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Trapped ions in the strong-excitation regime: Ion interferometry and nonclassical states
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The interaction of a trapped ion with a laser beam in the strong-excitation regime is analyzed. In this regime,
a variety of nonclassical states of motion can be prepared either by using laser pulses of well defined area, or
by an adiabatic passage scheme based on the variation of the laser frequency. We show how these states can
be used to investigate fundamental properties of quantum mechanics. We also study possible applications of
this system to build an ion interferometer.@S1050-2947~96!00108-4#

PACS number~s!: 42.50.Vk, 42.50.Lc
th
o

ic
al

an
m

ty
re

ro
-Q
a
h

n
an
ts

on

d

he
s

he
r
is

ou
tio
ck
t
s
d

of

n-
ely

c-
ap
-

ne
be

an
y’’

of
ny
cav-

ro-

g a
n,

s of
he
the
tion
I. INTRODUCTION

In recent years, there has been growing interest in
preparation of nonclassical states of quantum systems in
der to study fundamental properties of quantum mechan
In the cavity QED context@1#, for example, there are sever
proposals to prepare Fock states of the radiation field@2#, or
general superpositions of these states@3#. For single trapped
ions, it has been shown how to prepare both Fock
squeezed states of the motion of an ion using a laser bea
excite an internal transition@4#.

From the experimental point of view, the main difficul
in preparing nonclassical states in a given system is the p
ence of decoherence due to its coupling to external envi
ments. In cavity QED this may be overcome by using high
cavities, where the coupling strength between the atoms
the cavity mode is of the order of or larger than both, t
cavity loss rate and the spontaneous emission rate. W
trapped ions, one can use an electric-dipole forbidden tra
tion in order to avoid dissipation. In this last case, the qu
tum jump technique@5# allows one to peform measuremen
on the internal atomic state with a very high efficiency.

So far, all the proposals regarding the preparation of n
classical states of motion of a single ion operate in thelow
excitation regime, whereby the Rabi frequency correspon
ing to the interaction of the ion with the laserV is much
smaller than the trap frequencyn (V!n). In this case, the
Hamiltonian describing this interaction is very similar to t
one that describes cavity QED, namely, the Jayne
Cummings Hamiltonian. Thus, some of the quantum p
nomena predicted in cavity QED, such as collapse and
vival or vacuum Rabi splitting, have been predicted to ex
for trapped ions under this regime@6,7#. Furthermore, the
unique features of the ion-laser interaction has led to vari
proposals on how to prepare nonclassical states of mo
which have no analog in cavity QED. For example, Fo
states can be prepared by observing quantum jumps in
internal state of the ion@7#, or by sending short laser pulse
with well defined area to the ion@8#. Coherent and squeeze
541050-2947/96/54~2!/1532~9!/$10.00
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states of motion can be prepared by bichromatic excitation
the ion @9#.

In this paper we analyze the possibility of preparing no
classical states of motion of a single ion in a complet
different regime. We concentrate on thestrong excitation
regime, whereby the Rabi frequency describing the intera
tion of the ion with the laser is much larger than the tr
frequency (V@n). In this regime, the Hamiltonian describ
ing such interaction is completely different from the o
used in cavity QED, and therefore other phenomena can
investigated. In particular, we will show here how one c
prepare quantum superpositions of two ‘‘macroscopicall
distinct quantum states, such as

uC&5K~ ua&c1u2a&c), ~1!

whereK is a normalization constant,ua&c is a coherent state
of the motion

ua&c5e2uau2/2(
n50

`
an

An!
un&, ~2!

andun& denotes a Fock state withn phonons@10#. States~1!
are usually called Schro¨dinger-cat states@11,12#. The funda-
mental properties of quantum-mechanical superpositions
states such as~1! have attracted due attention, and ma
schemes for their production have been proposed. In the
ity QED context, it has been shown@13# that during the
collapse time, the state of the field is of the form~1!. On the
other hand, with a micromaser interaction one can also p
duce these states by sending atoms through a cavity@14#.
The method we propose consists of two parts: first, usin
laser one splits into two parts the ion wave function; the
one makes a measurement of theinternal state of the ion in
order to project itsexternalstate into~1!. Thus the projection
postulate of quantum mechanics is one of the ingredient
our method. We will show two different ways to prepare t
state ~1!, one based on laser pulses and the other on
adiabatic change of the laser frequency during the interac
1532 © 1996 The American Physical Society
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54 1533TRAPPED IONS IN THE STRONG-EXCITATION . . .
@15#. We will also show how to prepare linear superpositio
of coherent states in more than one dimension, and how
distinguish between that state and an incoherent superp
tion of two coherent states. Finally, we will study how
Ramsey interferometer@16# can be built using these ideas.

