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ABSTRACT

Advanced Ion Trap Development and Ultrafast Laser-Ion Interactions

by

Martin John Madsen

Chair: Christopher R. Monroe

All of the essential elements for a trapped ion quantum computerhave been

demonstrated in previous experiments. There are, however, many technical chal-

lenges to scaling the number of quantum bits from the current state-of-the-art (about

8) to the number of qubits needed for practical quantum computing. Although there

is experimental evidence supporting one possible method (usingcw laser pulses and

common motional modes as the ion interaction) for deterministic ion entanglement,

it is not known if that will ultimately be the most practical method for building

a large-scale quantum computer. One model for scalable quantum computing with

trapped ions calls for large interconnected arrays of small traps. Several advance-

ments reported in this work include the development of threelayer alumina traps as

well as MEMS fabricated microtraps. Other models for scalabletrapped ion quan-

tum computing do not call for local entanglement or call for relaxed constraints on

the motional control of the ions. These proposals require the useof ultrafast laser



pulses interacting with the ions. This work reviews several experiments that explore

the interaction between the ultrafast laser and single trappedions including early

indication of ultrafast control and entanglement between a single ion and a single

photon frequency qubit.
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ABSTRACT

All of the essential elements for a trapped ion quantum computerhave been

demonstrated in previous experiments. There are, however, many technical chal-

lenges to scaling the number of quantum bits from the current state-of-the-art (about

8) to the number of qubits needed for practical quantum computing. Although there

is experimental evidence supporting one possible method (usingcw laser pulses and

common motional modes as the ion interaction) for deterministic ion entanglement,

it is not known if that will ultimately be the most practical method for building

a large-scale quantum computer. One model for scalable quantum computing with

trapped ions calls for large interconnected arrays of small traps. Several advance-

ments reported in this work include the development of threelayer alumina traps as

well as MEMS fabricated microtraps. Other models for scalabletrapped ion quan-

tum computing do not call for local entanglement or call for relaxed constraints on

the motional control of the ions. Both of these proposals require the use of ultrafast

laser pulses interacting with the ions. This work reviews several experiments that

explore the interaction between the ultrafast laser and singletrapped ions including

early indication of ultrafast control and entanglement between a single ion and a

single photon frequency qubit.
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CHAPTER I

Introduction

The �eld of quantum computing was, to a large degree, initiated by Richard

Feynman who �rst proposed that quantum bits (or qubits) could beused to perform

computations [1]. In addition, early work by David Deutsch showed that there are

certain algorithms for which a quantum computer can be fasterthen a classical

computer [2, 3]. However, the level of interest in quantum information and quantum

computing remained low until the work by Peter Shor and others in the mid-1990s

that showed an exponential speed-up on a key algorithm for factoring large numbers

using a quantum computer [4, 5, 6, 7, 8]. Combined with a proposal for using trapped

ions as the qubits for such a quantum computer, the �eld of trapped ion quantum

information was initiated [9, 10].

Over the last ten years many key aspects and components of scalable quantum

computation have been demonstrated in various trapped ion systems [9, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. These components have relied on several

schemes for using quantum control of local entanglement gatesthat rely on the

coupled motion of ions in a strong trap. Because these schemes require a pure state

of motion, or at least that the ion is in the Lamb-Dicke limit, there are strong

technical limitations to the number of ions that can be utilized in a given local

1



trap. There are two directions that could work around these technical limitations.

One is to use an array of interconnected ion traps, shuttling small numbers of ions

through an \interaction zone" for the quantum gates and thenstoring the ions in

auxiliary traps until needed [23]. Chapter III describes theuse of computer modeling

software to aid in the design of more complicated trap geometries. Chapters IV

and V cover two separate advances in advanced ion trap development that constitute

progress in making these trap arrays. The other direction is to use ultrafast laser

pulses interacting with trapped ions instead of the typical switched cw lasers [24,

25, 26]. By using ultrafast laser pulses, the interaction with theion takes place on

a time scale much faster then the ion motion. In addition, the useof ultrafast laser

pulses to excite the ions could lead to networks of remotely entangled ions through a

photonic coupling [27, 28, 29, 30], another possible architecture for scalable trapped

ion quantum computing.

The �rst area of development for scalable trapped ion quantum computing is

advanced ion trap development. Although the original proposal for trapped ion

quantum computers called for all the qubits in one long linear trap [9], the techno-

logical di�culties in implementing that protocol have steered the research community

away from that proposal. Rather, it has been shown that small numbers of ions in

larger, segmented traps have been shown to be a successful, and possible scalable

solution [31, 32, 18, 33]. In a sense, this transfers some of the technical di�culty

in making a trapped ion quantum computer from the laser to the trap, making it

necessary to have much more complicated trap structures.

Building toward more complicated structures, Chapter IV willdescribe a model for

this type of trap as well as two possible implementations and the successful operation

of one of those types [32]. Chapter V describes two new ion trap designs: a three-

2



layer gold-on-alumina linear trap and a MEMS-fabricated GaAs/ AlGaAs monolithic

linear microtrap [33]. The three-layer design was a �rst step inbuilding a trap that

has solved the topological problem of making junctions in rf traps. By placing the

rf electrode on the center layer, it is possible to make a wide variety of junctions

without compromising the trapping capability. The microtrap design is a new way

of fabricating a linear trap that is an order of magnitude smaller then current trap

structures, yet is scalable using existing semiconductor fabrication techniques.

The current model of entanglement via slow-pulsed cw lasers interacting with

ions in a strong linear trap has been very successful in working with a few qubits.

But there are other proposals that have yet to be tested experimentally. These

proposals for trapped ion quantum computing include an ultrafast gate using a series

of ultrafast laser pulses to kick the ion in phase space on a time scale faster then

the trap frequency and the excited state lifetime. In addition, there are proposals

to use probabilistic ion-photon entanglement to build a cluster-state type network

for scalable quantum computing. Both of these proposals require control of the ion

motion and quantum state using ultrafast laser pulses, a new area ofresearch.

Chapter VI describes experiments using a mode-locked pulsed laser to make a pre-

cise measurement of the excited state lifetimes, to perform a newtype of broadband

laser cooling (Chapter VII), and to measure coherence in the ionexcited state as well

as indirect evidence for ion-photon entanglement involving the ground state hyper-

�ne qubit and a resolved frequency photonic qubit (Chapter VIII). All three of these

results are key components in building both the deterministicultrafast entanglement

as well as in building the remote ion cluster state networks.
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CHAPTER II

Ion Trapping Fundamentals and Equipment

2.1 Ponderomotive Potential

2.1.1 Pseudopotiential Approximation. The rf ion trap is the time average behavior

of inhomogeneous oscillating electric �elds [34]. Consider acharged particle moving

in one dimension in an oscillating electric �eld of the form

E(z) = E0(z) cos 
 T t (2.1)

whereE0(z) is the spatial dependence of the electric �eld. Consider the case in which

the electric �eld is non-uniform so the@E0(z)=@z6= 0. The equation of motion for

an ion of chargee and massm is

m•z = Fz(t) = eE(z): (2.2)

A solution for small oscillations about some average position of the ion �z is desired

such that the position is z(t) = �z + � (t). The small perturbation as a function of

time is thus

� (t) = � � 0 cos 
 T t (2.3)

with amplitude � 0 = eE0(z)=(m
 2
T ). The electric �eld is expanded about the average

ion position �z, looking at the time average motion of the ion. Keeping only the �rst
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order, the electric �eld is

E0(z) � E0(�z) +
�

@E0(�z)
@�z

�
� (2.4)

where it was assumed that the amplitude of the motion is small compared to the

characteristic size of the electric �eld inhomogeneity, neglecting higher order terms

(j� � [@E0(�z)=@�z]j). Averaging the force on the ion over one period, one �nds

�F (�z) = e
D

E0(�z) cos 
 T t +
h

@E0 (�z)
@�z

i
� 0cos 
 T t

E

= e
h

@E0 (�z)
@�z

i
h� 0cos 
 T t i

(2.5)

This can now be substituted into the equation of motion for the small perturbation

(Eq. 2.3) and one �nds

h� 0cos 
 T t i = �
1
2

� 0 = �
E0(�z)
2m
 2

T
: (2.6)

The average force on the ion (in the limit of small perturbations) is thus

�F (�z) = �
e[@E0(�z)=@�z] E0(�z)

2m
 2
T

: (2.7)

This can also be written as a function of a pseudopotential (z) � eE2
0(z)=(4m
 2

T )

which represents the time-average potential such that the average force is

�F (�z) = � e
@ (�z)

@�z
: (2.8)

Because the time average behavior of the ion is only dependenton the spatial char-

acteristics of the electric �eld amplitude, the trap can be modeled using electrostatic

simulations and the electric �eld E0(�z) can be used to describe the general ion be-

havior (see Chapters III and IV). The ion motion is characterized by an oscillation

frequency

! z =
e

2m
 T

�
@2E0(�z)

@�z2

� 1=2

(2.9)
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This result can be generalized to three dimensions so that the average force on an

ion near equilibrium (�x; �y; �z) is

�F (�x; �y; �z) = � er  (�x; �y; �z);  (�x; �y; �z) �
�
e=(4m
 2

T )
�

E 2
0(�x; �y; �z): (2.10)

2.1.2 Mathieu Equations. If one considers the type of quadrupole �elds commonly

used in ion trap experiments, the ion motion can be described in more detail. The ion

is con�ned in the transverse (x; y) plane by the oscillating rf electric �eld described

near the center of the trap by the potential [35]

� =
V0 cos 
 T t + Ur

2

�
1 +

x2 � y2

R2

�
(2.11)

where the potential V0 is the oscillating potential amplitude, Ur is a static o�set

potential, and R is the characteristic dimension of the trap. The ions are con�ned

along the trap axis (z) by some static potential (of characteristic lengthz0) which is

quadratic near the center of the trap.

� s =
U0

z2
0

�
z2 �

1
2

�
x2 + y2

�
�

=
m
2e

! 2
z

�
z2 �

1
2

�
x2 + y2

�
�

(2.12)

The frequency of oscillation along thez-axis is not dependent on the rf frequency


 T and is ! z =
p

2eU0=(mz2
0), for simple harmonic oscillation. In thexy plane,

however, the ion motion is more complicated. Combining bothEq. 2.11 and 2.12,

the equations of motion can be written in the form of the Mathieu equations:

d2x
d� + [ ax + 2qx cos(2� )] = 0

d2y
d� + [ ay + 2qy cos(2� )] = 0

(2.13)

where � � 
 t=2, and the coe�cients are ax = (4 e=m
 2
T )(Ur =R2 � U0=z2

0) and

qx = 2eV0=(
 2
T mR2), ay = � (4e=m
 2

T )(Ur =R2 + U0=z2
0), and qy = � qx .
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The solutions to the Mathieu equations are well known [36]. Inthe pseudopoten-

tial approximation (where jax j ; q2
x � 1) the equations of motion in both thex and y

directions are, to �rst order in ai and to second order inqi ,

ui (t) = u0i

�
cos (! i t + ' i )

h
1 +

qi

2
cos(
 T t)

+
q2

i

32
cos(2
 T t)

�
+ � i

qi

2
sin(! i t + ' i ) sin(
 T t)

�
(2.14)

whereui = x; y, u0i depends on initial conditions and

! i = � i

 T

2
; � i '

q
ai + q2

i =2: (2.15)

There are several parts to the motion of the ion. The large, slowoscillations at

frequencies! i are the same as the oscillation frequency in the pseudopotential ap-

proximation from above (Eq. 2.9) for the electric �eld givenby Eq. 2.11.

2.2 Doppler Cooling

Laser-ion interactions are currently the only method for executing quantum in-

formation experiments in trapped ion systems. In order to carryout many of these

interactions over long periods of time, the ions must be well localized. It is necessary,

therefore, to cool the ions from the thermal temperatures when they are �rst loaded

in the rf trap to cold, localized ion crystals. This is done usingDoppler cooling

techniques that are now ubiquitous in atomic physics experiments. Included here is

a brief overview of the theoretical background of the Doppler cooling technique.

2.2.1 Atomic Scattering Rate. Atom-laser interactions can be described using the

Optical Bloch Equations and the density matrix formalism including spontaneous

emission [37, 38, 39, 40]. For a simple two level atom, the rate atwhich the atom

absorbs and then re-emits a photon can be written as a scattering rate


 p =
s0
= 2

1 + s0 + (2 �=
 )2
(2.16)
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for an atom with excited state natural linewidth 
 and saturation parameter

s0 � I=I s: (2.17)

The laser intensity on the atom isI and the atom has a saturation intensity char-

acteristic of the particular transition (at wavelength � and with lifetime � = 1=
 )

of

I s �
�hc
3� 3�

: (2.18)

The scatter rate (Eq. 2.16) for an atom that is moving with velocity ~v is shifted due to

the Doppler e�ect ! D = � ~k � ~v (note that a velocity opposite to the laser wavevector

~k produces a positive Doppler shift). The scatter rate is therefore dependent on the

ion velocity and is


 p =
s0
= 2

1 + s0 + (2( � � ! D )=
 )2
: (2.19)

2.2.2 Doppler Cooling. The Doppler shifted scatter rate (Eq. 2.19) gives rise to

a velocity dependent force that behaves like a classical damping force. The atom

experiences and average force due to the scatter of photons that is the momentum

of the photon times the scatter rateFsp = �hk
 p. Substituting the Doppler-shifted

scatter rate gives

Fsp = �
�hks0
= 2

1 + s0 + (2( � � ! D )=
 )2
: (2.20)

The force acts along the direction of the laser wavevector suchthat an atom moving

toward the laser feels an opposing force. However, when the atommoves away from

the laser, the Doppler shift is such that the photon scattering stops and the atom

does not feel the force. Three pairs of counter-propagatinglaser beams are thus

required to cool a free atom in all directions. However, for a trapped ion only one

beam is required as long as the laser wavevector is not parallel to any of the trap

8



principal axes [40]. The Doppler force results in a tiny displacement of the ion from

the trap center.

2.3 Micromotion Detection

Although the motion described in Section 2.1 is approximatelyharmonic, the ion

motion also has the small oscillations at the trap frequency. These oscillations are

commonly referred to as \micromotion". There are two types of micromotion: some

micromotion is unavoidable and comes from the equations of motion of an ion in a rf

trap. The other type of micromotion, called \excess" micromotion, comes from either

a static bias �eld that pushes the ion o� of the rf node, or from a phase di�erence in

the rf �elds applied via di�erent electrodes. It is much more di�cult to control that

phase, although if proper precautions are taken (such as matching the path length

to the rf electrodes and using large �lter capacitors to matchthe rf potentials) this

problem can be safely ignored.

There are several techniques that can be used to measure and thennull the excess

micromotion of an ion in the trap [41]. The �rst is to use the Doppler broadening

of the absorption lineshape from the velocity of the excess micromotion. The second

is to use a cross-correlation technique that measures preferential ion absorption at

the trap frequency. Another technique that can be used is an amplitude-modulation

of the rf while observing the physical position of the ion in the trap. After nulling

micromotion using a combination of these techniques, the ion should be at the rf

node.

The motion of the ion can be written (after solving the Mathieuequations,

Eq. 2.13) in the following manner (see Eq. 2.14):

ui (t) = ( u0i + u1i cos (! i t + ' si ))
h
1 +

qi

2
cos 
 T t

i
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where i = x; y; z are the three principal axes in the trap,u1i is the equilibrium

position of the ion in the center of the trap,u0i is the o�set position of the ion due

to extra static electric �elds pushing it o� the center,

qx = � qy = 2eV0=mR2
 2
T � 0:45; qz = 0

for typical trap spacings and voltages in the lab, and 
T � 50 MHz. The phase

factor ' si is determined by the initial conditions of the trap and is notimportant to

the analysis of excess micromotion.

The interaction between the Doppler cooling laser and the micromotion of the ion

can be characterized by a parameter

� =
klaser

2
[u0xqx cos� x + u0yqy cos� y] ;

whereklaser is the laser wavevector and� i is the angle between the laser wavevector

and the x and y principal axes of the trap (typically about 45 degrees). Thispara-

meter can be approximated as� � 5:1(u0x + u0y) where the o�set positions are in

micrometers.

For the alumina linear trap (Section 5.1), the laser has a component along both

x and y, however displacements along a rotated axes illustrate the proper technique

to use for minimizing micromotion. Figure 2.1 shows the electric �eld quadrupole

lines for the alumina traps, indicating that the �rst-order Doppler shift is sensitive

to displacements in thex0 direction, as the ion micromotion in that direction has a

velocity component along the laser wavevector [41]. Displacements in they0 direction

do not lead to velocity dependent scattering and the amplitude modulation technique

must be used.

For an ion displacement in thex0 direction of Fig. 2.1, the lineshape of the excited

state can be written in terms of a Bessell function expansion (normalized to one).
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Figure 2.1: The principal axes of the linear trap. The electric �eld vectors for the trap point along
the principal x,y axes. The laser wavevector~k also has a component along both axes, a requirement
for 3D Doppler cooling. However, small displacements from the trap center alongthe rotated axes
x0,y0 show the sensitivity to di�erent micromotion minimization techniques.

The expansion is

Pe =
1X

n= �1

J 2
n (� )

(! atom � ! laser + n
 T )2 +
� 


2

� 2 ;

where
 is the linewidth of the excited state. The normalized lineshape P0
e = 4Pe=
 2

is shown as a function of the laser-atom detuning over the linewidth ( ! atom � ! laser )=
 .

The change in lineshape is a �rst order Doppler e�ect due to the micromotion velocity.

Since the linewidth of cadmium (
 � 60 MHz) is approximately the same as the

trap frequency, the absorption lineshapes are di�erent from those in reference [41].

Figure 2.2 shows the lineshape for small� , or small displacements from the rf node.

Note that there is an obvious broadening even for very small displacements of the

ion from the rf node. For much larger values of� , shown in Fig. 2.3, the lineshape

almost disappears.

The resonant scattering lineshape can thus provide information and a feedback

mechanism for large displacements from the rf node. The ion position can be adjusted

using compensation electrodes until the lineshape begins to look like a Lorentzian.
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Figure 2.2: Micromotion broadened lineshape for small amplitude. E�ect of micromotion on the
excited state lineshape shown for a variety of parameters of� .

Figure 2.3: Micromotion broadened lineshape for large amplitude. E�ect of micromotion on the
excited state lineshape shown for a variety of parameters of� , for much larger � .
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At that point, the cross-correlation technique, a more sensitive measure of the excess

micromotion, can be used.

The second method for detecting micromotion is to use the \cross-correlation"

technique where the 
uorescence of the ion is modulated by thetrap frequency in a

�rst-order Doppler shift [41]. The 
orescence is correlated with the applied trap fre-

quency and collected using a time-to-digital converter. Themodulated 
uorescence

signal can be written

Rd

Rmax
=

1

1 +
�

1 � 2� 
 T

 sin(
 T t + � )

� 2

where the laser detunig from the atom is set at
= 2 where the modulation signal is

strongest. The phase� is also dependent on the micromotion, but not important

given our method of detecting the modulation. The modulation of the 
orescence is

shown in two �gures, Fig. 2.4 and Fig. 2.5 for two di�erent ranges of the parameter

� . As seen in Fig. 2.5, for larger values of� , the cross-correlation signal becomes

di�cult to interpret. Thus this techniques is only useful for small ion displacements.

This technique is implemented in Labview using the ACAM TDC in the program

\TDC monitor.vi". The TDC has a time resolution of 125 ps but the data is put

into 20, 1 ns bins. The histogrammed data is refreshed and averaged over a period

of about 10 seconds, with a form of analog persist to smoothly average the data. A

screen shot of the program is shown in Fig. 2.6.

To set up the TDC micromotion detection, the reference signal from the back of

the HP 8640D signal generator that powers the trap needs to be connected to the

STOP signal on the TDC connector box. The signal is typically too small for the

TDC to read, so it is put through an ampli�er and then attenuated. Check on a

scope before connecting that the signal is approximately 3 V amplitude. The signal
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Figure 2.4: The cross-correlated 
orescence signal for small� .

Figure 2.5: The cross-correlated 
orescence signal for larger� .
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Figure 2.6: Screen shot of the micromotion detection program in LabView \TDC Monitor.vi".

15



from the PMT or the Quantar is connected to the START input. The TDC starts

its timing when a photon is received and then stops when the rising edge of the

trap rf crosses zero. The program collects these timing data andputs them into

a histogram, binned by 1 ns, that is as wide as the period of the rf. A sinusoidal

lineshape is evidence of excess micromotion.

Again, the micromotion can be minimized by adjusting the compensation elec-

trodes until the sinusoid signal disappears. There is a phase change of the cross-

correlation signal as the ion moves across the rf node. This canbe used as a gauge

if the compensation electrodes have pushed the ion too far in one direction.

The �nal technique to minimize excess micromotion is the amplitude modulation

of the rf drive voltage. Displacements in the ion position fromthe rf node that do

not lead to a micromotion velocity component along the laser wavevector can not

be measured using either of the previous techniques. However, ifit is possible to

observe the ion along a speci�c direction, displacements can bevisually identi�ed

by modulating the amplitude of the rf voltage sent to the trap. For example, dis-

placements in thex0 direction in the four-rod linear trap shown in Fig. 2.7 lead toa

micromotion velocity orthogonal to the laser wavevector. However, a displacement

in that direction is visible to the observer from they0 direction.

The micromotion is minimized by applying a few Hz amplitude modulation signal

to the HP8640D signal generator. When the rf trap is weakened, by lowering the

voltage, the static o�set electric �eld pushes the ion further from position of the rf

node. This appears as a \wiggle" in the ion motion at the amplitude modulation

frequency. The ion motion is minimized by adjusting the compensation electrode

voltages until the motion stops. The sensitivity of the measurement can be increased

by increasing the modulation amplitude of the rf voltage. It is often necessary to
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then repeat the measurement of the excess micromotion in the other direction using

the resonant 
uorescence techniques. Several iterations of these techniques can be

used to minimize the excess micromotion.

xy

Ek

Observation
Lens

x

y
rf

rfgnd

gnd

Figure 2.7: Four-rod linear trap electric �elds. Ion displacements from the rf node in the y0

direction can be detected using the resonance 
uorescence techniques. However, displacements in
the x0 direction must be measured using the amplitude modulation technique.

2.4 Vacuum Chamber

Trapped ion quantum computing experiments require very high vacuum in order

to ensure that background collisions do not a�ect the ions used in the experiment.

Practically, this means that pressures on the order of 1� 10� 11 Torr are needed in the

vacuum systems. At this pressure, the collision rate with background atoms is low

enough (less then one per minute) that experiments at several kHz are not a�ected
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by background collisions. Ion lifetimes in the trap at these pressures range from a

few hours to a few days.

Thus, the vacuum system used must be capable of reaching and maintaining this

ultra-high vacuum (UHV) environment. The basic procedure that will enable the

system to reach this regime involves 1) pre-baking all steel vacuum parts used the the

chamber, 2) ultrasonic cleaning of all parts that will be used to make the chamber, as

well as all components put inside the chamber, 3) maintaininga clean environment

while assembling the chamber, 4) using only bakable parts in thechamber (200

degrees Celsius), and 5) baking the chamber at a hot enough temperature for a long

enough period of time. The �nal bake primarily removes the water stored in the

stainless steel lattice. Each of these points will be addressed in turn. A schematic

diagram of a typical vacuum chamber is shown in Fig. 2.8.

Figure 2.8: A schematic overview of the entire vacuum system.

2.4.1 Pumps and Gauges. The �rst step is to assemble the necessary parts for the

vacuum chamber, ensuring that all parts can be baked in an ovenat the required

200 degrees C. The primary vacuum pump for chambers used in thelab is a 20

L StarCell ion pump (Varian part number 9191145, $1500, negative polarity with

ferrous magnet). A bakable cable (Varian part number 9290705 $355) is used to
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connect the vacuum pump to the controller during the �nal bake and a MidiVac ion

pump controller (Varian part number 9295000, $1800 with three voltage settings)

is used to provide the high voltage to the ion pump. This pump does a good job

of removing background helium and hydrogen once the system hasbeen pumped

out and can maintain an environment of below 5x10� 12 Torr. A nude Bayard-Alpert

ionization gauge with tungsten �lament is used to measure the pressure in the vacuum

system (Varian part number 9715014, $450). The UHV-24p gauge is sensitive down

to 5x10� 12 Torr. Again, a bakable cable is used to connect the gauge to the controller

(Varian part number L64403025, $325) and the SenTorr gauge controller is used with

degas option (Varian part number L91103010100, $1195).

In addition to the StarCell ion pump, a titanium sublimation pump is included

in the vacuum system. This pump works by heating a titanium coated �lament to

the point where the titanium is ejected and coats the surrounding vacuum chamber

walls. The titanium on the walls then reacts chemically with the background gas

in the vacuum chamber, removing it from the vacuum and bonding it to the walls.

A three �lament pump (Duniway part number TSP-275-003, $625) is installed in

the chamber with cable (Duniway part number TSP-CABLE, $290)and controller

(Duniway surplus part number 922-0032, $725). Note that the cable for the titanium

sublimation pump is not bakable because the sublimation pump isnot used during

the �nal bake. The titanium sublimation pump will be run only occasionally, as the

vacuum system pressure requires, to return to lower pressures if thelifetimes in the

trap appear to be getting shorter.

Another option for the vacuum system is to add a residual gas analyzer (RGA)- a

mass spectrometer. This enables measurement of the backgroundneutral atoms that

are used in the system. It is not necessary to do this, but it providesan additional
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check that the ovens are providing enough neutral atoms. One option for the RGA

is a Stanford Research Systems RGA ($5000).

2.4.2 Hardware. Table 2.1 contains a listing of the necessary vacuum hardware for

our system. The Con
at system of assembly for vacuum chambers contains a sharp

knife edge on each 
ange. These knife edges are compressed into soft copper gaskets

forming a UHV compatible, bakable seal. It is therefore necessarythat the knife

edges on all parts be inspected carefully to ensure that there are no defects (see Fig.

2.9). These defects will lead to leaks in the vacuum chamber. With the exception of

the pumps, all of the steel vacuum hardware must be pre-baked. This will turn the

steel from a silver color to more of a gold-bronze color, an indication of a chromium-

oxide layer that reduces the water di�usion from the stainless steel parts [42]. The

vacuum viewports, gauges, pumps, and feedthroughs are not typically pre-baked.

The parts are pre-cleaned with acetone and then wrapped withaluminum foil

(shiny side toward the parts). They are then baked in an oven at 250 degrees Celcius

for about a week or until they turn the nice bronze color. Caremust be taken when

baking to not damage the knife edges on the parts.

knife edge

copper gasket

Figure 2.9: Knife edge illustration. An illustration of how the knife edge forms a seal on the copper
gasket

Not included in Table 2.1 are the electrical feedthroughs or the viewports since
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Item (Size indicates CF 
ange) Part Number Vendor Quantity Cost
2.75 in. 90 degree elbow EL-275 Duniway 1 $55
2.75 in. tee TE-275 Duniway 1 $100
2.75 in. 5-way cross 406002 MDC 1 $200
2.75 in. cap F275-000N Duniway 3 $12
2.75 in. nipple NP-275 Duniway 1 $50
2.75 in. to 1.33 in. reducer tee 404044 MDC 2 $75
4.5 in. to 2.75 in. zero-length reducer A450X275T Duniway 1 $77
4.5 in. nipple NP-450 Duniway 1 $175
4.5 in. to 2.75 in. reducer nipple FA04500275 Varian 1 $120
Magdeberg Hemisphere MCF450-MH10204/8-A Kimball Physics 1 $935
2.75 in. bakable valve 9515027 Varian 1 $655

Table 2.1: Vacuum Hardware.
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those do not get the same pre-bake as the other vacuum parts. In addition, the parts

listed in Table 2.2 are necessary for assembling the vacuum system.

Item (Size indicates CF 
ange) Part Number Quantity Cost
2.75 in. bolts, 1.25 in. long thread with hex nuts SBN-28-212 3 $25
2.75 in. (tapped 
ange) bolts, 0.875 in. long SBX-28-087 1 $15
1.33 in. (tapped 
ange) bolts, 0.5 in. long SBX-32-050 1 $11
4.5 in. bolts, 1.5 in. long SBN-24-200 1 $32
4.5 in. (tapped 
ange) bolts, 1.25 in. long SBX-24-125 1 $25
1.33 in. copper gasket G-133 1 $12
2.75 in. copper gasket G-275 2 $14
4.5 in. copper gasket G-450 1 $22

Table 2.2: Parts needed for assembly of vacuum chamber. All parts numbers and pricesare for
Duniway. All prices for bolts are 25/pkg and for gaskets are 10/pkg.

