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One of the major problems in building a quantum computer is the development

of scalable and robust methods to entangle many qubits. Quantum computers based

on trapped atomic ions are one of the most mature and promising platforms for

quantum information processing [1,2], exhibiting excellent coherence properties [3],

near-perfect qubit detection efficiency [4], and high-fidelity entangling gates [5, 6].

Entangling operations between multiple ions in a chain typically rely on qubit state-

dependent forces that modulate their Coulomb-coupled normal modes of motion

[1, 7, 8]. However, scaling these operations to large qubit numbers in a single chain

must account for the increasing complexity of the normal mode spectrum, and can

result in a gate time slowdown [9] or added complexity of the control forces [10].

In this thesis, I present an alternative route to the scalability problem using optical

interactions faster than any state evolution. The experiments shown here represent a



proof of principle for quantum manipulation of atoms in the strong coupling regime.

This work relies on spin dependent forces (SDK) with short laser pulses and use it

as our fundamental building block for thermometry and non-trivial motional state

preparation. Together with a robust stabilization of the ion trap and high light

collection efficiency, we demonstrate two-ion entanglement with ten ultrafast pulses.

Due to the nature of the interaction, the demonstrated entangling operation can be

made arbitrarily fast only limited by laser engineering.
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Chapter 1: Introduction

Quantum mechanics is the theory of the microscopic realm and recent technical

advances in the manipulation and control of basic quantum systems have triggered

the use of some of its least intuitive properties, such as entanglement, for appli-

cations in practical devices. Quantum computation is one such applications with

the capacity to revolutionize the world because of its potential to outperform con-

ventional computers. It has been demonstrated that the memory capacity of such

devices scale exponentially, compared to the linear scaling of current computers.

Moreover, it is becoming apparent that classical computers are reaching a bottle-

neck in operation and manufacture since thermal runaway, quantum tunneling and

variability in on-chip transistor electronic properties severily limits their scalability

to faster devices.

One needs to first understand their building blocks of the two computing

platforms to better comprehend their differences [11]. In a classical computer, the

fundamental unit of information is the bit, which can represent either a 0 or 1

depending on its state i.e. a transistor is on and off but not both (figure 1.1a).

Any string of information can be represented as a combination of several bits and

we also notice that classical bits are deterministic, meaning that they can only
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|0〉

|1〉(a) (b) (c)

|0〉

|1〉

}
} p

(1 − p)

|1〉

|0〉

φ

θ

Figure 1.1: Classical,probabilistic and quantum bits. (a) Classical bits can only
take two values in a deterministic way. (b) Quantum bits are represented by a point
on a Bloch sphere and are better described by complex numbers. (c) A classical
probabilistic bit could take either 0 or 1 with probabilities p and (1-p) of obtaining
either value. Bit values are represented as end points on a joining line.

change their state because of external perturbations. On the other hand, quantum

computing makes use of the quantum bit or qubit as its fundamental information

unit, which can also take binary values but possess different properties than its

classical counterpart.

Qubits follow the rules of quantum mechanics and are intrinsically probabilistic.

As a consequence, two pieces of independent information are needed to describe

its behavior, making vectors in a Hilbert space an ideal way of representing them.

Because of this inherent two dimensionality, qubits are usually represented as a point

in the Bloch sphere (See figure 1.1b). Algebraically, the usual way of representing

an arbitrary qubit is using the Dirac notation of bras (|ψ〉) and kets (〈ψ|) for an

arbitrary state ψ:

|ψ〉 = cos θ|0〉+ exp(iφ) sin θ|1〉, (1.1)

where θ and φ are the two independent numbers describing the probability amplitude

2



and phases respectively. It is experimentally found that the act of measurement

gives a value of 0 or 1 with a probability of | cos θ|2 or | sin θ|2 respectively, obtained

by taking the absolute square of such amplitudes together with their phases. Such

value remains true till the qubit is initialized again.

It is reasonable to ask ourselves if the behavior of a qubit can be mimicked by

classical means, after all, we could create a probabilistic bit that can take either 0

or 1 value in a probabilistic manner (See figure 1.1c) with predefined weights p and

1− p. Although the answer is yes for a single unit, it is in general no when working

with qubit ensembles. The reason is because qubits, as quantum mechanical objects,

follow the superposition principle and can also be entangled. Qubit superpositions

are a direct consequence of their quantum nature. The time evolution of a set of

qubits and the interactions with each other follow the Schrödinger equation, which

is a wave equation. Furthermore, entanglement is a unique quantum feature and

is defined as the innability to independently describe the state of individual qubits

in an ensemble from the rest in a nonlocal way [12]. One example of such a fully

entangled two-qubit state is given by

|ψ〉 =
|0〉1|1〉2 − |1〉1|0〉2√

2
, (1.2)

where |x〉1,2 represents qubit one and two respectively. It is clear from the above

expression that if a measurement is performed on the first qubit, the state of the

second qubit is automatically known.

It is also important to remark that these correlations remain even if the mea-

surement happens in a different basis, that is, if we write |0〉 → (|+〉+ |−〉)/
√

2 and
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|1〉 → (|+〉 − |−〉)/
√

2. Although spooky, entangled states are routinely created in

experiments around the world and have been demonstrated to exhibit correlations

that exceed classical predictions [13,14].

1.1 Ion trap based quantum computing

Current efforts for building a quantum computer include both solid state (NV,

superconductors) and atom based systems. Although extensive documentation and

comparisons can be found in the literature [15], I will not discuss the features of

each platform, instead I will focus on the description of ion trap systems.

Trapped ion based systems are one of the most mature platforms for quan-

tum computing since the first demonstration of near perfect state detection [16–18]

and two qubit entanglement [19] has been shown in such systems. Moreover, long

coherence times [20], error correction [21] and high fidelity gates [5, 6] have also

been demonstrated in the past years, opening the door for control of larger qubit

numbers [10]. These systems employ rf Paul traps that harmonically confine posi-

tively ionized atoms in a linear chain. Two or three dimensional arrays can be also

achieved in a controlable way [22], but linear chains are usually preferred due to

simplicity.

The qubit states are commonly defined by two distinct electron states which

can either be optical or different hyperfine states due to their robustness to external

noise and long lifetimes. Communication between qubits is achieved by coupling to

their motional degrees of freedom that serve as a quantum bus and allows full qubit

4



connectivity [10]. Motional states are best described in terms of quantized normal

modes and are coupled to the qubits by laser light, which provides a reliable and

high degree of control. When the motional wavefunction of the qubit is smaller than

the reduced wavelength of the laser light (λ/2π), the ion is said to be confined in

the Lamb-Dicke regime [23, 24]. In this regime, the coupling between the spin and

the motional levels is such that high momentum transfer is suppresed up to second

order. Physically, this implies that the motional quantum number n (Fock state)

can change by no more than one.

1.1.1 Computation with phonons and qubits

Since we have a system with individual atoms whose motional states can be

addressed and controlled, it is natural to ask ourselves why we cannot use the

seemingly infinite harmonic oscillator energy levels ~ωn as our quantum computer

processor instead of individual qubits. The answer lies theoretically in the amount

of information that could be stored and potentially processed in such systems [25]

because of their fermionic (qubits) and bosonic (phonons) statistics and quantum

coherence in practice.

Specifically, the Shannon entropy describing the amount of information in a

system is defined as

S = −tr(ρ log ρ), (1.3)

where ρ is the density matrix and in this section, it will describe a system with

maximum unbiased ignorance (statistical mixture), which is diagonal in the compu-

5
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Figure 1.2: Shannon entropy of a quantum system of phonons and qubits. The
amount of information stored in an array of qubits scales linearly with their number
while for phonons, it scales logaritmically.

tational basis. For a system with N qubits, ρkk =
∑N

k |k〉〈k|/2N we compute

Squbits = −tr(ρkk log ρkk) = −
2N∑

k

1

2N
log2

(
1

2N

)
= N, (1.4)

that is, we double the processing power for every added qubit. We then compare the

qubit system with one made out of N + 1 phonons, the +1 accounts for the vacuum

state. The density matrix for a N occupied phonon system is ρnn =
∑N

n |n〉〈n|/(N+

1) and the information entropy is given by

Sphonons = −tr(ρnn log ρnn) = −
N+1∑

n

1

N + 1
log2

(
1

N + 1

)
= log2(N + 1). (1.5)

We notice from the above expression that although we have an infinite amount

of energy levels, the information stored in such systems scales poorly compared to

the N-qubit case. Moreover, it is experimentally found that motional states are

fragile and prone to couple to the environment due to unavoidable noise, leading

to decoherence. Also, the apparent large number of energy levels is also limited in

practice due to trap anharmonicities. On the other hand, atomic qubits are identical
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to each other and due to their physical properties, they can be made insensitve to

noise up to second order.

Although the use of phonons as a quantum information unit is senseless in both

theory and experiment, they are commonly manipulated in multi-qubit systems as

a quantum bus for communication between atoms mediated by spin-motion entan-

gling operations, such as the Mølmer-Sørensen [26,27] interaction, where entangling

operations couple single modes of motion with the spin of the ion. Unfortunatelly,

scaling these operations is increasingly difficult due to the bunching of individual

motional modes caused by internal ion chain interactions and can result in a gate

slow down or added complexity of the control forces. This problem is known as

spectral crowding and severely limits the scalability of single chain ion quantum

computing.

1.1.2 The 171Yb+ qubit

For the experiments described in this thesis, we trap 171Yb+ and 174Yb+ ions.

Their main properties stem from their nuclear spin, I=1/2 for the 171 and I=0 for

the 174 isotopes. The 171Yb+ ion is used througout this thesis as the qubit due to

its ground “clock” states hyperfine levels |F = 0,mF = 0〉 ≡ |0〉 and |F = 1,mF =

0〉 ≡ |1〉 1.3 that defines the qubit states in the 2S1/2 manifold (see fig. 1.3) separated

by 12 642 812 118.5 + (310.8)B2 Hz, where F is the total angular momentum of

the atom, mF is the projection along the quantization axis, the quadratic B terms

accounts for the second-order Zeeman shift and B is the magnetic field in units of
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Figure 1.3: Energy level diagram of 171Yb+. The qubit states are defined by the
hyperfine levels in the 2S1/2 manifold due to its first order robustness to fluctuating
magnetic field.

gauss. We chose such states due to their natural robustness to first order magnetic

field fluctuations. Moreover, its strong cooling transition (See chapter 2) at 369.5

nm is within reach of standard frequency doubling techniques. Our system is then

best described as the tensor product of the internal states and motional states.
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1.1.3 Spectral crowding and approaches to scalability

The normal modes of the ion chain oscillations are of two kinds, axial and

transverse. While the axial are well spaced and their separation is almost constant,

the transverse are not and their structure is more complicated. Transverse modes are

commonly used for quantum computing applications of heavier ions since they are

easier to cool down to the ground state and their frequency tunning is less restrictive

compared to the axial modes. When the number of ions trapped in a chain increase,

there is a bunching of such transverse modes around the common mode frequency.

This problem is also known as spectral crowding and is an important experimental

issue since the interactions that can resolve individual frequencies must be extended

in time.

For example, figure 1.4 shows the motional spectrum of both transverse (blue)

and axial (red) modes on the blue sideband for 55 ions harmonically confined with

frequencies (ωz, ωr)/2π = (0.2, 4.2) MHz along a chain. The MATLAB code can be

found in Appendix A [28].

We notice that for the transverse modes, the spectrum bunches around the

highest frequency (the common mode) at radial frequency ωr and the closest trans-

verse frequencies are separated by 4.8 kHz implying that a minimum interrogation

time of about 200 µs is required to properly resolve them. Furthermore, because

we perform several operations per experimental shot, the total duty cycle can reach

several seconds, making the whole computation more vulnerable to noise picking.

Axial modes (red) could instead be employed and would solve the spectral
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Figure 1.4: Spectral crowding in a chain of 55 ions. (a) First order motional trans-
verse (blue) and axial (red) sidebands showing a spectral bunching at the transverse
common mode frequency. Spectral crowding complicates the scalability of single
linear chain quantum computers based on Mølmer-Sørensen type operations since
longer interrogation times on the sidebands are required for motional coupling. The
longer interaction times make operations sensitive to external noise picking. (b)
Equilibrium positions of a linear chain. The uneven spacing at the end positions
is due to the Coulomb force of the inner ions acting on the outer ones. This same
Coulomb interaction produces the spectral crowding.
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(a) (b)

Figure 1.5: Alternatives for scaling up an ion-based quantum processor. (a) The
modular approach makes use of individual traps containing ion chains as an elemen-
tary logical unit (ELU). The units are connected to an optical switch that routes
and entangles the ELUs. (b) In the shuttling approach, the ion trap is divided in
specialized zones for entanglement, loading and detection. Ions are shuttled from
one zone to another by a predefined set of changing DC biases.

crowding issue since they are more evenly separated (about 1 kHz of separation in

the example of fig. 1.4) and easily resolved in the frequency domain but they come

at the cost of being lower frequency. At a experimental level, the axial common

mode (lowest frequency) is prone to pick DC electrical noise and its low frequency

makes cooling difficult with standard techniques.

Two solutions have been proposed to ameliorate this scalability problem. On

one hand, single traps can be taken as elementary logical units (ELU) of a larger

modular system (see fig1.5a) interconected by photonic links [29]. In the ion-photon

approach, a lower ion number is stored in each ELU, thus avoiding spectral crowding.

However, because photon heralding is required, the experimental duty cycle is bound

to be slow due to the probabilistic nature of the operation.

As another avenue, shuttling ions in and out of designated interaction regions

(see fig1.5b) is one potential solution to this issue [30] but is subject to increased

noise and heating that degrades coherent operations.
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1.1.4 Thesis outline

I present in this thesis the fundamental entangling operation of a different

scaling approach that uses impulsive optical forces [31–36] from picosecond pulses.

These ultrafast qubit state-dependent kicks occur much faster than the normal mode

frequencies of motion and thus can couple through local modes of motion without

perturbing spectator trapped ion qubits. This ultrafast approach has the added

benefit of being less sensitive to relatively slow noise, and is also insensitive to the

thermal motion of the ions since it is effectively frozen during the interaction. Unlike

other Coulomb-based gates between ions, ultrafast entanglement operations do not

require confinement to within the Lamb-Dicke regime.

The construction of a fundamental gate with ultrafast pulses is the main focus

of this thesis with the following outline:

• Chapter two outlines the experimental apparatus and unique features of the

experiment. Although the reader is recommended encouraged to read refer-

ences [37,38], we will expand the concepts, vision and insight of the tools used

for our demonstration. The chapter starts with basic concepts of ion trapping

and discusses a scheme where two or more drive frequencies are used, highlight-

ing its advantages. We then discuss our trap frequency lock (sensitive to the

rf amplitude that we feedback), automatic loading of many ions, and expand

a few concepts on state preparation. Finally, we discuss the characterization

of our high resolution imaging system for one and two ions.

12



• Chapter three describes the basic laser-ion spin interactions with ultrafast

pulses. I send individual pulses from a mode-locked laser and describe the

interaction through Raman transitions. I restrict the discussion to coherent

quantum control of the internal states and show the necessary experimental

conditions for such spin manipulations.

• Chapter four describes the basic concepts needed for motional control. We

calculate the resulting motional wavefunction after interaction with two coun-

terpropagating Raman pulses and develop the theory and experiment of our

basic operation involving impulsive momentum kicks. Moreover, we also show

a crossover between the ultrafast and quasi-CW regime.

• The fifth chapter covers methods used for benchmarking our base interaction

. It also shows results from experiments for sampling the ion motional state

and the creation of non-trivial motional states such as mesoscopic quantum

superpositions and multicomponent “cat” states.

• Chapter six describes our demonstration of entanglement with ten pulses where

we demonstrate a generation of a Bell state with (76± 1)% fidelity.

• Chapter seven concludes with afterthoughts and possible future directions.

The present thesis is based on the following publications:

1. Sensing Atomic Motion from the Zero Point to Room Temperature with

Ultrafast Atom Interferometry, Phys. Rev. Lett. 115, 213001 (2015).
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2. Active stabilization of ion trap radiofrequency potentials, Rev. Sci. Instrum.

87, 053110 (2016).

3. High-resolution adaptive imaging of a single atom, Nat. Photonics 10,

606-610 (2016).

4. Ultrafast creation of large “cat” states of an atom. Nat. commun. (2017).

5. Demonstration of two-atom entanglement with ultrafast optical pulses. Sub-

mitted (2017).

I was the coleading author in 1,2,4 and leading author in 3,5. Works 1 through

4 where done with Kale Johnson as the senior grad student and my only labmate

and 5 was done together with Steven Moses as also my only labmate. Some of the

presented material is directly from the papers and is referenced as such.

14



Chapter 2: The Apparatus

I describe the experimental setup used for all the work presented in this thesis.

A througout description of the vaccuum and trap systems is given in [37–40] and

will not be described here. I instead give an overview of ion trap theory and its

generalization described by the Hill’s differential equation, where some of its partic-

ular cases have been used for multispecies trapping [41]. I will describe a scheme to

lock the trap frequency to an stable reference, two-photon ionization, show a load-

ing method for large chains using an adaptive technique and prepare the qubit in a

predefined state. We finalize, by providing an extensive description of the imaging

system with focus on aberration correction and detection of two ions.