This paper is organized as follows: first, in Sec. II we gi
a description of the strong-excitation regime, and find a
lytical approximations for the evolution of a single ion und
this regime. In Sec. III we show how to prepare states of
form ~1! in one and two dimensions, and in Sec. III w
analyze how these states can be distinguished from statis
mixtures. The possibility of building an interferometer wi
trapped ions is analyzed in Sec. IV. A summary of the res
of the paper is given in Sec. V.

II. STRONG-EXCITATION REGIME

In this section we analyze the interaction of a trapped
with a laser beam in the strong-excitation regime. In t
regime, the Rabi frequency for the laser-ion interaction
much larger than the trap frequency (V@n), i.e., one can
neglect the ion motion during the interaction. We will al
assume that the laser is tuned to an electric-dipole forbid
transitionug&↔ue& ~see Fig. 1!, and therefore we will neglec
spontaneous emission. Under these conditions the prob
becomes exactly solvable. Here we will study how the m
tion is modified after this interaction in two different situ
tions: ~i! the ion interacts with a laser pulse of well defin
area;~ii ! the frequency of the laser is varied adiabatically

A. Excitation with laser pulses

Let us consider a single ion trapped in a thre
dimensional harmonic potential. The ion interacts with a
ser plane wave propagating along thex axis. In this configu-
ration, only the motion along thex axis of the ion will be
modified, so that we can treat this problem in one dimens
The Hamiltonian describing this situation is, in a rotati
frame at the laser frequencyvL (\51),

H65
p̂x

2

2m
1

1

2
mnx

2x̂22
d

2
sz1

V

2
~s1e6 ikLx̂1s2e7 ikLx̂!.

~3!

Here,x̂ and p̂x are the position and momentum operators
the x coordinate of the ion,nx is the trap frequency along

FIG. 1. Level scheme of the internal transitions of a trapped i
Transition ug&↔ue& is dipole forbidden, whereas transitio
ug&↔ur & is allowed.
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this direction, andm is the ion mass. The sigmas are usu
spin 1/2 operators describing the internal two–level tran
tion ug&↔ue&, d5vL2v0 the laser detuning,kL5vL /c the
laser wave vector, andV the Rabi frequency. The subscrip
‘‘ 1 ’’ and ~‘‘ 2 ’’ ! indicate that the laser plane wave prop
gates towards the positive~negative! values ofx.

The evolution given by Hamiltonian~3! is easily de-
scribed if we perform a unitary operation defined by

U65e7 ikLx̂ue&^eu. ~4!

Using this operator, the states are defined as

uC̃6&5U6uC&, ~5!

whereas the Hamiltonian becomes

H̃6[U6H6U6
† 5nxa

†a6 inxhx~a2a†!ue&^eu

1nxhx
2ue&^eu2

d

2
sz1

V

2
sx , ~6!

where sx5s11s2 , and we have expressed the positi
and momentum operators in terms of the annihilation a
creation operators of the harmonic oscillator,a and a†, re-
spectively, and in terms of the Lamb-Dicke parame
hx5kL /(2mnx)

1/2. The new terms appearing in Hamiltonia
~6! correspond to the Doppler recoil energy of the excit
internal state~i.e., when one photon is absorbed!.

Hamiltonian~6! can be simplified in the strong-excitatio
regimeV@nx . Let us consider a laser pulse whose durat
t fulfills the following inequality

nxt max~ n̄,hx
2!!1, ~7!

wheren̄5^a†a&. Note that in the strong-excitation limit, thi
interaction time can correspond to pulses with an a
Vt;p. Under condition~7!, the first terms in Hamiltonian
~6! will practically not affect the evolution. In this case, an
assuming for simplicity that the detuning is zero (d50), the
Hamiltonian reduces toH̃51/2Vsx ~for both cases,H̃6)
@17#. The evolution of any initial state can be easily derive
obtaining

uC6~t!&5U6
† e2 i ~1/2! VsxtU6uC~0!. ~8!