2.4.3 Vacuum Chamber Cleaning. As was mentioned above, the �rst step in as-

sembling the vacuum chamber is to pre-clean and then pre-bakeall vacuum parts.

After baking, it is important to re-clean all parts intended for the chamber. This can

be done in a variety of ways, but it is important to use acetone and an ultrasonic

cleaner to ensure that no organic residue remains on the inside of the vacuum parts.

A small ultrasonic cleaner is used that �ts most of the vacuum parts for cleaning. It

is important to use a high grade acetone as well, or there is a risk of contaminating

the chamber with residual organic chemicals in the acetone. Typically HPLC grade

acetone is good enough (available from Fisher Scienti�c partnumber A949-4, $86.30

for 4L bottle) and close to 16L is usually needed for cleaning anentire chamber.

Thought must be taken in assembling the vacuum system so that the parts are

assembled in a logical order. Usually this means putting together small pieces �rst

and working toward larger pieces. In addition, care must be taken to ensure that the

rotatable and non-rotatable ConFlat 
anges are matched in such a way as to allow

assembly of the system as desired. Usually each piece comes with one end rotatable

and one not.

In addition to cleaning, precautions must be taken to ensure that no foreign
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organic particles enter the vacuum system such as hair, skin 
akes, etc. It is good

practice to dress in a long sleeve lab coat, use a hair net to gather hair up and use a

face mask to keep particulates out of the chamber. Gloves must be worn at all times

to keep body oils out of the chamber. Note that latex gloves aresoluble in acetone

and if they are used in conjunction with acetone, latex residuecan be left on the

vacuum parts.

The copper gaskets may be cleaned in acetone if their cleanliness is suspect.

Typically if precautions are taken to not touch them out of their packaging, they

can be used without pre-cleaning.

ConFlat 
ange assembly.

Because the seal in a ConFlat 
ange is made in the soft copper gasket around

the knife edge (Fig. 2.9), the seal must be evenly tightened. This corresponds to

tightening each 
ange using a star pattern as illustrated in Fig. 2.10. Also, make

sure that the leak-detector grooves on each 
ange line up. This will facilitate leak

testing the system. The 2.75 inch diameter 
anges are designed tohave 12 ft-lbs of

torque on each bolt (7 ft-lbs for the 1.33 inch 
anges and 15 ft-lbs for the 4.5 inch


anges), but it has been found that if the 
anges are tightenedto the point where

the copper gasket is no longer visible between the 
anges, or near that point, the

joint is sealed.

If there are plans to remove the 
ange in the future, a small amount of moly-

disul�de grease can be placed on the bolts. But, since most greases are not UHV

compatible, extreme care must be taken to ensure that none of the grease gets into

the chamber.

It is helpful, when assembling the 1 1/3 inch ConFlat 
anges,to use a shortened

Allen key. By reducing the length of the key that is inserted into the bolt, it is easier
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to get the necessary torque to tighten the gasket.

2.4.4 Viewports. The choice of materials for the viewports depends on the particu-

lar ion used in the system. Some ions (such as barium, strontium andcalcium) have

cycling transitions in the blue or visible spectrum. With these,it is convenient to

use less expensive materials. However, the ion used in this research(cadmium) along

with beryllium, mercury and zinc, have cycling transitions in the ultraviolet. Be-

cause normal glass strongly absorbs in the UV, suprasil windows are used. Suprasil

is an amorphous quartz-like material with low absorption in the range of 200 nm

wavelength light. There are several companies that make suprasil windows such as

Insulator Seal, Inc. The 4.5 inch 
ange window (ISI part number 9722207 $1125)

has a viewing are of 2.69 inches and has a clearance of 0.41 inches from the knife

edge surface to the inside of the window. This clearance space means that the actual

trap sits outside the hemisphere and close to the window. It is advantageous to put

the trap as close to this window as possible to facilitate di�raction-limited imaging

of the ions using low f/# microscope objectives. The other 2.75 inch 
ange windows

are also from ISI as well (part number 722205 $350) and have a viewing diameter of

1.4 inches.

2.4.5 Electron Guns. There are several options for the electron guns, which are

one way to ionize the atomic beams while the atoms are in the trap. Loading an

ion in the trap involves ionizing an atom while it is located in the capture area of

the trap. The pseudopotential has a capture cross section that depends on a speci�c

geometry, but is essentially the spacing between the electrodes. An ion approaching

the trap from the outside is repelled from the trapping zone and will not be captured.

In e�ect, the only way to capture an ion is to bring in a neutralatom that can pass

through the barrier and then ionize it in the trap, illustrated in Fig. 2.11.
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Figure 2.10: CF Tightening pattern. An illustration of how to tighten Co nFlat 
anges for (a) six
bolt 
anges and (b) eight bolt 
anges.
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Figure 2.11: Trap loading process illustration (a) An ion is not loaded into an rf Paul trap from
outside the trapping zone, but rather a neutral particle must be inside the trap zone where it is
ionized (b) by a collision with an electron leaving the positively charged particle, or the electron is
removed through photoionization processes (c) trapped.
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An electron gun can be made from inexpensive parts for much less the then cost of

a commercial electron gun. An electron gun is a small resistive �lament that, when a

current is passed through it, emits electrons. Figure 2.12 showsa drawing of a simple

electron gun made from parts available from Scienti�c Instrument Services. The two

hole ceramic tube (white in �gure) has an outer diameter of 0.109 inches and inner

diameter of 0.031 inches (SIS part number R27, $8.40/6 in. rod). The length of

the rod depends on the available room in the vacuum chamber, but typically ranges

from 0.25 inches to 0.5 inches. Two tungsten rods, 0.025 inch diameter (SIS part

number W334, $6.50/foot), are inserted into the two holes andbent outward at the

top of the insulator rod. The reason they are bent is to increase the length of the

thoriated tungsten wire (0.0024 inch diameter, SIS part number W126, $5.00/foot).

The wire has a resistance of 0.22987 ohms/cm and a longer wire will need less current

for the same amount of electron emission. Unbent tungsten rods (a �lament length

of about .03 inches) require a current of about 3A is required to get approximately

100 microamps of total electron emission, at which point the �lament glows white.

If the tungsten rods are bent out to the point where the �lamentlength is about .1

inches or the outer diameter of the ceramic tube, the currentrequired to give the

same electron emission is reduced to about 1.5 amps.

The electron gun is assembled by �rst cutting the ceramic tubes and the tungsten

rods to the appropriate length. Enough length must be left on the tungsten rods to

allow for gluing the rods to the ceramic tube, attaching the �lament to the front,

and attaching electrical leads to the back. Next, attach the tungsten rods to the

ceramic tube. One option to attach the rods is to use SauereisenCeramic Cement

(SIS part number SCC8, $8.00 for a 4 ounce bottle). The cementis an inorganic

ceramic powder that becomes adhesive when mixed with water. The instructions
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Figure 2.12: Home-made electron gun illustration. An illustration of an electron gun assembly
made from a two hole ceramic tube (white), tungsten rods (dark gray, bent outwards at the top), a
thoriated tungsten �lament (black curved wire) and ceramic cement (light gray covering both ends.
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speci�c a 100:13 ratio of powder to water by weight; a mixture is typically made

with a consistency of a thick paste, adding powder or water as necessary. De-ionized,

�ltered water is used to reduce residual particulate or charged material in the glue.

The glue requires at least overnight drying to set hard, the piece must be set up so

that the glue can dry without the rods moving overnight. If wires are going to be

attached to the end of the electron gun, doing that before gluing can save having to

re-glue the rods. The glue on the back side would then cover overthe spot welds

where the Kapton insulated wire was attached. The wire leads from the electron

guns to the vacuum feedthroughs are 0.024 inch diameter conductive wire covered

with a 0.0055 inch thick Kapton �lm (total diameter 0.035 inches, MDC part number

680501, $60 for a 30 foot roll). The ends of the Kapton insulator are stripped and

a small sleeve out of 0.005 inch thick Constantan foil is placed over the conductor

to attach the wire to the tungsten rod. Constantan is a nickel alloy that is easily

spot welded to a variety of materials, available from a number of sources, including

Goodfellow (part number 180-883-19 for a roll 150 mm wide, 0.1 mm thick and 0.5

m long $226). The sleeve is illustrated in Fig. 2.13 and is usefulwhenever two metal

wire are not readily attached by spot welding directly. The spot weld power can be

determined by testing on similar scrap systems prior to doing the �nal spot welds.

Next, the thoriated tungsten wire is attached to the front end of the tungsten

rods using low power spot welds. Since these connections can burnout, the electron

guns must be tested prior to installation in the �nal vacuum chamber. In addition,

any kinks or crimps in the �lament can also readily burn out when current is applied

through the �lament: ensure that the the �lament wire is a smooth arc.

When heated, the �lament ejects electrons at energies of a few eV. These electrons

are accelerated toward the trapping zone using an accelerator plate or grid with a
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Tungsten Rod
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Spot Welds
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Figure 2.13: Spot-welding instructional illustration. When two wires are not readily welded to-
gether, a Constantan foil wrap can be used to attach the wires. First, make a loop in the foil and
attach the �rst wire with several spot welds as shown in a side view (a). Then, attach the foil to
itself on the 
ag. Then, attach the 
ag to the second wire, wrapping around the wire. T he top
view is shown in (b).

30



voltage drop of about 100 V. The accelerator plate is put together with the electron

gun assembly, shown as a plate with a hole in it in Fig. 2.12. The diameter of

the hole in the accelerator plate needs to be about the same as the distance from

the plate to the �lament, the best con�guration for maximizing electron 
ow and

directionality. The wiring diagram for the electron gun andaccelerator grid is shown

in Fig. 2.14. The �lament is biased at -100V from the grounded accelerator plate

and the current drawn from the bias voltage source is measured.This measures the

electron 
ow o� of the �lament through the plate and provides a gauge as to the

operating current of the electron gun.

-100V

A

+

+

-

A
e-

e-

e-
filament

accelerator
plate

Figure 2.14: Electron gun wiring schematic. The schematic diagram showing the wiring for the
electron guns. The top ammeter records the driving current through the �lament. The current
drawn through the bottom ammeter is the total emission current. It is safer to run the �lament
from a current-limited voltage supply, as opposed to a current supply, because the resistance of
the �lament increases with temperature, so the total power drawn decreases as the �lament heats
up. The -100 V bias voltage is applied to the �lament which must be electrically isolated from the
vacuum chamber. The accelerator grid is typically a metal plate with a hole cut in it.

The electron guns can be tested in a small bell jar attached to anauxiliary pump
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at pressures below 10� 5 Torr. A small piece of foil can be placed in front of the

accelerator plate to collect the electrons from �lament to give a gauge of the e�ciency

of the accelerator plate. About 1% of the total electron current is typically collected

on the foil. When testing the electron gun on the trap electrodes, around 0.1% of the

total electron current is collected, as the surface area of the electrodes is typically

much smaller then the test foil.

2.4.6 Atomic source ovens. The basic idea behind the atomic source ovens is to

create a vapor of neutral atoms in the vicinity of the trap which can then be ionized

by the electrons. One method involves making a neutral atomic\gun" of sorts that

emits a low density atomic beam that is aimed at the center of the trap. The gun

is a small metal tube that has a small piece of solid material (cadmium wire) inside.

When the tube is heated, the material melts to some extent and the vapor is ejected

out the end of the tube. Figure 2.15 illustrates this point. Stainless steel hypodermic

needle tubing with 0.042 inch outer diameter and 0.035 inch inner diameter (available

from Small Parts, part number HTX-19XTW-12, $4.70 for 10, 6 inch long tubes) is

used as the metal tube. The walls are heated by running a current through the tube

from the bottom to the top. The hypodermic needle tubes must bepinched o� on

the bottom so the source material does not leak out. The end of the tube is crimped

with a pair of pliers, but since the tube walls are so thin, care must be taken that the

walls are not torn at the crimp point. In addition, the back crimp end is spot welded

closed to keep any vapor from exiting. Then, as a �nal precaution, the back end is

wrapped with Constantan foil and spot welded to the crimped tube. The back of

the tube must be inspected to make sure that the spot welds have notburned holes

through the tubing walls, opening up a potential leak. This also leaves us a small

Constantan 
ag to which the wire lead can be attached. Figure 2.16 illustrates the
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details of the crimp and foil wrap. The current is then run from the back of the oven

to the front. If a heat sink is attached to the front of the oven,the resulting atomic

beam is well collimated. The heat sink is also used as the other lead to run the

current through the oven. The result is that the back of the oven gets the hottest

and that the cold front acts as a collimator. Although this maylead to clogging

of the oven for other atomic sources, it was not found to do so for cadmium metal

sources loaded in the oven. The wiring diagram is shown in Fig. 2.17.

The ovens are tested in a bell jar with the front of the oven nearone of the glass

walls. A current is run through the oven until a small spot beginsto appear on the

glass in front of the oven. For the 0.042 inch outer diameter, 0.034 inner diameter

walls, currents are typically in the range of 2 to 3 amps, run forabout 5 minutes

before spots appear. Since this varies with oven length and heat sink size, each oven

must be tested to determine the proper current range. When the oven is used in the

�nal vacuum chamber, the operating current is typically much lower to reduce the

atomic plating on the trap electrodes. But, by doing the spot test, the output from

the oven is checked for collimation and that there are no leaks in the crimp.

Another oven design is the ceramic tube design, where the atomicsource is packed

in a ceramic tube and then the tube is wrapped in a resistive tungsten �lament. The

�lament is heated, which then heats the tube and vaporizes the atomic source. This

design is good if the atoms used in the trap do not have a suitable solid at room

temperature. Because the ceramic tube can be heated much hotter, even chemi-

cal compounds of the substance (such as oxides) can be vaporized and dissociated,

yielding an atomic beam.
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Atomic source

Heat Tube Walls

Directional 
Atomic Vapor

Figure 2.15: An illustration of the atomic source ovens. Solid source material is placed inside the
oven tube. When heated, the source melts and vapors are ejected from the front of the tube.
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crimp

crimp

constantan
wrap

Figure 2.16: Oven crimping illustration. Crimping the ovens shut on the back side keeps the atomic
source from leaking out. (a) (side view) and (d) (top view) illustrate where to crimp the oven tube

at. The, by spot welding the crimped area, (b) and (e), the tube becomes sealed. Then addinga
Constantan 
ag, (c) and (f), allows us to attach a lead to the 
ag without ha ving to spot weld the
oven tube again.
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Figure 2.17: Oven mounting block illustration. A heat sink block attached to the front of the oven
keeps the oven tip cooler then the back and provides a good, directional atomic beam. Acurrent
supply attached to the end of the oven provides a constant current to heat the oven walls.
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2.5 Ion Trap Mounting Requirements

The trap structure must be mounted in an ultra-high vacuum (UHV) system. This

places strict bounds on the types of materials that can be used in trap construction

and in trap mounting schemes. There are established lists of materials known to be

compatible [43] with UHV environments. Typcially inorganic metals and ceramics

are UHV compatible and, with the exception of a few inert polymers such as Te
on

and Kapton, organic compounds are not UHV comptatible.

In order to construct a linear trap, there must be both rf and static electrodes.

These electrodes must be good conductors and electrically isolated from each other.

The rf loss tangent of the conductor and insulator set must be small. The rf potential

is transmitted via the electrodes and appropriate care must bemade to design an

rf transmission line that will e�ciently transmit the rf potenti als to the trapping

region.

Trapping individual ions also requires laser access to the trapping region for photo-

ionization and for Doppler cooling. The trap structure shouldbe su�ciently open

to allow for the lasers to be focused through the trap without clipping the Gaussian

beams on the electrodes. For a 5� m waist at 214.5 nm, this implies that there is a

clear cone of height� 2:5 mm and base diameter of 100� m. Imaging the ions can be

di�cult if the beams clip the trap. The laser access must be such that there is some

component of the laser wavevector along all three principal axis of the trap [40].

2.6 Baking the Chamber

Once all components of the vacuum chamber have been cleaned,tested, and as-

sembled, the chamber is baked to remove all water vapor from the stainless steel

lattice and to reach the ultra-high vacuum environment. Vacuum bake-out is typi-
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cally done with heater tape and �berglass insulation, however, a large free-standing

oven simpli�es the bake-out procedure.

2.6.1 Pre-Bake Testing. Before actually baking out the chamber, but after �n-

ishing assembling the chamber, including the trap, it is important to take care of

some degassing steps and some pre-bake tests in the chamber. There is a particular

ordering of the following steps for a given chamber and each pre-bake checklist must

be customized. The �rst step is to pump the chamber down to 10� 6 Torr or so using

the roughing pump and turbo pump. At these pressures, ion gauges, electron guns,

RGA �laments, and titanium sublimation pumps can be safely degassed.

� Degas ion gauge. Many controllers have this function available on the front

panel. The ion gauge �lament will be run at higher currents toexpel any

trapped residue. Degassing times vary from 5 minutes to an hour or more.

� Degas RGA �lament. If a residual gas analyzer is attached to the system, run

the degas function to clean the �lament.

� Test electron guns. This is a more involved step since it requiresactually turning

on the electron guns along with the accelerator grid. One useful test at this

point is to collect electron current from available feed-through connections. For

example, the electron gun could be run and electron current collected o� of the

static electrodes of the trap. This will give some diagnostics as to whether metal

pieces have moved during the bake-out.

� Fire cadmium ovens. This is to primarily degas the �laments oroven tubes used

to heat the cadmium. As with anything that gets hot in the vacuum chamber,

it must be degassed. Typically �ring the ovens for �ve to ten minutes at low

current will degas them.
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� Fire the titanium sublimation pump. Each �lament must be degassed at a

current of 37 amps for about an hour. This will help lower the peak pressure

that the sublimation pump reaches when �red after bake-out. If the �laments

can be �red for longer, it will reduce that pressure even more.

� Check continuity on electrodes and check for shorts. Check capacitances and

resistances between any electrodes using in-vacuum �lter electronics. If a short

develops during bake-out this will help to diagnose it.

� If the trap has never had rf voltages on it before, it is helpful to do that now.

Helical resonator design is described in Subsection 2.7.1, but this is a good point

to test out the rf on the trap. After the bake-out, the same resonator will be

used to get the high voltage rf on the trap.

Record all measurements, since the numbers will be good diagnostic tools in the

event of problems after the bake. Note that most metals, as they bake, will shift and

move. The information gathered here will help to check if anything changes.

2.6.2 Bake Times. A surplus DeLorian Motor Company oven is used to bake out

the vacuum chamber. The internal oven space is approximately1.5 meters wide, 0.5

meters deep and about 1 meter tall. The oven has temperature control circuits so

that it maintains a set temperature fairly well (within �ve de grees over several days).

The maximum temperature of the oven is well over the 200 degrees C that is used

to bake our chamber. The maximum temperature to bake at is determined by the

suprasil windows. The seals between the window and the CF 
ange israted up to

200 degrees C, do not go above that when baking. The ramp timesvary from bake

to bake, but a conservative timing is to not ramp up the oven more the 30 degrees

Fahrenheit per hour. In practice, the ramp up time is limitedby the pressure. For a
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new vacuum chamber that has not been previously baked, there can be a lot of water

stored in the stainless steel. The initial ramp of temperature can spike the pressure

in the vacuum chamber above 10� 5 Torr. To keep the gauge from automatically

shutting o�, reduce the ramp speed so the pressure does not peak quite that high.

Figure 2.18 shows the complete record for four di�erent bake-outs. Each of these

bakes ended with the base pressure below 10� 10 Torr, but experience has shown that

if the chamber pressure is in the low 10� 10s when cooled after the bake, the titanium

sublimation pump can reduce the pressure that last order of magnitude (provided

there are no leaks).

Figure 2.18: Bake-out time data. Four separate chamber bakes using the DMC oven.Shown are
the pressures on the internal ion gauge and the oven temperature in Fahrenheit.

Typically a bake will last between 10 and 14 days. The drop in pressure on the

graphs in Fig. 2.18 at about day 6 is from the switch between theexternal ion pump

and the internal ion pump. The bakeout procedure is as follows (see Fig. 2.19 for an

illustration of where to connect the chamber and which valvesare being discussed).
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1. Connect vacuum chamber to the 
exible 36 inch long vacuum tube in oven using

a 2.75 inch copper gasket.

2. Connect 20L StarCell ion pump to controller using bakeablecable through the

oven exhaust port.

3. Connect the ion gauge to controller using bakeable cable through the oven ex-

haust port.

4. Cover all exposed feed-throughs and viewports with aluminum foil (shiny side

toward the chamber).

5. Connect the turbopump to the vacuum system on the external valve (a Viton

O-ring may be used) with a second 36 inch long 
exible vacuum tube.

6. If the vacuum chamber is already at low pressure (below 10� 4 Torr, �rst open

the valve to the turbo pump, leaving the chamber valve closed.Start the turbo

pump and pump down to 10� 4 before opening the chamber valve. If the chamber

is at atmospheric pressure, open the chamber valve before starting the turbo

pump.

7. When the turbo pump reaches low 10� 6 Torr, slowly open the 500L ion pump

valve making sure that the pressure on the ion pump does not exceed 10� 7.

When the ion pump is completely on, close the turbo pump valve.

8. Turn on the ion gauge and note the pressure. When the pressure stabilizes in

the low 10� 6 range, the oven can be turned on.

9. Slowly ramp up the oven temperature, keeping the ramp speedslow enough so

the pressure does not go above the low 10� 5 range. A log is kept of the bakeout

including the following information: Date, time, oven temperature actual, oven
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temperature set, ion gauge pressure, ion pump pressure (both the 500L pump

and the 20L StarCell current) and any notes on the bakeout.

10. Once the temperature has reached 200 degrees Celcius (392 degrees Fahrenheit),

keep track of the pressure. When the pressure reaches a stable equilibrium (does

not change over the course of a day) it is time to close the chamber valve and

start the internal pump.

11. Start the internal 20L StarCell pump with the voltage set to 3kV and with the

chamber valve open. Since the pump has high voltages, it mightinitially spike

in pressure. If the automatic shuto� activates, turn the pump o� and on again

to get past that point.

12. When the 20L pump is running at 3kV, close the chamber valve hand tight.

Since the chamber valve is hot, do not close it to full torque, as that ruins the

valve

13. Increase the voltage on the 20L StarCell to 7 kV.

14. Again, monitor the pressure until it reaches equilibrium over the span of a day

or two.

15. Slowly ramp down the temperature (30 degrees Fahrenheitper hour is good).

16. Let the chamber and oven cool with the oven doors closed fora half day or so

and then open the doors to let the chamber come down to room temperature.

17. Close the 500L ion pump valve and torque the chamber valve to the appropriate

torque (see the manual, but it is usually 25 ft-lbs to start and more each time

the valve is used).
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18. If the pressure is not in the low 10� 11 range, �re the titanium sublimation

pump on a regular basis (once every few hours) until the pressure comes down

to the desired point. (See below for more information on the �ring the titanium

sublimation pump).

19. Install pinch-o� valve on top of the chamber valve to protect against any possible

leaks in the valve. Typically the pinch-o� valve is pumped using the turbopump

to the low 10� 6 range and then sealed.

Trap
Chamber

Bricks Chamber
Valve

Turbopump
Valve

500L Ion
Pump Valve

500L Ion
Pump

Oven

Cables
to
Controllers

Figure 2.19: An illustration of the oven with pumps and valves shown.

2.6.3 Titanium Sublimation Pump. As noted above, to reach the low pressures

needed for ion trapping experiments, it is helpful to �re the titanium sublimation

pump several times to lower the background pressure. The ti-sub pump works by

plating the walls of a tube with a titanium layer which then absorbs surrounding

molecules and atoms. For the pumps and parts listed in the vacuum chamber as-

sembly section, operation is as follows:

� Record the base pressure before �ring the pump.

� Turn up the current on the pump controller to 43 amps for normal operation.

� The pressure on the gauge should spike at around 10� 7 Torr under normal
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conditions. If the pump has not been su�ciently degassed, this pressure may

be higher. Be careful that the pressure is not so high that it overwhelms the

ion pump- if the pressure goes above 10� 6, the pump may need to be shut o�.

� After the spike, the pressure should slowly decrease. Leave the pumprunning

for a minute or two. The limiting factor in leaving the pump running is the

temperature of the outer tube walls. As the temperature rises, the walls start

to degas. If they degas at a rate faster then the pumping speed, the pressure

will start to rise again. If this happens, shut the pump down or cool the walls

(wet paper towels work well).

� Shut the pump o� and let the vacuum system return to equilibrium. This can

take anywhere from a couple of hours to overnight. The �nal pressure should

be a factor of 2 or so lower then the starting pressure.

If all goes well, it is possible to reduce the pressure from the 10� 10 range down to

below 5� 10� 12 with a week of regular �ring.

2.7 rf Generation and Delivery

With the vacuum chamber set in a UHV environment, it is now ready to apply rf

voltage to the trap and image the ions. The rf delivery and static voltage leads are

connected to the trap through the electrical feedthroughs in the vacuum system.

2.7.1 RF Helical Resonators. In general, the higher the rf voltages applied to

the trap, the higher the secular frequencies will be (see Section 2.1.2). There are

limitations, however, to the secular frequency based on the trap dimensions, the

mass of the ion and the rf frequency such that the ponderomotiveapproximation is

still valid. One way to get high voltages on the trap electrodes is to place them in a

resonant circuit with a helical quarter wave resonator. The design and construction
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of the resonator is discussed in a series of papers written in the 1960s [44, 45, 46].

Given a desired frequency, outer conductor diameter and desired Q, it is possible to

calculate the number of windings, the winding pitch, the coillength and the inner

conductor diameter. Solid copper elements are used for the outer conductor, the

inner coil and the end caps on the resonator. One thing to note about designing

the resonator is that, depending on the load on the resonator, the actual loaded

frequency of the resonator is typically one half the frequency the resonator is designed

for. Thus, to have a 50 MHz resonator (with the trap attached), design the resonator

for 100 MHz. Also note that since copper wire comes in set gauges, it might not be

possible to use the initial design parameters. Use a series of iterations in the design

to accommodate the available copper wire diameters. One example of a resonator

constructed in the lab has the following characteristics:

Outer Conductor diameter: 2 inches

Resonant Frequency: 158 MHz

Coil wire diameter: 0.1285 inches (8 gauge)

Number of turns: 6

Unloaded Q (designed): 1260

Winding pitch: 0.26 inches

Coil Length: 1.54 inches

Inner coil diameter: 1.0 inches

Outer conductor length: 2.54 inches

The actual resonant frequency with a 30pF capacitor on the endis about 35 MHz.

Without a capacitive load, this resonator works at around 70 MHz with a Q of
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about 500. Again, see the references for details on how to designthe resonators. In

addition, it helps to clean the resonator before using it- the copper has fewer losses

when it is clean, leading to a higher Q. Copper can be cleaned to a shiny luster using

phosphoric acid. The end result is shown in both a CAD drawing and actual photos

in Fig. 2.20.

Resonator coil

Input coupler

Closed Resonator

Top Cap

Open Resonator

Grounding Wire

Figure 2.20: Helical resonator diagram. The helical quarter wave resonatorconsists of an inner
helical conductor inside a conductive cylinder. Shown on the left is a schematic drawing of the
completed resonator. On the right are photographs of an actual resonator with speci�cations given
in the text.

RF power can be coupled into the resonator in two ways. A small closed loop

of bare wire (shorted from the center of the coaxial connectorto ground) with a

diameter of about one inch can be placed on the inside of the capclosing the top
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end of the resonator. The normal to this loop should point down the center axis of

the resonator. This loop couples the rf into the magnetic �eldof the resonator and

can be tuned so that all the power is transfered into the resonator by adjusting both

the number of turns in the loop, the loop diameter, and the proximity of the loop to

the end of the inner helical conductor. If the other parameters are close, �ne-tuning

of the coupling is accomplished by moving the cap and loop together through the

resonance and then �xing the cap when the back re
ection from the resonator is

zero.

The other method is to couple the electric �eld to the resonator near the bot-

tom using a small variable capacitor. The center coaxial lead is sent to the variable

capacitor (usually a 2-30 pF parallel-plate variable capacitor) and from there con-

nected directly to the center helical conductor close to the end of the resonator. The

capacitor is adjusted such that the back re
ected power from the resonator is again

zero.

