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ABSTRACT

Advanced Ion Trap Development and Ultrafast Laser-Ion Interactions

by

Martin John Madsen

Chair: Christopher R. Monroe

All of the essential elements for a trapped ion quantum computer have been

demonstrated in previous experiments. There are, however, many technical chal-

lenges to scaling the number of quantum bits from the current state-of-the-art (about

8) to the number of qubits needed for practical quantum computing. Although there

is experimental evidence supporting one possible method (using cw laser pulses and

common motional modes as the ion interaction) for deterministic ion entanglement,

it is not known if that will ultimately be the most practical method for building

a large-scale quantum computer. One model for scalable quantum computing with

trapped ions calls for large interconnected arrays of small traps. Several advance-

ments reported in this work include the development of three layer alumina traps as

well as MEMS fabricated microtraps. Other models for scalable trapped ion quan-

tum computing do not call for local entanglement or call for relaxed constraints on

the motional control of the ions. These proposals require the use of ultrafast laser



pulses interacting with the ions. This work reviews several experiments that explore

the interaction between the ultrafast laser and single trapped ions including early

indication of ultrafast control and entanglement between a single ion and a single

photon frequency qubit.
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ABSTRACT

All of the essential elements for a trapped ion quantum computer have been

demonstrated in previous experiments. There are, however, many technical chal-

lenges to scaling the number of quantum bits from the current state-of-the-art (about

8) to the number of qubits needed for practical quantum computing. Although there

is experimental evidence supporting one possible method (using cw laser pulses and

common motional modes as the ion interaction) for deterministic ion entanglement,

it is not known if that will ultimately be the most practical method for building

a large-scale quantum computer. One model for scalable quantum computing with

trapped ions calls for large interconnected arrays of small traps. Several advance-

ments reported in this work include the development of three layer alumina traps as

well as MEMS fabricated microtraps. Other models for scalable trapped ion quan-

tum computing do not call for local entanglement or call for relaxed constraints on

the motional control of the ions. Both of these proposals require the use of ultrafast

laser pulses interacting with the ions. This work reviews several experiments that

explore the interaction between the ultrafast laser and single trapped ions including

early indication of ultrafast control and entanglement between a single ion and a

single photon frequency qubit.
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CHAPTER I

Introduction

The field of quantum computing was, to a large degree, initiated by Richard

Feynman who first proposed that quantum bits (or qubits) could be used to perform

computations [1]. In addition, early work by David Deutsch showed that there are

certain algorithms for which a quantum computer can be faster then a classical

computer [2, 3]. However, the level of interest in quantum information and quantum

computing remained low until the work by Peter Shor and others in the mid-1990s

that showed an exponential speed-up on a key algorithm for factoring large numbers

using a quantum computer [4, 5, 6, 7, 8]. Combined with a proposal for using trapped

ions as the qubits for such a quantum computer, the field of trapped ion quantum

information was initiated [9, 10].

Over the last ten years many key aspects and components of scalable quantum

computation have been demonstrated in various trapped ion systems [9, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. These components have relied on several

schemes for using quantum control of local entanglement gates that rely on the

coupled motion of ions in a strong trap. Because these schemes require a pure state

of motion, or at least that the ion is in the Lamb-Dicke limit, there are strong

technical limitations to the number of ions that can be utilized in a given local
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trap. There are two directions that could work around these technical limitations.

One is to use an array of interconnected ion traps, shuttling small numbers of ions

through an “interaction zone” for the quantum gates and then storing the ions in

auxiliary traps until needed [23]. Chapter III describes the use of computer modeling

software to aid in the design of more complicated trap geometries. Chapters IV

and V cover two separate advances in advanced ion trap development that constitute

progress in making these trap arrays. The other direction is to use ultrafast laser

pulses interacting with trapped ions instead of the typical switched cw lasers [24,

25, 26]. By using ultrafast laser pulses, the interaction with the ion takes place on

a time scale much faster then the ion motion. In addition, the use of ultrafast laser

pulses to excite the ions could lead to networks of remotely entangled ions through a

photonic coupling [27, 28, 29, 30], another possible architecture for scalable trapped

ion quantum computing.

The first area of development for scalable trapped ion quantum computing is

advanced ion trap development. Although the original proposal for trapped ion

quantum computers called for all the qubits in one long linear trap [9], the techno-

logical difficulties in implementing that protocol have steered the research community

away from that proposal. Rather, it has been shown that small numbers of ions in

larger, segmented traps have been shown to be a successful, and possible scalable

solution [31, 32, 18, 33]. In a sense, this transfers some of the technical difficulty

in making a trapped ion quantum computer from the laser to the trap, making it

necessary to have much more complicated trap structures.

Building toward more complicated structures, Chapter IV will describe a model for

this type of trap as well as two possible implementations and the successful operation

of one of those types [32]. Chapter V describes two new ion trap designs: a three-
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layer gold-on-alumina linear trap and a MEMS-fabricated GaAs/ AlGaAs monolithic

linear microtrap [33]. The three-layer design was a first step in building a trap that

has solved the topological problem of making junctions in rf traps. By placing the

rf electrode on the center layer, it is possible to make a wide variety of junctions

without compromising the trapping capability. The microtrap design is a new way

of fabricating a linear trap that is an order of magnitude smaller then current trap

structures, yet is scalable using existing semiconductor fabrication techniques.

The current model of entanglement via slow-pulsed cw lasers interacting with

ions in a strong linear trap has been very successful in working with a few qubits.

But there are other proposals that have yet to be tested experimentally. These

proposals for trapped ion quantum computing include an ultrafast gate using a series

of ultrafast laser pulses to kick the ion in phase space on a time scale faster then

the trap frequency and the excited state lifetime. In addition, there are proposals

to use probabilistic ion-photon entanglement to build a cluster-state type network

for scalable quantum computing. Both of these proposals require control of the ion

motion and quantum state using ultrafast laser pulses, a new area of research.

Chapter VI describes experiments using a mode-locked pulsed laser to make a pre-

cise measurement of the excited state lifetimes, to perform a new type of broadband

laser cooling (Chapter VII), and to measure coherence in the ion excited state as well

as indirect evidence for ion-photon entanglement involving the ground state hyper-

fine qubit and a resolved frequency photonic qubit (Chapter VIII). All three of these

results are key components in building both the deterministic ultrafast entanglement

as well as in building the remote ion cluster state networks.
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CHAPTER II

Ion Trapping Fundamentals and Equipment

2.1 Ponderomotive Potential

2.1.1 Pseudopotiential Approximation. The rf ion trap is the time average behavior

of inhomogeneous oscillating electric fields [34]. Consider a charged particle moving

in one dimension in an oscillating electric field of the form

E(z) = E0(z) cos ΩT t (2.1)

where E0(z) is the spatial dependence of the electric field. Consider the case in which

the electric field is non-uniform so the ∂E0(z)/∂z 6= 0. The equation of motion for

an ion of charge e and mass m is

mz̈ = Fz(t) = eE(z). (2.2)

A solution for small oscillations about some average position of the ion z̄ is desired

such that the position is z(t) = z̄ + ζ(t). The small perturbation as a function of

time is thus

ζ(t) = −ζ0 cos ΩT t (2.3)

with amplitude ζ0 = eE0(z)/(mΩ2
T ). The electric field is expanded about the average

ion position z̄, looking at the time average motion of the ion. Keeping only the first
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order, the electric field is

E0(z) ≈ E0(z̄) +

[

∂E0(z̄)

∂z̄

]

ζ (2.4)

where it was assumed that the amplitude of the motion is small compared to the

characteristic size of the electric field inhomogeneity, neglecting higher order terms

(|ζ ≪ [∂E0(z̄)/∂z̄]|). Averaging the force on the ion over one period, one finds

F̄ (z̄) = e
〈

E0(z̄) cos ΩT t+
[

∂E0(z̄)
∂z̄

]

ζ ′ cos ΩT t
〉

= e
[

∂E0(z̄)
∂z̄

]

〈ζ ′ cos ΩT t〉

(2.5)

This can now be substituted into the equation of motion for the small perturbation

(Eq. 2.3) and one finds

〈ζ ′ cos ΩT t〉 = −1

2
ζ0 = −E0(z̄)

2mΩ2
T

. (2.6)

The average force on the ion (in the limit of small perturbations) is thus

F̄ (z̄) = −e [∂E0(z̄)/∂z̄]E0(z̄)

2mΩ2
T

. (2.7)

This can also be written as a function of a pseudopotential ψ(z) ≡ eE2
0(z)/(4mΩ2

T )

which represents the time-average potential such that the average force is

F̄ (z̄) = −e∂ψ(z̄)

∂z̄
. (2.8)

Because the time average behavior of the ion is only dependent on the spatial char-

acteristics of the electric field amplitude, the trap can be modeled using electrostatic

simulations and the electric field E0(z̄) can be used to describe the general ion be-

havior (see Chapters III and IV). The ion motion is characterized by an oscillation

frequency

ωz =
e

2mΩT

[

∂2E0(z̄)

∂z̄2

]1/2

(2.9)
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This result can be generalized to three dimensions so that the average force on an

ion near equilibrium (x̄, ȳ, z̄) is

F̄ (x̄, ȳ, z̄) = −e∇ψ(x̄, ȳ, z̄), ψ(x̄, ȳ, z̄) ≡
[

e/(4mΩ2
T )

]

E2
0(x̄, ȳ, z̄). (2.10)

2.1.2 Mathieu Equations. If one considers the type of quadrupole fields commonly

used in ion trap experiments, the ion motion can be described in more detail. The ion

is confined in the transverse (x, y) plane by the oscillating rf electric field described

near the center of the trap by the potential [35]

Φ =
V0 cos ΩT t+ Ur

2

(

1 +
x2 − y2

R2

)

(2.11)

where the potential V0 is the oscillating potential amplitude, Ur is a static offset

potential, and R is the characteristic dimension of the trap. The ions are confined

along the trap axis (z) by some static potential (of characteristic length z0) which is

quadratic near the center of the trap.

Φs =
U0

z2
0

[

z2 − 1

2

(

x2 + y2
)

]

=
m

2e
ω2

z

[

z2 − 1

2

(

x2 + y2
)

]

(2.12)

The frequency of oscillation along the z-axis is not dependent on the rf frequency

ΩT and is ωz =
√

2eU0/(mz2
0), for simple harmonic oscillation. In the xy plane,

however, the ion motion is more complicated. Combining both Eq. 2.11 and 2.12,

the equations of motion can be written in the form of the Mathieu equations:

d2x
dξ

+ [ax + 2qx cos(2ξ)] = 0

d2y
dξ

+ [ay + 2qy cos(2ξ)] = 0

(2.13)

where ξ ≡ Ωt/2, and the coefficients are ax = (4e/mΩ2
T )(Ur/R

2 − U0/z
2
0) and

qx = 2eV0/(Ω
2
TmR

2), ay = −(4e/mΩ2
T )(Ur/R

2 + U0/z
2
0), and qy = −qx.
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The solutions to the Mathieu equations are well known [36]. In the pseudopoten-

tial approximation (where |ax| , q2
x ≪ 1) the equations of motion in both the x and y

directions are, to first order in ai and to second order in qi,

ui(t) = u0i

(

cos (ωit+ ϕi)
[

1 +
qi
2

cos(ΩT t)

+
q2
i

32
cos(2ΩT t)

]

+ βi
qi
2

sin(ωit+ ϕi) sin(ΩT t)

)

(2.14)

where ui = x, y, u0i depends on initial conditions and

ωi = βi
ΩT

2
, βi ≃

√

ai + q2
i /2. (2.15)

There are several parts to the motion of the ion. The large, slow oscillations at

frequencies ωi are the same as the oscillation frequency in the pseudopotential ap-

proximation from above (Eq. 2.9) for the electric field given by Eq. 2.11.

2.2 Doppler Cooling

Laser-ion interactions are currently the only method for executing quantum in-

formation experiments in trapped ion systems. In order to carry out many of these

interactions over long periods of time, the ions must be well localized. It is necessary,

therefore, to cool the ions from the thermal temperatures when they are first loaded

in the rf trap to cold, localized ion crystals. This is done using Doppler cooling

techniques that are now ubiquitous in atomic physics experiments. Included here is

a brief overview of the theoretical background of the Doppler cooling technique.

2.2.1 Atomic Scattering Rate. Atom-laser interactions can be described using the

Optical Bloch Equations and the density matrix formalism including spontaneous

emission [37, 38, 39, 40]. For a simple two level atom, the rate at which the atom

absorbs and then re-emits a photon can be written as a scattering rate

γp =
s0γ/2

1 + s0 + (2δ/γ)2
(2.16)
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for an atom with excited state natural linewidth γ and saturation parameter

s0 ≡ I/Is. (2.17)

The laser intensity on the atom is I and the atom has a saturation intensity char-

acteristic of the particular transition (at wavelength λ and with lifetime τ = 1/γ)

of

Is ≡
πhc

3λ3τ
. (2.18)

The scatter rate (Eq. 2.16) for an atom that is moving with velocity ~v is shifted due to

the Doppler effect ωD = −~k ·~v (note that a velocity opposite to the laser wavevector

~k produces a positive Doppler shift). The scatter rate is therefore dependent on the

ion velocity and is

γp =
s0γ/2

1 + s0 + (2(δ − ωD)/γ)2
. (2.19)

2.2.2 Doppler Cooling. The Doppler shifted scatter rate (Eq. 2.19) gives rise to

a velocity dependent force that behaves like a classical damping force. The atom

experiences and average force due to the scatter of photons that is the momentum

of the photon times the scatter rate Fsp = h̄kγp. Substituting the Doppler-shifted

scatter rate gives

Fsp = ± h̄ks0γ/2

1 + s0 + (2(δ − ωD)/γ)2
. (2.20)

The force acts along the direction of the laser wavevector such that an atom moving

toward the laser feels an opposing force. However, when the atom moves away from

the laser, the Doppler shift is such that the photon scattering stops and the atom

does not feel the force. Three pairs of counter-propagating laser beams are thus

required to cool a free atom in all directions. However, for a trapped ion only one

beam is required as long as the laser wavevector is not parallel to any of the trap

8



principal axes [40]. The Doppler force results in a tiny displacement of the ion from

the trap center.

2.3 Micromotion Detection

Although the motion described in Section 2.1 is approximately harmonic, the ion

motion also has the small oscillations at the trap frequency. These oscillations are

commonly referred to as “micromotion”. There are two types of micromotion: some

micromotion is unavoidable and comes from the equations of motion of an ion in a rf

trap. The other type of micromotion, called “excess” micromotion, comes from either

a static bias field that pushes the ion off of the rf node, or from a phase difference in

the rf fields applied via different electrodes. It is much more difficult to control that

phase, although if proper precautions are taken (such as matching the path length

to the rf electrodes and using large filter capacitors to match the rf potentials) this

problem can be safely ignored.

There are several techniques that can be used to measure and then null the excess

micromotion of an ion in the trap [41]. The first is to use the Doppler broadening

of the absorption lineshape from the velocity of the excess micromotion. The second

is to use a cross-correlation technique that measures preferential ion absorption at

the trap frequency. Another technique that can be used is an amplitude-modulation

of the rf while observing the physical position of the ion in the trap. After nulling

micromotion using a combination of these techniques, the ion should be at the rf

node.

The motion of the ion can be written (after solving the Mathieu equations,

Eq. 2.13) in the following manner (see Eq. 2.14):

ui(t) = (u0i + u1i cos (ωit+ ϕsi))
[

1 +
qi
2

cos ΩT t
]
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where i = x, y, z are the three principal axes in the trap, u1i is the equilibrium

position of the ion in the center of the trap, u0i is the offset position of the ion due

to extra static electric fields pushing it off the center,

qx = −qy = 2eV0/mR
2Ω2

T ≈ 0.45, qz = 0

for typical trap spacings and voltages in the lab, and ΩT ≈ 50 MHz. The phase

factor ϕsi is determined by the initial conditions of the trap and is not important to

the analysis of excess micromotion.

The interaction between the Doppler cooling laser and the micromotion of the ion

can be characterized by a parameter

β =
klaser

2
[u0xqx cos θx + u0yqy cos θy] ,

where klaser is the laser wavevector and θi is the angle between the laser wavevector

and the x and y principal axes of the trap (typically about 45 degrees). This para-

meter can be approximated as β ≈ 5.1(u0x + u0y) where the offset positions are in

micrometers.

For the alumina linear trap (Section 5.1), the laser has a component along both

x and y, however displacements along a rotated axes illustrate the proper technique

to use for minimizing micromotion. Figure 2.1 shows the electric field quadrupole

lines for the alumina traps, indicating that the first-order Doppler shift is sensitive

to displacements in the x′ direction, as the ion micromotion in that direction has a

velocity component along the laser wavevector [41]. Displacements in the y′ direction

do not lead to velocity dependent scattering and the amplitude modulation technique

must be used.

For an ion displacement in the x′ direction of Fig. 2.1, the lineshape of the excited

state can be written in terms of a Bessell function expansion (normalized to one).
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Figure 2.1: The principal axes of the linear trap. The electric field vectors for the trap point along
the principal x,y axes. The laser wavevector ~k also has a component along both axes, a requirement
for 3D Doppler cooling. However, small displacements from the trap center along the rotated axes
x′,y′ show the sensitivity to different micromotion minimization techniques.

The expansion is

Pe =
∞

∑

n=−∞

J2
n(β)

(ωatom − ωlaser + nΩT )2 +
(

γ
2

)2 ,

where γ is the linewidth of the excited state. The normalized lineshape P ′

e = 4Pe/γ
2

is shown as a function of the laser-atom detuning over the linewidth (ωatom−ωlaser)/γ.

The change in lineshape is a first order Doppler effect due to the micromotion velocity.

Since the linewidth of cadmium (γ ≈ 60 MHz) is approximately the same as the

trap frequency, the absorption lineshapes are different from those in reference [41].

Figure 2.2 shows the lineshape for small β, or small displacements from the rf node.

Note that there is an obvious broadening even for very small displacements of the

ion from the rf node. For much larger values of β, shown in Fig. 2.3, the lineshape

almost disappears.

The resonant scattering lineshape can thus provide information and a feedback

mechanism for large displacements from the rf node. The ion position can be adjusted

using compensation electrodes until the lineshape begins to look like a Lorentzian.
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Figure 2.2: Micromotion broadened lineshape for small amplitude. Effect of micromotion on the
excited state lineshape shown for a variety of parameters of β.

Figure 2.3: Micromotion broadened lineshape for large amplitude. Effect of micromotion on the
excited state lineshape shown for a variety of parameters of β, for much larger β.
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At that point, the cross-correlation technique, a more sensitive measure of the excess

micromotion, can be used.

The second method for detecting micromotion is to use the “cross-correlation”

technique where the fluorescence of the ion is modulated by the trap frequency in a

first-order Doppler shift [41]. The florescence is correlated with the applied trap fre-

quency and collected using a time-to-digital converter. The modulated fluorescence

signal can be written

Rd

Rmax

=
1

1 +
(

1 − 2βΩT

γ
sin(ΩT t+ δ)

)2

where the laser detunig from the atom is set at γ/2 where the modulation signal is

strongest. The phase δ is also dependent on the micromotion, but not important

given our method of detecting the modulation. The modulation of the florescence is

shown in two figures, Fig. 2.4 and Fig. 2.5 for two different ranges of the parameter

β. As seen in Fig. 2.5, for larger values of β, the cross-correlation signal becomes

difficult to interpret. Thus this techniques is only useful for small ion displacements.

This technique is implemented in Labview using the ACAM TDC in the program

“TDC monitor.vi”. The TDC has a time resolution of 125 ps but the data is put

into 20, 1 ns bins. The histogrammed data is refreshed and averaged over a period

of about 10 seconds, with a form of analog persist to smoothly average the data. A

screen shot of the program is shown in Fig. 2.6.

To set up the TDC micromotion detection, the reference signal from the back of

the HP 8640D signal generator that powers the trap needs to be connected to the

STOP signal on the TDC connector box. The signal is typically too small for the

TDC to read, so it is put through an amplifier and then attenuated. Check on a

scope before connecting that the signal is approximately 3 V amplitude. The signal
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Figure 2.4: The cross-correlated florescence signal for small β.

Figure 2.5: The cross-correlated florescence signal for larger β.
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Figure 2.6: Screen shot of the micromotion detection program in LabView “TDC Monitor.vi”.
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from the PMT or the Quantar is connected to the START input. The TDC starts

its timing when a photon is received and then stops when the rising edge of the

trap rf crosses zero. The program collects these timing data and puts them into

a histogram, binned by 1 ns, that is as wide as the period of the rf. A sinusoidal

lineshape is evidence of excess micromotion.

Again, the micromotion can be minimized by adjusting the compensation elec-

trodes until the sinusoid signal disappears. There is a phase change of the cross-

correlation signal as the ion moves across the rf node. This can be used as a gauge

if the compensation electrodes have pushed the ion too far in one direction.