Note that the evolution given byH2 can be obtained from
that given byH1 by simply exchanginghx→2hx .

In the following we will need to know the evolution fo
the case where the initial state of motion along thex direc-
tion is a coherent stateua&c . In this situation, Eq.~8! gives

ug&ua&c→Aug&ua&c1Bue&ua6 ihx&c , ~9a!

ue&ua&c→A* ue&ua&c2B* ug&ua7 ihx&c , ~9b!

where the upper~lower! sign corresponds to a laser puls
propagating towards the positive~negative! values of thex
axis. For reasons that will become clear in the next subs
tion, we have defined in~9!

A5cos~Vt/2!, ~10a!

.
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B52 isin~Vt/2!. ~10b!

Finally, in this section we have assumed square la
pulses. For any other kind of pulse, formulas~9! are still
valid, but now one has to replaceVt by *0

tV(t)dt.

B. Excitation by adiabatic passage

In this subsection we will analyze a different method
obtaining results that are similar to those of the preced
subsection. Here, instead of using a laser pulse to modify
internal and external state of the ion, we will consider
process in which the laser frequency is changed adiab
cally.

Let us consider then the same situation as before
trapped ion interacts with a laser plane wave propaga
along thex direction. The Hamiltonian describing this situ
ation, after applying the unitary operation~4! is given by Eq.
~6!, although now it is time dependent~through the time
dependence of the detuning!. As before, for short interaction
timest fulfilling Eq. ~7!, the Hamiltonian can be simplified
to

H̃~ t !52
d~ t !

2
sz1

V

2
sx . ~11!

At a given time t, the instantaneous eigenstates of t
Hamiltonian are the well known dressed states

u1~ t !&5cos@u~ t !#ue&1sin@u~ t !#ug&, ~12a!

u2~ t !&52sin@u~ t !#ue&1cos@u~ t !#ug&, ~12b!

with corresponding eigenvalues

E6~ t !56 1
2 Ad~ t !21V2, ~13!

and where cot@2u(t)#52d(t)/V (0<2u,p).
By changing the detuning adiabatically fromd05d(0) to

dt5d(t) the internal state of the ion will follow~approxi-
mately! the evolution of these dressed states, i.e.,

u6~0!&→e7 i eu6~t!&, ~14!

where

e5E
0

t

E1~ t !dt. ~15!

The condition for the adiabatic passage to be valid~14!
can be easily estimated@18#. For example, assuming that th
rate of change ofd is constant, one finds

ud02dtu!V2t. ~16!

Using Eqs.~4! and ~14!, we find ~9! for the evolution of
an ion initially in a coherent state of motion, where now

A5cos~e!cos~u02ut!1 isin~e!cos~u01ut!, ~17a!

B5cos~e!sin~u02ut!2 isin~e!sin~u01ut!, ~17b!

and u05u(0) @ut5u(t)#. Thus, by choosing appropriatel
the initial and final detunings and provided the adiabatic c
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dition ~16! is fulfilled one can achieve by adiabatic passa
the same effect as using laser pulses.

III. SUPERPOSITIONS OF COHERENT STATES

In this section we show how superpositions of coher
states~Schrödinger cats! of the ion motion can be prepare
using a laser beam in the strong-excitation regime. We w
analyze both the one-dimensional~1D! and the two-
dimensional~2D! cases.

A. One dimension

Let us assume that after sideband cooling@19#, we have
the ion in the ground state of both, the internal and exter
degrees of freedom (ug&u0&). In this subsection we discus
two ways of preparing states of the form~1! in one-
dimension (x), one based on laser pulses and the other
adiabatic passage by varying the laser frequency. For
sake of a simple notation, we will drop the subscriptx in all
the states and formulas when we deal with one-dimensio
problems.

