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ABSTRACT

YTTERBIUM ION QUBIT STATE DETECTION ON AN ICCD CAMERA

by
Aaron C. Lee

Chair: Christopher R. Monroe

Feynman’s proposal in 1982 that a well-controlled quantum system could efficiently

simulate another quantum system [1], confirmed by Lloyd in 1996 [2], has been

realized in many different physical implementations. The requirement of a stable,

coherent platform with controllable interactions has been shown to be fulfilled by

many different types of systems, one of which is a trapped atomic ion. We use

171Yb+ where the qubit states are the hyperfine ground states,2S1/2 |F = 1,mF = 0〉

and |F = 0,mF = 0〉. DiVincenzo’s requirements for a quantum information system

also include accurate read out of the the qubits [3]. In the case of our system, this

means measuring the scattered photons of the stimulated 2S1/2 |F = 1,mF = 0〉 to

2P1/2 |F = 0,mF = 0〉 transition. Previously, we have used a photo-multiplier tube

for the detection of these photons. In this work, I present the analysis of a new

detection device, a PIMax3: 1024i ICCD camera, and the state detection fidelity of

our qubits with this camera. With the optimal settings of a 3ms detection time and a

hardware binning of 4x64, our state detection fidelity was found to be approximately

95%. While the fidelity is slightly worse than the PMT at 97%, the ability to measure

spin order and perform shot to shot discrimination are a notable improvement to the

quantum simulator.
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CHAPTER I

Introduction

In 1982, Richard Feynman proposed that a well-controlled quantum system could

efficiently simulate another quantum system which could not be described classically

[1]. This was later confirmed by Seth Lloyd in 1996 [2]. Thus, a quantum simulator

is capable of simulating a many-body quantum system that is impossible to under-

stand analytically and improbable to simulate numerically due to the prohibitive

computational resources required.

One possible kind of quantum simulator can be thought of as the quantum version

of an analog computer. An analog computer uses physical phenomena, such as

electricity, to model a given problem. Thus an analog computer might use a varying

resistance to simulate a changing stiffness in a spring. This is different from a digital

computer where the system being modeled is converted into binary numbers and its

evolution is simply a series of digital logic operators performed on the initial numbers.

In the analog computer, there are no 1’s and 0’s, only changing physical quantities.

Much like the analog computer, an analog quantum simulator would model a more

complex system by constructing an equivalent situation on a simpler setup. This is

distinct from the quantum computer, which would represent the system in a qubit

register and apply quantum operations (quantum gates) stroboscopically to produce
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the result. Using an analog quantum computer, we can simulate poorly understood

models from condensed matter, such as quantum magnetism [4], spin glasses [5],

spin liquids [6], and high temperature superconductors [7, 8]. In particular, quantum

spin models are able to describe a large set of quantum many-body problems. Some

of these many-body problems fall into the class of NP-Complete, which is a class

of problems where the time required to solve the problem is extremely long with

classical algorithms [9, 10].

One approach toward the realization of such a quantum simulator is to apply

ideas from adiabatic quantum computation, where a known, trivial Hamiltonian is

adiabatically transformed to the ground state of the desired Hamiltonian [11, 12].

In order to achieve such an adiabatic transformation, a quantum simulator requires

a stable, coherent platform which has controllable interactions. Some systems that

have been shown to have these properties are superconducting circuits [13, 14, 15],

quantum dots [16], neutral atoms [17, 18, 19, 20, 21], and trapped atomic ions [22,

23, 24, 25, 26, 27, 28, 29, 30, 31].

In 2000, DiVincenzo [3] laid out what was required for a quantum computer.

Many of the same requirements apply to a quantum simulator. One of these re-

quirements was the accurate read out of the qubits. In this paper, we will focus on

the qubit readout by analyzing the characteristics and state detection of a Princeton

Instruments PIMax: 1024i ICCD camera and comparing it to the current detection

method, which is a PMT.

2



CHAPTER II

Ytterbium Detection

2.1 The Detection Transition

Any two-level quantum system can be mapped to a spin-1/2 model in an effective

magnetic field [32, 33, 34]. Our system represents a spin-1/2 system by the two

hyperfine ground states of 171Yb+, 2S1/2 |F = 1,mF = 0〉 and |F = 0,mF = 0〉, which

are separated by νHF/2π = 12.643 GHz [35]. F is the quantum number representing

the atomic angular momentum and mF is its projection along a weak magnetic

field of approximately 4 Gauss. We define the |F = 1,mF = 0〉 to be |↑z〉 and the

|F = 0,mF = 0〉 to be |↓z〉 of σz. Detection of the ion state uses a standard spin-

dependent resonant fluorescence cycling on the 2S1/2 to 2P1/2 transition at 369.53 nm,

which is shown in Figure 2.1. The detection light is resonant with ions in |↑z〉 and

will scatter many photons whereas the detection light is far off-resonant with ions in

|↓z〉. Further, the energy difference between |F = 1,mF = ±1〉 and |F = 1,mF = 0〉

of the S1/2 manifold is δzeeman = (1.4 MHz/Gauss)Bz where Bz is the magnetic field

in Gauss. Since the magnetic field at the ion chain is approximately 4.8 Gauss,

δzeeman is only about 6.7 MHz for the 2S1/2 |F = 1,mF = ±1〉 in our system and

natural linewidth of the 2P1/2 |F = 0,mF = 0〉 transition is γ/2π = 20 MHz, the

mF = ±1 states are also resonantly excited to the P1/2 manifold. Thus a bright ion
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will scatter many photons in a single detection cycle while the probability of |↓z〉

being off-resonantly excited is very low. In addition to the off-resonant transition

to the dark state, there is a 0.5% chance that the 2P1/2 state can decay to 2D3/2.

This state has a lifetime of approximately 52.7 ms, which is long compared to the

detection time of the ions. Therefore, we apply 935.2 nm light to the ion, which

pumps it from 2D3/2 to 3[3/2]1/2, which has a life-time of 37.7 ns and a 98.2% chance

to decay back to the 2S1/2 F=1 manifold. Due to the fact that we pump to the F=0

line of the bracket state, selection rules prevent the electron from decaying down into

the |↓z〉. This way, we are able to pump out of the D manifold without mixing the

bright state with the dark state. Finally, there is a F-state which has a lifetime much

longer than a minute and which can become populated. This transition is actually

an octopole transition and is typically forbidden, but if the ion is hit by a background

gas molecule while the electron is in the excited state, the electron can populate this

state. In order to recover the ion to the bright and dark states, we apply a laser with

a wavelength of 638.6 nm. This pumps the ion back to the 2D3/2, where the 935 nm

beam pumps it back down to the 2S1/2 state.

2.2 Off-Resonant Coupling

In the ideal case, the number of detected photons from the ions will follow Pois-

sonian statistics. Based on the detection time, the scattering rate of the 2P1/2 will

determine a mean number of photons emitted, λ0. Thus, the collected photon dis-

tributions would have the form:

pbright,ideal(n) =
e−λ0λn0
n!