The final technique to minimize excess micromotion is the amplitude modulation

of the rf drive voltage. Displacements in the ion position from the rf node that do

not lead to a micromotion velocity component along the laser wavevector can not

be measured using either of the previous techniques. However, if it is possible to

observe the ion along a specific direction, displacements can be visually identified

by modulating the amplitude of the rf voltage sent to the trap. For example, dis-

placements in the x′ direction in the four-rod linear trap shown in Fig. 2.7 lead to a

micromotion velocity orthogonal to the laser wavevector. However, a displacement

in that direction is visible to the observer from the y′ direction.

The micromotion is minimized by applying a few Hz amplitude modulation signal

to the HP8640D signal generator. When the rf trap is weakened, by lowering the

voltage, the static offset electric field pushes the ion further from position of the rf

node. This appears as a “wiggle” in the ion motion at the amplitude modulation

frequency. The ion motion is minimized by adjusting the compensation electrode

voltages until the motion stops. The sensitivity of the measurement can be increased

by increasing the modulation amplitude of the rf voltage. It is often necessary to
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then repeat the measurement of the excess micromotion in the other direction using

the resonant fluorescence techniques. Several iterations of these techniques can be

used to minimize the excess micromotion.

xy

Ek

Observation

Lens

x

y
rf

rfgnd

gnd

Figure 2.7: Four-rod linear trap electric fields. Ion displacements from the rf node in the y′

direction can be detected using the resonance fluorescence techniques. However, displacements in
the x′ direction must be measured using the amplitude modulation technique.

2.4 Vacuum Chamber

Trapped ion quantum computing experiments require very high vacuum in order

to ensure that background collisions do not affect the ions used in the experiment.

Practically, this means that pressures on the order of 1×10−11 Torr are needed in the

vacuum systems. At this pressure, the collision rate with background atoms is low

enough (less then one per minute) that experiments at several kHz are not affected
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by background collisions. Ion lifetimes in the trap at these pressures range from a

few hours to a few days.

Thus, the vacuum system used must be capable of reaching and maintaining this

ultra-high vacuum (UHV) environment. The basic procedure that will enable the

system to reach this regime involves 1) pre-baking all steel vacuum parts used the the

chamber, 2) ultrasonic cleaning of all parts that will be used to make the chamber, as

well as all components put inside the chamber, 3) maintaining a clean environment

while assembling the chamber, 4) using only bakable parts in the chamber (200

degrees Celsius), and 5) baking the chamber at a hot enough temperature for a long

enough period of time. The final bake primarily removes the water stored in the

stainless steel lattice. Each of these points will be addressed in turn. A schematic

diagram of a typical vacuum chamber is shown in Fig. 2.8.

Figure 2.8: A schematic overview of the entire vacuum system.

2.4.1 Pumps and Gauges. The first step is to assemble the necessary parts for the

vacuum chamber, ensuring that all parts can be baked in an oven at the required

200 degrees C. The primary vacuum pump for chambers used in the lab is a 20

L StarCell ion pump (Varian part number 9191145, $1500, negative polarity with

ferrous magnet). A bakable cable (Varian part number 9290705 $355) is used to
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connect the vacuum pump to the controller during the final bake and a MidiVac ion

pump controller (Varian part number 9295000, $1800 with three voltage settings)

is used to provide the high voltage to the ion pump. This pump does a good job

of removing background helium and hydrogen once the system has been pumped

out and can maintain an environment of below 5x10−12 Torr. A nude Bayard-Alpert

ionization gauge with tungsten filament is used to measure the pressure in the vacuum

system (Varian part number 9715014, $450). The UHV-24p gauge is sensitive down

to 5x10−12 Torr. Again, a bakable cable is used to connect the gauge to the controller

(Varian part number L64403025, $325) and the SenTorr gauge controller is used with

degas option (Varian part number L91103010100, $1195).

In addition to the StarCell ion pump, a titanium sublimation pump is included

in the vacuum system. This pump works by heating a titanium coated filament to

the point where the titanium is ejected and coats the surrounding vacuum chamber

walls. The titanium on the walls then reacts chemically with the background gas

in the vacuum chamber, removing it from the vacuum and bonding it to the walls.

A three filament pump (Duniway part number TSP-275-003, $625) is installed in

the chamber with cable (Duniway part number TSP-CABLE, $290) and controller

(Duniway surplus part number 922-0032, $725). Note that the cable for the titanium

sublimation pump is not bakable because the sublimation pump is not used during

the final bake. The titanium sublimation pump will be run only occasionally, as the

vacuum system pressure requires, to return to lower pressures if the lifetimes in the

trap appear to be getting shorter.

Another option for the vacuum system is to add a residual gas analyzer (RGA)- a

mass spectrometer. This enables measurement of the background neutral atoms that

are used in the system. It is not necessary to do this, but it provides an additional
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check that the ovens are providing enough neutral atoms. One option for the RGA

is a Stanford Research Systems RGA ($5000).

2.4.2 Hardware. Table 2.1 contains a listing of the necessary vacuum hardware for

our system. The Conflat system of assembly for vacuum chambers contains a sharp

knife edge on each flange. These knife edges are compressed into soft copper gaskets

forming a UHV compatible, bakable seal. It is therefore necessary that the knife

edges on all parts be inspected carefully to ensure that there are no defects (see Fig.

2.9). These defects will lead to leaks in the vacuum chamber. With the exception of

the pumps, all of the steel vacuum hardware must be pre-baked. This will turn the

steel from a silver color to more of a gold-bronze color, an indication of a chromium-

oxide layer that reduces the water diffusion from the stainless steel parts [42]. The

vacuum viewports, gauges, pumps, and feedthroughs are not typically pre-baked.

The parts are pre-cleaned with acetone and then wrapped with aluminum foil

(shiny side toward the parts). They are then baked in an oven at 250 degrees Celcius

for about a week or until they turn the nice bronze color. Care must be taken when

baking to not damage the knife edges on the parts.

knife edge

copper gasket

Figure 2.9: Knife edge illustration. An illustration of how the knife edge forms a seal on the copper
gasket

Not included in Table 2.1 are the electrical feedthroughs or the viewports since
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Item (Size indicates CF flange) Part Number Vendor Quantity Cost
2.75 in. 90 degree elbow EL-275 Duniway 1 $55
2.75 in. tee TE-275 Duniway 1 $100
2.75 in. 5-way cross 406002 MDC 1 $200
2.75 in. cap F275-000N Duniway 3 $12
2.75 in. nipple NP-275 Duniway 1 $50
2.75 in. to 1.33 in. reducer tee 404044 MDC 2 $75
4.5 in. to 2.75 in. zero-length reducer A450X275T Duniway 1 $77
4.5 in. nipple NP-450 Duniway 1 $175
4.5 in. to 2.75 in. reducer nipple FA04500275 Varian 1 $120
Magdeberg Hemisphere MCF450-MH10204/8-A Kimball Physics 1 $935
2.75 in. bakable valve 9515027 Varian 1 $655

Table 2.1: Vacuum Hardware.
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those do not get the same pre-bake as the other vacuum parts. In addition, the parts

listed in Table 2.2 are necessary for assembling the vacuum system.

Item (Size indicates CF flange) Part Number Quantity Cost
2.75 in. bolts, 1.25 in. long thread with hex nuts SBN-28-212 3 $25
2.75 in. (tapped flange) bolts, 0.875 in. long SBX-28-087 1 $15
1.33 in. (tapped flange) bolts, 0.5 in. long SBX-32-050 1 $11
4.5 in. bolts, 1.5 in. long SBN-24-200 1 $32
4.5 in. (tapped flange) bolts, 1.25 in. long SBX-24-125 1 $25
1.33 in. copper gasket G-133 1 $12
2.75 in. copper gasket G-275 2 $14
4.5 in. copper gasket G-450 1 $22

Table 2.2: Parts needed for assembly of vacuum chamber. All parts numbers and prices are for
Duniway. All prices for bolts are 25/pkg and for gaskets are 10/pkg.

2.4.3 Vacuum Chamber Cleaning. As was mentioned above, the first step in as-

sembling the vacuum chamber is to pre-clean and then pre-bake all vacuum parts.

After baking, it is important to re-clean all parts intended for the chamber. This can

be done in a variety of ways, but it is important to use acetone and an ultrasonic

cleaner to ensure that no organic residue remains on the inside of the vacuum parts.

A small ultrasonic cleaner is used that fits most of the vacuum parts for cleaning. It

is important to use a high grade acetone as well, or there is a risk of contaminating

the chamber with residual organic chemicals in the acetone. Typically HPLC grade

acetone is good enough (available from Fisher Scientific part number A949-4, $86.30

for 4L bottle) and close to 16L is usually needed for cleaning an entire chamber.

Thought must be taken in assembling the vacuum system so that the parts are

assembled in a logical order. Usually this means putting together small pieces first

and working toward larger pieces. In addition, care must be taken to ensure that the

rotatable and non-rotatable ConFlat flanges are matched in such a way as to allow

assembly of the system as desired. Usually each piece comes with one end rotatable

and one not.

In addition to cleaning, precautions must be taken to ensure that no foreign
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organic particles enter the vacuum system such as hair, skin flakes, etc. It is good

practice to dress in a long sleeve lab coat, use a hair net to gather hair up and use a

face mask to keep particulates out of the chamber. Gloves must be worn at all times

to keep body oils out of the chamber. Note that latex gloves are soluble in acetone

and if they are used in conjunction with acetone, latex residue can be left on the

vacuum parts.

The copper gaskets may be cleaned in acetone if their cleanliness is suspect.

Typically if precautions are taken to not touch them out of their packaging, they

can be used without pre-cleaning.

ConFlat flange assembly.

Because the seal in a ConFlat flange is made in the soft copper gasket around

the knife edge (Fig. 2.9), the seal must be evenly tightened. This corresponds to

tightening each flange using a star pattern as illustrated in Fig. 2.10. Also, make

sure that the leak-detector grooves on each flange line up. This will facilitate leak

testing the system. The 2.75 inch diameter flanges are designed to have 12 ft-lbs of

torque on each bolt (7 ft-lbs for the 1.33 inch flanges and 15 ft-lbs for the 4.5 inch

flanges), but it has been found that if the flanges are tightened to the point where

the copper gasket is no longer visible between the flanges, or near that point, the

joint is sealed.

If there are plans to remove the flange in the future, a small amount of moly-

disulfide grease can be placed on the bolts. But, since most greases are not UHV

compatible, extreme care must be taken to ensure that none of the grease gets into

the chamber.

It is helpful, when assembling the 1 1/3 inch ConFlat flanges,to use a shortened

Allen key. By reducing the length of the key that is inserted into the bolt, it is easier
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to get the necessary torque to tighten the gasket.

2.4.4 Viewports. The choice of materials for the viewports depends on the particu-

lar ion used in the system. Some ions (such as barium, strontium and calcium) have

cycling transitions in the blue or visible spectrum. With these, it is convenient to

use less expensive materials. However, the ion used in this research (cadmium) along

with beryllium, mercury and zinc, have cycling transitions in the ultraviolet. Be-

cause normal glass strongly absorbs in the UV, suprasil windows are used. Suprasil

is an amorphous quartz-like material with low absorption in the range of 200 nm

wavelength light. There are several companies that make suprasil windows such as

Insulator Seal, Inc. The 4.5 inch flange window (ISI part number 9722207 $1125)

has a viewing are of 2.69 inches and has a clearance of 0.41 inches from the knife

edge surface to the inside of the window. This clearance space means that the actual

trap sits outside the hemisphere and close to the window. It is advantageous to put

the trap as close to this window as possible to facilitate diffraction-limited imaging

of the ions using low f/# microscope objectives. The other 2.75 inch flange windows

are also from ISI as well (part number 722205 $350) and have a viewing diameter of

1.4 inches.

2.4.5 Electron Guns. There are several options for the electron guns, which are

one way to ionize the atomic beams while the atoms are in the trap. Loading an

ion in the trap involves ionizing an atom while it is located in the capture area of

the trap. The pseudopotential has a capture cross section that depends on a specific

geometry, but is essentially the spacing between the electrodes. An ion approaching

the trap from the outside is repelled from the trapping zone and will not be captured.

In effect, the only way to capture an ion is to bring in a neutral atom that can pass

through the barrier and then ionize it in the trap, illustrated in Fig. 2.11.
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Figure 2.10: CF Tightening pattern. An illustration of how to tighten ConFlat flanges for (a) six
bolt flanges and (b) eight bolt flanges.
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Figure 2.11: Trap loading process illustration (a) An ion is not loaded into an rf Paul trap from
outside the trapping zone, but rather a neutral particle must be inside the trap zone where it is
ionized (b) by a collision with an electron leaving the positively charged particle, or the electron is
removed through photoionization processes (c) trapped.

26



An electron gun can be made from inexpensive parts for much less the then cost of

a commercial electron gun. An electron gun is a small resistive filament that, when a

current is passed through it, emits electrons. Figure 2.12 shows a drawing of a simple

electron gun made from parts available from Scientific Instrument Services. The two

hole ceramic tube (white in figure) has an outer diameter of 0.109 inches and inner

diameter of 0.031 inches (SIS part number R27, $8.40/6 in. rod). The length of

the rod depends on the available room in the vacuum chamber, but typically ranges

from 0.25 inches to 0.5 inches. Two tungsten rods, 0.025 inch diameter (SIS part

number W334, $6.50/foot), are inserted into the two holes and bent outward at the

top of the insulator rod. The reason they are bent is to increase the length of the

thoriated tungsten wire (0.0024 inch diameter, SIS part number W126, $5.00/foot).

The wire has a resistance of 0.22987 ohms/cm and a longer wire will need less current

for the same amount of electron emission. Unbent tungsten rods (a filament length

of about .03 inches) require a current of about 3A is required to get approximately

100 microamps of total electron emission, at which point the filament glows white.

If the tungsten rods are bent out to the point where the filament length is about .1

inches or the outer diameter of the ceramic tube, the current required to give the

same electron emission is reduced to about 1.5 amps.

The electron gun is assembled by first cutting the ceramic tubes and the tungsten

rods to the appropriate length. Enough length must be left on the tungsten rods to

allow for gluing the rods to the ceramic tube, attaching the filament to the front,

and attaching electrical leads to the back. Next, attach the tungsten rods to the

ceramic tube. One option to attach the rods is to use Sauereisen Ceramic Cement

(SIS part number SCC8, $8.00 for a 4 ounce bottle). The cement is an inorganic

ceramic powder that becomes adhesive when mixed with water. The instructions

27



Figure 2.12: Home-made electron gun illustration. An illustration of an electron gun assembly
made from a two hole ceramic tube (white), tungsten rods (dark gray, bent outwards at the top), a
thoriated tungsten filament (black curved wire) and ceramic cement (light gray covering both ends.
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specific a 100:13 ratio of powder to water by weight; a mixture is typically made

with a consistency of a thick paste, adding powder or water as necessary. De-ionized,

filtered water is used to reduce residual particulate or charged material in the glue.

The glue requires at least overnight drying to set hard, the piece must be set up so

that the glue can dry without the rods moving overnight. If wires are going to be

attached to the end of the electron gun, doing that before gluing can save having to

re-glue the rods. The glue on the back side would then cover over the spot welds

where the Kapton insulated wire was attached. The wire leads from the electron

guns to the vacuum feedthroughs are 0.024 inch diameter conductive wire covered

with a 0.0055 inch thick Kapton film (total diameter 0.035 inches, MDC part number

680501, $60 for a 30 foot roll). The ends of the Kapton insulator are stripped and

a small sleeve out of 0.005 inch thick Constantan foil is placed over the conductor

to attach the wire to the tungsten rod. Constantan is a nickel alloy that is easily

spot welded to a variety of materials, available from a number of sources, including

Goodfellow (part number 180-883-19 for a roll 150 mm wide, 0.1 mm thick and 0.5

m long $226). The sleeve is illustrated in Fig. 2.13 and is useful whenever two metal

wire are not readily attached by spot welding directly. The spot weld power can be

determined by testing on similar scrap systems prior to doing the final spot welds.

Next, the thoriated tungsten wire is attached to the front end of the tungsten

rods using low power spot welds. Since these connections can burn out, the electron

guns must be tested prior to installation in the final vacuum chamber. In addition,

any kinks or crimps in the filament can also readily burn out when current is applied

through the filament: ensure that the the filament wire is a smooth arc.

When heated, the filament ejects electrons at energies of a few eV. These electrons

are accelerated toward the trapping zone using an accelerator plate or grid with a
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Figure 2.13: Spot-welding instructional illustration. When two wires are not readily welded to-
gether, a Constantan foil wrap can be used to attach the wires. First, make a loop in the foil and
attach the first wire with several spot welds as shown in a side view (a). Then, attach the foil to
itself on the flag. Then, attach the flag to the second wire, wrapping around the wire. The top
view is shown in (b).
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voltage drop of about 100 V. The accelerator plate is put together with the electron

gun assembly, shown as a plate with a hole in it in Fig. 2.12. The diameter of

the hole in the accelerator plate needs to be about the same as the distance from

the plate to the filament, the best configuration for maximizing electron flow and

directionality. The wiring diagram for the electron gun and accelerator grid is shown

in Fig. 2.14. The filament is biased at -100V from the grounded accelerator plate

and the current drawn from the bias voltage source is measured. This measures the

electron flow off of the filament through the plate and provides a gauge as to the

operating current of the electron gun.

-100V

A

+

+

-

A
e-

e-

e-
filament

accelerator

plate

Figure 2.14: Electron gun wiring schematic. The schematic diagram showing the wiring for the
electron guns. The top ammeter records the driving current through the filament. The current
drawn through the bottom ammeter is the total emission current. It is safer to run the filament
from a current-limited voltage supply, as opposed to a current supply, because the resistance of
the filament increases with temperature, so the total power drawn decreases as the filament heats
up. The -100 V bias voltage is applied to the filament which must be electrically isolated from the
vacuum chamber. The accelerator grid is typically a metal plate with a hole cut in it.

The electron guns can be tested in a small bell jar attached to an auxiliary pump
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at pressures below 10−5 Torr. A small piece of foil can be placed in front of the

accelerator plate to collect the electrons from filament to give a gauge of the efficiency

of the accelerator plate. About 1% of the total electron current is typically collected

on the foil. When testing the electron gun on the trap electrodes, around 0.1% of the

total electron current is collected, as the surface area of the electrodes is typically

much smaller then the test foil.

2.4.6 Atomic source ovens. The basic idea behind the atomic source ovens is to

create a vapor of neutral atoms in the vicinity of the trap which can then be ionized

by the electrons. One method involves making a neutral atomic “gun” of sorts that

emits a low density atomic beam that is aimed at the center of the trap. The gun

is a small metal tube that has a small piece of solid material (cadmium wire) inside.

When the tube is heated, the material melts to some extent and the vapor is ejected

out the end of the tube. Figure 2.15 illustrates this point. Stainless steel hypodermic

needle tubing with 0.042 inch outer diameter and 0.035 inch inner diameter (available

from Small Parts, part number HTX-19XTW-12, $4.70 for 10, 6 inch long tubes) is

used as the metal tube. The walls are heated by running a current through the tube

from the bottom to the top. The hypodermic needle tubes must be pinched off on

the bottom so the source material does not leak out. The end of the tube is crimped

with a pair of pliers, but since the tube walls are so thin, care must be taken that the

walls are not torn at the crimp point. In addition, the back crimp end is spot welded

closed to keep any vapor from exiting. Then, as a final precaution, the back end is

wrapped with Constantan foil and spot welded to the crimped tube. The back of

the tube must be inspected to make sure that the spot welds have not burned holes

through the tubing walls, opening up a potential leak. This also leaves us a small

Constantan flag to which the wire lead can be attached. Figure 2.16 illustrates the
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details of the crimp and foil wrap. The current is then run from the back of the oven

to the front. If a heat sink is attached to the front of the oven, the resulting atomic

beam is well collimated. The heat sink is also used as the other lead to run the

current through the oven. The result is that the back of the oven gets the hottest

and that the cold front acts as a collimator. Although this may lead to clogging

of the oven for other atomic sources, it was not found to do so for cadmium metal

sources loaded in the oven. The wiring diagram is shown in Fig. 2.17.

The ovens are tested in a bell jar with the front of the oven near one of the glass

walls. A current is run through the oven until a small spot begins to appear on the

glass in front of the oven. For the 0.042 inch outer diameter, 0.034 inner diameter

walls, currents are typically in the range of 2 to 3 amps, run for about 5 minutes

before spots appear. Since this varies with oven length and heat sink size, each oven

must be tested to determine the proper current range. When the oven is used in the

final vacuum chamber, the operating current is typically much lower to reduce the

atomic plating on the trap electrodes. But, by doing the spot test, the output from

the oven is checked for collimation and that there are no leaks in the crimp.