1. Pulses

A simple way to prepare the state~1! using laser pulses
consists of the following three steps:

~i! Excite the ion with ap/2 pulse (Vt5p/2) using a
laser propagating towards the negative values of thex axis.
According to~9!, this pulse will perform the following trans
formation:

ug&u0&c→
1

A2
~ ug&u0&c2 i ue&u2 ih&c), ~18!

whereua&c denotes the coherent state~2!.
~ii ! Excite the ion with anotherp/2 pulse (Vt5p/2), but

now using a laser beam propagating in the opposite di
tion. The state of the ion will become

1
2 @~ u0&c2u22ih&c)ug&2 i ~ u ih&c1u2 ih&c)ue&]. ~19!

~iii ! Measure the internal state of the ion using the qu
tum jump technique@5#. To do this one can drive the ion
with a different laser beam on resonance with an elect
dipole allowed transitionug&↔ur & ~see Fig. 1!. In case fluo-
rescence is observed, the state of the ion will be projec
onto the part of the wave-function~19! that contains the state
ug&. On the contrary, if no fluorescence is observed, it will
projected onto the state

uCsc&5K~ u ih&c1u2 ih&c)ue&, ~20!

whereK is a normalization constant.
State~20! is already of the form~1!, i.e., similar to that

studied in cavity QED@13,14# ~whereby the motion of the
ion corresponds to the cavity mode!. Note that if fluores-
cence is observed, the external state of the motion will
completely modified due to the photon recoil acquired by
ion in each absorption spontaneous emission cycle,
therefore no such superposition of coherent states will
produced. Therefore, an experiment based on these steps
be successful half of the times it is carried out~those in
which no fluorescence is observed!.
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FIG. 2. Real part of the density operator in momentum representation^purup8& in arbitrary units@note that the axes are rescaled in term
of p05(mn/2)1/2#, after the preparation of the superposition state using laser pulses.~a!–~c! correspond toh50.5 andn52, whereas~d!–~f!
correspond toh52.5 andn50. HereV/n: 100 ~a,d!, 10 ~b,e!, and 1 ~c,f!.
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On the other hand, in order to consider state~20! as a
Schrödinger cat it should be macroscopic~in the sense tha
one can observe both statesua& andu2a& individually @10#!.
However, there are two reasons why the state~20! cannot be
directly observable as it stands:~a! its probability distribu-
tion in position representation has only one peak centere
^x̂&50, and therefore the two parts of such a state (u ih& and
u2 ih&) cannot be distinguished by direct observation;~b!
since the ion is in its internal excited state, it cannot
observed by shining light on theug&↔ur & transition.
This second problem~b! can be easily solved if, just afte
the state ~1! is produced, one applies a laserp pulse
along thez direction, that transforms the excited state in
the ground state. Note in order not to modify the state
the ion with this last pulse it is necessary for the ion to
confined in the Lamb–Dicke limit in thez direction, i.e.,
hz5kL /(2mnz)

1/2!1. This may be the case, for example,
a linear ion trap, whereby the transverse directions h
trap frequencies much larger than along the axial direc
@20#. The first problem~a! can be solved by noting tha
the free evolution of a coherent state is given
ua(t)&5ue2 inta(0)& and, therefore, if after producing th
state~1!, one waits for a timet5p/(2n), the state will be-
come
at

e

f
e

e
n

uCsc&5K~ uh&c1u2h&c)ue&. ~21!

This state has two maxima~in position representation! cen-
tered at ^x̂&562h/A2mn, respectively ~each of these
maxima correspond to the statesu6h&, respectively!. Fur-
thermore, in order to be able to observe these two states
corresponding peaks must be spatially separated by m
than a wavelength, which requiresh2.p/2. For tight traps,
that is, for values ofh not fulfilling this condition, one can
proceed as follows. After step~i!, one applies a sequence o
p pulses from the left and from the right (n pulses in each
direction!, in an alternating way@21#. It is easy to check tha
the state after step~iii ! and free evolution will be

uCsc&5K@ u~2n11!h&c1u2~2n11!h&c] ue&. ~22!

For these states, the number of pulses required to obs
distinguishable ~macroscopic! states is (2n11)2.p/
(2h2). Note also that now in condition~7! it is the total time
corresponding to all the pulses the one that enters.