(2.1)

This equation gives the probability of detecting n photons during a detection cycle.

An example of what would be seen on the PMT is shown in Figure 2.2.
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Figure 2.1: Ytterbium 171+ Energy Levels. This diagram shows the different energy levels that
are relevant to the detection transition
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Figure 2.2: Ideal Ion Detection Distributions. This figure shows the photon distributions of an ideal
detection transition where there is no off-resonant coupling for different ion numbers
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While the decay to the D-manifold does not lead the bright state to couple with

the dark state, off-resonant coupling of the two states still occurs, requiring that the

ideal distributions of the bright ion be modified. The rate equations which describe

this coupling yield an exponential probability distribution. Thus the ion, which is

initially in the bright state but off-resonantly couples to the dark state, will have a

distribution of emitted photons that is a convolution of a Poissonian and exponential

distributions [36, 37, 38]. The probability that an ion in the bright state will leave

the bright state in a time interval t+ dt is given by:

f(t)dt =
1

τL2

e
− t
τL2 dt (2.2)

τL2 is the average leak time of the bright state into the dark state. τL2 is determined

by the properties of the ion and the intensity of the detection light. Further, the

average number of collected photons for a bright ion that is pumped dark at a time

t is:

λ(t) =
t

τD
λ0 (2.3)

where τD is the detection time and λ0 is the mean number of photons collected for

that detection time. Using equation 2.3, we are able to get t as a function of λ. This

can then be substituted into equation 2.2. The result is the probability of the bright

state producing a Poissonian distribution of collected photons with mean λ:

g(λ)dλ =


α2

η
e−λα2/ηdλ λ < λ0

e−α2λ0/η λ = λ0

(2.4)

where η = ηD
dΩ
4π
T is the total photon collection efficiency determined by the detector

efficiency (ηD), the solid angle of collection (dΩ
4π

), and the optical transmission from

the ion to the detector (T ); α2 ≡ τDη
τL2

λ0
is the coupling probability per emitted photon;

and the λ = λ0 discontinuity is required to account for the portion of ions that do
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not leave the bright state. Therefore, the probability of detecting n photons will

be the convolution of the probability of producing the distribution with the Poisson

distribution:

pbright(n) =

(
e−λ0λn0
n!

)
e−α2λ0/η +

∫ λ′

0

e−λλn

n!

α2

η
e−λα2/ηdλ (2.5)

where λ′ = λ0−ε and ε� 1. In the limit where λ′ ⇒ λ0, the probability distribution

converges to the lower incomplete gamma function, Γlower(a, x) ≡ 1
(a−1)!

∫ x
0
e−yyady

which is the standard definition of the incomplete Gamma function normalized such

that Γlower(a,∞) = 1. Let λ∗ = (1+α2/η)λ in the limit where λ′ ⇒ λ0, the equation

becomes:

pbright(n) =

(
e−λ0λn0
n!

)
e−α2λ0/η + α2/η

∫ (1+α2/η)λ0

0

e−λ
∗
(λ∗)n

(1 + α2/η)nn!

dλ∗

(1 + α2/η)

Rewriting equation 2.5 in terms of Γlower, where a = n+ 1 and y = (1 + α1/η)λ0,

pbright(n) =
e−(1+α2/η)λ0λn0

n!
+

α2/η

(1 + α2/η)n+1 Γlower (n+ 1, (1 + α1/η)λ0) (2.6)

In a similar way, a dark ion can off-resonantly couple to the bright state. Just

as for the bright state, the photon probability distribution is a convolution of the

exponential probability of the dark state going bright and the Poissonian distribution.

Yet for the dark state, the emission is flipped: the ion will not scatter photons on

the closed transition, but at some time, the ion will be pumped into the bright state

and begin to emit photons. Let probability of leaking to the bright state per emitted

photon be defined as α1 ≡ τDη
τL1

λ0
where τL1 is the average coupling time of the dark

state. By a similar analysis as before, the probability of detecting n photons from a

dark ion is:

pdark(n) = e−α1λ0/η

[
δn +

α1/η

(1− α1/η)n+1 Γlower (n+ 1, (1− α1/η)λ0)

]
(2.7)

A plot of both pdark and pbright can be seen in Figure 2.3.
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Figure 2.3: Off-Resonant Coupling Photon Distributions. This figure shows the photon distribu-
tions of the bright and dark ions with the addition of the off-resonant coupling.

2.3 Finding α1 and α2

Since the laser power is split equally across all three polarizations to prevent the

population of a dark eigenstate, the mean number of collected scattered photons for

a bright ion is:

λ0 = τDη
sγ

2

1 + s+
(

2δ
γ

)2 (2.8)

where γ is the radiative linewidth of the P1/2 state, δ is the detuning of the light

from the transition and s = I
Isat

is the laser-ion saturation parameter.

The definition for α1 is:

α1 ≡
τDη

τL1λ0

(2.9)

Yet 1
τL1

can be re-expressed as:

1

τL1

= γL1 = M1

sγ
2

1 + s+
(

2∆1

γ

)2 (2.10)

where M1 is the branching ratio for the off-resonant coupling and ∆1 is the detuning
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of the resonant transition from the off-resonant transition. Since ∆1 >> γ,

γL1 ≈M1s
γ

2

(
γ

2∆1

)2

(2.11)

Therefore, substituting equation 2.8 and 2.11 into equation 2.9, we get:

α1 = M1

[
1 + s+

(
2δ

γ

)2
](

γ

2∆1

)2

(2.12)

In the case of the 171Yb+ ion, the radiative linewidth of the S → P transition is

γ/2π = 20 MHz and the detuning of the dark state from the excited state which

couples to the bright state is ∆1 = ωSHF + ωPHF where ωSHF is the hyperfine

splitting in the 2S1/2 state and ωPHF is the hyperfine splitting of the 2P1/2 state.

These values are ωSHF/2π = 12.643 GHz and ωPHF/2π = 2.105 GHz for a total

∆1/2π = 14.748 GHz. Further, all allowed dipole transitions have the same relative

strength and selection rules only allow 2P1/2 |F = 1〉 to couple with 2S1/2 |F = 1〉 in

only 2 ways no matter the polarization, the dark state leakage branching ratio is:

M1 = 1/3 × (1/3 + 1/3) = 2/9. Substituting to α1 and assuming that s ≈ 1 and

δ << γ,

α1 ≈ 4/9

(
20

2× 14.748× 103

)2

= 2.04× 10−7

Using a similar calculation, we can find α2:

α2 = M2

[
1 + s+

(
2δ

γ

)2
](

γ

2∆2

)2

(2.13)

where ∆2 = ωPHF and M2 = 2/9 for the same reason as M1. α2 is then calculated to

be: α2 = 1.00× 10−5. The reason that α1 and α2 are different is that the detunings

are different when the bright ion is going dark and the dark ion is going bright.
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Figure 2.4: Exponential Fit to Bright Ion Going Dark. In this figure, the blue points represent the
data points and the red plot represent the exponential fit. The resultant average decay
is τL2

= 7.35ms .

