al [10] proposed an

ion trap quantum computer architecture consisting of a two dimensional array

of ion traps. Control electrodes would then shuttle ions between trapping zones

see figure 1.1. In addition, the multi-dimensionality of the ion trap array allows

us greater freedom in the computing architecture. For example, in the style of

the von Neumann computing architecture we may use some regions of the trap

array as our memory whilst another region of the ion trap array may act as the

processor.

Fig. 1.1: Schematic Representation of a two dimensional ion trap array. The different
zones may be specialized to serve certain functions. The magnified box on
the right depicts a ion storage region. This will be analogous to the Hard
drive of a classical computer. The magnified box in the center depicts an
interaction zone. Lasers are used to perform qubit rotations and entangle-
ment operations. This region is analogous to the Central Processing Unit of
a Classical Computer.

Though there are several methods by which ions in different trapping regions

can interact, the subject of this thesis is the study of physically shuttling the

ions around the trapping zones. This is the most direct way to transport in-
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formation around our quantum computer architecture. We begin by discussing

the construction of an ion trap architecture, known as the T-junction ion trap

array. Using this ion trap architecture as an example, we describe general

strategies to develop key shuttling protocols. Using these strategies, we design

and implement key shuttling protocols on the T-trap which culminates in the

demonstration of the multi-dimensional arbitrary control of atomic ions.

1.1 The Qubit, ionic Cadmium 111

The Qubit in our ion trap quantum computer is a Cadmium Ion with mass

number 111. Like typical ionic species used in quantum computing research,

111Cd+ is hydrogen like, i.e. there is one valence electron with a 2S1/2 ground

state. In addition, the nucleus has non-zero spin, in the case of Cd 111, I = 1/2.

This is so that there is a hyperfine splitting in the ground state and it is in these

hyperfine levels with which we store our qubit state. |0〉 is defined to be the

state |F = 0,mF = 0〉 whilst |1〉 = |F = 1,mF = 0〉. (See fig 1.2). These two

levels are chosen since they are insensitive to magnetic fields to first order and

as such have long coherence times on the order of seconds.

To initialize the state of the qubit, we optically pump into the |F = 0,mF = 0〉
state by applying radiation nearly resonant to the 2S1/2(F = 1) → 2P3/2(F

′ =

1).

To detect the state of the ion, σ− radiation tuned to the cycling transition

2S1/2(F = 1) → 2P3/2(F
′ = 2) is applied to the ion. If the ion is in the |1〉 =

|F = 1,mF = 0〉 state, the ion will be pumped into the mF = −1 state. The ion

will then cycle between the 2S1/2(F = 1) and the 2P3/2(F
′ = 2), spontaneously
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Fig. 1.2: Relevant Energy Levels of the Cadmium 111 ion. Quantum information is
stored in the states |1, 0〉 and |0, 0〉

emitting a photon on every cycle. If the ion is in the |0〉 = |F = 0,mF = 0〉,
then the radiation will be far detuned from the only available scattering channel,

2S1/2(F = 0) ← 2P3/2(F
′ = 1) and will thus remain in the |0〉 state and not

scatter any light. In this way, we may efficiently distinguish the two qubit states.

1.1.1 Detection and Doppler Cooling

Consider an ion with two relevant energy levels that are split by some frequency

ω0 and line-width Γ and we apply laser light detuned by frequency δ = νlaser −
νion, then the ion will experience a velocity dependent force given by

F = h̄k
πΓs0

(1 + s0 + 4 (δ−v/λ)2

Γ2 )
(1.1)

where k is the wave-number of the laser and s0 = I/Is is the on resonance

saturation parameter and Is is the saturation intensity of the transition. By

this convention, the positive direction is antiparallel to the wave vector of the
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laser.

For low ion velocities, we can expand equation 1.1 to first order in v and

thus obtain

F ≈ h̄k
πΓs0

(1 + s0 + 4 δ2

Γ2 )
+ 8h̄k

πΓδs0

Γ2λ(1 + s0 + 4 δ2

Γ2 )2
v (1.2)

We first notice that the second term in equation 1.2 is a dissipative force when

the de-tuning, δ, is negative, i.e. the beam is red detuned off the resonant

frequency, and we may thus cool the atomic ion. In addition, to this dissipative

force, there exists a velocity independent force. Unlike typical neutral atom

traps, in an ion trap, this force is negligible compared to the electric forces

applied to the ion. Thus, we may doppler cool the ion with only one beam.

This is unlike a typical neutral atom trap where the velocity component of the

force is significant and counter-propagating beams are required to trap the ion.

To doppler cool a Cadmium ion, we apply a beam red detuned off the

2S1/2 →2 P3/2 transition. This transition is resonant to 214.5nm light and

the line-width (Γ) is approximately 59 MHz. The cooling laser is focused to an

approximately 15µm waist with 1mW of power.

Doppler cooling the ion also presents an additional advantage. As the ion

is Doppler Cooled, light is spontaneously emitted in all directions from the ion.

Therefore, we use the scattered light from the cooling laser to image the ion.

The Deep UV laser light which we use for detection and cooling is produced

by frequency quadrupling the output from a continuous wave Ti:Sapphire laser.

The Ti:Sapphire laser is pumped with a Nd:Yag laser at 532 nm and typically
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produces 1W at 858.0265nm.

To get radiation in the deep UV, we need to double the frequency twice.

An LBO crystal inside a build up cavity doubles the frequency from infrared to

blue (429nm) and a BBO crystal doubles to the desired deep UV at 214.5nm

with typical power of 1mW.

1.2 The Ion Trap

In order to demonstrate the proposed architecture, we constructed a three layer ,

49 electrode, 11-trapping zone ion trap array. To demonstrate multidimensional

shuttling, the 11-trapping zones are arranged into three linear zones and are

connected via a T-junction (see figure 1.3).
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Fig. 1.3: Top and cross sectional schematic of T-junction ion trap array. Dots indicate
trapping zones. The 28 control electrodes are numbered with electrodes in
the bottom layer in parentheses. Electrodes labeled with G are grounded.

The T-junction ion trap is fabricated with thin laser-machined polished alu-

minium substrate. The middle layer carries radio-frequency (rf) voltages which
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provide transverse confinement whilst the top and bottom layers are segmented

into independent electrodes. These electrodes carry slowly varying electric po-

tentials and are used to provide axial confinement as well as to implement

various shuttling protocols.

Fig. 1.4: T junction ion trap array prior to being sealed up in vacuum. We note
the extensive electrical connections required to provide the voltages to the
control electrodes in order to execute shuttling protocols.

The voltages applied to the 28 non grounded control electrodes are provided

by analog output cards (NI 6733). These cards can update up to 106 times per

second. The analog output is amplified using high speed operational amplifiers

(Apex, PA85A) which can be slewed at a rate of over 10V per µs. To isolate

the control electrodes from external noise, signals pass through a low pass filter

consisting of a 1kΩ resistor in series and a 1nF capacitor shunted to ground.

Cadmium oxide ovens are heated to provide a cadmium vapor with partial

pressure 10−11 Torr. Ions are loaded by photoionization of the cadmium vapor

with a pulsed laser tuned near the 1S0 →2 P1 transition for neutral Cadmium
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Fig. 1.5: Close up view of T-junction ion trap array showing the junction and all 11
trapping zones. The control electrodes are gold coated via dry film pho-
tolithography and wet chemical etching. Electrodes and tracks are formed
by depositing 0.015 µ m of titanium followed by 0.4 µm of gold. Two alu-
mina spacer plates are inserted between the two control electrode layers
and the central rf electrode layer. All three substrates are held together
by rectangular alumina mount bars. Since each layer was fabricated sep-
arately, misalignments in the three layers is likely and may be a cause for
asymmetries in the shuttling protocols.
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[12]. The ions are laser cooled as described in 1.1.1.

Having described the actual construction of the trap, we now consider how

the T-trap confines the ions. The following discussion is also relevant to any rf

trap geometry.

1.2.1 The rf Paul trap

Earnshaw’s theorem shows that due to the divergence free nature of the electric

field, electrostatic forces cannot trap a charge [13]. One solution is therefore

to use a mixture of radio-frequency (rf) and electrostatic potentials to trap an

ion [14]. Such a trap is known as a Paul trap and it is favored for trapped ion

quantum computation research. To illustrate the working of a Paul trap, let us

consider the T-Trap.

By the principal of linear superposition, we may consider the rf component

of the electric field due to the rf electrode independently of the static electric

field from the control electrodes and then take the sum of the two contributions.

Let the voltage on the surface of the rf electrode to be

VS = V0 cos(ωT t) (1.3)

and set all other surfaces to be ground. The resulting electric potential can be

separated into a time dependent component and a space dependent component.

Vrf (x, t) = V (x) cos(ΩT t) (1.4)
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V (x) is proportional to V0, therefore, we may define a new function

Ψrf (x) = V (x)/V0 (1.5)

This implies that

Vrf (x, t) = V0Ψrf (x) cos(ΩT t) (1.6)

We calculate the rf component of the electric potential for the T-trap at trapping

zone c.

Fig. 1.6: Fig a depicts the electrical potential in the ion trap if 1V is applied to the
rf layer. All other electrodes are grounded. As can be seen, the potential
is trapping along the x axis and anti-trapping along the z axis. One half
period later, the potential on the rf electrode will flip to -1V. The resultant
potential is depicted in Fig b. Now, the x axis is anti-trapping while the
z-axis is trapping.

From figure 1.6, we see that in both cases, the electric potential is trapping

in one direction and anti-trapping in the other. 1/2 a cycle of later, the trapping

and anti-trapping axes switch. Thus, the ion on average sees a restoring force

in all directions. From Dehmelt, [15], we may approximate equation 1.6 with a
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pseudo-potential given by

ψ(x) =
e2

4mΩ2
T

|∇V0Ψrf (x)| (1.7)

Fig. 1.7: Pseudo-potential as calculated from Equation 1.7. The ion sees a restoring
force in both directions. At the middle, the electric fields cancel and thus
form an rf node. This is where the ion is trapped.

From Fig 1.7, we verify that the rf pseudo potential does provide trapping

in both transverse directions. The pseudo-potential at the minimum is 0 and

any point in the trap where the rf pseudo-potential is 0 is denoted an rf node.

The node in fig 1.7 extends along the axial direction from trapping zones a-d.
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Similarly, in the other two linear regions, i.e. zones f to h and zones i to k,

there also exist similar linear rf nodes.

Near the junction region, the linear rf nodes give way to rf humps. (See

figure 1.8) These humps are caused by fringing effects near the junction region

and in effect, act as a potential barrier that the ion has to overcome in order to

get in and out of the junction region.

Fig. 1.8: Fig a shows the ponderomotive potential from a view perpendicular to the
plane of the trap. Fig b shows a cross-sectional view. Due to fringing effects,
the linear rf node cannot extend all the way into the junction region. There
exist three linear rf nodes and a point rf node in the middle of the junction.
The four nodes are disconnected from each other. Near the junction, there
are small humps in the ponderomotive potential. There is where the field
due to the rf electrode does not cancel. In the stem of the T, the height of
the hump is 0.1eV whilst the height of the two humps at the top of the T are
0.09 eV. The axial width (FWHM) of the humps is approximately 200µm.

Therefore, in this geometry, it is impossible to shuttle the ion from one of

the linear regions into the junction region, zone e, without leaving an rf node.

This obstacle will be addressed in a later section.

Axial confinement is provided by the control electrodes. To trap an ion at

zone c, we need these electrodes to plug the ends of the trap with high voltages

on electrodes 8, 17, 4, and 5. If we apply 1 V to the four electrodes and ground
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all other electrodes, the electric potential in the axial direction is shown in

Figure 1.9

Fig. 1.9: Confinement along the z-axis provided by static potentials on control elec-
trodes. The superposition of the static potential and the ponderomotive
potential will therefore confine the ion in all three directions.