In order to illustrate the effectiveness of the method p
sented here, we have plotted in Fig. 2 the state after step~iii !
for several values ofV/n andh. To produce these plots, w
have solved numerically the evolution equations of the
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FIG. 3. Real part of the density operator in momentum representation^purup8& in arbitrary units@note that the axes are rescaled in term
of p05(mn/2)1/2#, after the preparation of the superposition state using adiabatic passage. Here,D/V510,V/n5100,h50.5, n52, and~a!
Vt540; ~b! Vt550; ~c! Vt560; ~d! Vt570.
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using the exact Hamiltonian~3!. The figures display the rea
part of the density operator in momentum representa
^purup8& ~note that the axes are rescaled in terms
p05Amn/2). Figures 2~a!, 2~b!, and 2~c! correspond to
h50.5 andn52 ~i.e., two intermediatep pulses in each
direction!, whereas Figs. 2~d!, 2~e!, and 2~f! correspond to
n50 with h52.5. ForV/n5100 @Figs. 2~a! and 2~d!# the
method works almost ideally, since condition~7! is satisfied.
There are four peaks in the plots, two of them correspond
to the diagonal parts of the density operator (u ih&^ ihu and
u2 ih&^2 ihu), and the other corresponding to the coh
ences (u2 ih&^ ihu andu ih&^2 ihu). These last two peaks ar
the ones ensuring that the state is a truly pure state, as
posed to a statistical mixture in which these two peaks w
not show up. As soon as the ratioV/n is decreased, so tha
condition ~7! is not satisfied, this four peak structure disa
pears. Note that the plots corresponding ton52 are much
more sensitive to this condition than those withn50. On the
other hand, we have checked that they are more robust
respect to mismatches in the pulse areas as well.

2. Adiabatic passage

Instead of using controlled laser pulses, one can use
adiabatic passage technique to produce the superpositio
coherent states. This technique has the advantage that
not sensitive to the specific values of the parameters cha
terizing the laser-ion interaction~such as interaction time
Rabi frequencies, etc.!. The process is very similar to the on
explained above for pulses. It consists of three steps:

~i! A laser beam propagating towards the negative val
of the x axis is directed to the ion. The detuning is switch
adiabatically fromd052D to dt50, with D@V. In this
case, according to~17! the state of the ion will become
(u050,ut5p/4)
n
f

g

-

p-
ll

-

ith

he
of

t is
c-

s

ug&u0&c→
1

A2
~ ug&u0&c2ue&u2 ih&c). ~23!

~ii ! A laser beam propagating towards the positive valu
of x is directed to the ion. The detuning is switched adiaba
cally from d050 to dt5D, again withD@V. The state of
the ion after this step will be (u05p/4,u15p/2)

1
2 @e2 i e~ u0&c2u22ih&c)ug&2ei e~ u ih&c1u2 ih&c)ue&].

~24!
~iii ! Measure the internal state of the ion using the qu

tum jump technique@5#. If no fluorescence is observed, th
external state of the ion will be projected onto

uCsc&5K~ u ih&c1u2 ih&c)ue&. ~25!

As before, one can include intermediate steps betwee~i!
and ~ii ! to achieve a larger extension between the peaks
the probability distribution. To this aim, one can perfor
sequences of excitations, using counterpropagating las
first, changing the detuning fromd050 to d15D, and then
from d052D to d150. By performing this operationn
times~in each direction!, the final state of the ion~after mea-
surement! will be

uCsc&5K~ u~2n11!ih&c1u2~2n11!ih&c)ue&. ~26!

In Fig. 3 we have plotted the real part of^p8urup& for the
state arising after step~iii !, by solving numerically the evo-
lution equations using the full Hamiltonian~3!. Here,
h50.5, and the number of intermediate steps isn52. We
have takenD510V andV/n5100. The times for each adia
batic passage step aret540, 50, 60, and 70V21 @Figs. 3~a!,
3~b!, 3~c!, and 3~d!, respectively#. Note that with these pa
rameters the conditions of no motion during the interact
~7! and of adiabatic passage~16! are nearly fulfilled. By
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comparing these four plots, one sees that in all of them f
peaks show up, corresponding to the diagonal part and
coherences. However, in some of the plots there is an e
wide peak in the center, which does not disappear even if
interaction time is taken to be longer~in order to improve the
adiabatic passage requirements!. In fact, we have checked
numerically that the peak appears nearly periodically as
time t is increased. The reason for this peak is related to
fact thatD is finite in the plots. Using relations~17! it can be
easily shown that the four peaks~in ^p8urup&) oscillate due
to the dynamical phasee, and the amplitude of the oscilla
tions is of the order ofnV/D, wheren is the number of
intermediate steps. The best results are obtained forn50,
where there is no such oscillation; but this requires a la
value for h in order for the two locations of the ion to b
observable. This may be realized with a linear ion trap,
which the motion along the axial direction can haveh.1.
Summarizing, in order to prepare a state of the form~1!
using adiabatic passage with intermediate laser pulses, a
from conditions~7! and~16!, it is required thatD@V. Note
that this last condition is somehow difficult to achieve e
perimentally, since as one increasesD, a longer time is re-
quired to fulfill the adiabatic condition, which may require
very small trap frequency in order not to violate conditi
~7!.