2.7.2 Static Electrodes. Any electrodes that are used to apply static voltages to the

trap, either as endcap static voltages or as compensation electrodes, must be �ltered

so that they all act as rf grounds. In particular, the static electrodes on the ceramic

linear trap (Section 5.1) must all be �ltered so that the trap is linear along the

axis. The schematic drawing shown in Fig. 2.21 illustrates the relevant capacitances,

resistances, and inductances for the rf circuit from the resonator to the trap. The

vacuum chamber itself is held at rf ground through a connection to the resonator. The

trap has a capacitanceC1 � 1 pF to the nominal rf ground electrode. This might

be augmented by �lters in the vacuum chamber (Section 5.1.4). The capacitance

C2 � 1 pF is also primarily geometric, although it also might have the in-vacuum

�lters. The resistancesR1 and R2 are the residual resistances of the conductors used

47



to carry the rf in the chamber and are less then 1 
. The vacuum feedthroughs have

a capacitance between leads and to the housing ofC3 � C4 � 10 pF. And the rf

electrode has a capacitance to the vacuum chamber itself ofC5 � 1 pF. Outside the

vacuum system, the resonator is connected to the vacuum chambersuch that the

resonator can and vacuum chamber form the rf grounding surface. Static voltages

1,2, and 3 can be applied through the �lter networks withC0 = 1 � F and inductor

L0 = 1 mH.

Feed-
Through

rf
electrode

rf
ground

static
electrode

Feed-
Through

C1

C2

C3

C5

C4

R1 R2

Static
Voltage 1

Static
Voltage 2

Static
Voltage 3

C0

L0

C0

C0

L0

C0

C0

L0

C0

rf Resonator

grounding
connections

Vacuum
Chamber

Figure 2.21: RF �lters and wiring diagram. This schematic diagram shows the relevant capacitances
and resistances for the trap in the vacuum chamber. The \� " �lter networks allow the application
of static voltages to various electrodes in the chamber. The internal capacitances and resistances
are geometric in nature and are distributed across the entire physical element.

2.7.3 RF Generation The helical resonators transform radiofrequency power into

high voltage, but very little current. It is necessary to couple a signi�cant amount

of power into the resonator in order to obtain the level of rf voltages desired on the

trap. The voltage on the trap, V0 is related to the input power in the resonatorP

by the quality factor of the resonatorQ:

V0 = �
p

PQ (2.21)

where � is on the order of about 10 [Appendix A]. To get 500 V rf on the trap, the

resonator must have aQ � 500 and around 10 W of rf power must be applied to

the resonator. The rf delivery system is shown in Fig. 2.22. A directional coupler is
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included to be able to optimize the input coupling to the resonator. On resonance, the

entire trap-resonator circuit should appear to the rf ampli�er to be a 50 
 circuit.

Fine tuning the input coupling allows for perfect coupling to the resonator. The

directional coupler also permits a measurement of the loadedQ of the resonator.

The Q of the resonator is measured by �rst tuning the frequency of the oscillator

to the resonant frequency� 0. If the o�-resonant amplitude of the back-re
ected

signal is Vmax , then the frequency at which the amplitude isVmax =
p

2 above the

resonance is� + . The frequency with amplitudeVmax =
p

2 below the resonance is� �

with frequency di�erence �� = � + � � � . The loadedQ of the resonator is

Q =
��
� 0

: (2.22)

A good resonator has a loadedQ of greater then 300.

HP 8640
2-512 MHz
rf Oscillator

rf Amplifier
8 Watt
35 dB Gain

Directional
Coupler

100 MHz
Oscilloscope
50 W terminated

Resonator
Input Coil

Figure 2.22: RF generation diagram. This schematic diagram illustratesthe rf generation and
delivery to the helical resonator. The directional coupler is used to monitor the back-re
ected
power to tune the input coupling on the resonator. The input coupling is perfect when the back-
re
ected signal disappears.
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CHAPTER III

Ion Trap Design

3.1 Linear Trapping Potentials

The �rst step in advanced trap development is to model the electrodes and re-

sulting potentials using numerical Finite Element Analysis (FEA) software packages.

The three-dimensional trap potential can be described by splitting the potential into

the two-dimensional rf and three-dimensional static components. The rf potential

is described using the ponderomotive approximation (see Section 2.1) such that the

pseudopotential is described by static electric �eld amplitudes. The potentials are

then modeled using static FEA solvers and �t to quadratic functions with some geo-

metric scale factor. The rf and static portions of the potential can then be combined

to calculate the overall trapping frequencies and trap depth.

3.2 Transverse Electric Potential Simulation

The transverse trapping potentials in a linear trap can be approximated by a

two-dimensional problem. In the limit of an in�nitely long li near trap with no axial

con�nement, this describes the entire potential. But the approximation is reasonable

for the kinds of trapping structures described here and can be an e�cient tool in

modeling the potentials.
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3.2.1 Finite Element Analysis. Recent versions of the Matlab software suite come

packaged with a simple �nite element analysis (FEA) solver package called the \Par-

tial Di�erential Equation (PDE) Toolbox (pdetool)". Pdeto ol contains a graphical

user interface [shown in Figs. 3.1,3.2] with user-de�ned boundary values, a grid con-

struction algorithm, the FEA solver, and a graphical display ofthe �eld solutions.

The PDE Toolbox [47] can solve a general class of problems that can be described

by the elliptical equation

�r � (cr u) + au = f in 
 (3.1)

where 
 describes the bounded area in a complex plane, andc, a, and f are functions

de�ned in the area 
 and u is the �eld solution. The boundary conditions can be

of both the Dirichlet and Generalized Neumann types. In modeling the electrostatic

potentials that give rise to the e�ective rf trap, a much simpler problem can be

solved because of the constraints of the Poisson equationr 2 = 0, again de�ned in

the bounded area 
 and for no free charges in the area of interest (as is the case for

our ion trap potentials). This corresponds to the elliptical equation solved by the

PDE toolbox with c = 1, a = 1 and f = 1. The approximate solution to Eq. 3.1

with these constraints is found in three steps. First, the geometry 
 is described

along with the Dirichlet boundary conditions on the bounding curve C [Fig. 3.1].

Second, a triangular mesh is constructed in the domain 
. Last, the PDE and the

boundary conditions are discretized to obtain a system of linear equationsKu = F

that can be solved using well known algebraic algorithms [Fig.3.2] [48].

3.2.2 PDE Toolbox. The graphical user interface, shown in Figs. 3.1,3.2 is useful

for an initial design or for relatively few design iterations. However, for large numbers

of design iterations, the Matlab PDE Toolbox provides access tothe solver functions

necessary for building the model, creating the mesh, and solvingfor the potential.
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(a)

(b)

Figure 3.1: The GUI for Setting up the model in the PDE Toolbox. This screenshot of the graphical
user interface for the PDE Toolbox shows a simple layout and boundary conditions. (a) The basic
drawing interface for de�ning object areas. (b) The boundary tool for setting the Dirichlet boundary
conditions for the trap.
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(a)

(b)

Figure 3.2: The GUI for Solving the model in the PDE Toolbox. This screenshot of the graphical
user interface for the PDE Toolbox shows a simple mesh and solution for onemicrotrap design.(a)
The mesh tool constructs and re�nes the triangular mesh. (b) The solution is shown asa 2-D color
plot.
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The tip-to-tip separation is de�ned as a, the distance between cantilevers isd, the

cantilever thickness isdt , and the bounding box is given bycl .

%coefficient matrix

%R1 %R2 %R3 %R4 %SQ1

geometry=[3.0000 3.0000 3.0000 3.0000 3.0000

4.0000 4.0000 4.0000 4.0000 4.0000

-(a/2+cl) -(a/2+cl) a/2 a/2 -(a/2+cl)

-a/2 -a/2 (a/2+cl) (a/2+cl) (a/2+cl)

-a/2 -a/2 (a/2+cl) (a/2+cl) (a/2+cl)

-(a/2+cl) -(a/2+cl) a/2 a/2 -(a/2+cl)

-(d/2+dt) d/2 -(d/2+dt) d/2 -(a/2+cl)

-(d/2+dt) d/2 -(d/2+dt) d/2 -(a/2+cl)

-(d/2) d/2+dt -(d/2) d/2+dt (a/2+cl)

-(d/2) d/2+dt -(d/2) d/2+dt (a/2+cl)];

The �rst two lines of the geometry matrix are variables that describe the particular

geometry (a rectangle in this case) and the remaining eight lines are used to de�ne

each geometrical shape.

A namespace matrix is de�nes to set forth the text labels for each column in the

geometry matrix. In addition, the formula string de�nes how the di�erent geometry

elements are to be combined to make the region 
.

%namespace matrix

ns=[82 82 82 82 83

49 50 51 52 81

0 0 0 0 49];

54



%formula string

sf='SQ1-(R1+R2+R3+R4)';

The PDE toolbox then requires that the geometry, namespace and formula string

matrices be processed to de�ne a reduced geometry matrix containing all the individ-

ual segments of the boundary curveC. The boundary values can then be set for all

the individual segments using a boundary value matrix. Only the �rst two columns

(out of 20) are shown. The �rst six rows de�ne the type of boundarycondition to

use and the last three are ASCII code for a particular value (i.e.-0.5).

%calculate reduced geometry matrix (20 line segments)

[reducedgeom booleanline]=decsg(geometry, sf, ns);

%boundary value matrix

boundary=[1 1 ...

1 1 ...

1 1 ...

1 1 ...

1 1 ...

1 1 ...

48 48 ...

48 48 ...

49 49 ...

48 48 ... ];

The mesh can then be created and re�ned using an interactive process and the

meshcommands.

%create initial mesh
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[points edges triangles]=initmesh(reducedgeom);

%refine mesh a bit to get a better solution

[points edges triangles]=refinemesh(reducedgeom,point s,edges,triangles);

points=jigglemesh(points,edges,triangles);

The actual FEA solver command,assempdeis called using the re�ned mesh and

the coe�cients for the elliptical equation, Eq. 3.1.

%coefficients for assempde

coef1=1.0;

coef2=1.0;

coef3=1.0;

%get solution now

potential=assempde(boundary,points,edges,triangles, coef1,coef2,coef3);

To extract the potential in a rectangular coordinate system (useful for taking the

gradient and for plotting the potential along a given line),the PDE toolbox provides

the command tri2grid , which is called using the solution found from the FEA

solver.

potential_xz=tri2grid(points,triangles,potential,x, z);

The potential can then be evaluated, or in the case of �nding the absolute potential

depth, the gradient can be found using Matlab's standard matrix evaluation tools.

3.3 3D Electric Potential Simulation

The FEA solver that is bundled with the MATLAB software package is good for

two-dimensional problems, but it is unable to solve three-dimensional problems. In a
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linear ion trap, the rf �eld typically has enough symmetry to be considered as a two-

dimensional problem. The static con�nement �elds that provide the transverse trap

are, however, three-dimensional in nature. A more powerful FEA solver is needed to

model the static �elds and provide a complete picture of the ion trap characteristics.

Three-dimensional FEA problems are signi�cantly more complicated due to the

increased number of elements needed to �ll a volume as opposed to an area. There are

di�erent ways of �lling the volume space using di�erent geometric shapes including

tetrahedra, hexagonal blocks, cubes, and other more complicated shape schemes.

The various commercially available software packages use di�erent techniques and

di�erent shapes to �ll the FEA volume. One such solver is called \Maxwell 3D" by

a company called Ansoft. This solver was used to model the potentials and electric

�elds in both the three-layer alumina traps as well as the microtraps.

Like the MATLAB FEA solver, Maxwell uses multiple windows to de�ne the

problem, set the initial boundary conditions, solve for the �elds, and analyze the

solution. The project window is general tool for calling eachof these steps when

de�ning the problem [Fig. 3.3(a)]. The �rst step is to draw the shapes associated

with the trap electrodes as well as the bounding box that de�nes the overall solution

area [Fig. 3.3(b)]. Maxwell has the capability to do both electrical, magnetic and

other thermal and mechanical solutions. The software uses a materials library to

de�ne the relevant material properties for all the elementsof the model. The second

step is to assign the material properties to the various components of the model.

Using a good conductor is typically su�cient and the \gold" material is often used

for most electrodes [Fig. 3.4(a)].

Once the surfaces have been de�ned and material properties set, the boundary

conditions are set using the boundary window. For a typical Dirichlet boundary
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(a)

(b)

Figure 3.3: The GUI for Setting up the Project in Maxwell 3D. (a) The Maxwell 3D Project window.
From this window, all aspects of the model are managed including the model type and the steps
to a solution. (b) The model is drawn in this window using three-dimensional shapes. Thedraw
mode also de�nes the bounding box for the region of interest.
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condition, the surface is set to be a voltage \source" with a given electric potential.

The bounding box can also be set as a potential source and is typically set to ground

(0 V) [Fig. 3.4(b)].

Maxwell uses an iterative algorithm to solve for the �elds in the de�ned area.

There is an initial 3-D mesh of tetrahedra de�ned in the volume. This initial mesh

can be customized by de�ning vacuum elements in critical areas [Fig. 3.5(a)]. Then,

inside these elements, the number of tetrahedra can be increasedto have a �ner

grid spacing for calculating trap potentials and trap frequencies. The solver then

calculates the �eld at every mesh element. Then, the software analyzes the points

where the potential is greatest and increases the number of meshelements at those

points and re-solves for the �eld in the volume using the greater number of tetrahedra

[Figs. 3.5(b), 3.6(a)]. The solution converges on an answer using an error estimate

of the �elds based on the deviation from expected values.

After the solver has reached an acceptable error level (which can be set for more ac-

curate solutions and larger meshes), the solution can be viewed using the visualization

tools provided. Visualizing a three-dimensional �eld is di�cult, but two-dimensional

cuts through the volume of the trap can provide a good pictureof the �eld char-

acteristics. Maxwell also provides elementary tools for calculating the electric �eld

( ~E = ~r � � ) magnitude from the potential and can plot the magnitude along a line.

These tools can be accessed from the \calculator" function in the project solution

window. From this data, the static trap potentials can be extracted [Fig. 3.6(b)].

3.4 Errors in Finite Element Analysis Field Solvers

There are several common errors that can occur when using FEA solvers to model

new trap geometries. The degree to which each of these a�ects the �nal potential
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(a)

(b)

Figure 3.4: The GUI for De�ning Materials in Maxwell. (a) The materials l ibrary is used to de�ne
the material properties for all elements of the model. Typically the conductivity is the only critical
parameter. (b) The boundary conditions are set including the bounding box surfaces.
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(a)

(b)

Figure 3.5: The GUI for De�ning the Mesh in Maxwell. (a) The initial mesh is s et to a low number
of tetrahedra. The density of tetrahedra can be increased in regions of interest by creating vacuum
elements and manually increasing the mesh density. (b) After an interactive solution, the mesh
density is higher at points where the �eld is more concentrated.
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(a)

(b)

Figure 3.6: The GUI for Solving the Problem in Maxwell. (a) The solving window tracks the
progress of the adaptive solution algorithm and the proximity to the �nal err or tolerance. (b) The
project solution interface can be used to visualize and extract the potentials.
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solution can be evaluated and bounds can be set on the error magnitude.

3.4.1 Bounding Box Size Error. The FEA solution requires a �nite space 
,

also called the bounding box, in which the potential is evaluated. This requires a

boundary condition set on the bounding box, which is typically set to ground. If

the bounding box is too small, this grounded surface can changethe solution to the

potential. This error can be measured by increasing the size of the bounding box,

leaving all other physical dimensions unchanged, and re-evaluating the potential. If

the new potential is equal to the original within a speci�ed tolerance level, then the

bounding box size was su�ciently large.

3.4.2 Mesh Size Error. The solution of the potential is dependent on the size of the

mesh compared to the feature size of the trap model structure. Ifthe mesh elements

are larger then the feature sizes, there will be errors in the potential, especially near

the features. Sharp corners in the physical trap features leadto high potential gra-

dients and need additional mesh elements surrounding them to properly calculate

the value of the potential. At the center of the trap, there needs to be a su�cient

number of elements to ensure a proper, smooth calculation of the �eld so that trap

frequencies can be extracted from the potential. The mesh sizeerror can be calcu-

lated by increasing the mesh size by a substantial amount and then re-calculating

the potential. Again, if the new potential is equal to the original within speci�ed

tolerance levels, the mesh is su�ciently �ne.

3.4.3 Interpolation Error. After the potential is calculated in the mesh, to extract

out trap frequencies and the trap depth, it is necessary to makean interpolation

along either a line or a grid of the irregular mesh elements. If the mesh elements are

much larger then the characteristic size of the region of interest for the interpolation,

then the potential will be jagged after the interpolation ismade. This can be resolved
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by increasing the mesh size in the area of interest.
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CHAPTER IV

Planar Microtrap Model

4.1 Background

The ion trap has become an essential tool in several areas of physical science,

including mass spectroscopy [49], atomic frequency standards [50], precision atomic

and molecular measurements [51], studies of fundamental quantum dynamics [36] and

quantum information science [52, 35]. Many of these applications would bene�t from

miniaturized and multiplexed ion trap electrode structureswell below the typical

millimeter to centimeter scale. Furthermore, smaller electrode dimensions o�er the

potential for stronger con�ning forces.

In this Chapter, the electrical characteristics of a new typeof micrometer-scale

radiofrequency (RF) Paul ion trap fabricated using semiconductor micromaching

and lithographic techniques such as micro-electro-mechanical-systems (MEMS) and

molecular beam epitaxy (MBE) is modeled using the FEA techniques described in

Ch. III [32]. Such a device may enable new applications of iontrap technology such

as \quantum CCD" scalable quantum computers [23], optical cavity-QED with a

localized single atom [53, 54, 55, 56], and multiplexed quadrupole mass spectrometers

that could be orders of magnitude smaller than previous devices [57].

There has been much recent progress in the miniaturization ofneutral atom elec-
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tromagnetic trapping structures, involving, for example, micrometer-scale current-

carrying wires on a substrate resulting in Bose-Einstein condensates on a microchip

[58]. Microscopic ion trap electrodes present their own challenges, as the con�ning

forces are orders of magnitude stronger than those for neutralatom traps. Conse-

quently, such ion traps will require greater control of unwanted or noisy electrode

potentials, including the presence of thermal electric �elds[59, 60], residual charge

on exposed insulating barriers, and \patch" potentials from inhomogeneities on the

electrode surfaces [35, 61]. None of these potential pitfalls appears fundamental, and

such problems will only be overcome by testing various materials and approaches.

The focus of this Chapter is on novel features of a proposed high aspect-ratio ion

trap geometry and the resulting con�ning potentials.

The physical parameters of a model of the linear microtrap arediscussed in Sec.

4.2 along with a discussion of design considerations and issues withheating and

power dissipation in semiconductor materials. Section 4.3 contains a discussion of

the RF ponderomotive potential of the linear microtrap model with results from

numerical simulations of the potential. A geometrical e�ciency factor is calculated,

showing the performance of the linear microtrap as compared to an ideal quadrupole

potential. The static potential used for axial con�nement in alinear trap is discussed

in Sec. 4.4 along with results from numerical simulations and comparison to an ideal

hyperbolic trap. The total potential along with examples ofhow to use the various

geometric e�ciency factors to calculate the trap frequencies of a given geometry are

given in Sec. 4.5. The principal axes of the linear microtrap, which determine the

e�ciency of laser cooling ions in the linear microtrap, are evaluated in Sec. 4.6. A

method for rotating the axes for more e�cient cooling is given.
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4.2 Model Description

4.2.1 Basic Model. The design of this new type of micrometer-scale RF trap is

constrained by conventional semiconductor fabrication techniques, the need for clear

laser optical access, and the characteristics of electrodes needed for linear traps. The

design, illustrated in Fig. 4.1, is a two-layer planar geometry where both layers are

divided into separate electrodes. The division of each layer into six electrodes accom-

modates both the RF potentials and the static potentials needed to create a linear

Paul trap [62]. This planar design is compatible with conventional photolithography

techniques to de�ne the electrode pattern. Each electrode is a cantilever anchored

to an electrically isolated, conductive substrate and suspendedfrom both sides of

the planar structure. This ensures that there are no insulatorsnear the center of the

trap that could accumulate uncontrolled charge. Ions will be trapped in the space

between the tips of each cantilever, along thez-axis in Fig. 4.1, near the center of

the middle electrode.

The cross-section of this linear microtrap (LMT) model at the center of the trap

(z = 0) is shown in Fig. 4.2(a). The thickness of each layer is labeled w; the layer

separation isd; the tip-to-tip separation of the cantilevers isa. Two ratios are useful

for characterizing the behavior of the electric potentials:the trap aspect ratio, or

the ratio of the tip-to-tip cantilever separation to the layer separation � = a=d, and

the ratio of the layer separation to the layer thickness� = d=w. An RF voltage is

applied between each set of diagonally opposing electrodes asshown in Fig. 4.2(a).

A top view of the linear microtrap model is shown in Fig. 4.2(b). The width

of the center cantilevers along thez-axis of the trap is labeledb; the width of the

end-cap cantilevers isc; and the length of the cantilevers in the model ish. In
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Figure 4.1: A three-dimensional drawing of the linear microtrap. A string of ions would lie along
the z-axis as drawn.

order to electrically insulate the center from the end-cap cantilevers, a small gap is

introduced of width g. This allows for separate potentials to be applied to all twelve

cantilevers, or electrodes. Static voltages are applied to both layers on the four end-

cap electrodes on either side of the center cantilevers to provide axial con�nement,

as shown in Fig. 4.2(b).

The potentials of the LMT can be separated into two parts for analysis, following

the guide from Ch. III. The �rst part is the ponderomotive potential generated by

the RF voltages. In the limit where gap width g is much smaller thana, b and c

(Fig 4.2(b)), the RF potential is approximately independent of z near the center of

the trap. In the cross-sectional plane atz = 0, this RF potential generates a two-

dimensional trapping pseudopotential and is discussed in Section 4.3. The second

part is the potential generated by applying static voltages to the end-cap electrodes.
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This potential provides axial con�nement for ions in the center of the trap and is

described in Section 4.4. Note that the end-cap electrodes have both the RF voltages

applied to reduce thez dependence of the RF �eld near the center of the trap and

static voltages to create the end-caps. The center electrodesare all assumed to be

held at static ground.

Figure 4.2: Two layer schematic of the potentials. (a) A schematic diagram of the linear microtrap
design showing the side view. The dimensions are labeled as are the RF voltages applied to the
electrodes. (b) The top view of the linear microtrap with dimensions and static voltages as shown.

4.2.2 Fabrication Considerations. The linear microtrap model is designed to simu-

late a trap design that can be fabricated using conventional micro-processing tech-

niques. The sizes of the electrode features that will be analyzed in this model are

typical of current fabrication processes. There are several di�erent processes that

could be used to fabricate these microtraps: a) Silicon-based microelectromechani-
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cal machining (MEMS) techniques; b) Gallium-Arsenide (or other suitable material)

based molecular-beam epitaxy (MBE) grown wafers and associated etching processes;

or c) other relevant techniques such as anodic wafer bonding or 
ip-chip technolo-

gies. The length of the cantilevers is limited by allowable mechanical vibrations in

the cantilevers themselves, as well as limits to the mechanical stability of the can-

tilevers under electromechanical forces due to the appliedRF and static voltages.

The mechanical forces exerted on the cantilevers can be approximated using struc-

tural cantilever analysis [63]. Following this analysis, the spring constant of the

center rectangular cantilever can, for example, be expressedas

k = E
�

w3b
4h3

�
(4.1)

whereE is the Young's Modulus of the relevant material. The force onone cantilever

due to an applied potential di�erenceV0 between layers can be approximated as the

gradient of the potential in a parallel plate capacitor of area A = hb and plate

separationd.

F = �
@UCapacitor

@d

= �
� 0

2
@
@d

�
hbV2

0

d

�

=
� 0

2

�
hbV2

0

d2

�
(4.2)

Although the actual force is distributed across the length of the capacitor, by ap-

proximating the force as being concentrated at the tip, one can �nd an upper bound

on the cantilever tip de
ection. Treating the cantilever asa classical spring with the

force applied at the tip, and using the spring constant from Eq. 4.1, the maximum

tip de
ection x(0)
d can be approximated as

x(0)
d �

2� 0h4V 2
0

Ed2w3
: (4.3)
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A typical de
ection for a GaAs cantilever with E = 85:5GPa and dimensionsh =

100� m, d = 2� m, w = 2� m, with an applied voltage di�erence ofV0 = 20V, is

x(0)
d = 260nm. The resonant frequency of the cantilever can also be calculated [63]

as a function of the material density� , the Young's Modulus, the cantilever width

w and the length h:

! vib=2� = 0:162
p

E=�
w
h2

(4.4)

which for GaAs (� = 5:31gm/cm3) is ! vib=2� � 130kHz for the same dimensions as

previously discussed.

For an RF potential V0 cos(
 T t) applied to the cantilever electrodes, the amplitude

of the tip de
ection in Eq. 4.3 is expected to be further reduced by a Lorentzian factor

of ! 2
vib=
 2

T � 1. Here, it is assumed that the RF frequency is far from resonance,or


 T � ! vib=Q, where Q � 1 is the quality factor of the mechanical resonance [64].

While the above electromechanical forces do not appear troublesome, the actual

forces may be considerably higher due to free charges on the electrode layers that

are driven by the applied potentials. In any case, it may be necessary to isolate the

cantilevered electrodes from noisy electrical signals near the mechanical resonance.

The trap strength may be limited by the maximum voltage that can be applied

to the electrodes before the occurrence of electric �eld break-down. The theoretical

limit to the breakdown voltage is dependent on the bandgap ofthe semiconductor

material and, for Si and GaAs, is on the order of 40-50 V/� m [65] and for silicon

nitride, on the order of 300 V/� m [66]. For a layer separation of 2�m , the maximum

applied voltage is expected to be of orderV0 = 100V.

4.2.3 RF Dissipation and Thermal Fields. The fabrication considerations for the

implementation of this new type of linear microtrap suggest that highly doped semi-

conductors could be used as electrodes. Because doped semiconductors have a resis-
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tivity several orders of magnitude greater than the metal conductors typically used

in ion traps, it is necessary to estimate the power dissipation of the microtrap due

to RF losses in the cantilevers. Additionally, the �nite conductivity of semiconduc-

tor materials will lead to thermal electric �elds that will generate heating of the

quantized motion of ions in the center of the trap.

The RF dissipation can be estimated with a simple model of lumped circuit ele-

ments, since the trap structure is much smaller then the RF wavelength. Each RF

electrode is modeled as a small series resistanceR shunted by a capacitanceC at the

trap; inductance of the electrodes is assumed negligible compared to 1=(C
 2
T ). In

addition, RF loss in the insulator separating the electrodes contributes to a parallel

resistance characterized by the loss tangent tan� . AssumingRC
 T ; tan � � 1, the

power loss is

Pd =
V 2

0 C
 T

2
(RC
 T + tan � ): (4.5)

For values envisioned here,V0 � 20V at 
 T =2� � 50MHz, C � 10pF, tan� � 0:0002

and R � 10
, resulting in a power dissipation of Pd � 40mW per electrode.

Additionally, Johnson noise in the electrodes will generate thermal electric �elds

that will cause heating of the quantized ion motion. A simple model can be used to

calculate the heating due to the resistivity of the trap electrodes [35, 60]. For an ion

held at a distancez from a conductive plane, the heating rate is given by

@E
@t

= �h! _�n

=
e2kB TR(! s)

mz2
(4.6)

where ! is the secular frequency and �n is the average vibrational quantum number

of an ion in the trap. In the limit where the conductor thicknessw is much smaller

than the distance to the ionz, and both dimensions are smaller then the skin depth�
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of the conductor (w � z � � ), the resistanceR in Eq. 4.6 is frequency independent:

R � �z=(zw), where � is the material resistivity. Here, the e�ective volume of the

conductor contributing to the thermal �elds is of order z2w. Again, using typical

values for doped semiconductors, the skin depth� is a few hundred micrometers,

the thickness of the conductor is 2� m and the ion is 20� m from the conductor. In

this limit, using a secular frequency of! s=2� = 10MHz, and 111Cd+ ions, Eq. 4.6

predicts a thermal heating rate of about 10 quanta/sec. Sincethis model pertains to


uctuating uniform thermal electric �elds from a single conducting plane, the actual

thermal electric �elds are expected to be much smaller becausethe trap structure

surrounds the ion with a high degree of symmetry, resulting in some degree of can-

cellation of thermal �elds from opposite electrodes. In any case, the heating rate will

likely be limited in practice by 
uctuating patch �elds on th e electrode surfaces [60].