We now consider the combination of the rf component and the static com-

ponent of the electric potentials. We denote Ψi(x) to be a basis function of

the ith control electrode, where Ψi(x) is the solution to the Dirichlet boundary

problem specified by applying 1V to the ith control electrode and grounding all

other electrodes. By the principal of linear superposition of electric fields, the

overall potential will then be

Φ(x, t) = V0 cos(ΩT t)Φrf (x) +
∑

i

ViΦi(x) (1.8)

and the pseudopotential approximation is given by

ψ(x, t) =
e2

4πΩ2
T

|∇V0Φrf (x)|2 +
∑

i

ViΦi(x) (1.9)
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. where Vi is the voltage applied to the ith control electrode.

Due to the complicated nature of ion traps, it is usually difficult or impossible

to find analytic solutions for the basis functions and they are therefore obtained

numerically via the method of Finite Element Analysis. [16]. Using these basis

functions, we designed successful ion shuttling protocols for the T-Trap.



2. CALCULATING ION DYNAMICS

With the calculated basis functions for each electrode of the ion trap, we can

then derive the desired potential by suitably superposing the basis functions

multiplied by the time varying potential.

Φ(x, t) = V0 cos(ΩT t)Φrf (x) +
∑

i

Vi(t)Φi(x) (2.1)

Where x is the three vector denoting position, ΩT and V0 are the applied RF

frequency and voltage; Vi(t) is the time varying potential applied on the ith

electrode and Φi(x) is the basis function of the ith electrode. Notice here that

the multiplier for all the basis functions have explicit time dependence.

The ion’s motion due to the electric potential Φ will consist of the low ampli-

tude micro-motion with frequency to the order of ΩT and the slower but larger

amplitude secular motion. Very often, we only need to calculate the secular

motion of the ion and ignore the micro-motion, therefore we may approximate

Eq 2.4 with a ponderomotive pseudo-potential given by [15]:

ψ(x, t) =
e2

4πΩ2
T

|∇V0Φrf (x)|2 +
∑

i

Vi(t)Φi(x) (2.2)

Finally, if there are k ions in the trap, the resultant force on each ion Fj is given
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by

Fj(x1, ...,xn, t) =





−q∇Φ(xj, t) +
∑

i6=j
q2

|xj−xi|3 (xj − xi) For complete ion motion

−q∇ψ(xj, t) +
∑

i6=j
q2

|xj−xi|3 (xj − xi) For ion secular motion only

(2.3)

Therefore, to calculate the dynamics of k ions in a trap we need to solve the set

of k coupled second order ordinary differential equations(ODEs):

ẍj =
Fj

m
(x1, ...,xn, t) ≡ aj(x1, ...,xn, t) (2.4)

Where j is an integer from 1 to k. Due to the complicated electric field topog-

raphy, especially in the junction region, it is impossible to solve for the ion’s

motion analytically, therefore, we need to numerically solve Eq2.4. The design

of shuttling protocols require high accuracy solutions of Eq2.4 and as such the

numerical evaluation of Eq2.4 is slow. Using a AMD dual core 1.8GHz proces-

sor with 2 GB of memory to calculate the trajectory of the ion with a shuttling

sequence that brings it from trapping zone d to trapping zone i, the computer

time taken to obtain the ion trajectory depends on the ODE solver method and

can take anywhere from 5 hours to a week. Therefore, one must make a judi-

cious choice of ODE solver in order to reach the required accuracy in a feasible

amount of time.

Extrapolation Class methods and Predictor Corrector Methods are both

good choices for efficiently solving ODEs to high accuracy. Extrapolation Class

methods are more efficient than Predictor Corrector Methods [19] under most

circumstances. However, there are times when evaluating the potential gra-
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dient becomes an computationally expensive task. In this case, the Predictor

Corrector Methods triumph over the Extrapolation Class methods

A caveat to the two above-mentioned methods is that the calculated electric

field has to be smooth. If the electric field is rough, Explicit Runge-Kutta meth-

ods are the best choice as these simple methods can ”feel” their way around

better in treacherous terrain. In addition, if a low accuracy solution is suffi-

cient, single step methods tend to be more efficient than the extrapolation class

methods.

Finally, the ODE system Eq.2.4 may be stiff. Stiffness occurs when there

are two or more vastly different time scales with which the dependent variables

are changing. Many normal ODE solvers are inefficient at numerically evaluat-

ing such systems. Fortunately, there are ODE solver methods known as ”stiff

solvers” that are well suited to handle these systems.

We believe that these four broad classes of ODE solvers should be able to

handle almost any ion trap situation. Thus, in the subsequent four sections,

we illustrate each of these four classes of methods with a brief discussion of a

specific ODE solver.

2.1 Explicit Runge-Kutta Methods

The Explicit Runge-Kutta (ERK) methods are good when only a quick, low

accuracy solution is required. In addition, if the potential gradient is rough, the

Explicit Runge-Kutta Methods are usually more efficient than other methods.

Explicit Runge-Kutta Methods numerically solve ordinary differential equa-
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tions (ODEs) of the form

dx

dt
= f(t, x) (2.5)

We let t denote time. The output of any numerical ODE solver is a series of

points called nodes. A node is of the form (ti, xi) where xi is an approximation

of the exact solution x(t = ti). The first node is given by the initial conditions.

Subsequently every discrete step that the ODE solver takes calculates one more

node. Typically, the number of nodes generated is on the order of 10,000.

The most simple version of an ERK method is known as Euler’s method.

Given a node (tn, xn), we wish to calculate, from Euler’s method, the next node

(tn+1 = tn + h, xn+1). This implies that xn+1 gives an approximation of the

exact value of x(t = tn + h). The equation to Euler’s method is given by

xn+1 = xn + hf(xn, tn) (2.6)

The justification of this method is simple. We assume that the average rate of

change of x, dx
dt

, over the time interval (tn, tn+1 = tn + h) averages to the rate

of change of x at the start of the time interval dx(tn)
dt

.

To characterize the error of the Euler method, first consider the Taylor

Expansion of x about t = tn.

x(tn+1 = tn + h) = x(tn) + α1h + α2h
2 + ... (2.7)

Where αi are the Taylor Coefficients. Let us assume that xn is exact, i.e.

xn = x(tn) (2.8)
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Then the numerical estimation xn+1, of x(tn + h), is given by the equation

xn+1 = xn + h
dx

dt
= x(tn) + α1h (2.9)

The error that we get from a single step is thus

ε = x(tn + h)− xn+1 = 2α2h
2 + 3α3h

3 + ... (2.10)

. The error of Euler’s method is said to be first order since there are no error

terms that go by the first power of h.

One problem with Euler’s method is that it is asymmetric, i.e. we only

use information about the derivative at the start of the time interval. Thus

instead of using the derivative at the start of the time interval, we can use the

derivative at the middle of the time interval. However, we have no information

about what the value of x(t = tn+tn+1

2
), i.e. the value of x at the midpoint of

the time interval and thus we use Equation 2.82 to take a trial step to estimate

x(t = tn+tn+1

2
).

z1 = xn +
h

2
f(tn, xn) (2.11)

We then use this intermediate point to calculate the rate of change and thus

estimate the next node.

xn+1 = xn +
h

2
f(tn + h/2, z1) (2.12)

By using the Taylor expansion of x, we find that the leading term of the error

function goes by h3. This method is thus said to be second order accurate and
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is called the Second Order Runge-Kutta Method (RK2). It is also known as the

Midpoint Method.

We can continue to derive other similar methods that have even higher

order accuracy. A general prescription to find these methods can be obtained in

Leader [17]. However, by far the most commonly used method is the classical

fourth order Runge-Kutta Method (RK4). The equation of this method is given

by

xi+1 = xn +
h

3
(
g1

2
+ g2 + g3 +

g4

2
) (2.13)

Where the values of gm are given by

g1 = f(tn, xn) (2.14)

g2 = f(tn +
h

2
, xn +

g1

2
) (2.15)

g3 = f(tn +
h

2
, xn +

g2

2
) (2.16)

g4 = f(tn + h, xn + g3) (2.17)

It turns out that this method is 4th order accurate. I.e. the leading term in the

error goes by h5.

We note that in each step, RK4 does 4 evaluations of the function f and

it is 4th order accurate. Similarly, the Euler method does 1 evaluation of f

per step and is 1st order accurate and RK2 does 2 evaluations of f and is 2nd

order accurate. However, for higher order ERK methods, it turns out that the

number of evaluations of f is higher than the order of accuracy. Thus ERK

methods with order greater than 4 are considered computationally inefficient
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since the evaluation of f is considered to be computationally expensive and we

always try to minimize the number of evaluations of f during our calculation.

This thus explains the popularity of RK4. RK4 has a good tradeoff in terms

of accuracy and the computational efficiency since it is the highest order ERK

method in which the accuracy order is the same as the number of evaluations

of f per step.

Having established RK4 as the most useful of the ERK methods, we proceed

to show how to implement RK4 to solve Equation 2.4.

Eq.2.4 is a second order ODE and in order for us to use the ERK method

(and other ODE methods for that matter) we need to reformulate Eq.2.4 into

a system of 2k first order ODEs where k is the number of ions in our system.

dxj

dt
= vj (2.18)

dvj

dt
= a(x1, ...,xn, t) (2.19)

To simplify the notation, we define the following 3k dimensional vectors.

X(t) =




x1(t)

...

xk(t)




(2.20)

V(t) =




v1(t)

...

vk(t)




(2.21)
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A(x, t) =




a1(x, t)

...

ak(x, t)




(2.22)

Thus, X denote the positions of the k ions, V denote the velocities of the k ions

and A denote the accelerations of the k ions.

Starting with the node (tn,Xn,Vn) we wish to calculate the next node

(tn+1 = tn + h,Xn+1,Vn+1). Thus we will calculate Xn+1 which will approxi-

mate the exact solution X(tn +h) and Vn+1 which will approximate V(tn +h).

The equations to do so are similar to Equation 2.13 with the exception that

we must replaces scalar quantities with vector quantities.




Vn+1

Xn+1


 =




Vn

Xn


 +

h

3
(
1

2




g1

f1


 +




g2

f2


 +




g3

f3


 +

1

2




g4

f4


 ) (2.23)

Where 


g1

f1


 =




A(Xn, tn)

Vn


 (2.24)




g2

f2


 =




A(Xn + 1
2
hf1, tn + h

2
)

Vn + h
2
g1


 (2.25)




g3

f3


 =




A(Xn + 1
2
hf2, tn + h

2
)

Vn + h
2
g2


 (2.26)




g4

f4


 =




A(Xn + hf3, tn + h)

Vn + hg3


 (2.27)
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An adaptive step size algorithm is almost always used in conjunction with

the Runge-Kutta Method in order to maximize computational efficiency. After

every step h is taken, we estimate the error of the nodal value Vn+1, Xn+1. The

way to estimate the error is via the method of RK pairs[17]. For example, we

simultaneously use the 4th order Runge-Kutta method and a 5th order Runge-

Kutta method to derive Vn, Xn. We then compute the difference of the two

evaluations at each step. If the difference is sufficiently small, i.e. such that

it is within our error goals, we move on to evaluate the next node, otherwise,

we reduce the step size and repeat the procedure till the error is sufficiently

small. This algorithm is implemented in Matlab with the function ode45. We

could just as well have implemented this system with the second order ERK

method and the third order ERK method. This can also be implemented in

Matlab with the function ODE23. In addition, more complicated versions of

the Explicit Runge-Kutta solver in addition to the adaptive step size algorithm

also adaptively alter the order of the Runge-Kutta solver method. Thus, one

step may use the RK pair, RK4 and RK5, whilst the next step may use RK2

and RK3. Such a algorithm can be called in Mathematica with the function

NDSolve and by specifying the ODE solver to be ExplitRungeKutta.

2.2 Bulirsch-Stoer Method

The Bulirsch-Stoer Method is an ODE solver that yields high accuracy solutions

efficiently[18]. However, it is inefficient at yielding low accuracy solutions and

would be a poor choice if a ”quick and dirty” solution is desired[19]. In addition,

if the forces on the particle are rough or discontinuous, this method is not
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effective. Instead, the Runge-Kutta methods would be a better choice. However,

we found that almost all the time, the Bulirsch-Stoer method was the most

efficient ODE solver method and we used as this method as our workhorse

solver. Thus, we will discuss this method in somewhat greater detail.