Another oven design is the ceramic tube design, where the atomic source is packed

in a ceramic tube and then the tube is wrapped in a resistive tungsten filament. The

filament is heated, which then heats the tube and vaporizes the atomic source. This

design is good if the atoms used in the trap do not have a suitable solid at room

temperature. Because the ceramic tube can be heated much hotter, even chemi-

cal compounds of the substance (such as oxides) can be vaporized and dissociated,

yielding an atomic beam.
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Atomic Vapor

Figure 2.15: An illustration of the atomic source ovens. Solid source material is placed inside the
oven tube. When heated, the source melts and vapors are ejected from the front of the tube.
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Figure 2.16: Oven crimping illustration. Crimping the ovens shut on the back side keeps the atomic
source from leaking out. (a) (side view) and (d) (top view) illustrate where to crimp the oven tube
flat. The, by spot welding the crimped area, (b) and (e), the tube becomes sealed. Then adding a
Constantan flag, (c) and (f), allows us to attach a lead to the flag without having to spot weld the
oven tube again.
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Figure 2.17: Oven mounting block illustration. A heat sink block attached to the front of the oven
keeps the oven tip cooler then the back and provides a good, directional atomic beam. A current
supply attached to the end of the oven provides a constant current to heat the oven walls.
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2.5 Ion Trap Mounting Requirements

The trap structure must be mounted in an ultra-high vacuum (UHV) system. This

places strict bounds on the types of materials that can be used in trap construction

and in trap mounting schemes. There are established lists of materials known to be

compatible [43] with UHV environments. Typcially inorganic metals and ceramics

are UHV compatible and, with the exception of a few inert polymers such as Teflon

and Kapton, organic compounds are not UHV comptatible.

In order to construct a linear trap, there must be both rf and static electrodes.

These electrodes must be good conductors and electrically isolated from each other.

The rf loss tangent of the conductor and insulator set must be small. The rf potential

is transmitted via the electrodes and appropriate care must be made to design an

rf transmission line that will efficiently transmit the rf potentials to the trapping

region.

Trapping individual ions also requires laser access to the trapping region for photo-

ionization and for Doppler cooling. The trap structure should be sufficiently open

to allow for the lasers to be focused through the trap without clipping the Gaussian

beams on the electrodes. For a 5 µm waist at 214.5 nm, this implies that there is a

clear cone of height ∼ 2.5 mm and base diameter of 100 µm. Imaging the ions can be

difficult if the beams clip the trap. The laser access must be such that there is some

component of the laser wavevector along all three principal axis of the trap [40].

2.6 Baking the Chamber

Once all components of the vacuum chamber have been cleaned, tested, and as-

sembled, the chamber is baked to remove all water vapor from the stainless steel

lattice and to reach the ultra-high vacuum environment. Vacuum bake-out is typi-
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cally done with heater tape and fiberglass insulation, however, a large free-standing

oven simplifies the bake-out procedure.

2.6.1 Pre-Bake Testing. Before actually baking out the chamber, but after fin-

ishing assembling the chamber, including the trap, it is important to take care of

some degassing steps and some pre-bake tests in the chamber. There is a particular

ordering of the following steps for a given chamber and each pre-bake checklist must

be customized. The first step is to pump the chamber down to 10−6 Torr or so using

the roughing pump and turbo pump. At these pressures, ion gauges, electron guns,

RGA filaments, and titanium sublimation pumps can be safely degassed.

• Degas ion gauge. Many controllers have this function available on the front

panel. The ion gauge filament will be run at higher currents to expel any

trapped residue. Degassing times vary from 5 minutes to an hour or more.

• Degas RGA filament. If a residual gas analyzer is attached to the system, run

the degas function to clean the filament.

• Test electron guns. This is a more involved step since it requires actually turning

on the electron guns along with the accelerator grid. One useful test at this

point is to collect electron current from available feed-through connections. For

example, the electron gun could be run and electron current collected off of the

static electrodes of the trap. This will give some diagnostics as to whether metal

pieces have moved during the bake-out.

• Fire cadmium ovens. This is to primarily degas the filaments or oven tubes used

to heat the cadmium. As with anything that gets hot in the vacuum chamber,

it must be degassed. Typically firing the ovens for five to ten minutes at low

current will degas them.
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• Fire the titanium sublimation pump. Each filament must be degassed at a

current of 37 amps for about an hour. This will help lower the peak pressure

that the sublimation pump reaches when fired after bake-out. If the filaments

can be fired for longer, it will reduce that pressure even more.

• Check continuity on electrodes and check for shorts. Check capacitances and

resistances between any electrodes using in-vacuum filter electronics. If a short

develops during bake-out this will help to diagnose it.

• If the trap has never had rf voltages on it before, it is helpful to do that now.

Helical resonator design is described in Subsection 2.7.1, but this is a good point

to test out the rf on the trap. After the bake-out, the same resonator will be

used to get the high voltage rf on the trap.

Record all measurements, since the numbers will be good diagnostic tools in the

event of problems after the bake. Note that most metals, as they bake, will shift and

move. The information gathered here will help to check if anything changes.

2.6.2 Bake Times. A surplus DeLorian Motor Company oven is used to bake out

the vacuum chamber. The internal oven space is approximately 1.5 meters wide, 0.5

meters deep and about 1 meter tall. The oven has temperature control circuits so

that it maintains a set temperature fairly well (within five degrees over several days).

The maximum temperature of the oven is well over the 200 degrees C that is used

to bake our chamber. The maximum temperature to bake at is determined by the

suprasil windows. The seals between the window and the CF flange is rated up to

200 degrees C, do not go above that when baking. The ramp times vary from bake

to bake, but a conservative timing is to not ramp up the oven more the 30 degrees

Fahrenheit per hour. In practice, the ramp up time is limited by the pressure. For a
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new vacuum chamber that has not been previously baked, there can be a lot of water

stored in the stainless steel. The initial ramp of temperature can spike the pressure

in the vacuum chamber above 10−5 Torr. To keep the gauge from automatically

shutting off, reduce the ramp speed so the pressure does not peak quite that high.

Figure 2.18 shows the complete record for four different bake-outs. Each of these

bakes ended with the base pressure below 10−10 Torr, but experience has shown that

if the chamber pressure is in the low 10−10s when cooled after the bake, the titanium

sublimation pump can reduce the pressure that last order of magnitude (provided

there are no leaks).

Figure 2.18: Bake-out time data. Four separate chamber bakes using the DMC oven. Shown are
the pressures on the internal ion gauge and the oven temperature in Fahrenheit.

Typically a bake will last between 10 and 14 days. The drop in pressure on the

graphs in Fig. 2.18 at about day 6 is from the switch between the external ion pump

and the internal ion pump. The bakeout procedure is as follows (see Fig. 2.19 for an

illustration of where to connect the chamber and which valves are being discussed).
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1. Connect vacuum chamber to the flexible 36 inch long vacuum tube in oven using

a 2.75 inch copper gasket.

2. Connect 20L StarCell ion pump to controller using bakeable cable through the

oven exhaust port.

3. Connect the ion gauge to controller using bakeable cable through the oven ex-

haust port.

4. Cover all exposed feed-throughs and viewports with aluminum foil (shiny side

toward the chamber).

5. Connect the turbopump to the vacuum system on the external valve (a Viton

O-ring may be used) with a second 36 inch long flexible vacuum tube.

6. If the vacuum chamber is already at low pressure (below 10−4 Torr, first open

the valve to the turbo pump, leaving the chamber valve closed. Start the turbo

pump and pump down to 10−4 before opening the chamber valve. If the chamber

is at atmospheric pressure, open the chamber valve before starting the turbo

pump.

7. When the turbo pump reaches low 10−6 Torr, slowly open the 500L ion pump

valve making sure that the pressure on the ion pump does not exceed 10−7.

When the ion pump is completely on, close the turbo pump valve.

8. Turn on the ion gauge and note the pressure. When the pressure stabilizes in

the low 10−6 range, the oven can be turned on.

9. Slowly ramp up the oven temperature, keeping the ramp speed slow enough so

the pressure does not go above the low 10−5 range. A log is kept of the bakeout

including the following information: Date, time, oven temperature actual, oven
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temperature set, ion gauge pressure, ion pump pressure (both the 500L pump

and the 20L StarCell current) and any notes on the bakeout.

10. Once the temperature has reached 200 degrees Celcius (392 degrees Fahrenheit),

keep track of the pressure. When the pressure reaches a stable equilibrium (does

not change over the course of a day) it is time to close the chamber valve and

start the internal pump.

11. Start the internal 20L StarCell pump with the voltage set to 3kV and with the

chamber valve open. Since the pump has high voltages, it might initially spike

in pressure. If the automatic shutoff activates, turn the pump off and on again

to get past that point.

12. When the 20L pump is running at 3kV, close the chamber valve hand tight.

Since the chamber valve is hot, do not close it to full torque, as that ruins the

valve

13. Increase the voltage on the 20L StarCell to 7 kV.

14. Again, monitor the pressure until it reaches equilibrium over the span of a day

or two.

15. Slowly ramp down the temperature (30 degrees Fahrenheit per hour is good).

16. Let the chamber and oven cool with the oven doors closed for a half day or so

and then open the doors to let the chamber come down to room temperature.

17. Close the 500L ion pump valve and torque the chamber valve to the appropriate

torque (see the manual, but it is usually 25 ft-lbs to start and more each time

the valve is used).
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18. If the pressure is not in the low 10−11 range, fire the titanium sublimation

pump on a regular basis (once every few hours) until the pressure comes down

to the desired point. (See below for more information on the firing the titanium

sublimation pump).

19. Install pinch-off valve on top of the chamber valve to protect against any possible

leaks in the valve. Typically the pinch-off valve is pumped using the turbopump

to the low 10−6 range and then sealed.

Trap

Chamber

Bricks
Chamber

Valve
Turbopump

Valve

500L Ion

Pump Valve

500L Ion

Pump

Oven

Cables

to

Controllers

Figure 2.19: An illustration of the oven with pumps and valves shown.

2.6.3 Titanium Sublimation Pump. As noted above, to reach the low pressures

needed for ion trapping experiments, it is helpful to fire the titanium sublimation

pump several times to lower the background pressure. The ti-sub pump works by

plating the walls of a tube with a titanium layer which then absorbs surrounding

molecules and atoms. For the pumps and parts listed in the vacuum chamber as-

sembly section, operation is as follows:

• Record the base pressure before firing the pump.

• Turn up the current on the pump controller to 43 amps for normal operation.

• The pressure on the gauge should spike at around 10−7 Torr under normal
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conditions. If the pump has not been sufficiently degassed, this pressure may

be higher. Be careful that the pressure is not so high that it overwhelms the

ion pump- if the pressure goes above 10−6, the pump may need to be shut off.

• After the spike, the pressure should slowly decrease. Leave the pump running

for a minute or two. The limiting factor in leaving the pump running is the

temperature of the outer tube walls. As the temperature rises, the walls start

to degas. If they degas at a rate faster then the pumping speed, the pressure

will start to rise again. If this happens, shut the pump down or cool the walls

(wet paper towels work well).

• Shut the pump off and let the vacuum system return to equilibrium. This can

take anywhere from a couple of hours to overnight. The final pressure should

be a factor of 2 or so lower then the starting pressure.

If all goes well, it is possible to reduce the pressure from the 10−10 range down to

below 5 × 10−12 with a week of regular firing.

2.7 rf Generation and Delivery

With the vacuum chamber set in a UHV environment, it is now ready to apply rf

voltage to the trap and image the ions. The rf delivery and static voltage leads are

connected to the trap through the electrical feedthroughs in the vacuum system.

2.7.1 RF Helical Resonators. In general, the higher the rf voltages applied to

the trap, the higher the secular frequencies will be (see Section 2.1.2). There are

limitations, however, to the secular frequency based on the trap dimensions, the

mass of the ion and the rf frequency such that the ponderomotive approximation is

still valid. One way to get high voltages on the trap electrodes is to place them in a

resonant circuit with a helical quarter wave resonator. The design and construction
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of the resonator is discussed in a series of papers written in the 1960s [44, 45, 46].

Given a desired frequency, outer conductor diameter and desired Q, it is possible to

calculate the number of windings, the winding pitch, the coil length and the inner

conductor diameter. Solid copper elements are used for the outer conductor, the

inner coil and the end caps on the resonator. One thing to note about designing

the resonator is that, depending on the load on the resonator, the actual loaded

frequency of the resonator is typically one half the frequency the resonator is designed

for. Thus, to have a 50 MHz resonator (with the trap attached), design the resonator

for 100 MHz. Also note that since copper wire comes in set gauges, it might not be

possible to use the initial design parameters. Use a series of iterations in the design

to accommodate the available copper wire diameters. One example of a resonator

constructed in the lab has the following characteristics:

Outer Conductor diameter: 2 inches

Resonant Frequency: 158 MHz

Coil wire diameter: 0.1285 inches (8 gauge)

Number of turns: 6

Unloaded Q (designed): 1260

Winding pitch: 0.26 inches

Coil Length: 1.54 inches

Inner coil diameter: 1.0 inches

Outer conductor length: 2.54 inches

The actual resonant frequency with a 30pF capacitor on the end is about 35 MHz.

Without a capacitive load, this resonator works at around 70 MHz with a Q of
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about 500. Again, see the references for details on how to design the resonators. In

addition, it helps to clean the resonator before using it- the copper has fewer losses

when it is clean, leading to a higher Q. Copper can be cleaned to a shiny luster using

phosphoric acid. The end result is shown in both a CAD drawing and actual photos

in Fig. 2.20.

Resonator coil

Input coupler

Closed Resonator

Top Cap

Open Resonator

Grounding Wire

Figure 2.20: Helical resonator diagram. The helical quarter wave resonator consists of an inner
helical conductor inside a conductive cylinder. Shown on the left is a schematic drawing of the
completed resonator. On the right are photographs of an actual resonator with specifications given
in the text.

RF power can be coupled into the resonator in two ways. A small closed loop

of bare wire (shorted from the center of the coaxial connector to ground) with a

diameter of about one inch can be placed on the inside of the cap closing the top
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end of the resonator. The normal to this loop should point down the center axis of

the resonator. This loop couples the rf into the magnetic field of the resonator and

can be tuned so that all the power is transfered into the resonator by adjusting both

the number of turns in the loop, the loop diameter, and the proximity of the loop to

the end of the inner helical conductor. If the other parameters are close, fine-tuning

of the coupling is accomplished by moving the cap and loop together through the

resonance and then fixing the cap when the back reflection from the resonator is

zero.

The other method is to couple the electric field to the resonator near the bot-

tom using a small variable capacitor. The center coaxial lead is sent to the variable

capacitor (usually a 2-30 pF parallel-plate variable capacitor) and from there con-

nected directly to the center helical conductor close to the end of the resonator. The

capacitor is adjusted such that the back reflected power from the resonator is again

zero.

2.7.2 Static Electrodes. Any electrodes that are used to apply static voltages to the

trap, either as endcap static voltages or as compensation electrodes, must be filtered

so that they all act as rf grounds. In particular, the static electrodes on the ceramic

linear trap (Section 5.1) must all be filtered so that the trap is linear along the

axis. The schematic drawing shown in Fig. 2.21 illustrates the relevant capacitances,

resistances, and inductances for the rf circuit from the resonator to the trap. The

vacuum chamber itself is held at rf ground through a connection to the resonator. The

trap has a capacitance C1 ∼ 1 pF to the nominal rf ground electrode. This might

be augmented by filters in the vacuum chamber (Section 5.1.4). The capacitance

C2 ∼ 1 pF is also primarily geometric, although it also might have the in-vacuum

filters. The resistances R1 and R2 are the residual resistances of the conductors used
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to carry the rf in the chamber and are less then 1 Ω. The vacuum feedthroughs have

a capacitance between leads and to the housing of C3 ≈ C4 ≈ 10 pF. And the rf

electrode has a capacitance to the vacuum chamber itself of C5 ∼ 1 pF. Outside the

vacuum system, the resonator is connected to the vacuum chamber such that the

resonator can and vacuum chamber form the rf grounding surface. Static voltages

1,2, and 3 can be applied through the filter networks with C0 = 1 µF and inductor

L0 = 1 mH.
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Figure 2.21: RF filters and wiring diagram. This schematic diagram shows the relevant capacitances
and resistances for the trap in the vacuum chamber. The “π” filter networks allow the application
of static voltages to various electrodes in the chamber. The internal capacitances and resistances
are geometric in nature and are distributed across the entire physical element.

2.7.3 RF Generation The helical resonators transform radiofrequency power into

high voltage, but very little current. It is necessary to couple a significant amount

of power into the resonator in order to obtain the level of rf voltages desired on the

trap. The voltage on the trap, V0 is related to the input power in the resonator P

by the quality factor of the resonator Q:

V0 = ζ
√

PQ (2.21)

where ζ is on the order of about 10 [Appendix A]. To get 500 V rf on the trap, the

resonator must have a Q ≈ 500 and around 10 W of rf power must be applied to

the resonator. The rf delivery system is shown in Fig. 2.22. A directional coupler is
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included to be able to optimize the input coupling to the resonator. On resonance, the

entire trap-resonator circuit should appear to the rf amplifier to be a 50 Ω circuit.

Fine tuning the input coupling allows for perfect coupling to the resonator. The

directional coupler also permits a measurement of the loaded Q of the resonator.

The Q of the resonator is measured by first tuning the frequency of the oscillator

to the resonant frequency ν0. If the off-resonant amplitude of the back-reflected

signal is Vmax, then the frequency at which the amplitude is Vmax/
√

2 above the

resonance is ν+. The frequency with amplitude Vmax/
√

2 below the resonance is ν−

with frequency difference δν = ν+ − ν−. The loaded Q of the resonator is

Q =
δν

ν0

. (2.22)

A good resonator has a loaded Q of greater then 300.

HP 8640

2-512 MHz

rf Oscillator

rf Amplifier

8 Watt

35 dB Gain

Directional

Coupler

100 MHz

Oscilloscope

50 Ω terminated

Resonator

Input Coil

Figure 2.22: RF generation diagram. This schematic diagram illustrates the rf generation and
delivery to the helical resonator. The directional coupler is used to monitor the back-reflected
power to tune the input coupling on the resonator. The input coupling is perfect when the back-
reflected signal disappears.
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CHAPTER III

Ion Trap Design

3.1 Linear Trapping Potentials

The first step in advanced trap development is to model the electrodes and re-

sulting potentials using numerical Finite Element Analysis (FEA) software packages.

The three-dimensional trap potential can be described by splitting the potential into

the two-dimensional rf and three-dimensional static components. The rf potential

is described using the ponderomotive approximation (see Section 2.1) such that the

pseudopotential is described by static electric field amplitudes. The potentials are

then modeled using static FEA solvers and fit to quadratic functions with some geo-

metric scale factor. The rf and static portions of the potential can then be combined

to calculate the overall trapping frequencies and trap depth.

3.2 Transverse Electric Potential Simulation

The transverse trapping potentials in a linear trap can be approximated by a

two-dimensional problem. In the limit of an infinitely long linear trap with no axial

confinement, this describes the entire potential. But the approximation is reasonable

for the kinds of trapping structures described here and can be an efficient tool in

modeling the potentials.
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3.2.1 Finite Element Analysis. Recent versions of the Matlab software suite come

packaged with a simple finite element analysis (FEA) solver package called the “Par-

tial Differential Equation (PDE) Toolbox (pdetool)”. Pdetool contains a graphical

user interface [shown in Figs. 3.1,3.2] with user-defined boundary values, a grid con-

struction algorithm, the FEA solver, and a graphical display of the field solutions.

The PDE Toolbox [47] can solve a general class of problems that can be described

by the elliptical equation

−∇ · (c∇u) + au = f in Ω (3.1)

where Ω describes the bounded area in a complex plane, and c, a, and f are functions

defined in the area Ω and u is the field solution. The boundary conditions can be

of both the Dirichlet and Generalized Neumann types. In modeling the electrostatic

potentials that give rise to the effective rf trap, a much simpler problem can be

solved because of the constraints of the Poisson equation ∇2ψ = 0, again defined in

the bounded area Ω and for no free charges in the area of interest (as is the case for

our ion trap potentials). This corresponds to the elliptical equation solved by the

PDE toolbox with c = 1, a = 1 and f = 1. The approximate solution to Eq. 3.1

with these constraints is found in three steps. First, the geometry Ω is described

along with the Dirichlet boundary conditions on the bounding curve C [Fig. 3.1].

Second, a triangular mesh is constructed in the domain Ω. Last, the PDE and the

boundary conditions are discretized to obtain a system of linear equations Ku = F

that can be solved using well known algebraic algorithms [Fig. 3.2] [48].

