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Trapped ions have been a staple resource of quantum simulation for the past

decade. By taking advantage of the spin motion coupling provided by the Coulomb

interaction, trapped ions have been used to study quantum phase transitions of

highly frustrated spins, many body localization, as well as discrete time crystals.

However, all of these simulations involve decoupling the ion motion from spin at

the end of the experimental procedure. Here we present progress towards driving

bosonic interference between occupied phonon modes.

This thesis details a tool box for manipulating the motional states of a chain

of trapped ions. Taking advantage of spin motion interaction of tightly trapped

chains of 171Yb+ ions with two photon Raman transition, we show how to prepare

a specific number state of a given normal mode of motion. This is achieved without

traditional individual addressing but instead by using composite pulse sequences

and ion transport. This involves a stage of quantum state distillation, and we also

show preservation of phonon and spin coherence after this distillation step. This



Fock state preparation sets the stage to observe bosonic interference of different

phonon modes.

We use stimulated Raman transitions to create a parametric drive; this drive

will couple different normal modes of motion. To observe the bosonic nature of the

phonons, we preform a Hong-Ou-Mandel (HOM) interference experiment on two

singly occupied normal modes. We use the same spin motion coupling to read out

the spin states of individual ions as a witness for this interaction. We also describe

a process to use stimulated rapid adiabatic passage (STIRAP) to read out normal

mode occupation. The toolbox presented here will be useful for future experiments

towards boson sampling using trapped ions.
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Chapter 1: Introduction

The last century of physics has been one of great advancement in the under-

standing of macroscopic and microscopic processes. The advent of quantum the-

ory has lead to a deep understanding of physical systems that range in scale from

the inner workings of atoms to the inner workings of suns; modern society is full

of advancements created through better understanding of the effects of quantum

mechanics. For this alone, the importance of current quantum theory cannot be

overstated.

However, to study highly complicated many body quantum dynamics that

underlay important and practical applications of quantum mechanics, adequate tools

still remain elusive [1]. For example the natural catalysis that chemically fixes

nitrogen, is accomplished by simple bacteria and is one that, as a society, we spend

a vast amount of energy resources replicating. This process in integral to creating

the fertilizers necessary to grow food for the ever increasing world population. A

better understanding of this process might lead to a much more efficient way to feed

ourselves. This specific example is one of many that highlight the necessity for a

better understanding and implementation of tools that can be used to understand

complex quantum systems.
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The idea of using a well understood, controlled quantum system to study a

more complicated intractable quantum system goes back to Feynman [2]. To store

the full quantum mechanical description for a large many body state classically

would require a system to store 2N complex amplitudes; where a quantum system

would only need N well controlled quantum resources. In response to this idea,

a vast field of physics has developed to try and create and manipulate quantum

resources.

Trapped atomic ions have for some time been a workhorse of experimental

quantum information science and quantum simulation. The reason that atomic

resources are so attractive for these applications is that all ions are in principle

created equal, therefore ions make for very clean quantum systems which can be

used as the basis for quantum computation or quantum simulation. The resources

almost exclusively used in trapped ion quantum systems are the internal degrees of

freedom of the ion’s electronic structure. However, this is not the only quantum

resource available to us when trapping ions. The external degrees of freedom, if

they can be cleanly initialized and manipulated, represent an interesting resource for

quantum simulation and remain widely unstudied in the community of ion trappers.

In this thesis, I will outline a set of tools we have developed with our trapped

ion system to better manipulate and initialize these external degrees of freedom.

This is done with an eye towards performing a proof of principle demonstration of

bosonic interference using the phonon excitations associated with a chain of trapped

ions. The thesis is broken out in seven chapters,
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• Chapter 2: The basic theory of RF Paul traps; differences between macro-

fabricated and micro-fabricated traps. The normal modes of motion of a

trapped ion chain. It will also cover the incoherent atom-light interactions

which govern ionization, spin state preparation, spin readout, and Doppler

cooling.

• Chapter 3: Experimental apparatus including the vacuum system, the layout

of all of the optics from lasers to ions, as well as the optics used to image

ion florescence. The control loops that are used to lock various frequencies

and amplitudes throughout the lab are discussed, as well as a description of

the control electronics used to implement experimental sequences and collect

information about ion states.

• Chapter 4: Atom light interactions which we implement to drive coherent

operations. Including a toy description of Raman coupling via an excited state,

generalization of this model to 171Yb+ and mutli-ion chains. A description of

an adiabatic passage via the same laser fields is also discussed.

• Chapter 5: Description of the experimental procedure that we implement to

initialize and readout phonons, including data on our ability to prepare Fock

states of motion through composite pulse sequences and shuttling, as well as

our ability to distill these states through measurement.

• Chapter 6 : An example of photon interference and the observed Hong-Ou-

Mandel dip is discussed. Drawing an analogy with photonic experiments I de-

3



scribe how we intend to drive beam splitter-like interactions with the phonons

of our trapped ion chain.

• Chapter 7: Highlights some of the planned improvements, explaining how I

think these renovations of the experiment will help us reach our experimental

goals.

4



Chapter 2: Ion Trapping

2.1 Paul Traps

For the last two decades or more, ions have been used as cutting edge tools in

the development of quantum information processors as well as quantum simulators

[3–9]. One reason why ions are such a useful tool is that once confined, the atoms

are generally confined for substantial periods of time, this can be as much as several

days. This allows for repeated interrogation of the same ions. Another reason is that

each ion is identical, and unlike many other quantum systems being considered as

candidate qubits or quantum simulators, such as quantum dots or supper conducting

qubits, there is very little calibration of the qubit states themselves between different

experimental implementations1.

There are two ways in which researchers trap atomic ions, Penning traps and

Paul traps [10,11]. Penning traps rely on the cyclotron motion of charged particles

in a strong magnetic field to confine ions radially. Alternatively, Paul traps makes

use of only electric fields to confine atoms. All the work described in this thesis will

make use of Paul traps, specifically micro-fabricated linear Paul traps. I will spend

1The hyperfine splitting between the 171Yb+ clock states is the same for every laboratory
trapping Yb.
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Figure 2.1: Eight ions trapped in the apparatus discussed in this thesis, the dark
spaces are from ions which have been pumped to long lived dark states. These states
are efficiently re-pumped with the Raman laser we employ and in general are not
an issue for our experiments. This chain was constructed in a deterministic fashion
moving ions between zones in a micro-fabricated trap.

the next sections on the theory background of the Paul trap, then elaborate on the

distinctions between macro-fabricated and micro-fabricated traps.

2.1.1 Ion trap theory

One might naively assume that by appropriately shaping direct current (DC)

potentials one would be able to create a potential minima in space that a charged

ion would find confining. Unfortunately, this of course violates Earnshaw’s theorem.

∇ ·E = 0 (2.1)

Which is to say that static electric fields will only have maxima or minima at

locations of charge density and that in free space there can be no local maxima or

minima of the field. The way ion trappers get around this is by applying oscillating

electric fields. Instantaneously, these fields do not violate Earnshaw’s theorem, but

if the frequency of oscillation can be made large enough, such that an ion experiences

a time average minima of the field, it will be trapped.

6



Figure 2.2: The copper colored rods here carry the RF potential, the brass colored
rods act as grounds for the RF voltage and the needles in blue, which act as “end-
caps”, supply a large DC field in the axial direction of the trap. With these electrodes
one can achieve three dimensional confinement.

The way this is accomplished is by creating a saddle point potential between

four electrodes which have spatial extent along an axial direction, ẑ. Two of these

electrodes carry radio frequency power (RF) and are diagonal from each other, the

other two electrodes are grounded. This sets up an oscillating qudrapole field at

the center of these electrodes along the axis ẑ of the trap. The radial escape route

of an ion sitting in the center of this quadrupole is rotating as the RF electrodes

oscillate between positive and negative cycles. An ion experiences a radial saddle

point potential of the form [3],

Φx,y =
VRF

2
cos(ΩRF t)

(
1 +

x2 − y2

R2

)
(2.2)

Where R is the characteristic distance of the trap, for RF traps this is the

7



Figure 2.3: By applying oscillating RF fields between diagonal rods with grounded
rods adjacent to these rods sets up an oscillating quadrapole at a point equi-distant
from all the rods along ẑ. If this quadrapole oscillates fast enough trapped charges
will see harmonic confinement radially from this point.

distance to the RF rail, VRF and ΩRF are the voltage and driving frequency of the

RF. To confine ions along the ẑ axis, so called “end-cap” electrodes are placed at

the ends of the four electrodes forming the quadrapole field. By applying voltages

to these electrodes one can create harmonic confinement along the axial direction

of the trap. The potential takes the form,

Φz = U0

(
z2 − x2 + y2

2

)
(2.3)

We can verify that by looking at the total potential Earnshaw’s theorem is

still satisfied. The total potential is give by,

Φtotal =
VRF

2
cos(ΩRF t)

(
1 +

x2 − y2

R2

)
+ U0

(
z2 − x2 + y2

2

)
(2.4)

This gives an electric field with the following form which we can evaluate to

verify that Earnshaw’s theorem is still satisfied with the total potential,

8



E = −∇Φtotal (2.5)

= VRF cos(ΩRF t)

(
yŷ − xx̂
R2

)
+ 2U0

(
xx̂+ yŷ

2
− zẑ

)
(2.6)

∇ ·E =

(
VRF

2
− VRF

2

)
cos(ΩRF t) + 2

(
U0 + U0

2
− U0

)
(2.7)

= 0 (2.8)

From this equation for the electric field we can determine the force, F = qE,

and the equations of motion, r̈i − Fi
m

= 0,

ẍ+

[
eVRF
mR2

cos(ΩRF t) +
−eU0

m

]
x = 0 (2.9)

ÿ +

[
−eVRF
mR2

cos(ΩRF t) +
−eU0

m

]
y = 0 (2.10)

z̈ +

[
2eU0

m

]
z = 0 (2.11)

Notice that all of these equations can be cast in the form of a Mathieu equa-

tions, r̈i + Ω2

4
[ai + 2qi cos(ωt)] ri = 0, where the values of the unitless parameters ai

and qi define regions of trap stability. We can solve the Mathieu equations, and for

our purposes by keeping ai and qi � 1, we can achieve a stable trap. The radial

solutions to the Mathieu equations take the following for.

9



ri = Ai cos(ωit+ φi)

[
1 +

qi
2

cos(ΩRF t) +
q2
i

32
cos(2ΩRF t)

]
(2.12)

+ Aiβi
qi
2

sin(ωit+ φi) sin(ΩRF t) (2.13)

Where Ai depends on initial conditions and βi ≈ (ai+
q2
i

2
)1/2, βi can be related

to the secular frequencies ωi by the relation ωi = βi
ΩRF

2
. By defining these unitless

parameters in terms of the above trap parameters, we can also relate them to the

secular frequencies of the trap.

ax =
−4eU0

mΩ2
RF

qx =
2eVRF
mR2Ω2

RF

ωx =
eVRF√

2mR2ΩRF

(2.14)

ay =
−4eU0

mΩ2
RF

qy =
−2eVRF
mR2Ω2

RF

ωy =
eVRF√

2mR2ΩRF

(2.15)

az =
8eU0

mΩ2
RF

qz = 0 ωz =

√
2eU0

m
(2.16)

By controlling these parameters, we can affect the ion spacing and frequen-

cies of the normal modes of motion. It is important to directly fix some of these

parameters because of the direct impact on mode frequency. The next subsections

will discuss some of the differences between macro- and micro-fabricated ion traps.

2.1.2 Macro-fabricated traps

The more traditional traps which are still the main workhorses of most ion

trapping laboratories are what are known as macro-traps. In the ion trapping labo-

10



ratories at the University of Maryland we, almost exclusively, use blade traps [12–14];

where the four rods of the canonical Paul trap are formed by four thin segmented

blades. Two of these blades carry RF voltage to the trap, the other two have DC

potentials applied to their segments. These electrodes act as “end-caps” and this

segmentation allows for some shuttling of ions. Although, these procedures are quite

limited due to the small amount of segmentation. When they have segmented DC

electrodes, macro-traps tend to have only a few trapping zones. These traps usually

have dimensions on the scale of inches and are generally constructed by hand in a

laboratory setting. The ion to trap electrode distance can be quite small, on the

order of 100 µm. The greatest benefit of traps like this is that they have extremely

large well depths. The typical macro-trap can have well depths of approximately 10

eV, which corresponds to a temperature of 1 · 105 K, these traps have been known

to hold ions for weeks at a time.

The primary disadvantage of traps like this is that they are not scalable. If

one really wanted to build a large scale quantum information processor, they would

need thousands of ions or ion chains in separate traps coupled together [15, 16].

Holding progressively longer chains of ions in a single trap will eventually be limited

by vacuum and is therefore inherently unscalable. Coupling separate traps together

has promise, however if all of these traps need to be built by hand, where each trap

will be different and those differences need to be calibrated away, this also seems

like a no-go situation. That begin said, all of the most cutting edge work on high

fidelity gates [17], quantum simulation [18], or large entangled states [7] are still

performed on these traps.
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2.1.3 Micro-fabricated traps

Figure 2.4: By laying out the rods of the traditional Paul trap one can make a trap
where all electrodes are in one plane and the oscillating quadrapole potential lies
above the plane.

In contrast to the macro-fabricated traps of the previous section, micro-fabricated

traps were designed with the idea of scalability specifically in mind. For our pur-

poses, a micro-fabricated trap will be any trap which was produced in a CMOS

like foundry. In particular, this experiment has only used traps which consist of

etched metal features on silicon resulting in a planar geometry2. The general four

wire geometry we described earlier in this chapter for larger ion traps still applies to

micro-fabricated traps, however the geometry of electrodes is clearly modified. Con-

sider the same four rods as before but instead lay them out in a single plane, insert

2That is not to say that more symmetric three dimensional geometries are not considered micro-
fabricated [19], only that they differ so slightly from the macro-fabricated traps that the theory of
operation is essentially the same [20].
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Figure 2.5: Simulation of the pseudo-potential above the micro-fabricated trap we
currently are using, the color scale is in meV This null is found approximately 60
µm above the trap surface and is 60 meV deep. The orientation of the cross hairs
indicates the direction of the RF principal axes.

a DC electrode between the two RF electrodes, and assume that at infinity above

the surface there is a grounded plane. There will be a quadrapole potential, just as

before, above this plane [21]. If we flatten out these electrodes we have a standard

planar ion trap. The pseudo-potential tube is now located above the surface and

extends along the electrodes. Any or all of the DC electrodes can be segmented to

apply harmonic confinement along the axis.

The obvious advantage of traps formed in this way is that it allows for very

small structures to be built into the trapping architecture. The electrodes them-

selves can take on rather exotic shapes, and although this must be taken into account

when modeling the trap, there have been quite a range of novel architectures fabri-
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Figure 2.6: Simulations of our trapping structure showing the transverse confine-
ment as a function of the axial position along the trap, color scale in meV. By
shifting voltages on the DC electrodes this potential can be moved anywhere along
the ẑ axis.

cated into micro-fabricated ion traps. This includes slots to have laser beams pass

through the trapping structure [22], mirrors both concave [23,24] and diffractive [25],

junctions to send ions along different arms of crossed linear traps [26,27], as well as

microwave wave guides to couple atoms to near-field microwaves [28]. The discus-

sion of the particular trap used for these experiments is left to the next chapter. In

particular, having many electrodes which are small in extent allows for fine control

of the DC potential. This gives us the flexibility to adjust ion spacing as well as

modify the harmonicity of the DC potential. This allows us to make ions equally

spaced, or spaced widely apart to help in imaging individual ions. In general this

is more difficult for macro-fabricated traps where there are a limited number of

electrodes and they are far away, this in particular makes creating anharmonic DC

potentials more challenging.
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Figure 2.7: Florescence image of four equally spaced ions, achieved by adjusting the
proportion of harmonic and anharmonic terms in the axial potential. The four ions
are mostly imaged onto 4 circular spots onto the camera, however the residual light
around these spots highlights imperfections in the imaging system.

The biggest problem for micro-fabricated traps also is that the trapping struc-

tures are so small, which limits the transverse confinement and the well depth that

can be achieved, and increases the heating rate. Because the structures that form

the RF electrodes are separated from adjacent ground planes by approximately 4

µm, at high enough voltage the RF will arc to ground. This process is violent and

can destroy the RF electrode. This puts a hard limit on the maximum amplitude

of the RF voltage that can be applied, which is directly proportional to transverse

trap frequency.

The RF potential of micro-fabricated traps is generally not as symmetric as

macro-fabricated traps, because of this it is harder to have a strong quadrapole

field. The strength of the field can be thought of as the depth of the radial con-

finement. Generally these traps have well depths of < 100 meV, for comparison

that corresponds to a temperature of 103 K. This means that ions routinely can be

boiled out of the trap due to collisions or general heating. The lifetime of chains in

micro-fabricated traps rarely exceeds days as opposed to weeks in the their macro-

fabricated counterparts.

The heating of ions is made especially worse in micro-traps because of the so
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called “anomalous heating rate”, which has been found to scale approximately as

1/R4 [29], where R is the distance away from the nearest trapping surface3. With

electrodes so close to the ions this problem has limited the acceptance of micro-

fabricated traps in the community up until fairly recently.

2.2 Normal Modes

The external quantum degrees of freedom we are trying to initialize and ma-

nipulate are the excitations of the normal modes of motion of the ions. In the

low excitation limit, we can think of these excitations as bosonic particles known

as phonons. This thesis will describe the progress we have made in controlling

the number states of these phonons. It is therefore necessary to discuss how these

normal modes of motion arise in our physical system. In the previous section we

derived harmonic confinement in all three dimensions resulting from voltages ap-

plied to electrodes. To determine the collective modes of motion of the ion chain we

should balance this restoring potential with the Coulomb repulsion between ions.

Let us consider the full Hamiltonian for an arbitrary number of ions [30]

H = K + V (2.17)

=
N∑
i

3∑
j

p2
i,j

2m
+

1

2
mω2

i,jq
2
i,j +

∑
i,k

e2

4πε0

1

di,k
(2.18)

3 To be clear this distance can be quite similar to macro-fabricated traps, however the well
depth is so much lower that this heating rate can adversely effect ion lifetimes.
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Where qi,j is the canonical position not the equilibrium position. The sum

over j is a sum over the different trapping directions, i and k are sums over the ions,

and di,k is the distance between ions i and k. We will assume here that ω{x,y} � ωz;

this ensures that ion equilibrium positions will lie in a line along the ẑ axis of the

trap. We need to calculate
[
∂V
∂qz,i

]
q0
z,i

= 0 to determine the equilibrium positions of

the ions along this line.