4.3 RF Ponderomotive Potentials

4.3.1 Time-dependent RF potentials. As described above, the analysis of the poten-

tials in a linear RF Paul trap can be divided into the transverseRF trap generated by

RF voltages applied to the appropriate electrodes, and the axial trap and transverse

anti-trap generated by static voltages applied to the end-cap electrodes. Focusing

�rst on the time-varying potential generated by the RF voltages, the analysis can

be simpli�ed by using a pseudopotential approximation. The motion of an ion in an

RF potential of the form

�( x; y; z; t) = V(x; y; z) cos(
 T t) (4.7)

can be approximated using a ponderomotive pseudopotential [34]:

 =
e2

4m
 2
T

jr V (x; y; z)j2 (4.8)
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Ion motion is in the pseudopotential can be approximated as secular harmonic motion

[35] with frequency

! 2
p =

e2

4m2
 2
T

@2

@x2
�
jr V(x; y; z)j2

�
: (4.9)

The micromotion due to the time dependence of the RF potential is small in the

limit where q � 2
p

2! p=
 T � 1 [34].

Since the secular ion motion is dependent only on the gradientof V(x; y; z), it is

possible to calculate the e�ective (or ponderomotive) potential of the linear microtrap

using an electrostatic analysis. Moreover, since the RF potential is approximately

uniform along thez-axis near the center of the trap, it can be described in thez = 0

plane as a function only ofx and y, reducing the calculation of the RF potential to

two dimensions.

4.3.2 Hyperbolic Electrode Model. One common con�guration of a linear Paul

trap consists of four in�nitely long hyperbolic electrodes. This hyperbolic electrode

model will be used as a standard of comparison for the linear microtrap. The cross-

section of hyperbolic electrodes with a characteristic radius R0 is shown in Fig. 4.3.

For the potentials applied according to Fig. 4.3, the exact potential amplitude is

Vhyp (x0; y0) =
V0

2R2
0

�
x02 � y02

�
(4.10)

=
V0

2
r 2

R2
0

cos 2� 0:

where the coordinate system (x0; y0) is indicated in Fig. 4.3.

The pseudopotential that corresponds to this hyperbolic potential is calculated

using Eq. 4.8.

 hyp =
e2V 2

0

4m
 2
t R4

0

�
x02 + y02

�
(4.11)

The secular frequency of a ion moving in this ponderomotive pseudopotential is
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Figure 4.3: Hyperbolic electrode geometry. The hyperbolic electrode geometry is used as a basis for
comparing the linear microtrap. The characteristic dimension of the hyperbolic electrode geometry
is the radius R0 as shown.

therefore

! p;hyp =
eV0p

2m
 tR2
0

=

s
eV0q

4mR2
0
: (4.12)

4.3.3 Linear Microtrap Transverse Potential Analysis. The microtrap potential

amplitude VLMT is computed near the center of the trap. This potential is then

decomposed as an in�nite set of cylindrical harmonics [67]:

VLMT (r; � 0) = V0

"
1X

m=1

Cm (r=r 0)m cos(m� 0)

+
1X

n=1

Sn (r=r 0)n sin(n� 0)

#

(4.13)

where Cm and Sn are expansion coe�cients and� 0 is taken as the angle from the

x0 axis. The characteristic radius over which the potential is approximated by this

expansion isr0.
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The C2 coe�cient provides a comparison between the potential of thelinear mi-

crotrap and the quadrupole potential of the hyperbolic electrode geometry of radius

r0. Other nonzero coe�cients in the expansion of Eq. 4.13 describe the anharmonic

character of the microtrap potential. Symmetry considerations reduce the number

of terms allowed in the expansion. Given the potential amplitude of � V0=2 applied

to opposite electrodes as shown in Fig. 4.2(a), the potential is antisymmetric along

the lines x = 0 and y = 0 and symmetric in re
ection about the origin leading to

the only non-zero terms in Eq. 4.13 asm = 2; 6; 10; : : : and n = 4; 8; 12; : : :.

The expansion coe�cients are calculated by numerically evaluating the LMT po-

tential using �nite element analysis or other appropriate numerical �eld simulators

and calculating the overlap integrals within a circle of radius r0 of the potential VLMT

with the cylindrical harmonics (r=r 0)m cos(m� 0) and (r=r 0)n sin(n� 0) [67].

A geometric e�ciency factor � can be used to compare the microtrap potential

with the quadrupole potential of the hyperbolic electrodesof comparable size. The

size of the linear microtrap is given by the distance from the center of the trap to

the nearest point on the tip of the electrodes̀e� �
p

(a=2)2 + ( d=2)2. Then, � is

de�ned as the ratio of the quadrupole part of the potential generated by the LMT

V (2)
LMT

and a hyperbolic trap with R0 = `e� .

� =
V (2)

LMT

Vhyp
=

2C2`2
e�

r 2
0

: (4.14)

The quadrupole portion of the linear microtrap can therefore be written in a form

di�ering from the hyperbolic electrode potential (Eq. 4.11) by only the geometric

factor � .

V (2)
LMT

(x0; y0) =
V0�
2`2

e�

�
x02 � y02

�
(4.15)
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The ponderomotive potential for the microtrap can then be evaluated using Eq. 4.8:

 LMT =
e2V 2

0 � 2

4m
 2
T `4

e�

�
x2 + y2

�
: (4.16)

Finally, the e�ective secular frequency of an ion in the linear microtrap is only

modi�ed by the factor � from the form of the secular frequency in the trap due

to the hyperbolic electrodes (Eq. 4.12). With this form of the secular frequency, one

can compare the trap strength and performance of the linear microtrap.

! p;LMT =
eV0�

p
2m
 T `2

e�

(4.17)

The equipotential lines of the calculated ponderomotive potential are shown in

Fig. 4.4 along with the potential magnitude indicated by a gray-scale. Note that,

although the cantilever geometry does not have cylindricalsymmetry, the pseudopo-

tential is approximately circular within a distance on the order of one-eighth the

tip-to-tip separation a as will be shown from the numerical results in Sec. 4.3.4

where C2 is found to be the dominant term in the expansion at this distance from

the center.

4.3.4 Finite Element Analysis Method. The class of �nite element analysis solvers

that is used here divides a two-dimensional space into a series oftriangles to calculate

the linear microtrap potential. The two-dimensional �nite element analysis package

in Matlab version 6.5 was used to calculate the RF potentials. The results were

compared with the two-dimensional projection of potentialscalculated using two

di�erent three-dimensional �nite element analysis packages,Maxwell 3D from Ansoft,

and Opera 3D from VectorFields, and found consistent. The �eld is approximated

at each vertex on the triangles, then an interpolation is madewithin each element to

calculate the �eld on an rectangular grid. Di�erent trap con�gurations are analyzed

using the method described above and the ratio� of the microtrap potential to
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Figure 4.4: Transverse Equipotential Lines. Equipotential lines of the pseudopotential  LMT in the
z = 0 plane for aspect ratio � = 10 and ratio of layer separation to layer thickness of � = 1. The
ponderomotive potential reaches a maximum along they axis near`e� . The contour lines are spaced
on a linear scale and are shown to illustrate the circular nature of the ponderomotive potential at
the center of the trap. The gray-scale shading is also on a linear scale.
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the quadrupole hyperbolic potential is shown in Fig. 4.5 evaluated at a radius of

r0 = a=8. The uncertainty of the simulation data is less then 5% and is due primarily

to a �nite grid spacing and the �nite bounding box size. The solidline in the �gure

is an analytic solution for cantilevers of in�nitesimal thickness.

One can see that as the trap aspect ratio� = a=d increases, the geometric factor

� approaches a constant, non-zero value. The asymptotic value can be evaluated

using complex analysis techniques and is described in Appendix B. The result from

Eq. B.10 for large� is � = 1=� . Additionally, as the aspect ratio approaches one,

the trap becomes more like the hyperbolic electrode geometry. The other degree

of freedom of the linear microtrap is the ratio of the layer separation to the layer

thickness,� = d=w. Note that the strength of the microtrap decreases as the layer

thickness decreases with respect to the layer separation.

The higher-order coe�cients of the expansion shown in Eq. 4.13for the potential

VLMT are shown in Fig. 4.6. The dominant higher-order term isS4, which, at a �xed

radius of r0 = a=8, is only a few percent ofC2. The two next largest terms are also

shown although the magnitude is small enough to be negligible when considering ion

motion. The relationship between theC2 and the next three largest terms of the

expansion as a function of the aspect ratio� and � is shown in Fig 4.6. Coe�cients

S4, C6 appear to approach an asymptotic value as the trap aspect ratioincreases.

The ratios of all higher-order terms to the coe�cient C2 (Cm=C2 and Sn=C2) for

m; n > 6 are less than 10� 3.

The absolute depth of the ponderomotive RF trap is also of interest when consid-

ering ion loading and collisions with background gas. The trapdepth is de�ned as the

maximum height of the ponderomotive potential barrier along the weak axis of the

trap and is plotted in Fig. 4.7. A trap frequency of 
 T =2� = 50MHz and the mass of
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Figure 4.5: Transverse Geometric e�ciency factor. The ponderomotive potential geometric e�-
ciency factor � as a function of the ratio of the tip-to-tip separation to the layer separation: the
aspect ratio � . The other degree of freedom is the ratio of the electrode separation to the layer
thickness, � = d=w. The solid line is an analytic solution for � found using complex analysis
techniques with � ! 1 and is valid for � � 1
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Figure 4.6: Higher-order expansion coe�cients. The two largest higher-order terms of the expansion
in Eq. 4.13 shown as a ratio overC2 for various trap aspect ratios � = a=d and given as a function
of the layer separation over the layer thickness� = d=w evaluated at r 0 = a=8
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111Cd+ were used to calculate the depth, given in scaled units of [K�� m2/V 2]. To �nd

the depth of a speci�c trap, the data must be multiplied by the applied voltageV 2
0 in

[V2] and divided by the square of the absolute tip-to-tip separation a2 in [� m2]. The

depth asymptotically approaches a constant value of approximately 2400K�� m2/V 2

for large cross-sectional aspect ratio as can be found from the analytic solution (Eq.

B.13). The size of the ponderomotive traprmax is characterized by either the dis-

tance of the maximum in the ponderomotive potential from thecenter of the trap or

a=2, whichever is smaller. As the trap aspect ratio increasesrmax is determined by

the maximum in the RF pseudopotential along they-axis and is approximately half

the tip-to-tip electrode separation 0:5a.

Figure 4.7: Scaled trap depth. The scaled trap depth as a function of the trap aspect ratio � = a=d
and the ratio of layer separation to layer thickness� = d=w. The trap depth is scaled to the tip-
to-tip separation a, in micrometers and to the applied voltageV0. The analytic result is shown as
a solid line with � ! 1 and is valid for � � 1.

Since the ponderomotive potential within the regionr < r max will trap ions, the
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expansion of the potential from Eq. 4.13 within that entire area is also of interest.

The expansion of the potential within a circle of radiusr0 = rmax contains a larger

contribution from the higher-order coe�cients than an expansion �xed at r0 = a=8

as illustrated in Fig. 4.8. The higher-order coe�cients for the expansion of the linear

microtrap potential are shown in Fig. 4.9, evaluated atr0 = rmax .

Figure 4.8: Higher-order coe�cients as a function of trap radius. The dependence on the expansion
coe�cients Cm and Sn as a function of r 0=(a=2). The higher order terms become signi�cant as the
overlap integrals cover more of the area between the electrodes. The geometry used was � = 20
and � = 1, a worst case scenario from Fig. 4.9. The dashed vertical bar indicatesr 0 = a=8.

4.3.5 Residual Axial Ponderomotive Potential. The previous analysis is based

on the assumption that the linear microtrap electrodes are in�nitely long in the z-

dimension. However, the actual trap has �nite electrode lengths, labeledb and c in

Fig. 4.2(b), which together with the small electrode gaps (labeledg in Fig. 4.2) lead
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Figure 4.9: Largest higher-order coe�cients as a function of� . The three largest higher-order terms
of the expansion in Eq. 4.13 evaluated within a radiusr 0 = rmax , where rmax is the maximum of
the ponderomotive potential. The coe�cients are shown as a percentage of the largest term C2 for
various trap aspect ratios � = a=d and given as a function of the layer separation over the layer
thickness � = d=w with an error of 5%.
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to a small ponderomotive potential in thez direction. The magnitude of this axial

ponderomotive potential can be compared to the transverse ponderomotive potential

 LMT of Eq. 4.16. To �nd the axial contribution, the entire three-dimensional RF po-

tential VLMT (x; y; z) must be computed. Once found, one can use the ponderomotive

potential approximation Eq. 4.8 to calculate the trap frequency along thez-axis.

The gradient of the three-dimensional potential is found, then the pseudopotential

is evaluated. A Taylor expansion of the pseudopotential alongthe z axis (about

z = 0) gives the coe�cient for the harmonic z2 term in the ponderomotive potential:

Hz =
1
2

@2

@z2
�
jr VLMT (x; y; z)j2

�
: (4.18)

The details of the three-dimensional potential calculationare given below, but the

method is similar to the two-dimensional �nite di�erence analysis. Typically the

data is extracted along thez axis and then �t to a quadratic polynomial to �nd

the coe�cient Hz. This coe�cient allows one to make a comparison between the

quadrupole trapping pseudopotential in thez = 0 cross-sectional plane, and the

ponderomotive potential along thez-axis. This three-dimensional ponderomotive

potential is similar to the transverse potential of Eq. 4.16 with the addition of the

z2 term.

 LMT (x; y; z) =
e2V 2

0 � 2

4m
 2
T `4

e�

�
x2 + y2 + � zz2

�
; (4.19)

where � z = Hz`4
e� =� 2 is the ratio of the residual axial to transverse ponderomotive

potential. The resulting frequency along thez-axis is ! z =
p

� z! p;LMT .

The results from the numerical simulation in Fig. 4.10 are given for a cross-

sectional aspect ratio of� = 20 and for � = 1 (ratio of the layer separation to the

layer width). The ponderomotive potential along thez-axis is shown in Fig. 4.11 to

illustrate the degree to which the notch gapg contributes to the residual potential at
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the center of the trap. Since� z � 1, the ponderomotive contribution to the potential

along thez-axis can be neglected.

Figure 4.10: Residual axial ponderomotive potential. The ratio of the residual axial frequency
to the transverse ponderomotive frequency� z as a function of the center electrode length. The
end-cap electrodes were �xed at 5̀e� with a �xed gap spacing of 1=10̀ e� , � = 20, and � = 1.

4.4 Static Potentials

4.4.1 Hyperbolic Geometry. Like the two-dimensional potential in Sec. 4.3.2, the

static potential used to con�ne the ions along thez-axis in the linear microtrap can

be compared to a three-dimensional idealized hyperbolic electrode potential. Figure

4.12 shows an elliptical hyperbolic electrode geometry where x0, y0, and z0 are the

distances along the principal axes of the ellipse from the center of the trap to the

electrodes. The potential within the electrodes, up to a constant term, is

Uhyp =
U0

s2

�
� �x 2 � (1 � � )y2 + z2

�
(4.20)
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Figure 4.11: Residual ponderomotive potential for di�erent center electrode lengths. Illustration
of the change in the residual axial ponderomotive potential for various center electrode lengths
(b). The potential along the z-axis is shown for various center electrode lengths where the end-cap
electrodes have been �xed at 100� m.
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where s2 = z2
0 + �x 2

0 and �x 2
0 = (1 � � )y2

0. The geometric anisotropy factor� is

related to the eccentricity of various conic sections that can be superimposed on the

three-dimensional hyperbolic electrode structure. The special case where� = 1=2

corresponds to circular symmetry in thexy plane. For values of 0< � < 1 and

U0 > 0, the potential is trapping in z and anti-trapping in the xy plane, as shown

in the �gure for � = 0:86. Outside of that range, the axes in the �gure must be

rotated to describe the potential of Eq. 4.20. When� > 1 and U0 > 0, the potential

is trapping in the zy plane and anti-trapping in x; and for � < 0 and U0 > 0, the

potential is trapping in z and x, but anti-trapping in y. Whereas, at� = 0 and � = 1,

the potential is independent ofx and y respectively. The frequency along thez-axis

is

! z;hyp �

r
2eU0

ms2
: (4.21)

The frequencies along thex and y axis are discussed in connection with the net linear

microtrap potential below.

Figure 4.12: Three-dimensional hyperbolic electrodes are shown here. The electrodes along the
z-axis are held at a voltage ofU0, while the center electrode is grounded. The potential has an
elliptical cross-section in thexy plane corresponding to� = 0 :86 and, for U0 > 0, is trapping along
the z-axis, but anti-trapping along x and y, valid for 0 < � < 1.

4.4.2 Linear Microtrap Static Potential Analysis. The static potential is computed

using a three-dimensional �nite element solver. The distance from the center of the
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trap to the bounding box that was used in the simulation was morethen twice the

tip-to-tip cantilever separation. To reduce the error in thesimulation results, several

di�erent grids were used and the results were averaged.

It is possible to approximate the three-dimensional static potential of the linear

microtrap, ULMT (x; y; z) by doing a Taylor expansion about the center of the trap.

Because equal voltages are applied to all capping electrodesas shown in Fig. 4.2(b),

the cross-terms in the Taylor expansion are zero. The coe�cients of the harmonic

terms are:

Dx =
1

U0

@2ULMT

@x2
(0; 0; 0) (4.22)

Dy =
1

U0

@2ULMT

@y2
(0; 0; 0) (4.23)

Dz =
1

U0

@2ULMT

@z2
(0; 0; 0) (4.24)

The derivatives are then evaluated numerically on the calculated potential along the

axes. The potential is therefore

ULMT �
U0

2

�
Dxx2 + Dyy2 + Dzz2

�

=
U0Dz

2

�
Dx

Dz
x2 +

Dy

Dz
y2 + z2

�
(4.25)

A static potential geometric e�ciency factor � compares the static potential of the

linear microtrap with the hyperbolic electrode geometry ofsimilar characteristic

dimension. The characteristic dimension of the linear microtrap that corresponds to

the distances in the hyperbolic electrode geometry is the distance from thecenter

of the trap to the nearest point on the end-cap electrodes:de� =
p

`2
e� + ( b=2 + g)2.

� � Dzd2
e� =2 (4.26)

The static potential in the linear microtrap can then be written in the same form
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as the potential in the hyperbolic electrode geometry.

ULMT =
U0�
d2

e�

�
� �x 2 � (1 � � )y2 + z2

�
(4.27)

where � = � Dx=Dz = 1 + Dy=Dz. Given this approximation of the electrostatic

potential in the linear microtrap, the form of the trap frequency along thez-axis is

similar to that of the hyperbolic electrodes (Eq. 4.21) with the di�erence being only

the static potential geometric e�ciency factor �

! z;LMT =

s
2�eU 0

md2
e�

: (4.28)

The results characterizing the linear microtrap for� and � from the numerical

simulations are shown in Fig. 4.13.

Figure 4.13: Static potential numerical results in the linear microtrap. The results for the
three-dimensional numerical simulations of the static potential in the linear microtrap. Both the
anisotropy factor � and the static potential geometric e�ciency factor � are shown. The ratio of
the layer separation over the layer width was �xed at one and the gap separationat two (g=2 from
Fig. 4.2(b)).
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4.5 Net Potential

The combined static and ponderomotive potentials that determine the motion of

a ion in the linear microtrap are written as a three-dimensional uncoupled harmonic

oscillator potential:

� LMT =  LMT + ULMT

=
e2V 2

0 � 2

4m2
 2
T `4

e�

�
x2 + y2

�

+
�U 0

d2
e�

�
� �x 2 � (1 � � )y2 + z2

�
(4.29)

where the residual axial ponderomotive potential has been neglected. Considering

this full potential, the e�ective trapping frequencies consist of the quadrature sum

of the ponderomotive and the static frequencies.

! x ;LMT =
q

! 2
p;LMT

� �! 2
z;LMT

(4.30)
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(4.32)

Table 4.1 provides a few examples of the calculation of the total trap frequencies

given a speci�c geometry. The mass of the ion used in calculatingthe frequencies

was111Cd with an RF frequency of 
 T =2� = 50MHz. The values for� , � , and � were

taken from Figs. 4.5 and 4.13.
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a=40� m
d=10� m
w=10� m
b=100� m

� = 4
� = 1

`e� = 21� m
de� = 59� m

� = 0 :7
� = 3

� = 0 :3

V0 = 40V
U0 = 20V

! p; LMT =2� = 20MHz
! z; LMT =2� = 8 :7MHz

! x ; LMT =2� = 13MHz
! y ; LMT =2� = 23MHz
! z; LMT =2� = 8 :7MHz

a=40� m
d=2 � m
w=2 � m

b=100� m

� = 20
� = 1

`e� = 20� m
de� = 58� m

� = 0 :43
� = 3 :5

� = 0 :26

V0 = 20V
U0 = 1V

! p; LMT =2� = 6 :7MHz
! z; LMT =2� = 1 :8MHz

! x ; LMT =2� = 5 :8MHz
! y ; LMT =2� = 7 :3MHz
! z; LMT =2� = 1 :8MHz

a=80� m
d=2 � m
w=2 � m

b=160� m

� = 40
� = 1

`e� = 40� m
de� = 89� m

� = 0 :38
� = 3 :2

� = 0 :28

V0 = 35V
U0 = 0 :9V

! p; LMT =2� = 2 :6MHz
! z; LMT =2� = 1 :2MHz

! x ; LMT =2� = 1 :5MHz
! y ; LMT =2� = 3 :2MHz
! z; LMT =2� = 1 :2MHz

Table 4.1: Sample calculations for trap performance. A trap frequency of 
T =2� = 50MHz was assumed for a111Cd ion.
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4.6 Microtrap Principal Axes

Principal axes are the axes along which it is possible to describe the motion of an

ion in the total potential as a three-dimensional uncoupled harmonic oscillator. This

means that the motion of the ion along each axis is independent of the other two

spatial coordinates. The equations of motion for an uncoupledharmonic oscillator

are

•x = � ! 2
xx; etc: (4.33)

An uncoupled harmonic oscillator corresponds to a potential with symmetries along

the principal axes. Since the RF ponderomotive potential (Eq. 4.16) is radially sym-

metric, the principal axes of a linear ion trap are determined by the static potential.

The principal axes of an ion trap are of concern when considering laser cooling an ion

in the trap. Laser cooling along all three dimensions of motionis possible only if the

laser wave vector~klaser has a vector component along all three principal axes. The

symmetry of the microtrap is such that thez-axis is a principal axis, therefore, the

axes of concern are in thexy plane. It is possible to rotate the principal axes by ap-

plying di�erent static voltages to the electrodes, which giverise to an xy cross-term

in the static potential.

To �nd the new principal axes, one can rotate the coordinate system via Eq. 4.34.

x = x0cos� + y0sin�

y = � x0sin� + y0cos� (4.34)

This rotation can be applied to the potential with anxy cross-term of magnitude�

U0
LMT

=
� 2U0

d2
e�

�
� �x 2 � (1 � � )y2 + �xy + z2

�
(4.35)

to �nd an angle at which the cross term in the rotated coordinate system (� 0x0y0)
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vanishes. This new coordinate system, rotated about thez-axis by an angle� , now

determines the principal axes of the trap. The angle at whichthe cross-term vanishes

is found as a function of the coe�cient of the cross-term� and the geometric factor

� .

tan(2� ) =
�

2� � 1
(4.36)

The static axial potential can then be written in an uncoupledform, showing explic-

itly the new principal axesx0 and y0.

U0
LMT

=
� 2U0

d2
e�

�
� � 0x02 � (1 � � 0)y02 + z2

�
(4.37)

where� 0 = � cos(2� ) + �
2 sin(2� ) + sin 2 � .

A simple point charge potential model can be used to provide a qualitative idea

of how the principal axes may be rotated. Twelve charges are �xed at the corners of

three rectangles as shown in Fig. 4.14(a). The positions of eight charges of value +q

are at (� a=2; � d=2; � b) and an additional four with charge� q at (� a=2; � d=2; 0).

A Taylor expansion of the point charge potential whereb � a; d can be written as

Upoint =
U0

r 2
0

�
� �x 2 � (1 � � )y2 + z2

�
(4.38)

whereU0 = 2q=(4�" 0r0), r0 =
p

(a=2)2 + ( d=2)2, and � = (2 a2 � d2)=(a2 + d2). If two

charges are increased fromq to q0 on either end-cap as in Fig. 4.14(b), the principal

axes are rotated. Alternatively, one could increase the negative charge on two of the

four point charges in thez = 0 plane. This would correspond to applying a negative

static potential to two of the center electrodes in the linearmicrotrap and is more

e�ective at rotating the principal axes. The potential in the point charge model,

with the addition of these modi�ed charges, becomes

Upoint =
2(q+ q0)
(4�" 0)r 3

0

�
� �x 2 � (1 � � )y2 + �xy + z2

�
(4.39)
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Figure 4.14: Charge model for principal axis rotation. (a)Unrotated static 12 point charge potential,
shown as cross section in thez = 0 plane. (b) By changing the charge on four of the eight end-
cap points, the principal axes rotate. (c) The same result can be achieved by applying additional
negative charge to the center electrodes. The aspect ratio of� = 4=3 was used to illustrate the
rotation of the axes of symmetry of the potential.
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where now, thexy cross term has a coe�cient

� = 6
q � q0

q+ q0

ad
a2 + d2

(4.40)

Substituting Eq. 4.40 into the condition for the rotation angle (Eq. 4.36), and using

the explicit form for � in the point charge model, the rotation angle can be expressed

as a function of the applied charges and the trap aspect ratio (� = a=d, the tip-to-tip

cantilever separation over the layer spacing).

tan 2� =
1 � q0=q
1 + q0=q

2�
� 2 � 1

(4.41)

There are several features of this model that give a qualitative understanding of the

rotation of the principal axes. First, for a given trap aspect ratio � , by increasing

the ratio of charges, one can rotate the principal axes a �xed amount. However, as

the aspect ratio increases, the amount of rotation that can be given the principal

axes by changing the charge ratio is decreased, eventually approaching zero.

The principal axes rotation in thexy plane for the linear microtrap as a function

of the applied voltage on two diagonally opposing center electrodes is shown in Fig.

4.15. The aspect ratio was �xed at� = 20 and � = 1. The other two center electrodes

were held at static ground with all eight end-cap electrodes at U0 = 1V. As discussed

above, by applying small voltages to the appropriate center electrodes, it is possible

to rotate the principal axes so that laser cooling is e�ective.

4.7 Future Research

A new design for a microfabricated linear ion trap has been discussed. Calcula-

tions of the RF ponderomotive potential have shown a surprisingdegree of isotropy

near the center of the trap, even for very high aspect ratios. For high transverse

electrode aspect ratios, the trap strength approaches 1=� times that of a comparable
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Figure 4.15: Microtrap principal axis rotation. The principal axis rotat ion from the xy axis shown
in Fig. 4.2(a) as a function of the applied voltage on two diagonally opposing center electrodes. The
other center electrodes were held at static ground with the end-cap voltages �xed atU0 = 1V. The
trap dimensions area = 40� m, d = 2 � m, w=2 � m, with all electrodes having a width of 100� m.

hyperbolic electrode structure. This may be of importance inthe design of micro-

traps in applications such as Cavity QED [68] and miniature mass spectrometers

where conventional ion trap designs can not be used. Geometricscaling factors for

the linear microtrap provide an easy comparison between these new trap designs and

conventional ion traps, facilitating implementation in future experiments.

Further investigations will require actual fabrication andexperimentation with

this new type of trap and include an investigation of the patchpotentials on the

surfaces of the doped semiconductors, the limiting electric �eld, and laser scatter

from the small aperture. These factors are all technical in nature and should not

prohibit the future implementation of this novel linear microtrap design. The actual

fabrication and performance of the GaAs trap is discussed in Section 5.2.
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CHAPTER V

Trap Fabrication

There are many di�erent geometries and con�gurations that can be used to trap

ions that range from a simple asymmetrical ring-and-fork trapto a complicated

gold-plated laser machined alumina substrate. In this Chapter, the fabrication and

assembly of the linear gold-plated alumina trap is detailed. The fabrication of the �rst

monolithic semiconductor ion trap based on conventional GaAs MEMS technology

is also discussed.

The gold-plated alumina linear trap described in this Chapter has been used

extensively in quantum information experiments [69, 70, 21,71, 72, 73]. In addition,

the novel three-layer design and fabrication technology wasextended to the �rst two-

dimensional array of ion traps, including the �rst example of shuttling an ion around

a corner [74]. The GaAs trap was also successfully loaded, with details reported ion

Ref. [33].

5.1 Gold-plated Alumina Linear Trap

The �rst of the two traps discussed in this Chapter is based on a two-layer design

used at NIST in earlier experiments [13, 75]. This design, however, uses three layers

of electrodes, allowing for three-dimensional compensation of stray electric �elds for

the minimization of excess micromotion (see Section 2.3). In addition, the use of
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a single layer for the rf electrode allows the geometry to be extended into more

complicated junctions [74].