3.2.2 PDE Toolbox. The graphical user interface, shown in Figs. 3.1,3.2 is useful

for an initial design or for relatively few design iterations. However, for large numbers

of design iterations, the Matlab PDE Toolbox provides access to the solver functions

necessary for building the model, creating the mesh, and solving for the potential.
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(a)

(b)

Figure 3.1: The GUI for Setting up the model in the PDE Toolbox. This screenshot of the graphical
user interface for the PDE Toolbox shows a simple layout and boundary conditions. (a) The basic
drawing interface for defining object areas. (b) The boundary tool for setting the Dirichlet boundary
conditions for the trap.
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(a)

(b)

Figure 3.2: The GUI for Solving the model in the PDE Toolbox. This screenshot of the graphical
user interface for the PDE Toolbox shows a simple mesh and solution for one microtrap design.(a)
The mesh tool constructs and refines the triangular mesh. (b) The solution is shown as a 2-D color
plot.
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The tip-to-tip separation is defined as a, the distance between cantilevers is d, the

cantilever thickness is dt, and the bounding box is given by cl.

%coefficient matrix

%R1 %R2 %R3 %R4 %SQ1

geometry=[3.0000 3.0000 3.0000 3.0000 3.0000

4.0000 4.0000 4.0000 4.0000 4.0000

-(a/2+cl) -(a/2+cl) a/2 a/2 -(a/2+cl)

-a/2 -a/2 (a/2+cl) (a/2+cl) (a/2+cl)

-a/2 -a/2 (a/2+cl) (a/2+cl) (a/2+cl)

-(a/2+cl) -(a/2+cl) a/2 a/2 -(a/2+cl)

-(d/2+dt) d/2 -(d/2+dt) d/2 -(a/2+cl)

-(d/2+dt) d/2 -(d/2+dt) d/2 -(a/2+cl)

-(d/2) d/2+dt -(d/2) d/2+dt (a/2+cl)

-(d/2) d/2+dt -(d/2) d/2+dt (a/2+cl)];

The first two lines of the geometry matrix are variables that describe the particular

geometry (a rectangle in this case) and the remaining eight lines are used to define

each geometrical shape.

A namespace matrix is defines to set forth the text labels for each column in the

geometry matrix. In addition, the formula string defines how the different geometry

elements are to be combined to make the region Ω.

%namespace matrix

ns=[82 82 82 82 83

49 50 51 52 81

0 0 0 0 49];
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%formula string

sf=’SQ1-(R1+R2+R3+R4)’;

The PDE toolbox then requires that the geometry, namespace and formula string

matrices be processed to define a reduced geometry matrix containing all the individ-

ual segments of the boundary curve C. The boundary values can then be set for all

the individual segments using a boundary value matrix. Only the first two columns

(out of 20) are shown. The first six rows define the type of boundary condition to

use and the last three are ASCII code for a particular value (i.e. -0.5).

%calculate reduced geometry matrix (20 line segments)

[reducedgeom booleanline]=decsg(geometry, sf, ns);

%boundary value matrix

boundary=[1 1 ...

1 1 ...

1 1 ...

1 1 ...

1 1 ...

1 1 ...

48 48 ...

48 48 ...

49 49 ...

48 48 ... ];

The mesh can then be created and refined using an interactive process and the

mesh commands.

%create initial mesh
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[points edges triangles]=initmesh(reducedgeom);

%refine mesh a bit to get a better solution

[points edges triangles]=refinemesh(reducedgeom,points,edges,triangles);

points=jigglemesh(points,edges,triangles);

The actual FEA solver command, assempde is called using the refined mesh and

the coefficients for the elliptical equation, Eq. 3.1.

%coefficients for assempde

coef1=1.0;

coef2=1.0;

coef3=1.0;

%get solution now

potential=assempde(boundary,points,edges,triangles,coef1,coef2,coef3);

To extract the potential in a rectangular coordinate system (useful for taking the

gradient and for plotting the potential along a given line), the PDE toolbox provides

the command tri2grid, which is called using the solution found from the FEA

solver.

potential_xz=tri2grid(points,triangles,potential,x,z);

The potential can then be evaluated, or in the case of finding the absolute potential

depth, the gradient can be found using Matlab’s standard matrix evaluation tools.

3.3 3D Electric Potential Simulation

The FEA solver that is bundled with the MATLAB software package is good for

two-dimensional problems, but it is unable to solve three-dimensional problems. In a
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linear ion trap, the rf field typically has enough symmetry to be considered as a two-

dimensional problem. The static confinement fields that provide the transverse trap

are, however, three-dimensional in nature. A more powerful FEA solver is needed to

model the static fields and provide a complete picture of the ion trap characteristics.

Three-dimensional FEA problems are significantly more complicated due to the

increased number of elements needed to fill a volume as opposed to an area. There are

different ways of filling the volume space using different geometric shapes including

tetrahedra, hexagonal blocks, cubes, and other more complicated shape schemes.

The various commercially available software packages use different techniques and

different shapes to fill the FEA volume. One such solver is called “Maxwell 3D” by

a company called Ansoft. This solver was used to model the potentials and electric

fields in both the three-layer alumina traps as well as the microtraps.

Like the MATLAB FEA solver, Maxwell uses multiple windows to define the

problem, set the initial boundary conditions, solve for the fields, and analyze the

solution. The project window is general tool for calling each of these steps when

defining the problem [Fig. 3.3(a)]. The first step is to draw the shapes associated

with the trap electrodes as well as the bounding box that defines the overall solution

area [Fig. 3.3(b)]. Maxwell has the capability to do both electrical, magnetic and

other thermal and mechanical solutions. The software uses a materials library to

define the relevant material properties for all the elements of the model. The second

step is to assign the material properties to the various components of the model.

Using a good conductor is typically sufficient and the “gold” material is often used

for most electrodes [Fig. 3.4(a)].

Once the surfaces have been defined and material properties set, the boundary

conditions are set using the boundary window. For a typical Dirichlet boundary
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(a)

(b)

Figure 3.3: The GUI for Setting up the Project in Maxwell 3D. (a) The Maxwell 3D Project window.
From this window, all aspects of the model are managed including the model type and the steps
to a solution. (b) The model is drawn in this window using three-dimensional shapes. The draw
mode also defines the bounding box for the region of interest.
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condition, the surface is set to be a voltage “source” with a given electric potential.

The bounding box can also be set as a potential source and is typically set to ground

(0 V) [Fig. 3.4(b)].

Maxwell uses an iterative algorithm to solve for the fields in the defined area.

There is an initial 3-D mesh of tetrahedra defined in the volume. This initial mesh

can be customized by defining vacuum elements in critical areas [Fig. 3.5(a)]. Then,

inside these elements, the number of tetrahedra can be increased to have a finer

grid spacing for calculating trap potentials and trap frequencies. The solver then

calculates the field at every mesh element. Then, the software analyzes the points

where the potential is greatest and increases the number of mesh elements at those

points and re-solves for the field in the volume using the greater number of tetrahedra

[Figs. 3.5(b), 3.6(a)]. The solution converges on an answer using an error estimate

of the fields based on the deviation from expected values.

After the solver has reached an acceptable error level (which can be set for more ac-

curate solutions and larger meshes), the solution can be viewed using the visualization

tools provided. Visualizing a three-dimensional field is difficult, but two-dimensional

cuts through the volume of the trap can provide a good picture of the field char-

acteristics. Maxwell also provides elementary tools for calculating the electric field

( ~E = ~∇ · φ) magnitude from the potential and can plot the magnitude along a line.

These tools can be accessed from the “calculator” function in the project solution

window. From this data, the static trap potentials can be extracted [Fig. 3.6(b)].

3.4 Errors in Finite Element Analysis Field Solvers

There are several common errors that can occur when using FEA solvers to model

new trap geometries. The degree to which each of these affects the final potential
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(a)

(b)

Figure 3.4: The GUI for Defining Materials in Maxwell. (a) The materials library is used to define
the material properties for all elements of the model. Typically the conductivity is the only critical
parameter. (b) The boundary conditions are set including the bounding box surfaces.
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(a)

(b)

Figure 3.5: The GUI for Defining the Mesh in Maxwell. (a) The initial mesh is set to a low number
of tetrahedra. The density of tetrahedra can be increased in regions of interest by creating vacuum
elements and manually increasing the mesh density. (b) After an interactive solution, the mesh
density is higher at points where the field is more concentrated.
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(a)

(b)

Figure 3.6: The GUI for Solving the Problem in Maxwell. (a) The solving window tracks the
progress of the adaptive solution algorithm and the proximity to the final error tolerance. (b) The
project solution interface can be used to visualize and extract the potentials.
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solution can be evaluated and bounds can be set on the error magnitude.

3.4.1 Bounding Box Size Error. The FEA solution requires a finite space Ω,

also called the bounding box, in which the potential is evaluated. This requires a

boundary condition set on the bounding box, which is typically set to ground. If

the bounding box is too small, this grounded surface can change the solution to the

potential. This error can be measured by increasing the size of the bounding box,

leaving all other physical dimensions unchanged, and re-evaluating the potential. If

the new potential is equal to the original within a specified tolerance level, then the

bounding box size was sufficiently large.

3.4.2 Mesh Size Error. The solution of the potential is dependent on the size of the

mesh compared to the feature size of the trap model structure. If the mesh elements

are larger then the feature sizes, there will be errors in the potential, especially near

the features. Sharp corners in the physical trap features lead to high potential gra-

dients and need additional mesh elements surrounding them to properly calculate

the value of the potential. At the center of the trap, there needs to be a sufficient

number of elements to ensure a proper, smooth calculation of the field so that trap

frequencies can be extracted from the potential. The mesh size error can be calcu-

lated by increasing the mesh size by a substantial amount and then re-calculating

the potential. Again, if the new potential is equal to the original within specified

tolerance levels, the mesh is sufficiently fine.

3.4.3 Interpolation Error. After the potential is calculated in the mesh, to extract

out trap frequencies and the trap depth, it is necessary to make an interpolation

along either a line or a grid of the irregular mesh elements. If the mesh elements are

much larger then the characteristic size of the region of interest for the interpolation,

then the potential will be jagged after the interpolation is made. This can be resolved
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by increasing the mesh size in the area of interest.
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CHAPTER IV

Planar Microtrap Model

4.1 Background

The ion trap has become an essential tool in several areas of physical science,

including mass spectroscopy [49], atomic frequency standards [50], precision atomic

and molecular measurements [51], studies of fundamental quantum dynamics [36] and

quantum information science [52, 35]. Many of these applications would benefit from

miniaturized and multiplexed ion trap electrode structures well below the typical

millimeter to centimeter scale. Furthermore, smaller electrode dimensions offer the

potential for stronger confining forces.

In this Chapter, the electrical characteristics of a new type of micrometer-scale

radiofrequency (RF) Paul ion trap fabricated using semiconductor micromaching

and lithographic techniques such as micro-electro-mechanical-systems (MEMS) and

molecular beam epitaxy (MBE) is modeled using the FEA techniques described in

Ch. III [32]. Such a device may enable new applications of ion trap technology such

as “quantum CCD” scalable quantum computers [23], optical cavity-QED with a

localized single atom [53, 54, 55, 56], and multiplexed quadrupole mass spectrometers

that could be orders of magnitude smaller than previous devices [57].

There has been much recent progress in the miniaturization of neutral atom elec-
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tromagnetic trapping structures, involving, for example, micrometer-scale current-

carrying wires on a substrate resulting in Bose-Einstein condensates on a microchip

[58]. Microscopic ion trap electrodes present their own challenges, as the confining

forces are orders of magnitude stronger than those for neutral atom traps. Conse-

quently, such ion traps will require greater control of unwanted or noisy electrode

potentials, including the presence of thermal electric fields [59, 60], residual charge

on exposed insulating barriers, and “patch” potentials from inhomogeneities on the

electrode surfaces [35, 61]. None of these potential pitfalls appears fundamental, and

such problems will only be overcome by testing various materials and approaches.

The focus of this Chapter is on novel features of a proposed high aspect-ratio ion

trap geometry and the resulting confining potentials.

The physical parameters of a model of the linear microtrap are discussed in Sec.

4.2 along with a discussion of design considerations and issues with heating and

power dissipation in semiconductor materials. Section 4.3 contains a discussion of

the RF ponderomotive potential of the linear microtrap model with results from

numerical simulations of the potential. A geometrical efficiency factor is calculated,

showing the performance of the linear microtrap as compared to an ideal quadrupole

potential. The static potential used for axial confinement in a linear trap is discussed

in Sec. 4.4 along with results from numerical simulations and comparison to an ideal

hyperbolic trap. The total potential along with examples of how to use the various

geometric efficiency factors to calculate the trap frequencies of a given geometry are

given in Sec. 4.5. The principal axes of the linear microtrap, which determine the

efficiency of laser cooling ions in the linear microtrap, are evaluated in Sec. 4.6. A

method for rotating the axes for more efficient cooling is given.
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4.2 Model Description

4.2.1 Basic Model. The design of this new type of micrometer-scale RF trap is

constrained by conventional semiconductor fabrication techniques, the need for clear

laser optical access, and the characteristics of electrodes needed for linear traps. The

design, illustrated in Fig. 4.1, is a two-layer planar geometry where both layers are

divided into separate electrodes. The division of each layer into six electrodes accom-

modates both the RF potentials and the static potentials needed to create a linear

Paul trap [62]. This planar design is compatible with conventional photolithography

techniques to define the electrode pattern. Each electrode is a cantilever anchored

to an electrically isolated, conductive substrate and suspended from both sides of

the planar structure. This ensures that there are no insulators near the center of the

trap that could accumulate uncontrolled charge. Ions will be trapped in the space

between the tips of each cantilever, along the z-axis in Fig. 4.1, near the center of

the middle electrode.

The cross-section of this linear microtrap (LMT) model at the center of the trap

(z = 0) is shown in Fig. 4.2(a). The thickness of each layer is labeled w; the layer

separation is d; the tip-to-tip separation of the cantilevers is a. Two ratios are useful

for characterizing the behavior of the electric potentials: the trap aspect ratio, or

the ratio of the tip-to-tip cantilever separation to the layer separation α = a/d, and

the ratio of the layer separation to the layer thickness δ = d/w. An RF voltage is

applied between each set of diagonally opposing electrodes as shown in Fig. 4.2(a).

A top view of the linear microtrap model is shown in Fig. 4.2(b). The width

of the center cantilevers along the z-axis of the trap is labeled b; the width of the

end-cap cantilevers is c; and the length of the cantilevers in the model is h. In
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Figure 4.1: A three-dimensional drawing of the linear microtrap. A string of ions would lie along
the z-axis as drawn.

order to electrically insulate the center from the end-cap cantilevers, a small gap is

introduced of width g. This allows for separate potentials to be applied to all twelve

cantilevers, or electrodes. Static voltages are applied to both layers on the four end-

cap electrodes on either side of the center cantilevers to provide axial confinement,

as shown in Fig. 4.2(b).

The potentials of the LMT can be separated into two parts for analysis, following

the guide from Ch. III. The first part is the ponderomotive potential generated by

the RF voltages. In the limit where gap width g is much smaller than a, b and c

(Fig 4.2(b)), the RF potential is approximately independent of z near the center of

the trap. In the cross-sectional plane at z = 0, this RF potential generates a two-

dimensional trapping pseudopotential and is discussed in Section 4.3. The second

part is the potential generated by applying static voltages to the end-cap electrodes.
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This potential provides axial confinement for ions in the center of the trap and is

described in Section 4.4. Note that the end-cap electrodes have both the RF voltages

applied to reduce the z dependence of the RF field near the center of the trap and

static voltages to create the end-caps. The center electrodes are all assumed to be

held at static ground.

Figure 4.2: Two layer schematic of the potentials. (a) A schematic diagram of the linear microtrap
design showing the side view. The dimensions are labeled as are the RF voltages applied to the
electrodes. (b) The top view of the linear microtrap with dimensions and static voltages as shown.

4.2.2 Fabrication Considerations. The linear microtrap model is designed to simu-

late a trap design that can be fabricated using conventional micro-processing tech-

niques. The sizes of the electrode features that will be analyzed in this model are

typical of current fabrication processes. There are several different processes that

could be used to fabricate these microtraps: a) Silicon-based microelectromechani-
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cal machining (MEMS) techniques; b) Gallium-Arsenide (or other suitable material)

based molecular-beam epitaxy (MBE) grown wafers and associated etching processes;

or c) other relevant techniques such as anodic wafer bonding or flip-chip technolo-

gies. The length of the cantilevers is limited by allowable mechanical vibrations in

the cantilevers themselves, as well as limits to the mechanical stability of the can-

tilevers under electromechanical forces due to the applied RF and static voltages.

The mechanical forces exerted on the cantilevers can be approximated using struc-

tural cantilever analysis [63]. Following this analysis, the spring constant of the

center rectangular cantilever can, for example, be expressed as

k = E

(

w3b

4h3

)

(4.1)

where E is the Young’s Modulus of the relevant material. The force on one cantilever

due to an applied potential difference V0 between layers can be approximated as the

gradient of the potential in a parallel plate capacitor of area A = hb and plate

separation d.

F = −∂UCapacitor

∂d

= −ǫ0
2

∂

∂d

(

hbV 2
0

d

)

=
ǫ0
2

(

hbV 2
0

d2

)

(4.2)

Although the actual force is distributed across the length of the capacitor, by ap-

proximating the force as being concentrated at the tip, one can find an upper bound

on the cantilever tip deflection. Treating the cantilever as a classical spring with the

force applied at the tip, and using the spring constant from Eq. 4.1, the maximum

tip deflection x
(0)
d can be approximated as

x
(0)
d ∼ 2ǫ0h

4V 2
0

Ed2w3
. (4.3)
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A typical deflection for a GaAs cantilever with E = 85.5GPa and dimensions h =

100µm, d = 2µm, w = 2µm, with an applied voltage difference of V0 = 20V, is

x
(0)
d = 260nm. The resonant frequency of the cantilever can also be calculated [63]

as a function of the material density ρ, the Young’s Modulus, the cantilever width

w and the length h:

ωvib/2π = 0.162
√

E/ρ
w

h2
(4.4)

which for GaAs (ρ = 5.31gm/cm3) is ωvib/2π ≈ 130kHz for the same dimensions as

previously discussed.

For an RF potential V0 cos(ΩT t) applied to the cantilever electrodes, the amplitude

of the tip deflection in Eq. 4.3 is expected to be further reduced by a Lorentzian factor

of ω2
vib/Ω

2
T ≪ 1. Here, it is assumed that the RF frequency is far from resonance, or

ΩT ≫ ωvib/Q, where Q ≫ 1 is the quality factor of the mechanical resonance [64].

While the above electromechanical forces do not appear troublesome, the actual

forces may be considerably higher due to free charges on the electrode layers that

are driven by the applied potentials. In any case, it may be necessary to isolate the

cantilevered electrodes from noisy electrical signals near the mechanical resonance.

The trap strength may be limited by the maximum voltage that can be applied

to the electrodes before the occurrence of electric field break-down. The theoretical

limit to the breakdown voltage is dependent on the bandgap of the semiconductor

material and, for Si and GaAs, is on the order of 40-50 V/µm [65] and for silicon

nitride, on the order of 300 V/µm [66]. For a layer separation of 2µm, the maximum

applied voltage is expected to be of order V0 = 100V.

4.2.3 RF Dissipation and Thermal Fields. The fabrication considerations for the

implementation of this new type of linear microtrap suggest that highly doped semi-

conductors could be used as electrodes. Because doped semiconductors have a resis-
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tivity several orders of magnitude greater than the metal conductors typically used

in ion traps, it is necessary to estimate the power dissipation of the microtrap due

to RF losses in the cantilevers. Additionally, the finite conductivity of semiconduc-

tor materials will lead to thermal electric fields that will generate heating of the

quantized motion of ions in the center of the trap.

The RF dissipation can be estimated with a simple model of lumped circuit ele-

ments, since the trap structure is much smaller then the RF wavelength. Each RF

electrode is modeled as a small series resistance R shunted by a capacitance C at the

trap; inductance of the electrodes is assumed negligible compared to 1/(CΩ2
T ). In

addition, RF loss in the insulator separating the electrodes contributes to a parallel

resistance characterized by the loss tangent tan δ. Assuming RCΩT , tan δ ≪ 1, the

power loss is

Pd =
V 2

0 CΩT

2
(RCΩT + tan δ). (4.5)

For values envisioned here, V0 ∼ 20V at ΩT/2π ∼ 50MHz, C ∼ 10pF, tan δ ∼ 0.0002

and R ∼ 10Ω, resulting in a power dissipation of Pd ∼ 40mW per electrode.