0 = mω2
zzi −

i−1∑
k=1

e2

4πε0

1

|zi − zk|2
+

N∑
k=i+1

e2

4πε0

1

|zi − zk|2
(2.19)

= zi +
e2

4πε0mω2
z

(
N∑

k=i+1

1

|zi − zk|2
−

i−1∑
k=1

1

|zi − zk|2

)
(2.20)

= uid0 +
e2

4πε0mω2
z

1

d2
0

(
N∑

k=i+1

1

|ui − uk|2
−

i−1∑
k=1

1

|ui − uk|2

)
(2.21)

= ui +
N∑

k=i+1

1

|ui − uk|2
−

i−1∑
k=1

1

|ui − uk|2
(2.22)

This equation can be numerically evaluated for any number of ions to de-

termine their equilibrium positions along the axial trapping direction. We de-

fine the unitless length ui = zi
d0

with the characteristic distance between ions,

d0 =
(

e2

4πε0mω2
z

) 1
3
. If we expand the potential to second order in a Taylor expansion

about these equilibrium positions, in any direction, we can calculate the normal
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modes of motion in that direction. More formally, we write the Lagrangian,

L = K − U (2.23)

=
N∑
i

1

2
m ˙̃q2

i,j −
N∑
i,k

q̃i,j q̃k,j

[
∂2V

∂qi,j∂qi,k

]
{q̃i,j q̃k,j}=0

(2.24)

where once again i and k are sums over ions and j is an index representing the

direction of the motion. The q̃i,j are small amplitudes of motion about the ion

equilibrium positions, we evaluate the second partial derivative, ∂2V
∂qi,j∂qi,k

, where these

terms are zero. If we define a matrix Ai,k that describes the collective coupling of

the ions

L =
N∑
i

1

2
m ˙̃q2

i,j − ω2
j

N∑
i,k

Ai,kq̃i,j q̃k,j (2.25)

and has matrix elements of the form,

A
{j}
i,k =



(
ωj
ωz

)2

+
∑N

l=1,l 6=k
1

|uk−ul|3
if i = k

1
|uk−ui|3

if i 6= k and j ∈ x, y

−2
|uk−ui|3

if i 6= k and j ∈ z

(2.26)

We can solve for the eigenvalues of this matrix to determine the normal mode

frequencies, and we can solve for the eigenvectors of the matrix to determine the

relative amplitudes of normal mode motion at a given ion. In general this eigensys-

tem must be solved numerically. For a system of three ions, which will be presented

extensively later in this work, the transverse eigenvectors are found to be,
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b0 =

1

1

1

 b1 =

 1

0

−1

 b2 =

−1

2

−1

 (2.27)

We will see the relative Rabi rates will vary based on the relative amplitudes

of motion when we couple the spin states of each ion in a three ion chain to these

various modes of motion.

Figure 2.8: Relative amplitudes of motion of each normal mode in a three ion chain
based on Eq 2.25.

2.3 Yb Ions

Choosing which ion to trap is a challenging selection, and depends highly on

the type of physics to explore. In the case of our experiment, the choice of Yb

was natural because of its internal structure. Ionization can be achieved through a

two photon process involving two commercially available diode lasers, 399 nm and

369 nm. There is a nearly closed-cycle cooling transition on one of the same lines

used to ionize. To optically pump the ion spin state into an |F = 0,mF = 0〉 qubit

state of a clock transition between long lived, magnetic field insensitive hyperfine

ground states we can use the same light we use for cooling, at 369 nm. The leak in

the closed cooling cycle is readily plugged with an infrared diode laser at 935 nm.

These three laser constitute all the necessary light for the incoherent interrogation
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of 171Yb+. With these lasers we can cool, optically pump, and readout the ion spin

state [31].

The coherent manipulation of the clock transition can be achieved in two ways,

with direct microwave fields at 12.64 GHz or with a 355 nm pulsed laser. The later

is routinely used in an industrial setting and is nearly turn-key. One of the only

downsides to Yb is that its large mass means that transverse mode frequencies are

reduced for the same RF drive frequency and voltage. This problem is pronounced

in a micro-fabricated trap setting where the RF voltage is severely limited due to

the size of the trapping structures. However, this disadvantage is far outweighed by

the advantages provided by the internal structure of 171Yb+. It is routinely shown

that driving coherent spin flips with Raman transitions between clock states can

maintain coherence times of up to a large fraction of a minute with very minimal

effort. The longest coherence times achieved between these levels are measured

to be approximately 10 minutes [32]. Because this process is dependent on the

beatnote between two beams we only need to care about the microwave coherence

of the beatnote, at 12.64 GHz, which can be much easier to maintain than optical

coherence, in the THz regime.

2.3.1 Ionization

Atoms leaving the atomic source are generally still neutral, but for the the RF

quadrapole to trap them they must first carry some intrinsic charge. This can be

achieved by a handful of methods; bombardment with electrons from an electron
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Figure 2.9: Energy levels of the internal structure of 171Yb+. This diagram also
gives branching ratios and lifetimes for the various excited states.

gun, charge exchange from an already trapped ion, or through photo-ionization.

Photo-ionization is the cleanest of these methods as it does not require electrons

thrown at the trapping structure or an already trapped ion obtained through some

unknown process. It also allows for isotope selectivity by making use of the isotope

shifts in the photo-ionization resonances.

In Yb this ionization is particularly easy. There exists an S to P transition

in the neutral atom at 399 nm, at which point the 369 nm laser which will be used

for Doppler cooling can excite the P state to the continuum [33]. In our system we

take care to align the 399 nm laser as perpendicular as possible to the atomic flux

to minimize Doppler broadening effects and maintain the highest degree of isotope

selectivity. This allows us to determine which atoms are ionized by tuning the

frequency of the 399 nm laser [34]. This is important when trying to load chains,
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Figure 2.10: Energy levels relevant for ionization of neutral Yb.

because laser cooled ions of one isotope can sympathetically cool ions of a different

isotope, therefore if all isotopes are being ionized, pollutant ions can be trapped

along with the desired 171Yb+ ions we will use for our experiments. Although this

could be used as a resource, if the loading of other ions is not controllable this can

be problematic; for example the frequencies and eigenvectors of the normal modes

will all change because there would be unequal masses in the chain.

2.3.2 Doppler Cooling

Atoms entering the trapping region from the atomic source have a high velocity,

comparable to or greater than the trap depth. When ions are in such high orbits of

the trap, collisions with background gasses can cause the ions to undergo heating

from the RF drive. We therefore need to cool the ions down closer to the ground

state of the trap for them to remain in the trap. This is done by Doppler cooling
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the ions on the nearly closed-cycle S1/2 to P1/2 transition.

S1/2
2

P1/2
2

F=1

F=1

F=0

F=0
12.64 GHz

2.105 GHz

Figure 2.11: To scatter as many photons as possible we send in light with all polar-
ization components and apply sidebands to the 369 nm light to bridge the ground
and excited state hyperfine splitting. The blue arrows represent the states con-
nected via dipole allowed transitions driven by laser light. The grey bars represent
the possible spontaneous decay paths from those excited states.

The mechanism for this cooling works by detuning the addressing 369 laser

red (lower frequency) of the transition. Due to the Doppler effect, atoms moving

counter propagating to the laser k-vector absorb photons preferentially. In so doing

the ion receives an h̄k momentum kick, associated with the photon momentum, in

the direction opposite to the atom motion [35, 36]. Once the photon is absorbed,

the excited state has a lifetime of τ = 9 ns before the photon is re-emitted into 4π

of free space. The probability to emit a σ̂ or a π̂ photon is equally probable, when

cooling we scatter from all of the excited states. Therefore, over many scattering

events this acts to dissipate the atom motion in one direction into 4π, decreasing the

atom motion in a direction which overlaps with k of the laser. Because the ions are

harmonically trapped, as long as the k vector has overlap with all three principle

axes of the trap this will cool the ions in all three dimensions. The rate at which
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photons can be scattered from this transition is given by [35,36],

Γ =
Γ0

2

s

1 + s+ (2∆
Γ0

)2
(2.28)

Where Γ0 is the natural linewidth of the atomic transition, in this case Γ0

2π
= 19.7

MHz, ∆ is the detuning from the transition which is generally set to Γ
2
, and s is

the saturation parameter. The saturation parameter is given as the ratio of laser

intensity to the saturation intensity Isat. The saturation intensity is given by [35],

Isat =
πhcΓ0

3λ3B
(2.29)

The branching ratio, B is approximately 0.995 for this transition, therefore on av-

erage all but one scattering event in 200 results in the atom returning to the 2S1/2

manifold. This is important because this method of cooling relies on scattering

many photons.

In the case of 171Yb+, this is complicated by a low lying D3/2 state. After

200 scattering events the ions internal state can decay to this D3/2 state which

has a lifetime of 53.2 ms, long enough to sorely limit cooling and long enough for

background gas collisions in chains of substantial length to have deleterious impacts

on the chain lifetime. To close this leak, a re-pumping laser at 935 nm is employed

to excite ion population from the D3/2 to an excited [3/2]1/2 bracket state which has

a high branching ratio back to the S1/2 manifold, B = 0.982, and a short lifetime

38 ns.
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This method of cooling is limited by the linewidth of the atomic transition

being used. The limit is known as the Doppler limit, in terms of average kinetic

energy it is given by Ekinetic = h̄Γ
4

[35]. Expressed as the thermal population of the

harmonic oscillator modes, the average phonon occupation is given by, n̄ = Γ
4ω

. This

second limit tells us that the best Doppler cooling, for our trap parameters, will

still have a thermal occupation of n̄ ≈ 5. To cool to the ground state, we must use

sub-Doppler cooling through coherent operations4.

The cooling is further complicated by additional Zeeman and hyperfine struc-

ture. The hyperfine structure requires additional frequency components be applied

to both the re-pump and the cooling laser light to bridge the hyperfine splitting

between the ground state and excited state hyperfine manifolds. For cooling, this

means applying 14.7 GHz sidebands to the 369 nm light, and for the re-pumper.

3.07 GHz sidebands must be applied to the 935 nm laser5.

Because the the ground state S1/2 |F = 1〉 manifold has three-fold degener-

acy and through cooling we couple these states to the P 1/2 |F = 0〉 excited state,

which has a degeneracy of one, after several cooling cycles the ions spin state will

be pumped to a coherent dark state of the 2S1/2 Zeeman states. This dark state will

have no excitation probability to the 2P1/2 |F = 0〉 excited state. In fact because

Jf = Ji− 1 there are are always two coherent dark states for any static polarization

of laser light [37]. This effectively turns the ion transparent to the cooling light.

To resolve this problem we apply a magnetic field, which acts to define a quanti-

4Discussed in depth in section 5.1.
5Described in detail in section 3.2
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zation axis as well as to break the degeneracy of the Zeeman levels and destabilize

the coherent dark state [37]. In out case this magnetic field is approximately 5.1

Gauss. Care must be taken not to increase this splitting beyond the linewidth of

the transition so that a single addressing frequency can still drive transitions from

all of the Zeeman lines.

2.3.3 Spin Sate Initialization and Readout
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F=1

F=0
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Figure 2.12: The gray line shows the possible decay paths and one can see that there
is no connection to the spin down state.When detecting the spin state of the ion,
we want to scatter many photons without decaying to the |F = 0,mf = 0〉 ground
state.

Generally we define our qubit using the spin state of the ion as the occupation

of the the |mF = 0〉 states in the 2S1/2 ground state manifold, spin-down we define

as |↓〉 = |F = 0,mF = 0〉 and spin-up as |↑〉 = |F = 1,mF = 0〉. Resonant photons

can be scattered from the ions if the 369 nm laser is resonant with the transition

from the 2S1/2 |F = 1,mF = 0〉 ground state (spin-up) to the 2P1/2 |F = 1,mF = 0〉

excited state. The excited state in this case can only decay to the 2S1/2 |F = 1〉

manifold, therefore we can scatter many photons and look at histograms of collected
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photons to determine the population of spin-up vs. spin-down.
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Figure 2.13: To optically pump the ions we apply sidebands to the light to connect
the states joined by blue arrows, these states have decay paths shown as grey bars.
Because the |F = 0,mf = 0〉 state is not connected to the excited states via any
blue arrows but the excited states can decay, via grey bars, to this state; after on
average three scattering events the ion population will be pumped into this state.

To initialize these populations, we turn on a 2.105 GHz sideband on the reso-

nant light discussed above which can decay to the spin-down state6. However there

is no coupling out of the spin-down ground state. By turning on this sideband we

can efficiently optically pump the internal degrees of freedom of the ion to 2S1/2

|F = 0,mF = 0〉. This allows us to start with a pure spin state. This procedure

only takes three scattering events on average. The recoil momentum of a 369 nm

photon is much less than the secular frequencies of the trap, therefore it takes many

scattering events to introduce a quantum of excitation. This also allows us to use

this technique later to reinitialize spins for sub-Doppler cooling without inducing

very much heating.

6Described in detail in section 3.2.
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Figure 2.14: Average florescence of an ion as we gradually increase the time we
pulse on the frequency sidebands for optical pumping. As this time is increased it
becomes more likely that the ion will decay to the |F = 0,mf = 0〉 state and no
longer scatter any photons, this is seen in the decrease in ion florescence observed
at longer times.
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Chapter 3: Experimental Apparatus

The experimental apparatus can be broken down into several parts: the vac-

uum chamber, which is used to trap and store ions. The optics, which are used to

trap and laser cool ions, as well as collect the light scattered from the ions during

detection. The Raman laser, which drives coherent operations between the clock

states of the ions. Finally, the electronics and control system which orchestrates the

interplay of all of the dynamical process introduced by the other systems. In this

chapter I will go over each of these systems and their sub-systems in detail.

3.1 Vacuum Chamber

A fundamental limitation to the number of ions in an experiment that one can

achieve in a trapped ion quantum simulator or quantum information processor is

fundamentally linked to the quality of the vacuum in the chamber that houses the ion

trap. The longer the ion chain is, the higher the probability of collisions occurring

with background gases. When there is more than one ion in the trap, re-cooling

from such collisions can be extremely difficult because the ions push each other into

orbits of the trap which can actually drive ion motion non-conservatively until ions

begin to exit the trap. Usually when these collisions occur in large ion chains, the
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ion loss is catastrophic, resulting in only a single trapped ion after re-cooling.

Because of this, the trade off between the length of an experiment and the

length of the ion chain being used are strongly dependent on the quality of the

vacuum chamber. It is therefore paramount to achieve the best vacuum possible,

vacuum pressures commonly achieved are in the low 10−11 Torr range. This regime

is known as ultra-high vacuum (UHV), and achieving this level of vacuum requires a

great deal of care when assembling the vacuum chamber. Most importantly, before

any component is introduced to the vacuum side of the chamber it undergoes a

rigorous cleaning procedure.

In the case of the vacuum chamber discussed in this thesis this process con-

sisted of an ultra-sonic cleaning of all parts first in a bath of SimpleGreen and water,

to remove excess greases and hydrocarbons, followed by a bath of spectroscopic grade

acetone and finished with a bath of methanol. Once assembled the chamber was

baked, with blank steel flanges in place of the vacuum windows, at 200◦C for two

weeks. At this point the chamber was cooled down to room temperature, the trap

and windows were installed, and the chamber was baked again at 200◦C for eight

hours followed by two weeks at 180◦C1.

3.1.1 External Chamber Components

All external components are joined with metal to metal seals. In most cases

this means a ConFlat (CF) seal. This seal consists of two stainless steel “knife-

1This was done to be sure that surface effects would not damage the trap. For example if
there was any pinned Aluminum in the trap would not grow ‘whiskers’, needles of Aluminum that
grow out the planar surface, these ’whiskers’ can break through ground layers of the trap shorting
various trapping components. This is less of a concern for the trap we are currently using.
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Figure 3.1: CAD model of the vacuum chamber, labeling all of the relevant external
controls.

edges” on either side of the seal compressed into a copper gasket. This permanently

deforms the gasket to form the seal, and the chamber consists of many of these

CF components. The trap itself sits in the “spherical octagon” and all the wires

necessary for controlling a micro-fabricated trap exits through the 90◦ elbow on the

bottom 4.5” flange of the octagon. These wire are then routed out of the vacuum

chamber by D-sub connectors on the 4.5” four-way cross. Each feed-through flange

supports 50 wiring connections.

This four-way cross is attached to a five-wave cross that connects to all the

pumps and any additional feed-throughs. On the top of the cross is a 20 l/s ion pump

used to maintain the UHV conditions. On the bottom left there are connections to
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an NEG cartridge from SAES (CapaciTorr D 400-2). This pump is made of sintered

porous Zr-V-Fe alloy disks which have high pumping rates for Hydrogen gas as

well as active gases. Opposite the getter is a three-way cross which houses a nude

UHV ion gauge to measure the vacuum pressure in the chamber and a Titanium

sublimation pump, which works by coating the inside walls of the chamber with

Titanium, which is a very good getter.

At the back of the cross there is another 2.75” tee which we use to attach a high

current feedthrough for the oven connections. This tee is also used to attach an all-

metal valve which we open during the bake out procedure to pump out the chamber

with mechanical pumps. This is necessary when the chamber reaches atmosphere,

because the internal pumps cannot handle a large gas load. When cooling down

the oven during the bake out procedure we seal this value and turn on the internal

pumps. The valve has a CF gasket internally which is pressed into a “knife-edge”.

If this is done consistently at the appropriate torque this gasket is re-sealable. The

decision to make everything 4.5” in diameter was made to maximize the conductance

to the internal ion pump and any external pumps used for baking the system.

3.1.2 Internal Chamber Components

All internal components are chosen to have as low of an out-gassing rate as

possible, and whenever possible we refrained from using components which are com-

prised of organic or porous materials. Organics, like plastics, tend to have worse

out-gassing rates compared with properly cleaned ceramics or metals. Porous ma-
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terials can and will absorb the solvents used to clean them and then re-emit them

under vacuum conditions, which will limit the ultimate vacuum pressure achieved.

The internals of the vacuum chamber consist almost entirely of a wiring harness

that takes the connections from the trap electrodes to outside of vacuum.

In the spherical octagon, there are two groove grabbers that secure the stainless

steel wiring harness to the octagon. The trap assembly is plugged into a polyether

ether ketone (PEEK) socket, which is itself mounted to the wiring harness. All of

the 98 DC connections are routed out from the socket with 22 AWG kapton coated

wires; the RF connections2 are also made through this socket, however they are

directly routed out of the vacuum chamber via a 1.33” feed-through on the octagon

to minimize the length of the RF line. The socket is formed by two pieces of custom

machined PEEK, which captures 100 gold plated sockets that are crimped to the

ends of kapton wires. The PEEK has holes oriented so that a standard ceramic pin-

grid array (CPGA) can plug into the captured sockets. The trap that is discussed

in this thesis only has 48 DC electrodes, but this socket configuration is standard

across current ion trap foundries. In principle any micro-fabricated trap currently

available from GTRI, Honeywell, or Sandia can be plugged into this socket.

Besides the trap, the other major component internal to the vacuum chamber

is the Yb oven. We use an isotoptically enriched source of Yb that was purchased

from Oak Ridge National Labs. The oven is constructed from a tube of stainless

steel; one end of the tube is crimped shut and the other end is open. There are

2The RF lines constitute a current carrying wire and the current return which is connected to
the chamber at the resonator and to the ground plane of the chip.
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Figure 3.2: Schematic of the oven, the oven is set back from the trap by approxi-
mately 1 inch, the oven is an open aperture that sprays neutral Yb at the trap. The
small slot through the trap lets a relatively collimated beam of Yb into the trapping
region. The oven is supported by two stiff stainless steel wires of diameter 20 mil.

stainless steel wires spot welded to the exterior of the tube at either end, these

wires are bent to hold up the oven assembly. Each wire is wound around a gold

plated screw attached to a metal block; a kapton wire also attaches to the block and

is routed out of the vacuum chamber via a high current feed through. These wires

constitute the current and current return for the oven. When current is run through

the tube, it is resistively heated and sublimated Yb can exit the opening at the top

of the oven. This oven is pointed so that atom flux will be perpendicular to the trap

plane and directed at a small slot cut into the trap which will allow atoms to pass

through the trapping structure. The backside of the trap is coated with a grounding

layer and the gaps in-between electrodes are undercut to avoid sublimated Yb from

shorting the trap. This assembly is held by the stainless steel blocks which bolt
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around macor rods attached to the metal wiring harness, which allows the oven to

be thermally and electrically isolated from the rest of the chamber.

3.2 Optics

Almost all of the available adjustable parameters in this experiment are op-

tical. All the interrogation of atoms is done with lasers, and our ability to discern

anything about the atomic quantum states is determined by collected the light which

is scattered from them. Which is to say that this piece of the experimental appara-

tus is one is which we need the highest degree of accuracy and control. There are

three main tasks for which we use optical elements: ionize and the Doppler cool3 the

ions in the trap, image the light scattered from the ions to determine information

about their internal degrees of freedom4, and finally interrogate ions with laser light

to manipulate their internal degrees of freedom5. The following subsections will

describe the physical systems that achieve these tasks.