5.1.1 Electrode Layout All linear traps can be modeled with the simple geometry

of the basic linear rf trap [62]. Four parallel rods are placedon the corners of a

rectangle such that, when the right rf voltages are applied, they provide trapping

ponderomotive potentials in the transverse plane (transverse to the length of the

rods). To trap the ions along the length of the rods (the axial direction), static

voltages are applied to end-cap electrodes of one type or another. A simple schematic

drawing of a linear trap is shown in Fig. 5.1.

rf electrodes

rf ground
static electrodes

ion crystal

Figure 5.1: Four rod linear trap illustration. An illustration of a f our rod linear trap. Shown are
the rf electrodes and the static electrodes needed for three-dimensional con�nement of ions.

The gold plated alumina trap is a variation of a linear trap where the rf ground

electrodes have been split into two pieces and separated by thewidth of the trap. The

result looks like six rods set in two planes. Two di�erent substratethicknesses were

used as well as two spacer layers to electrically isolate the gold electrodes, creating a

seven-layer stack of ceramic substrates. The top and bottom substrates were used for

the static axial con�nement electrodes and were 254 microns (10 mils) thick. They

99



were separated from the rf layer by alumina substrates where therf layer and the

spacer layers were both 125 microns (5 mils) thick. The stack thus was assembled

with: a static electrode layer, a spacer layer, the rf layer, then a second spacer and

�nally a static electrode layer. Each substrate had 4 assembly holes drilled in it that

were aligned in the �nal assembly with steel dowel pins, 1 mm diameter, 6 mm long.

A �fth hole was originally cut to serve as an alignment pin, butit was discovered

that alignment was easier if that pin was left out. The entire stack was held together

with thick alumina mount bars. The mount bars had blind holes drilled in them to

match the assembly holes of the substrates. The stack was placed on the dowel pins

on top of one of the mount bars. The other bar was placed on top ofthe stack and

the entire assembly was held together with four screws (4-40 thread) with spring lock

washers to provide even compression. The complete assembly is drawn in Fig. 5.2

and shown in a photo in Fig. 5.3.

Figure 5.2: Ceramic linear trap design. The design for the assembly of the linear trap. Shown are
the 7 layer substrate stack, the two mount bars and the four screws used to clampthe mount bars
down onto the stack.

The transverse plane of the trap is illustrated in Fig. 5.4. The static electrode
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Figure 5.3: Assembled ceramic trap photo. A picture of the gold plated alumina linear trap
assembly. The dark regions are the gold plated electrodes on the alumina substrates.

layers act as the rf grounding planes as well as providing theaxial con�nement

potential and the static compensation voltages for minimizing micromotion. There

is no potential applied to the spacer layer- it only separates and electrically isolates

the rf layer from the static electrode layers.

rf ground/
static electrodes

rf electrodes

rf ground/
static electrodes

spacer

spacer

200 mm

Figure 5.4: Transverse illustration of ceramic trap. The transverse diagram of the gold plated
alumina trap. The gap distance shown is 200� m. The thickness of the rf and spacer layers is 125
� m and the thickness of the static electrode layers is 250� m. The chamfer angles on all layers is
45 degrees.

5.1.2 Alumina Substrate Fabrication These alumina substrates were purchased from

CoorsTek ceramics company polished on both sides and dimensioned as discussed
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below. The laser machining was done by a company called Resonetics. The outer

dimensions of the substrates are not critical; a large dimensionof 25 mm and a

smaller dimension of 20 mm was used to give enough room on the substrate for the

gold patterning and the on-board �ltering electronics. The static electrode substrate

and the rf substrate were cut so that they overlap with their longdimensions not in

the same direction. The spacer layer was cut 20 mm by 20 mm to �t between the

static and rf layers without protruding.

A central gap, 5 mm long and nominal width 200� m was cut in the static electrode

for the trapping region. The static electrode layers, shown in Fig. 5.5(a,d), had four

slits cut perpendicular to the trap gap, used to ensure electrical isolation between

the center electrodes and the end electrodes. The slits were cut so that there is a 375

� m long center electrode. The slit width was 25� m and the length was a total of 1.9

mm from the edge of the substrate to the back of the slit. The edgesalong the trap

gap of the static electrode substrates were chamfered at 45 degrees from the outside

of the trap structure, giving length of the chamfered part is 250 � m. However, the

laser machining of the substrates typically left a rough edge atthe tip of the chamfer.

To smooth this rough edge, the center edge was cut vertically,leaving a 20� m high

vertical drop at the tip. A SEM photo of the tip is shown in Fig. 5.6 that shows this

edge.

The spacer layers (see Fig. 5.5(c)) had a rectangle 9 mm by 10 mm cut out of

the center to isolate the trap from the insulating surfaces. The c-cut is 3 mm wide

and was cut to prevent rf shorts going through the spacer substrate. This e�ectively

isolated the gold patterning on the rf electrode from any direct path through material

to the gold patterning on the static electrodes.

The rf layer (Fig. 5.5(b,e)) had a similar 5 mm long gap cut in the middle. The
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chamfer on this substrate was cut from both sides to a length of only 62 � m, leaving

a nominal gap width from tip to tip of 200 � m. This chamfer also has a vertical edge,

about 20� m thick cut at the end to clean up the edges from the laser machining. In

order for the laser machining to be aligned properly, two 75� m diameter holes were

drilled in the ceramic substrates along the center of the gap, 1mm from the edge of

the gap length. These holes were used for aligning the machine for the chamfered

cuts.

(a) (b)

(c)
(d)

(e) (f )

Figure 5.5: Ceramic trap three electrical layers. (a)The static electrode substrate. (b) The rf
substrate. (c) The spacer substrate. (d) A close-up view of the static electrode substrate gap. (e)
A close-up view of the rf substrate gap. (f)One of the mount bars.

The mount bars used to sandwich the entire structure together were 45 mm long
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Figure 5.6: A SEM photo of the tip of the chamfered edge of the static electrode substrate. Note
the vertical edge that is approximately 20 � m thick.

by 20 mm wide and were 4 mm thick. The inner rectangle is 35 mm long and 10

mm wide. The 5 blind holes were machined with a 1 mm diameter and were sunk

3 mm deep. The four end through holes were 3 mm in diameter. Themount bars

were machined conventionally by a company named Mindrum.

5.1.3 Gold Electrode Plating The laser-machining of the alumina substrates formed

the physical structure of the trapping electrodes. The actual delivery of rf and static

potentials to the trapping zone was accomplished by plating agold layer on top of

the alumina. The gold was patterned to allow for on-board rf �ltering electronics to

be mounted directly to the static electrode substrates.

The gold patterning on the alumina substrates was �xed using physical masks.

Various iterations of the trap used both gold sputtering and e-beam evaporation

techniques to deposit the gold through the physical masks, onto the substrate. The

process, however, is similar. The physical mask was held in contact with the substrate
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directly above the evaporation source. The source was either heated or ablated,

coating the alumina with a thin layer of titanium (for adhesion, typically about 20

nm thick) and then gold (thickness ranging from 0.1� m to 2 � m, depending on the

process). The sputter tool allowed for a thicker gold layer to bedeposited on the

substrate, but the gold was typically rougher in appearance and seemed to have more

surface defects. Both sides of the static electrode and rf substrates were coated so

the gold would completely cover the area of the alumina near the center of the trap.

The rf was coated with the same physical mask on both sides, whereasthe static

electrodes had two separate masks- a top mask with patterning forthe surface mount

electronics, and a bottom mask to cover the center of the trap. The masks are shown

in Fig. 5.7. The masks are designed to allow gold to coat the center electrodes, but

not far enough back along the slits so that the center and end electrodes short.

The electrodes were designed with the capability to move the ions in all three

dimensions, allowing the position of the ion to be shifted so that it corresponded with

the rf node. This minimizes ion micromotion and provides thecleanest environment

for doing quantum logic. In order to get compensation in all three directions, the

static electrodes were con�gured to be able to apply static potentials to both the

top and bottom layers and to all three segments of the static electrode. It is not

necessary to have control of all 12 available static electrodesas that proves to have

redundant control. The use of six electrodes is su�cient to control the ion in all

three dimensions while minimizing the number of needed electrical feed-throughs

and �ltering electronics. The electrode positions are shown inFig. 5.8. By adjusting

potentials on electrodes a and e with respect to the potentials on b and f, the ion is

shifted in the z direction. By changing the potential on the d, e, and f electrodes,

the ion is moved in thex direction. Likewise, by changing the potential on a, b, and
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(a) (b)

(c)

Figure 5.7: Design for physical masks for the rf and static electrodes. (a) The bottom mask for
the static electrode. The rectangle shape in the middle is open, allowing gold toplate the center.
(b) The top static electrode mask. The patterning is set to allow surface mountrf �lters to be
attached to the chip. The center of the pattern is open. (c) The rf physical mask letsgold plate
the electrodes and then brings the gold lead o� to the side of the substrate.
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d, the ion is moved in they direction.

a

b

c

d

e

f

grounded

static electrodesa

x

y

z

Figure 5.8: Electrode layout for the static electrode layers in the alumina trap. Shown are the top
and bottom static electrode layers (the rf layer, in between, is not shown). Each electrode is labeled
with a circle- those with letters indicate static electrodes that can have arbitrary potentials. The
other six (solid �lled circles) are held at ground.

5.1.4 Surface-mount Filters The static electrodes serve a dual purpose as both

con�nement electrodes and as rf grounding electrodes. This is accomplished by

placing near the trap region, low-pass �lters that shunt the rfback to the ground

provided by the rf resonator (see Sec. 2.7.

After plating each substrate with gold, surface mount electronics were placed in

the appropriate positions to create the pi-network low-pass �lter for each of the

six static electrodes. The schematic diagram for the pi-networkis shown in Fig.

5.9. The right side of the �lter is the actual electrode at the trap. The left side is

fed o� of the alumina substrate and out of the vacuum chamber through an 8 pin

electrical feed through (ISI part number 9412009 $140). Theresistors used are 1 k
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surface mount resistors with gold bond pads from Amitron (part number R2A1508-

1001J3G0, $1/resistor). They are rated to 0.56 W and 120 V. The capacitors

are from Novacap (part number 0402B102J251P, $1/capacitor)and are nominally

1000pF with palladium-silver contacts, rated to 250V.

1 kW

1000 pF 1000 pF 

a

1 kW

Figure 5.9: Low-pass �lter schematic. A schematic diagram of the low-pass pi-network �lters used
on chip to make the static electrodes act as rf ground. The left side of the circuit represents the
electrical feed through and the right side (circle with a letter) is the actual electrode.

Both the capacitors and the resistors were mounted on the alumina substrate

using gold ribbon, attached with a wire bonding machine. The K&S 4129 deep

access wire bonder was used with a titanium wedge (Small Precision Tools part

number VR45-TI-1950-1/16-3/4-CGM, $70/wedge). The gold ribbon (99.99% pure,

Semiconductor Packaging Materials, $10/ft) used to connect the electronics to the

gold plating on the substrate was 0.015 inches wide and 0.0005 inches thick. The

parameters used on the wire bonder depend on the actual capacitors and resistors

and required some experimentation to make good electrical and physical connections

to both the surface-mount electronics and the gold plating. Maximum power, force

and time available on the machine, as well as a heated wedge and work holder, were

used to attach the gold ribbon �rmly to the components and the substrate. The

resistors were attached in a two step process. First, gold ribbon was attached to

both ends of component and left hanging o� the ends as short streamers. Then,

the component was placed and held by hand in the appropriate position on the gold
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plated alumina substrate. An empty wire bonder wedge (no gold ribbon inserted)

was used to bond the gold ribbon to the gold plated substrate on both sides of the

component. This process is illustrated in Fig. 5.10.

(a)

(b)

gold ribbon

component

substrate

bond point

gold plating

Figure 5.10: Capacitor wire-bonding diagram. To attach the on-chip pi-network low-pass �lter
components, �rst bond the gold ribbon to the component (a), leaving a tail of ribbon. Bend the
ribbon down so that it holds the shape of the component and bond the tail to the gold bond pad
(b) on the alumina substrate.

Finally, to ensure that the components did not become disconnected, ceramic

cement was used to �x them in place on the substrate. Care was taken to ensure

that all the components, along with the ceramic cement areas, �t inside the available

space in between the mount bars. The electrodes on the alumina substrates were

attached to the vacuum feed-throughs via several long gold ribbons that were wire-

bonded to the substrate on each of the electrode bond pads. Each piece was then

cleaned using standard vacuum cleaning procedure, as outlined in Section 2.4.3.

These ribbons were connected to small Constantan foil 
ags usinga spot welder (see

Sec. 2.4.5) after the trap stack was assembled and installed in the vacuum chamber.

109



5.1.5 Alumina Trap Assembly The trap stack was assembled in the following pro-

cedure:

1. One mount bar was placed with blind holes up and the steel dowel pins inserted

in the 4 blind holes.

2. The bottom static electrode layer was placed on the pins with the electronics

side facing down. The electrodes were lined up to give the con�guration shown

in Fig. 5.8.

3. A spacer layer was placed on top of the static electrode layerwith the c-gap

facing to the left.

4. The rf layer was placed next, with the rf gold leads pointedo� the left side,

aligned with the c-gap in the spacer layer.

5. The next spacer layer was added with the same orientation as the previous.

6. The top static electrode layer was placed with the electronics side up, again

with the proper orientation to give the correct electrode pattern.

7. The top mount bar was placed, aligning the blind holes withthe dowel pins.

8. The bolts, lock washers and nuts used to clamp the mount bars were put through

the corner through-holes, leaving the nuts loose enough to adjust the trap align-

ment. Looking through a microscope, the rf and two static electrode layers were

aligned so that the trap gaps were parallel in all three layers.

9. The bolts and nuts were tightened to �x the trap assembly in the proper position.

The entire trap assembly was then mounted in the vacuum chamberon a custom-

made jig, attached to groove grabbers (Kimball Physics part number MCF-GG-

CT02-A, $62) in the 4.5 inch diameter window in the hemisphere.The gold leads
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from each of the electrodes were then either spot welded to an electrical feed through

(via a Kapton coated wire with a Constantan foil 
ag) or to a grounding plane

[Fig. 5.11].

Figure 5.11: Completed alumina trap in the vacuum chamber. The surface mount electronics for
�ltering the rf from the static electrodes are visible between the large ceramicmount bars. Each
electrode was attached to a wire that then was attached to a vacuum feed-through.

5.1.6 Alumina Trap Operation Several FEA models were made of the alumina

trap before actual operation (Chapter III). An initial evaluation of the linear trap

geometry (for example in Fig. 5.4) suggests that, by the symmetry of the electrodes,

the principal axes are the geometric axes of the trap electrodes. If this were the case,

the laser for Doppler cooling would not have a component alongthe y-axis (Fig. 5.8)

and ions in the trap would not crystallize in that direction. Following the procedure

from Section 4.6, the rotation of the alumina trap principalaxes were modeled to

learn how to rotate the axes in thexy plane, such that the Doppler-cooling laser had

a component along each of the two axes.

The model was made using the Maxwell3D software package (Section 3.3) and
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(a)

(b)

(c)

(d)

(e)

(f )

x

y

Figure 5.12: Alumina trap rotated principal axes potentials. The geometric xy axes are shown in
the center of the �gure. Each entry represents a cross-section of the static potential for a single set
of endcap and center electrode voltages. The principal axes are extracted by �tting to thedirection
of greatest curvature in the potential and the orthogonal direction. (a) Endcap: 1V, Center: -0.5 V
(b) Endcap: 1 V, Center: -0.1 V (c) Endcap: 1 V, Center: -0.2 V (d) Endcap: 0 V, Center: -1 V
(e) Endcap: 1 V, Center: 0.1 V (f) Endcap: 1 V, Center: 0 V

112



the electrodes were set such that all six endcap electrodes (Fig. 5.4(a,b,e,f)) were

held at the same voltage, as were the center electrode (Fig. 5.4(c,d)) voltages. The

model was run to a 1.75% error level with 87,655 tetrahedra inthe �nal potential.

The bounding box was �xed at 8 mm by 8 mm by 4 mm. The potential inthe xy

plane is shown in Fig. 5.12 for a number of endcap and center voltages. Note that

the principal axes are rotated from the geometric axes for non-zero center electrode

voltages. The center electrodes break the symmetry of the trap, as they are only

applied to two of the four electrodes. Breaking the geometricsymmetry allows for

the rotation of the principal axes and, therefore, e�cient Doppler cooling. Actual

operation of the trap used endcap and center electrode voltages with similar ratios

Vendcap=Vcenter, as the absolute scale is not important to the rotation of the principal

axes. The model shows a rotation of up to 45� from the principal axes (Fig. 5.13(a)).

In addition, the static potential geometric factor was also evaluated for the di�erent

voltages and is shown in Fig. 5.13(b).

The axial trap frequency! z was also extracted from the model as a function of dif-

ferent endcap and center voltages. Measurements of the actualtrap frequency taken

from various experiments are compared to the model trap frequencies in Fig. 5.14 as a

function of the quadrature frequency sum
q

V 2
endcap + V 2

center of the endcap and center

electrode voltages. This simple dependence does not fully model the trap behavior,

as the actual operation of the trap did not use symmetric endcapvoltages. The data

in Fig. 5.14 used an average of the di�erent endcap voltages inthe quadrature sum.

Both the model data and the experimental data were �t to! z = a
q

V 2
endcap + V 2

center,

with the �ts shown in the �gure. The axial trap frequency, from Eq. 4.28, is expected

to be dependent on the square root of the potential, as seen in Fig. 5.14.
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Figure 5.13: Alumina principal axes rotation. (a) The rotation angle of the principal axes as a
function of the endcap-to-center voltage ratio. The points from Fig. 5.12 arehighlighted. (b) The
geometry of the static potential (Eq. 4.27) also changes for di�erent voltage ratios.
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115



5.2 GaAs Microtrap Assembly.

The fabrication of the GaAs microtrap constitutes the �rst ion trap made from

a monolithic substrate using conventional semiconductor processing techniques [33].

This section describes the basic fabrication procedure as wellas the equipment used

to mount the microtrap into the vacuum chamber. Also included are some prelimi-

nary data about the performance of the microtrap. The microtrap design was based

on models described in Chapter IV.

5.2.1 GaAs substrate fabrication The microtrap was fabricated from four alter-

nating layers of aluminum gallium arsenide (AlGaAs) and galliumarsenide (GaAs)

epitaxially grown on a GaAs substrate as illustrated in Figs. 5.15and 5.16. The wafer

(Fig. 5.15a) consists of a doped substrate on top of which are fourlayers grown by

molecular beam epitaxy. Directly above the substrate is a 4� m layer of Al0:7Ga0:3As,

chosen for its insulating properties and selective etching versus GaAs. On top of it

is a 2.3� m layer of silicon-doped (3� 1018 e/cm3) GaAs, 4 � m of Al0:7Ga0:3As and

2.3 � m of doped GaAs. As shown in Fig. 5.15, a series of dry and wet etch procedures

de�ne the cantilevered GaAs electrodes. The �nal step undercuts the Al0:7Ga0:3As

from the edges of the GaAs cantilever by about 15� m to shield the trapped ion from

the exposed insulator. Figure 5.16 shows a scanning electron micrograph of the �nal

structure.

The GaAs layers were formed into cantilevered electrodes surrounding the free-

space trap region. A through-hole was etched in the substrate allowing clear optical

access. The electrodes were electrically isolated from each other and from the doped

GaAs substrate by the interleaved AlGaAs layers (thicknessh = 4 � m). These

insulating layers were undercut� 15 � m from the tips of the GaAs cantilevers to
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shield the trapped ion from stray charge on the exposed insulator. The electrodes

were segmented along the axis of the linear trap, as shown in Fig. 5.15. Each of the

four segments had an axial width ofw = 130 � m and was separated from adjacent

segments by a 25� m gap. The tip-to-tip separation between opposing cantilevers

in the plane of the chip wass = 60 � m. The rf potential was applied to all axial

segments of the top GaAs cantilevers on one side of the trap and bottom cantilevers

on the opposite side. Static potentials were applied to the other cantilevers, which

were held near radiofrequency ground with on-board �lters. Ions were trapped in one

of two zones with appropriate static potentials applied to the four segments. Each of

the local trap zones was primarily controlled by three adjacent segments: two endcap

segments surrounding a center segment nearest to the ion. Mechanical resonances

of the cantilevers were expected to occur in the 1-10 MHz range[32], with quality

factors expected to be of order 103.

5.2.2 Trap Assembly The GaAs ion-trap chip is attached to a ceramic chip carrier

and attach 25-� m-diameter gold wires from the bond pads on the trap to the chip

carrier, with a single wire connecting radiofrequency electrodes and individual wires

going from the static-electrode bond pads to the chip carrierelectrodes. The static

electrodes are shunted to ground through 1,000 pF surface mount capacitors attached

to the chip carrier using a similar process as described in Section 5.1.4, and our mea-

surements show that the induced radiofrequency potential on the static electrodes is

reduced to less than 1% of the applied radiofrequency potential [Fig. 5.17]. The chip

carrier is then plugged into an ultra-high-vacuum-compatible socket [Fig. 5.18],that

is permanently connected in the vacuum chamber [Figs. 5.19, 5.20]. This arrange-

ment allows for fast turnaround time; replacing an ion trap does not involve changing

any other components inside the vacuum chamber [Fig. 5.21].
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Figure 5.15: Fabrication process for a semiconductor ion trap. (a) The structure grown by
molecular beam epitaxy consists of alternating GaAs/AlGaAs membrane layerson a GaAs sub-
strate. (b) Backside etch removes substrate material for clear optical accessthrough the chip.
(c) Inductively-coupled plasma etch through membrane creates access to submerged GaAs layers,
and gold/germanium bond pads are deposited for electrical contacts to the trap electrodes. (d)
A further inductively-coupled plasma etch through the membrane de�nes and isolates the can-
tilevered electrodes, and a hydro
uoric acid etch undercuts the AlGaAs insulator material between
the electrodes.
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Figure 5.16: Scanning electron microscope image of a monolithic GaAs semiconductor linear ion
trap. TOP: Ion trap chip with seven axial segments (28 electrodes) cantilevered over a rectangular
through-hole (black). The 28 gold bonding pads are visible as bright squares, along with a single
bond pad at the left connecting to the substrate beneath. In the experiment, ions are trapped in a
similar structure with four segments instead of seven. The tip-to-tip separation of electrodes across
the gap is s = 60 � m. BOTTOM: Closeup of a single ion trap segment, clearly showing the upper
and lower GaAs layers separated byh = 4 � m. The microscope was a JEOL 6500.
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Figure 5.17: A close-up view of the completed microtrap in vacuum. The gold wiresconnected the
die to the LCC are visible. The ceramic capacitors used to �lter the rf from the static electrodes
are glued around the perimeter of the LCC and also wire-bonded to the LCC.
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Figure 5.18: Microtrap chip carrier socket design. The leadless chip carrier (LCC) used to mount
the GaAs die containing the microtrap was custom designed to �t the 52-lead LCC. To make the
socket UHV compatible, it was machined from MACOR, a soft, brittle ceramic. Stainless steel pins
were inserted in the channels and glued in place to make electrical contact to the LCC.

Rf potentials were applied to the trap using a helical resonator of unloaded quality

factor Q� 500 and self-resonant frequency 54.9 MHz (see Sec. 2.7.1). When aca-

pacitive coupler was impedance matched to the resonator-trap system, the resonant

frequency fell to 15.9 MHz, and the unloaded quality factor ofthe system dropped

to 50. Breakdown of the AlGaAs layer appears to limit the amountof rf voltage

that can be applied to the trap. Static potentials as high as� 70 V were applied

between top and bottom cantilevers on a separate trap sample without breakdown,

and a radiofrequency potential amplitude as high asV0 = 11 V at 14.75 MHz be-

fore breakdown. Nonlinear current-voltage behaviors were observed across the GaAs

electrodes, where the measured current depended upon the polarity of the applied

voltage and even the level of room lights at particular voltages. However, none of

these e�ects were measurable at applied potentials below� 40 V and are thus not
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Figure 5.19: Microtrap vacuum chamber mount. The jig that held the microtrap in the hemisphere
vacuum chamber was designed to hold both the trap and the oven/e-gun assembly in one block.
This expanded view of the jig shows the plate used to �x the LCC to the socket (blue), thedie
(gray), the socket (magenta), the aluminum bar to hold the socket in the vacuum chamber (green)
and the oven/e-gun \�ring range" (shaded). The block was �rst assembled as a unit then attached
to the hemisphere using groove-grabbers through the green block.
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Figure 5.20: The LCC mounted in the socket via an early clamp system. Thisis a photograph of
the LCC mounted in the MACOR socket. The stainless steel connector pins that terminate below
the LCC are visible.

Figure 5.21: The LCC mounted in the socket using the �nal squeeze plate. It was foundthat
the four clips did not hold the LCC to the stainless steel pins with enough force to maintain good
electrical contact. The larger aluminum squeeze plate did a better job of maintaining good electrical
contact.
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expected to play a role in the operation of the trap.

5.2.3 Ion Image in Trap A single cadmium ion was loaded in the trap and imaged

with a charge-coupled-device camera to a nearly di�raction-limited spot with f/2.1

optics, where f is the focal length, as displayed in Fig. 5.22. Storage lifetimes in

excess of 1 h were observed, but a histogram of many loads shows an exponentially-

distributed con�nement time with a mean lifetime of 10 min when the ion is contin-

uously Doppler-cooled.

Figure 5.22: Microtrap ion image. An image of a single trapped Cd+ ionalong a view perpendicular
to the chip plane after � 1 s of integration. The ion 
uoresces from applied laser radiation directed
through the chip at a 45 angle and nearly resonant with the Cd+ 2 S1=2-2P3=2 electronic transition
at a wavelength of 214.5 nm. The 
uorescence is imaged onto a charge-coupled-device camera with
an f/2.1 objective lens, resulting in a near-di�raction-limited spot with � 1 � m resolution at the
ion. The pro�le of the electrodes is also clearly visible as scattered radiationfrom a deliberately
misaligned laser that strikes the trap electrodes. The vertical gap between the top and bottom set
of electrodes is s = 60� m.

The secular frequency of the trapped ion were measured by applying a weak,

variable frequency potential to one of the electrodes and observing changes in the ion


uorescence owing to the resonant force while it is continuously laser-cooled . For an

applied rf potential amplitude of V0 = 8:0 V at a drive frequency ofT=2 = 15:9 MHz,

and static potentials of 1.00 V on the endcap electrodes and 0.33 V on the center

electrodes, the axial secular frequency was measured to bez=2 = 1:0 MHz. The

measured transverse secular frequencies werex=2 = 3:3 MHz and y=2 = 4:3 MHz,

indicating a radiofrequency trap stability factor ofq = 0:62 [34]. These measurements

were consistent with a 3-dimensional numerical simulation of the trapping potential,

which further indicates that one of the transverse principal axes of the trap is rotated
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� 40� out of the plane of the chip (Chapter IV).
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CHAPTER VI

Precision Lifetime Measurement

The focus of this work now changes from advanced trap development to ultrafast

pulsed laser interactions with a single ion, the �rst of such work to be done. As

described in the Introduction, these experiments are the �rst steps toward the re-

alization of new types of scalable quantum computation. The �rst experiment [76]

describes a measurement of the 5p 2P3=2 and 5p 2P1=2 excited state lifetimes in a

single Cd+ ion and are the most accurate measurements of these excited statelife-

times to date. This experiment served as an initial pulsed laser-ion experiment and

enabled us to learn the operation of the mode-locked ultrafast laser and learn how

to control the laser-ion interactions.

6.1 Background

Precise measurements of atomic data are of great interest throughout many �elds

of science. Lifetime measurements are of particular importance to the interpretation

of measurements of atomic parity non-conservation [77], testsof QED and atomic

structure theory [78], and even astrophysical applications [79]. Because of this, new

and more accurate ways of measuring excited state lifetimes are constantly being

investigated. Previous methods include time-correlated single photon techniques

[80, 81, 82, 83, 84, 85], beam-foil experiments [83], fast beam measurements [86, 87],
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electron-photon delayed coincidence techniques [88, 89],luminescent decay [90, 91],

linewidth measurements [92], photoassociative spectroscopy [93], and quantum jump

methods [94].