These values for α1 and α2 are in the limit where s=1. The intensity of the

detection beam at the ion is not exactly the same as Isat, so the true values for

α1 and α2 are difficult to calculate unless s is well known. Another approach is

to experimentally measure α1 and α2. For α2, this measurement is simple. We

first initialize the ion into the bright state and then expose the ion to the resonant

detection light for longer and longer periods of time. Finally, we detect to see whether

the ion is still bright or not. If we then plot the probability of the ion being bright

vs exposure time, there will be an exponential decay. Thus, τL2 will be the width

of this decay. Using this method, we found τL2 = 7.35 ms. The data and fit can be

seen in Figure 2.4. The exponential fit does not work in the case of τL1 since τL1 is

much longer than τL2 , meaning that we see second order effects of a dark ion going

bright and then going dark again. If we calculate the τL2 directly:

1

τL2

= γL2 ≈M2s
γ

2

(
γ

2∆2

)2

(2.14)

where we are again assuming that ∆2 >> γ. If s is assumed s=1, then we get
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τL2 = 3.32 ms. Using these values, since γL2 ∝ s → τL2 ∝ 1
s
, we can calculate what

the intensity is at the ion, which turns out to be I= 45% Isat.

We can now find the actual values of α1 and α2, still under the assumption that

δ << γ, namely that:

α1 = 1.48× 10−7 (2.15)

α2 = 7.27× 10−6 (2.16)

2.4 Detection with the PMT

In the past, the primary device used for detection on our experiment has been a

photo-multiplier tube (PMT). A PMT is a very efficient way to detect low numbers

of photons, as it converts single photons into an electron cascade. The cascade is

then converted into a voltage, typically using operational amplifiers. This voltage

then produces a TTL pulse, which is counted. Since the PMT does not have to read

out a large number of pixels, the speed of the conversion of the photon into a signal

is extremely fast. By taking a hundred or more experiments, a distribution of the

photons can be accumulated and compared to the theoretical distributions described

above. Due to its speed and efficiency, the PMT has been the optimal method of

detecting the state a small number of ions. Yet, two major limitations of the PMT

have motivated the introduction of a new detection apparatus.

The first limitation is that the PMT has no spatial discrimination. The signal

from the PMT is the same if ion number 1 is bright and the rest are dark or if ion

number n is bright and the rest are dark. This inhibits our ability to study dynamics

in the ion chain. Most dynamics consist of watching excitations propagate in our

system or watching domains change in the ion chain or measuring the spin-order.

Without spatial discrimination, we are unable to observe these effects.
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The second limitation is that the PMT can only measure the average number

of bright ions. Further, the PMT can only measure the average number of ions

well for up to 8 or 9 ions in the trap. For a greater number of ions, the overlap

of the “n ions” bright state and the “n + 1 ions” bright state becomes extremely

high. This is illustrated in Figure 2.5. For 15 and 16 ions, the overlap is over 60%,

meaning that we are unable to know for certain whether 15 or 16 ions are bright.

Knowing only the average number of bright ions further limits us by the increase in

the degeneracy of states as the number of bright ions approaches half. If only half

the ions are bright, there are

 N

N/2

 possible arrangements of the bright ions.

We are thus prohibited from studying models where the spin ordering is required,

since we would be unable to distinguish, for example, |↑↓↑↓〉 from |↓↑↑↓〉, |↑↓↓↑〉,

etc. Considering the physics which can be studied without these limitations, a new

detection apparatus is required.
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CHAPTER III

The ICCD Camera

3.1 Introduction to an ICCD

An Intensified Charge-Coupled Device (ICCD) was originally developed by the

military for night vision technology. While this application is very different from the

ICCD’s original purpose, the components are relatively similar. They are broken into

four distinct parts: the photocathode, the multi-channel plate (MCP), the phosphor

screen, and finally the charge-coupled device (CCD).

The photocathode is the part of the device which specializes the ICCD to a partic-

ular use, e.g. night vision or ion state detection. The photocathode takes an incident

photon and converts it into an electron. This process has a quantum efficiency which

describes the probability of this interaction. The quantum efficiency is extremely

dependent on the wavelength of the incident photons. In our case, the photocathode

was coated so that it would respond well to 369nm wavelength light, which corre-

sponds to the detection transition of the bright ions. A plot of the quantum efficiency

relative to wavelength can be seen in Figure 3.1.

This single photo-electron from the photocathode is then run through a multi-

channel plate (MCP). This plate acts like a photomultiplier and exponentially in-

creases the number of the electrons. The MCP is made out of a porous glass substrate
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369 nm

Figure 3.1: Intensifier Quantum Efficiency Curve. Courtesy of Princeton Instruments

with a secondary electron emitter which coats the inner surface of the pores. The

pores of this glass substrate are actually angled so that a photo-electron that en-

ters one of the pores normal to the surface will collide with the side of the pore,

generating the electron cascade. These pores typically have a diameter ranging from

6µm-12µm. Diagrams of an MCP can be seen in Figure 3.2. This system does reduce

overall quantum efficiency due to the fact that the MCP has a finite density of pores,

and thus some photo-electrons are lost since they strike the glass substrate between

the pores. By increasing the size of the pores, the electron loss is reduced at the cost

of resolution.

The photoelectron cascade then falls on a phosphor screen. The phosphor is

excited by the electron cascade and so emits light. The emitted light emits in a

spectrum which has a sharp peak around the optimal wavelength for the CCD. Thus

the electron cascade is converted into a photon cascade. The single detected photon

has now been exponentially increased into a shower of green photons. These three

components are often referred to as the intensifier.

The light coming off of the phosphor screen must be focused onto the CCD in
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(a) MCP Schematic (b) Zoomed In MCP

(c) MCP vs PMT Diagram

Figure 3.2: Diagrams of Multi-Channel Plate. Courtesy of Princeton Instruments.
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order to prevent the image from being distorted or blurred. This can be accomplished

by either of two methods: lens coupling or fiber coupling. Lens coupling involves

using a lens to image the phosphor screen onto the CCD. The primary advantage of

lens coupling is that the intensifier can be removed. The drawback is that there is

lower light throughput (5%-10%) and greater stray light detection. A fiber coupled

intensifier uses optical fibers to focus the light down onto the CCD. This method has

a greater throughput (60%) but requires a dry, non-vacuum operating environment

to operate and is permanently bonded to the CCD.