3.2.1 Cooling and Trapping Beam Paths

The Doppler cooling and ionization light is generated by external cavity diode

lasers. The 399 nm and 935 nm lasers are DL 100 Toptica lasers, and the 369 nm

laser was produced by MogLabs. The final laser we have is a 780 nm DBR laser

which is locked via a saturated absorption lock to a Rb spectroscopy cell. The 780

nm light provides a stable reference for a WSU-2 wavemeter from High Finesse.

3The theory of this is discussed in section 2.3.2
4The theory of this is discussed in section 2.3.3
5The theory of this is discussed in section 4.1.1
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This wavemeter is then used to lock the frequencies of the other lasers.

Figure 3.3: Optics for the the 399 nm laser the light is split out to a wavemeter to
read the frequency, a cavity to lock the frequency, and finally to the chamber to be
used as the first stage in photoionization

The 399 nm beam path is the most straight forward, and consists of an optical

isolator followed by several pelical beam splitters to route the light into various fiber

couplers. There is a coupler for a cavity locking setup, which in the future will be

used along with the other lasers in a scanning transfer cavity lock 6. Another coupler

brings approximately 20 µW of power to the wavemeter currently being used to lock

frequencies. An additional 700-900 µW of power is fiber coupled to the chamber.

Once at the chamber, the beam is focused to approximately w0 = 70µ m and is

directed perpendicular to the axial trapping direction, ẑ. The beam is then raised

60 µm to address atoms as they pass through the loading slot and cross the trapping

region.

The 935 nm laser is our 2D3/2 state re-pump laser, and also has a relatively

simple beam path. The laser passes through an optical isolator and then is split

into three arms see Fig 3.4, each going to the same assemblies as the 399 nm arms,

6See Appendix A for a more detailed discussion of locking schemes.
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as seen in Fig 3.3. The only difference is the light that gets directed to the chamber

first passes through a 3.086 GHz free space electro optical modulator (EOM) from

New Focus. This EOM introduces frequency sidebands on the light by modulating

the index of refraction of an internal crystal at an applied RF driving frequency.

Light passing through the crystal experiences shifts in the index of refraction at

this RF oscillation frequency, this imparts a time dependent phase shift to the

light, E(t) = E0e
i(ω0t+β cos(ωRF t). If we expand this in Bessel functions we get an

electric feild of the form, E(t) = E0

(
J0(β)eiω0t + J1(β)ei(ω0+ωRF )t − J1(β)ei(ω0−ωRF )t

)
[38]. This imparts frequency sidebands to the light at the drive frequency with a

modulation depth dependent on the applied RF voltage. This modulation allows us

to use one laser to re-pump all of the possible hyperfine states coupled between the

D3/2 and the [3/2]1/2 bracket state.

Figure 3.4: Optical setup for the 935 nm light The addition of the EOM is the only
difference from the 399 nm beam path, this EOM is from NewFocus and is used to
bridge the hyperfine splittings of the D3/2 and [3/2]1/2 states.

The final laser system is far more complicated. This is maybe unsurprising, as

this is the laser used to ionize, cool, and detect the spin state of the trapped ions.

The 369 nm laser is also a direct diode laser, it passes through an optical isolator at
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which point it is split into two paths, one that is subsequently split again to send

power to both the cavity as well as the wavemeter. The amount of power sent to

these paths is controlled by a waveplate and is varied to minimize the amount of

power directed to these arms.

Figure 3.5: Optical setup for the 369 nm laser. The 369 beam path is the most
involved, this path involves two acousto optical modulators (AOM) and two EOMs.
Both AOMs are from Brimrose and the EOMs are from NewFocus. The 7.14 GHz
EOM is to impart sidebands to drive all possible transitions to scatter the maximum
number of photons during cooling. The 2.105 GHz EOM is used to optically pump
the ions to the |F = 0,mf = 0〉 ground state.

The remaining power is split between two arms via polarizing beam splitter.

One arm passes through a 7.379 GHz free space EOM, from New Focus. This EOM

provides second order frequency sidebands at 14.758 GHz, the qubit splitting, 12.65

GHz, plus the hyperfine splitting of the 2P1/2 excited state, 2.105 GHz. This arm

is our Doppler cooling arm. These sidebands allow us to scatter photons from all

ground states7. Once light passes through this EOM, it is directed towards a double-

7Discussed further in Chapter 2
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passed acousto-optical modulator (AOM). We use a double pass configuration to

shift the frequency of the beam without shifting its position.

S1/2
2

P1/2
2

F=1

F=1

F=0

F=0
12.64 GHz

2.105 GHz

Figure 3.6: Re-print from section 2.3.2 for ease of reference. To scatter as many
photons as possible we send in light with all polarization components and apply side-
bands to the 369 nm light to bridge the ground and excited state hyperfine splitting.
The blue arrows represent the states connected via dipole allowed transitions driven
by laser light. The grey bars represent the possible spontaneous decay paths from
those excited states.

The AOM works by applying a running acoustic wave to an internal crystal,

whcih diffracts light as it passes through the AOM. The light will absorb the mo-

mentum, ±kacoustic, shifting the propagation direction and shifting the frequency

of the light to maintain energy conservation. Our 369 nm AOM systems are set up

to maximize the -1 order of diffraction. This beam is then sent through a λ
4

wave-

plate and onto a mirror at normal incidence. The light then passes back through

the whole assembly. The frequency of the light is shifted by twice the AOM drive

frequency but is not shifted in position. We set the frequency shift such that we are

red detuned from the 2S1/2 ↔2 P1/2 transition by 10 MHz for Doppler cooling the

ions. However, in the double-pass configuration we have the ability to easily tune

this frequency. Once the light hits the PBS that was directing it towards the AOM
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the polarization has been rotated 90◦ by passing through the λ
4

waveplate twice.

The beam then passes or reflects where previously it reflected or passed. This is a

common place technique in atomic physics experiments where the frequency of light

needs to be controlled quickly without affecting the final position of a beam.
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Figure 3.7: Scattered phtons from the S1/2 → P1/2 transition as a function of the
AOM frequency. By scanning the frequency of the detection AOM, we can scan the
S1/2 → P1/2 transition to determine where to tune the AOM frequency to maximize
scattered photons.

The other arm is similarly directed onto a free space EOM from New Focus,

operated at 2.105 GHz. This EOM, which we pulse on and off during the course of

an experiment, applies a sideband to the light at the hyperfine splitting of the 2P1/2

excited state. From this state the ion can decay to both the |F = 1〉 and |F = 0〉

ground state manifolds. This light will couple the |F = 1〉 ground state manifold to

the excited 2P1/2 state but does not couple the |F = 0〉 ground state to the excited

state, because this state is detuned by 12.64 GHz8. This sideband optically pumps

the ion spin state to the |F = 0〉 ground state, this is how we initialize the spin state

8Discussed in depth in section 2.3
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of our ions.

S1/2
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P1/2
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F=1

F=1

F=0

F=0
12.64 GHz

2.105 GHz

Figure 3.8: Atomic energy levels used to initialize the ion in a pure spin state we
make use of the hyperfine splitting in the ground state, we can decouple it entirely
from the resonate excitations of the upper hyperfine manifold. By scattering off the
F=1 manifold depicted in blue, ions can decay via the grey pathways to the F=0
ground state manifold, thus pumping the ion to the |F = 0,mF = 0〉 state.

This beam without the sideband works as our detection beam. When this side-

band is off, the light is resonant with the 2S1/2 |F = 1,mF = 0〉 ↔ 2P1/2 |F = 0,mF = 0〉

transition. The decay of this excited state has zero overlap with the 2S1/2 |F = 0,mF = 0〉

ground state, due to angular momentum selection rules. Therefore we can scatter

many photons from this spin state before it exits our qubit spin basis. This arm

also passes through an AOM which we use to shift the frequency of this transition

to optimize scattering. Once it has exited the AOM setup it is recombined with the

cooling beam on a PBS. Both beams are then directed onto the same fiber and sent

to the chamber.

Once at the chamber the light is split into two arms, each arm contains cooling,

pumping, and detection light. Each arm is focused down to approximately 30 µm

and is directed at 45◦ to the axial trapping direction, ẑ, to give an overlap with all
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Figure 3.9: Atomic energy levels used for detecting the spin state of the ion. The
gray line shows the possible decay paths and one can see that there is no connection
to the spin down state.

principal axes of the trap. One arm of this light is directed towards the loading zone

of the trap and the other is directed to the region where we couple the ions to the

Raman laser, these regions are separated by 250 µm.

3.2.2 Imaging system

To determine the spin state of ions, as previously described, we scatter photons

off of the 2S1/2 ↔ 2P1/2 transition. We then need to collect the scattered photons,

the more photons we collect the higher our confidence will be in the spin state

discrimination. This is complicated by off resonant coupling to the 2P1/2 |F = 1〉

manifold, which can scatter back to the 2S1/2 |F = 0〉 ground state manifold. For

fixed laser power and detuning, the longer we attempt to collect scattered pho-

tons, the higher the probability we will off resonantly scatter to the 2S1/2 |F = 0〉

ground state. Therefore, the faster or the more photons we collect the better the

discrimination will be between the spin-up and spin-down states.
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Figure 3.10: Histograms of collected photons when illuminated for 200 µs. The
red bars, in which we collected 15 average photons, indicates this ion is bright. The
blue bars indicates a dark ion. The intermediate photon numbers is indicative of the
cross talk we see between PMT channels. This histogram was taken with multiple
ions in different spin states in the trap. The shelf of low photon counts for the bright
ion is indicative of off resonant pumping to the 2S1/2 |F = 0〉 ground state.

Figure 3.11: Optical layout for the ion imaging system. The first set of 5 lenses is a
multi-element objective that has a working distance of approximately 25 mm and an
NA of 0.4, corrected for the vacuum chamber window thickness. The intermediate
image plane is focused back to either a mutli-channel PMT or a camera to image
ions. The final cylindrical lens is used to correct for astigmatism in the lens stack.
The distance between the two final spots shows the displacement of the images
formed by two ions separated by 50 µm at the trap yielding a magnification of 276

To collect photons we employ a multi-element objective which has an NA≈ 0.4

and a working distance of WD ≈ 25.8 mm. This objective forms an image plane 215

mm back from its last surface. This intermediate image is re-imaged with a doublet

of two LBF254-040-A f = 40 mm best form lenses from Thorlabs. This doublet forms
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Figure 3.12: Spot diagrams for object ions separated perpendicular to the imaging
axis. The purpose of this simulation is to determine what aberrations are induced
by trying to image more than one position of the trap simultaneously. Diagram (a)
shows the central ion, the black ring shows the Airy radius. The next spot diagram
is for an ion displaced by 1.5 µm from the first ion, a close adjacent ion in the trap.
The (c) image shows an ion displaced by 50 µm, the maximum distance we expect
to have an ion if we trap the largest chain we can image. The other important thing
to note is that the RMS radius of each spot is approximately 0.5 mm. This implies
that well imaged ions should fit on a single PMT channel.

an image onto a multi-channel PMT 680 mm back. The multi-channel PMT has

channels spaced by 1 mm, and the measured overall magnification of this systems is

M ≈ 200, there is a small discrepancy between the simulated and measured values9.

This requires the ions to be spaced by at least 5 µm for individual detection, and

in practice we use our ability to deform the axial potentials to space the ions out

by at least 10 µm so that there is a dead channel in-between channels imaging ions.

This reduces cross talk on the multi-channel PMT.

9This is measured by imaging trap features onto a scientific CMOS camera with known pixel
size.
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3.2.3 Raman Beam Path

The beam path for the Raman laser is the most critical, since the intensity of

this beam directly affects the coherence of our qubit transitions10. We use a Paladin

Compact pulsed NdYag laser from Coherent to generate these beams. This laser

is a tripled 1064 pulsed laser, and is used commercially for photo lithography in

semi-conductor fabrication facilities. Immediately out of the laser, a beam sampler

directs a small portion of the light onto a fast photodiode to measure the repetition

rate of the laser. We bridge the hyperfine transition by combining two pulse trains

of this laser and interfering two comb teeth, generating a beatnote at the qubit

splitting. This is followed by an AOM, which we use to stabilize the intensity of the

laser. The non-diffracted order of this AOM is sampled by a pick-off mirror with

very low reflectivity. The sampled light is then directed onto a slow photodiode to

generate an error signal to feed back to the AOM power for stabilizing the amplitude

of the pulse.

The beam is then split into two arms and focused down onto two AOMs. One

of these AOMs is used as a feed forward control of the repetetion rate of the later11.

The other is used to scan the frequency of the beatnote or apply multiple frequency

components to this beatnote. By focusing the beam down onto these AOMs, we

can use lenses afters the AOMs to image the waist formed in the AOM onto the

ions. We do this so that frequency shifts do not result in beam translations at the

ions. We collimate the diffracted orders out of each AOM,and pick off the +1 order

10Discussed further in Chapter 4.1.
11This will be discussed more fully in section 3.3.3.
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Figure 3.13: Raman beam paths to the chamber. The total path length is approx-
imately 3 meters. The majority of this system is enclosed in beam tubes, which
are in turn enclosed in a box constructed of 80/20 Allucabest panels. The reason
for this is two fold: it protects people in lab from the UV light and helps prevent
air currents from passing through the beam path. These air currents can cause
gradients in the index of refraction in air and lead to pointing instability.

on a D-shaped mirror. One of these arms is directly sent to the chamber via a

periscope, while the other arm passes through a variable delay stage. The delay

stage is necessary to make sure that the pulses overlap temporally and spatially at

the ion chain. Because we split the beam into two arms this delay stage acts to

make the arms equal length.

Before these beams are focused down onto the ions, they pass through PBS

cubes to achieve a clean horizontal polarization. At the ions, the beams are per-
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Figure 3.14: Beam paths for all of the lasers as they enter the vacuum chamber.

pendicular to each other and parallel to the trap surface. With the magnetic field

defining a quantization axis pointing perpendicular to the trap surface, this satisfies

the lin ⊥ lin configuration [39] of polarization needed to drive Raman transitions12

in 171Yb+. Both beams are focused down with an f = 100 mm UV fused silica lens

from Thorlabs, this results in beam waists of approximately 40 µm. These beams

are oriented so that the δk of the two beams points parallel to the trap surface and

along a direction perpendicular to the axial trapping direction. This lets us induce

momentum transfer between the beatnote and the ion chain along only one of the

transverse trapping directions13.

Because of its commercial applications, this laser is almost entirely turn-key

12Discussed in depth in Chapter 4.1.2.
13Discussed in depth in section 4.1.3.
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Figure 3.15: The direction of the k vectors of the Raman beams at the trap, with
the relevant directions of the trap axes and magnetic field axes also defined.

and there is very little that the user has in the way of control. Unsurprisingly this is

insufficient for our purposes. In particular, the cavity that generates the pulse train

is totally inaccessible, and changes length over time which changes the spectrum

of the frequency comb emitted. The repetition rates of these lasers is typically

in the 80 MHz or 120 MHz range, where the exact frequency is variable laser to

laser. To bridge the hyperfine splitting at 12.64 GHz, we must interfere two comb

teeth separated by approximately 105 comb lines. That means 10 kHz shifts of the

repetition rate change our beatnote frequency by MHz. Because we have no control

over the length of this cavity, we must feed forward to a frequency modulator after

the laser. I will discuss this stabilization circuit in depth in section 3.3.3.
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3.3 Control Electronics

The final piece of the experimental apparatus not discussed so far are the

control electronics. These can be broken down into electronics used to control the

timing of operations in an experiment, the control over the DC and RF trapping

voltages, and the electronics used to stabilize all the various parameters in the

experiment which are not passively stable enough for our purposes.

Figure 3.16: Illustration of the control structure, depicting all of the digital elec-
tronics used to control this experiment.

3.3.1 Timing Control

The timing control for our experiment is orchestrated by an Opal Kelly XEM6010-

LX150 FPGA. This timing FPGA is clocked at 100 MHz, from an atomic Rb source,

and is loaded with firmware developed as part of the Sandia ion control system.
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This firmware allows us to write python like pulse programs that support “for” and

“while” loop functionality as well as conditional branching of the experimental pro-

cedure. This functionality allows us to perform complex experimental procedures.

We will take full advantage of this to do state distillation, which requires adapting

the experimental procedure during the course of the experiment, depending on feed-

back from the ion. This is achieved by sending the timing FPGA multiple branches

for all possible future operations. Because the experimental time scale of 10’s of

µs this approach is preferable to sending new commands to the timing FPGA dur-

ing an experiment. Such communications would be difficult to achieve with the

asynchronous communication between the PC and the timing FPGA.

In addition to timing control, this FPGA also controls a handful of peripherals

used in pulse programs. The parameters of these devices can be updated on the fly

during the experimental procedure. These devices include 8 AD 9912 DDS chips,

8 DAC8568 digital to analog converters, 8 AD7606 analog to digital converters, as

well as 24 digital inputs. We use these digital inputs to read in the signals from

the muli-channel PMT. The current system takes low voltage differential signals

(LVDS) from the multi-channel PMT’s individual channels to a separate Opal Kelly

XEM6010-LX45 FPGA. This PMT FPGA emits TTL pulses on a digital line back

to the timing FPGA for each LVDS signal. In the future, we plan to send back the

number of LVDS counts received on all PMT channels through serial communication

with the timing FPGA. This will be done over the same digital lines currently being

used, this is why the task of translating LVDS to TTL signal is currently performed

by an FPGA. In the future this PMT FPGA will be necessary to implement the
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logic to determine what serial command to communicate back to the timing FPGA.

This configuration of FPGAs allows the timing FPGA to get back photon

count values, collected during the course of an experiment, on experimental time

scales. That means the timing FPGA can be programmed with conditional logic

that selects the next branch of operations based on returned photon counts. This

allows us to perform feedback to the operational parameters during the course of an

experiment.

The same digital lines are also used to communicate with another FPGA that

controls the DC voltages, this is done so that we can change the voltages during the

course of an experiment. This allows us to move and manipulate the ion position

during an experiment, this is necessary for our individual addressing scheme [40].

3.3.2 Trapping Voltage Control

Generating and controlling both the DC and RF trapping voltages is probably

the most challenging component of the experimental apparatus. The difficulties

in producing stable, low noise DC lines and a stable RF line are distinct. The

trouble with the DC lines arises from the sheer number of electrodes which must

be controlled and filtered without compromising their dynamic performance. The

challenges with the RF arise from the high voltage necessary and intrinsic reactance

of the components making up the line into the vacuum chamber. Because of these

differences, we will address each separately in the next two subsections.
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3.3.2.1 DC Voltages

C =100 nF C =33 nF C =33 nF

R =63 ohmL =0.15 mH

C =103 pF

Velectrode

VDAC

Figure 3.17: Circuit diagram for the 50 kHz third order Butterworth filters we use
for each DC line. The final capacitor is the trench capacitor on chip which connects
DC and RF chip grounds. There are 100 of these fitlers, split into four boards that
plug directly into the chamber.

The DC voltages are generated with twelve DAC8734 digital to analog con-

verters. Each chip has 8 output channels, each channel gives 16-bits of resolution

on a bipolar ±16.5 V output. An XEM6010-LX45 FPGA is used to control each

of these voltage sources. The DACs and DAC FPGA all reside on a board which

routes all of these voltages out onto four 25 pin D-Sub connectors. We limit each of

these lines to ± 10 V to protect the DC electrodes of the trap. Each D-sub line then

plugs into filter boards attached to the vacuum chamber. To minimize the pickup

from laboratory noise on these lines, these filter boards use third order Butterworth

filters [41] on each line with a corner frequency of 50 kHz. This corner will limit

how quickly we can update the DC potential, but for now our experiments have not

tried to accomplish any fast transport of ions or diabatic excitation of motion.