Additionally, Johnson noise in the electrodes will generate thermal electric fields

that will cause heating of the quantized ion motion. A simple model can be used to

calculate the heating due to the resistivity of the trap electrodes [35, 60]. For an ion

held at a distance z from a conductive plane, the heating rate is given by

∂E

∂t
= h̄ω ˙̄n

=
e2kBTR(ωs)

mz2
(4.6)

where ω is the secular frequency and n̄ is the average vibrational quantum number

of an ion in the trap. In the limit where the conductor thickness w is much smaller

than the distance to the ion z, and both dimensions are smaller then the skin depth δ
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of the conductor (w ≪ z ≪ δ), the resistance R in Eq. 4.6 is frequency independent:

R ≈ ρz/(zw), where ρ is the material resistivity. Here, the effective volume of the

conductor contributing to the thermal fields is of order z2w. Again, using typical

values for doped semiconductors, the skin depth δ is a few hundred micrometers,

the thickness of the conductor is 2µm and the ion is 20µm from the conductor. In

this limit, using a secular frequency of ωs/2π = 10MHz, and 111Cd+ ions, Eq. 4.6

predicts a thermal heating rate of about 10 quanta/sec. Since this model pertains to

fluctuating uniform thermal electric fields from a single conducting plane, the actual

thermal electric fields are expected to be much smaller because the trap structure

surrounds the ion with a high degree of symmetry, resulting in some degree of can-

cellation of thermal fields from opposite electrodes. In any case, the heating rate will

likely be limited in practice by fluctuating patch fields on the electrode surfaces [60].

4.3 RF Ponderomotive Potentials

4.3.1 Time-dependent RF potentials. As described above, the analysis of the poten-

tials in a linear RF Paul trap can be divided into the transverse RF trap generated by

RF voltages applied to the appropriate electrodes, and the axial trap and transverse

anti-trap generated by static voltages applied to the end-cap electrodes. Focusing

first on the time-varying potential generated by the RF voltages, the analysis can

be simplified by using a pseudopotential approximation. The motion of an ion in an

RF potential of the form

Φ(x, y, z, t) = V (x, y, z) cos(ΩT t) (4.7)

can be approximated using a ponderomotive pseudopotential [34]:

ψ =
e2

4mΩ2
T

|∇V (x, y, z)|2 (4.8)
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Ion motion is in the pseudopotential can be approximated as secular harmonic motion

[35] with frequency

ω2
p =

e2

4m2Ω2
T

∂2

∂x2

(

|∇V (x, y, z)|2
)

. (4.9)

The micromotion due to the time dependence of the RF potential is small in the

limit where q ≡ 2
√

2ωp/ΩT ≪ 1 [34].

Since the secular ion motion is dependent only on the gradient of V (x, y, z), it is

possible to calculate the effective (or ponderomotive) potential of the linear microtrap

using an electrostatic analysis. Moreover, since the RF potential is approximately

uniform along the z-axis near the center of the trap, it can be described in the z = 0

plane as a function only of x and y, reducing the calculation of the RF potential to

two dimensions.

4.3.2 Hyperbolic Electrode Model. One common configuration of a linear Paul

trap consists of four infinitely long hyperbolic electrodes. This hyperbolic electrode

model will be used as a standard of comparison for the linear microtrap. The cross-

section of hyperbolic electrodes with a characteristic radius R0 is shown in Fig. 4.3.

For the potentials applied according to Fig. 4.3, the exact potential amplitude is

Vhyp(x
′, y′) =

V0

2R2
0

(

x′2 − y′2
)

(4.10)

=
V0

2

r2

R2
0

cos 2θ′.

where the coordinate system (x′, y′) is indicated in Fig. 4.3.

The pseudopotential that corresponds to this hyperbolic potential is calculated

using Eq. 4.8.

ψhyp =
e2V 2

0

4mΩ2
tR

4
0

(

x′2 + y′2
)

(4.11)

The secular frequency of a ion moving in this ponderomotive pseudopotential is
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Figure 4.3: Hyperbolic electrode geometry. The hyperbolic electrode geometry is used as a basis for
comparing the linear microtrap. The characteristic dimension of the hyperbolic electrode geometry
is the radius R0 as shown.

therefore

ωp,hyp =
eV0√

2mΩtR2
0

=

√

eV0q

4mR2
0

. (4.12)

4.3.3 Linear Microtrap Transverse Potential Analysis. The microtrap potential

amplitude V
LMT

is computed near the center of the trap. This potential is then

decomposed as an infinite set of cylindrical harmonics [67]:

V
LMT

(r, θ′) = V0

[

∞
∑

m=1

Cm (r/r0)
m cos(mθ′)

+
∞

∑

n=1

Sn (r/r0)
n sin(nθ′)

]

(4.13)

where Cm and Sn are expansion coefficients and θ′ is taken as the angle from the

x′ axis. The characteristic radius over which the potential is approximated by this

expansion is r0.
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The C2 coefficient provides a comparison between the potential of the linear mi-

crotrap and the quadrupole potential of the hyperbolic electrode geometry of radius

r0. Other nonzero coefficients in the expansion of Eq. 4.13 describe the anharmonic

character of the microtrap potential. Symmetry considerations reduce the number

of terms allowed in the expansion. Given the potential amplitude of ±V0/2 applied

to opposite electrodes as shown in Fig. 4.2(a), the potential is antisymmetric along

the lines x = 0 and y = 0 and symmetric in reflection about the origin leading to

the only non-zero terms in Eq. 4.13 as m = 2, 6, 10, . . . and n = 4, 8, 12, . . ..

The expansion coefficients are calculated by numerically evaluating the LMT po-

tential using finite element analysis or other appropriate numerical field simulators

and calculating the overlap integrals within a circle of radius r0 of the potential V
LMT

with the cylindrical harmonics (r/r0)
m cos(mθ′) and (r/r0)

n sin(nθ′) [67].

A geometric efficiency factor η can be used to compare the microtrap potential

with the quadrupole potential of the hyperbolic electrodes of comparable size. The

size of the linear microtrap is given by the distance from the center of the trap to

the nearest point on the tip of the electrodes ℓeff ≡
√

(a/2)2 + (d/2)2. Then, η is

defined as the ratio of the quadrupole part of the potential generated by the LMT

V (2)
LMT

and a hyperbolic trap with R0 = ℓeff .

η =
V (2)

LMT

Vhyp

=
2C2ℓ

2
eff

r2
0

. (4.14)

The quadrupole portion of the linear microtrap can therefore be written in a form

differing from the hyperbolic electrode potential (Eq. 4.11) by only the geometric

factor η.

V (2)
LMT

(x′, y′) =
V0η

2ℓ2eff

(

x′2 − y′2
)

(4.15)
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The ponderomotive potential for the microtrap can then be evaluated using Eq. 4.8:

ψ
LMT

=
e2V 2

0 η
2

4mΩ2
T ℓ

4
eff

(

x2 + y2
)

. (4.16)

Finally, the effective secular frequency of an ion in the linear microtrap is only

modified by the factor η from the form of the secular frequency in the trap due

to the hyperbolic electrodes (Eq. 4.12). With this form of the secular frequency, one

can compare the trap strength and performance of the linear microtrap.

ωp,LMT
=

eV0η√
2mΩT ℓ2eff

(4.17)

The equipotential lines of the calculated ponderomotive potential are shown in

Fig. 4.4 along with the potential magnitude indicated by a gray-scale. Note that,

although the cantilever geometry does not have cylindrical symmetry, the pseudopo-

tential is approximately circular within a distance on the order of one-eighth the

tip-to-tip separation a as will be shown from the numerical results in Sec. 4.3.4

where C2 is found to be the dominant term in the expansion at this distance from

the center.

4.3.4 Finite Element Analysis Method. The class of finite element analysis solvers

that is used here divides a two-dimensional space into a series of triangles to calculate

the linear microtrap potential. The two-dimensional finite element analysis package

in Matlab version 6.5 was used to calculate the RF potentials. The results were

compared with the two-dimensional projection of potentials calculated using two

different three-dimensional finite element analysis packages, Maxwell 3D from Ansoft,

and Opera 3D from VectorFields, and found consistent. The field is approximated

at each vertex on the triangles, then an interpolation is made within each element to

calculate the field on an rectangular grid. Different trap configurations are analyzed

using the method described above and the ratio η of the microtrap potential to
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Figure 4.4: Transverse Equipotential Lines. Equipotential lines of the pseudopotential ψ
LMT

in the
z = 0 plane for aspect ratio α = 10 and ratio of layer separation to layer thickness of δ = 1. The
ponderomotive potential reaches a maximum along the y axis near ℓeff . The contour lines are spaced
on a linear scale and are shown to illustrate the circular nature of the ponderomotive potential at
the center of the trap. The gray-scale shading is also on a linear scale.
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the quadrupole hyperbolic potential is shown in Fig. 4.5 evaluated at a radius of

r0 = a/8. The uncertainty of the simulation data is less then 5% and is due primarily

to a finite grid spacing and the finite bounding box size. The solid line in the figure

is an analytic solution for cantilevers of infinitesimal thickness.

One can see that as the trap aspect ratio α = a/d increases, the geometric factor

η approaches a constant, non-zero value. The asymptotic value can be evaluated

using complex analysis techniques and is described in Appendix B. The result from

Eq. B.10 for large α is η = 1/π. Additionally, as the aspect ratio approaches one,

the trap becomes more like the hyperbolic electrode geometry. The other degree

of freedom of the linear microtrap is the ratio of the layer separation to the layer

thickness, δ = d/w. Note that the strength of the microtrap decreases as the layer

thickness decreases with respect to the layer separation.

The higher-order coefficients of the expansion shown in Eq. 4.13 for the potential

V
LMT

are shown in Fig. 4.6. The dominant higher-order term is S4, which, at a fixed

radius of r0 = a/8, is only a few percent of C2. The two next largest terms are also

shown although the magnitude is small enough to be negligible when considering ion

motion. The relationship between the C2 and the next three largest terms of the

expansion as a function of the aspect ratio α and δ is shown in Fig 4.6. Coefficients

S4, C6 appear to approach an asymptotic value as the trap aspect ratio increases.

The ratios of all higher-order terms to the coefficient C2 (Cm/C2 and Sn/C2) for

m,n > 6 are less than 10−3.

The absolute depth of the ponderomotive RF trap is also of interest when consid-

ering ion loading and collisions with background gas. The trap depth is defined as the

maximum height of the ponderomotive potential barrier along the weak axis of the

trap and is plotted in Fig. 4.7. A trap frequency of ΩT/2π = 50MHz and the mass of
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Figure 4.5: Transverse Geometric efficiency factor. The ponderomotive potential geometric effi-
ciency factor η as a function of the ratio of the tip-to-tip separation to the layer separation: the
aspect ratio α. The other degree of freedom is the ratio of the electrode separation to the layer
thickness, δ = d/w. The solid line is an analytic solution for η found using complex analysis
techniques with δ → ∞ and is valid for α≫ 1
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Figure 4.6: Higher-order expansion coefficients. The two largest higher-order terms of the expansion
in Eq. 4.13 shown as a ratio over C2 for various trap aspect ratios α = a/d and given as a function
of the layer separation over the layer thickness δ = d/w evaluated at r0 = a/8
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111Cd+ were used to calculate the depth, given in scaled units of [K·µm2/V2]. To find

the depth of a specific trap, the data must be multiplied by the applied voltage V 2
0 in

[V2] and divided by the square of the absolute tip-to-tip separation a2 in [µm2]. The

depth asymptotically approaches a constant value of approximately 2400K·µm2/V2

for large cross-sectional aspect ratio as can be found from the analytic solution (Eq.

B.13). The size of the ponderomotive trap rmax is characterized by either the dis-

tance of the maximum in the ponderomotive potential from the center of the trap or

a/2, whichever is smaller. As the trap aspect ratio increases rmax is determined by

the maximum in the RF pseudopotential along the y-axis and is approximately half

the tip-to-tip electrode separation 0.5a.

Figure 4.7: Scaled trap depth. The scaled trap depth as a function of the trap aspect ratio α = a/d
and the ratio of layer separation to layer thickness δ = d/w. The trap depth is scaled to the tip-
to-tip separation a, in micrometers and to the applied voltage V0. The analytic result is shown as
a solid line with δ → ∞ and is valid for α≫ 1.

Since the ponderomotive potential within the region r < rmax will trap ions, the
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expansion of the potential from Eq. 4.13 within that entire area is also of interest.

The expansion of the potential within a circle of radius r0 = rmax contains a larger

contribution from the higher-order coefficients than an expansion fixed at r0 = a/8

as illustrated in Fig. 4.8. The higher-order coefficients for the expansion of the linear

microtrap potential are shown in Fig. 4.9, evaluated at r0 = rmax.

Figure 4.8: Higher-order coefficients as a function of trap radius. The dependence on the expansion
coefficients Cm and Sn as a function of r0/(a/2). The higher order terms become significant as the
overlap integrals cover more of the area between the electrodes. The geometry used was α = 20
and δ = 1, a worst case scenario from Fig. 4.9. The dashed vertical bar indicates r0 = a/8.

4.3.5 Residual Axial Ponderomotive Potential. The previous analysis is based

on the assumption that the linear microtrap electrodes are infinitely long in the z-

dimension. However, the actual trap has finite electrode lengths, labeled b and c in

Fig. 4.2(b), which together with the small electrode gaps (labeled g in Fig. 4.2) lead
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Figure 4.9: Largest higher-order coefficients as a function of α. The three largest higher-order terms
of the expansion in Eq. 4.13 evaluated within a radius r0 = rmax, where rmax is the maximum of
the ponderomotive potential. The coefficients are shown as a percentage of the largest term C2 for
various trap aspect ratios α = a/d and given as a function of the layer separation over the layer
thickness δ = d/w with an error of 5%.
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to a small ponderomotive potential in the z direction. The magnitude of this axial

ponderomotive potential can be compared to the transverse ponderomotive potential

ψ
LMT

of Eq. 4.16. To find the axial contribution, the entire three-dimensional RF po-

tential V
LMT

(x, y, z) must be computed. Once found, one can use the ponderomotive

potential approximation Eq. 4.8 to calculate the trap frequency along the z-axis.

The gradient of the three-dimensional potential is found, then the pseudopotential

is evaluated. A Taylor expansion of the pseudopotential along the z axis (about

z = 0) gives the coefficient for the harmonic z2 term in the ponderomotive potential:

Hz =
1

2

∂2

∂z2

(

|∇V
LMT

(x, y, z)|2
)

. (4.18)

The details of the three-dimensional potential calculation are given below, but the

method is similar to the two-dimensional finite difference analysis. Typically the

data is extracted along the z axis and then fit to a quadratic polynomial to find

the coefficient Hz. This coefficient allows one to make a comparison between the

quadrupole trapping pseudopotential in the z = 0 cross-sectional plane, and the

ponderomotive potential along the z-axis. This three-dimensional ponderomotive

potential is similar to the transverse potential of Eq. 4.16 with the addition of the

z2 term.

ψ
LMT

(x, y, z) =
e2V 2

0 η
2

4mΩ2
T ℓ

4
eff

(

x2 + y2 + σzz
2
)

, (4.19)

where σz = Hzℓ
4
eff/η

2 is the ratio of the residual axial to transverse ponderomotive

potential. The resulting frequency along the z-axis is ωz =
√
σzωp,LMT

.

The results from the numerical simulation in Fig. 4.10 are given for a cross-

sectional aspect ratio of α = 20 and for δ = 1 (ratio of the layer separation to the

layer width). The ponderomotive potential along the z-axis is shown in Fig. 4.11 to

illustrate the degree to which the notch gap g contributes to the residual potential at
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the center of the trap. Since σz ≪ 1, the ponderomotive contribution to the potential

along the z-axis can be neglected.

Figure 4.10: Residual axial ponderomotive potential. The ratio of the residual axial frequency
to the transverse ponderomotive frequency σz as a function of the center electrode length. The
end-cap electrodes were fixed at 5ℓeff with a fixed gap spacing of 1/10ℓeff , α = 20, and δ = 1.

4.4 Static Potentials

4.4.1 Hyperbolic Geometry. Like the two-dimensional potential in Sec. 4.3.2, the

static potential used to confine the ions along the z-axis in the linear microtrap can

be compared to a three-dimensional idealized hyperbolic electrode potential. Figure

4.12 shows an elliptical hyperbolic electrode geometry where x0, y0, and z0 are the

distances along the principal axes of the ellipse from the center of the trap to the

electrodes. The potential within the electrodes, up to a constant term, is

Uhyp =
U0

s2

(

−ǫx2 − (1 − ǫ)y2 + z2
)

(4.20)
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Figure 4.11: Residual ponderomotive potential for different center electrode lengths. Illustration
of the change in the residual axial ponderomotive potential for various center electrode lengths
(b). The potential along the z-axis is shown for various center electrode lengths where the end-cap
electrodes have been fixed at 100µm.
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where s2 = z2
0 + ǫx2

0 and ǫx2
0 = (1 − ǫ)y2

0. The geometric anisotropy factor ǫ is

related to the eccentricity of various conic sections that can be superimposed on the

three-dimensional hyperbolic electrode structure. The special case where ǫ = 1/2

corresponds to circular symmetry in the xy plane. For values of 0 < ǫ < 1 and

U0 > 0, the potential is trapping in z and anti-trapping in the xy plane, as shown

in the figure for ǫ = 0.86. Outside of that range, the axes in the figure must be

rotated to describe the potential of Eq. 4.20. When ǫ > 1 and U0 > 0, the potential

is trapping in the zy plane and anti-trapping in x; and for ǫ < 0 and U0 > 0, the

potential is trapping in z and x, but anti-trapping in y. Whereas, at ǫ = 0 and ǫ = 1,

the potential is independent of x and y respectively. The frequency along the z-axis

is

ωz,hyp ≡
√

2eU0

ms2
. (4.21)

The frequencies along the x and y axis are discussed in connection with the net linear

microtrap potential below.

Figure 4.12: Three-dimensional hyperbolic electrodes are shown here. The electrodes along the
z-axis are held at a voltage of U0, while the center electrode is grounded. The potential has an
elliptical cross-section in the xy plane corresponding to ǫ = 0.86 and, for U0 > 0, is trapping along
the z-axis, but anti-trapping along x and y, valid for 0 < ǫ < 1.

4.4.2 Linear Microtrap Static Potential Analysis. The static potential is computed

using a three-dimensional finite element solver. The distance from the center of the
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trap to the bounding box that was used in the simulation was more then twice the

tip-to-tip cantilever separation. To reduce the error in the simulation results, several

different grids were used and the results were averaged.

It is possible to approximate the three-dimensional static potential of the linear

microtrap, U
LMT

(x, y, z) by doing a Taylor expansion about the center of the trap.

Because equal voltages are applied to all capping electrodes as shown in Fig. 4.2(b),

the cross-terms in the Taylor expansion are zero. The coefficients of the harmonic

terms are:

Dx =
1

U0

∂2U
LMT

∂x2
(0, 0, 0) (4.22)

Dy =
1

U0

∂2U
LMT

∂y2
(0, 0, 0) (4.23)

Dz =
1

U0

∂2U
LMT

∂z2
(0, 0, 0) (4.24)

The derivatives are then evaluated numerically on the calculated potential along the

axes. The potential is therefore

U
LMT

≈ U0

2

(

Dxx
2 +Dyy

2 +Dzz
2
)

=
U0Dz

2

(

Dx

Dz

x2 +
Dy

Dz

y2 + z2

)

(4.25)

A static potential geometric efficiency factor κ compares the static potential of the

linear microtrap with the hyperbolic electrode geometry of similar characteristic

dimension. The characteristic dimension of the linear microtrap that corresponds to

the distance s in the hyperbolic electrode geometry is the distance from the center

of the trap to the nearest point on the end-cap electrodes: deff =
√

ℓ2eff + (b/2 + g)2.

κ ≡ Dzd
2
eff/2 (4.26)

The static potential in the linear microtrap can then be written in the same form
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as the potential in the hyperbolic electrode geometry.

U
LMT

=
U0κ

d2
eff

(

−ǫx2 − (1 − ǫ)y2 + z2
)

(4.27)

where ǫ = −Dx/Dz = 1 + Dy/Dz. Given this approximation of the electrostatic

potential in the linear microtrap, the form of the trap frequency along the z-axis is

similar to that of the hyperbolic electrodes (Eq. 4.21) with the difference being only

the static potential geometric efficiency factor κ

ωz,LMT
=

√

2κeU0

md2
eff

. (4.28)

The results characterizing the linear microtrap for κ and ǫ from the numerical

simulations are shown in Fig. 4.13.

Figure 4.13: Static potential numerical results in the linear microtrap. The results for the
three-dimensional numerical simulations of the static potential in the linear microtrap. Both the
anisotropy factor ǫ and the static potential geometric efficiency factor κ are shown. The ratio of
the layer separation over the layer width was fixed at one and the gap separation at two (g=2 from
Fig. 4.2(b)).
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4.5 Net Potential

The combined static and ponderomotive potentials that determine the motion of

a ion in the linear microtrap are written as a three-dimensional uncoupled harmonic

oscillator potential:

φ
LMT

= ψ
LMT

+ U
LMT

=
e2V 2

0 η
2

4m2Ω2
T ℓ

4
eff

(

x2 + y2
)

+
κU0

d2
eff

(

−ǫx2 − (1 − ǫ)y2 + z2
)

(4.29)

where the residual axial ponderomotive potential has been neglected. Considering

this full potential, the effective trapping frequencies consist of the quadrature sum

of the ponderomotive and the static frequencies.