The heart of the camera is the Charge-Coupled Device (CCD), which takes the

phosphor photon cascade and turns the photons back into photo-electrons. The

CCD works much like a photodiode but is broken up into many pixels. These pixels

accumulate charge in the presence of light. This charge is then pushed around by

changing voltages in the pixels. In this way, the CCD can shift the charge from the

pixel to an Analog to Digital device, which converts the charge to a numerical value,

all the while maintaining the separate individual pixels. Our camera is a PIMax3:

1024i made by Princeton instruments. It has a Kodak KAI-1003 scientific grade

interline CCD. This CCD has 1024 x 1024 imaging pixels, where each pixel is 12.8

x 12.8 µm in size. The whole CCD is 13.1 x 13.1 mm. The intensifier is a Gen II

Super Blue. The overall quantum efficiency of the camera is specified as ≈ 20% for

360 nm.

3.2 New Difficulties

While the PIMax3:1024i ICCD camera will solve some of the issues that the PMT

has with single shot discrimination and large ion chains, the camera also introduces

new problems into the state detection. These difficulties can be categorized as de-
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Figure 3.3: Diagram of an ICCD. Courtesy of Olympus America Inc.

tection time and error.

The issue of time enters only as a practical matter. Large numbers of data points

are required to recover the probability distribution of the quantum system. Thus,

as the amount of time needed for each experiment increases, the likelihood that a

background gas molecule will collide with the ion chain, causing them to decrystalize

and possibly evaporate from the trap, grows. The difficulty increases with more ions

in the trap, so keeping the time for each experiment minimal is extremely important

as we increase the ion number. The matter of experimental duration is not an issue

when using the PMT for detection as its readout time is effectively the exposure

time.

The camera also introduces new sources of error, as it is much more complex

than the PMT. There are more losses in the camera, since a photon event at the

intensifier does not necessarily lead to a signal of definite size at the CCD (e.g. the

photo-electron might not create a cascade on the MCP). While not ideal, this type of

issue can just be factored into the overall quantum efficiency of the camera: namely
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the signal is slightly smaller than an ideal system. The error which is more serious

comes from two sources: analog to digital conversion error and crosstalk.

Analog to digital conversion (ADC) error is the fluctuation in the digital numerical

value of the accumulated charge on the CCD. When the CCD is “read out”, each

pixel of accumulated charge is fed into a device which compares the voltage on the

pixel to a reference voltage and then produces a binary number to represent the

charge on the pixel. This operation has a fundamental limit in that the resolution

of the device is much larger than the magnitude of the charge of a single electron,

and additionally the ADC also is affected by fluctuations in the reference voltage or

by uncertainty in the comparison to the reference voltage. There are also variations

in the readout due to shot noise, dark current, and Johnson noise. Ultimately, each

pixel is going to have some fluctuation in its value due to these sources. In the

limit of small signals that we are working with, these fluctuations can be as large

as the signal itself. The PMT is also affected by similar noise sources, but has the

benefit that the signal is continuously read out and, since its readout is a simple

TTL pulse, it is not sensitive to fluctuations in the photo-electron cascade. Thus the

PMT eliminates one of the largest sources of error in the camera, but at the sacrifice

of spatial resolution.

While spatial resolution is one of the primary reasons for the use of the camera

over the PMT, it also introduces a new source of error into the state detection of

the ion, namely ion crosstalk. Ion crosstalk is the light from one ion creating a

signal at a neighboring ion’s location. As the number of ions in the trap increases,

the space between the ions decreases, which is problematic. The shrinking distance

between ions increases the amount of crosstalk between neighboring ions to the point

where a dark ion can be evaluated as bright because of the cross talk from its bright
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neighbors. This crosstalk comes about from two sources: the imaging optics and the

finite resolution of the camera.

In order to image the ions in the trap, we use an objective with a numerical

aperture NA = 0.24. Thus a perfect point imaged by our objective with a 1-1

magnification will now have an Airy disk with a width of x where x is:

x = 1.22 ∗ 1

2NA
∗ λ

= 1.22 ∗ 2.1 ∗ 369nm

= 0.95µm

Thus you can see that what was a perfect point now has a diameter of 2x = 1.9µm.

But since the separation of the ions is around 2-5µm depending on the number of ions

in the trap and the magnitude of the endcap voltages and the pixel size of the CCD

is 12.8 x 12.8µm in size, the image of the ion chain is magnified approximately 130x,

giving a separation of the ions at around 160-650µm with an ion diameter of 247µm.

These values assume that the optics of the imaging system have no aberrations. In

order to find out what the size of the ion is with actual optics, a thousand images of

a single ion were averaged and summed down to a 1 dimensional row. This averaged

data was then fit with a Gaussian distribution of e
−2(x−x0)

2

w2 where w is the waist,

namely the radius at which the intensity is 1/e2 of its peak value. We found w to

be approximately 250µm. The fit can be seen in Figure 3.4. Clearly then we are

diffraction limited by the objective and not aberration limited by our optics. Yet the

separation of the ions shrinks with the number of ions. As the system size increases,

the ions begin to overlap and the signal from one ion begins to fall onto the region of

the CCD occupied by its neighbor. A profile of 250µm is going to have a significant

overlap with the nearest neighbor when separated only by 160µm on the CCD. While
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these aberrations will always be present in any optics, they might be diminished by a

larger numerical aperture of the objective, but larger numerical aperture objectives

are prohibitively expensive. The size of the ion on the CCD is further increased

by the finite resolution of the camera. This means that whatever the size of the

ion is from the imaging optics, the size on the CCD is increased due to the size of

the pixels since any signal that falls on a given pixel will then have the size of that

pixel, regardless of where the photon strikes. This will have its greatest effect at the

outer edges of the Airy disk, spreading out the edges of the disk. Clearly though, we

are in a regime where the finite numerical aperture is limiting our imaging, not the

resolution of the camera.

For the purposes of our experiment, the state detection error of the ion must be

minimized as much as possible. This error is especially important when working

with larger numbers of ions because εN = εN , where the detection fidelity of the spin

order of N spins is εN and ε is the single ion detection fidelity. Thus, if our detection
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fidelity was ε = 94% for a 10 ion spin order, the detection fidelity for the entire chain

would be 94%10 = 54%, whereas if the detection fidelity is increased by only 2%, the

entire chain spin order detection fidelity becomes 96%10 = 66%. Clearly an increase

of 10% is quite significant and so the optimization of our detection fidelity on the

camera becomes extremely important as the system size increases.
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CHAPTER IV

Experimental Methods and Analysis

4.1 Camera Parameters

4.1.1 Detection Time The detection time of the camera is simply the length of

time which the camera is exposed to the fluorescence of the resonantly excited ion.

Changing the detection time implies that the length of time which the ion is exposed

to the resonant light changes and the length of time which the intensifier is active

changes. The length of time over which the intensifier is active simply determines

how long the camera integrates and so longer times mean more collected photons. On

the other hand, changing the length of time over which the ion is exposed has further

ramifications, per the discussion in Chapter II, since increasing the detection time

increases the probability of the bright ion going dark. Increasing the detection time

also increases the amount of background scatter collected. The background scatter

shifts the dark state out from the 0 bin, which begins to overlap more and more with

the bright state, leading to a reduction in state discrimination. The background

scatter also changes the shape of the bright state.