B. Two dimensions

In this subsection we generalize the above methods
show how superpositions of coherent states in two or m
dimensions can be generated. The basic idea is to pre
first a superposition state along a given direction followi
the steps presented in the previous subsections, and a
wards to send pulses along a perpendicular direction in o
to push the wave packets and obtain a circular motion.
steps required to implement a superposition of cohe
states in thex-y dimensions are the following:

~i! After sideband cooling@19#, prepare the state~1! in the
x direction as indicated in the preceding subsection. T
wait for a timet5p/(2n). The state of the ion will be

uCsc&5K~ uh&x1u2h&x)u0&yue&. ~27!

~ii ! Drive the ion with ap pulse using a laser propagatin
along they direction. The state will become

uCsc&5K~ uh&x1u2h&x)u2 ih&yug&. ~28!

State~28! is composed of two coherent wave packets e
of them propagating along a circle in thex-y plane~provided
the trap frequenciesnx5ny), but in opposite directions. Not
that the internal state of the ion after the pulse sequenc
ug&, and therefore it is ready to be detected by quant
jumps. Obviously, for a trap with a small value ofh one can
add intermediatep pulses in both directionsx andy in order
to make a larger circle radius. On the other hand, one can
the adiabatic passage technique instead of using pulses
lizing the same procedure.

In Fig. 4 we have plotted snapshots of the probabi
distribution for the ion in position representatio
P(x,y)5^xu^yuruy&ux&. We have solved numerically th
evolution using the exact Hamiltonian, including both d
mensionsx andy. We have takenh50.5, andn52 in each
r
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dimension, andV5300n (nx5ny[n). The different figures
correspond to the state of the ion:~a! initial state;~b! after
step ~ii !; ~c! after a time t5p/(4n); ~d! after a time
t5p/(2n); ~e! state after a timet53p/(4n); ~f! after a
time t540p/n ~i.e., after 20 round trips!. As expected, the
ion performs round trips without practically modifying th
structure of the wave packets. Note that the figures co
spond to the diagonal part of the density operator, and th
fore one could have the ion in a statistical mixture with e
actly the same distribution. However, the fact that the stat
a pure state makes it possible to observe quantum inte
ences, as will be shown in the next sections. Finally, in th
figures it can be observed that there is a small dephasin
the wave packets@compare Figs. 4~c! and 4~e!#. This is due
to the fact that the pulses have a finite duration, and dur
this time the wave packets evolve slightly@that is, conditions
~7! are not exactly fulfilled#. However, most parts of this
dephasing can be controlled, since they correspond to
free evolution with the harmonic oscillator potential for
time equal to the pulse duration.

IV. PURE STATES VERSUS STATISTICAL MIXTURES

One of the crucial predictions of quantum mechanics
the possibility of having coherent superpositions of cert
states, as is the case for a Schro¨dinger-cat state. Many of the
intriguing features of quantum mechanics rely on this pro
erty. Thus, it would be highly desirable to have a way
check experimentally whether the final state is a pure stat
the form ~20! or an incoherent superposition of the form

r}~ uh&c^hu1u2h&c^2hu!ue&^eu. ~29!

Similarly as for the pure state~20!, in this statistical mixture
the ion is either to the right~stateuh&) or to the left~state
2uh&) in the x axis.