During an experimental sequence, we have control over the voltages being

output by these chips via the DAC FPGA. This FPGA is also connected to the

main control computer. As part of the configuration of the experimental procedure,
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Figure 3.18: Simulated filter function for the Butterworth filters we use, the knee is
somewhat softened by the intrinsic resistance of the inductor.

we define a large array of voltages for each DC line. These voltages correspond to

simulated solutions to the DC potential along the axial trapping direction, ẑ. These

simulations are based on Green’s functions of the trap geometry. The simulations

are performed by the trap designers and we have very limited access to the codes

they use to do these simulations. We then specially define the specific solutions

where we perform experimental procedure. These include specific positions along

the trap, as well as solutions which change ion spacing, or add anharmonic terms

to the DC potential. In general we have to get these specific solution types, once

specified, from the designers of the trap. When the simulations are run we get

specific solutions as well as the array voltages necessary to move between these

specific solutions. One can picture these particular solutions as nodes in a graph,

with the array defining the edges between nodes. By defining a graph in this way,

we have a map between different points of interest.

As part of the configuration of these voltage nodes we define the rate at which

voltages in the array should be applied to move from one node to another. We
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also define the interpolation between lines in this array, as well as any wait times

to be executed as each line of the array is applied. When the nodes are defined,

they are loaded with the array of edges into the memory of the DAC FPGA. The

DAC FPGA and the main timing FPGA are connected via digital I/O lines of

the main timing FPGA. When an experiment is initialized on the PC side the two

FPGA’s synchronize. To manipulate the ions during an experiment, the timing

FPGA sends a serial command to the DAC FPGA that tells the DAC FPGA which

edge between operational nodes to execute. The timing FPGA then waits for a signal

from the DAC FPGA signaling completion of this operation before it continues with

the experimental procedure. This “handshake” synchronization between FPGAs is

sufficient for our purposes.

3.3.2.2 RF Voltage

The RF voltage applied to the trap is generated by an HP ESG-1000A source

amplified and then filtered by a helical resonator [42]. The challenging aspect of

generating this RF voltage is that the voltage at the trap is directly proportional to

the secular frequencies of the trap, and the frequency must be clean enough to not

drive secular motion of the trap14. Because of this second issue, we generally use

quarter wave resonators to transform power to voltage on the open voltage node of

the trap.

This resonator functions by coupling a source coil to a larger coil whose length

is approximately one quarter of the desired RF drive wavelength. The end of the coil

14Discussed in depth in section 2.1.1.
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Figure 3.19: A cross section of the helical resonator used to step up the RF power
to voltage to drive the transverse confinement of the trap.

near the source is grounded to the housing of the resonator, which has cylindrical

symmetry. The other end of the coil is then connected to a feedthrough which is

connected in vacuum to the RF rail on the chip. This end of the coil is an anti-node

of the standing wave present in the resonator. By moving the source inductor in and

out of the larger coil, we can change the coupling impedance between the two. On

resonance, these circuits can have high quality factors Q = Ω0

ω∆
, where ω∆ is the full

width half maximum frequency of the resonator and Ω0 is the resonance frequency of

the resonator. For our resonator, the drive frequency is Ω0 = 35MHz and Q ≈ 200.

Since the secular frequencies of our trap are usually in the 1-3 MHz range, this is

adequate spectral purity for the experiments we wish to perform. The bigger issue

for our experiment is trying to maintain a stable RF voltage at the trap, this will

be discussed in the next section.
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3.3.3 Stabilization

Due to the sensitive nature of these experiments a handful of parameters must

be controlled actively. The two which are the most important are the RF voltage and

the beatnote frequency of the Raman laser. As previously stated the RF voltage in

directly proportional to mode frequency. Therefore, this voltage must be stabilized

or the coherence of a transition coupled via the motion will be strongly degraded.
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PID

Ctrap
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Helical Resonator
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5 KHMPS2822
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Figure 3.20: The lumped element circuit model of the resonate circuit used to step
up the RF voltage for the trap.

The difficulty with stabilizing this signal is that it is high voltage at radio

frequency, derived from a resonate circuit. Any dissipative elements used to sample

the voltage will destroy the resonator quality factor. Because of this we use reactive

elements, specifically a capacitive voltage divider to sample the high voltage anti-

node of the resonator. If appropriate capacitors are chosen, the ratio of trap voltage

tap voltage can be stable to a few parts per million. In our experiment, the ratio

of trap voltage to tap voltage was measured to be 178. This signal is then sent

into a rectifier to turn this RF signal into a DC error signal. Once we have a DC
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signal proportional to the RF amplitude, we feed this into a feedback loop [43].

Both the rectifier and the capacitive tap use very low thermal coefficient, passive

components. The error signal is then sent into an off the shelf servo controller,

NewFocus LB1500. We extensively test this feedback by measuring the stability of

the secular frequencies. The context in which we took this data and its implications

to our experimental goals are discussed in Chapter 6.

As stated previously, we interfere two comb teeth of our pulsed laser to create a

beatnote at the qubit splitting to drive all the coherent operations detailed through-

out this thesis. The beatnote must be stabilized because, as previously stated, the

internal laser cavity that is generating these pulses is not actively stabilized. Be-

cause the length of this cavity directly determines the repetition rate of the laser, if

environmental factors can couple into the length of this cavity, they can affect the

beatnote frequency. Unfortunately, our laser does not provide any external control

of this cavity length so it cannot be directly stabilized. However, because the beat-

note driving our Raman transitions is derived from two beams split from the same

source we can use an AOM to compensate for drifts in the repetition rate. This

feedforward method of stabilizing the beatnote is very similar to the stabilization

used in a phase locked loop (PLL).

To accomplish this lock, we sample the beam directly out of the laser and

measure, with a fast photodiode from Alphalas, the frequency comb of the laser. By

amplifying and filtering this comb we can isolate the specific comb line which will

participate in driving Raman transitions. We then mix this comb line down with

a stable frequency source. This source also acts as the global clock for all coherent
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Figure 3.21: A schematic for the feed forward lock used to stabilize drifts in the
repetition rate of the 355 laser. We use an HP 8672 for the microwave source and
an HP 8640 for the AOM drive. The bandpass filter is a 12 pole waveguide filter
which I optimized for the comb line of interest. It has a bandwidth of approximately
100 MHz and a center frequency of 12.8 GHz.

operations and therefore is referenced to a stable Rb clock. The demodulated beat-

note signal, which is around 79 MHz, is then mixed with the source used to drive

the AOM at approximately the same frequency. The resulting DC signal is fed into

another servo (NewFocus LB1500). The feedback is applied to the frequency mod-

ulation port of the source driving the AOM. This allows us to remove shifts in the

repetition rate of the laser before the light reaches the ions [44,45].

3.4 Ball Grid Array Trap

The trap we used to do all of the experiments discussed here was developed in a

collaboration between Honeywell and the Georgia Tech Research Institute (GTRI).

The trap is known officially as the ball grid array (BGA) trap and implements a

relatively simple linear trap design. The trap is gold on a silicon substrate, the ions

when trapped sit approximately 60 µm from the surface of the trap. There are 48
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Figure 3.22: A schematic of the trap structure, the smaller DC electrodes in pink are
60 µm apart, the larger DC electrodes near the loading zone are 100 µm wide. The
loading slot is approximately 60 µm wide. There are large DC electrodes around
the periphery of the trap to help rotate the DC axes if necessary.

DC electrodes, 60 µm in width each, a slot for loading ions from the backside, and

a specified ion to RF electrode distance of 94 µm. GTRI designed the trap and

Honeywell fabricated the trap. The intent was to create a trap with high optical

access. Because micro-fabricated traps are so small and the coupling between the

RF and DC electrodes can lead to pickup of RF on the DC electrodes, by having

small capacitors on-chip to mitigate this effect. This is a tradeoff, however, since

these capacitors take up real estate on the chip. If you want to focus down laser

beams to address individual ions, normally separated by no more than 5 µm, the

Rayleigh length of those beams will be quite short. This means that the trapping

structure itself can be the limiting factor when tightly focusing lasers above the

surface.

Groups have tried a variety of approaches to get around this difficulty. The

most popular of these approaches involves etching a slot through the chip which

can have very high NA from above the chip [46]. Another recent approach has
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Figure 3.23: CAD model of the trap in the spherical octagon to give as sense of
scale for how close the trap is to nearby surfaces.

been to raise a relatively small trapping area above the carrier which routes the

electrical connections out to the ceramic pin grid array (CPGA) attached to the

wiring harness. To do this, however, you have to find a place to put all of the filtering

capacitors. This has led to the bow-tie like geometries of traps like the Sandia High

Optical Access (HOA) trap, as well as traps with some novel fabrication techniques

including our trap the BGA.

The BGA utilizes trench capacitors, which are located directly under each

electrode and go down to a ball which is bump bonded onto the carrier. This

configuration means the raised trapping structure can be very small. The BGA is

only 0.4× 1.1× 3.3 mm in extent, and the surface is essentially only populated with

the trapping electrodes. In principle this means that we can get tightly focused
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beams across the surface, but this is not the case in practice due to an oversight in

design. The carrier which routes out electric connections is still too large, and the

trap is not tall enough. The smallest spot sizes we can achieve with our 355 nm

laser are approximately 8 µm.

In the future, we plan to move to the Sandia HOA trap which has both a high

NA≈ 0.2 from the side as well as a slot through the trap that has an NA≈ 0.6. This

will allow us to get beams focused down to 1 µm, at which point we should be able

to individually address ions in the chain.

61



Chapter 4: Coherent Operations

In this chapter I want to go through the atom-light interactions. To coherently

manipulate the spin state of the ions, we use stimulated Raman transitions. If we

so choose, we can align these beams to have a net δk momentum transfer along one

of the principal axes of the trap allowing us to couple to not only the spin degree of

freedom but also the external degrees of freedom.

4.1 Raman Interaction

Consider a three level atom described by two ground states |0〉,|1〉, and one

excited state |e〉. Leaving out the motion for a moment, choose the |0〉 as the zero

energy level, 〈0| Ĥ0 |0〉 = 0. Then we can write down an ion Hamiltonian of the

form,

Ĥ0 = h̄ω1 |1〉 〈1|+ h̄ωe |e〉 〈e| (4.1)

With an arbitrary wavefunction,

|ψ〉 = c0 |0〉+ c1 |1〉+ ce |e〉 (4.2)
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To couple states |0〉 and |1〉 with light from two beams, the electric fields of

these beams takes the following form.

E1 =
1

2
E01e

−i(ωL1t+φ1) + h.c. (4.3)

=
1

2
E1ε̂1e

−i(ωL1t+φ1) + h.c. =
1

2
E1ΦL1ε̂1 + h.c. (4.4)

E2 =
1

2
E02e

−i(ωL2t+φ2) + h.c. (4.5)

=
1

2
E2ε̂2e

−i(ωL2t+φ2) + h.c. =
1

2
E2ΦL2ε̂2 + h.c. (4.6)

(4.7)

The vector amplitudes, E01 andE02, include a polarization vector, and the fre-

quencies of the beams are such that one laser couples |0〉 ↔ |e〉 with an arbitrary

detuning δ on top of a large detuning ∆0. The other laser couples |1〉 ↔ |e〉 with a

frequency similarly far detuned, minus the splitting between the two ground states

|1〉 and |0〉.

Explicitly, we have the frequencies, ωL1 = ωe+∆0−δ and ωL2 = ωe−ω1 +∆0.

We have also absorbed the position of the ions relative to the incident field into the

phases φ1,2; this position will allow us to couple to the external degrees of freedom

of the ion chain and will be discussed later in this chapter.

The coupling between states |0〉 ↔ |e〉 and |1〉 ↔ |e〉 is mediated by these two

beams, and takes the form of an electric dipole transition.

63



〈i| ĤI |e〉 = −〈i|µ ·Ej |e〉 (4.8)

= −〈i|µ · ε̂j |e〉 Ej (4.9)

〈i|µi · ε̂j |e〉 = 〈e|µi · ε̂∗j |i〉 (4.10)

µi · ε̂j = µi,ejEj |i〉 〈e| (4.11)

µi · ε̂∗j = µ∗i,ejE
∗
j |i〉 〈e| (4.12)

Where µi,ej is related to a reduced dipole matrix element between states |i〉 and

|e〉 for the jth beam, Ej and εj are the electric field amplitude and the polarization

of the jth beam, we will look at these terms in depth in section 4.1.2. Equations

4.10-4.12 are a consequence of requiring Herminicity in the interaction Hamiltonian.

This gives us an atom-light interaction Hamiltonian of the following form,

ĤI = −µ̂ ·E (4.13)

= − (µ̂0 + µ̂1) · (E2 +E1) (4.14)

= −1

2
(µ̂0 + µ̂1) · (E2ΦL2ε̂2 + E1ΦL1ε̂1 + h.c.) (4.15)

where we have grouped all of the phases together in the terms Φi, and we have broken

out the individual polarization operators. We save the discussion of these parameters

for a later section detailing 171Yb+ specific parameters. Expanding equation 4.15,

we get
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µ̂ ·E =
1

2
(µ̂0 + µ̂1) · (E2ΦL2ε̂2 + E1ΦL1ε̂1 + h.c.) (4.16)

=
1

2
µ̂0 · (E1ΦL1ε̂1 + E∗1 Φ∗L1ε̂

∗
1) +

1

2
µ̂0 · (E2ΦL2ε̂2 + E∗2 Φ∗L2ε̂

∗
2) (4.17)

+
1

2
µ̂1 · (E1ΦL1ε̂1 + E∗1 Φ∗L1ε̂

∗
1) +

1

2
µ̂1 · (E2ΦL2ε̂2 + E∗2 Φ∗L2ε̂

∗
2)

(4.18)

To determine the population dynamics of an arbitrary state, we substitute

our interaction Hamiltonian into the Schrödinger equation, ih̄ψ̇ = Hψ = (H0 +

HI)ψ. For convenience we set h̄ = 1 and solve the Schrödinger equation under some

simplifying assumptions. Solving for the individual probability amplitudes, ci, the

resulting time evolution is governed by,

iċ0 = −1

2

(
µ∗0e1E

∗
1 Φ∗L1 + µ0e1E1ΦL1

)
ce (4.19)

iċ1 = ω1c1 −
1

2
(µ1e1E1ΦL1 + µ1e2E2ΦL2) ce (4.20)

iċe = ωece −
1

2

(
µ∗0e1E

∗
1 Φ∗L1 + µ∗0e2E

∗
2 Φ∗L2

)
c0 −

1

2

(
µ∗1e1E

∗
1 Φ∗L1 + µ∗1e2E

∗
2 Φ∗L2

)
c1 (4.21)

To make the following calculations a little less cumbersome, we will define the

single photon coupling rates for each of the transitions in the following way,
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g0e1 = −µ0e1E1e
−iφ1 (4.22)

g0e2 = −µ0e2E2e
−iφ2 (4.23)

g1e1 = −µ1e1E1e
−iφ1 (4.24)

g1e2 = −µ1e2E2e
−iφ2 (4.25)

We can simplify the effects of multiple beams by writing the generalized cou-

pling as gikj = −µikjEje−iφj , where j is an index the beam, and i and k index the

coupled states. The coupled equations for the population dynamics then become,

iċ0 =
1

2

∑
j=1

(
g0eje

−iωLjt + g∗0eje
iωLjt

)
ce (4.26)

iċ1 = ω1c1 +
1

2

∑
j=1

(
g1eje

−iωLjt + g∗1eje
iωLjt

)
ce (4.27)

iċe = ωece +
1

2

∑
j=1

[(
g0eje

−iωLjt + g∗0eje
iωLjt

)
c0 +

(
g1eje

−iωLjt + g∗1eje
iωLjt

)
c1

]
(4.28)

We can simplify these equations by moving to the frame rotating with respect

to the un-perturbed Hamiltonian. We apply the following transformation to our

system of coupled equations,
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c0 = c̃0 (4.29)

c1 = c̃1e
−iω1t (4.30)

ce = c̃ee
−iωet (4.31)

This will remove all of the stationary terms from this Hamiltonian leaving us

with the following evolution.

i ˙̃c0 =
1

2

m∑
j=1

(
g0eje

−i(ωLj+ωe)t + g∗0eje
−i∆ej t

)
c̃e (4.32)

i ˙̃c1 =
1

2

m∑
j=1

(
g1eje

−i(ωLj+ωe−ω1)t + g∗1eje
−i(∆j−ω1)t

)
c̃e (4.33)

i ˙̃ce =
1

2

m∑
j=1

[(
g0eje

i∆ej t + g∗0eje
i(ωj+ωe)t

)
c̃0 +

(
g1eje

i(∆ej−ω1)t + g∗1eje
i(ωj+ωe−ω1)t

)
c̃1

]
(4.34)

Where we have defined detuning frequencies for either beam, ∆e1 = ωe − ωL1 =

δ − ∆0 and ∆e2 = ωe − ωL2 = ω1 − ∆0. The relative rates of all of these terms

is δ � ω1 � ∆ej � ωe. After the integration, these terms will pick up factors of

1
ω

. Therefore we can make the so-called rotating wave approximation (RWA) and

assume that all terms which rotate with a total frequency ω > ∆ej will average to

zero. By moving into a rotating frame and making the rotating wave approximation

to remove terms rotating faster than ∆ej , we can get equations of the form,
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i ˙̃c0 =
1

2

m∑
j=1

g∗0eje
−i∆ej tc̃e (4.35)

i ˙̃c1 =
1

2

m∑
j=1

g∗1eje
−i(∆j−ω1)tc̃e (4.36)

i ˙̃ce =
1

2

m∑
j=1

[
g0eje

i∆ej tc̃0 + g1eje
i(∆ej−ω1)tc̃1

]
(4.37)

We want to eliminate the excited state |e〉 from these equations, which can be

accomplished through adiabatic elimination. This is an approximation which will

allows us to find an approximate form for c̃e through direct integration, where we

consider all the population to be found in c̃e = 0 at t = 0. To be valid we need the

time dependence of ˙̃ce to be dominated by e−i∆ej t so that c̃0 and c̃1 can be considered

constant and move outside the integrand. This will be a valid approximation as long

as the ground states are sufficiently decoupled from the excited state, if the detuning

from the excited state is large then this approximation remains valid. Performing

the integration with this assumption gives,

c̃e =
1

2

m∑
j=1

g0ej

(
1− ei∆ej t

)
∆ej

c̃0 +
g1ej

(
1− ei(∆ej−ω1)t

)
∆ej − ω1

c̃1

 (4.38)

The amplitude, ce, can now be eliminated from the coupled differential equa-

tions leaving us with a coupled two-state system. This is the result we are after,

we have coupled the two ground states via the excited state without any population

residing in the, presumably short lived, excited state. In practice, this type of cou-

pling allows us to drive population between two long lived ground states without
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the decoherence associated with spontaneous emission. In the case of 171Yb+, these

ground states can be the clock states of the 2S1/2 hyperfine manifold which can

maintain a long coherence time between each other [32]. At this point we are left

with.

i ˙̃c0 =
m∑
j=1

[
|g0ej |2

(
e−i∆ej t − 1

)
4∆ej

c̃0 +
g∗0ejg1ej

(
e−i∆ej t − e−iω1t

)
4(∆ej − ω1)

c̃1

]
(4.39)

i ˙̃c1 =
m∑
j=1

g0ejg
∗
1ej

(
ei(∆ej−ω1)t − e−iω1t

)
4∆ej

c̃0 +
|g1ej |2

(
ei(∆ej−ω1)t − 1

)
4(∆ej − ω1)

c̃1

 (4.40)

From earlier, we know that ∆ej � ω1, and so we can make the approximation

that ∆ej − ω1 ≈ ∆ej . If we once again make a RWA, we can eliminate nearly all of

the time dependence,

i ˙̃c0 =
m∑
j=1

[
−
|g0ej |2

4∆ej

c̃0 −
g∗0ejg1eje

−iω1t

4(∆ej − ω1)
c̃1

]
(4.41)

i ˙̃c1 =
m∑
j=1

[
−
g0ejg

∗
1ej
e−iω1t

4∆ej

c̃0 −
|g1ej |2

4(∆ej − ω1)
c̃1

]
(4.42)

By transforming back to the lab frame from the rotating frame we have been

working in, c̃0 = c0 and c̃1 = c1e
iω1t and we can remove the final piece of time

dependence from these equations,
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iċ0 =
m∑
j=1

[
−
|g0ej |2

4∆ej

c0 −
g∗0ejg1ej

4(∆ej − ω1)
c1

]
(4.43)

iċ1 =
m∑
j=1

[
−
g0ejg

∗
1ej

4∆ej

c0 −
(
ω1 −

|g1ej |2

4(∆ej − ω1)

)
c1

]
(4.44)

At this point it is convenient to re-label the on-diagonal and off-diagonal terms

of the coupled system. The on-diagonal elements correspond to AC Stark shifts

induced by the off resonant coupling Raman laser. The off-diagonal elements give

the effective coupling or Rabi rate between the two levels. We parametrize these

two effects by

δl0 =
m∑
j=1

|g0ej |2

4∆ej

(4.45)

δl1 =
m∑
j=1

|g1ej |2

4(∆ej − ω1)
(4.46)

Ω =
m∑
j=1

g∗0ejg1ej

2∆ej

(4.47)

The system of equations 4.43-4.44 can be recast in matrix form with an effective

Hamiltonian,

i
∂

∂t

(
c0

c1

)
=

(
−δl0 −Ω

2

−Ω∗

2
ω1 − δl1

)
·

(
c0

c1

)
(4.48)

This gives us an effective model for Raman coupling via an excited state, now

we need to extend this model to include the effects of multiple excited states. This
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will allow us to calculate effective Rabi rates from reduced dipole matrix elements.