2.1 Linear Rf Traps

Gauss’ law in free space (~∇ · ~E) forbids the creation of a stable equilibrium

point with electrostatic fields since flux conservation is imposed. A time varying

inhomogeneous electric field is not subject to such constraint because its time av-

eraged force is not zero [42]. Confinement is then achieved through oscillating rf

electric fields whose gradients create a harmonic pseudopotential that pushes the ion

towards regions of lower field. For our experiments, we used a linear trap with four

15



Figure 2.1: Blade trap. Four segmented gold-plated blades are mounted in an
insulating mount in Ultra high vacuum (UHV). Due to blade alignment, the rf null
where the ions equilibrate is not necessarily the geometric center. The separation
of the trapped ions to the nearest blade is about R ≈ 200 µm and was made bigger
than other trap designs to avoid damage from high power UV radiation.

segmented gold-plated blade electrodes (see fig. 2.1) in ultra high vacuum (UHV) at

10−11 Torr to avoid collisions from residual gas with the ions and improve isolation.

Opposite blades are rf driven respect the other two held at constant field and the

outer static field blades aid in the axial confinement near the trap axis. The total

potential at the trap center is

V (x, y, z) =
µV0

2

[
1 +

(x2 − y2)

R2

]
cos Ωrft+

κU0

Z2

[
z2 − (x2 − y2)

2

]
, (2.1)

where µ and κ are geometrical factors [43], Ωrf is the drive frequency, R (Z) are

the distances between ion-electrode transversally (axially) and V0 (U0) are the drive

amplitude and axial voltage respectively.. While hyperbolic electrodes would give a

true harmonic pseudopotential, a blade trap closely approximates such behavior at

the center of the trap. Specifically in our system, the ion-blade distance is R ≈ 200
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µm in our trap and implies that, at the trap center, we can neglect anharmonic terms

up to several microns from the position of the ions, which for practical purposes is

large compared to the ion wavefunction (≈ 5 nm). Moreover, it has been shown

that the contributions of anharmonic terms in similar traps are less than 0.1%

[44]. Together with the above arguments and the results of Section 5.3 showing

harmonicity at practical positions away from the trap center, we neglect such extra

expansion terms.

A charged particle trapped at the center of the trap will feel a harmonic

ponderomotive force with oscillation “secular” frequency

ω =
eµV0√

2mR2Ωrf

, (2.2)

where m is the mass of the particle, e is the electric charge of the ion and will axially

oscillate with frequency

ωz =
1

Z

√
2eκU0

m
. (2.3)

The equations of motion are

r̈i + [ai + 2qi cos (Ωrft)]
Ω2

4
ri = 0 (2.4)

with

ax = ay = −1

2
az = − 4eκU0

mZ2Ω2
, (2.5)

qx = −qy =
2eV0

mR2Ω2
, qz = 0. (2.6)

These equations of motion resembles a Mathieu equation [23]. At this point,

it is natural to ask What is the effect of another drive at different frequency or
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an arbitrary periodic time dependent function f(t)? In fact, such equation can be

described by a Hill differential equation

ẍ+ f(t)x = ẍ+

[
c0 +

∞∑

n=1

cn cos(2nt)

]
x = 0. (2.7)

where f(t+T ) = f(t). This problem has been studied for the trapping of ion species

with large differences in charge-to-mass ratios (of more than a million fold) [41] and

notice that the Mathieu equation (eq. 2.4) is a special case of 2.7.

Usual experimental conditions employ a single frequency and are subject to

external stray electric fields Estray that shift the ion equilibrium position. The equa-

tions of motion for such systems take the form

x(t) = x0

(
1 +

qi
2

cos(Ωrft+ φµ)
)

︸ ︷︷ ︸
intrinsic micromotion

cos(ωt) +
eEstrayqi

2mω2
cos(Ωrft+ φµ)

︸ ︷︷ ︸
excess micromotion

+
eEstray

mω2︸ ︷︷ ︸
dc offset

, (2.8)

where qi = 2eµV0

mR2Ω2
rf

is usually� 1. The terms that depend on cos(Ωrft) are known as

“micromotion”.

The micromotion in Paul ion traps is an ubiquitous form of driven motion

caused by the trapping rf field and can be separated into two contributions: The

component modulating the harmonic motion intrinsic to the drive ac field and the

second term of eq. (2.8) being the excess of micromotion caused by the external

field. Differently from the secular motion, this excess of micromotion cannot be

decreased by standard laser cooling methods because of its driven nature. Moreover,

its presence is usually detrimental for the precise control of the motion of the ion.

Cancelling of such micromotion is done by applying a −Estray through a definite set

of offset voltages.
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2.2 Trap frequency stabilization

Stability of the trap frequency (eq. 2.3), which depends on the amplitude of

the rf field applied to the electrodes V0, is crucial because it directly affects the ability

to coherently manipulate the motional degrees of freedom. The rf circuitry involved

in the Paul trap is susceptible to environment and electrical fluctuations such as

picked noise from the environment, amplifier noise, temperature drifts, etc. that

greatly degrades the coherence. We activively stabilize the trap frequency [45] by

noninvasively probing and rectifying the high rf voltage, to measure the amplitude

of the applied electric field, right before it reaches the ion trap. As shown in the

schematic of fig. 2.2, an rf signal at Ωrf/2π = 17 MHz and −8 dBm is produced

by an rf oscillator (SRS DS345) and sent through the local oscillator (LO) port

of a level 3 frequency mixer (Mini-Circuits ZX05-1L-S), with a conversion loss of

5.6 dB. The RF port of the mixer is connected to a rf amplifier (Mini-Circuits

TVA-R5-13) with a self-contained cooling system, providing a gain of 38 dB. The

amplifier signal is fed into an antenna that inductively couples to a 17 MHz quarter-

wave helical resonator and provides impedance matching between the rf source and

the circuit formed by the resonator and ion trap electrode capacitance [46]. The

antenna, resonator, and equivalent ion trap capacitance Ctrap are shown in Fig. 2.2,

and exhibit an unloaded quality factor QU ∼ 600. A capacitive divider samples

roughly 1% of the helical resonator output, using C1 = 0.2 pF and C2 = 20 pF

ceramic capacitors (Vishay’s QUAD HIFREQ Series) with temperature coefficients

of 0±30 ppm/◦C. With C1 � Ctrap and residual inductance between the divider and
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Figure 2.2: Stabilization of the rf field amplitude V0 only, with fixed rf drive
frequency (used in the experiment reported here)

the trap electrodes much smaller than the resonator inductance itself, the divider

faithfully samples the rf potential within a few centimeters of the trap electrodes

and does not significantly load the trap/transformer circuit. The capacitors are

surface-mounted to a milled copper-clad epoxy circuit board and installed inside

the shielded resonator cavity.

2.2.1 Rectifier circuit

The sampled signal passes through a rectifier circuit (fig. 2.3a) consisting of

two Schottky diodes (Avago HMPS-2822 MiniPak) congured for passive temperature

compensation [47] and a low-pass filter giving a ripple amplitude 10 dB below the

diode input signal amplitude. High quality foil resistors and ceramic capacitors

are used to reduce the effect of temperature drifts. The entire rectifying circuit is

mounted inside a brass housing (Crystek Corporation SMA-KIT-1.5MF) as shown

in fig. 2.3b. The sampling circuit has a bandwidth of 500 kHz, limited by the 5

kΩrf/68 pF RC filter. The ratio of dc output voltage to rf input voltage amplitude,
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Figure 2.3: Rectifier circuit. (a) A capacitive divider delivers a small fraction of
the signal going to the trap. A 2kΩ shunt resistor grounds the rf signal that does
not pass the diode on the negative cycle. The rectifier circuit is tuned in such a
way that the ripple and average voltage is optimal. (b) Mounted rectifier circuit in
a brass housing. A cylindrical seal on top of the circuit completely isolates it from
te environment.
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including the capacitive divider, is 1:250 at a drive frequency of 17 MHz, 1:330 at

100 MHz, and 1 : 870 at a drive frequency of 1 MHz.

The rectified dc signal is then compared to a stable set-point voltage (Linear

Technology LTC6655 5V reference mounted on a DC2095A-C evaluation board)

with variable control (Analog Devices EVAL-AD5791 and ADSP-BF527 interface

board), giving 20-bit set-point precision and ±0.25ppm stability. The difference

between these inputs the error signal is then amplied with proportional and integral

gain (New Focus LB1005 servo controller) and fed back to regulate the upstream rf

oscillator amplitude via the frequency mixer described above. The overall frequency

response of the feedback loop is limited to a bandwidth of 30 kHz, consistent with

the linewidth Ωrf/(2πQ) of the helical resonator transformer.

2.2.2 Rf amplitude locking results

We confirm the performance of our circuit by performing a Ramsey experiment

(see next sections) on the quantized vibrational levels of the ion. The experiment

is performed by applying laser light at ωL = ωhf + ω where ωhf is the qubit energy

splitting to measure the frequency of the motional sideband operations since they

are mostly affected by the trap frequency. We sample ω at a rate of 2.1 Hz for

80 minutes with no feedback on the rf amplitude, and then for another 80 minutes

while actively stabilizing the rf potential. A typical time record of the measurements

over these 160 minutes is shown in Fig. 2.4a. Feedback control clearly improves the

stability of the ion oscillation frequency
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(a)

(b)

Figure 2.4: Rf amplitude lock performance. (a) Locking performance in the time
domain shows clear improvement. The noise on the unlocked system at the first 80
minutes resembles telegraph noise and is not well understood but might stem from
mechanical or thermal fluctuations. (b) Allan deviation of (a) for an unlocked (blue)
and locked (yellow) system. We see a jump at 50 s and it likely can be caused by
drifts on the capacitive divider. The green line shows an Allan deviation from the
carrier that is expected to be insensitive to the above noise due its independence to
the motional states. The only difference between the yellow and green lines is the
presence of trap evolution and motional noise picking.
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A way to characterize the stability of an oscillator is to compute is Allan

deviation from time series measurments as:

σ2(τ) =
1

2(M − 1)

M−1∑

n=1

(yn+1 − yn)2, (2.9)

where M is the number of samples per time bin and yn are the frequency measure-

ments of the oscillation frequency as a function of integration time τ . When the

system is stabilized, the Allan deviation in ω is nearly shot-noise limited (decreasing

as 1/
√
τ) up to ∼200 s of integration time, with a minimum uncertainty of better

than 10 Hz, or 10 ppm, representing a 34 dB suppression of ambient noise and drifts

(see fig. 2.4b ). Without feedback, the trap frequency deviation drifts upward with

in time. For integration times shorter than 7 s, there is not suffcient signal/noise in

the measurements to see the effects of feedback stabilization.

Although the Allan deviation of the oscillation frequency in the stabilized sys-

tem improves with longer averaging time as expected, it drifts upward for a period

just after τ = 50 s (likely caused by a temperature drift affecting the capacitive

divider pick-off). We confirm that this drift only appears in the ion oscillation fre-

quency ω and not the driving field ωL or the ion hyperfine splitting ωhf by performing

the same experiment on the qubit transition near beatnote frequency ωL = ωhf in-

stead of the upper sideband. As shown in Fig. 2.4b, the measured Allan deviation

of the carrier continues downward beyond τ = 50 s, meaning that the ion oscillation

frequency is affected by the rf amplitude at long times.
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2.3 Ion loading

Paul traps are loaded with ions that are photoionized from a neutral atomic

beam aimed at the center of the rf trap. Laser cooling localizes the atoms within a

few nanometers and its internal states are usually manipulated with optical pumping

and detection schemes. This section is devoted to further discuss the techniques used

in this thesis.

2.3.1 Photoionization

We load Yb+ ions by photoionizing neutral Yb coming from a thermal beam

produced by an atomic oven [48]. The atomic beam is aimed towards the center

of the trap together with focused UV Light at 398.9 nm that is resonant to the

Doppler shifted 1S0⇔1P1 transition (see fig. 2.5) of the neutral Yb, providing isotope

selectivity. A second energetic photon at 369 nm or 355 nm excites the atom from

the 1P1 state to the continuum. Since more power is available at 355 nm, this is a

preferred method for fast loading. The loading rate can be tuned depending on the

time this beam is on.

We lower the rf voltage to easily capture ions and continously send 399 nm,

355 nm and Doppler cooling light. The trapped ions are hot and not crystalized

in a linear chain. After trapping the desired number of ions, we raise the trapping

potential to form a linear chain. Although the number of trapped ions is random

by nature, adaptive techniques can be used to tune the amount of trapped ions
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Figure 2.5: Two photon ionization. (a) 369 nm photons routinely used for state
preparation and cooling can be used as the second ionizing photon. However, low
average powers (< 1mW) are usually achieved due to poor doubling efficiency [38],
greatly affecting the loading rates. (b) Tripled light from a Nd:YaG at 355nm is
better suited for loading since high average powers are easily achieved. We used 50
mW of this light for loading.

2.3.1.1 Ion autoloader

Loaded ions usually appear suddenly, or can appear one-by-one with appropri-

ate control of the photoionization laser intensity. Once they are loaded, laser cooling

(see next section) immediately localizes them to the nanometer-scale in space, and

they behave as effective point-source optical objects. The imaging of their fluores-

cence onto a camera then allows the identification of a trapped ion. Alternatively,

trapped ions can be loaded from a complex multi-zone trap [49] whereby individual

trapped ions are shuttled from a previously-loaded trap zone to an experimental

zone where fluorescence is collected.

For applications involving large qubit arrays, it is important to know exactly
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(a)

(b)

Figure 2.6: Real time adaptive ion number recognition. (a) Fast ion loading is per-
formed by lowering the trap potential since it is easier to capture higher ion numbers.
This leads to 2d-3d configurations because the axial confinement is comensurate with
the transverse one. We notice that the ion loader accurately identifies the ion num-
ber based on the fluorescence and its actual configuration is irrelevant. (b) Linear
chain with a dark ion that arise from either different atomic species that do not
fluoresce at the cooling frequency or right isotope ions trapped in a nonfluorescing
state.

27



how many ions are confined in the trap. We developed image recognition software

to count the ion number as the loading proceeds (code in Appendix B).

The positions of the individual ions are determined by first fitting the overall

intensity distribution to a sum of a variable number of Gaussian functions. We

quickly determine the peak positions by calculating the Laplacian of Gaussians

(LoG) whose zeroes indicate the inflection point of the intensity distribution for

each peak. In practice, we use a Diference of Gaussians (DoG) algorithm to quickly

approximate the Laplacian, as substracting two Gaussians with different widths

essentially produces the second derivative. This technique returns regions of lo-

cal maximas, which are easy to find even if the individual atomic images overlap

strongly.

During loading there are many conformations, from the simplest 1D line, to

2D zig-zag crystals and then evolving to a series of 3D helical structures [50]. The

relative spacings of ions in these configurations can be computer for crystals of

up to 100 or more ions. For insufficient anisotropy in the confinement, many ions

will form 3D conformations and exhibit out-of-focus images, which may not allow

unambiguous identification of individual atoms. However, 1D and 2D structures

work well, and even some simple 3D structures can be accurately characterized (see

fig. 2.6a). A subset of ions typically do not fluoresce in the image, but their positions

are made obvious by the larger gaps in the crystal (see fig. 2.6b). These “dark” ions

arise from different atomic species that do not respond to the laser light, or from

ions trapped in a nonfluorescing state. These dark ions are often transient, blinking

on and off, and their positions, bright or dark, must be recorded to keep an accurate
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Figure 2.7: Qubit state preparation. Each experimental cycle we Doppler cool the
ions to localize them, optically pump their state to the |2S1/2, F = 0〉 state and run
the experiments often involving a qubit-motion coupling. Detection is performed to
the qubit states and allow us to infer the motional evolution.

count of ions and accounting of their positions.

We run software that processes the intensity distribution as described above

for rapid ion loading and real-time analysis of ion number while controlling the

intensity of the ionizing laser. In this way, we can control the number of atoms

loaded in the trap and produce a targeted number of trapped ions.

2.4 Qubit state preparation

A normal experimental sequence is composed of Doppler cooling, optical pump-

ing, experimental operations and detection (see fig.2.7). In this section, we describe

in further detail each of these steps. We point out that differently than other ion

based quantum computing experiments, we do not use ground state cooling for

motional state preparation.

2.4.1 Doppler Cooling

After loading, we send light that is 10 MHz red-detuned from the 2S1/2 ⇔2 P1/2

transition for Doppler cooling. Additionally to the 369.5 nm light, we send 935.2

nm light to pump population out from the metastable 2D3/2 level, caused by decay
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from the 2P1/2. Doppler cooling localizes the ion with total energy in the directions

i = x, y, z (see [51] and Appendix C for the derivation)

Eki =
m 〈v2

i 〉
2

=
~Γ

8

(
1 +

fsi
fi

)[
Γ(1 + 2

3
s0)

4∆
) +

∆

Γ

]
(2.10)

where Γ and ∆ are the transition natural linewidth and detuning respectively,

s0 = I/Isat = 2Ω2/Γ2 is the fractional saturation transition intensity with Ω as

the resonant Rabi frequency, fsi is the probability of emission along the i direction

(1/3 for isotropic emission) and fi is the direction of the cooling light

For optimized parameters ∆ = Γ/2, s0 � 1, isotropic emission, even illumina-

tion along all directions fsi = fi = 1/3 and normal trap frequencies ω = 2π×1MHz,

we can estimate the mean occupation number n̄

Eki =
~Γ

4
= ~ω

(
n̄+

1

2

)
(2.11)

n̄ . 10.