In order to find how the background scatter affects the measured photon distri-

bution, we first start with the bright state and dark state distributions in equations

2.7 and 2.6. Since the background scatter is independent of whether the ion is bright
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Figure 4.1: Photon Distributions for Bright and Dark Ions with/out Background Scatter. Figure
4.1b shows one bright ion with and without the inclusion of background scatter for a
3ms detection time. Figure 4.1a is the same with a dark ion. The solid blue plot is
without the background scatter convolution, whereas the dashed red plot includes the
background scatter for both figures. Notice how the distributions are forced out from
the zero bin and their shape is changed.

or dark, the photon distribution will be the convolution of the dark or bright distri-

butions with the background scatter. The background scatter takes the form of a

Poissonian with a mean λbg:

Pbg(n) = Pλbg(n) =
e−λbgλnbg
n!

(4.1)

λbg is found by measuring the background scatter on the PMT for a given detection

time. Thus the convolution of 2.7 and 4.1 results in:

Pdark|bg(n) =
n∑
k=0

Pdark(k)Pbg(n− k) (4.2)

Further, the convolution of 2.6 and 4.1 is:

Pbright|bg(n) =
n∑
k=0

Pbright(k)Pbg(n− k) (4.3)

Equations 4.2 and 4.3 calculate the probability of measuring n photons summing

together all possible ways of getting n photons. In Figure 4.1 are plots showing

how the distributions are changed with the convolution of the background. As the

detection time increases, λbg increases linearly, shifting both Pbright|bg and Pdark|bg
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Figure 4.2: Photon Distributions for Multiple Detection Times with Background. Figure 4.2a has
the dark and bright photon distributions for one ion with a 0.8ms detection cycle con-
volved with the background counts. Figure 4.2b is the same, but with a 10ms detection
time instead. Notice that the dark and bright counts are forced out from the 0 bin.

over as is exhibited in Figure 4.2. Short detection times, < 1 ms, decrease the

overlap of the bright and dark state. Once the detection time is greater than 1ms,

the overlap begins to increase again due to the dark histogram moving out from

the zero bin. A plot of overlap vs. detection time can be seen in Figure 4.3. This

figure shows a minimum overlap of 4% for a detection time of 0.7 ms. This overlap

is essentially the probability that a single measurement can be misdiagnosed. This

number becomes relevant to us with the camera as this puts a lower limit on our

single-shot state detection error. From this calculation, the optimal detection time

would be 0.7 ms. At the same time, the small signal size limits the camera detection

time. For the camera, the signal must be large enough and spatially focused enough

to be distinguishable from the background fluctuations of the CCD. So, there is a

lower limit on the detection time. The plot of state detection error vs detection

time in Figure 4.4, shows a definite minimum state detection error from 1ms to 7ms,

with some local fluctuations. Even though a 1ms detection time seems to give a good

state detection error, the separation in the histograms is still small enough that slow,

slight fluctuations in the system might cause that error to change. From this data, it
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Figure 4.3: Theoretical State Detection Error vs. Detection Time. A theoretical plot of the over-
lap between the dark and bright state distributions versus detection time. For small
detection times, the overlap is significant, but quickly falls off for a minimum around
0.7ms. For longer detection times, the overlap begins to increase again.

1 2 3 4 5 7 9 11 13 15 206 8 10 17

6

8

10

12

14

16

Time @msD

St
at

e
D

et
ec

ti
on

E
rr

or

Camera State Detection Error vs. Detection Time

Figure 4.4: State Detection Error with Camera vs. Detection Time. Above is the measured state
detection error for selection of detection times. For short times, there is not enough
signal to separate the dark from bright state. Increasing the detection time improves
state detection until 7 or 8ms. After this, there is a definite trend of increasing error.
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appears that the best detection time would be 3ms since this gives the best rep-rate,

state detection error, and histogram separation.

4.1.2 Hardware Binning There are a few different ways that the CCD can be “read

out”. For this particular camera, the readout is an interline, dual-port readout. Thus,

after the camera is exposed, the accumulated charge on the pixels are shifted to a set

of pixels that have been masked so they are not sensitive to the light. These interline

pixels then move the charge down, one by one, pixel to pixel, to a shift register.

This shift register then moves each pixel worth of charge into a pre-amplifier and an

analog to digital converter.

Hardware binning is when the charge from one row is collected with other rows in

the shift register before they are digitized and when the shift register collects more

than one register pixel into the ADC before digitizing the charge or some combination

of the two. Effectively, each individual pixel is collected with the neighboring pixels

to form what are called super-pixels.

The benefits of hardware binning are two-fold: better signal to noise ratio and

faster readout times. The readout time can be calculated from the equation:

tR = (Nx ×Ny × (tsr + tv)) + (Ny × ti) (4.4)

where Nx is the number of horizontal super-pixels, Ny is the number of the vertical

super-pixels, tsr is the time required to shift one pixel of the shift register, tv is the

time required to digitize one pixel, and ti is the time to shift one line into the shift

register. When a region of interest or ROI is selected, namely a piece of the full

CCD, this equation can then be applied to the number of pixels in the ROI plus

some unavoidable overhead required to dump the unwanted rows. Readout time

decreases dramatically as the binning size increases. For example, the readout time

of the full CCD goes from 40ms with no binning to 11ms with 4x4 binning. Thus by
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Figure 15.  Non-Overlapped Mode Exposure and Readout  
Figure 4.5: Interline CCD Readout Diagram. Courtesy of Princeton Instruments
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Full Frame Binning  


Region of Interest 

Figure 17. Dual Port Readout: 2 × 2 Binning of Interline CCD  

Figure 18.  Dual Port Readout: LightField Settings for 2 × 2 Binning of Interline CCD  

Figure 4.6: 2x2 Binning Diagram. Courtesy of Princeton Instruments
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binning, we can improve the rep rate of the experiment to about 100Hz. This greatly

improves the number of experiments we can perform before the ion chain melts.

In the regime of small signals which are readout noise limited, binning improves

the signal to noise linearly with the number of pixels binned. This is important to

our system, since with a 3ms detection time, the mean number of photons collected

for a bright ion is only 45. By binning, we are able to increase our signal beyond the

readout noise, whereas without it, they are almost the same.