ωx,LMT
=

√

ω2
p,LMT

− ǫω2
z,LMT

(4.30)

=

√

e2V 2
0 η

2

2m2Ω2
T ℓ

4
eff

− 2ǫκeU0

md2
eff

ωy,LMT
=

√

ω2
p,LMT

− (1 − ǫ)ω2
z,LMT

(4.31)

=

√

e2V 2
0 η

2

2m2Ω2
T ℓ

4
eff

− 2(1 − ǫ)κeU0

md2
eff

ωz,LMT
=

√

2κeU0

md2
eff

(4.32)

Table 4.1 provides a few examples of the calculation of the total trap frequencies

given a specific geometry. The mass of the ion used in calculating the frequencies

was 111Cd with an RF frequency of ΩT/2π = 50MHz. The values for η, ǫ, and κ were

taken from Figs. 4.5 and 4.13.
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a=40µm
d=10µm
w=10µm
b=100µm

α = 4
δ = 1

ℓeff = 21µm
deff = 59µm

η = 0.7
ǫ = 3
κ = 0.3

V0 = 40V
U0 = 20V

ωp
,LMT

/2π = 20MHz
ωz

,LMT
/2π = 8.7MHz

ωx
,LMT

/2π = 13MHz
ωy

,LMT
/2π = 23MHz

ωz
,LMT

/2π = 8.7MHz

a=40µm
d=2µm
w=2µm

b=100µm

α = 20
δ = 1

ℓeff = 20µm
deff = 58µm

η = 0.43
ǫ = 3.5
κ = 0.26

V0 = 20V
U0 = 1V

ωp
,LMT

/2π = 6.7MHz
ωz

,LMT
/2π = 1.8MHz

ωx
,LMT

/2π = 5.8MHz
ωy

,LMT
/2π = 7.3MHz

ωz
,LMT

/2π = 1.8MHz

a=80µm
d=2µm
w=2µm

b=160µm

α = 40
δ = 1

ℓeff = 40µm
deff = 89µm

η = 0.38
ǫ = 3.2
κ = 0.28

V0 = 35V
U0 = 0.9V

ωp
,LMT

/2π = 2.6MHz
ωz

,LMT
/2π = 1.2MHz

ωx
,LMT

/2π = 1.5MHz
ωy

,LMT
/2π = 3.2MHz

ωz
,LMT

/2π = 1.2MHz

Table 4.1: Sample calculations for trap performance. A trap frequency of ΩT /2π = 50MHz was assumed for a 111Cd ion.
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4.6 Microtrap Principal Axes

Principal axes are the axes along which it is possible to describe the motion of an

ion in the total potential as a three-dimensional uncoupled harmonic oscillator. This

means that the motion of the ion along each axis is independent of the other two

spatial coordinates. The equations of motion for an uncoupled harmonic oscillator

are

ẍ = −ω2
xx, etc. (4.33)

An uncoupled harmonic oscillator corresponds to a potential with symmetries along

the principal axes. Since the RF ponderomotive potential (Eq. 4.16) is radially sym-

metric, the principal axes of a linear ion trap are determined by the static potential.

The principal axes of an ion trap are of concern when considering laser cooling an ion

in the trap. Laser cooling along all three dimensions of motion is possible only if the

laser wave vector ~klaser has a vector component along all three principal axes. The

symmetry of the microtrap is such that the z-axis is a principal axis, therefore, the

axes of concern are in the xy plane. It is possible to rotate the principal axes by ap-

plying different static voltages to the electrodes, which give rise to an xy cross-term

in the static potential.

To find the new principal axes, one can rotate the coordinate system via Eq. 4.34.

x = x′ cos θ + y′ sin θ

y = −x′ sin θ + y′ cos θ (4.34)

This rotation can be applied to the potential with an xy cross-term of magnitude λ

U ′

LMT
=
κ2U0

d2
eff

(

−ǫx2 − (1 − ǫ)y2 + λxy + z2
)

(4.35)

to find an angle at which the cross term in the rotated coordinate system (λ′x′y′)
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vanishes. This new coordinate system, rotated about the z-axis by an angle θ, now

determines the principal axes of the trap. The angle at which the cross-term vanishes

is found as a function of the coefficient of the cross-term λ and the geometric factor

ǫ.

tan(2θ) =
λ

2ǫ− 1
(4.36)

The static axial potential can then be written in an uncoupled form, showing explic-

itly the new principal axes x′ and y′.

U ′

LMT
=
κ2U0

d2
eff

(

−ǫ′x′2 − (1 − ǫ′)y′2 + z2
)

(4.37)

where ǫ′ = ǫ cos(2θ) + λ
2
sin(2θ) + sin2 θ.

A simple point charge potential model can be used to provide a qualitative idea

of how the principal axes may be rotated. Twelve charges are fixed at the corners of

three rectangles as shown in Fig. 4.14(a). The positions of eight charges of value +q

are at (±a/2,±d/2,±b) and an additional four with charge −q at (±a/2,±d/2, 0).

A Taylor expansion of the point charge potential where b≫ a, d can be written as

Upoint =
U0

r2
0

(

−ǫx2 − (1 − ǫ)y2 + z2
)

(4.38)

where U0 = 2q/(4πε0r0), r0 =
√

(a/2)2 + (d/2)2, and ǫ = (2a2−d2)/(a2 +d2). If two

charges are increased from q to q′ on either end-cap as in Fig. 4.14(b), the principal

axes are rotated. Alternatively, one could increase the negative charge on two of the

four point charges in the z = 0 plane. This would correspond to applying a negative

static potential to two of the center electrodes in the linear microtrap and is more

effective at rotating the principal axes. The potential in the point charge model,

with the addition of these modified charges, becomes

Upoint =
2(q + q′)

(4πε0)r3
0

(

−ǫx2 − (1 − ǫ)y2 + λxy + z2
)

(4.39)
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Figure 4.14: Charge model for principal axis rotation. (a)Unrotated static 12 point charge potential,
shown as cross section in the z = 0 plane. (b) By changing the charge on four of the eight end-
cap points, the principal axes rotate. (c) The same result can be achieved by applying additional
negative charge to the center electrodes. The aspect ratio of α = 4/3 was used to illustrate the
rotation of the axes of symmetry of the potential.
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where now, the xy cross term has a coefficient

λ = 6
q − q′

q + q′
ad

a2 + d2
(4.40)

Substituting Eq. 4.40 into the condition for the rotation angle (Eq. 4.36), and using

the explicit form for ǫ in the point charge model, the rotation angle can be expressed

as a function of the applied charges and the trap aspect ratio (α = a/d, the tip-to-tip

cantilever separation over the layer spacing).

tan 2θ =
1 − q′/q

1 + q′/q

2α

α2 − 1
(4.41)

There are several features of this model that give a qualitative understanding of the

rotation of the principal axes. First, for a given trap aspect ratio α, by increasing

the ratio of charges, one can rotate the principal axes a fixed amount. However, as

the aspect ratio increases, the amount of rotation that can be given the principal

axes by changing the charge ratio is decreased, eventually approaching zero.

The principal axes rotation in the xy plane for the linear microtrap as a function

of the applied voltage on two diagonally opposing center electrodes is shown in Fig.

4.15. The aspect ratio was fixed at α = 20 and δ = 1. The other two center electrodes

were held at static ground with all eight end-cap electrodes at U0 = 1V. As discussed

above, by applying small voltages to the appropriate center electrodes, it is possible

to rotate the principal axes so that laser cooling is effective.

4.7 Future Research

A new design for a microfabricated linear ion trap has been discussed. Calcula-

tions of the RF ponderomotive potential have shown a surprising degree of isotropy

near the center of the trap, even for very high aspect ratios. For high transverse

electrode aspect ratios, the trap strength approaches 1/π times that of a comparable
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Figure 4.15: Microtrap principal axis rotation. The principal axis rotation from the xy axis shown
in Fig. 4.2(a) as a function of the applied voltage on two diagonally opposing center electrodes. The
other center electrodes were held at static ground with the end-cap voltages fixed at U0 = 1V. The
trap dimensions are a = 40µm, d = 2µm, w=2µm, with all electrodes having a width of 100µm.

hyperbolic electrode structure. This may be of importance in the design of micro-

traps in applications such as Cavity QED [68] and miniature mass spectrometers

where conventional ion trap designs can not be used. Geometric scaling factors for

the linear microtrap provide an easy comparison between these new trap designs and

conventional ion traps, facilitating implementation in future experiments.

Further investigations will require actual fabrication and experimentation with

this new type of trap and include an investigation of the patch potentials on the

surfaces of the doped semiconductors, the limiting electric field, and laser scatter

from the small aperture. These factors are all technical in nature and should not

prohibit the future implementation of this novel linear microtrap design. The actual

fabrication and performance of the GaAs trap is discussed in Section 5.2.
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CHAPTER V

Trap Fabrication

There are many different geometries and configurations that can be used to trap

ions that range from a simple asymmetrical ring-and-fork trap to a complicated

gold-plated laser machined alumina substrate. In this Chapter, the fabrication and

assembly of the linear gold-plated alumina trap is detailed. The fabrication of the first

monolithic semiconductor ion trap based on conventional GaAs MEMS technology

is also discussed.

The gold-plated alumina linear trap described in this Chapter has been used

extensively in quantum information experiments [69, 70, 21, 71, 72, 73]. In addition,

the novel three-layer design and fabrication technology was extended to the first two-

dimensional array of ion traps, including the first example of shuttling an ion around

a corner [74]. The GaAs trap was also successfully loaded, with details reported ion

Ref. [33].

5.1 Gold-plated Alumina Linear Trap

The first of the two traps discussed in this Chapter is based on a two-layer design

used at NIST in earlier experiments [13, 75]. This design, however, uses three layers

of electrodes, allowing for three-dimensional compensation of stray electric fields for

the minimization of excess micromotion (see Section 2.3). In addition, the use of
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a single layer for the rf electrode allows the geometry to be extended into more

complicated junctions [74].

5.1.1 Electrode Layout All linear traps can be modeled with the simple geometry

of the basic linear rf trap [62]. Four parallel rods are placed on the corners of a

rectangle such that, when the right rf voltages are applied, they provide trapping

ponderomotive potentials in the transverse plane (transverse to the length of the

rods). To trap the ions along the length of the rods (the axial direction), static

voltages are applied to end-cap electrodes of one type or another. A simple schematic

drawing of a linear trap is shown in Fig. 5.1.

rf electrodes

rf ground
static electrodes

ion crystal

Figure 5.1: Four rod linear trap illustration. An illustration of a four rod linear trap. Shown are
the rf electrodes and the static electrodes needed for three-dimensional confinement of ions.

The gold plated alumina trap is a variation of a linear trap where the rf ground

electrodes have been split into two pieces and separated by the width of the trap. The

result looks like six rods set in two planes. Two different substrate thicknesses were

used as well as two spacer layers to electrically isolate the gold electrodes, creating a

seven-layer stack of ceramic substrates. The top and bottom substrates were used for

the static axial confinement electrodes and were 254 microns (10 mils) thick. They
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were separated from the rf layer by alumina substrates where the rf layer and the

spacer layers were both 125 microns (5 mils) thick. The stack thus was assembled

with: a static electrode layer, a spacer layer, the rf layer, then a second spacer and

finally a static electrode layer. Each substrate had 4 assembly holes drilled in it that

were aligned in the final assembly with steel dowel pins, 1 mm diameter, 6 mm long.

A fifth hole was originally cut to serve as an alignment pin, but it was discovered

that alignment was easier if that pin was left out. The entire stack was held together

with thick alumina mount bars. The mount bars had blind holes drilled in them to

match the assembly holes of the substrates. The stack was placed on the dowel pins

on top of one of the mount bars. The other bar was placed on top of the stack and

the entire assembly was held together with four screws (4-40 thread) with spring lock

washers to provide even compression. The complete assembly is drawn in Fig. 5.2

and shown in a photo in Fig. 5.3.

Figure 5.2: Ceramic linear trap design. The design for the assembly of the linear trap. Shown are
the 7 layer substrate stack, the two mount bars and the four screws used to clamp the mount bars
down onto the stack.

The transverse plane of the trap is illustrated in Fig. 5.4. The static electrode
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Figure 5.3: Assembled ceramic trap photo. A picture of the gold plated alumina linear trap
assembly. The dark regions are the gold plated electrodes on the alumina substrates.

layers act as the rf grounding planes as well as providing the axial confinement

potential and the static compensation voltages for minimizing micromotion. There

is no potential applied to the spacer layer- it only separates and electrically isolates

the rf layer from the static electrode layers.

rf ground/

static electrodes

rf electrodes

rf ground/

static electrodes

spacer

spacer

200 µm

Figure 5.4: Transverse illustration of ceramic trap. The transverse diagram of the gold plated
alumina trap. The gap distance shown is 200 µm. The thickness of the rf and spacer layers is 125
µm and the thickness of the static electrode layers is 250 µm. The chamfer angles on all layers is
45 degrees.

5.1.2 Alumina Substrate Fabrication These alumina substrates were purchased from

CoorsTek ceramics company polished on both sides and dimensioned as discussed
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below. The laser machining was done by a company called Resonetics. The outer

dimensions of the substrates are not critical; a large dimension of 25 mm and a

smaller dimension of 20 mm was used to give enough room on the substrate for the

gold patterning and the on-board filtering electronics. The static electrode substrate

and the rf substrate were cut so that they overlap with their long dimensions not in

the same direction. The spacer layer was cut 20 mm by 20 mm to fit between the

static and rf layers without protruding.

A central gap, 5 mm long and nominal width 200 µm was cut in the static electrode

for the trapping region. The static electrode layers, shown in Fig. 5.5(a,d), had four

slits cut perpendicular to the trap gap, used to ensure electrical isolation between

the center electrodes and the end electrodes. The slits were cut so that there is a 375

µm long center electrode. The slit width was 25 µm and the length was a total of 1.9

mm from the edge of the substrate to the back of the slit. The edges along the trap

gap of the static electrode substrates were chamfered at 45 degrees from the outside

of the trap structure, giving length of the chamfered part is 250 µm. However, the

laser machining of the substrates typically left a rough edge at the tip of the chamfer.

To smooth this rough edge, the center edge was cut vertically, leaving a 20 µm high

vertical drop at the tip. A SEM photo of the tip is shown in Fig. 5.6 that shows this

edge.

The spacer layers (see Fig. 5.5(c)) had a rectangle 9 mm by 10 mm cut out of

the center to isolate the trap from the insulating surfaces. The c-cut is 3 mm wide

and was cut to prevent rf shorts going through the spacer substrate. This effectively

isolated the gold patterning on the rf electrode from any direct path through material

to the gold patterning on the static electrodes.

The rf layer (Fig. 5.5(b,e)) had a similar 5 mm long gap cut in the middle. The
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chamfer on this substrate was cut from both sides to a length of only 62 µm, leaving

a nominal gap width from tip to tip of 200 µm. This chamfer also has a vertical edge,

about 20 µm thick cut at the end to clean up the edges from the laser machining. In

order for the laser machining to be aligned properly, two 75 µm diameter holes were

drilled in the ceramic substrates along the center of the gap, 1 mm from the edge of

the gap length. These holes were used for aligning the machine for the chamfered

cuts.

(a) (b)

(c)
(d)

(e) (f )

Figure 5.5: Ceramic trap three electrical layers. (a)The static electrode substrate. (b) The rf
substrate. (c) The spacer substrate. (d) A close-up view of the static electrode substrate gap. (e)
A close-up view of the rf substrate gap. (f)One of the mount bars.

The mount bars used to sandwich the entire structure together were 45 mm long
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Figure 5.6: A SEM photo of the tip of the chamfered edge of the static electrode substrate. Note
the vertical edge that is approximately 20 µm thick.

by 20 mm wide and were 4 mm thick. The inner rectangle is 35 mm long and 10

mm wide. The 5 blind holes were machined with a 1 mm diameter and were sunk

3 mm deep. The four end through holes were 3 mm in diameter. The mount bars

were machined conventionally by a company named Mindrum.

5.1.3 Gold Electrode Plating The laser-machining of the alumina substrates formed

the physical structure of the trapping electrodes. The actual delivery of rf and static

potentials to the trapping zone was accomplished by plating a gold layer on top of

the alumina. The gold was patterned to allow for on-board rf filtering electronics to

be mounted directly to the static electrode substrates.

The gold patterning on the alumina substrates was fixed using physical masks.

Various iterations of the trap used both gold sputtering and e-beam evaporation

techniques to deposit the gold through the physical masks, onto the substrate. The

process, however, is similar. The physical mask was held in contact with the substrate
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directly above the evaporation source. The source was either heated or ablated,

coating the alumina with a thin layer of titanium (for adhesion, typically about 20

nm thick) and then gold (thickness ranging from 0.1 µm to 2 µm, depending on the

process). The sputter tool allowed for a thicker gold layer to be deposited on the

substrate, but the gold was typically rougher in appearance and seemed to have more

surface defects. Both sides of the static electrode and rf substrates were coated so

the gold would completely cover the area of the alumina near the center of the trap.

The rf was coated with the same physical mask on both sides, whereas the static

electrodes had two separate masks- a top mask with patterning for the surface mount

electronics, and a bottom mask to cover the center of the trap. The masks are shown

in Fig. 5.7. The masks are designed to allow gold to coat the center electrodes, but

not far enough back along the slits so that the center and end electrodes short.

The electrodes were designed with the capability to move the ions in all three

dimensions, allowing the position of the ion to be shifted so that it corresponded with

the rf node. This minimizes ion micromotion and provides the cleanest environment

for doing quantum logic. In order to get compensation in all three directions, the

static electrodes were configured to be able to apply static potentials to both the

top and bottom layers and to all three segments of the static electrode. It is not

necessary to have control of all 12 available static electrodes as that proves to have

redundant control. The use of six electrodes is sufficient to control the ion in all

three dimensions while minimizing the number of needed electrical feed-throughs

and filtering electronics. The electrode positions are shown in Fig. 5.8. By adjusting

potentials on electrodes a and e with respect to the potentials on b and f, the ion is

shifted in the z direction. By changing the potential on the d, e, and f electrodes,

the ion is moved in the x direction. Likewise, by changing the potential on a, b, and
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(a) (b)

(c)

Figure 5.7: Design for physical masks for the rf and static electrodes. (a) The bottom mask for
the static electrode. The rectangle shape in the middle is open, allowing gold to plate the center.
(b) The top static electrode mask. The patterning is set to allow surface mount rf filters to be
attached to the chip. The center of the pattern is open. (c) The rf physical mask lets gold plate
the electrodes and then brings the gold lead off to the side of the substrate.
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d, the ion is moved in the y direction.

a

b

c

d

e

f

grounded

static electrodesa

x

y

z

Figure 5.8: Electrode layout for the static electrode layers in the alumina trap. Shown are the top
and bottom static electrode layers (the rf layer, in between, is not shown). Each electrode is labeled
with a circle- those with letters indicate static electrodes that can have arbitrary potentials. The
other six (solid filled circles) are held at ground.

5.1.4 Surface-mount Filters The static electrodes serve a dual purpose as both

confinement electrodes and as rf grounding electrodes. This is accomplished by

placing near the trap region, low-pass filters that shunt the rf back to the ground

provided by the rf resonator (see Sec. 2.7.

After plating each substrate with gold, surface mount electronics were placed in

the appropriate positions to create the pi-network low-pass filter for each of the

six static electrodes. The schematic diagram for the pi-network is shown in Fig.

5.9. The right side of the filter is the actual electrode at the trap. The left side is

fed off of the alumina substrate and out of the vacuum chamber through an 8 pin

electrical feed through (ISI part number 9412009 $140). The resistors used are 1 kΩ
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surface mount resistors with gold bond pads from Amitron (part number R2A1508-

1001J3G0, $1/resistor). They are rated to 0.56 W and 120 V. The capacitors

are from Novacap (part number 0402B102J251P, $1/capacitor) and are nominally

1000pF with palladium-silver contacts, rated to 250V.

1 kΩ

1000 pF 1000 pF 

a

1 kΩ

Figure 5.9: Low-pass filter schematic. A schematic diagram of the low-pass pi-network filters used
on chip to make the static electrodes act as rf ground. The left side of the circuit represents the
electrical feed through and the right side (circle with a letter) is the actual electrode.