Let us state this problem in a different~but equivalent!
way. Suppose we have our ion in the state~29!. Consider the
following experiment consisting of four steps:

~i! We measure if the ion is to the right. This can be do
by using the quantum jump technique@5# with a laser fo-
cused on the right side only~after changing the state of th
ion in the right-hand side fromue& to ug&, as indicated in
Sec. III, i.e., using an auxiliar laser propagating along thz
direction!. If we do not detect the ion, then we know that th
ion is in the left side, and its state is

uC&5u2h&cue&. ~30!

~ii ! Now we wait for a timet5p/(2n), so that the state
of the ion will be u ih&ue&, and its position will be centered
aroundx50.

~iii ! We send twop/2 pulses along thex direction, the
first propagating towards the negative values ofx while the
second propagating in the opposite direction. The state of
ion after this pulse sequence can be easily calculated u
~9!, resulting in

uC&5K@ ue&~ u ih&c2u3ih&c)2 i ug&~ u0&c1u2ih&c)].
~31!

~iv! We measure the state of the ion using the quant
jumps technique. Obviously, we will obtain that the pro
ability of measuring the ion in its ground state is 1/2.
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FIG. 4. Snapshots of the probability distribution in position representation in two dimensions^xu^yuruy&ux& in arbitrary units@note that
the axes are rescaled in terms ofx05y051/(2mnu)1/2#. HereV/n5300,h50.5, n52, and~a! initial state;~b! just after the superposition
state preparation;~c! after nt5p/4; ~d! after nt5p/2; ~e! after nt53p/4; ~f! after nt540p.
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We could perform the same experiment again, but now
step ~i! we measure if the ion is to the left. If we do no
detect the ion, we will conclude that the state of the ion

uC&5uh&cue&. ~32!

Following the same steps as before~ii ! and~iii !, the state of
the ion will be

uC&5K@e&~ u2 ih&c2u ih&c)2 i ug&~ u0&c1u22ih&c)].
~33!

Again, if we measure the state of the ion we will measure
ground state with a probability 1/2.

Summarizing, we could state that regardless of the p
tion of the ion~i.e., both if it is to the left or to the right!,
after performing steps~ii ! and~iii !, we will detect half of the
times the ion in the ground state, and the other half in
n

e

i-

e

excited state. However, if we take the state~20! and calculate
what happens after applying steps~ii ! and ~iii !, we will ob-
tain the state

uC&5Kue&~ u2 ih&c2u3ih&c)2 i ug&~2u0&c1u22ih&c

1u2ih&c). ~34!

With this state, the probability of detecting the atom in t
ground state is 3/4.

Obviously, there is a catch in the above argument. In
der to predict that whatever we have for the ion we will fin
it in the ground state with probability 1/2, we have used
property which is foreign to quantum mechanics, name
realism@22#. We all know that quantum mechanics is not
realist theory, and therefore the apparent contradiction
we have explained in the previous paragraph shows this f
State~20! is a state that can only be described by quant
mechanics, and there is no classical~realist! analog. Note
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that the state~29! can be indeed described by a realist theo
and therefore if we perform steps~ii ! and ~iii ! on it we will
detect the ion in its ground internal state with probability 1
Therefore, the experiment outlined in this section@steps~ii !
and ~iii !# allows one to distinguish between a pure state a
a statistical mixture, since the results for the probability
detecting the ground state of the ion are different.

V. ION INTERFEROMETER

In this section we analyze the possibilities of building
Ramsey interferometer@16# based on the ideas we have us
to prepare superpositions of coherent states. We will ana
the case in which laser pulses are used instead of adia
passage, although both techniques can be applied with s
lar results.

Consider a single ion in a trap after being laser coo
~via sideband cooling! to its ground stateug&u0&. An atom
interferometer~in one dimension! may be constructed as fo
lows.

~i! Apply a p/2 pulse in thex direction such that the stat
of the ion becomes

uC&5 1
2 ~ ug&u0&c2 i ue&u ih&c). ~35!

Then, wait for a timet5p/(2n) so that the ion wave func
tion ~in position representation! splits into two different
wave packets

uC&5 1
2 ~ ug&u0&c2 i ue&uh&c). ~36!

Note that as before, for small values ofh one can use inter
mediate pulses to split the wave packet further.