In later sections we will dive into calculations of these parameters for specific 171Yb+

couplings.

4.1.1 Pulsed Raman Interaction

In practice, we drive the Raman transitions described above with a pulsed

laser. Briefly, let us look at how this difference affects the above derivation. It is

worth noting that a lot of the work is already done for us, we performed the above

derivation for two beams, in fact we can extend the above sums to any number of

beams. However we must consider the modification to the spectrum of the above

coupling lasers. Lets consider the changes to the electric field,

E1(t) =
1

2
E01e

−i(ωL1t+φ1) + h.c. (4.49)

=
1

2
E(t)1ε̂1e

−i(ωL1t+φ1) + h.c. (4.50)

=
1

2
E1

∑
n

f(t− nT )e−i(ωL1t+φ1) + h.c. (4.51)

This is a sum over pulses from the laser in the time domain where T is the

time between subsequent pulses [44]. Where f is the functional form of the pulse,

in practice this is sech3(t), however, this will not be relavent for our discussion. If

we say the ions will interact with many pulses by taking a Fourier transform we can

look at the frequency components of this laser pulse,
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E1(ω) =
1

2
E1

∑
j

f(jωrep)e
−i[(ωL1+jωrep)t+φj ] + h.c. (4.52)

Where we have absorbed the different kj vectors into phases,φj, just as before.

Our generalized gikj is still valid, and by following the derivation from the previous

section we come to the same results,

δl0 =
∑
j

|g0ej |2

4∆ej

(4.53)

δl1 =
∑
j

|g1ej |2

4(∆ej − ω1)
(4.54)

Ω =
∑
j

g∗0ejg1ej

2∆ej

(4.55)

However, now the sum over j is over all spectral components of the pulse, and

the ∆ej detunings contain frequencies at intervals of the repetition rate of the laser,

∆ej = ωe − ωL1 = δ −∆0 + jωrep.

4.1.2 Yb Ion Coupling

It is necessary now to extend our model to include the effects of the other

coupled levels in 171Yb+. For the case of 171Yb+ the 355 nm Raman lasers will cou-

pled the 2S1/2 |F = 0,mF = 0〉 and |F = 1,mF = 0〉 to the excited state hyperfine

manifolds 2P1/2 |F = 1〉, 2P3/2 |F = 1〉, and 2P3/2 |F = 2〉. In general, we can extend

72



the form of our couplings to include any number of excited states by introducing a

sum over these excited states

δl0 =
∑
k∈|ei〉

∑
j

|g0kj |2

4∆kj

(4.56)

δl1 =
∑
k∈|ei〉

∑
j

|g1kj |2

4(∆kj − ω1)
(4.57)

Ω =
∑
k∈|ei〉

∑
j

g∗0kjg1kj

2∆kj

(4.58)

To calculate any of these parameters, the dipole matrix element embedded

with the gikj terms must be evaluated. By using the Wigner-Eckart theorem we can

calculate these matrix elements in terms of ClebschGordan coefficients and reduced

dipole matrix elements, which can then be evaluated with known quantities.

gikj = −µikjEje−iφj (4.59)

µikj = 〈i|µ · ε̂j |e〉 (4.60)

= 〈i| T̂ 1
q |e〉 (4.61)

By making use of 3-J and 6-J symbols we can come up with a form of these

matrix elements which only require knowledge about the J angular momentum

couplings [47]. Note that µ·ε̂j =
∑

q T̂
κ
q , for single photon coupling κ = 1. The value

of q depends on the polarization of the coupling laser, ε̂σ+ → q = 1, ε̂σ− → q = −1,

and ε̂π → q = 0, we can sum over all polarizations and explicitly we find
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〈i| T̂ 1
q |e〉 =

∑
q

〈J ′, F ′,m′F | T̂ 1
q |J, F,mF 〉 (4.62)

=
〈J ′, F ′| |T̂ 1| |J, F 〉√

2J ′ + 1

∑
q

〈F,mF , 1, q|F ′,m′F 〉 (4.63)

= (−1)−F+1−m′F
∑
q

(
F 1 F ′

mF q −m′F

)
〈J ′, F ′| |T̂ 1| |J, F 〉 (4.64)

= (−1)−J
′+I−m′F

√
(2F + 1)(2F ′ + 1)

∑
q

(
F 1 F ′

mF q −m′F

){
J ′ F ′ I

F J 1

}
〈J ′| |T̂ 1| |J〉

(4.65)

=
∑
q

C(J ′, F ′,m′F , J, F,mF , I, q) 〈J ′| |T̂ 1| |J〉 (4.66)

S1/2
2

P1/2
2 Δ

P3/2
2

Figure 4.1: The coupling coefficents given by ClebschGordan coefficients for the
relevant transitions in 171Y b+.

The values of the 6-j and 3-j symbols are readily calculated from Clebsch-
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Gordon coefficients, or by using built-in functionality in programs like Mathematica.

By using Fermi’s golden rule, we can calculate a value for the reduced matrix element

〈J ′| |T̂ 1| |J〉 in terms of experimentally relevant parameters.

| 〈J ′| |µ| |J〉 |2 =
3h̄c3

4ω3
0

(2J ′ + 1)BiΓ0 (4.67)

Where once again, Bi is the branching ratio. We can equate this parameter

to the saturation intensity of the transition with the previously defined equation

Isat =
πhcΓ0

3λ3B
(4.68)

=
h̄ω3

0Γ0

12πc2B
(4.69)

I =
cE2

8π
(4.70)

We can use these expressions to write the above coupling rate g in terms of

the intensity of the individual beams,

gikj = −µikjEje−iφj (4.71)

= −Eje−iφj
∑
q

C(J ′, F ′,m′F , J, F,m
′
F , q)

√
3h̄c3

4ω3
0

(2J ′ + 1)BiΓ0 (4.72)

= −
∑
q

C(J ′, F ′,m′F , J, F,m
′
F , q)

√
(2J ′ + 1)Γ0

√
I

2Isat
e−iφj (4.73)

= −Γ0

√
I

2Isat
e−iφj

∑
q

C̃ikq (4.74)
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This derivation allows us to compare relative coupling rates from the various

levels to various beams given their intensities and polarizations, parameters which

are routinely controlled in the lab. Putting everything together we get,

δl0 =
∑
k=|e〉

m∑
j=1

h̄Γ2
k

4∆kj

Ij
2Isat

C̃2
0kq (4.75)

δl1 =
∑
k=|e〉

m∑
j=1

h̄Γ2
k

4(∆kj − ω1)

Ij
2Isat

C̃2
1kq (4.76)

Ω =
∑
k=|e〉

m∑
j=1

h̄Γ2
k

2∆kj

Ij
2Isat

C̃1kqC̃0kq (4.77)

At this point we have calculated all the relevant parameters to coherently drive

stimulated Raman transitions with a pulsed laser between the hyperfine ground

states of 171Yb+. We can use this coupling to drive coherent dynamics between the

|F = 1,mF = 0〉 and |F = 0,mF = 0〉 ground states for many oscillation periods.

The next section will cover how we use these same interactions to coherently address

the external phonon degrees of freedom.

4.1.3 Raman Coupling with Normal Modes

Once again start with the bare Hamiltonian for our three level system, but

now must consider the confining potential. The motion of the ion in the harmonic

potential will dress the internal degrees of freedom, and we get a Hamiltonian of the

form1,

1We have set h̄ = 1 for convenience in this section.
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Figure 4.2: Rabi flops were performed with three ions trapped, by locking the
beatnote of the laser such that two comb teeth interfere to bridge the ground state
hyperfine splitting of 171Yb+. We can coherently drive transitions between these two
levels for more than 20 flips. The phase jumps in the later flops we believe are the
result of air currents causing pointing instabilities. The error bars on this plot depict
a 1 σ confidence interval. This interval was calculated using the Clapper-Pearson
interval [48] for binomially distributed Bernoulli trials. This should give an overly
conservative estimate of the error bars. Error bars will be calculated in a similar
fashion throughout this thesis.

Ĥ0 =
2∑
i

ωe |e〉i 〈e|i + ω1 |1〉i 〈1|i + ωa(â
†â+

1

2
) + ωb(b̂

†b̂+
1

2
) (4.78)

Where b̂† and â† are creation operators for phonons on modes a and b, where b̂

and â are destruction operators for phonons on these modes. We now want to apply

our radiation fields to couple the two ground states via the excited state. This

perturbation can be written as follows, Where we will no longer hide the position

phase dependence. The positions x are the positions of the individual ions which

yields,
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ĤI =
2∑
i

E1 |e〉i 〈0|i e
−iωL1teik1xi + E2 |e〉i 〈1|i e

−iωL2teik2xi + h.c. (4.79)

If we move to the interaction picture to remove the stationary terms of the Hamilto-

nian, similar to our rotating frame from before, we will rotate with respect to energy

eigenstates of the unperturbed Hamiltonian. This is equivalent to the transforma-

tion.

ˆ̃HI =Û †0ĤIÛ0 = eiĤ0tĤIe
−iĤ0t (4.80)

=E1 |e〉1 〈0|1 e
i(ωe−ωL1)teik1·[x0a(â†eiωat+âe−iωat)+x0b(b̂

†eiωbt+b̂e−iωbt)] (4.81)

+ E1 |e〉2 〈0|2 e
i(ωe−ωL1)teik1·[x0a(â†eiωat+âe−iωat)−x0b(b̂

†eiωbt+b̂e−iωbt)]

+ E2 |e〉1 〈1|1 e
i(ωe−ω1−ωL2)teik2·[x0a(â†eiωat+âe−iωat)+x0b(b̂

†eiωbt+b̂e−iωbt)]

+ E2 |e〉2 〈1|2 e
i(ωe−ωL2)teik2·[x0a(â†eiωat+âe−iωat)−x0b(b̂

†eiωbt+b̂e−iωbt)] + h.c.

An important point to note here is that spin operators on different ions have the same

sign but different signs with respect to the normal modes. This is the case because

we have made the substitution, x1 = x̂a + x̂b and x2 = x̂a − x̂b, which transforms

from real space ion coordinates, x1 and x2, to normal mode coordinates, xa and xb.

The corresponding operators can be written as x̂a = x̂0a(â
†+ â) and x̂b = x̂0b(b̂

†+ b̂).

Where x̂0b and x̂0a are the amplitudes of zero point motion for either mode. These

are defined as x̂0i =
√

h̄
2mωi

. The amplitudes, which in principle depend on the

normal mode frequencies, we will wrap up in a Lambe-Dicke parameter, defined as
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the dot product of momentum vector and the zero point motion of a given mode,

k · x0. In general, we can write HI for arbitrary numbers of ions.

H̃I =
∑
j

Ωσ̂+
j e

iω1t
∏
i

e[iηi,j(â
†
i e
iωit+âie

−iωit)]e−iω∆t + h.c. (4.82)

For now we will restrict the discussion to only two ions. However, by using the

above general interaction Hamiltonian, the following results can easily be generalized

to more ions. By considering only far detuned laser fields, we will make the same

adiabtic elimination as in the previous sections (we are never driving population

through the excited state), however the beatnote between our two radiation fields

will drive transitions in the ground state manifold (between spin-up and spin-down).

We are going to make the implicit assumption here that operators of the form |0〉i 〈1|j

where i 6= j are unphysical, as this would imply virtually exciting one ion to the

excited state and emitting on another ion. Our Hamiltonian then becomes,

ˆ̃HI =E2E
∗
1 |0〉1 〈1|1 e

−i(ω1+ω2−ωL1)teiδk1·[x0,a(â†eiωat+âe−iωat)+x0,b(b̂
†eiωbt+b̂e−iωbt)] (4.83)

+ E2E
∗
1 |0〉2 〈1|2 e

−i(ω1+ω2−ωL1)teiδk2·[x0,a(â†eiωat+âe−iωat)−x0,b(b̂
†eiωbt+b̂e−iωbt)] + h.c.

This Hamiltonian represents all the coupling between spin and motion we can

drive via stimulated Raman transitions. We now make the assumption that all terms

ηi,m = δki ·x0,m � 1, where m ∈ {a, b} are normal mode indicies and i ∈ {1, 2} are

ion/laser indicies. This allows us to expand the exponential terms in orders of η,

79



where we assume all η’s are of similar order.

O(η0):

Hη0 = (σ̂−1 + σ̂−2 )e−i(ω1+∆)t + h.c. (4.84)

O(η1):

Hη =i(η1,aσ̂
−
1 + η2,aσ̂

−
2 )(â† + âe−2iωat)e−i(ω1+∆−ωa)t (4.85)

+ i(η1,bσ̂
−
1 − η2,bσ̂

−
2 )(b̂† + b̂e−2iωbt)e−i(ω1+∆−ωb)t + h.c.

O(η2):

Hη2 = −(η2
1,aσ̂

−
1 + η2

2,aσ̂
−
2 )(â†â† + ââ†e−2iωat + â†âe−2iωat + ââe−4iωat)e−i(ω1+∆−2ωa)t

−(η2
1,bσ̂

−
1 + η2

2,bσ̂
−
2 )(b̂†b̂† + b̂b̂†e−2iωbt + b̂†b̂e−2iωbt + b̂b̂e−4iωbt)e−i(ω1+∆−2ωb)t

−2(η1,bη1,aσ̂
−
1 − η2,bη2,aσ̂

−
2 )(â†b̂+ b̂†â(e2i(δωb,a)t + e2iωat) + âb̂e2iωbt)e−i(ω1+∆+δωb,a)t

+ h.c. (4.86)

We have defined the spin raising and lowering operators |{1, 0}〉i 〈{0, 1}|i as

σ̂
{+,−}
i , respectively, where i is once again an ion index. The detunings are defined

∆ = ωL2 − ωL1 and δωb,a = ωb − ωa. Although this looks rather busy, everything

basically falls out with a RWA. By setting ∆ to different resonance frequencies we

can remove different terms just as before. We make this substitution for any of

these terms and we will say anything that is rotating faster than ∆ will rotate away.
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Where we will now generalize to arbitrary numbers of ions. This leaves only leaves

a few terms in each order of η that we will be interested in.

O(η0): Spin flip transitions

H̃RWA
I =

∑
j

Ω(σ+
j + σ−j ) (4.87)

O(η1): red sideband and blue sideband transitions (RSB and BSB)

H̃RWA
I =

∑
j

ηi,jΩ(σ+
j âi + σ−j â

†
i ) (4.88)

O(η2): Mixing transitions

H̃RWA
I =

∑
j

ηi,jηk,jΩ(σ+
j âiâ

†
k + σ−j â

†
i âk) (4.89)

The index j is again an ion index where i and k index the modes. These terms

certainly do not constitute all of the terms in the expansion of η, however they will be

the only ones we are interested in. The η0 terms drive spin-flip transitions, without

coupling to the motion. The η1 terms add or subtract motional quanta conditional

on a spin-flip. Finally the η2 terms drive interference between the normal modes

conditional on a spin-flip. In the next champter I will show experimental results

driving the first two terms. The third term is one that will be the subject of Chapter

6.
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4.1.4 STIRAP

The final type of coherent operation that we will consider is one that we

want to use for readout of the phonon states. One of the problems with reading

out the phonon occupation of a given normal mode is that if we try and readout

the occupation with the spin-motion coupling described in the previous section,

each number state will evolve at a different rate. One way to drive all of these

transitions at the same rate is to drive these transitions in the weak coupling limit

through an adiabatic passage [49]. We accomplish this passage by driving stimulated

Raman transitions, therefore this is known as stimulated Raman adiabatic passage

(STIRAP) [50]. The coupling lasers are the same, let us consider an unperturbed

Hamiltonian, Ĥ0, and coupling Hamiltonian, ĤI . The total Hamiltonian will have

the form,

Ĥ0 = h̄∆ |e〉 〈e|+ h̄δ |1〉 〈1| (4.90)

ĤI =
1

2
h̄ΩP |0〉 〈e|+

1

2
h̄ΩS |1〉 〈e|+ h.c. (4.91)

Ĥtot = Ĥ0 + ĤI (4.92)

= h̄

 0 1
2
ΩP 0

1
2
ΩP ∆ 1

2
ΩS

0 1
2
ΩS δ

 (4.93)

Where we have already made a RWA. We will have eigenstates made from the

bare Hamiltonian eigenstates |0〉, |1〉, and |e〉. These eigenstates can be parametrized
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by,

|ψ+〉 = sin Θ sin Φ |0〉+ cos Φ |e〉+ cos Θ sin Φ |1〉 (4.94)

|ψ0〉 = cos Θ |0〉 − sin Θ |1〉 (4.95)

|ψ−〉 = sin Θ cos Φ |0〉 − sin Φ |e〉+ cos Θ cos Φ |1〉 (4.96)

The eigenvalues for these states are,

ω± = ∆±
√

Ω2
P + Ω2

S + ∆2 (4.97)

ω0 = 0 (4.98)

and the angles Θ and Φ can be controlled by tuning the coupling rates Ωp and ΩS.

Specifically, for the case where the two photon resonance condition is met, these

angles are give by [50],

tan Θ =
ΩP

ΩS

(4.99)

tan Φ =
(Ω2

P + Ω2
S)

1
2

(Ω2
P + Ω2

S + ∆2)
1
2 + ∆

(4.100)

From these eigenstates we can see that one of these states, |φ0〉, will coherently

evolve between |0〉 and |1〉, if we initialize in |0〉 this state has a lot of overlap with
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Figure 4.3: Evolution of various parameters as a function of normalized time if we
ramp the coupling in a Gaussian fashion as shown in (a). The eigenvalues evolve
as depicted in (b). If we start in the initial state |0〉 then we can transfer all of the
population to |1〉. This is equivalent to smoothly varying the Θ parameter. This is
shown in figures (c) and (d).

|ψ0〉 when the coupling fields are off. If we adiabatically turn on the couplings ΩP

followed by ΩS we can get full transfer of the population from |0〉 to |1〉 without

significant overlap with |ψ±〉. The condition on adiabaticity for this case is given

by,

|ω± − ω0| � |Θ̇| (4.101)

�

∣∣∣∣∣Ω̇PΩS − Ω̇SΩP

Ω2
S + Ω2

P

∣∣∣∣∣ (4.102)
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We can perform these types of transition on our RSB transitions, this allows

us to transfer all the populations from the spin-down state to the spin-up state

regardless of the small variations in Rabi rates between different phonon occupations.