From Equation 2.9, we see that the result of such a numerical calculation

is a polynomial function of h. If h = 0 we would then get the exact answer.

However, if h were to be 0, we would end up taking an infinitely long time to

solve our ODE. However, if we were to probe Equation 2.9 by running our ODE

solver with different values of h, we would find several points of Equation 2.9.

We could then fit a polynomial through these points and read off the value of

the polynomial at the magical point h = 0 to get a considerably more accurate

value. This idea is known as Richardson Extrapolation.

Therefore the Bulirsch-Stoer Method goes as such.

1.) Use some ODE solver and run it with different sub-step sizes h to

generate several preliminary estimates.

2.) Apply Richardson Extrapolation to these preliminary estimates and gain

a hugely improved estimate.

Thus to begin our discussion of the Bulirsch-Stoer method we will first dis-

cuss polynomial interpolation. Given a set of n points.

{(a1, b1), (a2, b2), ..., (an, bn)} (2.28)

There is a unique n-1 order polynomial that passes through each of the n points.

For example, with two points, there is a linear polynomial, for three points, there



2. Calculating Ion Dynamics 31

is a unique quadratic, etc. This polynomial is given by Lagrange’s Classical

Formula

P (x) =
(x− a2)(x− a3)...(x− an)

(a1 − a2)(a1 − a3)...(a1 − an)
b1 +

(x− a1)(x− a3)...(x− an)

(a2 − a1)(a2 − a3)...(a2 − an)
b2 + ...

+
(x− a1)(x− a2)...(x− an−1)

(an − a1)(an − a3)...(an − an−1)
bn (2.29)

Although we can evaluate this polynomial in full by Equation 2.29, in the con-

text of Richardson Extrapolation, we only are interested in a single value of the

polynomial, i.e. at x = 0. In addition, Lagrange’s formula is unsatisfactory as

it provides no error estimate.

Neville’s Algorithm [20] is a much better algorithm for our purposes. Given

our set of n points, Neville’s Algorithm finds the one value of P (x) (defined in

Equation 2.29) that we are interested in without finding all of the unnecessary

coefficients of P (x). In addition, Neville’e algorithm also provides a simple error

estimate.

To illustrate this algorithm, we will fit the following three points to a second

order polynomial and find the value of that polynomial at x = 0. The three

points are

{0.0225, 1.34838), (5.625 ∗ 10−3, 1.34948), (2.5 ∗ 10−3, 1.34969)} (2.30)

These numbers are derived from solving an ODE system with different sub-step

sizes. We will derive these three points later in this section.

We define P(1) to be the value at x = 0 of the unique zero order polynomial
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passing through the first point. Thus, P(1) = 1.34838. Similarly, P(2) will be the

second ordinate of the second point, i.e. P2 = 1.34948 and P3 = 1.34969. Next

we define P(1)(2) to be the value of the unique first order polynomial that passes

through the first two points at x = 0. This value can be derived from P1 and

P2 by the equation.

P(i)(i+1)...(i+m) =
−xi+mPi(i+1)...(i+m−1) + xiP(i+1)(i+2)...(i+m)

xi − xi+m

(2.31)

From Equation 2.31 we can also derive the value of P23, the value of the first or-

der polynomial that passes through the second and third point. Our final value,

P123 is the value of the unique second order polynomial that passes through all

three points at x = 0. Again, P123 can be derived from P12 and P23 via equation

2.31.

Fig. 2.1: We demonstrate Neville’s algorithm for three random points
{(a1, b1), (a2, b2), (a3, b3)}. The y intercept of the six polynomials
give us the various P ’s. Finally, Neville’s algorithm does not actually
calculate the interpolating polynomials but only the y intercepts of the
polynomials. The interpolating polynomials are added for illustrative
purposes.
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We can think of the various values of P to form a triangular table (also

known as a ”tableau” in the literature.)

P1

P12

P2 P123

P23

P3

=

1.34838

1.34985

1.34948 1.34986

1.34948

1.34969

(2.32)

For any P , if there is a column on the left, then the two adjacent P ’s are the

parents and the P that we started with is the daughter element. Using Equation

2.31, we can thus fill in this triangular table column by column from left to right.

The Right Hand Side of Equation 2.32 shows us the values that we derived by

applying 2.31. To estimate the error of our result, we can use the difference

between the parent values and the daughter value to gain a crude estimate the

error. For example, the error estimate of P(1)(2)(3) is given by

ε = max{|P123 − P12|, |P123 − P23|} = 8.6 ∗ 10−6 (2.33)

One last point to note about Neville’s algorithm is that if we need to fit a

new point into our polynomial, we need not recalculate all the values of P from

scratch. For example, if the points that we need to fit are instead

{0.0225, 1.34838), (5.625 ∗ 10−3, 1.34948), (2.5 ∗ 10−3, 1.34969), (a4, b4)} (2.34)

Then all we need to calculate are P(4), P(3)(4), P(2)(3)(4) and P(1)(2)(3)(4) where



2. Calculating Ion Dynamics 34

P(1)(2)(3)(4) is now the final answer that we desire.

With the machinery of polynomial interpolation in our grasp, we now need to

generate the raw numerical estimates that we will feed into Neville’s algorithm.

The Bulirsch-Stoer method solves ODEs of the form of Equation 2.5. Each

Bulirsch-Stoer step is a large step in time and we denote it to be H. Thus with

each Bulirsch-Stoer step, we begin with a node (ti, xi) and generate the next

node (ti+1 = ti + H, xi+1).

The ODE solver that we use to generate our initial rough estimates of x(ti +

H) is known as the Modified Midpoint Method. The modified midpoint method

advances across the time interval (ti, ti+1) in a series of n uniform sub-steps of

size h = H/n. The equations for this method are

z0 = xi (2.35)

z1 = z0 + hf(ti, z0) (2.36)

zm+1 = zm−1 + 2hf(ti + mh, zm) (2.37)

χi+1(h = H/n) =
1

2
[zn + zn−1 + hf(ti + H, zn)] (2.38)

Every sub-step of the modified midpoint method, calculates a value zm. These

values are intermediate calculations and once we find the value χi+1(h = H/n),

the various z’s are immediately discarded.

χi+1(H/n) are our initial rough estimates of the exact value x(t = ti+1),

with this notation, we intend to emphasize the assumption that the result of

this numerical calculation is a function of the Modified Midpoint Method sub-
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step size h. Thus, the various values of χi+1 will be fed into Neville’s Algorithm.

Equation 2.37 is very similar to the Midpoint Method Equation 2.12. In

order to advance from the node (ti +mh, zm) to the point (ti +(m+2)h, zm+2),

we use information from the derivative at the middle of the time interval (ti +

mh, ti + (m + 2)h) to calculate the next point, i.e. f(ti + (m + 1)h, zm+1).

The main difference between the two is that the Modified Midpoint Method

uses two previously calculated nodes to evaluate the next node whereas the

Midpoint method uses only one previous node. This implies that the Modified

Midpoint Method is more computationally efficient than the Midpoint Method

since in every step of the Modified Midpoint Method, there is only 1 evaluation

of f whereas for the Midpoint Method, there are 2 evaluations of f per step.

This superior computational efficiency is one reason why the Modified Midpoint

Method is used as our base ODE solver.

The second reason for our choice of the Modified Midpoint Method is because

the form of χi+1 contains only even powers of h, [19] i.e.

χi+1(H/n) = x(ti + H) +
∞∑

j=1

(cj(
H

n
)2j) (2.39)

. This is a good thing for two reasons.

1.) Newton’s equations are time reversible and thus we thus it is desirable

if our ODE solver is also time reversible [21]. The form of the error function

implies that the Modified Midpoint Method is time reversible[21]. To see why



2. Calculating Ion Dynamics 36

the this is true, we notice that Equation 2.39 is even about h = 0.

χi+1(−H/n) = x(ti + H) +
∞∑

j=1

(cj(
H

n
)2j) (2.40)

. A negative sub-step size −H/n just means that we are numerically esti-

mating (x(t = ti)), we denote this numerical estimate as y, from the node

(ti + H, χi+1(H/n)) by running the Modified Midpoint Method backwards in

time. Thus equation 2.40 means that in order for y to be equal to xi, then

χ(−H/n) must take the value of Equation 2.39. This thus implies that if we

run the Modified Midpoint Method forward such that we derive χi+1(H/n) from

(xn); then, if we run the Modified Midpoint Method backwards such that we de-

rive the value y from χi+1(H/n), then y = xn. Thus we show that the Modified

Midpoint Method is time reversible.

2.) From equation 2.39 we see that χi+1 is both a power series of h and a

power series of h2. Say we have calculated χi+1(h = H/2) and χi+1(h = H/4),

we will then have two choices of how to do Richardson Extrapolation to estimate

the value χ(h = 0) = x(tn+1). Firstly, we may either use the fact that χi+1 is

a power series of h and thus apply Neville’s algorithm, Equation 2.31, on the

points

{(h = H/2, χi+1(h = H/2)), (h = H/4, χi+1(h = H/4))} (2.41)

to obtain our estimate of χ(h = 0).

Secondly, we may use the fact that χ is a power series of h2. In this case we



2. Calculating Ion Dynamics 37

would then apply Neville’s algorithm to the points

{(h2 = H2/22, χ(h2 = H2/22)), (h2 = H2/42, χ(h2 = H2/42))} (2.42)

to obtain our estimate of χ(h2 = 0). Note here that the values χ(h = H/n) =

χ(h2 = H2/n2).

It turns out that fitting the latter pair of points, Eq. 2.42 yields a much bet-

ter numerical result. In order to see why this is true, we consider an analogous

but more concrete example.

The function

cos(x) = 1− x2/2! + x4/4!− ... (2.43)

is both a power series of x and x2. Let us use Neville’s algorithm to estimate the

value cos(0) from the values cos(0.1) and cos(0.2). Using the fact that cos(x) is

a power series of x, we fit the points

{(0.1, cos(x = 0.1)), (0.2, cos(x = 0.2))} (2.44)

with Neville’s algorithm. The estimation of cos(0) we obtain is 1.00994(6 significant figures).

The fractional difference of this numerical estimate from the exact solution is

10−2.

However, if we use the fact that cos(x) is a power series of x2, we then fit

the points

{(0.12, cos(0.1)), (0.22, cos(0.2))} (2.45)

with Neville’s algorithm. The estimation of cos(0) we now obtain is 0.999983
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(6 significant figures). The fractional difference of this numerical estimate from

the exact solution is 10−5. Thus, the latter extrapolation is 1000 times more

accurate than the former.

a.) b.)

Fig. 2.2: Fig a plots cos(x) against x whilst fig b plots cos(x) against x2. The nu-
merical estimate from Fig b is much closer to the exact value, 1, than the
numerical estimate from fig a.

Fig 2.2 a shows the result Neville’s algorithm applied to the first pair (Eq.2.44)

of points and Fig 2.2 b shows Neville’s algorithm applied to the second pair of

points (Eq.2.45). From Fig 2.2, we can see why the latter method is superior.

cos(0.1) is a better approximation of cos(0) than cos(0.2). In Fig 2.2 b, the

point representing cos(0.1) is 4 times closer to the vertical axis than the point

representing cos(0.2). In Fig 2.2 a, the point representing cos(0.1) is only 2

times closer to the vertical axis than the point representing cos(0.2). Therefore,

the numerical estimate derived from the second pair of points, derived from the

fact that cosine is a power series of h2, depends much more strongly on the

value cos(0.1) than the numerical estimate derived from the first pair of points.

Thus the superiority of the second method is expected.

Similarly, χ(h = H/4) is a superior numerical calculation compared to χ(h =

H/2). By the same reasoning as our example above, if we fit the points given

by 2.42, the final numerical approximation of χ(h = 0) will depend much more



2. Calculating Ion Dynamics 39

strongly on the value χ(h = H/4) than if had fit the points given by 2.44. Thus,

by choosing to use the fact that χ is a power series in h2 we gain much more

accurate than if we had used the fact that χ is a power series in h.