Both the capacitors and the resistors were mounted on the alumina substrate

using gold ribbon, attached with a wire bonding machine. The K&S 4129 deep

access wire bonder was used with a titanium wedge (Small Precision Tools part

number VR45-TI-1950-1/16-3/4-CGM, $70/wedge). The gold ribbon (99.99% pure,

Semiconductor Packaging Materials, $10/ft) used to connect the electronics to the

gold plating on the substrate was 0.015 inches wide and 0.0005 inches thick. The

parameters used on the wire bonder depend on the actual capacitors and resistors

and required some experimentation to make good electrical and physical connections

to both the surface-mount electronics and the gold plating. Maximum power, force

and time available on the machine, as well as a heated wedge and work holder, were

used to attach the gold ribbon firmly to the components and the substrate. The

resistors were attached in a two step process. First, gold ribbon was attached to

both ends of component and left hanging off the ends as short streamers. Then,

the component was placed and held by hand in the appropriate position on the gold
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plated alumina substrate. An empty wire bonder wedge (no gold ribbon inserted)

was used to bond the gold ribbon to the gold plated substrate on both sides of the

component. This process is illustrated in Fig. 5.10.

(a)

(b)

gold ribbon

component

substrate

bond point

gold plating

Figure 5.10: Capacitor wire-bonding diagram. To attach the on-chip pi-network low-pass filter
components, first bond the gold ribbon to the component (a), leaving a tail of ribbon. Bend the
ribbon down so that it holds the shape of the component and bond the tail to the gold bond pad
(b) on the alumina substrate.

Finally, to ensure that the components did not become disconnected, ceramic

cement was used to fix them in place on the substrate. Care was taken to ensure

that all the components, along with the ceramic cement areas, fit inside the available

space in between the mount bars. The electrodes on the alumina substrates were

attached to the vacuum feed-throughs via several long gold ribbons that were wire-

bonded to the substrate on each of the electrode bond pads. Each piece was then

cleaned using standard vacuum cleaning procedure, as outlined in Section 2.4.3.

These ribbons were connected to small Constantan foil flags using a spot welder (see

Sec. 2.4.5) after the trap stack was assembled and installed in the vacuum chamber.

109



5.1.5 Alumina Trap Assembly The trap stack was assembled in the following pro-

cedure:

1. One mount bar was placed with blind holes up and the steel dowel pins inserted

in the 4 blind holes.

2. The bottom static electrode layer was placed on the pins with the electronics

side facing down. The electrodes were lined up to give the configuration shown

in Fig. 5.8.

3. A spacer layer was placed on top of the static electrode layer with the c-gap

facing to the left.

4. The rf layer was placed next, with the rf gold leads pointed off the left side,

aligned with the c-gap in the spacer layer.

5. The next spacer layer was added with the same orientation as the previous.

6. The top static electrode layer was placed with the electronics side up, again

with the proper orientation to give the correct electrode pattern.

7. The top mount bar was placed, aligning the blind holes with the dowel pins.

8. The bolts, lock washers and nuts used to clamp the mount bars were put through

the corner through-holes, leaving the nuts loose enough to adjust the trap align-

ment. Looking through a microscope, the rf and two static electrode layers were

aligned so that the trap gaps were parallel in all three layers.

9. The bolts and nuts were tightened to fix the trap assembly in the proper position.

The entire trap assembly was then mounted in the vacuum chamber on a custom-

made jig, attached to groove grabbers (Kimball Physics part number MCF-GG-

CT02-A, $62) in the 4.5 inch diameter window in the hemisphere. The gold leads
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from each of the electrodes were then either spot welded to an electrical feed through

(via a Kapton coated wire with a Constantan foil flag) or to a grounding plane

[Fig. 5.11].

Figure 5.11: Completed alumina trap in the vacuum chamber. The surface mount electronics for
filtering the rf from the static electrodes are visible between the large ceramic mount bars. Each
electrode was attached to a wire that then was attached to a vacuum feed-through.

5.1.6 Alumina Trap Operation Several FEA models were made of the alumina

trap before actual operation (Chapter III). An initial evaluation of the linear trap

geometry (for example in Fig. 5.4) suggests that, by the symmetry of the electrodes,

the principal axes are the geometric axes of the trap electrodes. If this were the case,

the laser for Doppler cooling would not have a component along the y-axis (Fig. 5.8)

and ions in the trap would not crystallize in that direction. Following the procedure

from Section 4.6, the rotation of the alumina trap principal axes were modeled to

learn how to rotate the axes in the xy plane, such that the Doppler-cooling laser had

a component along each of the two axes.

The model was made using the Maxwell3D software package (Section 3.3) and
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(a)

(b)

(c)

(d)

(e)

(f )

x

y

Figure 5.12: Alumina trap rotated principal axes potentials. The geometric xy axes are shown in
the center of the figure. Each entry represents a cross-section of the static potential for a single set
of endcap and center electrode voltages. The principal axes are extracted by fitting to the direction
of greatest curvature in the potential and the orthogonal direction. (a) Endcap: 1 V, Center: -0.5 V
(b) Endcap: 1 V, Center: -0.1 V (c) Endcap: 1 V, Center: -0.2 V (d) Endcap: 0 V, Center: -1 V
(e) Endcap: 1 V, Center: 0.1 V (f) Endcap: 1 V, Center: 0 V
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the electrodes were set such that all six endcap electrodes (Fig. 5.4(a,b,e,f)) were

held at the same voltage, as were the center electrode (Fig. 5.4(c,d)) voltages. The

model was run to a 1.75% error level with 87,655 tetrahedra in the final potential.

The bounding box was fixed at 8 mm by 8 mm by 4 mm. The potential in the xy

plane is shown in Fig. 5.12 for a number of endcap and center voltages. Note that

the principal axes are rotated from the geometric axes for non-zero center electrode

voltages. The center electrodes break the symmetry of the trap, as they are only

applied to two of the four electrodes. Breaking the geometric symmetry allows for

the rotation of the principal axes and, therefore, efficient Doppler cooling. Actual

operation of the trap used endcap and center electrode voltages with similar ratios

Vendcap/Vcenter, as the absolute scale is not important to the rotation of the principal

axes. The model shows a rotation of up to 45◦ from the principal axes (Fig. 5.13(a)).

In addition, the static potential geometric factor was also evaluated for the different

voltages and is shown in Fig. 5.13(b).

The axial trap frequency ωz was also extracted from the model as a function of dif-

ferent endcap and center voltages. Measurements of the actual trap frequency taken

from various experiments are compared to the model trap frequencies in Fig. 5.14 as a

function of the quadrature frequency sum
√

V 2
endcap + V 2

center of the endcap and center

electrode voltages. This simple dependence does not fully model the trap behavior,

as the actual operation of the trap did not use symmetric endcap voltages. The data

in Fig. 5.14 used an average of the different endcap voltages in the quadrature sum.

Both the model data and the experimental data were fit to ωz = a
√

V 2
endcap + V 2

center,

with the fits shown in the figure. The axial trap frequency, from Eq. 4.28, is expected

to be dependent on the square root of the potential, as seen in Fig. 5.14.
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Figure 5.13: Alumina principal axes rotation. (a) The rotation angle of the principal axes as a
function of the endcap-to-center voltage ratio. The points from Fig. 5.12 are highlighted. (b) The
geometry of the static potential (Eq. 4.27) also changes for different voltage ratios.
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Figure 5.14: Alumina trap axial frequency. Measured axial trap frequencies in the alumina trap
as a function of the quadrature sum of the endcap and center Voltages. The data are fit to

ωz = a
√

V 2
endcap + V 2

center. Also shown are trap frequencies from the three-dimensional model of

the linear trap along with a similar fit to just those data.
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5.2 GaAs Microtrap Assembly.

The fabrication of the GaAs microtrap constitutes the first ion trap made from

a monolithic substrate using conventional semiconductor processing techniques [33].

This section describes the basic fabrication procedure as well as the equipment used

to mount the microtrap into the vacuum chamber. Also included are some prelimi-

nary data about the performance of the microtrap. The microtrap design was based

on models described in Chapter IV.

5.2.1 GaAs substrate fabrication The microtrap was fabricated from four alter-

nating layers of aluminum gallium arsenide (AlGaAs) and gallium arsenide (GaAs)

epitaxially grown on a GaAs substrate as illustrated in Figs. 5.15 and 5.16. The wafer

(Fig. 5.15a) consists of a doped substrate on top of which are four layers grown by

molecular beam epitaxy. Directly above the substrate is a 4 µm layer of Al0.7Ga0.3As,

chosen for its insulating properties and selective etching versus GaAs. On top of it

is a 2.3 µm layer of silicon-doped (3 × 1018 e/cm3) GaAs, 4 µm of Al0.7Ga0.3As and

2.3 µm of doped GaAs. As shown in Fig. 5.15, a series of dry and wet etch procedures

define the cantilevered GaAs electrodes. The final step undercuts the Al0.7Ga0.3As

from the edges of the GaAs cantilever by about 15 µm to shield the trapped ion from

the exposed insulator. Figure 5.16 shows a scanning electron micrograph of the final

structure.

The GaAs layers were formed into cantilevered electrodes surrounding the free-

space trap region. A through-hole was etched in the substrate allowing clear optical

access. The electrodes were electrically isolated from each other and from the doped

GaAs substrate by the interleaved AlGaAs layers (thickness h = 4 µm). These

insulating layers were undercut ∼ 15 µm from the tips of the GaAs cantilevers to
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shield the trapped ion from stray charge on the exposed insulator. The electrodes

were segmented along the axis of the linear trap, as shown in Fig. 5.15. Each of the

four segments had an axial width of w = 130 µm and was separated from adjacent

segments by a 25 µm gap. The tip-to-tip separation between opposing cantilevers

in the plane of the chip was s = 60 µm. The rf potential was applied to all axial

segments of the top GaAs cantilevers on one side of the trap and bottom cantilevers

on the opposite side. Static potentials were applied to the other cantilevers, which

were held near radiofrequency ground with on-board filters. Ions were trapped in one

of two zones with appropriate static potentials applied to the four segments. Each of

the local trap zones was primarily controlled by three adjacent segments: two endcap

segments surrounding a center segment nearest to the ion. Mechanical resonances

of the cantilevers were expected to occur in the 1-10 MHz range [32], with quality

factors expected to be of order 103.

5.2.2 Trap Assembly The GaAs ion-trap chip is attached to a ceramic chip carrier

and attach 25-µm-diameter gold wires from the bond pads on the trap to the chip

carrier, with a single wire connecting radiofrequency electrodes and individual wires

going from the static-electrode bond pads to the chip carrier electrodes. The static

electrodes are shunted to ground through 1,000 pF surface mount capacitors attached

to the chip carrier using a similar process as described in Section 5.1.4, and our mea-

surements show that the induced radiofrequency potential on the static electrodes is

reduced to less than 1% of the applied radiofrequency potential [Fig. 5.17]. The chip

carrier is then plugged into an ultra-high-vacuum-compatible socket [Fig. 5.18],that

is permanently connected in the vacuum chamber [Figs. 5.19, 5.20]. This arrange-

ment allows for fast turnaround time; replacing an ion trap does not involve changing

any other components inside the vacuum chamber [Fig. 5.21].
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Figure 5.15: Fabrication process for a semiconductor ion trap. (a) The structure grown by
molecular beam epitaxy consists of alternating GaAs/AlGaAs membrane layers on a GaAs sub-
strate. (b) Backside etch removes substrate material for clear optical access through the chip.
(c) Inductively-coupled plasma etch through membrane creates access to submerged GaAs layers,
and gold/germanium bond pads are deposited for electrical contacts to the trap electrodes. (d)
A further inductively-coupled plasma etch through the membrane defines and isolates the can-
tilevered electrodes, and a hydrofluoric acid etch undercuts the AlGaAs insulator material between
the electrodes.
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Figure 5.16: Scanning electron microscope image of a monolithic GaAs semiconductor linear ion
trap. TOP: Ion trap chip with seven axial segments (28 electrodes) cantilevered over a rectangular
through-hole (black). The 28 gold bonding pads are visible as bright squares, along with a single
bond pad at the left connecting to the substrate beneath. In the experiment, ions are trapped in a
similar structure with four segments instead of seven. The tip-to-tip separation of electrodes across
the gap is s = 60 µm. BOTTOM: Closeup of a single ion trap segment, clearly showing the upper
and lower GaAs layers separated by h = 4 µm. The microscope was a JEOL 6500.
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Figure 5.17: A close-up view of the completed microtrap in vacuum. The gold wires connected the
die to the LCC are visible. The ceramic capacitors used to filter the rf from the static electrodes
are glued around the perimeter of the LCC and also wire-bonded to the LCC.
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Figure 5.18: Microtrap chip carrier socket design. The leadless chip carrier (LCC) used to mount
the GaAs die containing the microtrap was custom designed to fit the 52-lead LCC. To make the
socket UHV compatible, it was machined from MACOR, a soft, brittle ceramic. Stainless steel pins
were inserted in the channels and glued in place to make electrical contact to the LCC.

Rf potentials were applied to the trap using a helical resonator of unloaded quality

factor Q≈ 500 and self-resonant frequency 54.9 MHz (see Sec. 2.7.1). When a ca-

pacitive coupler was impedance matched to the resonator-trap system, the resonant

frequency fell to 15.9 MHz, and the unloaded quality factor of the system dropped

to 50. Breakdown of the AlGaAs layer appears to limit the amount of rf voltage

that can be applied to the trap. Static potentials as high as ∼ 70 V were applied

between top and bottom cantilevers on a separate trap sample without breakdown,

and a radiofrequency potential amplitude as high as V0 = 11 V at 14.75 MHz be-

fore breakdown. Nonlinear current-voltage behaviors were observed across the GaAs

electrodes, where the measured current depended upon the polarity of the applied

voltage and even the level of room lights at particular voltages. However, none of

these effects were measurable at applied potentials below ∼ 40 V and are thus not
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Figure 5.19: Microtrap vacuum chamber mount. The jig that held the microtrap in the hemisphere
vacuum chamber was designed to hold both the trap and the oven/e-gun assembly in one block.
This expanded view of the jig shows the plate used to fix the LCC to the socket (blue), the die
(gray), the socket (magenta), the aluminum bar to hold the socket in the vacuum chamber (green)
and the oven/e-gun “firing range” (shaded). The block was first assembled as a unit then attached
to the hemisphere using groove-grabbers through the green block.
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Figure 5.20: The LCC mounted in the socket via an early clamp system. This is a photograph of
the LCC mounted in the MACOR socket. The stainless steel connector pins that terminate below
the LCC are visible.

Figure 5.21: The LCC mounted in the socket using the final squeeze plate. It was found that
the four clips did not hold the LCC to the stainless steel pins with enough force to maintain good
electrical contact. The larger aluminum squeeze plate did a better job of maintaining good electrical
contact.
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expected to play a role in the operation of the trap.

5.2.3 Ion Image in Trap A single cadmium ion was loaded in the trap and imaged

with a charge-coupled-device camera to a nearly diffraction-limited spot with f/2.1

optics, where f is the focal length, as displayed in Fig. 5.22. Storage lifetimes in

excess of 1 h were observed, but a histogram of many loads shows an exponentially-

distributed confinement time with a mean lifetime of 10 min when the ion is contin-

uously Doppler-cooled.

Figure 5.22: Microtrap ion image. An image of a single trapped Cd+ ion along a view perpendicular
to the chip plane after ∼ 1 s of integration. The ion fluoresces from applied laser radiation directed
through the chip at a 45 angle and nearly resonant with the Cd+ 2S1/2-

2P3/2 electronic transition
at a wavelength of 214.5 nm. The fluorescence is imaged onto a charge-coupled-device camera with
an f/2.1 objective lens, resulting in a near-diffraction-limited spot with ∼ 1 µm resolution at the
ion. The profile of the electrodes is also clearly visible as scattered radiation from a deliberately
misaligned laser that strikes the trap electrodes. The vertical gap between the top and bottom set
of electrodes is s = 60 µm.

The secular frequency of the trapped ion were measured by applying a weak,

variable frequency potential to one of the electrodes and observing changes in the ion

fluorescence owing to the resonant force while it is continuously laser-cooled . For an

applied rf potential amplitude of V0 = 8.0 V at a drive frequency of T/2 = 15.9 MHz,

and static potentials of 1.00 V on the endcap electrodes and 0.33 V on the center

electrodes, the axial secular frequency was measured to be z/2 = 1.0 MHz. The

measured transverse secular frequencies were x/2 = 3.3 MHz and y/2 = 4.3 MHz,

indicating a radiofrequency trap stability factor of q = 0.62 [34]. These measurements

were consistent with a 3-dimensional numerical simulation of the trapping potential,

which further indicates that one of the transverse principal axes of the trap is rotated
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∼ 40◦ out of the plane of the chip (Chapter IV).
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CHAPTER VI

Precision Lifetime Measurement

The focus of this work now changes from advanced trap development to ultrafast

pulsed laser interactions with a single ion, the first of such work to be done. As

described in the Introduction, these experiments are the first steps toward the re-

alization of new types of scalable quantum computation. The first experiment [76]

describes a measurement of the 5p 2P3/2 and 5p 2P1/2 excited state lifetimes in a

single Cd+ ion and are the most accurate measurements of these excited state life-

times to date. This experiment served as an initial pulsed laser-ion experiment and

enabled us to learn the operation of the mode-locked ultrafast laser and learn how

to control the laser-ion interactions.

6.1 Background

Precise measurements of atomic data are of great interest throughout many fields

of science. Lifetime measurements are of particular importance to the interpretation

of measurements of atomic parity non-conservation [77], tests of QED and atomic

structure theory [78], and even astrophysical applications [79]. Because of this, new

and more accurate ways of measuring excited state lifetimes are constantly being

investigated. Previous methods include time-correlated single photon techniques

[80, 81, 82, 83, 84, 85], beam-foil experiments [83], fast beam measurements [86, 87],

126



electron-photon delayed coincidence techniques [88, 89], luminescent decay [90, 91],

linewidth measurements [92], photoassociative spectroscopy [93], and quantum jump

methods [94].

This chapter describes excited state lifetime measurements using a time-correlated

single photon counting technique. The experiment uniquely combines the isolation

of single laser-cooled trapped ions with the precise timing of ultrafast lasers. This

method, designed especially to eliminate common systematic errors, involves selective

excitation of a single trapped ion to a particular excited state (lifetime of order

nanoseconds) by an ultrafast laser pulse (duration of order picoseconds). Arrival

of the spontaneously-emitted photon from the ion is correlated in time with the

excitation pulse, and the excited state lifetime is extracted from the distribution of

time delays from many such events.

By performing the experiment on a single trapped ion [81, 82, 94], we are able

to eliminate prevalent systematic errors, such as: pulse pileup that causes multiple

photons to be collected within the time resolution of the detector, radiation trapping

or the absorption and re-emission of radiation by neighboring atoms, atoms disap-

pearing from view before decaying, and subradiance or superradiance arising from

coherent interactions with nearby atoms. By using ultrafast laser pulses [80], we

can eliminate potential effects from applied light during the measurement interval

including AC Stark shifts, background laser light, and multiple excitations which can

also lead to pulse pileup.

With this setup, at most one photon can be emitted following an excitation pulse.

While this feature is instrumental in eliminating the above systematic errors, it would

appear that this signal would require large integration times for reasonable statistical

uncertainties. However, with a lifetime of only a few nanoseconds, millions of such
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excitations can be performed each second, thus potentially allowing sufficient data

for a statistical error of under 0.1% to be collected in a matter of minutes [81].

Figure 6.1: The experimental apparatus for the lifetime measurement. (a) A picosecond mode
locked Ti:sapphire laser is tuned to four times the resonant wavelength for either the 5p 2P1/2 or
the 5p 2P3/2 level of Cd+. Each pulse is then frequency-quadrupled through non-linear crystals,
filtered from the fundamental and second harmonic, and directed to the ion. An amplified cw diode
laser is also frequency quadrupled and tuned just red of the 2P3/2 transition for Doppler cooling of
the ion within the trap. Acousto-optic modulators (AOM) are used to switch on and off the lasers
as described in the text. Photons emitted from the ion are collected by an f/2.1 imaging lens and
directed toward a photon-counting photo multiplier tube (PMT). The output of the PMT provides
the start pulse for the time to digital converter (TDC), whereas the stop pulse is provided by the
reference clock of the mode-locked laser. (b) The relevant energy levels of Cd+. (c) An asymmetric
quadrupole trap. (d) A linear trap.