It is clear from eq. 2.11 that higher trap frequencies imply a lower n̄. Although

further cooling such as resolved Raman sideband cooling could be employed to

obtain temperatures close to the ground state, the experiments described in this

thesis do not require this extra step and throughout the remainder of this thesis, we

will assume that we work at the Doppler limit unless otherwise specified.

2.4.2 Optical pumping

We continously send 369.5 nm light for time Tpump seconds to initialize the

qubit in the |0〉 state. Since the transition |2S1/2, F = 0〉 ⇔ |2P1/2, F = 0〉 is
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Figure 2.8: Optical pumping. (a) We optically pump to the |2S1/2, F = 0〉 state by
driving the |2S1/2, F = 1〉 ⇔ |2P1/2, F = 1〉. (b) Time scan showing the brightness
decay for high Tpump times. At the end of the pumping cycle, we have initialized
the ion in the |2S1/2, F = 0〉 state.

forbidden due to selection rules, we generate sidebands at 2.1 Ghz to populate the

|2P1/2, F = 1〉 states, which have 1/3 probability to decay to the |0〉 state. Because

the 2P1/2 states also decay to the 2D3/2, we leave the 935.2 nm beam on with its

respective sidebands that address all the hyperfine levels of the 3[3/2]3/2 state.

2.4.3 Detection

As illustrated in fig. 2.9, we perform qubit detection using fluorescence methods

[48] by driving the |2S1/2, F = 1〉 ⇔ |2P1/2, F = 0〉 transition with 369.5 nm light for

time Td. If the ion is prepared in the |0〉 (|2S1/2, F = 0〉), light will be far detuned

from the closest allowable transition in the |2P1/2, F = 1〉 state and it will not scatter

any light. On the other hand, if the ion is in the |1〉 state, light will be scattered at

a rate given by eq. (C.6).

31



2P1/2

2S1/2

369.5 nm

(a)

F=1

F=0

F=1

F=0

2D3/2

3[3/2]3/2
F=0

F=1

F=1

F=2

935.2 nm

(b)

Detection
0 50 100 150 200

Time (microseconds)

0

0.2

0.4

0.6

0.8

1

B
rig

ht
ne

ss

Detection time scan

0 10 20 30 40 50 60 70 80 90
Histogram bins

0

200

400

600

800

N
um

be
r o

f e
xp

er
im

en
ts

Detection Histogram

Figure 2.9: Detection scheme. (a) We send resonant laser light to the states
|2S1/2, F = 1〉 ⇔ |2P1/2, F = 0〉 . Any decay to the |2D3/2, F = 1〉 is pumped back
to the |2S1/2, F = 1〉 states by resonant 935 nm light that drives the F=1 state
of the 2D3/2 to the bracket state 3[3/2]3/2 . (b) Time scan showing the brightness
saturation for high Td times. The inset shows a photon histogram of 100 experiments
with Td = 100µs. Notice the tail at the bin 0 caused by off resonant coupling to the
|2P1/2, F = 1〉 states.

The scattered photons are imaged with a lens array (see section 2.7) to a

Photomultiplier tube (PMT). The collected photons then gives information of the

ion state and if we collect more than one photon, we say that the ion was in the |1〉

state. Due to its random nature, the distribution of photons arriving at the detector

follows a Poissonian distribution [52], and any deviation from this behavior is due

to off-resonant coupling to the |2P1/2, F = 1〉 that decays down to the |2S1/2, F = 0〉

state.
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Figure 2.10: Single ion microwave time scan. We send microwaves resonant to the
qubit splitting for different times. Rabi flops between the qubit levels are driven by
microwaves. Each point represents 1400 experiments and error bars were calculated
using the standard error of the mean.

2.4.4 Qubit control with microwaves

We achieve further state control by directly coupling to the magnetic moment

of the ion through microwaves producing Rabi flops in the qubit states. Although

the same spin manipulation can be done with optical fields, microwaves are preferred

due to their simplicity and because they are easy to work with (no beam alignment,

frequency tunning is simple and fine polarization tunning is not necessary for driving

the clock states). Experimentally, a microwave horn directed towards the center

of the trap provides one Watt of power at the qubit splitting frequency. Usual

microwave time scans are shown in Fig 3.2. These microwave transitions are about

five orders of magnitude weaker than their optical counterpart, due to the weak
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coupling of electromagnetic radiation with the magnetic dipole compared to the

spin orbit coupling driven by optical fields.

2.5 Imaging system

We collect the fluorescence from the ion at λ = 369.5 nm using an objective

lens of numerical aperture NA = 0.6 with 10x magnification. The atomic ion is

positioned 11.6 mm from a 4 mm thick vacuum window. The first assembly of six

lenses fabricated by Photon Gear, Inc. allows collection from a large numerical

aperture with near diffraction-limited performance [53]. After this lens, we place a

128 µm pinhole to spatially filter the scattered light from the ion trap followed by

a short focal length lens. 471(3)x overall magnification of the system is found by

comparing the lateral displacement of the lens assembly to the corresponding image

displacement. As the detector, we use an iXon Ultra 897 electron-multiplying-

charge-coupled-device camera (EMCCD) with pixel size of 16 µm. Because angular

alignment of the lens assembly is crucial, we correct the tilt with a 5-axis alignment

stage (ULTRAlign 562-XYZ and M-562F-TILT) with angular resolution of 100 µrad.

The depth of focus is measured to be on the order of 0.5µm. The presence of

astigmatism, which may stem from clamping of the imaging system or cylindrical

warping of the vacuum glass, is corrected by placing a slow cylindrical lens after the

short focal length collimating lens. The performance of this design is simulated in

ZEMAX with an aberration-free spot size of 374.6nm.

The large collection numerical aperture makes the image quality prone to de-
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Figure 2.11: (a). Optical setup depicting the source, vacuum window, 0.6 NA ob-
jective lens, pinhole, short focal length lens to increase the magnification, cylindrical
lens to correct for astigmatism and camera or PMT. (b) Image of the atoms in the
real space. At the position of the camera, the two images are separated by 5 µm×
Magnification resulting in about 2.5 mm of separation. The large separation at the
image plane allows for the detection of each ion with two separate and identical
PMTs. (For more details see ref. [54])

formations due to aberrations. These aberrations can be detected by interferometric

methods and corrected using deformable mirrors. We instead develop a phase re-

trieval method and ameliorate aberrations by better alignment and extra optical

elements. The methods discussed in this section are described in depth in [54].

2.5.1 Aberration retrieval

The measured spatial distribution of the image is the point spread function

(PSF) [55] which contains information about the ultimate resolution achievable in an

imaging system and is the building block for more complex image formation through

deconvolution techniques. The PSF can be decomposed into Zernike polynomials

Zm
n (ρ, θ) (See Appendix D) in space

PSF(ρ, θ) =

∣∣∣∣∣F
{

exp

(
−ik

∑

m,n

cmn Z
m
n (ρ, θ)

)}∣∣∣∣∣

2

, (2.12)
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where F{} is the Fourier transform operator, k = 2π/λ is the wavenumber and

the cmn coefficients are contributions of each Zernike component defined in the polar

coordinates ρ and θ. The cmn coefficients correspond to particular optical aberrations,

so detailed characterization of the imaging system follows from the retrieval of the

sign and magnitude of these coefficients.

Decomposing an image into Zernike polynomials relies on numerical algo-

rithms [56, 57] or semi-analytical calculations [58]. We obtain a full aberration

characterization by using a least-squares fit to the measured data, using the cmn

coefficients and the exit pupil radius as fitting parameters. Although this method

omits consideration of vector (polarization) effects, it remains a generally applica-

ble technique since these effects can be neglected at numerical apertures above 0.6

NA [59].

2.5.2 Fitting algorithm

We use the MATLAB’s nonlinear fit algorithm (fitnlm) for fitting the aberra-

tions. This routine estimates the fitting parameters using the Levenberg-Marquardt

[60] method for nonlinear least squares curve-fitting problems. We use Zernike

polynomials (Appendix C) up to the fifteenth order and four aditional parameters

defining the Gaussian smoothing function (A exp(−[(x − x0)2 + (y − y0)2]/w)) as

fitting parameters. The Gaussian function is introduced to account for mechani-

cal drifts at long integration times as it is convolved with the Zernike PSF. For

shot-noise level integration times, this function should not be necessary.
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The output of the algorithm gives the coefficient of determination, which is a

measure of goodness-of-fit for values close to 1. Furthermore, we obtain the errors

on the fitting parameters by taking the diagonal of the square root of the covariance

matrix calculated with the above method. We compute the confidence intervals of

each fitting parameter by multiplication of the standard error with the Student’s

t-distribution for 95% confidence.

We do not include the first three Zernike polynomials Z0
0 (piston), Z−1

1 and Z1
1

(x and y tilt) since they only displace the point spread function and do not model

curvature in the wavefront. We find that the error on the Gaussian waist are is

negligible.

2.5.3 Position sensing

An additional result making use of our lens resolving power, is the measure-

ment of the sensitivity on the ion position. We take N images at 1 ms exposure

time, binning them over total time duration intervals τ and calculating the Allan

variance of the central position [61] using eq. 2.9, where M is now defined as the

number of samples per bin and yn is the centroid of the ion image integrated over

time τ .

Each image was integrated along one direction and fit to a one dimensional

Gaussian linear count density function. The same procedure taken at different times

τ leads to a curve of position uncertainty δx vs integration time as shown in Fig.
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Figure 2.12: Aberration retrieval results. (a,b,c) Single shot images of the mis-
aligned system. (d,e,f) depict the optimally aligned system at various distances
from the focal plane, with (f) at the best focus. For (d) and (e) a high contribution
from the defocus term is evident with low contributions of astigmatism and coma.
Large contributions of coma and astigmatism (a-c) are corrected with a 5-axis stage
and cylindrical lens (See text). The goodness of fit obtained for these examples
approaches unity at coefficients of determination of 0.989, 0.965, 0.958, 0.957, 0.983
and 0.994 for images (a,b,c,d,e) and (f) respectively. These images are integrated
for ∼ 0.5 s. Figure from ref. [54]
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2.13. The data is corrected for a dead time of 5 ms between each 1 ms frame,

allowing for state preparation and laser cooling (See [61,62]) and Appendix D.

The net position sensitivity is a quadrature of three main (uncorrelated)

sources of uncertainty: shot noise, pixelation and background noise [63,64]

δx =

√
2ρ2

0

R0τ
+

l2p
12R0τ

+
16πρ4

0b

R2
0τ

2
(2.13)

where b ≈ 0.07 is the mean background count rate per pixel, lp ≈ 33 nm is the

pixel size refered to the object (image pixel size divided by magnification) and

R0 = ηDFγ/2 is the maximum (saturated) measured fluorescence count rate from

the atom, F ≈ 10% is the solid angle fraction of fluorescence collected, and ηD ≈ 25%

is the quantum efficiency of the camera. Finite pixel size and background counts

have negligible impact on the measured position sensitivity in this experiment. The

observed sensitivity of ∼ 0.5nm/
√

Hz at small integration times is somewhat higher

than the expected level of shot noise (shown as the blue line in Fig. 3), and is

consistent with observed super-Poissonian noise on the camera. We measure a min-

imum uncertainty of δx ≈ 1.7(3) nm at an integration time of τ = 0.2 s. For longer

integration times, drifts in the relative position between the optical objective and

the trapped ion degrade the position uncertainty as shown in Fig. 2.13, and with

simple mechanical improvements in the imaging setup, the resolution can likely be

well below 1 nm.

Given this uncertainty in the position of the harmonically-bound ion, the sen-

sitivity to detecting external forces is δF = mω2
xδx. For a single 174Yb+ ion with

ωx/2π = 10 kHz, this would correspond to a force sensitivity in the yoctonewton
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Figure 2.13: Measured position uncertainty δx of the trapped ion centroid position
versus image integration time τ . The blue line shows the expected uncertainty
limited by photon counting shot noise in the imaging system. A sensitivity of
∼ 0.5nm/

√
Hz is measured for τ < 0.1 s, which is ∼ 3 times higher than shot

noise, presumably from camera noise. The ultimate position sensitivity is found to
be 1.7(3) nm at τ = 0.2 s. These measurements include small corrections for dead
time bias, as described in Appendix E. The error bars on each point are given by
the root-mean-square error.

(10−24 N) scale, or an electric field at the µV/cm scale. Unlike earlier work [65], this

imaging force sensor applies to single ions and does not require resolution of optical

sidebands.

2.5.4 Imaging system for two ions

The high magnification of our imaging system allows high spatial distinguisha-

bility between two trapped ions. In real space, they are separated by about 5 µm

and due to the ∼500 magnification, it leads to a separation of about 2.5 mm at

the image plane. Using the setup shown in fig. 2.14a, it is possible to individually

detect the two emitters by using two identical PMTs and a D-shaped mirror. Figure

2.14a shows a microwave time scan for two ions. Although histogram fitting could
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Figure 2.14: Two ion detection. (a) Histogram for 100 shots of 150 experiments
with 150 µs of detection time depicting the photons arriving at both PMTs. The
inset shows a cartoon schematic of the system used with two identical detectors.
Small differences between both PMTs do not affect the detection fidelity greatly.
(b) Microwave Rabi flopping of two ions showing the correct dependence.
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be used for two ion detection with a single PMT, calibration errors makes difficult

working with such configuration. After installing the two PMT scheme, we realized

that two qubit detection was crucial for demonstrating two qubit entanglement.
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Chapter 3: Ultrafast spin control

The biggest challenge in the scalling of any quantum computer technology is

qubit interconnection. Ion trap quantum computers are capable of full connection

due to the long range interaction of the Coulomb force. However, as the qubit

number increases, problems such as spectral crowding (See chapter 1) and qubit

addressing severily limits the number to about ∼100 for a single linear trap. This

chapter describes an alternative route for scaling by using interactions faster than

any state evolution by means of the spin-orbit coupling through dipole allowed off

resonant levels that flip the spin and couple to the motion. The ultrafast excitation

described below is achieved by driving Raman transitions from the 2S1/2 to the P

levels that also provides directionality for flipping either state |1〉 ⇔ |0〉. We point

out that, contrary to classical computation, faster clock speeds do not affect the

scalling of the presented quantum scheme.

We will focus on the basic concepts for spin manipulation and leave the mo-

tional control for the next chapter. We start by deriving a general Rabi frequency

of a Raman driven interaction and experimentally show spin rotations with a single

∼ 20 ps pulse
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3.1 Raman spin interactions

Typical operations performed on ion qubits employ laser beams due to the

possibility of focusing them and produce high field gradients that affects their mo-

tion [23]. We will expand such concept by considering a manifold for a free atom

of both ground states {|g1〉 , |g2〉 , . . .} and excited states {|e1〉 , |e2〉 , . . .} ignoring

spontaneous emission from the |en〉 states. These states are the ground 2S1/2 states

or 2P1/2,3/2 respectively of 171Yb+ and are an orthonormal basis

|ψ〉 =
∑

n

(cgn |gn〉+ cen |en〉). (3.1)

If we now consider an interaction Hint that only couples to states from a different

manifold and substitute 3.1 in the Schrödinger equation we obtain

iċgn = ωgncgn +
∑

m

〈gn|Hint|em〉 cem (3.2)

iċen = ωencen +
∑

m

〈en|Hint|gm〉 cgm , (3.3)

where ωk is the frequency (relative to some predefined zero) of the state ck. Following

[37] and working in the rotating reference frame, we can define:

c̃k = cke
iωkt

In the rotating reference frame, our equations become:

˙̃cgn = −i
∑

m

Vgn,em c̃eme
−i(ωem−ωgn )t, (3.4)

˙̃cen = −i
∑

m

Ven,gm c̃gme
−i(ωgm−ωen )t, (3.5)
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where we have replaced Vi,j = 〈i|Hint|j〉 for notation shortness.

We want to describe the atom-light coupling and although an atom has no net

charge, it will develop an induced dipole moment due to the presence of an electric

field. The interaction Hamiltonian is then given by Hint = −µ · Re[ ~E], where ~E is

the incident electric field and we have taken its real part.