With all the tools that we need in hand, we now illustrate the Bulirsch-Stoer

method by numerically solving a simple differential equation.

dx

dt
= x (2.46)

x(t = 0) = 1 (2.47)

Thus the right hand side of equation 2.5 is

f(t, x) = x (2.48)

The exact solution to equation 2.46 is

x = et (2.49)

For our example, we will take one large Bulirsch-Stoer step from t = 0 to t = 0.3.

Recall that H denotes the size of the Bulirsch-Stoer step and thus H = 0.3. The

result of this calculation will thus be a numerical estimate of the exact solution

x(t = 0.3). We note that since the first node is given by initial conditions,

(t0 = 0, x0 = 1), we are trying to calculate the value x1 ≈ x(t = 0.3).

1.) We being by finding rough estimates of x(t = 0.3) by the Modified

Midpoint Method with 2 sub-steps and 4 sub-steps.

2.) Apply Richardson Extrapolation to available points and estimate the
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error.

3.) If we are within our error goals, record the result of step 2 and go on

to calculate the next node. Otherwise, repeat step 2 with an additional point

derived from a higher number of step sizes.

The number of sub-steps is given by the sequence

n = 2, 4, 6, 8, 10, 12, 14, 16, ... (2.50)

However, if the solution does not meet our error goals beyond a certain

value of n, this would indicate that there is some obstacle in the time interval

of the Bulirsch-Stoer step. Therefore, this sequence is usually terminated at

the 8th iteration which corresponds to n=16 sub-steps. Upon which, instead of

subdividing the interval indefinitely, H is reduced (usually halved) and we will

repeat the above procedure. A discussion of the adaptive step size algorithm is

provided in Numerical Recipes.[19]

Following our 3 step procedure which was outlined above, we first find

χ1(h
2 = H2/22) and χ1(h

2 = H2/42). The values we obtain to six significant

figures are

χ1(h
2 = H2/22) = 1.34838 (2.51)

χ1(h
2 = H2/42) = 1.34948

Notice that these are the same values as P(1) and P(2) in Equation 2.32. Applying
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Richardson Extrapolation to these points, the value of x1 we obtain is

x1 = P(1)(2) = 1.34985(to six significant figures) (2.52)

From Equation 2.49, x(t = 0.3) = e0.3 = 1.34986(6 significant figures).

The fractional difference of χ1(h
2 = H2/22) from the exact solution is 1.1∗10−3,

whilst the fraction difference of χ1(h
2 = H2/42) from the exact solution is 2.8 ∗

10−4. However, by applying Richardson Extrapolation to these two points, the

new refined value has a fractional difference of 6.4∗ 10−6. Thus, the Richardson

yields a result that is 40 times more accurate than our raw estimates.

In general, we should not know the exact error of our ODE, otherwise, there

would be no reason to numerically calculate a solution. Therefore we can use

our error estimation scheme Eq.2.33. With this we estimate the fractional error

to be 1.5 ∗ 10−3. This is higher than the actual error.

If a estimated fractional error of 1.5∗10−3 is not acceptable, we then proceed

to find the value of χ(H/6).

χ1(H
2/62) = P(3) = 1.34969(to six significant figures) (2.53)

χ1(H
2/62) has a fractional error of 1.1 ∗ 10−4. Notice here that the Richard-

son Extrapolation from the two points {χ1(h
2 = H2/22), χ1(h

2 = H2/42)}, is

already 20 times more accurate than χ1(H
2/62).

However, if we are to apply Richardson Extrapolation to all three points, we

obtain a value of 1.34986 (6 significant figures). This has an exact fractional

error of 1.5 ∗ 10−8. This numerical result is thus about 10,000 times more
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accurate than our best χ1 value, χ1(H
2/62.

The error estimate is given by Equation 2.33 and is 8.6 ∗ 10−6. Again this

error estimate is considerably higher than the true error.

To summarize the above numerical results

Substepsize Fract. error from Mod. Midpoint Fract. Error after Richardson Extrap.
h = H/2 1.1 ∗ 10−3 NA
h = H/4 2.8 ∗ 10−4 6.4 ∗ 10−6

h = H/6 1.1 ∗ 10−4 1.5 ∗ 10−8

Tab. 2.1: The first column refers to the fractional difference obtained in the numerical
estimation of x(t = 0.3) and the exact solution. The second column shows
the fractional difference after Richardson Extrapolation is applied. Notice
that Richardson Extrapolation provides a huge increase in accuracy

Finally, we generalize the Bulirsch-Method to solve Equation 2.4.

Given a node (ti,Vi,Xi), we would like to calculate the next node (ti+1 =

ti+H,Vi+1,Xi+1). Therefore, Vi+1 approximates the exact velocities V(ti+H)

and Xi+1 approximates the exact ion positions X(ti + H)

The modified midpoint method crosses the time interval tn+1 = tn+1 + H

through a sequence of n uniform sub-steps in time with uniform sub-step size.

h =
H

n
(2.54)

The formulae of the method to calculate the motion for the jth ion are given

by 


y0

z0


 =




V(ti)

X(ti)


 (2.55)
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


y1

z1


 =




y0

z0


 + h




A(z0, ti)

y0


 (2.56)




ym+1

zm+1


 =




ym−1

zm−1


 + 2h




A(zm, ti + mh)

ym


 (2.57)




X̃i+1(H
2/n2)

Ṽi+1(H
2/n2)


 =

1

2
[




yn

zn


 +




yn−1

zn−1


 + h




A(zn, ti + H)

yn


] (2.58)

A refers to the acceleration of the k ions. In addition, zi, yi are intermediate

vectors that the modified midpoint method calculate at each sub-step. Once

the calculation of each X̃i+1(H
2/n2) and Ṽi+1(H

2/n2) is complete, the values

zi, yi are immediately discarded.

X̃i+1(H
2/n2) is the desired approximation to the exact solution X(t = ti+H)

and Ṽi+1(H
2/n2) is the desired approximation to the exact solution V(t =

ti + H). Again, we emphasize that X̃i+1 and Ṽi+1 are functions of h2 where

h = H/n is the Modified Midpoint Method substep size.

In order to do implement the Bulirsch-Stoer method, we follow the same

procedure as outlined above.

1.) We being by finding rough estimates of the function X(tn + H) and

V(tn + H) by the Modified Midpoint Method with 2 sub-steps and 4 sub-steps.

2.) Apply Richardson Extrapolation to available points and estimate the

error.

3.) If we are within our error goals, record the result of step 2 and go on

to calculate the next node. Otherwise, repeat step 2 with an additional point

derived from a higher number of step sizes.
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The number of sub-steps to use is given by Equation 2.50. Again, if we do not

meet our error goals by n=16, we stop the process and halve the Bulirsch-Stoer

step H and repeat the process.

Polynomial interpolation is carried out using Neville’s Algorithm (Equation

2.31). However, we note that the each of the various P’s in the tableau will now

be a 6k dimensional vector representing intermediate estimates of the positions

and velocities. The 6k come from the 6 degrees of freedom of each of the k ions.

If we are to apply Richardson’s Extrapolation to the three rough estimates

obtained by taking n=2, n=4 and n=6, the points that we will interpolate will

now be

{(H2/22,




V2

X2


), (H2/42,




V4

X4


), (H2/62,




V6

X6


)} (2.59)

and we will initialize the tableau

P1 =




V2

X2


 ,P2 =




V4

X4


 ,P3 =




V6

X6


 , (2.60)

Using Equation 2.31 recursively, we can then obtain the final vector P123. In

order to estimate the error of X, we can use the difference between norm of the

X component of the parent values and the X component of the daughter value

to gain a crude estimate of the error

ε = max{|P123X −P12X|, |P123X −P23X|} (2.61)
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where P123X refer to the first j components of the vector P123. Similarly, we

can estimate the error in the velocity.

Finally, to give a sense of how this ODE solver operates, the average size

of each Bulirsch-Stoer step (H) is on the order of 1ns and the evaluation takes

60,000 Bulirsch-Stoer steps. The range of values of H used in the evaluation is

approximately 10−15s to 10−9s.

2.3 Adams Predictor Corrector Method

The Adams Predictor Corrector Methods derive from two powerful ideas, the

first idea is to combine two ODE solver sub-methods whose complementary

properties work together to increase efficiency and accuracy. The second idea

is from the so called multi-step or Adams ODE solver methods that use infor-

mation from previous evaluations to advance the dependent variable. [22]

Two ODE base solvers are used in a Predictor Corrector (PC) Method, the

Predictor and the Corrector. The Predictor is a method that usually gives infe-

rior results compared to the Corrector, also the Predictor is usually an explicit

ODE solver method and is therefore computationally cheap. The Corrector on

the other hand gives better results. However the price that we pay is that the

methods are usually implicit and are harder to solve than explicit methods.

However, by using the initial estimate from the predictor as a starting point,

we can solve the implicit equations in the Corrector much more efficiently than

if we had started from scratch. Therefore, the two methods work together to

improve computational efficiency and accuracy.

Notice that the formulae of the two previously described ODE solver classes
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(Bulirsch-Stoer, ERK) to advance a point from tn to tn + h only involves inter-

mediate points between the two times. Information from previous steps are not

used at all. The Adams methods uses information from previously evaluated

points to advance our dependent variables, thus drastically reducing the number

of evaluations of the RHS of Eq.2.4. This is highly desirable because evaluations

of the velocity and the acceleration can be computationally expensive and we

may thus want to minimize these evaluations.

The idea of the Multi-Step Methods is as follows, given a first order ODE

system,

dy

dx
= f(x, y) (2.62)

we desire to advance the dependent variable y from the point x = xi to the

point x = xi+1

In exact form

y(xi+1) = y(xi) +
∫ xi+1

xi

f(x, y(x))dx (2.63)

. Assume that we have evaluated the value of y at k points xi−j, where the

sequence of x values are uniformly separated by the step size h, i.e. xi−j =

xi−jh. We denote the numerical estimate of y(xi−j) as yi−j. WE then estimate

f(x, y(x)) by an interpolating function

f(x, y(x)) ≈
k−1∑

j=0

f(xi−j, yi−j)Lj(x) (2.64)

. Where k is the number of points that we use to interpolate f, yi−j are numerical
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estimates of y at x = xi−j and Lj(x) are the k-1 order Lagrange Interpolating

Polynomials given by

Lj(x) =
k−1∏

j=0,j 6=1

x− xl

xj − xl

(2.65)

.

By inserting Eq.2.64 into Eq2.63 we obtain the explicit numerical method

yi+1 = yi + h
k−1∑

j=0

βjf(xi−j, yi−j) (2.66)

. and

βj =
1

h

∫ xi+1

xi

Lj(x)dx (2.67)

. Methods of this form are called Adams-Bashford Method and various versions

of this method can be obtained by choosing different values of k.

applying Eq.2.66 to solve Eq.2.4 to advance our dependent variables V and

X from the time tn to tn + h and setting k=3, we obtain the formula for the

3-step Adams Bashford method(AB3)

V and X from the time tn to tn + h




Vn+1

Xn+1


 =




Vn

Xn


 +

h

12

(
23




A(zn, tn)

V(tn)


− 16




A(zn−1, tn − h)

V(tn − h)




+ 5




A(zn−2, tn − 2h)

V(tn − 2h)




)
(2.68)

This equation therefore will yield the ”prediction value”. We now turn to
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the Corrector Method.

The interpolation of f in Eq.2.64 did not involve the point yx+1, therefore,

the points used for the interpolation do not span across the entire interval of

integration, to improve on this we can therefore instead use the interpolating

polynomial.

f(x, y(x)) ≈
k−1∑

j=0

f(xi+1−j, yi+1−j)Lj(x) (2.69)

. Note, this time Lj(x) is a k order interpolating polynomial. The derived

numerical method is therefore,

yi+1 = yi + h
k∑

j=0

βjf(xi+1−j, yi+1−j) (2.70)

. and

βj =
1

h

∫ xi+1

xi

Lj(x)dx (2.71)

.