We want to use this operation extensively in a recursive procedure we will discuss

in the next chapter to readout the phonon excitation number.
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Chapter 5: Phonon Toolbox

Control and manipulation of bosonic degrees of freedom have been proposed

as good candidates to test fundamental questions in quantum information sci-

ence [9, 51–53]. In particular boson sampling has emerged as an area of extensive

experimental research in the photonics community [54–56]. However, the experi-

mental challenges of a linear optics implementation of such a sampler may prove

extremely difficult to overcome in larger systems. Recently there have been propos-

als to use the external degrees of freedom in trapped ion chain as the bosons in a

trapped ion boson sampling device [52].

To perform any of these experiments, however, one will need to have exquisite

control of the phonon states of the ion chain. Here we present our progress towards

creating a toolbox which allows for the initialization of a specific phonon Fock state,

as well as readout of that state. We make use of our micro-fabricated ion trap

to manipulate and shuttle the ion chains. By making use of this transport and

known composite pulse sequences, we will show individual ion addressing without

tightly focused beams. We also show that distillation of this initialized phonon state

can be done through measurement without destroying the coherence of the coupled

phonon-spin state. By using a STIRAP process, we can in principle recover the
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phonon occupation we initialized.

5.1 Sideband Cooling

To begin any experiments which utilize phonons as a resource for quantum

information, we need to be able to initialize the phonon state of the ion chain to

a pure state. The Doppler cooling we used to cool ions near the ground state of

the trap still left an average phonon occupation, n̄ ≈ 5. The thermal distribution

associated with this many phonons is still too broad to use reliably in a simulation

of bosonic physics. To sub-Doppler cool, we will utilize the spin-motion coupling

derived from the coherent Raman interactions discussed previously. By tuning our

Raman beatnote to be resonant with terms which destroy phonons conditional on a

spin-flip,

H̃RSB
I =

∑
j

ηi,jΩ(σ+
j âi + σ−j â

†
i ) (5.1)

We can remove quanta of phonon excitation, these are known as red sideband

transitions (RSB). The other first order phonon modifying terms are transitions

that add a phonon conditional of a spin flip, which are known as blue sideband

transitions (BSB) and are given by,

H̃BSB
I =

∑
j

ηi,jΩ(σ+
j â
†
i + σ−j âi) (5.2)

Once the ion spin is flipped, we can re-initialize it in the spin-down configura-
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tion through the optical pumping scheme described earlier. This scattering imparts

h̄k of momentum to the ions but it only takes a few scattering events to optically

pump the ions and h̄k1 is much less than the secular frequency. Thus we expect

optical pumping to have a minimal impact on phonon state occupation. Once the

internal state of the atom is back in the spin-down state then we can repeat the

procedure of removing a phonon and optically pumping. By doing this, in our ex-

periment roughly 30 times, the average phonon number can be reduced to well below

one quantum.
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Figure 5.1: Mode occupation as a function of detuning in a three ion chain. By
scanning the Raman beatnote over the the RSB and BSB transitions and comparing
the relative amplitudes, we can determine the mode occupations after sub-Doppler
cooling. The average phonon occupations of the above curves are n̄mode1 ≈ 0.129,
n̄mode2 ≈ 0.061, and n̄mode3 ≈ 0.026 for a three ion chain. The error bars on this plot
depict a 1 σ confidence interval. This interval was calculated using the Clapper-
Pearson interval [48] for binomially distributed Bernoulli trials. This should give
an overly conservative estimate of the error bars. Error bars will be calculated in a
similar fashion throughout this thesis.

1Discussed in depth in Chapter 2.3.3.
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This process is then repeated on all modes, we have modified the principal axes

of the trap such that only the in plane transverse modes couple to the momentum

kick imparted by the Raman beatnote. This is accomplished by a applying a twist to

the DC quadrapole2. For a three ion chain we need to cool three modes. This is the

first stage of testing any of the tools we have developed to initialize and manipulate

phonon states.

We can measure the residual phonon population, as seen in Fig 5.1, by mea-

suring the amplitude of the phonon subtracting (RSB) vs phonon adding (BSB)

transitions. For a fixed time, the ratio between these amplitudes is related to the

mean phonon occupation of mode being measured by,

RSB

BSB
=

n̄

n̄+ 1
(5.3)

5.1.1 Heating Rates

As mentioned previously, one drawback to using a micro-fabricated ion trap

is that because the ions are close to the trapping surfaces, they undergo heating at

a rate which was has confounded the community for some time. Therefore if we are

going to claim any capability to manipulate and create Fock states of the motion

using a micro-fabricated ion trap, we need to say something concrete about the

heating rates of our trap. I want to preface this discussion by saying that heating

rates in general are a challenging thing to nail down. Our heating rates may not be

2This is one of the solutions we have the trap designers construct for us, we can add this on
top of the harmonic axial confinement to rotate the DC principal axis.
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indicative of other laboratories, even if they use the same hardware.

Figure 5.2: Change in the number of phonons in mode b0 as a function of time after
cooling. The heating rate is found to be ˙̄nCOM ≈ 80 ± 9 quanta

s
, the slope of this

line. The other two modes are strongly decoupled from environmental gradients, so
these rates were so low they became impractical to measure. Error bars are again
calculated from a binomial distribution.

In our case, we have found surprisingly low heating rates, see Fig. 5.2. The

largest heating rate will always be found in the normal mode associate with the

common mode of motion, b0. The b0 mode will be the only mode that has overlap

with scalar electric fields. To drive motion in the other modes the driving field must

have a gradient in the electric field amplitude across the ion chain. Considering the

ion spacing and the distance to the nearest surfaces, gradients across the ion chain

can be extremely hard to generate. These gradients are unlikely to occur due to

deposited charges or oscillating dipoles on the surface of the trap, which are two of

the current theories of anomalous heating3 [58–60].

3However, there has been very reccent work that suggests that the heating rate is somehow
entirely dominated by the RF [57].
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This heating rate has been measured to be 80±9 quanta
s

on the 2.7 MHz in plane

transverse b0 mode. This implies that we have approximately 1 ms in which to do

our experiments before a pollutant phonon finds its way into the system. Although

this may not seem like a long time, the longest interactions we generally induce

are on the order of 200 µs. Also, in other groups using micro-fabricated traps, the

heating rates were reduced by two orders of magnitude by going cryogenic [61–63].

Certainly this is a complication we wish to avoid, but it is not outside the realm of

possibility.

The heating rates associated with the other modes are the only other rates

relevant for the rest of this thesis. These rates were measured to be so low that we

have not been able to successfully extract a number for them. For the purposes of

this thesis, we will focus mainly on three ion chains using the center of mass mode,

b0, and the next order symmetric mode, b2
4. This means we will be limited by the

COM mode heating rate. However, we are still able to demonstrate the tools we

have developed thus far, which should continue to be applicable if we decide to take

steps to mitigate the effects of this heating rate.

5.2 Individual Addressing

All of the interactions that we are going to try and employ are derived by

couplings to the spin and the motion via Raman transitions which mediate changes

in the phonon state contingent on the spin state. For this reason it would be highly

4We do not use b1 because we hope to drive interference terms between these modes, discussed
in Chapter 6, parametrically and the difference frequencies between other modes and b1 are two
small to satisfy a RWA we must perform to drive this interaction.
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advantageous to be able to initialize and manipulate the entire spin manifold to

specific states. The traditional way to achieve individual addressing is to tightly

focus laser beams so as to only interrogate single ions with a specific laser pulse [64].

This approach can prove challenging for micro-fabricated traps where beam must

either skim the surface of the trap or pass through the trapping structure. Beams

that skim the surface are usually limited to NA ≈ 0.2 before the beams begin to

clip on nearby surfaces that route electrode wiring out of the vacuum chamber.

One of the challenges specific to our particular trap, the BGA, is that it is

difficult to get a tight focus with our 355 nm laser beams. To individually interrogate

single ions by hitting only the ions of interest in the chain we need to achieve spots

sizes well below the ion spacing of, 5 µm, and the tightest Gaussian spots that we

can achieve before we begin to clip on parts of the trap assembly is 8 µm. Because

more traditional forms of individual addressing are not accessible to us we make

use of one of the features of a micro-fabricated trap and shuttle ions to an intensity

gradient of the beatnote, where the Rabi rates on ions will be different. This coupled

with composite pulse sequences allow us to flip single spins in our chain.

5.2.1 Transport

The greatest advantage of surface traps is the ability to manipulate the axial

confinement to a degree of resolution that is inaccessible to macro-fabricated traps.

By utilizing this ability, we shuttle our chain of ions 20 µm away from the center

of the overlap between our two Raman beams. Once the chain is sitting on the
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Figure 5.3: Probability of a spin-flip as a function of beatnote detuning. By looking
at the asymmetry between the RSB and BSB transitions after transport, we can
determine the approximate heating due to transport. In this case, we transport out
to the location in which we plan to do our individual addressing and back twice. We
measure the sidebands only for the COM mode, b0, because it will be the mode most
effected by the action we find ∆n̄ ≈ 0.2 quanta

transport
. Error bars are again calculated from

a binomial distribution.

intensity gradient of the driving field, each ion experiences a different Rabi rate.

Once we have driven the chain into the desired spin state we can transport

the ions back to the center of the beam overlap and continue with our procedures

that globally address the spin chain. The biggest concern with doing this type

of addressing or transport is that the transport will be non-adiabatic to the ion

motion, inducing higher phonon mode occupation. Effectively heating the center

of mass motion of the chain. In examining this, we have determined that when

the transport potentials are finely tuned we can achieve as little as ∆n̄ ≈ 0.2 per

transport on the center of mass, see Fig. 5.3. This of course is not ideal, but once
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again it is sufficient for out purposes . With tighter foci of our Raman beams and

extensively optimized transport potentials, I am confident that this heating could

be made negligible.

In principle, this is all we need to flip individual spins, however, the difference

in Rabi rate between different ions is not sufficient to truly initialize them in a

clean manner. Therefore, we couple this technique with composite pulse sequences,

described in the next section, to try and obtain a more pure spin configuration.

5.2.2 Composite pulse sequences
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Figure 5.4: Probability of population transfer as a function of normalized time for
three different pulse sequences. By using different pulse sequences we can get full
population transfer to the spin-up state with more or less dependence on the rotation
angle about the Bloch sphere. This plot shows population transfer for a single pulse
as well as two composite pulse sequences.

The goal of a composite pulse sequence is to reduce the error from an imperfect

roation around the Bloch sphere without knowledge of the specific error which has
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occured, see Fig. 5.4. For example if a single pulse has a small amplitude error

O(ε), by repeating this rotation n times the error is reduced to O(εn) [65]. There

have been a few composite pulse sequences developed to compensate for arbitrary

errors, generally these pulses involve doing multiple rotations around the Bloch

sphere about different axes.
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Figure 5.5: Probability of a population transfer as a function of normalized rotations
for three different composite pulse sequences. Each color represents a different ion
which experiences a different intensity of the beatnote. The upper curve shows Rabi
flopping with an intensity gradient. The middle curve shows the SK1 pulse sequence
and the bottom curve depicts the N2 pulse sequence.

From theoretical curves of the spin dynamics, we can see the differences in

population transfer between the various pulse sequences we perform as a function of

π-time, see Fig. 5.5. We compare three different sequences of driving pulses: First,

we directly compare the different rates at which individual ion spins are flipped by

turning on a single pulse. Next, we use a bandpass composite pulse sequence known
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as SK1, which is less sensitive to intensity fluctuations, effectively flattening the

crests and troughs of the sinusoidal oscillations of the Bloch vector [65]. Finally, we

examine a narrow band pulse sequence, N2, which is extremely sensitive to intensity

[50,66]. This pulse sequence is narrowly peaked around a specific normalized π-time.

In the end we choose which pulse sequence to use based on the number of ions and

day-to-day calibrations. The three ion data used in this thesis was taken, almost

exclusively, with the N2 composite pulse sequence.
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Figure 5.6: The lower curve shows calculated spin-up probabilities by implementing
a threshold on the PMT data. The semi-transparent lines show a sin2 fit to the
dynamics, these curves are only meant as guides to the eye. The heat map shows
the photon count received by PMT channels on our multi-channel PMT. By using
a single pulse there is still a great deal of overlap between individual ions being
flipped up regardless of pulse time. Error bars are again calculated from a binomial
distribution.

By making use of the intensity gradient in the beatnote that we transport ions

over, we try and find a time where we find only one spin flipped for a given pulse
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Figure 5.7: Single pulse sequence with normalized rotation angle around the Bloch
sphere. The phase φ represents the axis about which we are performing the rotation.

sequence. In principle we could achieve this with a single pulse, see Fig 5.6 and 5.7,

by manipulating the intensity gradient as well as the ion spacing. However, we can

get much better temporal separation of spin flips by employing the composite pulse

sequences discussed above.

Figure 5.8: The SK1 pulse sequence with normalized rotation angle. The two addi-
tional pulses are done about a axes rotated from the initial rotation axis given by
the angle φ.

By applying the SK1 sequence, see Fig. 5.8, we can eliminate some of the

dependence on intensity, for example if a rotation angle, using a single pulse, would

rotate an ion spin state 80% bright, using the SK1 pulse sequence that same rotation

angle rotates the spin state fully bright, see Fig. 5.9. Similarly if a rotation angle,

using a single pulse, would rotate the ion spin state 20% bright, using the SK1

sequence the ion will remain totally dark. However, this comes at the cost of a

reduced effect of the intensity gradient. By separating ions by larger distances this

pulse sequence is quite effective. When trapping only two ions and manipulating

phonons, this is pulse sequence we use for initialization.

For three ion chains, we do much better using the N2 pulse sequence, see Fig.

5.10, because the N2 sequence is so strongly dependent on intensity, see Fig. 5.11.
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Figure 5.9: The SK1 pulse sequence results. It allows us to to get very high fidelity
spin flips. The semi-transparent lines show the dynamics of perfect SK1 flopping.
However as shown in the heat map there is considerable overlap with adjacent spin
flips. These curves are meant as guides to the eye. Error bars are again calculated
from a binomial distribution.

Figure 5.10: N2 pulse sequence with normalized rotation angle. The two additional
pulses are done about a axes rotated from the initial rotation axis given by the angle
φ.

This means we get the largest separation in time of individual spins flipped for the

same intensity gradient. Unfortunately this means that initialization is now very

sensitive to intensity fluctuations and pointing instabilities of the Raman laser. We

have measured these to be < 1% in approximately 100 ms of measurement time.

However, at long time scales the laser intensity can vary by as much as 20%, which

means we have to calibrate the appropriate time to initialize spins several times a
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day.
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Figure 5.11: N2 pulse sequence measurement, this gives the best separation of spin-
flips. This can be most readily observed in the multi-channel PMT where there is
a distinct gap between adjacent ion spin flips. The semi-transparent lines show the
dynamics of perfect N2 flopping. These curves are meant as guides to the eye. Error
bars are again calculated from a binomial distribution.

To initialize a specific phonon occupation, we will make use of the conditional

nature of our sideband transition, which will only change the phonon occupation if

there is a corresponding spin to flip. To change the phonon state by one quanta,

we need to have only one spin flipped before we apply a RSB. This requires the

individual ion addressing described above so that we can selectively change the spin

state of a specific ion. We expect to exchange the single spin-flip with one additional

excitation of motion.
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5.3 Phonon State Initialization and Distillation
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Figure 5.12: Calculation of the evolution of spin populations and phonon number
with three ions. If we successfully flip an individual spin then we can drive a RSB
on the mode we wish to prepare in order to initialize a single excitation in that
mode. The top curve shows the spin dynamics as we initialize an excitation in mode
b2 from chapter 2. The middle curve shows the evolution of the spin manifold. The
bottom curve shows the expected evolution of the phonon excitation.

Once we have flipped a single spin, we can drive a RSB to put a single

phonon excitation in a given normal mode. Driving this term results in the state,

100



c↓,↓,↓ |↓, ↓, ↓〉 |1, 0, 0〉+ (c↑,↓,↓ |↑, ↓, ↓〉+ c↓,↑,↓ |↓, ↑, ↓〉+ c↓,↓,↑ |↓, ↓, ↑〉) |0, 0, 0〉, which has

the highest overlap with |↓, ↓, ↓〉 |1, 0, 0〉, but still has a non-zero overlap with a zero

phonon excitation state, see Fig. 5.12. This is because the manifold of possible spin

flips is not a two state manifold. As we drive the spin, which was initialized up,

back down adding a phonon in the process, we also begin to flip up all the other

combinations of one spin flipped up states by removing the phonon we just added.

This process is identical to how phonons were previously removed from the system

during sideband cooling.

This complication requires us to distill only the component of the state which

has the phonon we are interested in, and trace out all other spin components. To

make sure we can start with a pure Fock state of the normal modes we are interested

in, we perform a RSB such that we maximize overlap with |↓, ↓, ↓〉 |1, 0, 0〉, see Fig.

5.13, and then turn on our 369 nm laser tuned to scatter photons from the spin up

state via the 2P1/2 state. The splitting between the two hyperfine ground states we

are using as spin-up and spin-down is large enough that the spin down states do

not couple to the excited state. The spin-down state will remain unaffected by this

light. If we collect any scattered photons, we re-pump the ion chain and repeat this

procedure until we do not detect any scattered photons. This distills our quantum

state to only that component with all spins down in a probabilistic fashion, where

the probability of success is dependent on the mode we are driving and the ion

we individually addressed. This state distillation has not been used before in this

context and constitutes a new tool for engineering specific Fock states in 171Yb+

trapped ion chains.
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Figure 5.13: Measured evolution of the three ion populations. By driving a RSB
transition, we flip a single spin as expected but which ion flips begins to become
unclear after one exchange of motion with spin. The solid lines on the lower plot are
sin2 fits to the data. Error bars are again calculated from a binomial distribution.

To verify that we still maintain purity in our phonon state after this distillation,

we test the coherence of spin motion coupling by Rabi flopping on a RSB of the

mode containing the excitation we introduced. If we have truly distilled |↓, ↓, ↓〉 |1〉
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Figure 5.14: Calculated spin population and phonon number evolution. By driving
a RSB after distillation, hopefully we exchange the single excitation of motion with
a single spin flip. These theoretical curves show this for the b0 mode. The top curve
shows the spin dynamics of each ion. The middle curve shows the spin-manifold
populations. The bottom curve shows the expected evolution of the excitation of
motion. The time here is normalized to the coupling strength, for these simulations
all of these coupling rates were set to unity.

in whatever mode we want to distill, then we should maintain coherent flopping

between the |↓, ↓, ↓〉 state and the one spin flipped manifold. Any leakage into higher

phonon population or thermal state contamination should manifest as multiple spins
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being flipped simultaneously. These populations remain negligible, and we take this

to mean our procedure up to this point, including transport and state distillation,

is not overly contaminated with undesirable phonon occupation. We can perform

these experiments on all three modes after multiple steps of distillation.