We will assume a collection of laser beams with the same frequency ωL, dif-

ferent wavevectors kj, phases φj and polarizations ε̂j with electric fields defined as

~E =
∑

j

ε̂jEj(t)ei(~kj ·~r−ωLt+φj). (3.6)

The interaction Hamiltonian then becomes

Hint = −~µ
2
·
∑

j

[
ε̂jEj(t)ei(~kj ·~r−ωLt+φj) + ε̂∗jEj(t)e−i(

~kj ·~r−ωLt+φj)
]
, (3.7)

which implies

Vg,e =
1

2
e−iωLt

[
−
∑

j

Ej(t) 〈g|~µ · ε̂j|e〉 ei(~kj ·~r+φj)
]

+
1

2
eiωLt

[
−
∑

j

Ej(t) 〈e|~µ · ε̂j|g〉 e−i(~kj ·~r+φj)
]

=
1

2
e−iωLtΩg,e +

1

2
eiωLtΩ∗e,g, (3.8)

where we have used the fact that the matrix elements
〈
g|~µ · ε̂∗j |e

〉
= 〈e|~µ · ε̂j|g〉 are

real and we have defined the complex Rabi frequency Ωg,e

Ωg,e = −
∑

j

Ej(t) 〈g|~µ · ε̂j|e〉 ei(~kj ·~r+φj) (3.9)

Substituting equation 3.8 into equations 3.4 and 3.5 and defining a detuning ∆en =
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ωen − ωL we get

˙̃cgn =
−i
2

∑

m

Ω∗em,gn c̃eme
−i(∆em−ωgn )t (3.10)

˙̃cen =
−i
2

∑

m

Ωen,gm c̃gme
i(∆en−ωgm )t (3.11)

In the above line we have used the Rotating Wave Approximation (RWA) to ignore

the terms ωL+ωen,em . We can adiabatically eliminate the excited states by assuming

that they will not be populated during the interaction, this is performed by directly

integrating 3.11

∫ c̃en

0

dc̃en =

∫ t

0

−i
2

∑

m

Ωen,gm c̃gme
i(∆en−ωgm )tdt (3.12)

c̃en =
∑

k

Ωen,gk c̃gk
2 (∆en − ωgk)

(
1− ei(∆en−ωgk)t

)
(3.13)

Substituting in equation 3.10,

˙̃cgn =
−i
2

∑

m

Ω∗em,gn

[∑

k

Ωem,gk c̃gk
2 (∆em − ωgk)

(
1− ei(∆em−ωgk)t

)]
e−i(∆em−ωgn )t (3.14)

=
−i
2

∑

m,k

Ω∗em,gnΩem,gk

2 (∆em − ωgk)
c̃gke

iωgn t
(
e−i∆em t − e−iωgk t

)
(3.15)

=
−i
2

∑

m,k

Ω∗em,gnΩem,gk

2 (∆em − ωgk)
c̃gk
(
e−i(∆em−ωgn )t − ei(ωgn−ωgk )t

)
(3.16)

≈ i

2

∑

m,k

Ω∗em,gnΩem,gk

2 (∆em − ωgk)
c̃gke

i(ωgn−ωgk)t (3.17)

=
i

2

∑

k

Ωgn,gk c̃gke
iδgn,gk t (3.18)

Here I have applied another RWA and have assumed that ∆em � ωgk for all values

of m and k. I have also defined the effective Rabi frequency and the ground state
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frequency separation:

Ωgn,gk =
∑

m

Ω∗em,gnΩem,gk

2 (∆em − ωgk)
≈
∑

m

Ω∗em,gnΩem,gk

2∆em

, (3.19)

δgn,gk = ωgn − ωgk .

All the physics involved in the Raman manipulation of our trapped ion is encapsu-

lated in equation 3.19. Further derivation involving numerical values of the matrix

elements are found in [37] and will not be discussed here. Instead, we will work

with the main result derived from neglecting the differential light shift due to large

detuning from the P states when using a 355 nm laser

Heffective

~
= −1

2
Ω(t)σ̂x −

1

2
ωhfσ̂z, (3.20)

where Ω(t) is a function of the time-dependent light intensity and σ̂x,z are the usual

Pauli matrices.

3.2 Single pulse rotation

Pulses from a mode locked laser are theoretically described by hyperbolic se-

cant, which after being frequency tripled, become sech(t)3. For an easier description,

such pulses are approximated by sech(at) functions alone, where a is a fitting pa-

rameter that does not affect the physics of the interaction.

The full dynamics of an atom subject to a secant pulse with finite width τ was

originally discussed by Rosen-Zener [66] and it is beyond the scope of this section.

We instead focus on the final population transfer and not the dynamics during the

pulse. For a pulse with large enough bandwidth to drive a two level transition, the
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Figure 3.1: Single pulse power scan. By scanning the pulse area θ, we can estimate
the pulse duration by recording the transition probability of |0〉 → |1〉 at each ∆θ.
The plot does not start at 0 because of inefficient switching at low amplitudes.
Nonetheless, the important feature is the maximum amplitude that correlates to a
pulse duration of 22.2 ps.

probability to drive a |0〉 → |1〉 is

P|0〉→|1〉 = sech2
(ωhfτ

2

)
sin2

(
θ

2

)
, (3.21)

where θ is the pulse area. We notice that the maximum population transfer is

bounded by the sech term and is a consequence of the finite bandwidth pulse. We

can experimentally test this expression by shinning a single pulse with circular

polarization to an ion. The results are shown in fig. 3.1

An inmediate consequence of eq. 3.21 is that for a given single non-delta

pulse, it is impossible to completely transfer the population to the |1〉 state. This

constraint can be overcomed by using two pulses separated in time such that they

constructively interfere and fully drive a transition.
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|1〉

|0〉

Figure 3.2: Two pulse spin flip. Although a single pulse with sufficient bandwidth
is unable to fully transfer all population from |0〉 to |1〉, two pulses corretly timed
can. The first flips the spin to a superposition of the qubits states, after a definite
wait, a second pulse can then transfer all the state to |1〉.

3.3 Multiple pulses and weak regime

We have assumed in the previous section that a single pulse had enough energy

to significantly affect the ion internal state. If now we apply a high number of pulses

with a small amplitude (θ � 1), we expect each weak pulse to drive a small amount

of σ̂x rotations. This intuition is true and we can obtain [34] a transition probability

given by

P|0〉→|1〉 = sech2
(ωhfτ

2

)
sin2

(
θ

2

)
sin2

(
Nϕ

2

)
/ sin2

(ϕ
2

)
, (3.22)

where ϕ is a rotation axis and it is clear that the probability can be made one with

the right choice of parameters. As a physical consideration, for N¿1, we need the

repetition rate to be an integer multiple of the hyperfine splitting.

ωhf = nωrep, n ∈ Z, (3.23)
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that is, the “small” rotation of each pulse should add up in a way that they con-

structively interfere, leading to population transfer. Experimentally, we need to

lock the laser comb beatnote corresponding to the closest frequency of the hyperfine

splitting (ωhf = 12.6 GHz). The next section discusses the schemes that we have

used for the three different lasers.

3.3.1 Beatnote lock

Table 3.1: Specs of the lasers used in our experiments.

Paladin 24W Paladin 4W PicoTrain (HighQ)

Average power (Watts) 24 4 “8”
Repetition rate ωrep/2π (MHz) 81.419 118.305 80.160

Pulse duration τ (ps) 22.2 14.8 7.6

The most straightforward method to match the resonance condition (eq. 3.23)

involves the active stabilization of the cavity of the laser for repetition rate tunning.

From the three lasers used during my studies (see table 3.1), only the HighQ laser

had this capability by giving the flexibility to mount one of the cavitiy mirrors to a

motorized stage and actively feedback the error to a PID control unit. The stabilized

157th harmonic of the repetition rate is the used for coherent operations.

Becase not all laser cavities feature a PZT, we used another more flexible and

less direct way of stabilizing the laser beatnote using two AOMs. We notice that

eq. 3.23 can be relaxed to

ωhf = nωrep + ω̃A, (3.24)
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where ω̃A is a total frequency offset given by either one or two AOMs. At a practial

level, we used two AOMs ω̃A = ωA1 + ωA2 with oposite direction frequency shifts.

The Paladin 24W featured a repetition rate of 81.41 MHz, which means that we

picked the 150th harmonic at 12.211 Ghz and AOM frequency of 2π× 468.73 MHz

to drive the carrier
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Chapter 4: Ultrafast spin-motional control

Here we describe the basic spin dependent interaction needed for our quantum

phase gate. Although most of the theory has been laid by previous members of the

Ultrafast lab [37, 38, 67], I will briefly describe the main concepts and key calcula-

tions. I finish with a discussion of the strong and weak coupling regimes where we

work in resolve the motional sidebands regime compared to the impulsive limit.

4.1 Coherent state displacements and properties

The motional state of trapped ions in a trap is usually described in terms of

Fock states since Doppler cooling leaves the ion in an incoherent mixture of number

states with mean number n̄. Althought sideband cooling allows the preparation of

true Fock states [68], a continous variable description is better suited for calculating

momentum kicks. Coherent states |α〉 provide a better theoretical framework since

they mirror the behavior of classical states and are best described in the phase space

of x vs. p. They are superpositions of Fock states with a complex amplitude α

|α〉 = exp(−|α|2/2)
∞∑

n=0

αn√
n!
|n〉 (4.1)
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and eigenstates of the annihiliation operator a |α〉 = α |α〉 following the identity

〈α|β〉 = e−
1
2(|α|2+|β|2−2α∗β), (4.2)

since they form an overcomplete basis. Moreover, time evolution is obtained by

evolving its state by a phase

|α(t)〉 ⇒ |e−iωtα〉 , (4.3)

where ω is the Harmonic oscillator frequency. Sudden displacement of coherent state

is described by the displacement operator D[β] and its effect is

D[β]|α〉 = e(βα∗−β∗α)/2|α + β〉,

which adds an extra phase factor in front of the coherent state. For completeness,

description of a thermal state in the coherent state basis is performed by the density

matrix formalism

ρ =

∫ (
1

πn̄
e−|α|

2/n̄

)
|α〉 〈α| d2α, (4.4)

where the integration is over the complex plane and the Gaussian factor accounts

for the thermal distribution of fock states. If the ion is initialized in |↓, α〉 and we

apply unitary operations Û , the measured brightness B is computed by tracing the

motional part

B =

∫ (
1

πn̄
e−|α|

2/n̄

)
〈↓, α| Û † |↑〉 〈↑| |Û | |↓, α〉 d2α, (4.5)

This equation is general for any Û and is the main result of this section due to its

experimental importance. We can calculate any signal involving motional operations

by measuring the spin states. Moreover, calculations can be simplified by taking a

pure coherent state and then computing the thermal average at the very end.
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4.2 Spin and motion coupling

Chapter 3 discussed the conditions for the coupling of the internal states of

the ion with an electromagnetic pulse. This section is devoted to expanding these

ideas to the coupling of light and the motional state of the ion.

First, we notice that the Rabi frequency (eq. 3.19) is maximized (See appendix

E) when the fields acting on the atom have orthogonal polarization. Moreover,

maximum momentum transfer is accomplished when two beams driving the Raman

transition are counter propagating along the quantization axis. Taking into account

such conditions, we start our analysis of spin-motion coupling by defining a quan-

tization axis along ẑ (perpendicular to the direction of the ion chain), write any

polarization as a superposition of three unit vectors

ε̂ = (sin β cosα) σ̂+ + (sin βj sinα) σ̂− + (cos β) π̂, (4.6)

and defining the matrix elements in eq. 3.9 as

〈g|~µ · ε̂q|e〉 = Cg,e,qB (4.7)

Here, q = +1, 0,−1 corresponds to σ+, π, and σ−, respectively, Cg,e,q is a Clebsch-

Gordon coefficient that is a function of the ground state, excited state, and without

loss of generality, we have written B as a constant that is dependent on other

atomic parameters. (the transition linewidth is proportional to the reduced matrix

element so is the saturation parameter. [34]. The configuration of two laser beams

linearly polarized but with orthogonal polarizations, usually called “lin perp lin”

configuration implies β = 0, α1 = π/4 and α2 = −π/4 ,with these conditions, eq.
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Figure 4.1: Clebsch-Gordan coefficients for the relevant Raman processes and
energy levels.

3.9 takes the form:

Ωg,e = − B√
2

(
(Cg,e,σ+ + Cg,e,σ−)E1(t)e−ikz+φ1 + (Cg,e,σ+ − Cg,e,σ−)E2(t)teikz+φ2

)

(4.8)

To compute the Raman-Rabi frequency, we will use the same notation for the levels

2P1/2 and 2P3/2, and respective Clebsch-Gordan coefficients as in fig 4.1. Notice

that the |2P3/2, F = 2,mF = ±1〉 states do not participate in the Raman interaction

since they do not connect the g0 and g1 states (a transition with g0 is not dipole

allowed).
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Equation 3.9 with ∆e+0
≈ ∆e−0

and ∆e+1
≈ ∆e−1

is

Ωg1,g0 =
Ω∗
e+0 ,g1

Ωe+0 ,g0

2∆e+0

+
Ω∗
e+1 ,g1

Ωe+1 ,g0

2∆e+1

+
Ω∗
e−0 ,g1

Ωe−0 ,g0

2∆e−0

+
Ω∗
e−1 ,g1

Ωe−1 ,g0

2∆e−1

(4.9)

we compute the first term

Ω∗
e+0 ,g1

Ωe+0 ,g0
=

(
B2

2

)(
− 1√

3

)(
E1(t)e−ikz+φ1 + E2(t)teikz+φ2

)∗×
(

1√
3

)(
E1(t)e−ikz+φ1 + E2(t)teikz+φ2

)

=

(
−B

2

6

) ∣∣E1 (t) e−i(kz+φ1) + E2 (t) ei(kz+φ2)
∣∣2

= −
(
B2

6

)(
E1 (t)2 + E2 (t)2 + 2E1 (t) E2 (t) cos (2kz + ∆φ)

)
,

where we have defined the difference frequency between the phase shifts:

∆φ = φ1 − φ2

Similar conditions apply to the other terms, leading to the final simplified result

Ωg1,g0 = 2KE1 (t) E2 (t) cos (2kz + ∆φ), (4.10)

where K is a constant related to the saturation intensities, detuning from the P

states, ∆e0 and ∆e1 and natural transition linewidths. This result is consistent with

eq. 4. 113 in [37] when writting the equivalence KE1 (t) E2 (t) ≡
√

Ω1(t)Ω2(t) .

4.3 Evolution operator for a single ultrafast pulse

Inserting eq. (4.10) in eq. (3.20) of the full effective Hamiltonian, leads to

Heffective

~
= −

√
Ω1(t)Ω2(t) cos (2kz + ∆φ)σ̂x −

ωhf

2
σ̂z. (4.11)
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We approximate the Rabi frequencies Ω by delta functions weighted by the pulse area

Ω(t)1,2 → θδ(t)1,2 and the evolution operator can be obtained by simple integration

since the Hamiltonian commutes with itself at later times:

U = exp

(
− i
~

∫
Heffective(t)dt

)

=
∞∑

n=−∞
inJn(θσ̂x)e

in(η[a†+a]+∆φ (4.12)

where η = ∆k
√

~
2mω

is the Lamb-Dicke parameter defined for an ion of mass m,

oscillator frequency ω and subject to light. The Bessel functions Jn were obtained

by the Jacobi-Anger expansion during the derivation of eq. (4.12). We can write

the evolution operator in a more familiar form

U =
∞∑

n=−∞
inJn(θ)ein∆φD[inη]σ̂nx . (4.13)

The equation above follows a simple physical explanation: The ion will absorb and

emit one photon from one of the counter propagating beams, leading to change in

momentum of 2~k. Since that process happens n times, the motional wavefunction

of the ion is diffracted in momentum orders as integer multiples of the Lamb-Dicke

parameter. The probability amplitudes on each of these orders is modulated by

the Bessel function and is dependent on the pulse area θ. Figure 4.2 shows an

example of how the momentum orders are populated as the pulse area increases

This phenomenom is similar to the diffraction of BECs by standing waves, where

the number of diffraction orders is dependent on how strong is the light modulated

at the BEC position (pulse area), leading a Raman-Nath scattering [69].
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Figure 4.2: Single pulse motional wavepacket diffraction. We start at the zeroth
order momentum order (see arrow). As the pulse area increases, the motional wave-
function diffracts into higher momentum orders.

4.3.1 Spin dependent kick

The full effect of a single pulse lin perp lin pair is described by eq. 4.13 but it is

not what we need for a true spin dependent displacement since each diffraction event

is accompanied by other orders with alternating spin states, which is a consequence

of the symmetry of the system. We instead need an operator that will displace the

motional state depending on the initial displacement. This can only be accomplished

by concatenating several pulses timed in such a way that instead of diffracting to

different orders, they coherently interfere to a single momentum state. In our

experiment (see fig. 4.3), we chose to split one laser pulse into eight sub-pulses

using a system comprised of three delay stages. The delay values were numericaly

optimized to transfer all the motional population to the first diffraction order. The

final theoretical fidelity is 99.7 % only limited by the pulse spectrum. We set the

stages at 16, 8 and 6.5 periods of the hyperfine evolution and ωA. With a total

interaction time of ≈ 2.5 ns, we produce a unitary evolution best described by
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AOM 1

AOM 2

Figure 4.3: Experimental schematic. A single pulse from a mode-locked 355 nm
laser is divided into 8 sub-pulses by three sequential optical delay stages. The shaped
pulse is then split into two paths directed through independent AOMs, used to make
the interaction direction-dependent. The pulses overlap in space and time at the
position of the ions in a counterpropagating lin⊥lin polarization configuration that
produces an spin dependent kick (SDK) [67].