In general, the readout noise of the camera is a non-linear function relative the

binning size. In order to find out the magnitude of the readout noise, we first blocked

all light from the camera and took 1000 shots for different binning values. The CCD

rms shot noise when light is present is: g
√
N where g is a large gain factor and N

is the number of incident photons. And so, when light is incident on the CCD, the

signal-to-noise ratio has the form:

S/N =
gN√

g2N + d2
c +mσ2

r

=
N√

N + d2c
g2

+ (mσr)2

g2

(4.5)

where dc is the dark current, σr is the readout noise, and m is the number of pixels

read. Since the camera CCD is kept very cold with a set point of −25◦C, the dark

current noise is very small. Therefore,
(
dc
g

)2

≈ 0. Thus, if the camera were to be

exposed without any light falling on it, the signal would be zero and so the noise

present on the readout pixels would be:

Noise =

√
N +

(
dc
g

)2

+

(
mσr
g

)2

As

(
dc
g

)2

, N ⇒ 0

Noise⇒ mσr
g

If the consideration were to be limited to only one pixel, then the only noise present
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Table 4.1: Binning Noise Analysis 3ms DT

Binning σr/g S/N

1x1 33 1.3
2x2 59 4.0
4x4 71 5.2
8x8 147 5.5

16x16 291 5.5
32x32 490 4.5
64x64 1100 6.0

on the CCD would be the effective readout noise and so the standard deviation of

the pixel value would then be equal to this readout noise. Using this method, we

found the readout noise for the binnings to be as marked in Table 4.1. While the

readout noise begins to increase with the binning size, the signal-to-noise ratio is also

increasing due to the fact that as the binning increases, the ADC error has a non-

linear form which does not increase rapidly. Effectively, increasing the binning size

decreases the number of ADC operations which improves the signal-to-noise ratio. In

order to find the best binning for our experiment, we analyzed a bright ion at different

binning values. Upon examination of the histograms of a bright ion vs. a dark ion for

the different binnings, clearly binning improves the discrimination between the two

histograms. The plot in Figure 4.7 confirms that state detection improves as binning

size increases. From this data, the larger binning appears to improve our fidelity.

Yet, there is a limit on the binning due to the separation of the ions. If the super-

pixels are the same size as the separation of the ions, then the cross-talk discussed

in Chapter III overwhelms the dark ion signal. For example, the effective pixel size

with an 8x8 binning is 102x102µm. If the ion spot size at the CCD is 247µm, then

the best possible situation is where the ion signal is spread over a minimum of three

super-pixels, making the ion size in the data effectively 306µm. This greatly increases

the amount of crosstalk for large numbers of ions. If the binning is only divided in
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Figure 4.7: State Detection Error with Camera vs. Hardware Binning. Above is the measured state
detection error for increasing symmetric binning sizes. For small binnings, the detection
error is very large. Increasing the number of pixels that are included in a super-pixel
significantly decreases this error.

Table 4.2: Asymmetric Binning Noise Analysis 3ms DT

Binning σr/g S/N

4x8 77 5.0
4x16 84 4.8
4x32 97 6.6
4x64 120 6.2
4x128 160 6.5

half, the effective size of the ion goes down to 256µm. Crosstalk then limits the

binning to 4 pixels in the horizontal direction. This constraint does not effect the

vertical direction since the image of the ion chain is oriented horizontally on the

camera. The PI-Max3 1024i camera is capable of asymmetric binning. Thus the

signal-to-noise can be increased by binning in the vertical direction without affecting

the crosstalk. Figure 4.8 shows definite improvement over the symmetric binning

4x4, and the error further reduces as the vertical binning increases. Due to the

improvement in readout times for larger binnings, the best binning size is the largest

one possible. The only limitation might be that the binning should not be so large
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Figure 4.8: State Detection Error with Camera vs. Asymmetric Hardware Binning. Here is a
comparison of the state detection error to asymmetric binning sizes where the horizontal
binning size has been fixed at 4.

as to include many more pixels than the size of the ion in the vertical direction to

reduce scatter noise.

4.2 Camera Data Analysis

Once the best camera settings have been chosen, there is still a difficulty in de-

ciding whether the ion is bright or not. The first difficulty is deciding which super-

pixels are considered to be the signal from a given ion. The next difficulty is deciding

whether the ion is bright or dark for a given detection period. Both of these problems

will contribute to error in the state detection. We explored several methods of data

analysis in order to determine which gave us the best state detection.

4.2.1 Box-Sum Method The Box-Sum Method is as simple as the name suggests.

Each ion has a box on the CCD designated to be its signal and that box is summed

to determine whether the ion is bright or dark. The real crux of this method is

appropriately determining the box and choosing the threshold for where the ion
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is dark or bright. In order to fully flesh out the probability distribution, we first

initialize the ions into the |↓〉 via optical pumping and then detect. We repeat this

for a large number of times (typically 1000). We then do the same with the |↑〉.

Then each set of data is averaged and the dark average is subtracted from the bright

average. This is then the average signal from all of the ions. The average signal is

then filtered such that all values below a certain level are set to zero (typically 40%

the maximum value). The resulting image contains only the most significant light

from each ion. For each ion, a box region of pixels is then determined that maximally

covers the signal while minimizing the number of pixels selected.

Once the boxes have been selected, the ion region values are totaled for each of

dark shots and bright shots. These values are collected together into a histogram. In

order to prevent the dark state from being preferred over the bright state, a threshold

must be selected such that the error for the selection of the dark state is the same

as that for the selection of the bright state. To accomplish this, the threshold is

chosen by finding the point where the dark and bright histograms have the same

number of counts on the wrong side of the threshold. The state detection error is

then calculated by dividing the average number of shots which were misidentified

between dark and bright by the total number of shots taken.

This method works well for the analysis for a few ions in the trap due to its

simplicity and speed. State discrimination can be performed in real time without

slowing down the rep-rate of the experiment. The difficulty with this method is

its susceptibility to crosstalk. Since the box-sum method neglects any information

that might be present between the ions, any photons that fall on the box region

contribute purely to the brightness of that ion. In order to quantify how much each

ion is contributing to its neighbors, we first took 1000 shots of bright and dark states
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Figure 4.9: Signal Contribution of Ions to Other Positions. The top part of the figure pictures 1
ion with the box positions of the 9 ion image below. Beneath is the averaged signal
values of the 1 ion run at each of the 9 ion positions in terms of a percentage of the
central value. The green is a portion of the Gaussian fit to the ion signal on the CCD,
showing the width of the signal on the CCD.

for 1, 3, 5, and 9 ions with a fixed axial voltage setting. We chose an odd number of

ions so that the center ion would be at the same position for each data set. Then we

found the box size and positions for each of the multi ion data sets. These boxes were

then applied to the 1 ion data set and the values of each box were then compared.

If the data is taken with a binning width of 8 pixels, then the contribution to the

nearest neighbor is about 12% of the ion signal. If the binning width is reduced to 4

pixels, this is cut in half to 5.6%. This can be explained as the effective spot size of

the ion increases from 250µm to 300µm on the CCD when the binning is increased

from 4 pixel binning in the horizontal direction to 8 pixel binning, the amount of

signal overlap also increases.