~ii ! Apply a field to the wave packet that is centered to
right. For example, assume that we transform the s
ue&→cos(a)ue&2i sin(a)ug&. In this particular case, the wav
function will become

uC&5 1
2 @ ug&u0&c2 i „cos~a!ue&2 isin~a!ug&…uh&c].

~37!

Then, wait again for a timet5p/(2n) so that the ion wave
function ~in position representation! is centered around
^x&50

uC&5 1
2 @ ug&u0&c2 i „cos~a!ue&2 isin~a!ug&…u2 ih&c].

~38!
~iii ! Apply a p/2 pulse to the ion in the opposite directio

as in step~i!. The state of the ion then will become

uC&5 1
2 ~ ug&$@12cos~a!#u0&c2sin~a!u2 ih&c%

2 i ue&$@11cos~a!#u2 ih&c2sin~a!u22ih&c%).

~39!
~iv! Measure the state of the ion using the quantum jum

technique. One finds that the probability of measuring
excited internal state isPe5cos2(a/2)512Pg . So, depend-
ing on the phasea this probability varies as in Ramsey spe
troscopy.

In Fig. 5 we have plotted the probability of finding the io
in the excited state as a function of the phasea, calculated
,
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numerically using the exact Hamiltonian. Hereh52.5 and
the different curves correspond toV/n51, 4, 10, and 100
@solid, dashed, dotted, and dash-dotted lines, respectively#. In
the strong-excitation regime~dash-dotted line!, the visibility
of the fringes is nearly one. However, as the ratioV/n de-
creases, the visibility is getting smaller and smaller, and e
the curve is distorted. The reason is that the condition~7! is
not satisfied anymore.

This kind of interferometer is very similar to the wel
known Ramsey spectroscopy. However the main differe
is that the phase shift here can be nonlocal, in the sense
one can do something different to the different wave pack
as is the case in atom interferometry@23#. Thus, a technique
like this could be useful to measure gradients of fields, si
the phase shift on each wave packet would depend on
corresponding position. Apart from that, following the line
of Sec. III B one can generalize this to two dimensions.
this case, one would have two wave packets going aroun
a circle but in opposite directions. An interferometer like th
might be used to measure the Sagnac effect, where the p
acquired by one of the wave packets is different to that of
other when the whole ion trap rotates at a given frequen

VI. CONCLUSIONS

In this paper we have analyzed the interaction of a sin
trapped ion with a laser beam in the strong-excitation lim
We have considered two situations: first, the ion intera
with pulses of a well defined area; second, the frequency
the laser changes adiabatically. We have shown under w
limits these two situations give the same result regarding
modification of the ion motion during the excitation. Furthe
more, Schro¨dinger cats@10# of the ion motion can be pre
pared in an ion trap using both methods. We have illustra
these methods with numerical calculations which display
preparation of superpositions of coherent states both in
and two dimensions. We have shown how one can check
purity of these states, by relating this problem to the o
regarding the different predictions of~macro!realist’s theo-
ries and quantum mechanics. Finally, a trapped ion can
used as an inteferometer by splitting the wave function a
looking at the interferences in the internal states.

The technique presented here can be easily generalize
include the preparation of more general nonclassical sta
including linear superposition of multiple coherent sta

FIG. 5. Excited-state populationPe as a function of the phase
a ~see text for explanation!. Here,h52.5, V/n: 1 ~solid line!; 4
~dashed line!; 10 ~dotted line!; 100 ~dash-dotted line!.
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with the same amplitude and different phases. On the o
hand, we plan to study in detail the problem of how t
Schrödinger-cat state dissipates in time in the presence
decoherence due to spontaneous emission@24#.

In order to observe experimentally the behavior predic
in this paper it is necessary to fulfill the conditions given
Sec. II, i.e., basically to work in the strong-excitation regim
This regime may be difficult to achieve, since one is using
electric-dipole forbidden transition and therefore the laser
tensity required to reach such a regime must be very h
Alternatively, one could work with small trap frequencie
~i.e., out of the Lamb-Dicke limit!, which would make it
es
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easier to perform local observations. However, laser coo
to the ground state of the trapping potential has not b
observed yet in this regime. One possible way to avoid t
drawback is to open the trap adiabatically~in order to de-
crease the trap frequency, and the Lamb-Dicke parame!
once the ion has been cooled in the Lamb-Dicke limit.
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