A method of this form is known as an Adams-Moulton Method. However,

the price we pay for the superior polynomial interpolation in Eq2.69 is that

Eq.2.70 is now implicit. I.e. yi+1, the dependent variable is on both sides of

the equation. Thus these methods are harder to solve than the explicit Adams-

Bashford Methods.

The corresponding 3 step Adams-Moulton, applied to Eq 2.4 is given by the

implicit equation. Computation”[17]
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


Vn+1

Xn+1


 =




Vn

Xn


 +

h

12
(5




A(zn+1, tn + h)

V(tn + h)


 +8




A(zn, tn)

V(tn)


−




A(zn−1, tn − h)

V(tn − h)


 )

(2.72)

Finally, we put together the Adams Bashford Method and the Adams Moul-

ton Method in the following manner.

P.) We use Eq.2.68 to generate the estimate Vn and Xn

R.) We calculate A(Xn, tn + h) and V(tn + h)

C.) We use Eq.2.72 and Step 2 to generate a refined estimate Vn and Xn.

There are some variations to implement this procedure. We can either choose

to end the algorithm at R or at C. In addition, we can iteratively do the steps

R and C a fixed m number of times. I.e., we can have P (RC)m or P (RC)mC.

The most common implementation is PRCR[22].

Since Eq 2.68 and 2.72 give two different estimates of the same point, we can

use these two evaluations to estimate the error, for example, the difference in the

two evaluations estimates the error. With this error estimate, we can implement

an adaptive step size and adaptive order algorithms to optimize efficiency and

accuracy. A description of the implementation of these algorithms is given in

”Numerical Recipes”[22]. However, these adaptive algorithms are particularly

difficult to program, fortunately, the Adams method with adaptive step size

and order routine can be called by the NDSolve command in Mathematica

by specifying the method ”Adams”. The FORTRAN package known as the

Livermore Solver for Ordinary Differential Equations (LSODE) also implements

the method with adaptive step size and order routines.
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The results derived by this formula are usually superior to that obtained by

Eq.2.68. As can be seen, this equation is implicit, i.e. Xn+1 is both contained

in the Left Hand Side (LHS) and RHS of Eq.2.72 and as such is difficult to

solve. However, as the predictor step has already given us an initial estimate of

Xn+1, we use functional iteration to refine the evaluation of Xn+1. I.e., we put

the value of Xn+1 obtained from Eq.2.68 into the RHS of Eq.2.72 to generate a

refined estimate of Xn+1.

Since Eq 2.68 and 2.72 give two different estimates of the same point, we

can use these two evaluations to estimate the error. With this error estimate,

we can implement an adaptive step size and adaptive order algorithms to op-

timize efficiency and accuracy. A description of the implementation of these

algorithms is given in ”Numerical Recipes”[22]. However, these adaptive algo-

rithms are particularly difficult to program, fortunately, the Adams method with

adaptive step size and order routine can be called by the NDSolve command

in Mathematica by specifying the method ”Adams”. The FORTRAN package

known as the Livermore Solver for Ordinary Differential Equations (LSODE)

also implements the method with adaptive step size and order routines.

2.4 Backward Difference Formulas and Stiff Systems

There are two factors that the define step size of the solution of an ODE system.

Accuracy defines how small the local error is, i.e. the smallness of the error that

we add to the solution from one step in our ODE solver to the next. On the

other hand, stability according to Shampine et. al. refers to ”errors not growing

in subsequent steps of our ODE solver.”[23] For most problems, i.e. non-stiff
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systems, accuracy requirements set the step size, the previous three ODE solver

classes all use adaptive step size algorithms based on accuracy requirements.

However, for stiff systems, the stability dictates the step size.

An example of a simple stiff system is given in ”Numerical Recipes”[24]

u′ = 998u + 1998v (2.73)

v′ = −999u− 1999v (2.74)

where u and v are dependent variables and t is an independent variable. We

define initial conditions

u(0) = 1 (2.75)

v(0) = 0 (2.76)

where u and v are dependent variables and

u′ = 2e−t − e−1000t (2.77)

v = e−t + e−1000t (2.78)

Notice that as t → ∞, u, v → 0. Therefore for the solution to be stable, our

numerical solution must converge to 0 for both variables.
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For simplicity, we solve Eq 2.75 with the Explicit (or Forward) Euler Method,




un+1

vn+1


 =




un

vn


 + h




998 1998

−999 −1999







un

vn


 ≡ (1 + hC)




un

vn




(2.79)

This simplifies to 


un

vn


 = (1 + hC)n (2.80)

It is apparent that from our requirement for stability, (1 + hC)n → 0. The

only way for this to be possible is if the absolute value of all eigen-values of

(1 + hC)n is less than 1. Or equivalently:

h <
2

λmax

(2.81)

Where λmax is the eigen value of C with the largest absolute value. There-

fore, the requirement of stability sets a limit to how large a step size h we can

take which is solely dependent on the ODE system and independent of accuracy

requirements.

The solution to this problem is to use an implicit ODE solver. Consider the

implicit (backward) Euler Formula,




un+1

vn+1


 =




un

vn


 + h




998 1998

−999 −1999







un+1

vn+1


 (2.82)
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This simplifies to 


un

vn


 = ((1 + hC)−1)n (2.83)

The eigenvalues of (1+hC)−1 are 1/(1+hλ) which is less than 1 for all step sizes

h. Therefore, our requirement for stability is automatically met and we are free

to choose our step size on accuracy requirements. The implicit euler’s method

is the simplest example of the Backward Differentiation Formulas (BDF).

Another appropriate Backward Difference Formula is the second order ver-

sion. Applying this to solve Eq2.4, we obtain:




Vn+1

Xn+1


 =

4

3




Vn

Xn


 − 1

3




Vn−1

Xn−1


 +

2

3
(




A(Xn+1, tn + h)

Vn+1


 ) (2.84)

The price we pay for the stability is that we now need to solve an implicit

equation at every step, this is computationally expensive.

For efficiency many ODE solving programs come equipped with a stiffness

detector which can automatically switch between a non-stiff solver and a stiff

solver dynamically. For example, Mathematica’s NDSolve uses the Adams

Predictor Corrector Method and switches to the BDF formulas with adaptive

step-size and adaptive order when the method detects stiffness.

2.5 Comparison between ODE Solver Methods

We choose the Bulirsch-Stoer method as our chief ODE solver for two reasons.

1.) Superior computational efficiency.
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2.) Superior accuracy of the final numerical solution

To justify this, we compare the relative merits of the ODE solvers. In order

to do so, we calculated the motion of the ion in a time varying potential that

takes the ion from trapping zone d in the T-trap to trapping zone i with the

three different ODE solver methods that we described previously with identical

precision and accuracy goals. (This shuttling protocol will be described in

greater detail subsequently.)

1.) The Bulirsch-Stoer Method with adaptive step size

2.) The Explicit Runge-Kutta (ERK) Method with adaptive step size and

adaptive order.

3.) The Backward Difference Formulae (BDF) methods with adaptive step

sizes and adaptive order.

The three simulations were run on Mathematica 5.2 with a Debian Linux

computer. The Central Processing Unit is a Dual Core 1.8GHz AMD chip

and the computer runs on 2 GB of Random Access Memory. We tabulate the

computer resource usage of the three ODE solvers below.

ODE solver Ion motion data file size Comput. time per step[s] Computing time
Bulirsch-Stoer 18 MB 1.4 5h 54m

ERK 638 MB 0.067 37h 11m
BDF 129 MB 0.051 5h 44m

We first note that the computational time for the Bulirsch-Stoer method

and the BDF method are similar and is much less than the computational time

for the ERK method. Secondly, we note that the data file that contains the

ion’s motion derived from the Bulirsch-Stoer method is much smaller than the

corresponding data files derived from the other two methods. This is desirable
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because in the course of designing a shuttling protocol, we may run hundreds

of simulations each one producing one of these data files. Thus be choosing the

correct method, we avoid having to acquire large amounts of storage space.

Therefore, by considering the usage of computational resources, the Bulirsch-

Stoer method is clearly the best method.

However, there is a much more profound reason for our choice of the Bulirsch-

Stoer method. If we plot the difference between the numerical calculation de-

rived from the BDF method and the Bulirsch-Stoer Method, we see from Fig

2.3 that there is a significant difference in the numerical estimates of the ion’s

motion based on the method.

Fig. 2.3: Fig a.) Shows the absolute value of the difference between the numerical es-
timates of the horizontal position of the ion derived from the Bulirsch-Stoer
and the horizontal position estimated by the BDF method. The magni-
tude of this residual is comparable to the extent of the horizontal motion
of the ion 1000µm. Fig b.) depicts the absolute value of the difference be-
tween the numerical estimates of the vertical position of the ion derived from
the Bulirsch-Stoer and the vertical position estimated by the BDF method.
Again the residual is comparable to the extent of the ion’s vertical motion
500µm. We note that the residual dramatically increases at t = 20µs. This
corresponds to the moment when the ion enters the junction region. Before
this time, the residual is very nearly 0.
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To see why this is true, we first consider Fig 2.4 which represents the poten-

tial that the ion sees when it first enters the junction. At this time there are

two minima corresponding to positions f and i. As such, once the ion is sent

into the junction region, it will move towards either trapping region f or i. The

potential gradients in the junction region are very small and therefore the ion’s

choice with respect to which minima it moves towards depends very strongly

on the velocity of the ion once it reaches the junction region. This process thus

magnifies any small error in the position and velocity of the ion just before the

ion enters the junction region. Therefore, it is of critical importance to reduce

the error of the motion of the ion.

Fig. 2.4: Contour plot of the potential near the T-junction at t = 25µs. Along the
x-axis there is a local potential maximum. This implies that once the ion
enters the junction region, the ion will choose to move either towards the
minimum on the left or the minimum towards the right. Furthermore, the
ion’s ’decision’ is sensitive to initial conditions.
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It turns out that the numerical ODE solver that takes the least number of

steps provides the most accurate final solution.

To see why this is so, we consider the inner working of these numerical ODE

solver methods. At every step of an ODE solver, we calculate the node yn+1

from the previous node yn. The solver estimates the error of yn+1 as described in

previous sections. This error estimate is the local error estimate and it is defined

to be the error of yn+1 if yn were the exact solution. Thus, the random error

that is introduced at every step is independent of the error from the previous

step. This is similar to a random walk and therefore, on average, the error

increases monotonically with the number of steps taken. The adaptive step size

algorithm changes the step size such that the local error estimate for each step

is smaller than the error goals that we specify. Therefore, we expect that given

a set of error goals, the average error introduced per step is the same regardless

of the ODE solver method. This implies that given two numerical ODE solvers

that numerically solve an ODE system, the ODE solver that takes less steps

will usually be more accurate than the ODE solver that takes more steps.

As an example, we compare the BDF method and the Bulirsch-Stoer Method

in solving the simple ODE given by.

d2y

dt2
= −ω2y (2.85)

y(0) = 0
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. The exact solution is given by

y = cos(ωt) (2.86)

. We set ω = 106. We then use the Bulirsch-Stoer Method and the Backward

Difference Formulae to numerically evaluate the solution for the time interval

(t = 0, t = 0.01). We first observe that the BDF method takes more steps than

the Bulirsch-Stoer Method; 958331 steps as compared to 207422.

The second observation is that the average deviation from the exact solu-

tion increases monotonically and approximately linearly with time. The linear

behavior of the error is an artifact of the simple form of the ODE. The monoton-

ically increasing error is a feature that is to be expected regardless of the ODE

system to be solved.

And lastly, if we ignore the spurious errors due to the interpolation process,

the error of the Bulirsch-Stoer method is much smaller than that of the BDF

method and verifies our claim that an ODE solver that can cross the interval in

less steps will be more accurate than an ODE solver that crosses the interval in

more steps.

We now return to the numerical solution of Equation 2.4. We tabulate data

characterizing the step sizes of the ODE solver.