This chapter describes excited state lifetime measurements using a time-correlated

single photon counting technique. The experiment uniquely combines the isolation

of single laser-cooled trapped ions with the precise timing of ultrafast lasers. This

method, designed especially to eliminate common systematic errors, involves selective

excitation of a single trapped ion to a particular excited state (lifetime of order

nanoseconds) by an ultrafast laser pulse (duration of order picoseconds). Arrival

of the spontaneously-emitted photon from the ion is correlated in time with the

excitation pulse, and the excited state lifetime is extractedfrom the distribution of

time delays from many such events.

By performing the experiment on a single trapped ion [81, 82, 94], we are able

to eliminate prevalent systematic errors, such as: pulse pileup that causes multiple

photons to be collected within the time resolution of the detector, radiation trapping

or the absorption and re-emission of radiation by neighboring atoms, atoms disap-

pearing from view before decaying, and subradiance or superradiance arising from

coherent interactions with nearby atoms. By using ultrafast laser pulses [80], we

can eliminate potential e�ects from applied light during the measurement interval

including AC Stark shifts, background laser light, and multiple excitations which can

also lead to pulse pileup.

With this setup, at most one photon can be emitted following an excitation pulse.

While this feature is instrumental in eliminating the above systematic errors, it would

appear that this signal would require large integration times for reasonable statistical

uncertainties. However, with a lifetime of only a few nanoseconds, millions of such
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excitations can be performed each second, thus potentially allowing su�cient data

for a statistical error of under 0.1% to be collected in a matterof minutes [81].

Figure 6.1: The experimental apparatus for the lifetime measurement. (a) A picosecond mode
locked Ti:sapphire laser is tuned to four times the resonant wavelength for eitherthe 5p 2P1=2 or
the 5p 2P3=2 level of Cd+ . Each pulse is then frequency-quadrupled through non-linear crystals,
�ltered from the fundamental and second harmonic, and directed to the ion. An ampli�ed cw diode
laser is also frequency quadrupled and tuned just red of the2P3=2 transition for Doppler cooling of
the ion within the trap. Acousto-optic modulators (AOM) are used to switch o n and o� the lasers
as described in the text. Photons emitted from the ion are collected by anf=2:1 imaging lens and
directed toward a photon-counting photo multiplier tube (PMT). The output of the PMT pr ovides
the start pulse for the time to digital converter (TDC), whereas the stop pulse is provided by the
reference clock of the mode-locked laser. (b) The relevant energy levels of Cd+ . (c) An asymmetric
quadrupole trap. (d) A linear trap.

6.2 Experiment Setup

A diagram of the experimental apparatus is shown in Fig. 6.1. Individual cadmium

ions are trapped and isolated in one of two rf quadrupole traps.First, the experiment

is conducted using an asymmetric quadrupole trap of characteristic size� 0.7 mm [95]

[Fig. 6.1(c)]. The entire experiment is then repeated in a linear trap with rod spacings

of 0.5 mm and an endcap spacing of 2.6 mm [Fig. 6.1(d)]. Both traps have secular

trapping frequencies on the order of!= 2� � 0:1 � 1:0 MHz.
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Two types of laser radiation are incident on the ion: pulsed andcontinuous wave

(cw) lasers. The pulsed light is from a picosecond mode-locked Ti:Sapphire laser

(see Appendix C) whose center frequency is resonantly tuned to provide excitation

to one of the2P states [Fig. 6.1(b)]. For excitation to the 5p 2P1=2 (5p 2P3=2) state,

each pulse is frequency quadrupled from 906 nm to 226.5 nm (858nm to 214.5

nm) through phase-matched LBO and BBO nonlinear crystals. The UVis �ltered

from the fundamental and second harmonic via dichroic mirrors and directed to

the ion with a near transform-limited pulse width of tuv � 1 ps. Since the pulsed

laser bandwidth (� 0.40 THz) is much smaller than the �ne-structure splitting (� 74

THz), selective excitation to the di�erent 2P excited states is possible. Each pulse

hasE � 10 pJ of energy, which will excite the ion with a probability of approximately

ten percent1:

Pexc = sin2
p

(
 2=4�I s)(Et uv=w2
o); (6.1)

where
 is the atomic linewidth, I s is the saturation intensity, and wo � 6 � m is the

beam waist. This pulsed laser is also used to load ions in the trap via photoionization

by tuning to the neutral cadmium 1S0-1P1 resonance at 228.8 nm. Once loaded, a

single ion will typically remain in the trap for several days.

After the ion is loaded, it is crystallized within the trap via Doppler cooling on

the D2 line at 214.5 nm using the cw laser. This laser is tuned approximately one

linewidth to the red of resonance and localizes the ion to under 1 � m. Residual

micromotion at the rf drive frequency (� 40 MHz) is reduced via o�set electric �elds

supplied from compensation electrodes [41]. We estimate the kinetic energy from

this micromotion to be under 1 Kelvin.

Following excitation from the pulsed laser, the spontaneously emitted photons
1 It would be possible to increase the data rate by increasing t his excitation probability, however, it was kept to

near 10% since higher pulsed laser powers also tend to load ex tra ions into the trap.
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Figure 6.2: Lifetime data with response function and residuals. (a) The response function of the
instrument when viewing light scattered o� an electrode surface (no atomic physics). The main
peak asymmetry is due to the response time of the PMT of� 0.5 ns, whereas the secondary peaks
are due to noise in the TDC triggering electronics (� 0:6% of the main peak amplitude). While laser
light scattered o� an electrode is not a single photon source, this curve was takenat a su�ciently
low photon collection rate so that pulse pileup e�ects were negligible. (b) Data for the 5p 2P1=2

state taken in the quadrupole trap. The open circles show the data used to extract the excited
state lifetime (see text). (c) The deviations from the �t function (residuals) . Due to the di�culty
in accurately de�ning a prompt peak background, the �t is not performed around the time of the
excitation pulse. This has a small e�ect on the residuals, but as discussed in the text,is virtually
independent of the resulting extracted lifetime.
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are collected by anf=2:1 imaging lens and directed toward a photon-counting photo

multiplier tube (PMT) 2. The output signal of the PMT provides the start pulse

for the time to digital converter (TDC), whereas the stop pulseis synchronized to

the reference clock of the mode-locked laser. This time-reversed mode is used to

eliminate dead time in the TDC. The PMT used is a Hamamatsu H6240 Series PMT

of quantum e�ciency � 20%, and the TDC is an ORTEC model 9353 time digitizer

that has 100 ps digital time resolution with no interpolator,accuracy within 20 ppm,

less than 145 ps time jitter, and an integral non-linearity within 20 ps rms.

In the experiment, an acousto-optic modulator (AOM) is used toswitch on the

cw beam to Doppler cool the ion for 500 ns. Following the cooling pulse, a reference

clock from the pulsed laser (synchronized with the laser pulse train) triggers an AOM

in the pulsed laser beam and directs a number of pulses to the ion (� 15 pulses, with

adjacent pulses separated by� 12.4 ns). The repetition rate of this cycle is limited to

1 MHz due to the update time of the pulse generator, and during a given excitation

pulse the success probability of detecting an emitted photon is� 2 � 10� 4. This

gives an average count rate of about 3000 counts per second andthus an expected

statistical precision of

� � rms =� � 0:25%=
p

T ; (6.2)

where� is the excited state lifetime andT is data collection time in minutes.

6.3 Data Fit and Systematic Shift

Despite the absence of previously mentioned common systematic e�ects, possible

e�ects that still must be considered in this system include Zeemanand hyper�ne

quantum beats [96]. Zeeman quantum beats have no signi�cant e�ect (shifts of

2Due to the chromatic aberration of this imaging system, stat e-selective light collection between 2P1=2 and 2P3=2
is also achieved.
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< 0:05%) when working in su�ciently low magnetic �elds (< 0:5 Gauss), whereas

hyper�ne beating is eliminated by using an even isotope of Cd that has no hyper�ne

structure (i.e. 110Cd+ ). Potential e�ects from o�-resonant laser light - AC stark

shifts, background counts, etc. - are also greatly reduced or eliminated in this exper-

iment by taking data only when the cw cooling beam is switched o� via the AOM.

Hence, immediately following the excitation pulse, the only light present is the single

spontaneously emitted photon from the ion. Other possible e�ects such as relativis-

tic shifts or isotopic dependencies are negligible. Because this technique is devoid of

these typical systematic e�ects, the only signi�cant errors are those arising from the

particular equipment used, as discussed below.

To determine the excited state lifetime, the data in a 12.4 ns range for each laser

pulse are summed and time-inverted. These spectra are correctedfor uncorrelated

background events and then �t to a single exponential lifetime � . As the start time

of the �t is stepped-out from the peak [97], the �tted lifetime for the experimental

data has an expected systematic bias of 3 to 5 percent (a naturalconsequence of the

convolution of the of the timing system response function [Fig. 6.2(a)] with the pure

exponential decay of the excited state). This e�ect can be further exacerbated by the

presence of \prompt" events from background laser light from the ultrafast excitation

pulse that is scattered from the apparatus, described by an additional convolution of

a delta function at t = 0. The relative intensity of the prompt peak varies between

the four measurements, and depends upon the particular optical alignment in each

experimental run. The time response function distorts the spectrum from a pure

exponential and has the net e�ect of shifting events to longertimes thereby increasing

the �tted lifetime by 3 to 5 percent. To account for these time-dependent shifts

and extract the true lifetime, a simulated spectrum is generated by convolving the
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measured time-response function with an exponential decay anddelta-function at t =

0. The relative intensity of the prompt � � function is determined by convolving a pure

exponential with the approximate true lifetime, intensity I P, and then subtracting

that from the real data for a di�erence intensity I di� . The excess events are integrated

and converted into the� � function scale;

� PP =
I di�

I P

�
10

: (6.3)

The simulated spectra and the real data are �t in precisely the same manner: the

start channel of the �t is successively stepped out fromts = 1 ns to ts = 6 ns in

0:1 ns increments. The parameter� in the simulated spectra is varied to best match

the �tted data over the entire time range. The systematic errorin the lifetime is

determined by varying� until the data over the time range is no longer in statistical

agreement with the simulated spectra. While the resulting variation of the �ts over

the full �tting range for the simulations are sensitive to the choice of the prompt

� � function intensity (Eq. 6.3), the �tted lifetime over the ran ge ts = 1:7 � 1:8 ns is

virtually independent of the prompt � � function intensity and thus the results for the

lifetimes and the statistical error bar quoted in Table 6.1 aretaken from this range

of ts [Fig. 6.3]. Doing so greatly reduces the systematic uncertainty from the prompt

delta function in all but one set of runs. The presence of an order-of-magnitude

larger prompt peak for the2P1=2 transition measured in the linear trap, due to poor

optical alignment, results in a signi�cantly larger variation in the �t over the time

range and hence the resulting systematic uncertainty for this data set is 3 times

larger than for the other three measurements. Despite this problem, the agreement

between the measured2P3=2 lifetimes in both trap apparatus is nominal, giving us

great con�dence in our technique to account for the much smaller e�ect of the prompt
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scattered events in the other three data sets.
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Figure 6.3: Lifetime �t crossing point. The lifetime �t of data showing tha t the �ts all cross at
ts = 1 :8 ns. The �t values were found using the procedure outlined in the text and were varied for
di�erent values of � PP , Eq. 6.3. The range fromts = 1 :7 � 1:8 ns is virtually independent of the
value of � PP and thus was used to �nd the value of the lifetime.

6.4 Error Analysis

There are several factors to consider when determining the error bar that results

from this analysis. The �rst is the statistical error that results from the �tting of

the data which we take to be the error from the �t at ts � 1:8 ns. Normally, this is

simply the error bar quoted from the �tting program (POSFIT) f or the start time

of the �t. However, for this data, the background level has been �xed and therefore,

the associated error must be determined. This depends strongly on the con�dence of

the selected background value and, as previously mentioned, depends on which of the

individual experimental sets are handled. The statistical error from the background

comes by varying it over an appropriate range and looking forthe variation of the
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�tted lifetime. The �nal statistical error quoted is the RMS av erage of the two error

bars.

There are two major systematic errors in the analysis. The �rst is the choice of

� PP used in the convolution. Since an attempt was made to use data with a small

prompt peak and the choice of lifetime is somewhat insensitive to the choice of� PP ,

a very small systematic (probably negligible) of� 0:001 ns is assigned to this error.

However, the fact that the resolution function requires a 5% systematic correction on

the measured data to determine the actual lifetime, requirescareful consideration.

This depends strongly on the shape and intensity of the resolution function, the

shape and intensity of the prompt peak, and several other factors. A systematic

error due to the resolution function was assigned by exploring the range to actual�

that encompass the �tted experimental data as shown in Fig. 6.4. This particular

�t for the linear trap for the P1=2 excited state shown in Fig. 6.4(a), which is in fact

the worst data set, requires that� range from 3.06 ns to 3.14 ns to encompass all of

the data. The �t for the ring trap on for the same excited state, Fig. 6.4(b), is much

better. A systematic error due to the resolution function is therefore assigned to be

� 0.040. Errors are quoted initially as� � (�tted stat) � (background stat).

6.4.1 Linear Trap 214: This data set consisted of 4 runs. Runs 1 and 4 had

clearly large prompt peaks (and less data) and were not used. Since the prompt

peaks in runs 2 and 3 appeared to be di�erent the spectra were �tted independently.

Run 2 has 5.6 M events while run 3 has 4.2 M events. Both spectra has a large

amount of data in the wings with few prompt and decay events so the backgrounds

are determined by simply inspecting the left and right regions.Results for linear

214 run 2: 2:648 � (0:003) � (0:002) ns ! 2:651 � 0:004 ns and linear 214 run

3: 2:651� (0:003) � (0:0035) ns! 2:651� 0:005 ns. The �nal averaged result is
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Figure 6.4: Lifetime Error Estimation Data. (a) The lifetime �ts f or the P1=2 excited state mea-
surement in the linear trap with several di�erent values of � from the simulated spectra. All the
simulated spectra use a value of� PP = 11 for the � -function prompt peak. (b) The lifetime �ts for
the sameP1=2 excited state measurement in the ring trap, with � PP = 2, a much smaller prompt
peak.
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2:649� (0:0032)� (0:010) ns.

6.4.2 Ring Trap 214: This data set consists of 2 runs both of which have a very

small prompt peak. There is very little data in the wings of run1 and it was not

possible to determine the background; hence this data set was not �t. There are

su�cient wings in set 2 to extract background information, however there is also a

large prompt/decay intensity as well. This necessitated extracting and summing 3

peaks in the right wing and 2 peaks in the left wing to �t the background. The

lifetime was held �xed and the background determined. Thereare 25 M events

in ring set 2. The result for ring 214 run 2 is: 2:646� (0:0013)� (0:0016) ns!

2:646� 0:002 ns. The �nal result is 2:646� (0:002)� (0:010) ns.

6.4.3 Linear Trap 226: This data set consisted of one run. The spectrum has a large

amount of data in the wings with few prompt and decay events so the background

is determined by simply inspecting the left and right regions. There are 26M decay

events. This data had the largest prompt by far (� PP � 12) and hence was di�cult

to �t given the sensitivity of the �tting to the resolution funct ion. The result for

linear 226 is: 3:132� (0:002)� (0:001) ! 3:132� 0:002 ns. While the statistical error

is quite good, the larger prompt peak results in a large systematic of 0.003 ns. The

�nal result is: 3:132� (0:002)� (0:030) ns.

6.4.4 Ring Trap 226: This data set consisted of 6 runs. The prompt peak for all

of the spectra was small and all spectra were summed for a total of 10 M events.

Unfortunately, the background wings were very small, never reaching the \true"

background seen in the other spectra. The small two peaks on the left and the

smallest peak on the right were extracted and �t independentlyin a manner similar

to ring 214. From this, it was possible to �t the background fairly well. The result

for ring 226 is: 3:148� (0:003)� (0:004) ns! 3:148� 0:005 ns. The �nal result is
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Trap Error 5 p 2P1=2 5p 2P3=2

Quadrupole . . . 3.148 2.646
Statistical 0.005 0.002
Systematic 0.010 0.010

Linear . . . 3.132 2.649
Statistical 0.002 0.003
Systematic 0.030 0.010

Final Results 3.148� 0.011 2.647� 0.010

Table 6.1: Lifetime measurement results (ns). The asymmetric quadrupole andlinear trap results
are in good statistical agreement for the2P3=2 transition and the �nal result is a weighted average of
the two values (the systematic error is common to both). For the2P1=2 transition, the contribution
from the linear trap is omitted from the �nal result due to an order of magnitude l arger prompt
peak giving rise to an unusually large systematic error.

3:148� (0:005)� (0:010) ns.

The �nal values, summarized in Table 6.1 for each trap, are 3:148� 0:011 ns for the

2P1=2 state and 2:647� 0:010 ns for the2P3=2 state. The �nal error is the average of

the statistical error (less than 0.15% for all measurements) and the systematic error.

The systematic error of approximately 0.4% is due to the uncertainty in comparison

of the �tted values of the convolved spectrum and the experimental data. These

new results are plotted in Figure 6.5 along with previously reported theoretical and

experimental values for these levels. It is seen that the resultsreported in this paper

are the most precise measurements of these particular excited states of Cd+ .

In this chapter, a new technique for measuring excited state atomic lifetimes was

described that is able to eliminate common systematic errors associated with such

measurements. The results herein are not only the most precise to date for Cd+ , but

with absolute uncertainties of order 10 ps, are among the most precisely measured

excited state lifetimes in any atomic system. Furthermore, this technique has the

potential to achieve � 100 ppm precision by eliminating the remaining systematic

e�ects due to prompt events and electronic noise. Other possible improvements

include increasing the data collection rate by using a faster pulse generator and

138



Figure 6.5: Previous published results for the lifetime. Published results of theoretical (open circles)
and experimental (�lled circles) lifetimes, including this work (�lled diamonds), f or the 5p 2P1=2

and 5p 2P3=2 states of Cd+ . (a) Hanle Theory (1974) [98], (b) Theory (1975) [99], (c) Man y Body Perturbation
Theory (1997) [100], (d-e) Pseudorelativistic Hartree-Fo ck Theory (2004) [85], (f) Phaseshift (1970), 2P1=2 value is
4.8 ns [101], (g) Beam-Foil (1973) [102], (h) Hanle (1974) [98 ], (i) Electron-Photon (1975) [89], (j) Hanle (1976) [103],
(k) Hanle (1976) [104], (l) Delayed Coincidence (1980) [105 ], (m) Beam-Laser (1994) [83], (n) Beam-Foil (1994) [83],
(o) Laser-Induced Fluorescence (2004) [85], (p) This Exper iment.

TDC, and measuring a longer decay range by pulse-picking individual pulses.
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CHAPTER VII

Broadband Laser Cooling

7.1 Motivation

Laser cooling of atoms [38, 106] has become a cornerstone of modern day atomic

physics. Doppler cooling and its many extensions usually involve narrow-band,

continuous-wave lasers that e�ciently cool atoms within a narrow velocity range

(� 1 m/s) that corresponds to the radiative linewidth of a typicalatomic transition.

To increase the velocity capture range, several laser cooling methods were investi-

gated that modulate or e�ectively broaden a narrow-band laser [107, 108, 109, 110,

111, 112]. Modelocked pulsed lasers have been used to narrow thevelocity distri-

bution of atomic beams within several velocity classes given bythe bandwidth of

each spectral component of the frequency comb [113, 114, 115]. This chapter de-

scribes an experiment that demonstrated Doppler laser coolingof trapped atoms

with individual broadband light pulses from a modelocked laser [116].

To e�ciently capture and cool high-velocity atoms, it is necessary to achieve a

laser bandwidth large enough to cover the large range of atomic Doppler shifts.

For example, Cd+ ions used in this experiment are initially created with kinetic

energy below 10 eV, which corresponds to an average velocity ofabout 4000 m/s

and a Doppler shift of � D=2� � 20 GHz. Power broadening an atomic transition
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(saturation intensity I s and natural linewidth 
 ) would require a laser intensity of

I=I s � (2� D=
 )2; (7.1)

which can be prohibitively high. For Cd+ (
= 2� ' 50MHz, I s ' 5000W=m2) this re-

quiresI � 1010W=m2. Modulating a narrow-band laser to generate high bandwidths

would allow for signi�cantly less laser power, but it is technically di�cult to generate

a 100 GHz wide modulation spectrum [108]. On the other hand, an ultrafast laser

whose pulse is a few picoseconds long will naturally have a bandwidth in the above

range, as well as su�cient intensity to excite the transition.

The laser cooling rate depends critically on the photon scatter rate, which for a

pulsed laser can be no larger than the laser repetition rateR (about 80 MHz for a

typical modelocked laser), given that the atom is excited with unit probability by

each pulse. Once excited, the atom decays back to the ground state faster than the

time period of the modelocked pulse train 1=R. In this case, the atom has little

memory between pulses, or equivalently, the absorption spectrum is a single broad

line of width � � 1=� (� is the pulse duration) and the frequency comb of spacing

R has very little contrast.

The equilibrium temperature for broadband pulsed laser cooling of trapped atoms

is expected to scale approximately with the laser bandwidth � (Sec. 7.3), and is

much higher than typical narrowband laser-cooled atom temperatures. Still, cooling

of atoms in a strong trap to these higher temperatures can localize them to less

than the di�raction limit ( � 1� m) of typical imaging optics. This cooling may thus

be su�cient for the implementation of quantum optics applications that interface

atoms with photons [27, 28, 29]. In these applications, it is necessary to mode-match

single photons emitted by individual atoms, so the atomic imagequality is important,

while cooling to near the ground state of motion or within the Lamb-Dicke limit is
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not required [36].

7.2 Cooling Experiment Setup

LBO BBO

KNbO 3 BBO

Camera

5p 2P3/2

226.6 nm
214.5 nm

AOM

(a)

(b)

Ion

f/2.1 lens

Ti:Sapphire ps
modelocked laser

Amplified cw
Diode laser

(c)

5p 2P1/2

5s 2S3/2

Figure 7.1: The broadband laser cooling apparatus. (a) Frequency-quadrupled pulses froma pi-
cosecond modelocked Ti:Sapphire laser (Spectra-Physics Tsunami) are tuned to the 5p 2P1/2 tran-
sition in Cd+ near 226.5 nm and directed onto the trapped ion. An ampli�ed narrow-band diode
laser is also frequency-quadrupled and tuned a few linewidths red of the 5P 2P3/2 transition for
initial Doppler cooling of the ion. An acousto-optic modulator (AOM) is used to switch on and o�
the narrow-band light. Photons emitted from the ion are collected by an f/2.1 imaging lens and
directed toward a photon-counting intensi�ed camera. (b) Schematic drawing of the linear rf trap
used in the experiment, with the ion position indicated by the black dot in the middle. (c) The
relevant energy levels of Cd+ .

The experimental setup is shown schematically in Fig. 7.1. Atomic cadmium ions

are trapped in a linear rf (Paul) trap [76], shown in Fig. 7.1(b). The spacing of

four 0.5 mm diameter rods is about 1 mm, while the separation ofthe two end cap

needles is about 2.6 mm. The strengths of the radial rf trap andthe axial static

trap are adjusted to be approximately (but not exactly) equal: ! x ' ! y ' ! z '

2� � 0.85 MHz, and the rf drive frequency is 
rf = 2� � 35:8 MHz. The trapped ions

can be either Doppler-cooled with a narrow-band, cw laser tuned a few linewidths
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red of the 2S1=2 � 2P3=2 transition at 214.5 nm, or by a modelocked pulsed laser

tuned red of the2S1=2 � 2P1=2 transition at 226.5 nm. Both laser beams are oriented

to have signi�cant k-vector components along each principal axis of the trap to

e�ciently cool all degrees of freedom of the trapped ion. Theion 
uorescence is

collected by an f/2.1 lens and directed to a photon-countingintensi�ed camera. The

inherent chromatic aberration of the imaging system allows usto selectively image

the 226.5 nm or the 214.5 nm 
uorescence by simply adjusting the focus on the f/2.1

lens.

To measure the cooling e�ciency of the modelocked laser, a single Cd+ ion is �rst

Doppler-cooled a using the narrow-band laser, with the pulsed laser also directed

onto the ion 1. The narrow-band laser beam is then turned o�, and an image of the

trapped ion 
uorescence is recorded using the camera, with an integration time of

up to 10 minutes. A series of broadband laser-cooled ion images taken at various

detunings� = ! l� ! a, where! l is the modelocked laser central frequency, and! a is the

atomic resonance frequency, is shown in Fig. 7.2(a). The modelocked laser average

power is held constant at 1 mW, which corresponds to individualpulse energies of

about 12.5 pJ. The resulting image is analyzed to measure its rms width, x im , by

�tting its cross section to a Gaussian distribution [Fig.7.2(b)].

To determine the actual Gaussian rms radiusxrms of the time-averaged ion posi-

tion, two e�ects must be considered. First is the �nite resolution xr of the imaging

optics, which was measured by recording an image of a narrowband laser-cooled ion

[Fig7.2(c)], resulting in a near point-source with an estimated object size of� 30 nm.

Fitting its cross section [Fig.7.2(d)] to a Gaussian distribution provides a good esti-

mate of xr = 1:15� 0:01 � m. This is about a factor of two larger than the expected
1The initial narrow-band laser cooling is only necessary for technical reasons and does not a�ect the results of the

pulsed laser temperature measurement. Once the narrow-ban d laser is turned o�, the ion quickly reaches thermal
equilibrium that only depends on the pulsed laser propertie s.
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Figure 7.2: Ion images with the pulsed laser. (a) Images of a single trapped ion taken at various
pulsed laser detunings�=2� indicated at the bottom. The pulsed laser beam direction in each image
is diagonal from lower-left corner to upper-right corner. (b) cross sections of the images in (a) along
the vertical direction. The solid lines are Gaussian �ts to the data. (c) An image of a narrow-band
laser-cooled ion localized to� 30 nm, with its cross section and a Gaussian �t plotted in (d).

di�raction-limited image size of about 0:55 � m, which can be attributed to an in-

complete correction of the spherical aberration of the f/2.1lens. Using properties of

the convolution of Gaussian functions, the resolution-corrected image width is:

xcorr =
q

x2
im � x2

r : (7.2)

The second e�ect is the modulation of the ion brightness due to laser light intensity

variation across the waist, whose measured rms width isxw = 3:35� 0:15� m. The

true rms ion motion size is

xrms =
xwxcorrp

x2
w � x2

corrsin2(� )
; (7.3)

where� is the angle between the laser beam direction and the direction of ion image

cross section. The temperature is analyzed in the radial and the axial directions,

where� = � 45� .

The e�ect of the ion micromotion (fast oscillations near the rfdrive frequency)

on the image size is negligible in this experiment. With the proper compensation of

the background electric �elds, the micromotion amplitude is[41]

xm =

p
2!


 rf
xrms ' 0:035xrms; (7.4)
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where! is the ion's secular frequency along the particular principal axis. Broadening

of the image due to excess micromotion, which arises from an incomplete compensa-

tion of the background electric �elds, is taken to be much smaller than the resolution

xr of our optics.

The ion rms velocity in the trap vrms along a principal axis is directly proportional

to the rms displacement:vrms = !x rms. The temperature T of the ion (assuming a

normal distribution of its velocity) is then given by kBT = mv2
rms, where kB is the

Boltzmann constant, andm is the ion mass.

A summary of the results is shown in Fig. 7.3. For the ion temperature data

in Fig. 7.3(a), each point is measured using the procedure described above2. The

absorption lineshape in Fig. 7.3(b) is taken in a separate experiment by measuring the


uorescence rate of a single cold ion under a pulsed laser averagepower of 1 mW. For

this, a 100� s narrowband laser-cooling cycle is interlaced with a 200� s period when

only the pulsed laser light is incident on the ion and the ion 
uorescence is collected.

There is a wide range of pulsed laser detunings in Fig. 7.3(a) for which the ion

temperature is well below 5 K, reaching as low as 1 K. These detunings correspond

to the region of high slope in the absorption line curve, as expected in Doppler

cooling [37]. The ion temperature increases sharply as� approaches zero; it also

grows signi�cantly on the far-red side of the resonance, where the cooling rate is very

slow due to low photon scatter rate, while additional background heating [117, 60]

presumably increases the equilibrium temperature of the ion.

The bandwidth of the laser pulses used in the experiment is measured to be

� � 2� � 420 GHz, as shown in Fig 7.3(b), which is almost four orders of magnitude

larger than the linewidth 
= 2� ' 50:5 MHz of the 5p2P1/2 Cd+ excited state [76].
2Here, we present the analyzed temperature data for radial di rection in the trap only (vertical in Fig. 7.2(a)). In

the axial direction (horizontal in Fig. 7.2(a)), the observ ed temperature is about 5 times lower. This suggests that
our simple theoretical model does not fully describe the coo ling mechanism.
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Thus, the velocity-dependent (frictional) force that leadsto cooling arises from the

laser line shape rather than the atomic line shape.