We look specifically at the case where we are trying to initialize the state

|↓, ↓, ↓〉 |1, 0, 0〉, where the basis for the motion is |b0, b1, b2〉 from before. In this

case, we should expect to see all spins flip equally but not simultaneously as we drive

spin-motion coupling through a RSB on mode b0, see Fig. 5.14. Our results show

that we maintain coherent flopping between the equal spin manifolds5 we expect to

be moving population between, see Fig. 5.15. However, the contrast of both of these

curves is lower than expected. We believe this has to do with imperfect spin-flips in

our individual addressing procedure. If we leave population in the spin-down state

of the ion we are trying to individually address, it will not participate in the phonon

initialization. This specific error is not caught by the distillation procedure.

In the case of the b2 mode, we should expect to see the middle spin flip twice

as much as the outer ions, see Fig. 5.16, given the relative normal mode amplitudes.

Once again we expect that none of the spins should flip simultaneously because

we only have one excitation to exchange. Similar to mode b0, we see a decrease

of approximately 20% in contrast, see Fig. 5.17. This consistency between two

very different modes reinforces our belief that the contrast degradation is due to a

problem in spin initialization before adding a phonon.

5All spins down, one spin up, two spins up, or three spins up.
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Figure 5.15: Experimental results of the simulated experiments in Fig. 5.14. The
top plot shows the measured spin dynamics of each ion. The bottom plot shows the
populations of the spin-manifolds. Note the reduced contrast in the spin manifold
plot, we attribute this to poor initialization of spin. The solid lines are sine squared
fits to the data of the form A sin2(ωt + φ) + C. Where A, ω, φ, and C are all
fit parameters. Error bars are again calculated from a binomial distribution. The
average reduced χ2 for the fits on the upper plot is 0.95, for the lower plot the
average reduced χ2 is 0.985.
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Figure 5.16: Calculated spin population and phonon number evolution. By driving
a RSB after distillation hopefully we exchange the single excitation of motion with
a single spin flip. These theoretical curves show this for the b2 mode. The top curve
shows the spin dynamics of each ion. The middle curve shows the spin-manifold
populations. The bottom curve shows the expected evolution of the excitation of
motion. Once again the normalized time is set but making the coupling strength
unity and directly integrating the Schrödinger equation.
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Figure 5.17: Experimental results of the simulation shown in Fig. 5.16. As before
the top plot shows the measured spin dynamics of each ion and the bottom plot
shows the populations of the spin-manifolds. The solid lines are sin squared fits
to the data of the form A sin2(ωt + φ) + C. Where A, ω, φ, and C are all fit
parameters. The average reduced χ2 for the fits on the upper plot is 0.74, for the
lower plot the average reduced χ2 is 0.714. Error bars are again calculated from a
binomial distribution.
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5.4 Readout

In principle, the phonon occupation can be read out by comparing Rabi rates

on the sideband transitions to known phonon occupations. However, this measure-

ment would be subject to calibration errors which would make it less reliable than

we would like it to be. Instead, we will read out the phonon occupation through

a STIRAP process on the red sideband. The effect of this STIRAP procedure is

to move all Fock population from |n〉 → |n− 1〉, and in so doing flip a spin. By

using this STIRAP procedure we are able to do this for wide a range of Fock states

even though they each have Rabi rates that scale like
√
n. The pulse we use for our

experiment is chirped in both frequency and amplitude [67].

Once mapped to the excited state, we do a spin flip transition to map all of the

excited state populations to the ground state. However, the population associated

with zero excitation, the ground state of the mode, will not have undergone a tran-

sition under the STIRAP process. The subsequent spin flip will put this population

in the spin up state as opposed to the spin down state. If we try and detect the

excited state, and collect any scattered photons we can say our population was in

the |n = 0〉 phonon Fock state at the beginning of this procedure. By repeating

successive iterations of this process, leaving detection for the last step, then we can

measure whether we have population in a given Fock state, see Fig. 5.19. This

technique was proposed recently in the context of Boson sampling with ions [52],

and has been demonstrated extensively for single ion states [49, 67]. We are cur-

rently working on generalizing a similar method for multi-ion chains, however, this
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Figure 5.18: Procedure we plan on implementing to measure phonon number with
STIRAP pulses. The blue circles represent the starting state before a procedure in
this scheme, the red circles represent the end state after a procedure. The filled
circle will represent the phonon mode we are trying to measure. In (a) we begin in
the spin down state, by applying a STIRAP RSB we move the population to the
spin up state by removing a quanta of motion. In (b) we apply a spin flip operation
to put all of the population in the spin down state. Notice the population in the
ground motion state moves to spin up. In (c-f) we repeat this procedure walking
the population down. In (g) we turn on our detection laser, if we measure a photon
we had occupation of the motion n ≤ 2. By performing different numbers of these
loops, we can read out the phonon occupation.

109



is complicated by the larger spin manifold. In principle, we can map normal mode

excitations on single ion excitations6 and read out in this way.

6Discussed in depth in section 6.2
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Chapter 6: Phonon Interference

We have yet to talk about how these modes can be used for anything besides

poor quantum memories. The tricky part is to engineer interactions between normal

modes which will have dynamics that are not well captured by the spin degrees of

freedom of the ion chain. For this we look to the photonics community, where pho-

tons play an identical role to the phonons in our current experiments. In photonics,

interesting physics is achieved by using a network of beam splitters and utilizing

bosonic statistics to generate non-trivial states. It would be ideal to demonstrate

an experiment that has a direct analog to photonics using phonon excitations. This

would also show the versatility of the tools we have been developing thus far. The

demonstration experiment we have chosen to try is to look for Hong-Ou-Mandel

(HOM) interference between phonon modes. I want to take some time to walk

through these experiments, and then give our current results.

6.1 Hong-Ou-Mandel Photon Example

Hong-Ou-Mandel interference is a canonical example of the quantum behavior

of light [68]. The experiment is relatively simple, given a beam splitter with perfect

50/50 visibility, take two identical single-photon sources and impinge those sources
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Figure 6.1: If a photon from input mode a and an identical photon from input mode
b hit the beam splitter at exactly the same time then one measures the coincidence
of both output detectors measuring a photon, the result will be zero due to bosonic
statistics.

on two of the ports of the beam splitter. On the output ports, place two-single

photon detectors. If you vary the amount of time it takes for one of the photons to

hit the beam splitter, there will be a specific time at which point there will no longer

be coincident counts on the detectors, see Fig. 6.1. This is known as the Hong-Ou-

Mandel dip, and it is a consequence of the interference of the photon wavepackets

at the beam splitter1. One way to view this experiment is to consider the beam

splitter as a unitary rotation of input modes to output modes,

1If this dip exceeds 50% this effect exceeds the interference one might expect of classical corre-
lations.
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â† =
ĉ† + d̂†√

2
(6.1)

b̂† =
ĉ† − d̂†√

2
(6.2)

Because these operators are bosonoic they commute with each other, specif-

ically [c†, d†] = 0. Then if we consider the input state acting on the vacuum to

generate the two input photons, we end up with input and output states given by,

â†b̂† |0a, 0b〉 →
1

2
(ĉ†2 + d̂†ĉ† − ĉ†d̂† − d̂†2) |0c, 0d〉

â†b̂† |0a, 0b〉 →
1

2
(ĉ†2 − d̂†2) |0c, 0d〉

|1a, 1b〉 →
|2c, 0d〉 − |0c, 2d〉√

2
(6.3)

In other words, when measuring the output, there will be no coincident detec-

tion at different output ports. Just to highlight the point, if the particles interfering

on the beam splitter were fermions, which anti-commute {c†, d†} = 0, then the

cross terms would not cancel. In fact they would be the only terms due to the

Pauli exclusion principle, and there would only be coincident counts on the de-

tectors. The resulting output state is an entangled state of the two modes. This

basic interference is one way linear optical quantum information processors generate

entanglement [69]. It is also a perfect test for the bosonic nature of our phonons.

Good Hong-Ou-Mandel contrast is indicative of good bosonic statistics; furthermore
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it requires us to generate specific Fock states and be able to read them out.

To give a more general mathematical description of this phenomena [70], we

can start with two photons which have a joint Gaussian pulse shape β impinging

on a beam splitter with unknown transmission (T ) and reflection (R) coefficients.

The creation and annihilation operators for the input state can be described as an

integral over the pulse time, with corresponding creation operators acting on the

vacuum state,

|11, 12〉 =

∫
dt

∫
dt′β(t, t′)â†1(t)â†2(t′) |0〉 (6.4)

Where β is given by the overlap of the spectral amplitudes, ζ, normalized in

the following way,

β(t, t′) = ζ(t)ζ(t′) (6.5)

ζ(t) =

(
2∆2

π

) 1
4

e−iω0te−∆2(t0−t)2

(6.6)

1 =

∫
dt

∫
dt′|β(t, t′)|2 (6.7)

1 = |R|2 + |T |2 (6.8)

The ∆ in the above expression is the spectral bandwidth of the light. In terms

of the output operators, the input operators are defined as,
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â†1(t) = Râ†3(t) + T â†4(t) (6.9)

â†2(t) = T â†3(t) +Râ†4(t) (6.10)

We can write the integration above in terms of the output operators to obtain,

|11, 12〉 =

∫
dt

∫
dt′

1

2
RT [β(t, t′) + β(t′, t)]

[
â†3(t)â†3(t′) + â†4(t)â†4(t′)

]
(6.11)

+
[
R2β(t, t′) + T 2β(t′, t)

] [
â†3(t)â†4(t′) + â†4(t)â†3(t′)

]
|0〉

From the form of the operators, we can conclude that there will be two cases

that will be interesting: The case where we get coincident detection on the output

ports, 〈13, 14|, and those in which we do not, 〈23, 04| and 〈03, 24|. The probability

of the first case is given by,
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〈13, 14|11, 12〉 =

∫
dt

∫
dt′
[
R2β(t, t′) + T 2β(t′, t)

]
(6.12)[

〈13, 14| â†3(t)â†4(t′) |0〉+ 〈13, 14| â†4(t)â†3(t′) |0〉
]

=

∫
dt

∫
dt′R2β(t, t′) + T 2β(t′, t) (6.13)

P (13, 14) = | 〈13, 14|11, 12〉 |2 (6.14)

= |
∫
dt

∫
dt′R2β(t, t′) + T 2β(t′, t)|2 (6.15)

= R4

∫
dt

∫
dt′β∗(t, t′)β(t, t′) + T 4

∫
dt

∫
dt′β∗(t′, t)β(t′, t) (6.16)

+ |R|2|T |2
∫
dt

∫
dt′ [β∗(t, t′)β(t′, t) + β∗(t′, t)β(t, t′)]

= |R|4 + |T |4 + 2|R|2|T |2|J |2 (6.17)

|J |2 =

∫
dt

∫
dt′β∗(t, t′)β(t′, t) (6.18)

By completing the square and using the normalization convention defined

above we get a term that looks like,

P (13, 14) = 1− 2|R|2|T |2(1 + |J |2) (6.19)

Similarly we can look at the probability that both photons exit the same port

of the beam splitter,
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〈24, 04|11, 12〉 = 〈04, 24|11, 12〉 =

∫
dt

∫
dt′
√

2

2
RT [β(t, t′) + β(t′, t)] (6.20)

P (23, 04) = P (03, 24) = | 〈23, 04|11, 12〉 |2 = | 〈03, 24|11, 12〉 |2 (6.21)

=
2

4
|R|2|T |2

∫
dt

∫
dt′| [β(t, t′) + β(t′, t)] |2 (6.22)

= |R|2|T |2
(
1 + |J |2

)
(6.23)

For the special case of a 50/50 beamsplitter, where |R|2 = |T |2 = 1
2
, the

probabilities for each case reduces to,

P (23, 04) = P (03, 24) =
1

4

(
1 + |J |2

)
(6.24)

P (13, 14) =
1

2
(1− |J |2) (6.25)

We can see that |J |2 is the overlap integral of the photon wavepackets in time.

For the case in which both of these photons have perfect overlap in arrival time and

have the same center frequency, ω0, we say the photons are identical and the overlap

integral |J |2 = 1. For this case, the probability for both photons to exit the same

port is P (23, 04) = P (03, 24) = 1
2

and the probability that they exit different ports

vanishes, P (13, 14) = 0. This gives rise to the aforementioned Hong-Ou-Mandel dip

in coincident counts as the photon arrival time of one of the wavepackets is scanned.
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6.2 Hong-Ou-Mandel Phonon Example

For the phonons we create, it can be challenging to create a direct analog of

this beam splitter interaction. Essentially, this requires generating an xi ·xj coupling

of the modes we want to mix. This type of non-linearity requires us to introduce a

gradient between normal modes. That can be difficult without perturbing the ions

motion in such a way as to ruin the Fock states we have prepared. There are three

approaches worth mentioning.

The first approach studied experimentally, but not in this context, involves

driving a gradient of field electric field at the difference frequency between two

modes [71–74]. This gradient needs to spatially overlap with both modes of interest,

and the gradient itself will determine the strength of the coupling. This has been

shown in a micro-fabricated trap where mixing was driven between the in and out of

plane normal modes. There are a few reasons why we find this approach unappealing

for our experiments. First, it is sometimes challenging to drive the nominally DC

potentials without inducing micro-motion and subsequent heating of the normal

modes.

More problematic is the fact that even though the trap electrodes are small,

on the order of 60 µm and they are close ≈ 90µm away from ions, the ions in a chain

are spaced by ≈ 5µm. This means that there needs to be a strong field gradient

between ions created from electrodes that are an order of magnitude farther away.

In practice this means that extremely large voltages must be applied to electrodes to

get any non-negligible coupling. Because our trap has delicate features, for example
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the trench capacitors used to eliminate RF pick-up on the DC electrodes, we are

limited to no more than 10 V on the DC electrodes. In simulations we estimated this

would allow us to get less than a 10 Hz coupling between different normal modes an

the same trapping axis. One could do better by coupling in and out of plane modes,

however, we would then have to cool twice as many modes which might increase the

length of experiments such that heating effects would start to set in before we could

see any interference.

The second and more promising technique involves weakening the axial trap

depth, which is equivalent to weakening the springs between ions by increasing their

distance from one another [75]. If the distance is made large enough and a single

ion is addressed2 then the addressed mode is more of a local mode than a collective

mode [51]. This local excitation will naturally begin to mix with the other local

modes, and this mixing can be used as a beam splitter between local phonons when

viewed at certain times. As a classical analog, think of beads connected axially

by springs. When the springs are strong and a bead is displaced in the transverse

direction and all the beads participate in the resulting harmonic motion, this is

exciting a normal mode of motion. However, if the springs between beads are

incredibly weak, then a bead displaced will oscillate at its center of mass frequency

before the excitation slowly couples to the other beads. An alternative interpretation

is to consider the fact that the normal modes of motion are the eigenstates of the

confining Hamiltonian, while the local modes are superpositions of the normal modes

and since they are not eigenstates the local modes, they will undergo time evolution

2This is much more easily accomplished now that the ions are separated by much larger distances
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into one another at a rate given by the difference in their associated energies. The

hopping between the local modes can be thought of as a beam splitter between local

modes. This hopping between local modes goes like,

ti,i+1 ∝
ω2
ẑ

2ωx̂,ŷ
(6.26)

This coupling has been shown to exhibit HOM type interference using two

trapped Ca+ ions in a macro-fabricated trap [75]. The main issue with this type of

coupling is that it is very difficult to engineer the coupling exactly. It is difficult to

modify the DC potential without inducing heating, in the experiments where this

was demonstrated the potential was not changed and they observed the phonons

hop back and forth. But if you want to stop the hopping for readout or to freeze

the state in a given phonon configuration, this can be challenging to do with DC

electrodes.

The way in which we are trying to induce this coupling relies on our Raman

interaction. In Chapter four, we wrote down the coupling, for an arbitrary length

ion chain, of the ion chain motion to light. Before making the Lamb-Dicke approx-

imation that Hamiltonian took the form,

H̃I =
∑
j

Ωσ̂+
j e

iωHF t
∏
i

e[iηi,j(â
†
i e
iωit+âie

−iωit)]e−iω∆t + h.c. (6.27)

By saying that the parameter η was small, we expanded the exponential in

a Taylor series. However, not only are the terms in the expansion separated in
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strength by η, they are also spectrally resolved by combination of the normal mode

frequencies. Therefore there are terms that are higher order in η which separate

spectrally and can be driven [76]. More concretely, there exists a term that is

second order in η that has the form,

O(η2)→ H̃RWA
I =

∑
j

ηi,jηk,jΩ(σ+
j âiâ

†
k + σ−j â

†
i âk)

Once an appropriate rotating wave approximation is made, requiring the driving

field to be at the difference frequency of the two modes of interest ω∆ = ±|ωi−ωk|.

This term looks a lot like the traditional beam splitter Hamiltonian,

H̃BS ∝ (âiâ
†
k + â†i âk) (6.28)

If we can drive two colors, one color at the positive difference frequency, and

one at the negative difference frequency then we can drive a Hamiltonian which is

identical to this beam splitter Hamiltonian for the phonon modes, see Fig. 6.3

H̃HOM =
∑
j

ηi,jηk,jΩ(σ+
j + σ−j )(âiâ

†
k + â†i âk) (6.29)

This is the term we are attempting to drive when we induce our HOM coupling.

The reason we find this coupling scheme appealing is that in principle we can drive

many different interference terms by adding additional frequencies to our Raman

beatnote, which is relatively trivial. It is also an externally driven interaction, which

allows us to turn on and off the coupling at will. This would in principal allow us
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Figure 6.2: Theory plots describing the evolution, under the Hamiltonian H̃HOM =∑
j ηi,jηk,jΩ(σ+

j +σ−j )(âiâ
†
k+ â†i âk), of the quantum state as a function of drive time.

The upper plot shows how the individual spins should flip in a three ion chain. The
bottom plot dipicts the evolution of the spin manifolds. The normalized time is a
result of setting ηi,jηk,jΩ = 1 when calculating the state evolution.

to tune the visibility of the beam splitters we are creating. Finally, this type of

interaction only relies on the normal modes; we are not required to modify the DC

potential, and incur the heating that might result. Finally, once the interaction is

turned off the modes will stop evolving which makes measurement less daunting.

6.2.1 Results

We have attempted to drive the interference term detailed above, and although

our results thus far are not in agreement with theory, they give us some hope for a

way forward and hint at what are our current limitations. Using the tools developed

122



0.0 0.1 0.2 0.3 0.4 0.5 0.6
Normalized Time

0.0

0.2

0.4

0.6

0.8

1.0

p
o
p
u
la

ti
o
n
s

N=0
N=1
N=2

Figure 6.3: Theory plots describing the evolution of the quantum state as a function
of drive time. This plot shows the evolution of the motion state for one of the modes
as function of drive time. Where the red curve is the evolution of the |n = 2〉 phonon
state, green show the|n = 1〉 phonon state, and blue is the |n = 0〉 phonon state.
In the beginning we initialize in |n = 1〉 and this state oscillates between this and
|n = 0〉 + |n = 2〉, very similar to a Hong-Ou-Mandel experiment. The normalized
time is a result of setting ηi,jηk,jΩ = 1 when calculating the state evolution.

in the previous chapters, we have tried to initialize our chain of three ions in the

state,

|Ψ〉 = |ψ〉spin |ϕ〉motion (6.30)

= |↓, ↓, ↓〉 |1, 0, 1〉 (6.31)

When we drive the HOM term, we are going to look at the spin component of
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the three ion state, see Fig. 6.2. By using spin as a witness, we should expect to

see flopping between the all spin down state ψ0 = |↓, ↓, ↓〉 and the one spin flipped

up manifold ψ = |↑, ↓, ↓〉 + |↓, ↑, ↓〉 + |↓, ↓, ↑〉, without any two spins being flipped

simultaneously. This condition comes from the coupling we are trying to drive,

which can only exchange one beam splitter excitation with one spin flip excitation.