From table 2.5 , we see that on average the BDF method takes more than 10

steps to cross the time interval covered by a single Bulirsch-Stoer step, whilst

the ERK method takes on average 60 steps to cover the time interval that a

single Bulirsch-Stoer step takes. Therefore, we expect that the Burlirsch-Stoer
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Fig. 2.5: Fig a.) depicts the absolute value of the deviation of the numerical estimate
derived from the Bulirsch-Stoer method and the exact solution. There are
several spurious peaks in the graph and these are due to inaccuracies in
the interpolation process to fit the generated nodes and are not errors from
the numerical solution. If we ignore these spurious peaks, we note that the
average error increases linearly with time. Fig b.) depicts the absolute value
of the deviation of the numerical estimate derived from the Bulirsch-Stoer
method and the exact solution. Unlike Fig a, there are no spurious peaks
because the BDF method generates more nodes which implies that the nodes
are closer together and thus the interpolation process is more accurate. We
note that in both figures the average error increases monotonically with time
and the error of the solution derived from the Bulirsch-Stoer method is much
smaller than the error derived from the BDF method.

method gives the most accurate numerical calculation of the ion’s motion.

2.6 Requirements on Electric Potential

Due to the imperfect nature of the numerical evaluation of the potential, the

resultant potential may be rough. This will result in relatively large arbitrarily

directed forces near the potential minimum. For an ion at rest, this creates two

related problems.

1.) Using the adaptive step size methods that we discussed earlier, we may

need a very small step size to meet the error goals. This is computationally ex-

pensive. As an example, using the Bulirsch-Stoer method to simulate a shuttling

protocol from d to i, the Bulirsch-Stoer step size at the start of the protocol is
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ODE solv. Max (Min) Number Ave step
method step size[µs] of steps size[µs]
Bulirsch- 1.5 ∗ 10−8 35392 8.8 ∗ 10−10

Stoer (7.9 ∗ 10−16)
ERK 4.1 ∗ 10−11 2013103 1.9 ∗ 10−11

(7.9 ∗ 10−16)
BDF 5 408403 7.6 ∗ 10−11

(7.9 ∗ 10−16)

Tab. 2.2: Step size and other related quantities used by various Numerical ODE
solvers to solve a simple problem.

of the order of 10−15s whereas the average Bulirsch-Stoer step size for the entire

motion was 10−9s.

2.) These artificial forces may create a stiff ODE system. Stiff ODEs are

both computationally expensive to evaluate and sacrifice accuracy for stability

(since stiff systems are intrinsically unstable.) Therefore, the computation will

be both slow and inaccurate.

These two problems can make solving the ODE intractable.

There are two solutions to these problems.

1.) We can swamp the artificial forces with the actual secular force. This can

be achieved by slightly displacing the ion from its initial position. Equivalently,

we can start the ion with a small initial velocity.

2.) We can re-derive the potential with a finer mesh.

Fig 2.4 represents the potential that the ion sees when it first enters the

junction. At this time there are two minima corresponding to positions f and i.

As such, once the ion is sent into the junction region, it will move towards either

f or i. Simulating the ion’s motion for various initial position offsets, we observe

that the ion’s choice with respect to which minima it moves towards depends on
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the initial position offset. In addition, we did not observe any simple correlation

between the initial position offset and the direction with which the ion moves

towards. Therefore, the initial position offset presents an unacceptable error

when high accuracy solutions are desired. In particular, such an error will make

it impossible to optimize the kinetic energy or design phase dependent cooling

schemes.

Therefore, the only solution to this problem is to ensure that the potentials

are sufficiently smooth. Therefore by requiring that the calculation of the ion’s

dynamics from a standing start is tractable, we can obtain a useful lower limit

for the accuracy with which we solve for the potential in the trap.



3. MANIPULATION OF ATOMIC IONS IN 1 DIMENSION

With the general strategies and techniques that were developed in previous

sections to develop key shuttling protocols for the T-junction Ion Trap architec-

ture. The ion trap array has 49 electrodes which are used to implement 4 key

protocols necessary to implement the quantum computing scheme proposed by

Kielpinski et al[10].

1.) Shuttling an ion along an rf node between two adjacent traps.

2.) Separating two ions held in the same trap into two different traps.

3.) Combining two ions held in two separate traps into a single trap.

4.) Shuttling ions around corners.

The first three protocols have been widely demonstrated ([25],[26],[27],[28])

whilst corner shuttling was first demonstrated in 2005 on the T-Trap by Hensinger

et al. [29]. The combination of all four elementary protocols allows for arbitrary

control of trapped ions in two dimensions.

In this chapter, we will discuss the motion of the ion along an rf node, i.e. the

first three protocols and in the next chapter we will go out into 2 dimensions and

there we will describe the most difficult of the 4 key protocols, corner shuttling.
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3.1 Linear Shuttling

Linear shuttling in ion traps involves the transport of ions from one trapping

zone to another adjacent trapping zone along a linear rf-node. This was demon-

strated by Rowe et al. [25] We begin the discussion of this type of shuttling

sequence by deriving a figure of merit from the adiabatic condition.

3.1.1 Linear Shuttling and Adiabaticity

It is highly desirable for a shuttling protocol to be adiabatic. An adiabatic

process is a reversible process and therefore repeated applications of the shut-

tling protocol will not significantly change the state of the ion. This is highly

desirable in quantum computation as a quantum algorithm may require an ion

to be shuttled back and forth numerous times whilst preserving its motional

state throughout, therefore, we derive a criterion for the adiabaticity of shut-

tling an ion along a linear rf node.

We define a shuttling protocol to be adiabatic if not enough energy is added

to the system to allow for transitions to other quantum states [30]. We define

the wave-function of an ion to be Ψ(t) and Ψ(t = 0) = Ψs. We assume there

exist several quantum states which are accessible to the ion Ψe, then for the

shuttling protocol to be adiabatic, the following criterion must be satisfied.

|〈Ψ(T )|Ψs〉|2 ≈ 1

|〈Ψ(T )|Ψe〉|2 ≈ 0 (3.1)

For this analysis, we assume that the secular frequency of trap does not change
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throughout the shuttling sequence.

The Hamiltonian for this system will thus be

H =
1

2
mω2

0(x− x0(t))
2 (3.2)

Where x is the position of the ion and x0 is the position of the potential mini-

mum.

In order to transform Equation 3.1 into a working criterion, we apply first

order perturbation theory.

It turns that it is mathematically convenient to get out of the rest frame of

the ion trap and into the moving frame of the minimum of the rf trap, x0(t).

Our Hamiltonian will now be

H =
1

2
mω2

0(s)
2 + mẍs (3.3)

Where we define the new variable s = x − x0(t). The price that we pay is

that there is now a virtual potential due to the acceleration of the potential

minimum. We therefore immediately see that the adiabaticity of our shuttling

protocol depends on the acceleration of the potential minimum and it turns out

[31] that Equation3.1 implies

ȧ

a
<< ω (3.4)

Where a is the acceleration of the potential minimum and ω is the secular

frequency. The classical analogy is that if we hold a pendulum in a car, the

pendulum will swing steadily and thus adiabatically if the car is constantly
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accelerating. However, once we slam on the brakes or the accelerator, i.e. high

ȧ , the pendulum will jerk and thus non adiabatically.

3.1.2 Implementation of Linear Shuttling protocol

We next consider an example of a linear shuttling protocol. This shuttling

sequence brings an ion from trapping zone c to b. At the start of the shuttling

protocol, electrodes 0, 1, 2, 3, 8, 9, 16 and 17 are all held at 25V. For convenience,

we refer to these 8 electrodes as the outer electrodes of the shuttling sequence.

Electrodes 4 and 5 also start at 25V whilst electrodes 6 and 7 start at -2.5V. The

secular frequency in the x direction of the initial is calculated to be 1.2MHz. For

the next 15 clock cycles, the voltages on the 8 outer electrodes monotonically

increase whilst electrodes 4, 5, 6 and 7 decrease. At the midpoint between the

15th and 16th clock cycle, the values of 4,5,6 and 7 all coincide to be -18V whilst

the perimeter electrodes all reach 184.5V. This implies a trap at the midpoint

in between trapping zones b and c. The ramping of the voltages was so chosen

such that at all points of time, the secular frequency in the x-direction remains

constant. This completes the first half of the shuttling protocol.

To complete the protocol, i.e. to bring the ion from the midpoint of points b

and c to b, the voltage protocol is both time reversed and geometrically reflected

about the plane that would fit in the gap between electrodes 4, 5 and electrodes

6, 7. Time reversing the first half of the shuttling sequence sends the ion away

from the midpoint into one of the trapping zones whilst the geometric reflection

ensures that the ion moves from the midpoint to b instead of from the midpoint

to c. See Figure 3.1. The symmetry of the second half of the shuttling protocol
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also implies that the secular frequency is constant throughout the second half

of the protocol and the same as the first half of the shuttling protocol.

This linear shuttling protocol with a fixed secular frequency is the first step to

optimizing our linear shuttling protocol. We test the above described shuttling

protocol on the T-Trap, to do so we use the shuttling protocol to shuttle the ion

from c to b, then run the protocol backwards in time to shuttle the ion from b

to c. The ion successfully completes the protocol every time (55 attempts) over

a wide range of shuttling speeds. The time elapsed for the shuttling protocol

ranges from 6s to 6×10−5s. This corresponds to a clock rate of 10Hz to 10,000Hz.

Furthermore, with this shuttling protocol we could reliably run the shuttling

protocol back and forth ten times in succession with a clock rate of 10,000 Hz.

(10 out of 10 attempts.) Each shuttling sequence iteration begins with the clock

cycle immediately after the last clock cycle of the previous shuttling iteration.

In contrast, crude linear shuttling protocols that were used to demonstrate

arbitrary two dimensional control of ions [29] could not linear shuttle back and

forth multiple times. Therefore, constraining the secular frequency dramatically

improves the performance of linear shuttling protocols.

Presently, work is being done to further refine this linear shuttling protocol

by using the criterion given by Equation 3.4.

3.2 Ion Separation and Recombination

The next two key shuttling protocol that we discuss are separation and recom-

bination. The goal of separation is to separate two or more ions held in a single

harmonic trap into two new harmonic traps. The goal of recombination is the
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Fig. 3.1: The graph shows the time dependent voltages applied on the relevant elec-
trodes which shuttle the ion along the linear node from trapping zone c to
b. The secular frequency in the x direction is constrained to be 1.2 MHz at
all times in the shuttling sequence.

exact opposite, we start with two harmonic traps each containing some ions and

combine all the ions into one new harmonic trap. Note that in separation and

recombination, we do not change the order of the ions.

We consider a specific example of a separation protocol. We begin by trap-

ping two ions in a harmonic trap in zone b with approximate secular frequency

0.53MHz. The trap is formed by applying -3.5V on electrodes 4 and 5, and 17

volts on electrodes 2, 3, 6 and 7. In addition, 17 volts are applied to electrodes

0, 1, 8 and 17.

For the next 30 clock cycles, the voltages on electrodes 2, 3, 6 and 7 gradually

ramp down to -3.5V whilst the other electrodes do not significantly change, this

in effect changes weakens the trap at b such that the secular frequency is now

0.099kHz. More importantly, the potential at trapping zone b is very nearly flat.

Because of this, the Coulomb repulsion between the two like charged ions is now
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significant and we calculate a separation between the two ions of approximately

10µm.

From here, we ramp up the voltage on electrodes 4 and 5 to 17.5V. This

creates a potential wedge at zone b and sends one ion into zone a and the other

ion into zone c. Electrodes 0,1, and 8 and 17 are maintained at 17V. This

provides the necessary confinement to form harmonic traps at zones a and c.

Next, we consider an example of a recombination protocol. The recombi-

nation protocol is the separation protocol time reversed. We start with an ion

held in a harmonic trap in trapping zone a and another ion in trapping zone

c. The harmonic traps at a is formed by high voltages on control electrodes

0,1,4,5,8 and 17, and low voltages on electrodes 2,3,6 and 7. The voltage on

electrodes 4 and 5 are brought down to the same level as electrodes 2,3,6 and 7.