USDK = eiφ(t)D̂(iη)σ̂+ + e−iφ(t)D̂(−iη)σ̂−, (4.14)

where the phase φ(t) = ωAt+ φL is related to the AOM frequency and the absolute

optical phase φL of the driving laser, assumed to be common mode for the two beam

paths and constant during the interaction. The raising and lowering operators σ̂± act

on the qubit, and the displacement operator D̂(±iη) acts on the motional state of the

ion along the axis of transverse motion, translating the momentum in phase space

by ∆p = ±~(∆k) = ±2p0η. Here ∆k = 2k is the wavevector difference between

the counter-propagating beams and p0 =
√
m~ω/2 is the zero-point momentum

spread of harmonic motion at frequency ω for an ion of mass m (x0 = ~/2p0 is

the zero-point position spread). The Lamb-Dicke parameter η = ~∆k/(2p0) ≈ 0.17

thus parametrizes the momentum kick in natural units. In contrast to conventional

forces applied in the resolved sideband regime [24], the impulsive SDK is about three

hundred times faster than the oscillation period and does not rely on confinement
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to the Lamb-Dicke regime.

4.3.2 From weak to strong coupling

We experimentally demonstrate (fig. 4.4) that, as a longer and weaker train

of pulses is sent to the ion, the normal mode picture is recovered using the same

setup. This can be seem from eq. 4.11 by taking the Lamb-Dicke approximation

η
√

2n̄+ 1 � 1 and working in the interaction picture of the free spin and trap

evolution we obtain

Uweak(t) = 1 +

√
Ω1(t)Ω2(t)

2

(
ei∆φ[1 + iη(eiωtrapa† + e−iωtrapa)]× (4.15)

[ei(ωhf+ωA)tσ̂+ + ei(ωhf−ωA)tσ̂−] + H.c.) (4.16)

where a (a†) are the lowering (raising) operators and ωtrap is the trap frequency.

Concatenating such operations and matching conditions like (ωhf +ωA+ωtrap)/2π ∈

Z we converge to

Uweak train = cos
Θη

2
+ i sin

Θη

2
(iei∆φa†σ̂−ie

−i∆φaσ̂−). (4.17)

The above expression drives the blue sidebands where a spin flip also adds or sub-

stract a phonon. As we sweep the ωA around the carrier with condition (ωhf +

ωA)/2π ∈ Z we resolve each motional mode (see fig.4.11a). We realize that when

we are deep in the Lamb-Dicke regime, no second order sidebands are resolved.

In the ultrafast regime, each pulse is strong enough to affect all the motional

modes and justifies the concept of “impulsive limit”. A consequence of such inter-

action is that spurious modes and transitions are also driven such as drive to the
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Figure 4.4: Crossover between the resolved motional sidebands and the impulsive
limit. For a weak train of pulses, the spectrum is given by a comb. The locked
frequency difference between the two Raman beams drive transitions at the trap
frequency harmonics. In the impulsive limit, no beat note lock is necessary since
the bandwidth of each pulse covers the whole spectrum.

Zeeman states and coupling to the axial modes. Careful experimental analysis is

required to ameliorate such effects.
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Chapter 5: SDK characterization, and validation.

I developed in chapter 4 the theory for ultrafast SDK and showed a few con-

ceptual experiments. This chapter is devoted to discuss the experimental issues in

the proper coherent transfer from one momentum order to another. The first part

is the experimental checklist that characterizes the efficiency of the SDK. Magnetic

fields, laser power fluctuations, coupling to the wrong motional modes and proper

quantization axis alignment are added to the theoretical model 4.12 to study their

influece and see how they affect the performance.

We then apply the SDKs for a particular application that validates the features

of our base operator. We perform thermometry by spatially separating the motional

wavefunction and performing an autocorrelation using the light that we collect. We

find that our interaction is capable of measuring temperatures from the ground state

to Kelvin temperatures. Although similar techniques have been used in tapered

nanofiber systems [70], such large dynamic range is possible, in our system, because

we can operate far outside the Lamb-Dicke regime, only limited by laser focusing.

Following the demonstration of large dynamic range thermometry, we prepare

large mesoscopic states and non trivial motional states. By applying momentum

kicks at the ion in either a synchronized or consecutive way, we create the largest
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mesoscopic superposition of an atom in a harmonic trap. Furthermore, we also

demonstrated the creation of multicomponent “cat” states. The experimental results

we present here are based on references [71,72].

5.1 Experimental considerations

We analyze next the effect of coupling to the wrong motional mode, Hilbert

space leakage to the Zeeman states and spin independent kicks. Each issue poten-

tially contribute to the fidelity decrease of a perfect SDK.

5.1.1 Drive to the Zeeman levels

When the Raman beams are perfectly aligned in the lin⊥lin configuration,

only the |0〉 ↔ |1〉 can be driven. However, if there is a component of π light due

to misalignment, spurious transitions such as the |0〉 ↔ |1〉Zeeman are driven instead,

where |1〉Zeeman represents the |F = 1,mf = ±1〉 states . Population of these states

represent a leakage of the Hilbert space of the qubits and degrades the SDK fidelity.

There are two ways this transition can occur: If the magnetic field is not

properly oriented with respect to the polarization of the Raman lasers or if we

focus the beam too tightly, thereby getting an axial polarization component [59,73].

Since the axial polarization is an unavoidable feature of any tightly focused Gaussian

beam, it is important to understand how small we can make the beam before this

becomes an issue.

We estimate the axial polarization component by considering the Gauss’ law
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Figure 5.1: Component of electric field along the axial direction vs. distance from

the center of the beam for a 2 (blue) and 5 (red) µm waist.

in free space equation, ~∇ · ~E = 0, which for a Gaussian beam polarized along the

transverse x̂ direction simplifies to [59]:

Ez = −
∫
∂Ex
∂x

dz (5.1)

and relative to E0, the field strength at the center of the beam, the z component is

Ez(x, y, 0)

E0

=
2xe−x

2/w2

kω2
0

, (5.2)

where k is the wavevector and ω0 is the beam waist.

Figure 5.1 shows two examples for beams with 2 and 5 µm waist. A reasonable

consideration is that the ion will be within 0.5 µm of the center of the beam. In

that case, Ez/E0 should be less than 1%, even for a 2 µm beam. In the resolved

sideband limit (weak regime), all the Zeeman transitions are far detuned from the

main carrier operations and the effect of axial polarizations are well supressed due

to spectral selectivity. Unfortunately, in the ultrafast regime, we spectrally address

all transitions over a much larger bandwidth and the only way of suppressing the
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Zeeman state population is through a better light polarization control.

We take two approaches for ameliorating this issue: scanning the shim coils for

proper quantization axis setting , and use of larger beams where the axial component

of the polarization is small. The main difficulty with the former is that the Zeeman

states contribute to the brightness (eq. ) since they are detected as if they were

in the |1〉 state but they do not contribute to the motional states of interest, thus

making the troubleshooting difficult.

5.1.2 Model

We obtain an approximation of this effect by considering transitions to the

clock states, with Rabi frequency Ω and pulse area θ and transitions to the Zeeman

states with Rabi frequency and pulse area Ω′ and θ′, respectively. Ideally Ω′ � Ω and

θ′ � θ. For simplicity we consider coupling to only one of the Zeeman transitions

since generalization to multiple levels is straightforward.

The Zeeman coupling modifies eq. 4.11 to include an additional term:

Heff(t) = −θδ(t− t0)cos(∆kx̂+ ∆φ(t))σ̂Cx − θ′δ(t− t0)cos(∆kx̂+ ∆φ(t))σ̂Zx (5.3)

where the superscript on the σ̂x operators denotes which manifold (C = clock and

Z = Zeeman) that operator acts on. Now calculating Up(t0), we get the product of

two infinite sums:

Up(t0) =
∑

n

inJn(θ)(σ̂x
C)nein(η(â+â†)+∆φ(t0))⊗ (5.4)

∑

m

imJm(θ′)(σ̂x
Z)meim(η(â+â†)+∆φ(t0)). (5.5)
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Figure 5.2: Infidelity vs. the ratio of the Rabi frequencies of the qubit and Zeeman

transitions.

We find that when θ′ � θ only the carrier term on the Zeeman level is populated

and its momentum orders do not participate in the interaction to first order.

The SDK infidelity as a function of Ω/Ω′ is shown in Fig. 5.2 for our delay

settings. Here, the infidelity is 0.002-0.003, even if there is no Zeeman coupling. We

realize that as long as the ratio ΩC/ΩZ is larger than 20 or 30, the infidelity can

be considered negligible. However, this still places a stringent requirement on the

polarization, since the Rabi frequencies scale as E1(t)E2(t), and to obtain a ratio of

20-30 means the polarization should be pure to a part in 500∼1000.

5.1.3 Polarization imperfection

Polarization imperfection on the two counterpropagating Raman arms drive

motionless transitions and arise from circular polarization contributions from single

arms or from polarization leakage of a defective optic, i.e. a polarizing beam splitter.
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Better polarization control is achieved by a high extinction ratio polarizer such

as a Glan Thomson or by placing λ/2 and λ/4 plates before the beam enters the

vacuum chamber. Modelling of this effect is similar to the Zeeman case (eq. 5.4)

except that there is no motional dependence

Up(t0) =
∑

n

inJn(θ)(σ̂x)
nein(η(â+â†)+∆φ(t0))

∑

m

imJm(θ′)(σ̂x)
meim∆φ(t0). (5.6)

5.1.4 Axial mode coupling

Misaligment of the Raman beams respect the quantization axis can drive axial

modes since the selection rule for ∆k is met. The Hamiltonian in this case becomes

Heff(t) = −θδ(t− t0)cos(∆kxx̂+ ∆kz ẑ + ∆φ(t))σ̂x, (5.7)

with evolution operator

Up(t0) =
∑

n

inJn(θ)(σ̂x)
nein(η(â+â†)+η′(b̂+b̂†)+∆φ(t0)), (5.8)

where η is for the normal transverse coupling and η′ is for the axial coupling (with

η′ ≈ η sinα, where α is the angle of the beams respect the transverse direction), and

b̂ (b̂†) are the annihilation (creation) operators for phonons in the axial direction.

For our normal operating conditions, ωr/2π ≈ 1.3 MHz and ωz/2π ≈ 480 kHz.

With two ions, this becomes the center of mass axial mode, and the frequency of

the relative axial mode is
√

3 times higher, so around 830 kHz. Indeed the coupling

to the relative axial mode may be more detrimental.

We will have coupling to the axial mode if the ∆k vector has some projection

onto the axial direction, so the ratio of Rabi frequencies, Ωaxial/Ωtrans should be low.
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We can mitigate it by aligning the beams to be counterpropagating perpendicular

to the axis of the trap. The Lamb-Dicke parameter is different for the axial mode,

meaning that the size of the kicks is different.

5.1.5 Leakthrough light

Imperfect polarization control due to the first Pockels cell allows a small train

of pulses go through the table. The time length of this train depends on how

long we turn on the chopping AOM. Wrong switching let pass a small fraction of

the neighbour pulses and the train that was not properly blocked due to a finite

extinction ratio of the modulator. The small pulses are an inherent problem in the

speed of the polarization switching and its effect is hard to cancel. The effects of

the long leakthrough light can be cancelled by detuning one of the AOMs to not let

this light hit any sideband.

5.2 Experiments with SDKs

We next describe two experiments used to benchmark our basic building

blocks. The first one aims to demonstrate that the performance of the SDKs is

inmune to the motional state of the ion and works outside the Lamb-Dicke regime.

We use ultrafast techniques for accurate thermometry of ion motion ranging from

n̄ ∼ 0.1 to n̄ ∼ 104 and show how this method extends to higher energies. We also

measure particular quantum states through more complete motional tomography.

The second experiment involves the creation of mesoscopic quantum super-
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positions or “Cat” states. Such large superpositions are required for the ultrafast

gate (See chapter 6 for a general discussion) and studying them is a requirement

for our understanding of highly spatially separated coherent states in our trap. We

achieve a maximum separation of ∆α ≈ 24 or 259 nm in real space, compared to

the x0 = 5.4 nm of the ground state motional state. Moreover, we demonstrate

excellent coherent control by creating multicomponent superposition states, never

created in massive systems before.

5.2.1 Thermometry with ultrafast pulses

We create an interferometer to sense motion by applying two sets of N SDK

operations within a Ramsey experiment on the qubit levels with time duration T

(time separation of microwave π/2 pulses). First the ion is prepared in a coherent

superposition of |0〉 and |1〉 by applying a near-resonant microwave π/2 pulse of

duration τµ. A set of N SDKs is applied, and following this first set, the ion evolves

for a time Θ/ω before a second set of N SDKs is applied. After a time T from

the first microwave π/2 pulse, another microwave π/2 pulse with the same duration

and tuning drives the qubit to close the Ramsey interferometer. This sequence is

diagrammed in Fig. 5.3(a). By scanning the microwave detuning δ � 1/τµ from

resonance, we observe sets of Ramsey fringes with phase φ = δT that chronicle the

ion motion (shown in Fig. 5.3(b) and 5.3(c)).

Starting from a pure initial state |Ψα〉i = |0〉 |α〉, where α is a coherent state
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Figure 5.3: Ultrafast atom interferometry [71]. (a) Timeline of a single experiment,
where a full SDK set is made of N single SDKs. (b) Phase space diagram of an initial
state (|0〉+ |1〉) |α〉 evolving under two sets of SDKs separated by time delay Θ/ω,
where |α〉 is a coherent state of motion. (c) Typical Ramsey fringes as a function of
microwave frequency detuning δ. These two plots correspond to the points Θ = 0
and Θ = π/2 of an initial thermal state (N = 1 for the data shown). The function
S(Θ, N ;φ) is described by Eq. 5.10.
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of the ion motion, the state following a Ramsey experiment is [37]

|Ψα〉 =
1

2

[
eiγ
(
|0〉+ ie−iφ |1〉

)
|(α + iNη)e−iΘ − iNη〉

+ie−iγ
(
|1〉+ ieiφ |0〉

)
|(α− iNη)e−iΘ + iNη〉

]
, (5.9)

where γ = Nη[Re(α)(1− cos Θ)− Im(α) sin Θ].

Given an arbitrary initial state of motion in phase space described by the

Glauber P-distribution [74,75], the final density matrix is ρ̂ =
∫
P (α) |Ψα〉 〈Ψα| d2α.

The probability of measuring the state spin-up after the Ramsey experiment is

therefore

S(Θ, N ;φ) = 〈1| ρ̂ |1〉 =
1

2
+

1

2

∫
P (α)e−4(Nη)2(1−cos Θ) cos(4γ − φ)d2α. (5.10)

Two types of motional state that are readily accessible in the laboratory are

thermal states and small Fock states. First we discuss ultrafast partial state tomog-

raphy to determine the average phonon number in a thermal state. Then we extend

this method to create a nearly complete map of the motion of an n = 1 Fock state

in phase space, showing clear nonclassical signatures.

5.2.2 Sensing of a thermal state

An ion prepared in a thermal state with mean phonon number n̄ and P-function

Ptherm(α) = 1
πn̄
e−|α|

2/n̄, eq. 5.10 yields an expected Ramsey fringe pattern

Stherm(Θ, N ;φ) =
1

2
+

1

2
e−4(Nη)2(2n̄+1)(1−cosΘ)cosφ. (5.11)

The fringe contrast has periodic peaks at Θ = 2πm, where m is a positive integer.

For a hot ion where n̄ � 1/(Nη)2, these revivals in contrast become narrow and
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Figure 5.4: Ultrafast sensing measurements of n̄ (with N = 1) [71]: Measurements
of n̄ versus predicted values. There are three regimes of thermal state preparation–
red being sideband-cooling then heating (see fig. 5.5), green being Doppler cooling
with different detunings (see fig. 5.6) and orange being heating with applied noise
(see fig. 5.7)

approximately Gaussian with full width at half maximum FWHM= 0.83/(Nη
√
n̄).

With N = 1, we measure the Ramsey fringe contrast as a function of Θ for a variety

of initial thermal states of motion, and fit the contrast revival peaks to eq. 5.11

to determine the average phonon number n̄ of the thermal stat [76–78]. In the fit,

we allow the peak Ramsey contrast at Θ = 2πm to be less than unity in order to

parametrize imperfect fidelity of the SDK operations. This reduction in fidelity is

mainly attributed to variations in the Raman beam intensity over the spatial extent

of the ion wave packet (beam waist is ≈ 2 µm), and becomes apparent at high n̄

(n̄ = 10000 has a spread of≈ 1 µm). This does not affect the width (it does affect the

height) of the contrast revival peak, and thus the accuracy of the thermometer, and

can be mended by widening the beam waist. Ramsey contrast revival lineshapes
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are measured in experiments spanning over five orders of magnitude in n̄. Figure 5.4

shows these measurements plotted versus the expected value of n̄ from theory and

other measurements. The figure is broken into three regions according to the manner

in which the motional state is prepared and calibrated before measurement of the

contrast revival lineshapes. Low energy thermal states (n̄ < 10) are generated by

first sideband-cooling the ion to its zero point motion and then allowing the ion to

weakly heat (the trap has a natural heating rate of 310(10) quanta/s due to trap

electrode noise and anomalous heating [79]) in the trap by known amounts. In

this regime, we compare ultrafast interferometric measurements of n̄ (shown in Fig.

5.5a) to values extracted from measured sideband asymmetries [23]. The deviation

of the two measurements are shown in the red section of Fig. 5.4.