7.3 Theoretical Cooling Limit

The cooling mechanism can still be understood in terms similar toconventional

Doppler cooling [37]. The probability of absorbing a photon by the ion is velocity-

dependent, due to Doppler shifts. With the laser central frequency tuned to the

red of the atomic resonance (� < 0), the atom has higher probability of absorbing a

photon when it is moving toward the laser beam, experiencing ablue Doppler shift.

This absorption reduces the atom velocity in the direction ofmotion. The following

spontaneous emission is random and equally likely in any direction; thus, the net

e�ect of absorption and emission is to lower the kinetic energy of the atom. For a

bound atom, as in the case of an ion in an rf trap, only one cooling laser beam is

necessary, provided that itsk-vector has components along all three trap principal

axes [39, 40]. The expressions derived for cooling rate and thecooling limit remain

the same for a free atom and three pairs of counter-propagating cooling laser beams.

The average force due to scattering of photons from the laser beam experienced

by the atom along a principal axis in the trap in this con�guration is:

F = � pRPexc; (7.5)

where � p = �hk=
p

3 is the average momentum kick along the principal axis from

each photon absorption, withk being the photon's wavenumber,R the modelocked

laser repetition rate, and we assume that~k has equal components along each trap

axis [40]. The atomic excitation probability Pexc can be derived analytically for

hyperbolic secant pulses [118]

E0 sech(�t=� ) (7.6)
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Figure 7.3: A summary of the cooling measurements. (a) The measured radial ion temperature is
plotted against the pulsed laser detuning� . The solid line represents the theoretically predicted
temperature [Eq. 7.13]. (b) Photon scatter rate from a single, cold ion is plotted against the pulsed
laser detuning. The vertical dashed line indicates the atomic resonance position, corresponding
to the wavelength 226.57 nm. The solid line is a �t to the data using sech2 spectrum [Eq. 7.7],
indicating � =2� � 420 GHz and� ' 1:3 ps
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of electric �eld amplitude E0 and duration � , expected from the modelocked laser:

Pexc = sin2(�=2) sech2(� (� + kv)=2); (7.7)

where� is the Rabi rotation angle from a resonant laser pulse,� is the pulse duration,

and v is the atom velocity component along the laser beam.

For small values ofv, the force [Eq. 7.5] becomes

F ' F0 + �v; (7.8)

where the o�set force

F0 = � pRsin2(�=2) sech2(� �= 2) (7.9)

shifts the equilibrium position of the trapped atom byF0=(m! 2) � 1 nm in our

trap [40], and

�v = � pk�R sin2(�=2) sech2(� �= 2) tanh(� �= 2)v (7.10)

is a damping force for� < 0, corresponding to red detuning of the laser, with the

cooling rate �=m . In our experiment, the maximum cooling rate�=m ' 2 sec� 1.

This cooling is opposed by di�usion heating resulting from photons emitted by

the atom in random directions:

D =
1
3

(2Er)RPexc; (7.11)

where

Er =
(�hk)2

2m
(7.12)

is the photon recoil energy, and the factor of 1=3 is due to the di�usion energy equally

distributed between the three degrees of freedom [40]. Equating the cooling power

�v 2 to the heating powerD, one can �nd the equilibrium temperature of the atom:

T =
�h

p
3�k B

1
tanh(� �= 2)

; (7.13)
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where substitutions for� and Pexc have been made. The lowest possible temperature

is similar to narrow band Doppler cooling, but with a �nal temperature of

T =
�h


p
3kB

: (7.14)

The predicted ion temperatureT corresponding to Eq. 7.13 is plotted in Fig. 7.3(a)

in a solid line. Note that this line is not a �t to the data; rather , it is a theoretical

prediction based on the laser and trap parameters used in the experiment. The

theory and experiment are in a good agreement for the radial measurements, while

the measured axial temperatures (not shown in Fig. 7.3) were consistently lower than

the theory 3.

It is important to point out that the lifetime of the Cd + 5p 2P1=2 excited state is

only 3.15 ns [76], while the period of the laser pulses is 12.5 ns.Thus, by the time the

next laser pulse arrives, the excited state population is only about 2%. This cooling

process is then primarily due to absorbing single photons from individual pulses, and

not due to an optical frequency comb e�ect [113, 114, 119]. For optimal cooling of

a given atomic species, the pulsed laser repetition rate should beof the order of the

atom's excited state linewidth, while the energy in each laserpulse should correspond

to Pexc ' 1

The laser-cooling of a single, trapped atom by broadband, modelocked laser pulses

has been observed and quanti�ed. The cooling is e�cient, while the lowest temper-

atures are in single digits Kelvin. Such cooling of ions in strong rf traps localizes

them to under 1 � m, which allows di�raction-limited ion imaging. Lower tempera-

tures should be possible if longer modelocked laser pulses are used, as predicted by

Eq. 7.13, where the �nal atom temperature scales approximately as the inverse of
3Here, the analyzed temperature data are presented for radia l direction in the trap only (vertical in Fig. 7.2(a)).

In the axial direction (horizontal in Fig. 7.2(a)), the obse rved temperature is about 5 times lower. This suggests that
our simple theoretical model does not fully describe the coo ling mechanism.
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the pulse duration� .ed and quanti�ed. The cooling is e�cient, while the lowest tem-

peratures are in single digits Kelvin. Such cooling of ions instrong rf traps localizes

them to under 1 � m, which allows di�raction-limited ion imaging. Lower tempera-

tures should be possible if longer modelocked laser pulses are used, as predicted by

Eq. 7.13, where the �nal atom temperature scales approximately as the inverse of

the pulse duration � .
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CHAPTER VIII

Ultrafast S to P Rabi Oscillations

8.1 Motivation

Recent progress in trapped ion quantum computing has relied on the entangle-

ment of internal electronic states through the Coulomb-coupled motion of multiple

ions mediated by optical dipole forces [9, 10, 18, 20, 21, 22]. However, these entan-

gling operations require that the ions be kept in a pure motional quantum state,

or at least within the Lamb-Dicke regime, where the ions are localized to well be-

low an optical wavelength. Alternative entanglement schemessigni�cantly relax this

sti� requirement at the expense of controlling a coupling between trapped ions and

ultrafast laser pulses [27, 28, 29, 24, 25, 26, 30].

In this Chapter, experiments are described that implement key components of

these alternative quantum logic gate schemes by using ultrafastoptical pulses to

drive picosecond optical Rabi oscillations between the 5s 2S1=2 and 5p 2P3=2 states

in a single trapped cadmium ion [120]. Such an ultrafast excitation results in the

spontaneous emission of at most one photon which is crucial for the probabilistic

generation of entanglement between ions based on the quantuminterference of pho-

tons [27, 28, 29]. By adding a second, counter-propagating ultrafast pulse, the atom

is excited from S1=2 to P3=2 then de-excited back to theS1=2 ground state. The
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resulting 2�hk momentum kick from the pulse pair is a fundamental component of

ultrafast quantum logic gates [24, 25, 26]. When the ultrafastexcitation drives an

initial superposition stored in S1=2 hyper�ne qubit states of the ion, the frequency

of the spontaneously-emitted photon becomes entangled with the hyper�ne qubit,

evidenced by the loss and recovery of contrast in a Ramsey interferometer. The

entanglement of trapped ion qubits with photonic frequencyqubits is critical to the

operation of quantum gates between remotely-located ions [30].

8.2 Pulsed Excitation Experiments

A diagram of the experimental apparatus is shown in Fig. 8.1(a). Individual cad-

mium ions are trapped in a linear rf Paul trap with drive frequency 
 T =2� = 36 MHz

and secular trapping frequencies (! x ; ! y; ! z)=2� � (0:9; 0:9; 0:2) MHz [76]. Fig-

ure 8.1(b) shows the energy levels of111Cd+ relevant for the picosecond (ps) pulse

excitation. The bandwidth of the ps pulses (� 420 GHz [116]) is much larger than

both the ground state and excited state hyper�ne splittings (14.5 GHz and 0.6 GHz

respectively) but is much smaller than the excited state �ne structure splitting

(� 74; 000 GHz), enabling simultaneous excitation of all hyper�ne states without

coupling to the 5p 2P1=2 excited state. In addition, the pulse length is much shorter

than both the 2.65 ns excited state lifetime and the oscillation period of the ion in

the trap (> 1 � s), allowing for fast excitations without spontaneous emission or ion

motion during the excitation pulse [76].

The ion is prepared in theF = 0; mF = 0 ground state (j"i ) through optical

pumping [121]. The ion is then excited fromj"i to the P3=2 excited state F 0 =

1; m0
F = 0 ( j" 0i ) by a single linearly polarized ps laser pulse [Fig. 8.1(b)]. Selection

rules prevent the population of theF 0 = 2; m0
F = 0 ( j#0i ) excited state. After
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Figure 8.1: Rabi oscillation experiment setup. (a) A picosecond mode locked Ti:sapphire laser is
tuned to four times the resonant wavelength of the ground state to 5p 2P3=2 transition in 111Cd+ .
The 80 MHz pulse train is sent through an electro-optic pulse picker, allowing the selection of
single pulses while blocking all other pulses with an extinction ratio of better than 100:1 in the
infrared. This single pulse is then frequency-quadrupled through non-linear crystals, �ltered from
the fundamental and second harmonic, and directed to the ion. The extinction ratio is expected to
be on the order of 108:1 in the UV. An ampli�ed cw diode laser is also frequency quadrupled and
tuned just red of the S1=2 to P3=2 transition for Doppler cooling of the ion within the trap, optical
pumping to the dark state (j"i ) and ion state detection using the � + cycling transition. Acousto-
optic modulators (AOMs) are used to switch on and o� the cw laser and to shift the optical pumping
beam. Photons emitted from the ion are collected during state detection by anf=2:1 imaging lens
and directed toward a photon counting photo-multiplier tube. (b) The relevant energy levels of
111Cd+ where the � -polarized ultrafast laser pulse excites the ion from the ground state to the
excited state. Selection rules prohibit both the j"i ! j# 0i and the j#i ! j" 0i transitions. The three
possible decay channels for each excited state are shown with 
uorescence branching ratios. (c)
The �rst ultrafast laser pulse coherently excites and the second pulse coherently de-excites the ion.
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waiting a time (10 � s) much longer than the excited state lifetime, the resulting

atomic ground state populations are measured through 
uorescence detection [122].

All three F = 1 states are equally bright, while theF = 0 state is dark [71]. The

results for 60,000 runs at each pulse energy are �t to known bright and dark state

histograms [70] giving an average ion brightness shown in Fig. 8.2(a). The probability

of measuring a bright state is 1=3 the excitation probability of the P3=2 excited state,

as expected from the 
uorescence branching ratios [Fig. 8.1(b)]. Therefore, the bright

state probability as a function of pulse energy is �t toPbright = (1 =3) sin2 (�=2),

where the Rabi oscillation rotation angle� = a
p

E for a single pulse energyE (in

pJ) and �t parameter a. The single �t parameter for the data shown in Fig. 8.2(a) is

a = 0:42 pJ� 1=2, which on the same order as the estimated value (0.28 pJ� 1=2) based

on the beam waist, pulse length, and pulse shape (Appendix C). The maximum

rotation angle was approximately� = � , limited by the available UV laser power.

In order to achieve rotations larger than� , the �rst ps pulse is retro-re
ected via

a curved mirror (radius 10 cm) and sent back to the ion as a secondpulse. The

time delay between the two pulses is approximately 680 ps corresponding to the

position of the retro-re
ecting mirror (an optical path delay of about 20 cm) giving

a probability of spontaneous emission of� 23% between the pulses. The second

pulse changes the state population of the ion [Fig. 8.2(b)] by adding coherently

to the rotation of the �rst pulse. However, over many runs the relative optical

phase between these rotations is scrambled, owing to the thermal motion of the ion.

The rms extent of the Doppler-cooled motion is about twice the optical wavelength

(k
p

hx2
ion i = �

p
2�n + 1 � 1:9 where� � 0:22 is the Lamb-Dicke paramter and �n � 40

from Doppler cooling). Therefore, even though each pair of counter-propagating

pulses interacts with the ion on a time scale much faster than themotional period
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of the ion, there is an incoherent averaging over many runs ofthe optical phase

between the two pulses. For a two-level system without spontaneous emission and

with the same rotation angle� for both pulses, an average of many experiments gives

an excited state population of sin2(� ) hcos2(kx ion )i . This has twice the Rabi rotation

angle but, after averaging over the motional extent of the ion, half the brightness of

the single pulse experiment (Appendix D). Numerical solutions tothe Optical Bloch

Equations (OBE) for the relevant states including spontaneous emission are shown

in Fig. 8.2(b) for various attenuation levels of the second pulse due to imperfect

transmission of the vacuum windows, beam clipping on the optics, and imperfect

focusing (Appendix E). The OBE solution for 60% attenuation is in qualitative

agreement with the data compared to the ideal case, where the ion brightness is

larger than the expected maximum of 1/6 due to spontaneous emission and second

pulse attenuation.

8.3 Ramsey Experiments

To show coherence in the ultrafast excitation of the ion, these optical pulses

are inserted into a Ramsey interferometer consisting of two microwave �= 2-pulses

(Ramsey zones). The ion is again initialized to the dark (j"i ) state and the �rst

microwave �= 2-pulse prepares the ion in the superpositionj"i + j#i of the ground

state \clock" qubit, where j#i is the F = 1; mF = 0 ground state. A single ultrafast

laser pulse of variable energy is sent to the ion and the resultantion state is rotated

with a second microwave�= 2-pulse, phase shifted with respect to the �rst after a

time delay su�ciently long to allow for spontaneous emission. The ion brightness is

measured as a function of the second microwave pulse phase, giving Ramsey fringes

[inset of Fig. 8.3(a)]. The contrast of the Ramsey fringe is extracted from a sinusoidal
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Figure 8.2: The ion bright state population as a function of pulse energy. (a) Each point represents
a collection of 60,000 runs where the ion was prepared in the dark state (j"i ), a single laser pulse
was applied, and then the ion state was measured. The collection of runs is �t to knownbright/dark
state histograms [70]. As the pulsed laser drives a� -pulse from the S1=2 to P3=2 states, the bright
state population approaches 1/3 (horizontal dashed line), determined by the spontaneous emission
branching ratio [Fig. 8.1(b)]. The data are �t to a single parameter giving a value a = 0 :42 pJ� 1=2.
(b) A second laser pulse, delayed by approximately 680 ps, further drives the ion, limited by the
spontaneous emission probability (23%) and attenuation between the �rst and second laser pulse
intensities. The solutions to the Optical Bloch Equations (OBE) are shown for a second pulse with
60% attenuation and no attenuation.
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�t and is shown as a function of pulse energy [Fig. 8.3(a)]. The single laser pulse

drives the ion to a superposition of theP3=2 excited state \clock" hyper�ne levels

j#0i + j" 0i [Fig. 8.1(b)]. Upon spontaneous emission of a� -polarized photon, the ion

hyper�ne and photon frequency qubits (j� r i and j� bi , � b � � r � 13:9 GHz) are in

the entangled statej"ij � r i + j#ij � bi [30, 123, 124]. However, in this experiment the

photon is not measured in a controlled, precisely timed fashion. This corresponds

to tracing over the photon portion of the density matrix which leads to a loss of

coherence in the ion superposition, leaving the ion in a mixed state of j"i and j#i .

Thus, a loss of coherence in the Ramsey fringes is consistent with prior entanglement

between the photon frequency qubit and the ion hyper�ne qubit. The loss of contrast

as a function of the pulse energy is shown in Fig. 8.3(a) and is related to the ion

excitation probability [Fig. 8.2(a)] through spontaneous emission.

In order to show that this ultrafast coupling is coherent and that the emitted

photon is indeed entangled with the atomic qubit, a two-pulseexperiment is per-

formed [Fig. 8.1(c)]. A second pulse (delayed from the �rst pulseby 680 ps) is sent

to the ion between the Ramsey zones. In each individual run, thesecond laser pulse

adds coherently to the �rst pulse with optical phasekx ion as before. However, this

dependence on the optical phase can be eliminated by using an appropriate combi-

nation of counter-propagating� -pulses [71]. The recovery of contrast in the Ramsey

experiment shown in Fig. 8.3(b) indicates a coherent, controlled interaction where

the �rst pulse transfers the superposition up to the excited state and the second

pulse partly returns the population back to the ground state. The Ramsey fringes

accumulate a phase during the timet(� 680 ps) spent in the excited state that is

approximately � ! HF t = 18:9� , where � ! HF is the frequency di�erence between the

ground state and excited state hyper�ne splittings. By reducingthe delay between
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Figure 8.3: Ramsey fringe contrast. (a) The contrast of the phase curve ina Ramsey experiment
with the pulsed laser interjected between the two Ramsey zones as a function of pulse energy. The
contrast disappears with a � excitation because, on spontaneous emission, the photon is measured
and coherence in the ion superposition is lost. The solid curve is the OBE solution for the single
pulse. The inset shows the Ramsey fringes for no ultrafast pulse and for the maximum pulse energy.
(b) A second laser pulse, coherently driving the population back down to the ground state, partially
recovers the phase coherence of the ion with a phase shift of 18:9� . The inset shows the Ramsey
fringes for no laser pulses, a single� -pulse, and two ultrafast pulses. The OBE solution for 60%
attenuation of the second pulse is shown as the dashed line. The dotted line is the same model for
no attenuation of the second pulse.
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two � -pulses to be much less than the excited state lifetime, full Ramsey contrast

can be recovered.

Numerical solution to the Optical Bloch Equations (OBE) are again used to de-

scribe the ion-pulse interaction in the Ramsey experiments including spontaneous

emission. The value of the �t parametera from Fig. 8.2(a) is used as the only free

parameter in the model, giving the solid curve in Fig. 8.3(a).The two curves from the

OBE in Fig. 8.3(b) use the value ofa, the second pulse delay (680 ps), and are shown

for two di�erent values of attenuation of the second pulse. TheOBE solution for

60% attenuation describes well the disappearance and revivalof the Ramsey fringe

contrast. The counter-propagating pulses also impart a momentum kick of 2�hk to

the ion, but since this impulse is independent of the qubit statein this experiment,

this results in a global qubit phase and the motional state factors.

8.4 Excited State Hyper�ne Splitting Measurement

The phase shift of the Ramsey fringes [inset of Fig. 8.4] is also usedto make a

precise measurement of the frequency di�erence �! HF between the ground state and

excited state hyper�ne splittings. The curved retro-re
ecting mirror was replaced by

a 7.5 cm lens and a movable 
at mirror to control the pulse separation. The pulse

energy was set to give a� -pulse on the singleS1=2 to P3=2 transition, and the retro-

re
ected pulse recovers the phase coherence with a contrast of about 40%. The delay

of the second pulse is then varied by translating the mirror, andthe phase of each

curve is extracted via a sinusoidal �t to the data. The phase as a function of pulse

delay is shown in Fig. 8.4 along with the linear least-squares �t. The slope of the line

gives a frequency di�erence ofd�=dt = � ! HF = 2� � 13:904� 0:004 GHz. Compared

with the known frequency of the ground state hyper�ne splitting of 14.530 GHz, this
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yields the excited state hyper�ne splitting of 626� 4 MHz. This measurement is

insensitive to 
uctuations in the laser pulse energy as well as small changes in the

ion position, as both of these change the contrast but not the phase of the Ramsey

fringes. The precision of this measurement is limited by statistics but, in principle,

this technique appears to be only limited by the accuracy of the pulse delay timing

as well as systematic e�ects common with trapped ion frequencystandards [125].
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Figure 8.4: Excited state hyper�ne splitting measurement. The phase of the Ramsey fringes as a
function of the time delay between two picosecond laser pulses, set by the linear translation of the
retro-re
ecting mirror. The uncertainty in the time delay of each point is 0.1 ps and the uncertainty
in the phase is 0.01 rad. The slope of the line gives the frequency di�erence between the ground
state and excited state hyper�ne splittings of � ! HF = 13:904� 0:004 GHz. The inset �gure shows
three Ramsey fringes for three relative delays.

In conclusion, it was shown that with a single ultrafast laser pulse, one can drive

with near unit probability the optical S1=2 to P3=2 transition in a single trapped

cadmium ion. The coherent coupling between the atomic hyper�ne qubit and photon

frequency qubit, shown in the disappearance and revival of Ramsey fringes, is the key

component for operating probabilistic quantum logic gates that are not dependent on

ion motion [30]. The resulting momentum kick is also crucial toultrafast quantum
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logic gates using Coulomb-coupled ions without stringent motional requirements [25,

26].
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CHAPTER IX

Conclusion

Throughout this work we have shown key components for building a scalable

trapped ion quantum computer. The techniques for ion trap modeling and desing

that were described in this work have been expanded and used by many researchers

in building advanced ion trap structures. The three-layer ceramic trap was used in

many quantum information experiments in our research group and was a successful

design. In addition, the use of three-layers made the design expandable to the �rst

two-dimensional ion trap experiments that included ion shuttling around a corner.

That advanced trap was based on the technology developed in this work.

The fabrication and successful operation of the GaAs microtrap was a key result

in opening the possibility of making semiconductor-technology based ion traps. In

order to scale up the number of traps in a given structure as wellas to dramatically

increase the trap zone density, researchers have continued to pursue similar technolo-

gies including single-layer planar traps. Research is continuing in the development

of more advanced traps with better trapping characteristicsfor scalable quantum

computing.

Although most of the work in trapped ion quantum information has been done

using the quantum control of the common-mode motion of ions intightly con�ned
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traps, there are other possible avenues of research that are, in principle, scalable.

The research described in this work involving the interactionof ultrafast laser pulses

with single ions is fundamental in the implementation of thesealternatives. We have

shown that we can make a very precise measurement of the excite state lifetime, cool

using the ultrafast laser pulses, and that we can coherently control the excitation

of the electronic states of the ions. In addition, because we canexcite superposi-

tion states, this allows the creation of quantum logic gates that use the ion-photon

entanglement.

Future work in ion-pulsed laser interactions include the application of spin-dependent

momentum kicks. It is possible to entangle Coulomb-coupled ions in thermal states

of motion using these ultrafast momentum kicks. Another direction of research is to

use the ultrafast excitations as a means of generating single-photon, single-ion en-

tangled states for the generation of remotely located entangled states of ions. Both

of these experiments are currently being pursued by researchers in our group.
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APPENDIX A

Coaxial Resonator Fields

The properties of a quarter-wave coaxial resonator can be calculated exactly.

Although the helical resonator (from Section 2.7.1) has a morecomplicated design,

the coaxial approximation is su�cient to understand the operation of the resonator.

From the resonator, it is necessary to know the relationship between the input power

P, the resonatorQ and the maximum voltage applied to the trapV0. To �nd this

relationship, the �elds inside the resonator must �rst be found. The current on the

center post of the resonator [Fig. A.1(a)] as a function of position and time is

I (z; t) = I 0 sin(kz) cos(! 0t) (A.1)

where I 0 is the maximum current, k = 2�=� is the wavevector and! 0 = kc is

the natural frequency of the resonator. The magnetic �eld canbe calculated from

Ampere's Law (neglecting edge e�ects) and is

~B(�; z; t ) =
� 0I 0

2��
cos(kz) cos(! 0t)�̂: (A.2)

for radial distance� from the center and azimuthal angle� [Fig. A.1(c)]. The electric

�eld is straightforward to calculate from the magnetic �eld of Eq. A.2 and is

~E(�; z; t ) =
r

� 0

� 0

I 0

2��
sin(kz) sin(! 0t)�̂: (A.3)
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Note that the resonator is assumed to not be �lled with any dielectric material. If it

were, the appropriate changes must be made to accommodate thematerial properties

in Eqs. A.2 and A.3.

z=l /4z=0

r =a

r =b
r

z B

E

B

I(z,t)

B

E

E
B

(a)

(b)

(c)

Figure A.1: Electromagnetic �elds in a coaxial resonator. (a) A side view ofthe coaxial resonator.
The current is carried on the center post and is grounded at the back. Electric and magnetic
�elds vectors are show along with the current as a function of position along thez-axis. (b) The
magnitude of the electric and magnetic �elds as a function of position along thez-axis. (c) The
direction of the electric and magnetic �elds in a transverse view of the coaxial resonator. The
current is carried on the center post.

The voltage drop between the center post and the outside conductor in the coaxial

resonator can now be calculated from the electric �eld at the point z = �= 4, the

length of the quarter-wave resonator:

� V =
Z b

a

~E(�; �= 4; �= 2! 0) � d~� (A.4)

where the voltage maximum att = �= 2! 0 was used. Because the electric �eld is

along the ^� direction, the integral is straight-forward to carry out giving

� V =
r

� 0

� 0

I 0

2�
ln

b
a

: (A.5)

The electric �eld from Eq. A.3 can now be re-written in terms ofthe maximum
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voltage dropV0 � � V .

~E(�; z; t ) =
V0�

ln b
a

�
�

sin(kz) sin(! 0t)�̂: (A.6)

The resonatorQ = ! 0U=Ploss is a function of the frequency! 0, the average energy

stored in the resonatorU and the power lost in the resonatorPloss. In steady-state,

the power lost in the resonator is equal to the power sent to the resonator, P. The

average energy stored in the resonator can be calculated from the time average of

the electric �eld:

U =
� Z

V
� 0

�
�
� ~E

�
�
�
2

dV
�

(A.7)

=
! 0

2�

Z �=! 0

� �=! 0

Z

V
� 0

�
�
� ~E

�
�
�
2

dV dt (A.8)

= � 0

"
V0

ln b
a

#2
! 0

2�

Z �=! 0

� �=! 0

sin2(! 0t)dt
Z 2�

0
d�

Z b

a

1
� 2

�d�
Z �= 4

0
sin2(kz)dz (A.9)

= � 0

"
V0

ln b
a

#2 �
1
2

�
(2� )

�
ln

b
a

� �
�
8

�
(A.10)

=
� 0��V 2

0

8 ln b
a

(A.11)

The relationship between the wavelength and the frequency� = 2�c=! 0, and the

speed of lightc = 1=
p

� 0� 0 can be used to re-write Eq. A.11.

U =
r

� 0

� 0

� 2V 2
0

4! 0
ln

b
a

(A.12)

The resonatorQ can now be described in terms of the maximum voltage drop at

z = �= 4 and the applied powerP

Q = ! 0
U

Ploss
(A.13)

PQ = ! 0

" r
� 0

� 0

� 2V 2
0

4! 0 ln b
a

#

(A.14)

PQ =
r

� 0

� 0

� 2V 2
0

4 ln b
a

(A.15)
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This last equation can be inverted, solving for the voltageV0 giving

V0 =
�

4
� 2

r
� 0

� 0
ln

b
a

� 1=2 p
PQ (A.16)

which is the same as Eq. 2.21 with

� =
�

4
� 2

r
� 0

� 0
ln

b
a

� 1=2

: (A.17)

This scale factor is geometric in nature and for a ratio ofb=a= 5, the scale factor is

� � 16. This scale factor for the helical resonator is not the same, but experimental

evidence shows that it is still on the order of about 10.
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APPENDIX B

Analytic Solution of the Transverse Potential

Figure B.1: A linear microtrap model in the complex plane. The linear microtrap model in the
complex w plane with semi-in�nite electrodes that terminate at � a=2 � id=2 with applied voltages
� V0=2.
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The cross-section of the linear microtrap can also be modeled as semi-in�nite

electrodes in a complex plane. This model enables calculation of an analytic solution

for the geometric factor � in the limit of in�nitely thin electrodes. Following the

analysis of parallel-plate capacitor fringe �elds of Valluri et.al [126], the cross-section

of the left cantilever electrodes are described in the complex plane as lines that go

from negative in�nity along the real axis and terminate at� a=2� id=2, as shown in

Fig. B.1. The right set of electrodes (not shown) are a mirror image across thex = 0

line and terminate at a=2 � id=2. The electrodes are then mapped to an in�nite

parallel plate capacitor. The function that does this mapping is

�
2w�

d
+

a�
d

� 1 = z + ez: (B.1)

The positive value maps the parallel plate capacitor to the left set of electrodes in

the w plane, and the negative corresponds to the right set. The potential in the

strip between the two electrodes in thez plane is simply the potential between two

parallel plates in a capacitor, written in complex notation:

� =
V0

2�
Im(z); (B.2)

where Im(z) denotes the imaginary part ofz.