This forms a weak trap at zone b. At this point, the ions will be close together,

10µm apart. To complete the combination protocol, we strengthen the trap at

b by raising electrodes 2,3, 6 and 7. Thus, we now have two ions in a harmonic

trap at zone b.

3.2.1 Experimental Implementation

The separation and recombination protocol was implemented with a shuttling

time of 10ms. However, the success rate was only 58% over 64 attempts. There

are two possible reasons for this low efficiency.[25]

1.) During the separation sequence, we require the wedge to come up in

between the two ions. This is difficult due to the small separation between the

ions to be separated and the large width of the control electrodes. In this case,
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Fig. 3.2: Time dependent voltages applied on control electrodes in order to separate
two ions held in a single harmonic trap at zone b into two separate harmonic
traps, one at a and the other at c. Asymmetries in the voltage profile about
the x=0 plane are to compensate for possible misalignments in the electrode
layers or stray fields. A time reversal of the above voltage profile allows us
to combine two ions, one in a trapping zone a and the other at c into a single
harmonic trap at zone b.

both ions will be shuttled into the same trap.

2.) During the separation sequence, there will be a time where the ions will

be held in a weak trap at trapping zone b. This occurs just before the wedge is

brought up. During this time, the ions are especially susceptible to heating.

As we can see, the two types of failures provide competing requirements on

the separation protocol. The first failure can be addressed by increasing the ion

spacing, however, increasing the ion spacing is achieved by further weakening

the trap at zone b, thus further heating the ion. Therefore, balancing these two

demands is essential to the success of a separation protocol.



4. MANIPULATION OF ATOMIC IONS IN 2 DIMENSIONS

In section 1.2.1, the linear nodes in each of the three linear arms gives way

to humps, i.e. regions of no rf field cancelation, as we approach the junction

region. For all the protocols mentioned in the previous chapters, the ion never

leaves the rf node. This is no longer true once the ion goes through the junction

region as the ion must now be pushed over the rf humps. Therefore, the design

of shuttling protocols described in this chapter is a much more involved process

and is the subject of this chapter.

4.1 Shuttling around the Corner

In a general junction shuttling protocol, there are two stages.

1.) We first overcome the inevitable RF humps leading into the junction by

providing a sufficient pushing potential and shuttle the ion into the junction.

2.) We guide the ion from the junction region into its final trapping position

The Tee-Trap corner shuttling protocol that brings the ion from trapping

zone d to i is an exemplary example of such a protocol. On calculating the

ponderomotive potential in the Tee-trap, the three linear RF nodes which pro-

vide strong axial confinement give way to RF humps of height 0.1 eV as we

approach the junction..
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The 4 electrodes that form the junction, i.e. 8, 9, 16 and 17 are the most

important and thus the success of the shuttling protocol greatly depends on

the time dependent voltage on these 4 electrodes, we shall probe the stability

of the voltage time profiles on these 4 electrodes in the subsequent section. In

addition, adjacent electrodes to the junction; 6, 7, 26, 27, 10, 11, also play a

part in the shuttling protocol.

We begin with a trap in region d. The trap frequencies at this point are

ωx ≈ 5.0MHz (4.1)

ωy ≈ 0.7MHz

ωz ≈ 4.9MHz

and the trap depth is 12 eV. Using a hyperbolic tangent profile, we raise 6, 7,

26 and 27 to 200V. This effectively pushes the ion towards the junction region.

The value of 200V is determined solely by the electrical properties of the trap.

We simultaneously raise electrodes 8 and 17 from approximately -4V to ground

and lower 9 and 16 from approximately 80V to −3V . We again use a hyperbolic

tangent time profile. The net effect is to create a potential gradient that sucks

the ion into the junction region. We can observe the position of the RF hump

through the y component of the ion’s trajectory. The ion temporarily gets stuck

at some barrier at y = −220µm at the 18th clock cycle. This shows that the

ion is up against the RF hump. We also notice that the micro-motion abruptly

increases. Up till this point, the kinetic energy of the ion monotonically increases

from 0 to approximately 0.07 eV.
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At the 19th clock cycle, the potential gradient becomes sufficient such that

the ion can roll over the hump. The ion accelerates from y = −220µm at the

19th clock cycle to y = 0 in the period of 2µs. In the process of rolling down the

potential hill, the ion picks up approximately 0.5 eV of energy. The ion then

bounces off the RF layer and moves towards the negative y direction at y = 0.

Once there the ion gains freedom of motion in the x direction and it will oscillate

wildly between regions f, e, i with the energy of approximately 0.5 eV. This large

oscillation is mainly due to there being very weak confinement along the x-axis.

As shown in section 2.6, the motion in the x direction strongly depends on the

initial conditions. Therefore,the ion’s starting position in subsequent numerical

simulation to determine the protocol to execute step 2 should not include any

arbitrary offsets from the initial equilibrium. In addition, the ion experiences

micro-motion as it transverses the hump. Therefore, high accuracy solutions

are now needed.

Notice that the voltages on 8, 17, 9 and 16 all converge to voltages close to

ground. This is because high static voltages on the four junction electrodes can

make e anti-trapping and thus cause the protocol to fail. Therefore, there is a

tradeoff when designing such a junction shuttling protocol. We require a high

potential gradient and thus a high absolute value of voltages to overcome the RF

hump send the ion into the junction region. At the same time, the voltages must

be low enough such that the junction region can remain trapping. Therefore,

the key to the success of this step is to balance these two requirements.

To implement step 2 in the Tee-Trap, we now need to trap the ion at i. In

order to do so, we raise the voltages of 8 and 9 to approximately 10 V and
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lower the voltages of 16 and 17 to approximately -10V. Prior to this, 10 and 11

were raised to 100V. This thus forms the other side of the trap. The trap has

frequencies

ωx/2π ≈ 0.5MHz (4.2)

ωy/2π ≈ 5.5MHz

ωz/2π ≈ 4.3MHz

However, instead of implementing the change in voltage by the usual hyperbolic

tangent, we implement the change in voltage of the four junction electrodes as

quickly as possible, i.e. one clock cycle of our analogue output card. We denote

this clock cycle to be tcatch. We choose to catch the ion in such a fashion for the

following reasons.

1.) We optimize the shuttling sequence such the ion is ’caught’ by the final

trap when it is exactly at its final equilibrium position. This would add no

further kinetic energy to the ion. Using any other kind of time profile to form

the trap will yield inferior time definition of the catching step.

2.) As tcatch is a very simple variable to perturb, a large number of variations

of a shuttling protocol can be easily produced by changing tcatch. This is useful

because changing tcatch addresses the uncertainty in the x position between steps

1 and 2, demonstrated in section arbitrary offsets.

For this particular shuttling protocol, the act of catching the ion in the final

trap raises the kinetic energy by approximately 0.7eV as can be seen by the

abrupt jump in kinetic energy at the 25th clock cycle coinciding with tcatch.
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We note that numerical simulations show that implementing the shuttling

protocol with a hyperbolic tangent profile may also work, however, due to the

aforementioned reasons, optimizing this protocol is difficult and thus this style

of protocol was not well studied. Finally, following from the discussions of ODE

solving methods, we suggest that in designing step 1, the ERK method be used.

This is because low accuracy solutions will suffice to calculate the ion’s path

from position d to i. However, in designing step 2, since much more accurate

solutions are required, particularly to model the ion’s motion in the junction,

we recommend using the Bulirsch-Stoer method.

Fig. 4.1: Figure shows y component of motion when ion is near and inside the junction
region, note the micro-motion at t = 18µs to t = 20µs as the ion transverses
the RF hump.

4.1.1 Experimental Results

The control voltage protocol was used to shuttle the ion from region d to region

i in the T-Trap and was implemented with a success rate of greater than 99%.

[29](881 out of 882 attempts). The speed of the shuttling protocol was limited
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Fig. 4.2: Figure shows kinetic energy. Note the rise in kinetic energy once the ion
crosses the RF hump at the 18th clock cycle and the abrupt rise in energy
at the 25th clock cycle when the tcatch step is implemented.

by the hardware and as such the fastest shuttling protocol was run at a clock

rate of 106 cycles per second. This corresponds to a shuttling time of 30µs.

We implemented the shuttling protocol with different clock rates and suc-

cessfully turned the corner with a range of clock rates from 0.1 cycles per second

to 106 cycles per second. The upper limit to the clock rate, as previously men-

tioned, is due to hardware limitations. The clock rate of 0.1 cycles per second

is not a lower limit as we did not test slower clock rates due to time constraints.

This is because the ion takes five minutes to crystallize and bringing down the

shuttling times by an order of magnitude would imply a shuttling time of 1

hour.

Despite the very high success rate of the shuttling protocol from d to i, we

were unsuccessful in corner shuttling the ion from d to f . This result is surprising

since turning the corner from d to i should immediately imply that turning the

corner from d to f should work. This discrepancy may be attributed to static

bias fields or misalignments in the three electrode layers due to the manual



4. Manipulation of atomic ions in 2 dimensions 76

Fig. 4.3: Figure shows the voltages applied to the relevant electrodes to execute the
corner shuttling protocol.

assembly process.

4.1.2 Characterization of Corner Shuttling Protocols

To characterize our corner shuttling protocol, we perturb the control voltage

protocol and simulate the ion’s motion. We will achieve two things by doing so.

1.) Many of these perturbed voltage protocols will not successfully shuttle

the ion from d to i. From these failed protocols, we can infer salient features

that lead to a successful shuttling protocol.

2.) We can probe the robustness of the shuttling protocol to small pertur-

bations.

The four junction electrodes of the Tee-trap, 8, 9,16 and 17 are the most

important electrodes in the shuttling protocol. Thus, our perturbations are

generated in the following manner. We begin by choosing one of the 4 junction

electrodes to alter, for example electrode 17. The time varying voltage on that
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electrode is given by the function Φ17(t). Here t denotes the clock cycle. We

leave the voltage profile after the tcatch clock unaltered. For the preceding points,

we define them by

V17,Vj
(t) =





A tanh( t−7.5
5

) + B 1 ≤ t ≤ 20

Vj 21 ≤ t ≤ 25

V17(t) 26 ≤ t

(4.3)

Where A and B are constants such that V17,Vj
(0) = V17,Vj

(0) and V17,Vj
(20) = Vj.

With this definition, the voltage profile smoothly asymptotes to Vj and also

ensures that at the first clock cycle, the potential on the electrode is the same

for the base protocol and the altered protocol.

We generate perturbations for each of the 4 junction electrodes for several

values of Vj and numerically simulate the path of the ion. We use the inverse

of the kinetic energy at the end of the protocol as our figure of merit and

define this Figure of Merit to be zero if the protocol fails. For comparison, the

Figure of Merit for the unaltered protocol is shown in each graph. Therefore,

for the following plots, a higher inverse energy implies a better corner shuttling

protocol.

We numerically simulate these generated shuttling protocols and obtain the

following stability plots.

From the numerical simulations, we see that there are three ways that a

shuttling protocol may fail.

1.) The ion does not make it over the RF hump and is stuck in the original

trapping region.
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Fig. 4.4: Time profile of voltage on electrode 17 in original shuttling protocol that
brings ion from d to i and ion plotted with the perturbation tV17,+2

2.) The ion is shuttled into the junction region but is shortly ejected from

the plane of the trapping region

3.) The ion goes too far in the negative x direction (region g or beyond) and

is ejected out of the trap in the negative x direction at the tcatch step.

Fig. 4.5: Stability of shuttling protocol to changes in voltage applied to Electrode 8.

Repeating the process for the other three electrodes we obtain

We observe that for all stability plots, there is a cut off voltage that separates

all protocols that shuttle the ion into the junction region and all protocols that

leave the ion at its original trap position (failure type II).

For electrodes 8 and 17, we notice that the ion is stuck for perturbations
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Fig. 4.6: Stability of shuttling protocol to changes in voltage applied to Electrode
17.

Fig. 4.7: Stability of shuttling protocol to changes in voltage applied to Electrode 9.