Thermal states of 10 < n̄ < 150 are prepared by Doppler cooling with various

frequency detunings from resonance. Ultrafast measurements in this regime are

shown in Fig. 5.6a. Each of these measurements and the predicted value of n̄

from Doppler cooling theory [80] (Fig. 5.6b) are plotted against each other in the

green section of Fig. 5.4. As a check on the expected values of n̄ in this range, we

also measure the Debye-Waller suppression of Rabi flopping amplitude transitions

between the ion qubit states [23] for several cases, resulting in expected values

consistent with Doppler theory.

Hot thermal states are prepared by inducing a high heating rate with a noisy

electrical potential to a trap electrode for varied amounts of time after Doppler

cooling. The ultrafast measurements of these states are shown in Fig. 5.7a. Mea-

surements in this regime are compared to a predicted n̄ given by the equation
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Figure 5.5: Ultrafast thermometry in the sideband cooling regime. (a) Sampling of
Ramsey revival contrast lineshapes with initial states prepared by resolved sideband
cooling to the ground state and subsequent heating. Data is fit to Stherm(Θ, 1;φ).
The amplitude of each fit is a free parameter to account for SDK infidelity (also
done in fig. 5.6 and 5.7). This does not significantly affect the width of the peak,
which is used to determine n̄. (b) Using identical state preparation to (a) but then
a conventional sideband asymmetry measurement to determine ion temperature, a
heating rate is determined and used to model the phonon number for wait times
(solid line). The thermometry measurements from (a) are plotted to compare.

74



n = 13.06(62)
n = 34.3(2.0)
n = 90.5(5.8)

Δ = 6 MHz
Δ = 2.25 MHz
Δ = 1 MHz

0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
0.0

0.2

0.4

0.6

0.8

1.0

ω tT delay /2π

S[
θ

,0
]

model of Doppler
cooling limit

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

cooling detuning : Δ (MHz )

av
g

ph
on

on
nu

m
be

r:
n

(a)

(b)

Figure 5.6: Ultrafast thermometry in the Doppler cooling regime. (a) Sampling of
Ramsey revival contrast lineshapes with initial states prepared by Doppler cooling
only, with n̄ varied by changing the cooling beam detuning. (b) A model for average
phonon occupation when preparing each state with various Doppler cooling beam
detunings–the Doppler limit is a function of detuning (solid lines). Data from (a) is
compared to the model.
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revival contrast lineshapes with initial states prepared by inducing a high heating
rate with white noise applied to a trap electrode. (b) A model for the phonon
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that of (a) are plotted for comparison.
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˙̄n = e2SV (ω)
4M~ωd2 [81], where e is the ion charge, and SV (ω) (V2/Hz) is the applied power

noise spectral density of the electric-potential, which is white over the measurement

bandwidth (Fig. 5.7a). The effective distance d of the electrode to the ion is cali-

brated by applying a static potential offset to the same electrode and observing the

resulting displacement of the ion in space [48]. The predicted and measured values

for this regime are plotted against each other in the orange region of Fig. 5.4.

5.2.3 Fock State Tomography

We next perform more complete tomography of a nearly pure quantum state

of motion by extracting the characteristic function

χW (α) = e−|α|
2/2

∫
P (β)e2iIm(αβ∗)d2β, (5.12)

where P (β) is again the Glauber P-distribution (integrated over the complex plane).

This quasiprobability distribution contains all the information about the quantum

state and is the Fourier transform of the better-known Wigner distribution [82,83].

We measure χW (α) in terms of the observable S(Θ, N ;φ) using the equations

Re[χW (α)] = 2S(Θ, N ; 0)− 1, (5.13)

Im[χW (α)] = 2S(Θ, N ;
π

2
)− 1, (5.14)

where α = 2Nη[sin Θ+i(1−cos Θ)]. Scanning Θ and N while measuring S(Θ, N ;φ)

maps the characteristic function over rings in phase space, shown in Fig. 5.8(a). In

order to scan the negative imaginary part of α, we can change the direction of the

initial momentum kick associated with the spin flip operators by shifting the relative
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optical phase of the counter-propagating beams by π [33]. These reversed kicks can

be thought of as effectively flipping the sign of η, and for simplicity, we represent

them here by negative values of N .

We measure the characteristic function χW (α) of the ion in the n=1 Fock

state, prepared by sideband cooling to the ground state and transferring population

to the n=1 state through application of a blue sideband operation [24]. To have a

grid that spans the domain of the state, we scan around 16 rings in phase space

set by ±N , where N = 1, 2, 3, 4, 5, 6, 8, 10. Two of the 16 rings along which we

measure are highlighted in Fig. 5.8(a), and plots of S(Θ, N ; 0) versus Θ along those

two rings are shown in Fig. 5.8(b). Notice in Fig. 5.8(b) that the larger SDK set

(N = 5) separates the interferometer enough to see the oscillation of the motional

distribution, while the smaller SDK set does not. Mapping along all 16 curves gives

a nearly complete motional state map. The real part of the characteristic function is

shown in Fig. 5.8(c) alongside the corresponding model of Re[χW (α)] for an n = 1

Fock state in Fig. 5.8(d). The negative values of the characteristic quasiprobability

function highlight the nonclassical nature of the motional state of the ion.

5.2.4 Limits of Measurement

These ultrafast tomographic techniques are capable of measuring motional

energies far beyond the data presented here, which was limited to n̄ ∼ 104 because

of re-cooling issues during state preparation (it becomes difficult to cool the ion in

a reasonable amount of time to start a new experiment after it has been heated to
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Figure 5.8: Ultrafast phase space tomography [71] (a) Points in phase space ac-
cessible in our tomographic measurements. The radius of each circle (2Nη) is set
by the number of kicks N , and the angular position on each circle is set by the
SDK delay Θ. The sign of N represents the direction of the initial momentum
kicks associated with the spin flip operators. (b) Sample of measurements of the
Ramsey fringe at φ = 0 for a nominal n = 1 Fock state, using two sets of kicks
with N = 5 (red) and N = −2 (blue) and scanning the delay Θ. [The coordinates
of these particular scans in phase space are highlighed in (a)]. (c) Motional state
tomography of an ion prepared in the n = 1 Fock state. In ascending order: the
value-colored data points of Re[χW (α)] taken on 16 rings in phase space set by ±N
where N = 1, 2, 3, 4, 5, 6, 8, 10, the interpolated data mapped in contour, and a 3D
interpolation of the data. (d) Theory prediction for a Fock state with n = 1.
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a very high tempertaure). In the experiment, we scan the motional interferometric

angular delay Θ in steps set by the repetition rate of the laser, giving a resolution

of ω/frep ∼ 50 mrad. For revival lineshapes narrower than this laser repetition rate

limit, we scan Θ by changing the trap frequency ω though accurate control of the

trap rf drive voltage. With fine drive-voltage control, we can achieve a resolution

in Θ of 0.1 mrad, which would correspond to a contrast revival linewidth from a

thermal state with n̄ ∼ 109. Other factors also come into play when measuring such

high-energy states: First, the spatial extent of motion swells beyond the laser beam

waist. At n̄ = 106 for instance, or equivalent temperature T = ~ωn̄/kB = 80K, the

ion would experience a significant gradient in the Rabi frequency across a beam with

a 3µm waist. A second factor is the decreased detection fluorescence due to larger

Doppler shifts at these energies. The detection fluorescence at n̄ = 106 would be

reduced by a factor of ∼ 103 from a cold ion [80]. Finally, when measuring these very

narrow lineshapes, instabilities in the trap frequency ω and laser repetition rate frep

would have to be sufficiently stable over the measurement time. At n̄ = 106, this

would require a fractional stability from both the trap frequency and laser repetition

rate of better than 0.1%. These factors put ultrafast interferometric measurements

of n̄ ≥ 106 neither fundamentally nor technically beyond reach.

5.3 Generation of quantum superpositions (“Cat states”)

Mesoscopic quantum superpositions, are widely studied for fundamental in-

vestigations of quantum measurement and decoherence [84] as well as potential ap-

80



plications in sensing [85] and quantum information science [86]. The generation and

maintenance of such states relies upon a balance between efficient external coherent

control of the system and sufficient isolation from the environment. Here we create

a variety of cat states of a single trapped atom in a harmonic oscillator using ultra-

fast laser pulses. These pulses produce high fidelity impulsive forces that separate

the atom into widely-separated positions, without restrictions that typically limit

the speed of the interaction or the size and complexity of the resulting motional su-

perposition. This allows us to quickly generate and measure cat states larger than

previously achieved in a harmonic oscillator, and create complex multi-component

cat state superpositions in atoms.

Quantum superposition is the primary conceptual departure of quantum me-

chanics from classical physics, giving rise to fundamentally probabilistic measure-

ments, nonlocal correlations in spacetime [13], and the ability to process information

in ways that are impossible using classical means [86]. Quantum superpositions of

widely separated but localized states, sometimes called “Schrödinger cat states” [87],

exacerbate the quantum/classical divide. These states can be created in systems

such as cold atoms and ions [88–90], microwave cavity QED with Rydberg atoms [91]

and superconducting circuits [92–94], nanomechanical oscillators [95], and van der

Waals clusters and biomolecules [96, 97]. All these systems gain sensitivity to out-

side influences with larger separations. The natural localized quantum state of a

harmonic oscillator is the coherent state |α〉 [74], which is a Poissonian distribution

of oscillator quanta with mean |α|2. For a mechanical oscillator with mass m and

frequency ω, the complex number α characterizes the position x̂ and momentum
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Figure 5.9: Every pulse from the laser can be used to create a large cat state by
switching the kick direction between each SDK. We accomplish this change in ∆k
with a pulse picker right before it is split in the counterpropagating configuration.
(b) Applying SDKs at intervals synchronous with half the trap follows a different
scheme as (a) but with the trap switching the direction instead of the beams. Free
evolution appears as circular orbits in this plot.
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p̂ operators of the oscillator, with Re[α] = 〈x̂〉/(2x0) and Im[α] = 〈p̂〉x0/~, where

x0 =
√

~/(2mω) is the zero-point width. Schrödinger Cat superpositions of coher-

ent states |α1〉+ |α2〉 of size ∆α = |α1−α2| � 1 have been created in the harmonic

motion of massive particles (phonons) [98] and in single mode electromagnetic fields

(photons) [99]. In trapped ion systems, coherent states of motional oscillations are

split using a qubit derived from internal electronic energy states [89,100]. For pho-

tonic cat states, coherent states in a single mode microwave cavity are split using

atoms or superconducting Josephson junctions. Recent experiments have created

cat states with more than two components [101] for qubit storage and error pro-

tection [94]. In superconducting cavities, the size of the cat state is restricted to a

maximum photon number of ∆α2 ∼ 100, due to nonlinearity of the self-Kerr and

dispersive shift [94]. For trapped ions, cat states have been restricted to a regime

where the motion is smaller than the wavelength of the light providing the dispersive

force, or the “Lamb-Dicke” regime, which usually restricts phonon numbers also to

∆α2 ∼ 100 in the previous largest case (to our knowledge) [100] and ∆α2 � 100 for

the heavier Yb atom. Multicomponent cat states have not previously been created

in the motion of atoms.

In the first of three experiment types, we demonstrate our fastest method for

generating cat states by using every pulse that is emitted from a mode locked laser

(repetition rate frep=81.4 MHz) to generate a set of N SDKs. This is achieved by

separating each pulse from the laser into the eight pulses required for an SDK, in

addition to adding optical elements capable of physically swapping the direction of

the counter-propagating pulses (see fig. 5.9). Swapping the direction compensates
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Figure 5.10: Fast Cat state creation and verification. (a) The state |ψ1〉 (labeled
“1”) is split using a set of SDKs to create the cat state |ψ2〉 (“2”). After evolution
θ = ωT , a second set of SDKs drives the state to |Ψcat〉. (b) The cat state |ψ2〉 with
α = 0.4 is generated in about 14 ns, α = 1.2 in 62ns, and α = 2.0 in 111 ns. The
states are verified by observing contrast in the state |Ψcat〉 (lower plot). We find the
fidelity of each cat state |ψ2〉 to be 0.88(2), 0.76(2), and 0.59(3), respectively (upper
plot).
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Figure 5.11: Slower Cat state creation and verification. (a) Using a higher fidelity
technique which grows in α at an average rate ηω/π, cat states are generated and
verified by observing contrast revival (lower plot). Shown in the upper plot, cat
state fidelity decays with the number of SDKs applied, and the effective single SDK
fidelities are 0.9912(6) and 0.978(2) for Doppler (black, circles) and ground state
cooled atoms(purple, triangles). (b) A cat state of ∆α = 20 is measured with a
contrast revival peak of C0 = 0.19(3). Error bars are calculated with confidence
interval of one sigma.
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for the spin flip that occurs after each SDK and allows for fast concatenation of

constructive momentum transfers. Starting each experiment, the ion is initialized

in the state |ψ1〉 = 1√
2
(|0〉 + |1〉) |0〉 using resonant microwaves. We apply a series

of N SDKs which cause the superposition to grow in size at a rate d|α|
dt
≈ ηfrep (this

rate holds for small enough N, see fig. 5.9), approximately generating the cat state

|ψ2〉 = 1√
2(1+e−|α|2 )

(|1〉 |α〉+ |0〉 |−α〉). After allowing the state to evolve for varying

amounts of time T , then applying a second identical set of displacement operators,

the state

|Ψcat〉 ∝ |1〉 |−αe−iΘ + α〉+ |0〉 |αe−iΘ − α〉 (5.15)

is ideally created, where Θ = ωT (Fig. 5.10a). The phase of the second microwave

π/2 pulse is scanned to probe the qubit contrast [34]

C(Θ) = C0e
−4|α|2(1−cosΘ) (5.16)

where C0 is the signal amplitude and being < 1 accounts for imperfect operations.

At integer multiples of the trap period Θ = 2πm;m ∈ Z, we observe revivals in

contrasts, and when |α| � 1√
2
, the revival lineshape is approximately Gaussian with

a FWHM of 1.18/|α|. In fig. 5.10b, revival lineshapes at Θ = 2π are shown in

which the state |ψ2〉 is generated for (up to) ∆α = 4.0 in 111 ns with fidelity of

F = 0.59(3) estimated using the relation F = C
1/2
0 . This gives and effective single

SDK fidelity of 0.951(4), which is lower than that of a true single SDK because of

power fluctuations associated with swapping laser directions. Such a demonstration

is an important benchmark for ultrafast quantum information processing.
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Following a second set of experiments, we create large cat states using a tech-

nique that does not require switching laser beam paths and instead works by deliv-

ering an SDK at every half trap period to excite large superpositions (Fig. 5.9 a).

This maintains high SDK fidelity by leaving the beam paths stationary, and the cat

state grows at an average rate of d|α|
dt

= ηω/π. Using this method we produce and

verify states |Ψcat〉 up to ∆α = 20 (Fig. 5.11 a,b). This largest state, with 100~k of

momentum in each coherent state, has a 209 nm maximum separation and contrast

C0 = 0.19(2). Generating the large superposition state requires a high level of trap

stability, which is achieved using a rf stabilization procedure [45]. Additionally, the

trap frequency ω is scanned for fine control in Θ [71]. The total measured fidelity

of each SDK is found to be 0.978(2) for displacing coherent states, and 0.9912(6)

for Doppler cooled states. This discrepancy is most likely due to the slower rate

of coherent cat state creation due to ground state cooling allowing slower drifts to

have effects.

The speed, fidelity, and high level of control in ultrafast operations allows

us to make more complicated, multicomponent cat states. First, we create three

and four component cat states with one additional microwave pulse and SDK set.

Starting from the state |ψ2〉, a microwave π/2 pulse rotates the state to |ψ3〉 ∝

(|1〉 − |0〉) |α〉 + (|1〉 + |0〉) |−α〉. A set of SDKs then produces three and four

component cat states of the form

|Ψ3,4
cat〉 ∝ |1〉 (eiφ1 |αe−iΘ + α〉+ eiφ2 |αe−iΘ − α〉) (5.17)

+ |0〉 (eiφ3 |−αe−iΘ + α〉+ eiφ4 |−αe−iΘ − α〉),
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Figure 5.12: Three and four-component cat states. (a) Creation of a multicom-
ponent cat state begins by applying a set of SDKs to take the state |ψ1〉 (1) to
the state |ψ2〉 (2). A microwave π/2 pulse rotates the qubit to produce the state
|ψ〉 ∝ (|1〉+ |0〉) |α〉+ (|1〉− |0〉) |−α〉) (3). Another set of SDKs generates the three
or four-component cat state. (b) If Θ = 0, two of the components rejoin and the
state has the form |α〉+ |0〉+ |−α〉. If Θ = π/4, for instance, then a four-component
cat state of the form |α〉+|−α〉+|iα〉+|−iα〉 is generated. The final microwave pulse
analyzes the state contrast, and is plotted as a function of Θ, which is compared
with the predicted contrast curve with only the amplitude as a fitting parameter.
Error bars are calculated with confidence interval of one sigma. (c) If the microwave
π/2 pulse in (a) is replaced by a mπ pulse, then the second SDK set behaves as it
would in the 2-component experiment, with the exception that odd values of m are
shifted by half of a trap period. We see this behavior fits the predicted model well.
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Figure 5.13: Six and eight-component cat states. (a) The six and eight-component
state is created by extending the technique for the three and four-component state
with an additional microwave pulse and SDK set. (b) Contrast as a function of Θ is
used to verify the creation of the cat state when compared to the model (solid line).