4.2.2 Gaussian Fit Method: 1-D The Gaussian 1-D Fit method is a slightly more

complicated approach to discriminating a dark ion from bright. In this case, the

entire region of interest is summed down to a single row. This means that all of the

pixel values in the vertical direction are summed down so that only the horizontal

dimension remains. This single row is essentially a cross-section of the region of

interest. We use the vertical sum instead of just one row in the middle because the

ion signal is still much larger than the background, since the S/N ratio of each pixel
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is large for a binned super-pixel. More image contrast is gained by using the sum

than not. Once the region has been reduced to a single row, a sum of Gaussian

distributions are fit to the row, where there is a distribution for each ion. The

amplitude of the distribution is then discriminated in a similar way to the sums of

the box-sum method in order to discern whether the ion is bright or dark.

The calibration of the Gaussian distributions then replaces the determination of

the box size, but is accomplished in a similar manner. The ions are all pumped

bright and dark for a large number of shots each. The bright shots are averaged and

the dark shots are subtracted from the bright to leave just the signal. This averaged

signal is then reduced to a single row where the maxima are found. These maxima

are used as the centers of the Gaussian distributions. A sum of Gaussians for the

number of ions is then formed and fit to the averaged signal to find the width of each

ion:
N∑
i=1

Aie
− (x−xi)

2

w2
i +O (4.6)

where N is the total number of ions, i is the ion index, Ai is the ion signal amplitude,

xi is the ion center, wi is the width of the ion’s distribution and O is a constant

offset. The centers and width are then used to form a final sum where the only free

parameter is the amplitude of each term and an offset term, since a “dark” pixel has

some value. The final sum of Gaussian distributions is then applied individually to

each of the bright and dark shots and the histograms are compared in the same way

as the box-sum method. This results in an error and a threshold for each Gaussian,

determining what amplitudes are bright or dark.

Once the calibration has taken place, every data point is then reduced to a single

row and the final Gaussian sum is applied to each data point and each ion is discrimi-

nated as bright or dark according to the found threshold. The benefit to this method
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Figure 4.10: Summed Single Row Data and 1-D Gaussian Fit. Here is an example of a Gaussian fit
to the vertically summed data. Since the distribution takes into account the overlap
with the neighboring ions, the effect of crosstalk is diminished.

is that more information is taken into account by the distribution since the fit makes

use of the data between the ion signals. Thus, the effect is crosstalk is minimized

since the fitting already takes the signal overlap into account. The fitting cannot

compensate for crosstalk perfectly, since the actual distribution on the CCD is an

Airy ring and the Gaussian is just an approximation. The ability of the Gaussian fit

to better neglect crosstalk is evidenced by the fact that when the horizontal binning

is 8 pixels, while the box-sum method results in a nearest neighbor contribution of

12%, the fitting method has a value of 6%. When the horizontal binning is set to

4 pixels, this value goes down to 5.3%. For the 4 pixel binning width, the box-sum

method and the Gaussian 1-D fit are equivalent.

4.2.3 Gaussian Fit Method: 2-D A similar method can be applied to the entire

region of interest, not just a 1-D summed row. Now the sum of Gaussians takes the

form:
N∑
i=1

Aie
−
(

(x−xi)
2

w2
xi

+
(y−yi)

2

w2
yi

)
+O (4.7)
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where yi is the vertical center and wyi is the vertical width. At first glance, it appears

that using more spatial information should improve the resiliency to crosstalk. This

is not the case, since the high vertical binning value makes any 2-D fit very poor

and hard to discriminate. Since the S/N ratio goes down as the vertical binning is

reduced, the 2-D Gaussian fit ends up losing more discrimination than it gains. This,

when compounded with the fact that the readout time is slower and that the amount

of memory required is increased, means that it is better to use just a 1-D fit to the

summed horizontal row.

4.2.4 Inverted State Matrix The inherent difficulty with any method which fits

to the camera image is that each individual shot will not have enough photons to

sufficiently produce a distribution. For this reason, we explored a method which is

essentially a modification of the box-sum method. First, we fit the 1-D Gaussians to

the single row data and extract the parameters for each fit (the width and location

of the distribution). Then, for each individual Gaussian, we integrate the Gaussian

at each ion location, which is defined by the ions center and its width. Thus for ion

i, we find a box such that (xi − wi, xi + wi) is the ion region. The integration of

the Gaussian for each ion over every ion region produces an NxN matrix, where N

is the total number of ions. This matrix represents the amount of signal spill-over

from each ion at the other ion locations. If the matrix is formed such that each row

represents the signal contributions at a single ion location from every ion, then by

multiplying this matrix by the “perfect” state vector, we would extract our measured

values.
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
(4.8)

Here M1,M2, etc. represent the actual measured values, Cm,n represents the con-

tribution of ion m at ion location n, and I1, I2, etc. represents the perfect signal of

the ion without crosstalk. Thus, by inverting this state matrix, we can extract the

ideal signal from the measured signal. By calibrating with a large number bright ion

shots and a large number of dark ion shots in the same way as the box-sum and 1-D

Gaussian fit, we can find a threshold for the ideal values that best distinguishes the

dark ion from the bright ion.

Using this method, we found that while the state matrix inversion did well in

suppressing the crosstalk to the other ions, it was extremely susceptible to variations

in the background counts. These variations may arise from many different sources

(changing laser itensity, camera offset fluctuations, etc.). Thus, even though the

state matrix inversion was slightly better at suppressing crosstalk, the Gaussian fit

method has overall better resiliency against slow fluctuations in the system.

4.3 Crosstalk Analysis

In prior sections, the subject of ion signal crosstalk has been addressed, but not

been resolved. This error is a difficult value to measure, since the best measure would

be to have a single dark ion surrounded by a large number of bright ions. With the

current experimental setup, we are unable to prepare a state like this since it would

require the ability to individually address an ion, whereas our system currently uses

global beams. Thus, some other method of extracting the crosstalk is required. One
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Figure 4.11: Average Value of Correlation Function along Ion Chain. This is an average of the
correlation function, Ci,j , across the ion chain of 9 ions. The spikes in the function
occur at multiples of ΩRabit = π

2 , since these times have a high probability of having
a bright ion adjacent to a dark ion.

method is to use a correlation function. A correlation function in general is the

correlation between random variables at two different points in space or time. In

our case, the correlation function will be looking at the the correlation between ion

measurements as a function of ion position. We define the function as follows:

Ci,j ≡ 〈σiσj〉 − 〈σi〉 〈σj〉 (4.9)

where i and j are the ion position indices and 〈σi〉 is the expectation value of the spin

at the ith position. This correlation function is zero as long as there is no dependence

of the spins on each other, since the expectation value of the product should equal

the product of the expectation values when the spins are independent. The function

is therefore non-zero only when there is some entanglement between the two ions or

when there is signal spillover. In order to measure the amount of crosstalk, we took a

large string of ions (9 or 10 ions) and simply pumped them with the Raman beams for

increasing lengths of time so that they would perform Rabi oscillations. Thus each ion
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was oscillating between bright and dark but since there was no interaction between

the ions, there was no entanglement and the signals were independent of each other.