Fig. 4.8: Stability of shuttling protocol to changes in voltage applied to Electrode
16.
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that lower the electrode voltage. This is consistent with what we expect as

a negative voltage on these lower electrodes will ’suck’ the ion back into its

original trap. Similarly, for the two upper electrodes, 9 and 16, this occurs for

perturbations that raise the electrode voltage. In effect, the upper electrodes

repel the ion away from the junction and back into the trap

Therefore, when the ion is stuck in the original trap region, it would indicate

that there is insufficient potential gradient for the ion to overcome the RF hump.

Next, we notice that the Stability plot for electrode 9 has a much greater

stability range for negative voltage perturbations than for the other three elec-

trodes. There are several reasons for why this is so. For one, the large negative

voltage sucks the ion into the junction region. Thus, the ion does not get stuck

in the original trapping position. Secondly, the ion is strongly attracted towards

its final trapping position at i, therefore, the ion will spend no time in region

d, therefore, there is no way that the ion will be ejected from the trap from the

negative x direction. Lastly, as the ion can only be in region i at tcatch, the tcatch

trapping step will add very little kinetic energy to the ion. Therefore, all these

factors add to the stability of the shuttling protocol. However, shuttling proto-

cols of this nature have certain disadvantages, firstly, once the ion is inside the

junction region, it will inevitably gain a set amount of energy as it rolls down

the potential hill from region e to i. From figure (DC9 stability), we observe

that the final kinetic energy plateaus at 2.5 eV. This is a factor of 2 greater

than that from the default protocol. In addition, due to the large imbalance in

the potential of electrodes 8 and 9, the ion will not sit at the RF node at i and

will therefore experience severe micro-motion.
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The third observation is protocols obtained by perturbing electrodes 9 and

16, each has one region of consistent stability. On the other hand, the protocols

obtained via perturbations on electrode 8 and 17 have no such clear region of

stability. The reason for this is that once the ion has crossed the RF hump,

the axial confinement in the x direction abruptly decreases. This occurs at

y = −20µm. At this point, the ion is much nearer to electrodes 8 and 17

as compared to electrodes 9 and 16. This means that the motion of the ion

inside the junction strongly depends on the voltage of these two electrodes in

an unstable manner.

4.1.3 Adiabaticity of Corner Shuttling

It is apparent from section 4.1 that turning the corner in the T-trap is non-

adiabatic. The non-adiabaticity stems from the moment when the ion just

overcomes the rf hump. Once the control electrodes provide sufficient pushing

potential gradient, the ion abruptly rolls down a potential hill into another

minimum in the middle of the junction. However, in order for a shuttling

protocol to be adiabatic, the ion needs to be near the minimum of a strong

harmonic potential at all times. Therefore, the corner turning protocol is non

adiabatic.

One potential solution to this problem is to use the junction electrodes to

swamp the effect of the rf hump. This can be achieved by using large enough

static voltages. I.e. electrodes 9, 16, 4, and 5 need to be held high compared

to electrode 8 and 17 throughout the shuttling process from region d to the

junction region e.
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However, the stability analysis in section 4.1.2 shows that the shuttling pro-

tocol will fail if the voltages on 9 and 16 are high when the ion is inside the

junction region. It is therefore likely that new ion trap junction geometries

which reduce or eliminate the rf hump will be needed to implement adiabatic

corner turning.

4.2 Shuttling around the Corner the other way

The shuttling sequence from trapping zone i to trapping zone d is similar to the

shuttling protocol from zones d to i. As such, there are two steps to execute

such a shuttling protocol.

1.) We need to use the control electrodes to overcome the rf hump and

shuttle the ion into the junction.

2.) From the junction region, we guide the ion into its final trapping position.

This shuttling protocol is obtained by spatially reflecting the shuttling pro-

tocol that brings the ion from zone d to zone i about the line joining electrodes 8

and 16. Thus we swapped the time dependent voltages on the critical electrodes

in the following manner.

9 ↔ 17 (4.4)

10 ↔ 6

11 ↔ 7

8 ↔ 8

16 ↔ 16
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Electrodes 8 and 16 keep the same time dependent voltage profile.

We thus begin with a trap at region i with secular frequencies

ωx ≈ 0.7MHz (4.5)

ωy ≈ 4.5MHz (4.6)

ωz ≈ 4.2MHz (4.7)

Electrodes 10 and 11 ramp up via a hyperbolic tangent profile to 200V. This

provides a pushing force into the junction region. Simultaneously, we raise

electrodes 8 and 9 from −4V to ground and lower electrodes 16 and 17 from

35V to −4V . The configuration of these four electrodes provides an effective

potential gradient that sucks the ion from its starting point between electrodes

8 and 9 into the junction region. Again, as the voltages gradually change, the

ion slowly moves closer to the junction and at the 15th clock cycle, gets stuck

behind the RF hump for 1 clock cycle. This can be seen in Figure 4.10 as the ion

gets stuck behind the rf hump at x = 200µm. We note that the micro-motion

of the ion severely increases during this clock cycle, further indicating that the

ion is pressed up against the rf hump. Up till this point, the ion’s kinetic energy

increases monotonically from 0 to approximately 0.02 eV.

At the 16th clock cycle, the potential gradient abruptly becomes sufficient

to overcome the rf hump and the ion rolls down a potential hill into the junction

region. The ion takes approximately one micro-second to roll down the hill and

gains approximately 1eV of kinetic energy in the process.

Once inside the junction region, the ion is free to make large scale oscillations
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due to the small electric fields in the junction region and the kinetic energy it

acquired in overcoming the rf hump. During this time, the ion can access regions

d, e and f .

To complete the shuttling sequence, we ”catch” the ion by ramping the

voltages of the control electrodes into the final trapping configuration in a single

clock cycle, again we denote this clock cycle as tcatch. Electrodes 8 and 17 drop

to approximately -15V and electrodes 9 and 16 ramp up to approximately 10V.

This results in the final trap at region d with secular frequencies

ωx ≈ 5.0MHz (4.8)

ωy ≈ 0.6MHz (4.9)

ωz ≈ 3.6MHz (4.10)

Ideally, the tcatch step should occur when the ion is in region d, in this way,

the ion gains no further kinetic energy from step 2. Thus in the design of our

shuttling protocol, we allowed easy adjustment of the value of tcatch.

4.2.1 Experimental results

Using the above mentioned control voltage protocol, we shuttled the ion around

the corner from zones i to d. The success of this shuttling protocol was only

98% (118 attempts). Unlike the forward shuttling protocol, this corner turning

protocol could only be run at a maximum of 1800 clock cycles per second. Recall

that the fastest shuttling time from d to i is limited by the hardware. The fastest

time from i to d was therefore to the order of 20 ms. At any higher output rate,
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Fig. 4.9: Plot of time voltage profile of salient electrodes to shuttle the ion from the
top of the T to the stem of the T.

Fig. 4.10: Plot of x component of ion’s motion as it is shuttled from the top to the
Step. The zoom in shows the x motion as the ion is pushed up against
the hump. Again, the position of the rf hump can be seen by the dra-
matic increase in micro-motion of the ion once the ion reaches the point
x = 220µm. After the ion crosses the RF hump barrier, it rolls down the
potential hill. The ion then oscillates wildly between regions d, e and f .
Finally, the ion is caught by the tcatch step. (Not shown in Figure)
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the ion failed to turn the corner. Refinements to the voltage sequence may allow

for faster shuttling times.

Running the shuttling protocol for various values of tcatch, we find that tcatch

can range between 25 to 42.

4.2.2 Time Reversibility of Shuttling Protocols

The shuttling protocol that had the most success shuttling the ion from i to

d was a spatial reflection of the shuttling protocol from d to i and not a time

reversal. The time reversal of the shuttling protocol failed at every attempt and

variations of this time reversal yielded a success rate of at best 60%. As Newton’s

equations are time reversible, we would initially expect a time reversed shuttling

protocol to work just as well as the original shuttling protocol. Therefore, the

low success rate of this protocol is surprising.

However, once we take into account initial conditions, the apparent discrep-

ancy is resolved. When starting the corner-shuttling protocol, the ion is laser

cooled and therefore is at rest at a potential minimum. However, if we are to

shuttle the ion from i to d via a time reversed voltage sequence, the initial con-

ditions must match the ending conditions of the ion after being shuttled from d

to i. Therefore, we must introduce a velocity in the starting condition or equiv-

alently a displacement from the initial trap potential minimum. Obviously this

is not possible and therefore, simply time reversing a voltage protocol will not

in general yield a successful shuttling protocol.
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4.3 Composite Protocols For Arbitrary Two Dimensional

Control of Trapped Ions

With corner turning, linear shuttling and separation and recombination, we

now have all the modules to create any arbitrary shuttling sequence in a 2

dimensional array of ion traps. We therefore experimentally demonstrate this

by swapping the position of two ions in the T-trap.

We begin by trapping two different Cadmium isotopes in trapping zone d.

The ion who’s resonance is nearer the detection laser frequency is denoted ion

B and thus appears brighter than ion A. We may therefore distinguish the two

ions. This corresponds to the panel ”Starting point” in Fig.4.11.

Next, we linear shuttle the two ions into trapping zone b and separate the

ions such that ion A is in zone a and ion B is in zone c. We linear shuttle ion

A into zone d and this corresponds to ”Step 1” in Fig.4.11.

Ion B then turns the corner into region i. This corresponds to ”Step 2” in

Fig.4.11.

At ”step 3”. We linear shuttle Ion B from i to k. Then linear shuttle Ion

A from a to d. Note, we cannot do both linear shuttles simultaneously since

electrode 8 is required for both shuttling processes.

Ion A now turns the corner into region i. We then linear shuttle Ion A into

region h. This process is equivalent to turning the corner from d to f and then

linear shuttling from f to h, however, due to the possible electrode misalignment

or a stray field, we cannot do this process in the more direct manner. After this,

we linear shuttle Ion B from k to i. This corresponds to ”Step 4” in Fig.4.11.
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Fig. 4.11: Panels show video capture of swapping sequence. The swapping protocol
is divided into a series of 8 steps corresponding to the eight panels in the
figure. Each step corresponds to a point in time in the shuttling sequence
where there is at least one ion in zones d or i. Every step consists of one
or more shuttling modules. The shuttling modules within each step are
run automatically without any time lag. On the other hand, each step is
initialized by the experimenter. There is therefore, a short time lag, 1s
between each run step. This is to allow one or both ions sufficient time to
be laser cooled before executing the next step. These pauses are important
in the steps where corner shuttling takes place, i.e. steps 2, 4, 5, 6. Without
these time lags, the ion has insufficient time to be laser cooled causing the
corner shuttling protocols to be unreliable.
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We then corner shuttle ion B from i to d. This is ”Step 5” in Fig.4.11.

In ”Step 6”, we first linear shuttle Ion B into trapping zone a. Next we

linear shuttle Ion A from h to f and then corner shuttle back to d.

Finally, we linear shuttle Ion A from d to c and recombine the two ions

at region b. We then linear shuttle the two ions from b to d. We have now

successfully swapped the position of two ions in a single trap.

Altogether, we need 43 modules to create the swapping sequence. (Linear

Shuttling an ion between two adjacent zones is counted as one module. there-

fore, shuttling the ion from i to k consists of two modules.) This shows that

composite protocols can grow in complexity very quickly.



5. CONCLUSION

In this thesis, we outlined general strategies which allowed us to demonstrate

the efficient arbitrary control of atomic ions in a multidimensional trap was

demonstrated in the 11-zone, two dimensional ion trap array. In particular,

accurate and computationally efficient simulations of the ion’s classical motion

was crucial to the design of key shuttling protocols.

The arbitrary two dimensional control of ions could allow for an efficient

method to entangle arbitrarily positioned ions. In addition, our results, par-

ticularly in controlling ions around a junction also opens the door to more

topologically complicated ion trap quantum computer architectures.

Future work will attempt to experimentally characterize the acquired kinetic

energy through the shuttling protocols and to optimize the voltage sequences

to optimize efficiency and adiabaticity. In addition, future experiments will

characterize the coherence of a qubit after the various shuttling operations.
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