If we start with φ0 = |1, 0, 1〉, then the only other coupled state of the phonons is

φ = |2, 0, 0〉 − |0, 0, 2〉.

What we observe is that we can induce some mixing, however the coherence

of this mixing appears to be limited, see Fig. 6.4. What is interesting is that the

decoherence we observe is still confined to the spin manifold we expect to couple

to, which is not what we would expect if heating were the limiting factor. In

fact, if the purity of the phonon state was limiting us, we would expect that the

other spin manifolds, two spins and all spins being flipped up, would play a role

in the dynamics. Our ability to create the φ0 = |1, 0, 1〉 Fock states of motion is

all that limits how many spins are flipped. Our current working theory as to why

the coherence is limited in this manner has to do with the stability of transverse

mode frequencies. In Chapter 2, we showed that the transverse mode frequency

is proportional to the RF voltage, ωx,y ∝ VRF and as discussed previously in this

chapter, the HOM terms we are driving are of order η2. For fixed interaction time

this means that these terms are a factor of η more narrow than a RSB or BSB. To

maintain coherence the transverse secular frequencies must be stable to better than

a fraction of the linewidth of those transitions. This means that the VRF must be

stable to much less than the linewidth of the HOM term. We estimate this level of
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Figure 6.4: The state is initialized to ψ0 = |↓, ↓, ↓〉 |1, 0, 1〉. By driving the HOM
term, we see qualitatively what we expect, namely only the one spin flipped manifold
is participating in the interaction. The solid lines on the lower curves are sin2 fits to
the data of the form A sin2(ωt+φ)+C. Where A, ω, φ, and C are all fit parameters.
The average reduced χ2 for the fits on the upper plot is 0.887, for the lower plot
the average reduced χ2 is 0.785. Error bars are again calculated from a binomial
distribution.

stability as,
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V0 = ωx,y (6.32)

δω <
γ

10
(6.33)

δω =
ωx,y
V0

δV (6.34)

δV <
γ

10ωx,y
V0 (6.35)

Where the term γ is the linewidth of the RSB or BSB, experimentally these

transitions are 50 kHz wide with a center frequency of 2.7 MHz, which means the

HOM term should be approximately 5 kHz wide. This means that the voltage must

be stable to a part in 104 for us to be able to drive coherent flopping:

δV

V0

<
γ

10ωx,y
(6.36)

<
5kHz

10 · 2.7MHz
(6.37)

< 2 · 10−4 (6.38)

From the data we have taken for the HOM drive so far we have much more like

a part in 103 stability. To verify this, we took overlapping Allan deviation (OVAD)

measurements of the frequency of the BSB transition [43]. We accomplish this by

doing Ramsey spectroscopy. We applied a π/2 pulse on a cold BSB and wait a time

τ and apply another π/2 pulse. By varying the delay τ , we obtained a fringe which
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we can fit to determine the frequency of the BSB. For our purpose, it is important

to make the time τ ≥ 200 µ s as this is the relevant time for our fastest HOM drive

time. By repeating this measurement as fast as we can over an hour or more, we

were able to calculate overlapping Allan deviations for the carrier as well as the

BSB. The overlapping Allan deviation is given by [77],

σ2
y =

1

2m2(M − 2m+ 1)

M−2m+1∑
j=1

{
j+m−1∑
i=j

[yi+m − yi]

}2

(6.39)
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Figure 6.5: Allan deviation of the frequency of the b0 and b1 modes via Ramsey
spectroscopy, we can see that the drifts in the sidebands are a limiting factor in
performing the desired HOM interaction.

When compared to the carrier the BSB has substantially worse stability, which

means the dominate drift is not the beatnote itself, see Fig. 6.5. We see that at
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the earliest time scales we can measure the BSB is already drifting with a slope

similar to a random frequency walk. This implies that over a few seconds the BSB

has moved by 100 Hz, because the distillation is probabilistic these experiments can

take minutes from the first scan point to the last scan point. If the sidebands are

moving by a part in 103 during this time, as the last few points in the plot suggest,

this accounts for at least a portion of our loss of contrast.
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Figure 6.6: Allan deviation after better stabilization. The blue points are the same
as the points in Fig. 6.5, the pink and purple points represent recent improvements in
the stabilization of the mode frequencies. Where we have also measured the stability
of the amplitude of Ramsey fringe we measure, this gives us an indication of the
intensity drift of the beatnote. This is on the same order as the best stabilization
achieved for similar stabilization circuits, and we still believe this may be the limiting
factor in driving interference.

We think this is by far the limiting factor in driving our HOM terms. Recently,

we have been trying to improve on the stabilization of this frequency by better
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stabilization the RF drive frequency. In doing so, we have made some improvements

on the above results, see Fig. 6.6. Specifically we have temperature stabilized the

helical resonator as well at the rectifier we use. We also have integrated a part per

million stable voltage reference into the locking circuitry, this is done to stabilize

the setpoint of the servo controller. However, we still believe this to be our limiting

factor. This in fact is what motivated us to try and the develop phonon excitation

readout discussed in section 5.4. This would allow us to look at the external degree

of freedom as well as the spin degree of freedom.
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Chapter 7: Outlook

7.1 Future Improvements

The intent of this chapter is to discuss some of our strategies for mitigating

the problems we have encountered so far and try to motivate why these tool could

be interesting in the future. We need to find a way to increase the coherence of the

HOM interference we have seen thus far. We have begun by temperature stabilizing

all the components in the RF stabilization circuit as well as try and find what

component in that circuit 1 is inducing the most noise.

The biggest hurdle will be any out of loop noisy reactive elements in the

vacuum chamber itself. In principle, if the RF leads are moving in the chamber this

could change the line inductance and lead to a shift between measured tap voltage

and trap voltage. This shift only has to be a part in 103 before it would account for

all of the drifts we see in the experiment. If there is noise in the RF voltage picked

up after the resonator, the feedback to the resonator itself will be limited in the

bandwidth to the linewidth of the resonator. With feedback before the resonator,

precisely because the helical resonator is a very good filter, it will be difficult to

address frequencies that couple onto the RF line after the resonator.

1Discussed fully in Chapter 3.3.2.2.
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There are two approaches we have devised to address these issues. We can

move away from using transverse modes and instead couple to the axial modes of

motion. This has two advantages, as stated in Chapter 2: First, the axial modes

depend on the DC trapping voltages, which are much easier to stabilize and can

be heavily low-pass filtered. Secondly, all of the mixing terms will have similar

difference frequencies, which may make future experiments less challenging. The

biggest problem with the axial modes is that they are at lower frequencies. Because

the heating rate as well as the Doppler limit depend on this frequency, it can be

much harder to cool these modes. Despite these drawbacks, with the voltages we

are currently applying, we think we should be able to achieve axial frequencies of

approximately 1 MHz.

The most invasive change, which would require us to break vacuum and replace

the trap with a different trapping architecture, would be to arrange true individual

addressing. The way in which we would achieve this is by making use of a new

trap design, the HOA trap, where the NA from the side of the trap is around 0.25.

This trap also has a slot through the trapping structure which allows tightly focused

beams to be sent through the trap. This change is planned to occur in the next

year, and this will require most of the experiment be dismantled for a few months.

Luckily, the infrastructure of optics and electronics can readily be re-aligned to the

new chamber assembly when it is under vacuum.

In conclusion, we have demonstrated a toolset for initializing and reading out

the external degrees of freedom in a trapped ion chain. We do this with the hope of

being able to utilize this additional quantum resource in experiments that require
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sampling from bosonic distributions2. This experiment is of interest because it is

classically very difficult, P#-complete, to determine the probability of a specific

output configuration from a bosonic distribution of output configurations derived

from a network of linear beam splitters [54, 78]. If an experiment can bound that

probability for a sufficiently large number of output modes, even to a multiplicative

factor, it would be interesting to several communities of scientists [56].

2See Appendix B for more details on Boson Sampling.
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Appendix A: Laser locking

Locking the frequency of our laser sources is of paramount importance to

performing high fidelity operations. In previous chapters, there was a discussion of

how we lock the frequency of the Raman beatnote, but the locks used to stabilize

the frequencies of our various CW laser sources was left for this appendix. The

reason why this is so challenging is two-fold. Firstly, we are trying to lock a wide

spectral range of wavelengths from 369 nm to 935 nm1. Secondly, the 369 nm light is

far enough into the blue that certain traditional locking schemes can prove difficult.

This appendix is intended to discuss the several ways we have attempted to lock

our lasers, as well as the planned improvements to our laser locking scheme.

A.1 Wavemeter Locking

The current, unsustainable, locking scheme we are using involves a waveme-

ter from High Finesse, this instrument has an accuracy of 50 MHz around the 369

nm wavelength, a precision of approximately 5 MHz, and returns a measurement

of wavelength approximately every 2 seconds. These wavemeters operate by cou-

pling light to a series of Fizeau interferometers of different lengths. By comparing

1Where some experiments in our group have Ba+ wavelengths peppered throughout that region.
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the interference pattern from each of these interferometers, software calculates the

wavelength based on an interference pattern of a known calibration wavelength.

The operational implementation of this lock is trivial, the wavemeter, a commercial

product, determines the wavelength of the light you send to it via an optical fiber.

One can then use that reading to feedback to the frequency of an ECDL by adjust-

ing the cavity length or the diode current. The main issues with this type of lock

involves timing, and for our purposes precision.

In the ion trapping community, as long as you can trap one ion then you can

always use the ion as an accurate reference in this case the wavemeter. Therefore, we

do not necessarily need high accuracy, just high precision. The problem, arises when

you want to lock multiple wavelengths with this method using only one wavemeter.

The cited precision specifications are only valid within a 2 nm band around the

calibration wavelength. More problematic is how to couple all of these wavelengths

into the same device. Until recently, there was only one port into these wavemeters,

which meant a switch needed to be used. The switches generally sold for these

devices work by taking many input fibers and directing them sequentially onto an

output coupler using a MEMS mirror.

There are two problems with this. First, to be broadband the switch uses mul-

timode optical fiber. By sending multimode light into the wavemeter, the precision

specification will be degraded up to two orders of magnitude. The second problem

is that the time it takes to switch between wavelengths can dramatically impact the

bandwidth of a feedback loop that is relying on a measurement from the wavemeter.
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A.2 Locking via discharge cells

Figure A.1: The optics path for using a hollow cathode lamp in a polarization
spectroscopy configuration. This requires interrogation of the 174Yb+ isotope. To
shift the 174Yb+ line onto the 171Yb+ S1/2 → P1/2 resonance requires an EOM or
another source of 369 nm light beatnote referenced to 174Yb+. Because the ion
signals in the cell are so small we use lock-in amplification by modulating the power
of the pump light via an AOM to achieve sufficient signal strength.

If for a moment we wish to only lock the 369 nm line and we wish to do

so in a very accurate way, we can think about locking the laser to a cell of Yb+

ions. This is most readily achieved by taking a hollow cathode lamp of Yb and

running a large amount of current through the lamp, 10-30 mA, to create a plasma

of Yb. Once a plasma is achieved, 369 nm light can be locked to the atoms in

whatever way is most convenient. The most commonly used lock for this setup is a

polarization lock [79–81]. This lock works by comparing the differential absorption

of polarized light as the light is swept over resonance. By comparing the amplitude

of transmitted light of different polarizations, a dispersive curve can be obtained
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with a zero crossing at the peak of resonance. This works because the presence of

the pump changes the proportion of absorbed probe light of different polarizations.

We can see this is we follow a derivation of transmitted intensity [82]. First, we note

that a linearly polarized field in the circular polarization basis is of the form,

E = E0

(
cosφ

sinφ

)
= E

{
e−iφ

2

[
1

i

]
+
eiφ

2

[
1

−i

]}
(A.1)

After passing through the cell, there will be different absorption of the two

polarizations, where we are ignoring the birefringent effects of the windows. The

probe beam will have an electric field.
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(A.3)

Ω =
ωL

8c
(4∆n− i∆α) (A.4)

Where the ω
c
n term corresponds to the phase shift the light acquires passing

through the gas. We define ω as the frequency of the light and n as the index of

refraction of the gas. The absorption of the light is defined as α±. The measurement

we want to make is a differential measurement of the two different polarizations in

the linear basis. By using a Wollaston prism to spatially separate both polarization

and then direct each onto one port of a differential photodiode we can make this

differential measurement. In this case, the intensity of the signal we mesure will be,
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Isig = Iy − Ix (A.5)

= I0e
−αL cos

(
2φ+

Lω

c
∆n

)
(A.6)

We can use the Kramers-Kronig dispersion relation to relate ∆α and ∆n, ∆n =

c
ω0

x
1+x2 ∆α, whose parameters we will define shortly. If we make the approximation

that the accumulated polarization angle is small, and we set φ = π
4

to maximize our

sensitivity to polarization, we can make a small angle approximation. This leaves

the following equation for the intensity of our signal,

Isig = −I0e
−αL

(
L∆α0

x

1 + x2

)
(A.7)

x =
ω0 − ω
Γ0/2

(A.8)

From this equation we see that we get a dispersive curve, where there is a zero

crossing on resonance. We can use this curve to feedback to the frequency of our

laser source. The problem here, is that there will be very few 171Yb+ ions and the

signal from these atoms will be small and will also be convoluted with all the other

isotope signals. This leads to a DC offset in the zero crossing of the line we are

interested in locking. In practice, we found it necessary to apply EOM sidebands to

the pump and probe light to align the signals derived from the much more prevalent

174Yb+ isotope with the 171Yb+ resonance we were interested in locking. What we
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found when using this lock was that sufficient lock performance, < 2 MHz drift of

the laser as measure by the ion, required very specific parameters of the lock and

that small deviations from these parameters could dramatically and adversely affect

lock performance.

A.3 Transfer Cavity Locking

Figure A.2: The optics path for our scanning transfer cavity. The separation of
wavelength can be accomplished with a variety of off the shelf filters. The photodi-
odes used depend on the electronics which digitize this signal. Ideally the response
time of the photodiode is matched to the speed of the ADC to minimize dark counts.

The approach we are pursuing is to lock all of the lasers to a scanning opti-

cal cavity [83]. Light impinging on a Fabry-Perot interferometer will be resonant

when the frequency of light satisfies the resonance condition, ν = m c
2nL

where m
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is a positive integer. By comparing the positions of resonances in a scan of the

cavity length, we can compare frequencies of disparate laser sources. This can be

accomplished while canceling the dependence of the resonance frequencies on the

length of the cavity [84]. If one of these lasers is stabilized elsewhere to a known

reference frequency, then we can use the cavity to stabilize the other laser sources to

this laser. This can be seen if we compare the resonance condition for two adjacent

cavity resonances of the reference laser to a laser we want to stabilize,

Mλref = 2nrefL0 (A.9)

Mλref +
λref

2
= 2nref (L0 + ∆L0) (A.10)

Nλsig = 2nsigα∆L0 (A.11)

(A.12)

Where ∆L0 corresponds to scanned length of the cavity, which is less than the

total length. The term α∆L0 is a position along that scanned length. The terms

N and M are integers associated with the cavity resonance and nref is the index of

refraction for the reference laser. In more physical terms, these equations represent

the length change of the cavity necessary to see two reference lines, where we have

arranged to have a resonance of the laser we are going to lock in-between these

resonances. From these equations, we can solve for the wavelength of the signal

light as a function of reference light.
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L0 =
Mλref
2nref

(A.13)

∆L0 =

(
M + 1

2

)
λref

2nrefL0

− 1 (A.14)

λsig = λref
nsig
nref

2M + α

2N
(A.15)

Therefore if use the value of α as our set point, in a feedback loop we can

effectively cancel out the length of the cavity, L0, to first order. In practice, we

must also stabilize the static length of the cavity L0 to minimize the effect of pizeo

non-linearities. We do this by stabilizing the value of ∆ between the two reference

resonances. This approach has the advantage that, in principle, we can lock all of

the lasers to a single reference. Moreover, this can be accomplished without a large

amount of overhead 2 in laboratory equipment. This is because the laser frequencies

do not need to be tuned to the resonance as along as the element translating the

mirrors of the cavity has enough throw to cover all the wavelengths.

The obvious problem with this lock is that the feedback bandwidth depends on

the rate at which the scanned mirror can be translated. For larger mirrors, this rate

can be truly limiting. In our current setup we use a 1 inch mirror and can only scan at

a rate of approximately 100 Hz. However, by increasing the overhead involved with

locking these lasers, one can do a Pound-Drever-Hall lock the cavity [85], operated

as a static cavity, with much larger bandwidth.

2By overhead, I am referring to the AOMs, EOMs, and assorted electronics that would be
needed to assure that the lasers are resonate with a static cavity.
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Appendix B: Boson Sampling

In this section I am going to give a brief view of an experimentalist of how a

Boson sampling experiment would work, and why it is interesting. Boson sampling

is an interesting candidate experiment in the context of building a quantum device

which can perform some simulation of computation that a classical computer can

never hope to achieve. The experiment is as follows, given a set of Fock modes,

we populate some known number state of those modes. If these modes then un-

der go some form of coherent mixing, under a unitary transformation, Û , and the

excitation occupation of the output modes is measured, the probability of getting

population out on specific configurations of output channels depends on the matrix

elements of Û which mixed input modes to specific output modes. This probability

is proportional to the permanent of a sub-matrix of Û which does this mapping of

input modes to output modes [56]. Specifically, this sub-matrix is constructed from

elements of column vectors corresponding to the initial excitation, where the spe-

cific elements of these vectors are chosen corresponding to the rows of the measured

output configuration. More formally, given the input state |ψ〉 the general output

state will be |Γout〉,
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|Ψ〉 = |ψ1, ψ2, ..., ψM〉 (B.1)

|Γout〉 =
∑
s

cs

∣∣∣φ(s)
1 , φ

(s)
2 , ..., φ

(s)
M

〉
(B.2)

Where the sum is over all possible configurations of output excitations. The

probability of measuring a specific output configuration is then given by,

Ps(Φs|Ψ) =
|Per(Û (Φs|Ψ))|2∏M
j=1 φj!

∏M
i=1 ψi!

(B.3)

The reason why this experiment is interesting is that, from the above calcu-

lation we have shown that to calculate the probability of getting a specific output

configuration requires calculating the permanent of a matrix, and in principle, this

matrix can be large. This is significant because calculating the permanent is in-

credibly challenging classically, it belongs to the complexity class P#, and is in fact

P#-complete. P# is not a class of decision problems like NP, instead it is a class

of functions and in a sense can be related to a class of problems associated with

determining the number of solutions to NP problems. Classically the most efficient

algorithm for calculating the permanent of an N × N matrix is of order O(n22n).

This implies that reasonably small systems can become intractable for a classical

computer.

However, the experimental implementation of such an experiment seems fea-

sible. In the linear optics community people are pursuing experiments in this vein
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for quite some time [56] [86]. Recently there have proposals on how to accomplish

similar experiments with trapped ions [52]. The advantage to ions is that it might

be easier to scale the number of ions, which would increase the number of modes

and complexity of the classical computation. This is compared to scaling up the

number of single photon sources, the bosonic excitations used in photonic boson

sampler. The current state of the art in the photonics community is a 10 photon

boson sampler [86], in the ion trap community no experimental implementations of

boson sampling have been demonstrated.

To be clear, the experimental implementation would not hope to reconstruct

the permanent of the unitary, Û . Such an experiment would take exponentially

many measurements and would be highly limited by realistic error models [87, 88].

However, if an experiment can determine the probability of getting a given output

mode configuration to within even some multiplicative factor for a sufficiently large

Û ; this might still constitute a demonstration of a quantum device performing a

classically intractable problem. Even if an experiment was to demonstrate such a

calculation the question of how to verify that the output probability was actually

sampled from the unitary of interest is an open question [55]. However, there are

some theoretical proposals and schemes to verify that the sampled distribution was

not uniform [89,90].
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