89



with configuration depending on Θ (Fig. 5.12a). (phases φ1, φ2, φ3, and φ4 discussed

in Three and Four-Component Cat Contrast section). It is evident from Eq. 5.17

that a three-component cat state is created when Θ = mπ, and a four-component

cat state is generated for other values of Θ. Scanning Θ and the phase of a final

analysis microwave π/2 pulse, we observe a contrast lineshape indicative of the

desired state (Fig. 5.12b). To further verify that these multicomponent states are

being created, we run the same sequence but apply either no microwave pulse, or

a π pulse, to the state |ψ2〉. An SDK set then generates the cat states |Ψcat,0〉 ∝

|1〉 |−αe−iΘ + α〉+ |0〉 |αe−iΘ − α〉 and |Ψcat,π〉 ∝ |0〉 |αe−iΘ + α〉+ |1〉 |−αe−iΘ − α〉.

These states revive at the same frequency, but out of phase by π, which is verified

in Fig. 5.12c.

Continuing to unfold the state in phase space, another microwave π/2 rotation

and SDK set generates a six and eight-component cat state (Fig. 5.13a). In this case,

the four component cat state is generated with a separation along one quadrature

double that of the other to allow for a square lattice once the eight component state

is created. Again, scanning Θ and the phase of a final microwave pulse, Ramsey

fringes are observed which compare well with the expected behavior (Fig. 5.13b).

(See next sections for more details.)

Ultrafast laser pulses are capable of generating Schrödinger cat states larger

than presented here, theoretically limited by the anharmonicity of the trap at large

displacements. This technique can also be used to make even more complicated

multicomponent states, as well as generate them in two and three dimensions by

modifying the trapping potential and orientation. If a larger separation is desired
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for a measurement such as rotation sensing [102], lowering the trap frequency by 10

times would increase the separation by 10 times.

5.3.1 Three and Four-Component Cat Contrast

The contrast function which overlays the data in Fig. 5.12b is derived here.

We write the time evolution operator for a coherent state as ÛT [Θ] |α〉 = |αe−iΘ〉.

The microwave rotation operator in the z-basis is written as

R̂µ[φµ] =
1√
2

1̂⊗




1 eiφµ

−e−iφµ 1


 , (5.18)

where all rotations have pulse area π/2. A full Ramsey experiment to create three

and four-component cat states, including microwave rotations, SDKs, free evolution,

and a final analysis microwave pulse produces the final state

|Ψβ
f 〉 = R̂µ[φ′′′µ ] · ÔSDK · ÛT [π] · ÔSDK · ÛT [Θ]·

R̂µ[φ′′µ] · ÔSDK · ÛT [π] · ÔSDK · R̂µ[φ′µ] · |0〉 |β〉 . (5.19)

The spin-up portion of the final state is given as

exp(−2iηβR + 2iηRe[e−iΘ(2iη − β)] + iφ′′µ − iφ′µ − iφ′′′µ ) |−2iη − e−iΘ(2iη − β)〉

− exp(−2iηβR − 2iηRe[e−iΘ(2iη − β)]− iφ′µ) |2iη − e−iΘ(2iη − β)〉

− exp(2iηβR − 2iηRe[e−iΘ(−2iη − β)]− iφ′′µ) |2iη − e−iΘ(−2iη − β)〉

− exp(2iηβR + 2iηRe[e−iΘ(−2iη − β)]− iφ′′′µ ) |−2iη − e−iΘ(−2iη − β)〉 ,

(5.20)
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where the normalization factor and spin-up ket is left out for simplicity. The bright-

ness for any thermal state with average phonon occupation n̄ is given as

B =
1

πn̄

∫ ∞

−∞
e−|β|

2/n̄ 〈1|Ψβ
f 〉 〈ψβf |1〉 d2β. (5.21)

For an ion initially in a thermal motional state the brightness is

1

4

[
1 + e16(1+2n̄)η2(cos Θ−1) cos(φ′µ − φ′′′µ )

]

+
1

4

[
1− e−32(1+2n̄)η2 cos2( Θ

2
) cos(2φ′′µ − φ′µ − φ′′′µ )

]

+
1√
8
e−8(1+2n̄)η2

sin(16η2 sin Θ) sin(φ′′µ − φ′′′µ ). (5.22)

5.3.2 Six and Eight-Component Cat Contrast

This calculation is carried out in the same fashion, using the full set of opera-

tions

|Ψβ
f 〉 = R̂µ[φ′′′′µ ] · ÔSDK · ÛT [π] · ÔSDK · ÛT [Θ]

·R̂µ[φ′′′µ ] · ÔSDK · ÛT [π] · ÔSDK · ÛT [π]

·ÔSDK · ÛT [π] · ÔSDK · ÛT [
π

2
] · R̂µ[φ′′µ]

·ÔSDK · ÛT [π] · ÔSDK · R̂µ[φ′µ] · |1〉 |β〉 . (5.23)

We do not show the full brightness calculation here because of its length. The solid

line in Fig. 5.13b is a fit assuming that the initial motional state is β = 0. Our

initial thermal occupation number is n̄ = 0.15, or about 87% in the ground state.

We do not take the thermal average because our computer could not perform the

intensive calculation in less than a couple of days per run. A simpler calculation
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including only the lowest phonon states would be simpler, but was not done because

of the good agreement without averaging.

5.3.3 Sources of Error

Several factors lead to less than perfect fidelity of the cat states we create.

One restriction on the size of cat states we can generate and measure comes from

Doppler cooling issues. Frequency instability leads to fluctuations in the initial

thermal state, leading to slower data taking (cooling takes longer, and the noisier

data requires more averaging) and sensitivity to slow noise. The ion is exposed to

off resonant light during the time that SDKs are being applied. This causes a Stark

shift in the qubit splitting. SDK fidelity is discussed in other references [33, 71].

The trap axes are rotated so that the Raman beam couples only to a single mode.

Misalignment of this means some amount of motion is excited in other directions,

and is not recovered. Detection fidelity is discussed in other work [53]. Finally,

it is worth acknowledging that the trap is about 1 mm across in both directions

(the motional wave packet for the larges state has a spread of about 200 nm), and

non-harmonic contributions are negligible to the motion behavior.
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Chapter 6: Demonstration of a quantum gate with ultrafast pulses

Having build the theory and benchmarks of motional control using pulses we

now focus on the main result of this thesis. For these experiments, we harmonically

confine and laser cool two 171Yb+ atomic ions to near the Doppler limit in a Paul

trap [45]. Their motion is best described by two normal modes along each trap

axis. The common, or center-of-mass (COM) mode, with frequency ωC , describes

motion where the ions oscillate in phase, while the relative mode, with frequency

ωR, describes oscillations where the ions oscillate out of phase. In this work, we tune

these frequencies to (ωC , ωR)/2π = (1.267, 1.170) MHz. The qubit levels are defined

by the 2S1/2 hyperfine levels |F = 0,mF = 0〉 ≡ |0〉 and |F = 1,mF = 0〉 ≡ |1〉,

separated by ωhf/2π = 12.64 GHz. High fidelity state initialization and detection

is performed by resonant excitation of the 2S1/2 to the 2P1/2 transition [54]. The

collected light is imaged by a 0.6 NA lens with 500x magnification (see Fig.6.1). The

large ion separation at the image plane allows individual state detection with two

spatially separated photomultiplier tubes (PMTs), see [54]. The following chapter

is based on the paper [103]

We achieve motional control through Raman interactions produced by coun-

terpropagating pulses from a mode-locked laser with center wavelength λ = 355 nm,
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AOM

AOM

PMT PMT

Figure 6.1: Experimental schematic. A single pulse from a mode-locked 355 nm
laser is divided into 8 sub-pulses by three sequential optical delay stages. The shaped
pulse is then split into two paths directed through independent AOMs, used to make
the interaction direction-dependent. The pulses overlap in space and time at the
position of the ions in a counterpropagating lin⊥lin polarization configuration that
produces an SDK [104]. Following gate operations, the ion qubits are measured by
collecting state-dependent fluorescence from the two ions on respective PMTs when
resonant lasers are applied (not shown).

repetition rate ωrep/2π = 81.42 MHz and pulse duration τ ∼ 20 ps. Since further

pulse shaping is necessary to achieve spin-motion dependence, we use three delay

stages connected in series to divide each single pulse into eight subpulses. The pulse

train is then split into two arms, and an acousto-optic modulator (AOM) shifts the

frequency of each arm, with the two frequency shifts of opposite sign. The total fre-

quency difference between the two arms is ωA/2π = (ωAOM1 + ωAOM2)/2π = 468.73

MHz. The pulse trains, which have orthogonal linear polarizations, are then sent

to the ions. The timings of the subpulses, set by the lengths of the delay stages,

is set so that the eight pulses coherently transfer population from 0 |α〉 (1 |α〉) to

1 |α + 2~k〉 (0 |α− 2~k〉), where |α〉 is an arbitrary coherent state, and k = 2π/λ.

This gives rise to a Spin Dependent Kick (SDK), with ideal unitary given by

ÛSDK(t0) = exp [iφ0]D̂(iη)σ̂+ + exp [−iφ0]D̂(−iη)σ̂−, where φ0 = ωAt0 + φL is a

laser phase related to the evolution of the AOMs and an offset φL assumed to be
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Figure 6.2: Setup of the displacements in phase space (a) The SDK displaces the
motional state |α0〉 along the momentum axis with a magnitude proportional to η
and flips the internal spin state. (b) A sequence comprised of an SDK, free evolution,
and another SDK traces a different path in phase space of the two motional modes,
which stems from the different displacement amplitudes and trap frequencies. Note
that these plots are in a frame rotating at the trap frequency, so that free evolution
corresponds to no displacement and the direction of an SDK depends on the time
elapsed since the previous SDK.

constant during the interaction, σ̂± are the spin raising and lowering operators,

and D̂(±iη) are the coherent state displacement operators that impart momentum

∆p = ±2~k = ±η~/x0. The Lamb-Dicke parameter η = ∆kx0, where x0 =
√

~
2mω

is the harmonic oscillator length for an atom with mass m, trap frequency ω, and

wavevector difference ∆k between the counterpropagating beams (∆k ≈ 2k). In con-

trast to the resolved sideband regime used extensively in ion trapping experiments,

the SDK operates in the impulsive limit and is about three orders of magnitude faster

than either trap oscillation period (τSDK � 2π/ωC,R). Note that the Lamb-Dicke

approximation is not invoked in the derivation of the SDK operator [24].
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The action of a SDK on two ions is given by

ÛSDK(t0) =e2iφ(t0)σ̂+1σ̂+2D̂C [iηC ]+

e−2iφ(t0)σ̂−1σ̂−2D̂C [−iηC ]+

σ̂+1σ̂−2D̂R[iηR] + σ̂−1σ̂+2D̂R[−iηR], (6.1)

where ηC =
√

2η = 0.24 and ηR =
√

2ωC/ωRη = 0.25 are the Lamb-Dicke param-

eters for the COM and relative modes, respectively. We note that the laser phase

φ affects the COM mode only. Due to the different displacement amplitudes and

different amounts of trap evolution, the COM and relative modes trace a different

path in phase space when subjected to a sequence of SDKs and free trap evolution.

It is most convenient to display the trajectories in a frame rotating at the trap fre-

quency (see Fig. 6.2c), where free evolution corresponds to no displacement and the

each kick has magnitude ηC,R, and at an angle of ωC,Rt from the previous kick.

A sequence of SDK pulses indexed to uniform time steps of duration T = 1/frep

can be expressed byN displacement indices {b1, b2, ..., bN} with bn = 1 corresponding

to a kick as described above, bn = −1 corresponding to a kick with reversed beam

directions (∆k → −∆k), and bn = 0 corresponding to a wait (no pulse). This

sequence leads to displacements of initial coherent states for each mode m from

|α0〉m to eiφm|α〉m, with [31]

α = e−iNωmT
(
α0 + i

N∑

n=1

ηmbne
inωmT

)
(6.2)

φm = Re
(
α0

N∑

n=1

ηmbne
−inωmT

)

+
N∑

n=2

n−1∑

j=1

η2
mbnbj sin[ωmT (n− j)]. (6.3)

97



We design pulse sequences {bn} so that the sum in Eq. 6.2 vanishes and both

motional phase spaces close. Given an even number of pulses, this produces a phase

gate described with truth table

|00〉 ⇒ eiγeiΦg |00〉

|10〉 ⇒ |10〉

|01〉 ⇒ |01〉

|11〉 ⇒ e−iγeiΦg |11〉, (6.4)

The nonlinear geometric phase Φg = φC − φR is set to π/2 for maximum entangle-

ment. The residual linear phase from the series of optical kicks is

γ = 2ωAT
N∑

n=1

(−1)
∑n
j=1 |bj |+1n|bn|, (6.5)

where the alternating signs account for the qubit spin flip after each SDK. Note

that because the number of pulses is even, the net gate evolution is insensitive to

the optical phase φL, which is assumed to be constant over the course of the gate.

Here, we implement a quantum gate with fast pulses by finding gate sequences

with the least number of SDKs, without reversing the beam directions (restricting

bn = 0 or 1). For Np individual pulses separated in time by an integer multiple M

of the laser pulse period T , the condition for closing phase spaces is similar to the

tracing of a regular polygon in the complex plane. We achieve the largest nonlinear

gate phase for a given number of pulses by driving the COM and relative modes in

opposite directions in phase space so that φR ≈ −φC .

Using the above trap parameters with Np = 10, we find that the phase space
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Figure 6.3: Gate sequence and parity measurements (a) The gate sequence is
applied within a Ramsey experiment. The entangling gate contains 5 repetitions of
a sequence consisting of a single SDK (bn = 1), followed by a wait of N time steps
(bn = 0), another SDK (bn = −1), and a final wait of M time steps. (b) Depiction
of the trajectories followed by the COM and relative modes for a fully entangling
sequence. They follow opposite circulations, enclose similar areas, and the sum leads
to the gate phase.
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Figure 6.4: Gate sequence and parity measurements results. (a) We choose φ2 such
that we maximize P11, P00 and minimize P01, P10 (black arrow). Population in |10〉
and |01〉 is due mostly to SDK infidelity. (b) The parity oscillation amplitude after
choosing the leftmost value of φ2 in (a) is proportional to 2ρ11,00, which allows us
to compute the fidelity. The best parity oscillation amplitude achieved is 0.69(1),
leading to a final gate fidelity of 76(1)%.
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trajectories of COM and relative modes trace out regular decagons of opposite cir-

culation for M = 166, with corresponding gate phase Φg = π/1.67. Other values

of Φg can be realized by alternating between two different integer multiples of the

pulse periods, M1 and M2, such that M1 +M2 = 2M . This deforms the trajectories

to decagons with two distinct vertex angles (see Figs. 6.3b and 6.5a), allowing the

fine tuning of Φg. For M1 = 175, M2 = 157, we find Φg = π/2.06, nearly a fully

entangling gate in a total duration of (NpM −M2)T = 18.5 µs. There are many

more types of pulse solutions with even more complex polygonal trajectories given

the delay times between pulses.

We characterize the phase gate by applying the gate operation within a three-

pulse Ramsey interferometer on the qubits. We start the sequence by optically

pumping the ions to the state |00〉. A first microwave π/2-pulse rotates both spins

to populate an equal superposition of all 4 basis states. The entangling laser pulse

sequence is then applied, which according to the truth table (eq. 6.4) should ideally

produce the state

Ψe =
eiΦg

2

(
eiγ|00〉+ e−iγ|11〉

)
− 1

2
(|10〉+ |01〉) , (6.6)

where in the above expression we have suppressed the motional state, since both

phase spaces should be closed at this point.

A second π/2 microwave Ramsey pulse of variable phase with respect to the

first pulse is then applied. We choose its phase to ideally create the state

Ψf =
e−iγ

2
(eiΦg − 1)|00〉+

eiγ

2
(eiΦg + 1)|11〉. (6.7)

We experimentally determine the appropriate phase of the second Ramsey π/2 pulse
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by maximizing the populations P11 and P00 of the even parity states, as shown in

the Ramsey fringes of Fig. 6.4a.

In order to verify the coherence of the above entangled state, we apply a third

π/2 “analysis pulse” and measure the parity of the two qubits as a function of this

last pulse, as shown in Fig. 6.4b. The parity oscillates with twice the period of

a single spin, and the contrast C of the oscillation reveals the coherence between

the entangled superposition in Eq. 6.7. The state fidelity with respect to the ideal

Bell state is then F = (P11 + P00 + C)/2 [105]. We measure a Bell state fidelity of

F = 76(1)%.

As a further validation of our control over various gate sequences, we vary the

gate phase Φg by changing the number of pulses M1 and M2 over a wider range. In

Fig. 6.5a we show a measurement of the parity oscillation contrast C for different

values of Φg. The measured parity oscillation amplitude for each gate sequence

agrees well with the expected sin Φg dependence. Finally, we note that the linear

phase γ can be regarded as a constant offset phase in the above data and does not

affect the amount of entanglement or its diagnosis.