To �nd the potential of the original electrode geometry, theinverse function of

Eq. B.1 is needed. With that inverse map the potential in thew plane can be

evaluated. The inverse map can be written in terms of the Lambert W function,

Wk(� ), following [126].

z� = � � � Wk
�
e� �

�
(B.3)

where � � = � 2w�
d + a�

d � 1 is a scaled complex variable. The Lambert W function

y = W k(x) is the solution to the equationx = y expy. For complex variables, it is
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important to select the proper branch of Wk(� ) when evaluating the function. The

appropriate branch is found using [126]

k =
�

Im(� ) � �
2�

�
; (B.4)

where de denotes the ceiling function which indicates that the argument inside the

ceiling function should be rounded up to the nearest integer.

If the tip-to-tip cantilever separation a is much greater then the layer separation

d (� = a=d � 1), the potential at the center of the trap can be approximated as

the linear combination of the potential from both the left electrodes and the right

electrodes

� =
V0

2�
(Im( z+ ) + Im( z� )) : (B.5)

With this approximation ( � � 1) an asymptotic form of the Lambert W function

exists that leads to a simpli�cation of the inverse map Eq. B.3. The principal branch

of the Lambert W function has an asymptotic form:

W0(� ) � ln � � ln(ln � ); � � 1: (B.6)

Inserting Eq. B.6 into Eq. B.3, the inverse map becomes:z � ln � � . Expanding the

log function about w = 0, Eq. B.3 can be written:

z� = ln(
a�
d

� 1) +

"

�
2�w

a� � d
�

1
2

�
2�w

a� � d

� 2

+ : : :

#

: (B.7)

Since the potential is the linear combination of Im(z+ ) and Im(z� ) (Eq. B.5) and the

linear terms are opposite in sign, only the quadratic term contributes to the potential

of the microtrap. Squaring the complex variablew = u + iv and keeping only the

second-order imaginary terms, one �nds that the potential is

� = �
4�V 0

(a� � d)2 uv: (B.8)
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By rotating the coordinate system about the origin by� = �= 4, the potential is

written in a form that allow for easy comparison with the quadrupole potential of

Eq. 4.11:

� =
2�V 0

(a� � d)2

�
u02 � v02

�
: (B.9)

The geometric factor� can be found for a microtrap with e�ective distance`e� =
p

(a=2)2 + ( d=2)2.

� =
4�

(a� � d)2 `2
e�

= �
� 2 + 1

(�� � 1)2 : (B.10)

This analytic solution of the geometric factor is valid in thelimit where the trap

aspect ratio is large: when the tip-to-tip cantilever separation is much larger then

the layer separation. The geometric factor asymptotically approaches� = 1=� in this

limit. The analytic solution (Eq. B.10) is shown as the solid line in Fig. 4.5. Note

that this complex model assumes in�nitely thin electrodes which correspond to a

large value for the ratio of the layer separation to the layer thickness� = d=w ! 1 .

The values for� found via numerical simulations approach the analytic solution as

� increases and also approach the asymptotic value of� = 1=� for large � .

In addition, the analytic model can be used to calculate the asymptotic values for

the ponderomotive potential depth and the maximum trap size along the weak axis

rmax . Inserting the asymptotic form of the Lambert W function (Eq. B.6) directly

into the potential (Eq. B.5) and evaluating the imaginary part, the potential can be

written directly as a function of u and v.

� =
V0

2�

�
tan� 1

�
2v

2u + a � d=�

�

+tan � 1

�
� 2v

� 2u + a � d=�

��
(B.11)
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The pseudopotential can then be directly evaluated, using a two-dimensional gradi-

ent, from Eq. 4.8. The maximum of the pseudopotential along the v-axis (v = rmax )

lies at

rmax =
1

2�
(a� � d)

=
a
2

(1 �
1

��
): (B.12)

The location of the potential maximum asymptotically approachesrmax = a=2 as the

aspect ratio goes to in�nity. The trap depth is the pseudopotential evaluated at this

maximum:

 (rmax ) =
e2V 2

0

4m
 2
T

1

a2� 2
�
1 � 1

��

� 2 : (B.13)

The analytic solution for the scaled trap depth is shown in Fig. 4.7 and approaches

the asymptotic value of 2694 [K�� m2/V 2] for large � .
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APPENDIX C

Picosecond Pulse Generation and Characterization

C.1 Picosecond Generation

Generation of picosecond laser pulses in the infrared is done via the Millenia-

pumped Spectra-Physics Tsunami Ti:Sapphire laser. The Ti:sapphire cavity is ac-

tively mode locked using an acousto-optic modulator (AOM) as the means of shifting

cavity losses above and below the lasing threshold. In addition aGires-Tournois In-

terferometer (GTI) is inserted into the cavity, �xing the pul se width of the laser in

the picosecond range, nominally at 2 ps. The wavelength of the cavity is tuned with a

birefringent �lter (bi-�) and can be set to sub-nanometer precision. The wavelength

is measured with the Burleigh wavemeter with the Tsunami not mode-locked. The

nominal wavelength is 906.28 nm (858.03 nm), four times theS1=2 to P1=2 (P3=2)

transition wavelength in singly ionized cadmium. With 10 W of pump power, the

Tsunami produces 1.7 W (2.5 W) average power in the IR.

The pulse shape is determined by the mode-locking mechanism. Because the

dominant pulse generating mechanism is the optical Kerr e�ect, the electric �eld in

the time domain has the envelope of a sech function [127]:

E(t) =

r
W
2� s

sech
�

t
� s

�
ei!t + ' (C.1)

whereW is the pulse energy and� s is the pulse width.
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C.1.1 Pulse Width Measurement. The width of the intensity envelope can be

measured directly using an auto-correlator. The intensity of the pulse is

I (t) = I peak sech2
�

wsech t
� FWHM

�
(C.2)

with peak pulse intensityI peak, full width half max (FWHM) of the peak � FWHM . The

scale coe�cient wsech comes from the sech2 by solving for the FWHM of the function

f (t) = sech2(t). Since the maximum of this function isf (0) = 1, the FWHM is

twice the inverse function off (t) = 1 =2. This can be written as

wsech = 2 ln(1 +
p

2) � 1:76: (C.3)

The functional form of the sech and sech2 functions can be seen in Fig. C.1.

Figure C.1: Functional form of sech pulses. The functional form off (t) = secht, f (t) = sech2t
and a square pulse of widthwsech .

An optical intensity autocorrelation measurement uses second-harmonic genera-

tion (SHG) to measure the overlap of two pulses. The autocorrelation function that
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is measured is

A (2) (� ) =
Z 1

�1
I (t)I (t + � )dt (C.4)

where the (2) indicates that this is a second-order autocorrelation. The intensity

envelope must be integrated to �t to the data. The autocorrelation not only gives

information about the pulse width, but it also gives information about the pulse

shape. A Gaussian pulse shape has a di�erent autocorrelation froma sech pulse. The

di�erence in shape of the autocorrelation can be seen in Fig. C.2. The autocorrelation

function of the sech2 pulse is

A (2) (� ) =
3 (� cosh� � sinh� )

sinh3 �
(C.5)

and the autocorrelation function of the Gaussian pulse is

A (2) (� ) = e� � 2=4: (C.6)

The pulses from the Tsunami mode-locked laser were measured usingthe autocorre-

lation technique to have a pulse width of� = 1:8 ps.

C.1.2 Pulse Power There is a relationship between he peak power of the pulses and

the average power. Because the average power is easier to measure experimentally,

this relationship can be used to extract the peak power. Averagepower is de�ned as

the time integral of the peak times the repetition rateR of the pulses

Pavg = R
Z 1

�1
Psingle (t)dt: (C.7)

The single pulse power can be written as

Psingle = Pmax sech2wsech t=� FWHM : (C.8)

Integrating over the pulse width, the average power is

Pavg = aR� FWHM Pmax (C.9)
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Figure C.2: Autocorrelation data and functional form of sech versus Gaussian pulses. The data are
the measured autocorrelation of the Tsunami pulsed laser. The two curves are not �ts, but rather
sech2 and gaussian curves. The pulse width is approximately 1.6 ps.

wherea = 2=wsech � 1:13 for sech2 pulses anda =
p

�= 4 ln(2) � 1:06 for Gaussian

pulses. The energy of a single pulse is found by inverting Eq. C.9.

E =
Pavg

R
= a� FWHM Pmax (C.10)

C.1.3 Second Harmonic Generation. When a pulse is frequency doubled, the

electric �eld gets quadrupled. The change in the intensity envelope of the pulse after

the electric �eld is thus squared. The pulse width shrinks for the doubled pulse- the

new width is w(2)
sech

= 2 sech� 1(1=21=4). The ratio of the fundamental to the harmonic

pulse widths is approximately 1.45. After a second SHG stage, the ratio of the initial

to quadrupled pulse widths is approximately 2.11 for sech2 pulses. This same factor

is 2 for Gaussian pulses. This relationship is

� (4) = 1=b�(0) (C.11)

where b = 2:11 for sech2 pulses andb = 2 for Gaussian. The (4) is for the fourth

harmonic (UV) of the fundamental (0) or (IR).
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C.2 Atomic Transitions.

The rotation of the atomic state in the Bloch sphere is dependent on the electric

�eld pulse area. For a simple square wave, or for cw radiation this is simply � = gt,

whereg is the Rabi frequencyg = �E= �h and t is the time of the square wave. For

a pulse, the rotation is also the pulse area, but the electric �eld must be integrated

over the time duration of the single pulse. The rotation becomes

� =
�
�h

Z 1

�1
E(t)dt: (C.12)

Alternatively, one could rewrite this in terms of Rabi frequencies, simplifying the

connection to experiment. Let

g(t) = gmax sech
wsech t
� uv

FWHM

(C.13)

where� uv
FWHM

is the width of the intensity envelope of the ultraviolet radiation, reso-

nant with the S1=2 to P3=2 transition. The rotation in the Bloch sphere then becomes

� =
Z 1

�1
g(t)dt: (C.14)

This integral is evaluated, giving a rotation of

� =
�g max � uv

FWHM

wsech

: (C.15)

To make the connection with experiment, the saturation parameter, which relates

the Rabi frequency with the intensity of the pulse is used:

g2
max


 2
=

I max jcj2

2I s
(C.16)

whereI max is the maximum intensity of the pulse,
 is the linewidth of the P1=3 state,

I s is the saturation intensity for the transition, and jcj2 is the relevant Clebsh-Gordon

coe�cient.
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In addition, the maximum intensity I max is written in terms of the maximum

power, focused to a 1=eGaussian waist ofw (or beam area�w 2:

I max =
Pmax

�w 2
(C.17)

Substituting back in, the rotation angle as a function of single pulse energy (Eq. C.10)

in the UV and the pulse width in the IR (Eq. C.11), which are the two parameters

easily measured in the lab is

� 2 =
� 2

abw2
sech


 2 jcj2 � IR
FWHM

E
2I s�w 2

: (C.18)

The �rst section is the factor that the non-square pulse shape contributes to the ro-

tation angle. For sech2 pulses, this factor is approximately 1.33. Using the following

experimental values:
 = 2� 60:1 MHz, R = 80:5 MHz, I s = 7955 W/m 2, jcj2 = 2=3

for � + polarization, a beam spot area of�w 2 = 1:88 � 10� 10 m2, and assuming

� IR
FWHM

= 1:8 ps for sech2 pulses, the rotation, as a fraction of� is

� = (1 :33)(0:057)
p

E (C.19)

where the pulse width is expressed in ps and the pulse energyE. The �rst factor,

1.33 comes from the sech2, the second contains the atomic physics including the

beam area on the ion and the pulse width. Combining the two gives approximately

� = 0:28
p

E: (C.20)

For a 1.8 ps pulse width, the pulse energy required for a� pulse is 130 pJ, or an

average power of 10 mW. The probability of being in the excited state, and therefore

detecting a spontaneously emitted photon is shown in Fig. C.3.
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Figure C.3: Excitation Probability as a function of laser pulse energy. Probability of making the
transition from the S1=2 ground state to the P3=2 excited state as a function of pulse width and
average pulse energy. The pulse energy is in the UV.
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APPENDIX D

Two-Level Ultrafast Rabi Oscillation

D.1 Introduction

The pulsed laser interaction can be described analytically because the electric

�eld pulse envelope is approximately a hyperbolic secant function. The following

will cover the basic formalism for the two-level Rabi oscillation problem with the

solution for the case of the hyperbolic secant pulses.

D.2 Simple Introductory Two Level Problem

D.2.1 Two Level Setup. The P3=2 excited state is denotedjei and the S1=2 ground

state, is labeledjgi . The frequency di�erence between these two states is the char-

acteristic frequency of the atom,! a, and is an optical frequency of order 1500 THz.

The unperturbed Hamiltonion of the two-level system has eigenstates and energies

H jei = �h! ajei (D.1)

H jgi = 0: (D.2)

The wavefunction describing these states is a general superposition of both levels

 (t) = cg(t)jgi + ce(t)jei .

The Hamiltonian is modi�ed with the application of the laser pulse, following [128]

H =
~p2

2m
�

e2

4�� 0
� ~� � ~E = H0 � ~� � ~E (D.3)
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where the electric �eld is

~E = ~E0(t) cos! l t (D.4)

where E0(t) = E0 secht=� s is a slowly (compared to the optical frequency) varying

envelope for the electric �eld with pulse width� s. The dynamics of the problem are

found in the solution to the Hamiltonian for the interaction term � ~� � ~E.

D.2.2 Schr•odinger Equation. The time evolution of the wavefunction is described

by the Schr•odinger equation using the unperturbed Hamiltonian of an atomic system

from Eq. D.3.

{�h
@ 
@t

= H0 � ~� � ~E (D.5)

Writing out this equation in terms of the wavefunction amplitues and then taking

the product with hgj and hej, one �nds

{�h
@
@t

(cg(t)jgi + ce(t)jei ) = H0 (cg(t)jgi + ce(t)jei )

� ~� � ~E (cg(t)jgi + ce(t)jei ) (D.6)

{�h (_cg(t)jgi + _ce(t)jei ) = ce(t)�h! ajei

� ~� � ~E (cg(t)jgi + ce(t)jei ) (D.7)

Now, taking the product with hgj and hej to get the amplitudes by themselves:

hgj [{�h (_cg(t)jgi + _ce(t)jei ) = ce(t)�h! ajei

� ~� � ~E (cg(t)jgi + ce(t)jei )
i

(D.8)

hej [{�h (_cg(t)jgi + _ce(t)jei ) = ce(t)�h! ajei

� ~� � ~E (cg(t)jgi + ce(t)jei )
i

(D.9)

The end result gives a set of coupled di�erential equations forcg(t) and ce(t).
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{�h_cg(t) = �h gj~� � ~Ejei ce(t)

{�h_ce(t) = �h! a � h ej~� � ~E jgi cg(t)

(D.10)

A substitution is then made in this problem and the Rabi frequency is de�ned using

the amplitude of the electric �eld, but not the hyperbolic secant envelope.


 =
hej~� � ~E0jgi

�h
: (D.11)

Using this in equation D.10, moving the constants to the right side of the equations,

and recalling the form of the electric �eld [Eq. D.4], one �nds

_cg(t) = {
 sech( t=� s) cos(! l t)ce(t)

_ce(t) = � {! a + {
 sech( t=� s) cos(! l t)cg(t):

(D.12)

The energy of the eigenstates are shifted to the atomic reference frame to make

the RWA.

ce(t) = ~ce(t)e� {! a t : (D.13)

This is substituted in equation D.12 and the time derivative istaken. To match

notation, the substitution cg(t) = ~cg(t) is also made, which corresponds to a zero

energy shift. The equation for the excited state is simpli�ed, giving

_ce(t) = _~ce(t)e� {! a t � {! a~ce(t)e� {! a t (D.14)

and the right side becomes

_ce(t) = � {! a~ce(t)e� {! a t + {
 sech( t=� s) cos(! l t)~cg(t): (D.15)
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Equating these gives the amplitudes

_~ce(t)e� {! a t = {! a~ce(t)e� {! a t � {! a~ce(t)e� {! a t

+ {
 sech( t=� s) cos(! l t)~cg(t) (D.16)

and, examining both amplitudes,

_~ce(t) = {
 sech( t=� s) cos(! l t)~cg(t)e{! a tc

_~cg(t) = {
 sech( t=� s) cos(! l t)~ce(t)e� {! a t

(D.17)

D.2.3 Rotating Wave Approximation. At this point in the solution of the problem,

the Rotating Wave Approximation (RWA) is made by re-writing the cos(! l t optical

frequency term using the exponential expansion. It is then assumed that the ! l + ! a

terms are negligible because they rotate at essentially twice the optical frequency.

On the time scale of the laser pulse, these terms are average out toapproximately

zero. The coupled equations for the amplitudes, where the laser frequency is equal

to the atomic frequency, are

_~ce(t) = {

2 sech(t=� s)~cg(t)

_~cg(t) = {

2 sech(t=� s)~ce(t)

(D.18)

These coupled di�erential equations are solved exactly for the hyperbolic secant

pulse envelope. The solutions for the inital conditionsce(�1 ) = 0 and cg(�1 ) = 1

are

~ce(t) = cos [� s
 tan � 1 tanh (t=� s)]

~cg(t) = { sin [� s
 tan � 1 tanh (t=� s)]

(D.19)
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The probability of being in the excited state is

jcej
2 = sin2

�
� s
 tan � 1 tanh (t=� s)

�
(D.20)

Note that, as explained in the text, the Rabi frequency 
 is theelectric �eld, or which

is proportional to the square root of the laser power
p

P. The rotation angle after the

pulse has interacted with the ion is the integral of the argument to the sine function.

For times much longer then the pulse width� s, the function tan� 1 tanh (t=� s) is equal

to �= 4. The rotation angle is thus� = �� s
 and the excited state probability is

jcej
2 = sin2 �

2
(D.21)

The wavefunction, as a function of time, is thus

 (t) = cos
�
2

jgi � {e� {! a t sin
�
2

jei (D.22)

where the wavefunction starts in the ground state at timet = �1 .

D.3 Two Pulse Approximation

If a second pulse is sent to the ion after the �rst pulse has rotated the state by an

angle� , the wavefunction will rotate again on the Bloch sphere. However, the optical

frequency component of the wavefunction must also be accounted for. After the �rst

pulse, the atom is in a superposition of the ground and excited states [Eq. D.22].

The second pulse has a phase shift with respect to the �rst based on thetime delay

between the �rst and second pulses. The probability of being in the excited state

after the secon pulse is

jcej
2 = sin2 �

2
cos2

�
! a�t

2

�
: (D.23)

Although the ion is not in the Lamb-Dicke limit, the two pulses interact with the

ion on a time scale much faster the the ion motion, so the phase! a�t is well de-
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�ned. However, averaging over an ensamble of experiments, eachone with a slightly

di�erent delay, the second term becomes 1=2, reducing the excited state population.
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APPENDIX E

Ultrafast Optical Bloch Equations

E.1 Density Matrix Setup

The density matrix and the solutions to the optical Bloch equations (OBE) can be

used to get a better understanding of the dynamics of the two pulse experiment. The

energy levels of cadmium are described in an approximate fashion by only looking

at the mF = 0 excited states. The pulsed laser, with a bandwidth much largerthen

the hyper�ne splitting, is assumed to couple all the ground states equally. However,

to use the rotating wave approximation (RWA), the pulsed laser isinitially approx-

imated as a bichromatic �eld coupling both hyper�ne levels equally. In addition,

there is a microwave �eld that couples theF = 0; mF = 0 ground state to the

F = 1; mF = 0 ground state. The pulsed laser �eld is

~E1(~x; t) =
�
�E 0

1(t)
�
� �̂ 1 cos

�
! l1t � ~k1 � ~x � � 1

�
(E.1)

~E2(~x; t) =
�
�E 0

2(t)
�
� �̂ 2 cos

�
! l2t � ~k2 � ~x � � 2

�
(E.2)

where

E 0
1(t) � E 0

2(t) � sech(t=� s) (E.3)

is the slowly (compared to the optical frequency) varying envelope of the laser pulse.

The �eld E1 couples theF = 0 ground state with the F = 10 excited state manifold.
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The other �eld, E2 couples theF = 1 ground state with the F = 20 excited state.

The microwave �eld couples the two ground state levels and is insensitive to the ion

position and motion:

~M (t) = jM 0j �̂ �W cos (! �W t � � �W ) : (E.4)

The OBE is the density matrix version of the Sch•ordinger equation _� = [ H; � ] and

can be written in matrix component form:

_� ij = �
{
�h

X

k

(H ik � kj � � ik Hkj ) : (E.5)

There are �ve relevant energy levels in our approximate systemshown in Fig. E.1.

The F = 0; mF = 0 ground state population is represented by� 00. The F = 1; mF =

0 ground state population is� 11. There is another, auxiliary, ground state population

that represents any population in either theF = 1; mF = � 1 states (� aa), which are

equally bright and, in this approximation, will not interact further with the laser.

This will lead to a solution that is slightly brighter then the actual physical situation,

but only by a small percentage.

The two excited hyper�ne states areF 0 = 1; m0
F = 0, which has a population

� 1010, and F 0 = 2; m0
F = 0 with population � 2020. There are coherences coupling the

two hyper�ne ground states to each other and to the two excitedstates.

The �nal set of coupled di�erential equations for the density matrix elements are,
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Figure E.1: The energy levels for the OBE model. Shown are the transitions betweenj0i and j10i
via E1, between j1i and j20i via E2, and j0i and j1i via M . The 
uorescence branching ratios are
also shown to the inital states as well as the auxillary statejai .

in the RWA and without spontaneous emission

_� 2020 =
{
2

(
 2(t) �� �
201 � 
 �

2(t) �� 201) (E.6)

_� 1010 =
{
2

(
 1(t) �� �
100 � 
 �

1(t) �� 100) (E.7)

_� 11 = �
{
2

(
 M �� �
01 � 
 �

M �� 01) �
{
2

(
 2(t) �� �
201 � 
 �

2(t) �� 201) (E.8)

_� 00 =
{
2

(
 M �� �
01 � 
 �

M �� 01) �
{
2

(
 1(t) �� �
100 � 
 �

1(t) �� 100) (E.9)

_�� 201 =
{
 2(t)

2
(� 11 � � 2020) �

{
 M

2
�� 200 (E.10)

_�� 100 =
{
 1(t)

2
(� 00 � � 1010) �

{
 �
M

2
�� 101 (E.11)

_�� 101 = �
{
 2(t)

2
�� 1020e� {� !t +

{
 1(t)
2

�� 01 �
{
 M

2
�� 100 (E.12)

_�� 200 = �
{
 1(t)

2
�� �

1020e{� !t +
{
 2(t)

2
�� �

01 �
{
 �

M

2
�� 201 (E.13)

_�� 01 =
{
 M

2
(� 11 � � 00) �

{
 2(t)
2

�� �
200 �

{
 �
1(t)
2

�� 101 (E.14)

_�� 1020 = {� ! �� 1020 +
�

{
 1(t)
2

�� �
200 �

{
 �
2(t)
2

�� 101

�
e{� !t (E.15)
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There are three Rabi frequencies listed in these coupled di�erential equations,

each one represents an electromagenetic �eld (Eqs. E.1, E.2, E.4). The two laser

frequencies contain the slowly varying time envelope from Eq. E.3.


 1(t) =
E 0

1

�h
h0j� 1 � �̂ 1e{~k1 �~x j10i sech(t=� s) � 
 01 sech(t=� s) (E.16)


 2(t) =
E 0

2

�h
h1j� 2 � �̂ 2e{~k2 �~x j20i sech(t=� s) � 
 02 sech(t=� s) (E.17)


 M (t) =
M 0

�h
h0j� 1 � �̂ �W j1i (E.18)

(E.19)

The optical coherences are each rotating in the frame of the atomic frequency

di�erence, and the hyper�ne coherences are rotating in the frame of the ground state

hyper�ne splitting.

� 201 =�� 201e� {! l 1 t (E.20)

� 100 =�� 100e� {! l 2 t (E.21)

� 101 =�� 101e� {(! l 1+ ! HF )t (E.22)

� 200 =�� 200e� {(! l 2 � ! HF )t (E.23)

� 01 =�� 01e� {! HF t (E.24)

� 1020 =�� 1020e� {! l 2 t (E.25)

The frequency relationships that are characteristic to this system are the atomic

frequency di�erence between theF = 20 excited state manifold and theF = 0

ground state, ! a, the ground state hyper�ne splitting ! HF and the excited state

hyper�ne splitting ! HF 0. It follows from the structure of 111Cd+ that
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! a = ! l1 � ! HF 0 (E.26)

! a = ! l2 � ! HF (E.27)

� ! = ! HF � ! HF 0 (E.28)

E.2 Microwave Rotations

When microwaves are sent to the ion, the density matrix evolveswith a non-zero

element 
 M , but the other two Rabi frequencies are zero. The coupled di�erential

equations that describe the time evolution of the system are as follows. The time

evoluation is assumed to be the a rotating frame of frequency! HF .

_� 11 = �
{
2

(
 M �� �
01 � 
 �

M �� 01) (E.29)

_� 00 =
{
2

(
 M �� �
01 � 
 �

M �� 01) (E.30)

_�� 201 = �
{
 M

2
�� 200 (E.31)

_�� 100 = �
{
 �

M

2
�� 101 (E.32)

_�� 101 = �
{
 M

2
�� 100 (E.33)

_�� 200 = �
{
 �

M

2
�� 201 (E.34)

_�� 01 =
{
 M

2
(� 11 � � 00) (E.35)

_�� 1020 = {� ! �� 1020 (E.36)

For an initial population of only the dark state � 00, the microwaves couple to

the other hyper�ne ground state� 11 as well as establish a coherence� 01. The other

entries in the density matrix remain zero. A second microwave pulse could be applied

at some timet after the �rst with a phase � with respect to the �rst. Because the

microwave radiation is resonant with the atom, this second pulse would shift the
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population of the �rst, changing 
 M to 
 M e{� (noting that the complex conjugate

must be taken where appropriate).

E.3 Ultrafast Laser Rotations

The interaction between the ultrafast laser pulses and the atomusing the OBE

and this description of the density matrix can be approximatedby assuming that

the two transitions between the ground and excited states couple with equal strength

and are both real amplitudes:


 01 = 
 �
01 � 
 02 = 
 �

02 � 
 0 (E.37)

With this approximation, the time evolution of the density matrix over the time

during which a laser pulse arrives is described by the followingcoupled di�erential

equations.

_� 2020 =
{
 0 sech(t=� s)

2
(�� �

201 � �� 201) (E.38)

_� 1010 =
{
 0 sech(t=� s)

2
(�� �

100 � �� 100) (E.39)

_� 11 = �
{
 0 sech(t=� s)

2
(�� �

201 � �� 201) (E.40)

_� 00 = �
{
 0 sech(t=� s)

2
(�� �

100 � �� 100) (E.41)

_�� 201 =
{
 0 sech(t=� s)

2
(� 11 � � 2020) (E.42)

_�� 100 =
{
 0 sech(t=� s)( t)

2
(� 00 � � 1010) (E.43)

_�� 101 = �
{
 0 sech(t=� s)

2

�
�� 1020e� {� !t + �� 01

�
(E.44)

_�� 200 = �
{
 0 sech(t=� s)

2

�
�� �

1020e{� !t + �� �
01

�
(E.45)

_�� 01 = �
{
 0 sech(t=� s)

2
(�� �

200 � �� 101) (E.46)

_�� 1020 = {� ! �� 1020 +
{
 0 sech(t=� s)

2
(�� �

200 � �� 101) e{� !t (E.47)
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The time scale of the ultrafast pulses is much shorter then spontaneous emission (with

excited state lifetime 
 ) for a single pulse. However, if there is some time between

two or more ultrafast pulses, then spontaneous emission must be accounted for. In

that case, the period during which spontaneous emission may occur is described by

the following coupled equations.

_� 2020 = � 
� 2020 (E.48)

_� 1010 = � 
� 1010 (E.49)

_� 11 =
2
3


� 2020 (E.50)

_� 00 =
2
3


� 1010 (E.51)

_�� 201 = �


2

�� 201 (E.52)

_�� 100 = �


2

�� 100 (E.53)

_�� 101 = �


2

�� 101 (E.54)

_�� 200 = �


2

�� 200 (E.55)

_�� 01 =0 (E.56)

_�� 1020 =0 _� aa =


3

(� 2020 + � 1010) (E.57)

One other consideration is made when using multiple ultrafast laser pulses in the

OBE. If the optical phase is not stable between the pulses, or if onaverage the phase

is random, this can be accounted for by resetting the values ofthe optical coherences

to zero before applying the next ultrafast pulse. However, if the phase is maintained

and controlled, the optical coherences will carry over fromone pulse to the next.
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