We then applied this correlation function to the discriminated ion signals from both

the box-sum method, the Gaussian 1-D fit method, and the state matrix inversion

method. The average plot of Ci,j vs time can be seen in the Figure 4.11. As is

demonstrated in the figure, the box-sum method has a greater sensitivity to crosstalk

than the fit method, while the state matrix inversion has the least sensitivity. The

crosstalk, unsurprisingly, is not uniform across the ion chain. There is an increase

in the correlation function when looking at ions 4 and 5 as compared to ions 1 and

2 (See Figure 4.12), which makes sense since the ions at the center of the chain end

up being closer together than the ions at the ends. In order to quantify the crosstalk

in general, we took the average of the correlation function across the ion chain and

over the duration of the measurement. The final result was:

σbox = 5.5%

σfit = 1.5%

σmatrix = 0.8%

where σbox is the error due to crosstalk with the box-sum method, σfit with the

Gaussian 1-D fit method, and σmatrix with the state matrix inversion method.
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(a) Correlation of Ions #1 and #2
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(b) Correlation of Ions #4 and #5

Figure 4.12: Correlation Function Values for Different Positions on Ion Chain. Figure 4.12a is a
plot of the correlation function of all three methods of data analysis for the first two
ions, #1 and #2. The same is plotted for the ions in the middle of the chain, ion #4
and #5, in Figure 4.12b. In both Figures 4.12a and 4.12b, the dotdashed blue line
corresponds to the box-sum method and the red dashed line corresponds to the 1-D
Gaussian fit and the solid purple line corresponds to the state matrix inversion
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CHAPTER V

Final Results and Conclusion

5.1 Final Results

The conclusion we take from Chapter IV is that the camera yields the best results

if we use a detection time of 3ms and an asymmetric binning of 4x64. These settings

should yield a state detection error of:

σcamera = 5% (5.1)

This final state detection error is actually lower than theoretical detection fidelity

discussed in section 4.1.1 due to the overlap of the bright state with the dark state

for a 3ms detection time. The discrepancy can be explained by the fact that the

calculated distribution was found for all detected photons, but due to the spatial

resolution of the camera, some of the background scatter on the CCD is ignored.

In order to quantify this final state detection error in comparison with the PMT,

we performed a similar analysis on the PMT. Just as with the camera, we prepared

the ion bright and dark for a large number of experiments, in this case 1000. We

then formed a histogram of all the photon counts from the PMT and found the bin

where error was the same for both bright and dark. From this, we calculated the

error of the PMT:

σPMT = 3% (5.2)

43



0 5 10 15 20
0

100

200

300

400

Number of Photons

Histogram of Dark and Bright Ion from PMT

Figure 5.1: PMT Histogram of Dark and Bright Ion. This a comparison of the dark and bright
histograms on the PMT for a detection time of 0.8ms.

The histogram can be seen in Figure 5.1.

In addition to the stated σcamera, there is a state detection error due to crosstalk

from the other ions. This error is dependent on the number of ions and the state of

the ions. When the ions are all dark or all bright, there is very little contribution of

the crosstalk to the state detection error. When the ions are in a state where half

are bright, half are dark, the crosstalk contributes to the state detection error. In

this worst case scenario, the total detection error will be:

σtotal =
√
σ2
camera + σ2

fit

= 5.2%

where σcamera = 5% and σfit = 1.5% is assumed based on the σfit found as the

average crosstalk found in section 4.3. At worst, crosstalk from other ions only

contributes 0.2% to the state detection error when the states are analyzed using a

1-D Gaussian fit. If instead the ion states were analyzed with the box-sum method,
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the total error would be:

σtotal =
√
σ2
camera + σ2

box

= 7.4%

Clearly the Gaussian fit improves our state discrimination significantly.

Therefore, the best possible state discrimination error which can be achieved is

σ = 5.2%. Of course, due to fluctuations in laser power and/or beam alignment,

this number fluctuates in actual working conditions, requiring the calibration of the

camera prior to taking data. These fluctuations typically only result in a deviation

of ±1%.

While the PMT still has better state discrimination for one ion and readout speed,

the benefits of the camera still outweigh the drawbacks. With the camera, we can

now watch each ion evolve individually during our experiment. A plot of 9 ions Rabi

flopping is shown in Figure 5.2, where each ion is a different plot. In this case, the

ion chain can be seen to have unequal illumination from the Raman beams, resulting

in a different Rabi frequency for each ion.

5.2 Conclusion

In conclusion, the Princeton Instruments PIMax3: 1024i ICCD camera is a sig-

nificant step forward for our experiment as it offers spatial discrimination and single

shot measurement. There is still room for improvement, however, since the single

shot state discrimination of the entire chain of 10 ions is still limited to only 60%.

There are still some possible methods of detection that might lead to better state

discrimination. For example, instead of using an ICCD with 1024x1024 pixels, which

has far greater resolution than we need, we might instead use an intensifier, which

would transform the 369 nm light into a greater number of green photons, and
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Figure 5.2: Many Ion Rabi Flopping. Above is a plot of ion numbers 1, 3, and 9 of a nine ion
chain performing 4.5 2π rotations or “flops”. The detection apparatus used was the
PIMax3:1024i camera. Due to a slight misalignment of the Raman beams, ion #9 is
rotating slightly slower than than ion #1. Such observations were not possible on the
PMT due to the lack of spatial discrimination.

image the result onto an array of PMTs such that the required resolution could be

reproduced. The benefits of this method would be the state detection and speed

of a PMT with the spatial discrimination of the camera. The drawback is that

such a device is still theoretical and any implementation would yield unforeseen and

potentially prohibitive difficulties.

Another means of improving state detection would be to “shelve” the dark state.

Shelving would involve pumping the dark ions into some other state far detuned

from the bright state. Detection would then consist of light resonant with the bright

transition and also light resonant with the |↓〉 to the 2P1/2 |F = 1〉 transition, which

couples back to the bright transition. The only theoretical limitation on the detection

fidelity would be the fidelity of the coupling of the dark state to the shelving state,

since we would no longer have to selectively excite the hyperfine sub-manifold, but

could blast the entire 2P1/2 state during detection. Considering that this theoretical
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shelving state would have to couple poorly or not at all to the dark state, shelving

the ion might be as bad as or even worse than the current state detection.

While there is room for a better detection system, the amount of physics available

to us with the camera is still vast. With only PMT detection, we were not able to

study dynamic systems. The ICCD camera enables us to study the dynamics of

small quantum systems. Better understanding of these small systems will enable us

to improve our comprehension of larger system dynamics and will yield real world

ramifications.
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