The entangling gate presented here is fundamentally different than the Mølmer-

Sørensen [8] and Cirac-Zoller [7] gates for trapped ions, since individual motional

modes are not resolved. Moreover, the (thermal) motion of the ions occupies a

spatial extent of x0

√
2n̄+ 1 ≈ 0.8/∆k, outside the Lamb-Dicke regime.

The gate can be made much faster by dynamically switching the laser beam

wavevector difference ∆k and thus using negative values of bn in the pulse sched-

ule to close phase spaces more quickly [32]. We have identified potential gate se-
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Figure 6.5: Parity vs. Gate phase. (a) Measured parity oscillation amplitude for
various values of the gate phase Φg, which should be proportional to sin Φg (solid
blue line). The gate phase is modified by changing the pulse schedule given by the
integers M1 and M2 (see main text). The insets show phase space trajectories for
the COM (red) and relative (black) modes for Φg = π/1.67 (right) and Φg = π/11.9
(left). The fidelity of the entangled state produced in each case, referenced to
the ideal state Ψf (Φg) in Eq. 6.7, is roughly 0.7 for all the measurements. (b)
Theoretical pulse sequence for a maximally entangling gate made out of 30 SDKs
with a total gate time of 921 ns. The modes are kicked consecutively by switching
the directions of the beams to create a “lever arm” for geometrical phase acquisition.
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quences with net gate times shorter than 1 µs, as shown in Fig. 6.5b, with the same

trap parameters used above. Experimentally, fast switching can be accomplished

by inserting a second electrooptic Pockels cell after the two AOMs, as previously

demonstrated for the generation of large Schrödinger cat states [72]. However, ex-

tension of this setup for high-fidelity 2-qubit gates remains challenging because of

instabilities in the positioning and polarization of the high power ultraviolet beams

traversing the Pockels cell. In the future, it may be possible to control infrared op-

tical sources instead of the ultraviolet lasers used here, by frequency-upconverting

to the ultraviolet after pulse-shaping/switching, or exploiting a longer-wavelength

atomic transition for the SDK.
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Chapter 7: Conclusions and outlook

We have described a different scheme of atom entanglement that operates in

the fast regime by using ultrafast pulses. The strong atom-light coupling allows

operation speeds comparable to that of solid state systems. Physically, the speed

of the presented entangling operation is only limited by the Coulomb interaction

with a lower bound given by TCoulomb = d/c ≈ 10−14 s where d is the distance

between the ions. A reasonable practical implementation is only limited by the

laser repetition rate, which can go as high as few Terahertz and thus bounding the

maximum entanglement rate by a few nanoseconds.

It is interesting to notice that in the quantum case, contrary to the classical

case, higher clock/operation rates do not imply an overhead in heat management

since lattice vibrations do not play a role, on the contrary, the quantum operations

in the fast regime become less sensitive to any external disturbance since the evo-

lution during the interaction can be considered frozen in time. Dissipation would

only take part when the number of operations is commensurate to the probability of

spontaneous emission of about ∼ 106 in our case [37]. The possibility of noise insen-

sitive operations and exceptionally long atom coherence times results in a promising

and exciting route for scaling a quantum computer.
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Not limited to quantum information applications, the SDKs presented here

are building blocks for other experiments such as:

1. Pulse shaping of Infrared (IR) pulses for quantum control applications.

2. Imaging of large cat states separated by more than a hundred times the ground

state spread.

3. Studies of the delta-kicked Harmonic Oscillator and quantum chaos.

4. Superfast cooling.

Future experimental work should focus on gaining a better understanding of

the SDK fidelity since for the experiments described above, high SDK numbers are

required. Potential limitations include beam pointing instabilities, small couplings

to the magnetically sensitive states in the ground state manifold, crosstalk between

the desired modes and other motional modes along different trap axes, and imperfect

polarization control due to the finite extinction ratio of UV Pockels cells. A good

unexplored route would certainly be the creation of SDKs with IR femtosecond

laser pulses since it would be able to circumvent the inherent issues of working

with UV optics such as poor polarization control of the pulse picking devices. Such

scheme could work by doubling the IR light immediately before going to the ions.

Unfortunately, by the time of writing this thesis, the experiment is no longer active

and no answers to the fidelity problem will be seem in the foreseeable future.
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Appendix A: Normal mode spectrum numerical calculation

Routine for finding the ions’ equilibrium position:
1 function F = equilibrium_positions(u)
2

3 F = length(u);
4 N = length(u);
5 %first summation
6 for m = 1:N
7 S1 = 0;
8 S2 = 0;
9 %first summation

10 for n = 1:m-1
11 S1_aux = 1/((u(m)-u(n)).ˆ2);
12 S1 = S1 + S1_aux;
13 end
14 %second summation
15 for jj = m+1:N
16 S2_aux = 1/((u(m)-u(jj)).ˆ2);
17 S2 = S2 + S2_aux;
18 end
19

20 %whole expression
21 F(m)= u(m) - S1 + S2;
22

23

24 end
25

26 end

Routine to calculate the transverse and axial normal modes
1 clear
2 clc
3 % Equations taken from
4
5 fun = @equilibrium_positions;
6 Number_of_modes = 55;
7 x0 = linspace(-4,4,Number_of_modes); %Arbitrary initial guess
8
9 u = fsolve(fun,x0) %Numerical solution for the equilibrium positions

10 omega_Z = 2*pi*0.20e6;
11 omega_COM = 2*pi*4.2e6;
12
13 % General variable declaration
14 A = zeros(length(u),length(u));
15 A_aux=0;
16 Summa = 0;
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17
18 %%% TRANSVERSE MODES
19 for n = 1:length(u)
20 for m = 1:length(u)
21
22 if n == m
23 %Runs for all the number of ions N which is the same as the normal modes
24 for p=1:length(u)
25 % take the p’s different than n to avoid self interaction
26
27 val =(1/(abs(u(n)-u(p)).ˆ3));
28
29 if val == Inf
30 Summa_aux = 0;
31 else
32 Summa_aux = (1/(abs(u(n)-u(p)).ˆ3));
33 end
34
35 Summa = Summa + Summa_aux;
36
37 end
38
39 A_aux =(omega_COM/omega_Z)ˆ2 - Summa;
40 Summa = 0;
41 elseif n ˜= m
42
43 A_aux = 1/(abs(u(n)-u(m)).ˆ3);
44
45
46 end
47
48 A(n,m)= A_aux;
49 end
50 A_aux = 0;
51
52 end
53
54 [V,D] = eig(A,’nobalance’)
55 f_traps = sqrt(diag(D)).*omega_Z/(2*pi)
56
57 figure1 = figure(’Units’,’Centimeters’,’position’,[2 2,16 6])
58 stem(f_traps/(1e6),ones(length(f_traps),1),’Marker’,’none’)
59 axis([-1.5,omega_COM/(2*pi*1e6)+1,0,1.05])
60 title(’Motional mode frequencies’)
61 xlabel(’Frequency (MHz)’)
62 ylabel(’Amplitude’)
63 hold on
64
65 %%%%%% AXIAL MODES %%%%%%%%
66 for n = 1:length(u)
67 for m = 1:length(u)
68
69 if n == m
70
71 for p=1:length(u) %Runs for all the number of ions N which is the same as the
72 % normal modes take the p’s different than n to avoid self interaction
73
74 val =(1/(abs(u(n)-u(p)).ˆ3));
75
76 if val == Inf
77 Summa_aux = 0;
78 else
79 Summa_aux = (1/(abs(u(n)-u(p)).ˆ3));
80 end
81
82 Summa = Summa + Summa_aux;
83
84 end
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85
86 A_aux =1 + 2*Summa;
87 Summa = 0;
88 elseif n ˜= m
89
90 A_aux = -2/(abs(u(n)-u(m)).ˆ3);
91
92 end
93
94 A(n,m)= A_aux;
95 end
96 A_aux = 0;
97
98 end
99

100 [V,D] = eig(A,’nobalance’)
101 f_Z_traps = sqrt(diag(D)).*omega_Z/(2*pi)
102 stem(f_Z_traps/(1e6),0.7*ones(length(f_Z_traps),1),’Marker’,’none’,’Color’,’r’)
103 axis([-0.5,6.5,0,1.05])
104 title(’Motional mode frequencies’)
105 xlabel(’Frequency (MHz)’)
106 ylabel(’Amplitude’)
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Appendix B: Ion loading code (Python)

1 % Standard imports
2 import cv2
3 from PIL import ImageGrab
4 import matplotlib.pyplot as plt
5 import numpy as np
6 from skimage.feature import blob_log, blob_dog, blob_doh
7
8
9 while(True):

10
11 % Read image
12 screen = np.array(ImageGrab.grab(bbox=(125, 440, 1000, 800)))
13 screen = cv2.cvtColor(screen, cv2.COLOR_BGR2RGB)
14 ions_raw = cv2.cvtColor(screen, cv2.COLOR_RGB2GRAY)
15 ions = cv2.medianBlur(ions_raw, 5)
16
17 blobs_points_unsorted = blob_log(ions, max_sigma=5 , threshold=0.10)
18
19 %Sorting elements
20 blobs_points = blobs_points_unsorted[blobs_points_unsorted[:,1].argsort()]
21
22 %Compute derivatives for dark ion count
23 single_derivative = np.diff(blobs_points[:,1],n=1,axis=0)
24 double_derivative = np.diff(np.diff(blobs_points[:,1],n=1,axis=0),n=1,axis=0)
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Appendix C: Doppler Cooling limit

Following [51], we can calculate the equilibrium total energy of a bounded

atom. First, an scattering event from an ion with mass m and velocity ~v absorbing

a photon from an incoming cooling laser with wavevector ~k will emit a photon with

wavevector ~ks and change its initial velocity to ~v′. Conservation of momentum and

energy in the non relativistic regime where the ion’s velocity is much smaller than

the speed of light is

∆~p = m(~v′ − ~v) = ~(~ki − ~ks), (C.1)

∆E =
1

2
m(~v′)2 +

1

2
(~v)2 (C.2)

=
~2(~k − ~ks)2

2m
+ ~(~k − ~ks) · ~v

∆Ei =
~2(ki − ksi)2

2m
+ ~(ki − ksi)vi (i = x, y, z) (C.3)

We write the cartesian components i for clarity in the next derivations.

We will assume that the cooling beam is close to the transition resonance

ω0 and that the recoilled photon’s wave-vector is similar to the incident photon in

magnitude (|k| ≈ |ks|). Equation C.3 can then be written in terms of the recoil

energy R = ~k2/2m

∆Ei = R(k̂2
i − 2k̂ik̂si + k̂2

si) + ~(ki − ksi), (C.4)
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the k̂i and k̂i are the wave-vectors i unit components and are not necesarry equal

to unity when squared since they can represent different directions, some of them

might be zero for the overall ∆E.

The situation described above accounts for a one photon in and on photon out

event and if we want to calculate an average rate of energy, we must perform an

average over all the angles where a photon can be scattered with probability Ps(k̂s)

into a solid angle dΩ in the k̂s direction:

〈∆Ei〉s =

∫
Ps(k̂s)∆EidΩ = R(fi + fsi) + ~kivi, (C.5)

where fi = k̂2
i , fsi =

∫
Ps(k̂s)k̂

2
sidΩ and we have dropped out the terms linear in k̂si

since the probability Ps(k̂s) is an even function and it depends of the the transition.

For isotropic emission, we have Ps(k̂s) = 1/4π (same probability of emitting in 4π)

and fsi = 1/3.

To obtain a rate, we must multiply eq. C.5 with the scattering rate [53] defined

for a laser interacting with an atom moving at velocity ~v as

Rscat(ω0, ~v) =
Γ

6

s0

1 + 2
3
s0 +

(
2(ω0−ωL+~k·~v)

Γ

)2 , (C.6)

where ωL is the laser frequency, ω0 is the transition resonance, ~k · ~v to accounts for

Doppler shifts, Γ is the natural transition linewidth and s0 = I/Isat = 2Ω2/Γ2 is the

fractional saturation transition intensity with Ω as the resonant Rabi frequency. The

expression C.6 takes into account the pumping to dark states [106] and is suitable

for 171Yb+ (for 174Yb+, only a few constants change).

112



The rate of change of energy is then

dEi
dt

= 〈Rscat(ω0, ~v)R(fi + fsi) + ~kivi〉 , (C.7)

and we can linearize expression C.6 in the low Doppler limit ~k ·~v � (ω0−ωL) = ∆:

Rscat(ω0, ~v) ≈ Γ

6

s0

1 + 2
3
s0 +

(
4∆2

Γ2

)
(

1− 8∆~k · ~v
Γ2(1 + 2

3
s0) + 4∆2

)
, (C.8)

and the energy rate equation in steady state (dEi
dt

= 0) becomes

0 =

〈(
1− 8∆kivi

Γ2(1 + 2
3
s0) + 4∆2

)
(R(fi + fsi) + ~kivi)

〉

〈R(fi + fsi)〉 =

〈
8~∆fik

2v2
i

Γ2(1 + 2
3
s0) + 4∆2

〉

Eki =
m 〈v2

i 〉
2

=
~Γ

8

(
1 +

fsi
fi

)[
Γ(1 + 2

3
s0)

4∆
) +

∆

Γ

]
. (C.9)

Where we have used the fact that 〈vi〉 = 0 and 〈vivj〉 = 0 for i 6= j.
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Appendix D: Zernike Polynomials

Although optical aberrations can be described in terms of a Taylor expansion

of the object height and pupil coordinates, Zernike polynomials Zm
n (ρ, θ) are better

suited since they form an orthogonal basis set of functions on a unit disk. Zernike

polynomials are expressed in polar coordinates ρ and θ as [107]

Zm
n (ρ, θ) =





Nm
n R

m
n (ρ) cos(mθ) for m ≥ 0

Nm
n R

m
n (ρ) sin(mθ) for m < 0,

Nm
n =

√
2(n+ 1)

1 + δm0

,

R|m|n (ρ) =

(n−|m|)/2∑

s=0

(−1)s

s![(n+ |m|)/2− s]!

× (n− s)!
[(n− |m|)/2− s]!

(
ρ

ρp

)n−2s

, (D.1)

where n is an integer number and m can only take values n, n − 2, n − 4, ...,−n

for each n. The radial coordinate is scaled to the exit pupil radius ρp (the radius

of the image of the input aperture at the camera). Importantly, each term of this

polynomial expansion has a one-to-one relation with a specific kind of aberration.

Given the Zernike expansion of a wavefront, we can calculate its deviation from a

perfect wavefront using the cmn coefficients of eq. (2.12).
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Appendix E: Allan deviation dead time analysis

Dead times in the experiment were corrected introducing the Allan B-functions

[62]:

We first define the Bias functions with the help of the function

F (A) = 2Aµ+2 − (A+ 1)µ+2 − |(A− 1)|µ+2 (E.1)

Noise µ

White -1

Flicker 0

Random walk 1

The B1 Bias function

B1(N, r, µ) =
σ2(N, T, τ)

σ2(2, T, τ)
=

1 +
∑N−1

n=1
N−n

N(N−1)
F (nr)

1 + (1/2)F (r)
(E.2)

This coefficient relates the standard variance σ2(N, T, τ) with the Allan vari-

ance including dead times at the end of the measurement (without binning).
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The B2 Bias function

B2(r, µ) =
σ2(2, T, τ)

σ2(2, τ, τ)
=

1 + (1/2)F (r)

2(1− 2µ)
(E.3)

This coefficient relates the Allan variance with dead time σ2(2, T, τ) with the

Allan variance free of dead times σ2(2, τ, τ)

The B3 Bias function for a two sample variance

B3(2,M, r, µ) =
σ2(2,MT0,Mτ0)

σ2(2, T, τ)
(E.4)

=
2M+ F (Mr)M−∑M−1

n=1 (M− n)[2F (nr)− F ((M+ n)r)− F ((M− n)r)]

Mµ+2[F (r) + 2]

(E.5)

This coefficient relates the Allan variance with periodic dead times σ2(2,MT,Mτ)

whereM is the binning parameter and the Allan variance with dead times accumu-

lated at the end of the sampling is σ2(2, T, τ).

In this experiment, we bin M = 200 images of τ0 = 1 ms with a dead time

of 5 ms obtaining T0 = 6 ms. That is, we measure σ2(2,MT0,Mτ0). To obtain a

dead time corrected Allan variance we need to:

σ2(2, τ, τ) =
σ2(2,MT0,Mτ0)

B3B2

(E.6)

Or the standard deviation

σ(2, τ, τ) =
σ(2,MT0,Mτ0)√

B3B2

(E.7)
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Noise detection

To obtain a noise model we use the B1 bias functions

B1(N, r, µ) =
σ2(N, T, τ)

σ2(2, T, τ)
(E.8)

For this we need the σ2(2, T, τ) which can be obtained from the B3 functions:

B1(N, r, µ)

B3(N, r, µ)
=

σ2(N, T, τ)

σ2(2,MT0,Mτ0)
(E.9)

To obtain the standard deviation, we then square root this expression and solve this

equation for µ √
B1(N, r, µ)

B3(N, r, µ)
=

σ(N, T, τ)

σ(2,MT0,Mτ0)
(E.10)

We replace the obtained µ in equation (E.7) to find the Allan deviation correction

with dead times.
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