6.2 Experiment Setup

A diagram of the experimental apparatus is shown in Fig. 6.1. Individual cadmium

ions are trapped and isolated in one of two rf quadrupole traps. First, the experiment

is conducted using an asymmetric quadrupole trap of characteristic size ∼0.7 mm [95]

[Fig. 6.1(c)]. The entire experiment is then repeated in a linear trap with rod spacings

of 0.5 mm and an endcap spacing of 2.6 mm [Fig. 6.1(d)]. Both traps have secular

trapping frequencies on the order of ω/2π ∼ 0.1 − 1.0 MHz.
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Two types of laser radiation are incident on the ion: pulsed and continuous wave

(cw) lasers. The pulsed light is from a picosecond mode-locked Ti:Sapphire laser

(see Appendix C) whose center frequency is resonantly tuned to provide excitation

to one of the 2P states [Fig. 6.1(b)]. For excitation to the 5p 2P1/2 (5p 2P3/2) state,

each pulse is frequency quadrupled from 906 nm to 226.5 nm (858 nm to 214.5

nm) through phase-matched LBO and BBO nonlinear crystals. The UV is filtered

from the fundamental and second harmonic via dichroic mirrors and directed to

the ion with a near transform-limited pulse width of tuv ≈ 1 ps. Since the pulsed

laser bandwidth (∼0.40 THz) is much smaller than the fine-structure splitting (∼74

THz), selective excitation to the different 2P excited states is possible. Each pulse

has E ≈ 10 pJ of energy, which will excite the ion with a probability of approximately

ten percent1:

Pexc = sin2
√

(γ2/4πIs)(Etuv/w2
o), (6.1)

where γ is the atomic linewidth, Is is the saturation intensity, and wo ≈ 6 µm is the

beam waist. This pulsed laser is also used to load ions in the trap via photoionization

by tuning to the neutral cadmium 1S0-
1P1 resonance at 228.8 nm. Once loaded, a

single ion will typically remain in the trap for several days.

After the ion is loaded, it is crystallized within the trap via Doppler cooling on

the D2 line at 214.5 nm using the cw laser. This laser is tuned approximately one

linewidth to the red of resonance and localizes the ion to under 1 µm. Residual

micromotion at the rf drive frequency (∼40 MHz) is reduced via offset electric fields

supplied from compensation electrodes [41]. We estimate the kinetic energy from

this micromotion to be under 1 Kelvin.

Following excitation from the pulsed laser, the spontaneously emitted photons

1It would be possible to increase the data rate by increasing this excitation probability, however, it was kept to
near 10% since higher pulsed laser powers also tend to load extra ions into the trap.
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Figure 6.2: Lifetime data with response function and residuals. (a) The response function of the
instrument when viewing light scattered off an electrode surface (no atomic physics). The main
peak asymmetry is due to the response time of the PMT of ≈ 0.5 ns, whereas the secondary peaks
are due to noise in the TDC triggering electronics (∼ 0.6% of the main peak amplitude). While laser
light scattered off an electrode is not a single photon source, this curve was taken at a sufficiently
low photon collection rate so that pulse pileup effects were negligible. (b) Data for the 5p 2P1/2

state taken in the quadrupole trap. The open circles show the data used to extract the excited
state lifetime (see text). (c) The deviations from the fit function (residuals). Due to the difficulty
in accurately defining a prompt peak background, the fit is not performed around the time of the
excitation pulse. This has a small effect on the residuals, but as discussed in the text, is virtually
independent of the resulting extracted lifetime.
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are collected by an f/2.1 imaging lens and directed toward a photon-counting photo

multiplier tube (PMT)2. The output signal of the PMT provides the start pulse

for the time to digital converter (TDC), whereas the stop pulse is synchronized to

the reference clock of the mode-locked laser. This time-reversed mode is used to

eliminate dead time in the TDC. The PMT used is a Hamamatsu H6240 Series PMT

of quantum efficiency ≈ 20%, and the TDC is an ORTEC model 9353 time digitizer

that has 100 ps digital time resolution with no interpolator, accuracy within 20 ppm,

less than 145 ps time jitter, and an integral non-linearity within 20 ps rms.

In the experiment, an acousto-optic modulator (AOM) is used to switch on the

cw beam to Doppler cool the ion for 500 ns. Following the cooling pulse, a reference

clock from the pulsed laser (synchronized with the laser pulse train) triggers an AOM

in the pulsed laser beam and directs a number of pulses to the ion (≈ 15 pulses, with

adjacent pulses separated by ≈ 12.4 ns). The repetition rate of this cycle is limited to

1 MHz due to the update time of the pulse generator, and during a given excitation

pulse the success probability of detecting an emitted photon is ∼ 2 × 10−4. This

gives an average count rate of about 3000 counts per second and thus an expected

statistical precision of

∆τrms/τ ≈ 0.25%/
√
T , (6.2)

where τ is the excited state lifetime and T is data collection time in minutes.

6.3 Data Fit and Systematic Shift

Despite the absence of previously mentioned common systematic effects, possible

effects that still must be considered in this system include Zeeman and hyperfine

quantum beats [96]. Zeeman quantum beats have no significant effect (shifts of

2Due to the chromatic aberration of this imaging system, state-selective light collection between 2P1/2 and 2P3/2

is also achieved.
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< 0.05%) when working in sufficiently low magnetic fields (< 0.5 Gauss), whereas

hyperfine beating is eliminated by using an even isotope of Cd that has no hyperfine

structure (i.e. 110Cd+). Potential effects from off-resonant laser light - AC stark

shifts, background counts, etc. - are also greatly reduced or eliminated in this exper-

iment by taking data only when the cw cooling beam is switched off via the AOM.

Hence, immediately following the excitation pulse, the only light present is the single

spontaneously emitted photon from the ion. Other possible effects such as relativis-

tic shifts or isotopic dependencies are negligible. Because this technique is devoid of

these typical systematic effects, the only significant errors are those arising from the

particular equipment used, as discussed below.

To determine the excited state lifetime, the data in a 12.4 ns range for each laser

pulse are summed and time-inverted. These spectra are corrected for uncorrelated

background events and then fit to a single exponential lifetime τ . As the start time

of the fit is stepped-out from the peak [97], the fitted lifetime for the experimental

data has an expected systematic bias of 3 to 5 percent (a natural consequence of the

convolution of the of the timing system response function [Fig. 6.2(a)] with the pure

exponential decay of the excited state). This effect can be further exacerbated by the

presence of “prompt” events from background laser light from the ultrafast excitation

pulse that is scattered from the apparatus, described by an additional convolution of

a delta function at t = 0. The relative intensity of the prompt peak varies between

the four measurements, and depends upon the particular optical alignment in each

experimental run. The time response function distorts the spectrum from a pure

exponential and has the net effect of shifting events to longer times thereby increasing

the fitted lifetime by 3 to 5 percent. To account for these time-dependent shifts

and extract the true lifetime, a simulated spectrum is generated by convolving the
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measured time-response function with an exponential decay and delta-function at t =

0. The relative intensity of the prompt δ−function is determined by convolving a pure

exponential with the approximate true lifetime, intensity IP, and then subtracting

that from the real data for a difference intensity Idiff . The excess events are integrated

and converted into the δ−function scale;

δPP =
Idiff

IP

τ

10
. (6.3)

The simulated spectra and the real data are fit in precisely the same manner: the

start channel of the fit is successively stepped out from ts = 1 ns to ts = 6 ns in

0.1 ns increments. The parameter τ in the simulated spectra is varied to best match

the fitted data over the entire time range. The systematic error in the lifetime is

determined by varying τ until the data over the time range is no longer in statistical

agreement with the simulated spectra. While the resulting variation of the fits over

the full fitting range for the simulations are sensitive to the choice of the prompt

δ−function intensity (Eq. 6.3), the fitted lifetime over the range ts = 1.7 − 1.8 ns is

virtually independent of the prompt δ−function intensity and thus the results for the

lifetimes and the statistical error bar quoted in Table 6.1 are taken from this range

of ts [Fig. 6.3]. Doing so greatly reduces the systematic uncertainty from the prompt

delta function in all but one set of runs. The presence of an order-of-magnitude

larger prompt peak for the 2P1/2 transition measured in the linear trap, due to poor

optical alignment, results in a significantly larger variation in the fit over the time

range and hence the resulting systematic uncertainty for this data set is 3 times

larger than for the other three measurements. Despite this problem, the agreement

between the measured 2P3/2 lifetimes in both trap apparatus is nominal, giving us

great confidence in our technique to account for the much smaller effect of the prompt
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scattered events in the other three data sets.
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Figure 6.3: Lifetime fit crossing point. The lifetime fit of data showing that the fits all cross at
ts = 1.8 ns. The fit values were found using the procedure outlined in the text and were varied for
different values of δPP, Eq. 6.3. The range from ts = 1.7 − 1.8 ns is virtually independent of the
value of δPP and thus was used to find the value of the lifetime.

6.4 Error Analysis

There are several factors to consider when determining the error bar that results

from this analysis. The first is the statistical error that results from the fitting of

the data which we take to be the error from the fit at ts ∼ 1.8 ns. Normally, this is

simply the error bar quoted from the fitting program (POSFIT) for the start time

of the fit. However, for this data, the background level has been fixed and therefore,

the associated error must be determined. This depends strongly on the confidence of

the selected background value and, as previously mentioned, depends on which of the

individual experimental sets are handled. The statistical error from the background

comes by varying it over an appropriate range and looking for the variation of the
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fitted lifetime. The final statistical error quoted is the RMS average of the two error

bars.

There are two major systematic errors in the analysis. The first is the choice of

δPP used in the convolution. Since an attempt was made to use data with a small

prompt peak and the choice of lifetime is somewhat insensitive to the choice of δPP,

a very small systematic (probably negligible) of ∼ 0.001 ns is assigned to this error.

However, the fact that the resolution function requires a 5% systematic correction on

the measured data to determine the actual lifetime, requires careful consideration.

This depends strongly on the shape and intensity of the resolution function, the

shape and intensity of the prompt peak, and several other factors. A systematic

error due to the resolution function was assigned by exploring the range to actual τ

that encompass the fitted experimental data as shown in Fig. 6.4. This particular

fit for the linear trap for the P1/2 excited state shown in Fig. 6.4(a), which is in fact

the worst data set, requires that τ range from 3.06 ns to 3.14 ns to encompass all of

the data. The fit for the ring trap on for the same excited state, Fig. 6.4(b), is much

better. A systematic error due to the resolution function is therefore assigned to be

±0.040. Errors are quoted initially as τ± (fitted stat) ± (background stat).

6.4.1 Linear Trap 214: This data set consisted of 4 runs. Runs 1 and 4 had

clearly large prompt peaks (and less data) and were not used. Since the prompt

peaks in runs 2 and 3 appeared to be different the spectra were fitted independently.

Run 2 has 5.6 M events while run 3 has 4.2 M events. Both spectra has a large

amount of data in the wings with few prompt and decay events so the backgrounds

are determined by simply inspecting the left and right regions. Results for linear

214 run 2: 2.648 ± (0.003) ± (0.002) ns → 2.651 ± 0.004 ns and linear 214 run

3: 2.651 ± (0.003) ± (0.0035) ns → 2.651 ± 0.005 ns. The final averaged result is
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Figure 6.4: Lifetime Error Estimation Data. (a) The lifetime fits for the P1/2 excited state mea-
surement in the linear trap with several different values of τ from the simulated spectra. All the
simulated spectra use a value of δPP = 11 for the δ-function prompt peak. (b) The lifetime fits for
the same P1/2 excited state measurement in the ring trap, with δPP = 2, a much smaller prompt
peak.
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2.649 ± (0.0032) ± (0.010) ns.

6.4.2 Ring Trap 214: This data set consists of 2 runs both of which have a very

small prompt peak. There is very little data in the wings of run 1 and it was not

possible to determine the background; hence this data set was not fit. There are

sufficient wings in set 2 to extract background information, however there is also a

large prompt/decay intensity as well. This necessitated extracting and summing 3

peaks in the right wing and 2 peaks in the left wing to fit the background. The

lifetime was held fixed and the background determined. There are 25 M events

in ring set 2. The result for ring 214 run 2 is: 2.646 ± (0.0013) ± (0.0016) ns →

2.646 ± 0.002 ns. The final result is 2.646 ± (0.002) ± (0.010) ns.

6.4.3 Linear Trap 226: This data set consisted of one run. The spectrum has a large

amount of data in the wings with few prompt and decay events so the background

is determined by simply inspecting the left and right regions. There are 26M decay

events. This data had the largest prompt by far (δPP ∼ 12) and hence was difficult

to fit given the sensitivity of the fitting to the resolution function. The result for

linear 226 is: 3.132± (0.002)± (0.001) → 3.132±0.002 ns. While the statistical error

is quite good, the larger prompt peak results in a large systematic of 0.003 ns. The

final result is: 3.132 ± (0.002) ± (0.030) ns.

6.4.4 Ring Trap 226: This data set consisted of 6 runs. The prompt peak for all

of the spectra was small and all spectra were summed for a total of 10 M events.

Unfortunately, the background wings were very small, never reaching the “true”

background seen in the other spectra. The small two peaks on the left and the

smallest peak on the right were extracted and fit independently in a manner similar

to ring 214. From this, it was possible to fit the background fairly well. The result

for ring 226 is: 3.148 ± (0.003) ± (0.004) ns → 3.148 ± 0.005 ns. The final result is
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Trap Error 5p 2P1/2 5p 2P3/2

Quadrupole . . . 3.148 2.646
Statistical 0.005 0.002
Systematic 0.010 0.010

Linear . . . 3.132 2.649
Statistical 0.002 0.003
Systematic 0.030 0.010

Final Results 3.148 ±0.011 2.647±0.010

Table 6.1: Lifetime measurement results (ns). The asymmetric quadrupole and linear trap results
are in good statistical agreement for the 2P3/2 transition and the final result is a weighted average of
the two values (the systematic error is common to both). For the 2P1/2 transition, the contribution
from the linear trap is omitted from the final result due to an order of magnitude larger prompt
peak giving rise to an unusually large systematic error.

3.148 ± (0.005) ± (0.010) ns.

The final values, summarized in Table 6.1 for each trap, are 3.148±0.011 ns for the

2P1/2 state and 2.647± 0.010 ns for the 2P3/2 state. The final error is the average of

the statistical error (less than 0.15% for all measurements) and the systematic error.

The systematic error of approximately 0.4% is due to the uncertainty in comparison

of the fitted values of the convolved spectrum and the experimental data. These

new results are plotted in Figure 6.5 along with previously reported theoretical and

experimental values for these levels. It is seen that the results reported in this paper

are the most precise measurements of these particular excited states of Cd+.

In this chapter, a new technique for measuring excited state atomic lifetimes was

described that is able to eliminate common systematic errors associated with such

measurements. The results herein are not only the most precise to date for Cd+, but

with absolute uncertainties of order 10 ps, are among the most precisely measured

excited state lifetimes in any atomic system. Furthermore, this technique has the

potential to achieve ∼100 ppm precision by eliminating the remaining systematic

effects due to prompt events and electronic noise. Other possible improvements

include increasing the data collection rate by using a faster pulse generator and
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Figure 6.5: Previous published results for the lifetime. Published results of theoretical (open circles)
and experimental (filled circles) lifetimes, including this work (filled diamonds), for the 5p 2P1/2

and 5p 2P3/2 states of Cd+. (a) Hanle Theory (1974) [98], (b) Theory (1975) [99], (c) Many Body Perturbation

Theory (1997) [100], (d-e) Pseudorelativistic Hartree-Fock Theory (2004) [85], (f) Phaseshift (1970), 2P1/2 value is
4.8 ns [101], (g) Beam-Foil (1973) [102], (h) Hanle (1974) [98], (i) Electron-Photon (1975) [89], (j) Hanle (1976) [103],
(k) Hanle (1976) [104], (l) Delayed Coincidence (1980) [105], (m) Beam-Laser (1994) [83], (n) Beam-Foil (1994) [83],
(o) Laser-Induced Fluorescence (2004) [85], (p) This Experiment.

TDC, and measuring a longer decay range by pulse-picking individual pulses.
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CHAPTER VII

Broadband Laser Cooling

7.1 Motivation

Laser cooling of atoms [38, 106] has become a cornerstone of modern day atomic

physics. Doppler cooling and its many extensions usually involve narrow-band,

continuous-wave lasers that efficiently cool atoms within a narrow velocity range

(∼ 1 m/s) that corresponds to the radiative linewidth of a typical atomic transition.

To increase the velocity capture range, several laser cooling methods were investi-

gated that modulate or effectively broaden a narrow-band laser [107, 108, 109, 110,

111, 112]. Modelocked pulsed lasers have been used to narrow the velocity distri-

bution of atomic beams within several velocity classes given by the bandwidth of

each spectral component of the frequency comb [113, 114, 115]. This chapter de-

scribes an experiment that demonstrated Doppler laser cooling of trapped atoms

with individual broadband light pulses from a modelocked laser [116].

To efficiently capture and cool high-velocity atoms, it is necessary to achieve a

laser bandwidth large enough to cover the large range of atomic Doppler shifts.

For example, Cd+ ions used in this experiment are initially created with kinetic

energy below 10 eV, which corresponds to an average velocity of about 4000 m/s

and a Doppler shift of ∆D/2π ∼ 20 GHz. Power broadening an atomic transition
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(saturation intensity Is and natural linewidth γ) would require a laser intensity of

I/Is ∼ (2∆D/γ)
2, (7.1)

which can be prohibitively high. For Cd+ (γ/2π ≃ 50MHz, Is ≃ 5000W/m2) this re-

quires I ∼ 1010W/m2. Modulating a narrow-band laser to generate high bandwidths

would allow for significantly less laser power, but it is technically difficult to generate

a 100 GHz wide modulation spectrum [108]. On the other hand, an ultrafast laser

whose pulse is a few picoseconds long will naturally have a bandwidth in the above

range, as well as sufficient intensity to excite the transition.

The laser cooling rate depends critically on the photon scatter rate, which for a

pulsed laser can be no larger than the laser repetition rate R (about 80 MHz for a

typical modelocked laser), given that the atom is excited with unit probability by

each pulse. Once excited, the atom decays back to the ground state faster than the

time period of the modelocked pulse train 1/R. In this case, the atom has little

memory between pulses, or equivalently, the absorption spectrum is a single broad

line of width ∆ ∼ 1/τ (τ is the pulse duration) and the frequency comb of spacing

R has very little contrast.

The equilibrium temperature for broadband pulsed laser cooling of trapped atoms

is expected to scale approximately with the laser bandwidth ∆ (Sec. 7.3), and is

much higher than typical narrowband laser-cooled atom temperatures. Still, cooling

of atoms in a strong trap to these higher temperatures can localize them to less

than the diffraction limit (∼ 1µm) of typical imaging optics. This cooling may thus

be sufficient for the implementation of quantum optics applications that interface

atoms with photons [27, 28, 29]. In these applications, it is necessary to mode-match

single photons emitted by individual atoms, so the atomic image quality is important,

while cooling to near the ground state of motion or within the Lamb-Dicke limit is
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not required [36].

7.2 Cooling Experiment Setup

LBO BBO

KNbO3 BBO

Camera

5p 2P3/2

226.6 nm
214.5 nm

AOM

(a)

(b)

Ion

f/2.1 lens

Ti:Sapphire ps

modelocked laser

Amplified cw

Diode laser

(c)

5p 2P1/2

5s 2S3/2

Figure 7.1: The broadband laser cooling apparatus. (a) Frequency-quadrupled pulses from a pi-
cosecond modelocked Ti:Sapphire laser (Spectra-Physics Tsunami) are tuned to the 5p 2P1/2 tran-
sition in Cd+ near 226.5 nm and directed onto the trapped ion. An amplified narrow-band diode
laser is also frequency-quadrupled and tuned a few linewidths red of the 5P 2P3/2 transition for
initial Doppler cooling of the ion. An acousto-optic modulator (AOM) is used to switch on and off
the narrow-band light. Photons emitted from the ion are collected by an f/2.1 imaging lens and
directed toward a photon-counting intensified camera. (b) Schematic drawing of the linear rf trap
used in the experiment, with the ion position indicated by the black dot in the middle. (c) The
relevant energy levels of Cd+.

The experimental setup is shown schematically in Fig. 7.1. Atomic cadmium ions

are trapped in a linear rf (Paul) trap [76], shown in Fig. 7.1(b). The spacing of

four 0.5 mm diameter rods is about 1 mm, while the separation of the two end cap

needles is about 2.6 mm. The strengths of the radial rf trap and the axial static

trap are adjusted to be approximately (but not exactly) equal: ωx ≃ ωy ≃ ωz ≃

2π×0.85 MHz, and the rf drive frequency is Ωrf = 2π× 35.8 MHz. The trapped ions

can be either Doppler-cooled with a narrow-band, cw laser tuned a few linewidths
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red of the 2S1/2 − 2P3/2 transition at 214.5 nm, or by a modelocked pulsed laser

tuned red of the 2S1/2 − 2P1/2 transition at 226.5 nm. Both laser beams are oriented

to have significant k-vector components along each principal axis of the trap to

efficiently cool all degrees of freedom of the trapped ion. The ion fluorescence is

collected by an f/2.1 lens and directed to a photon-counting intensified camera. The

inherent chromatic aberration of the imaging system allows us to selectively image

the 226.5 nm or the 214.5 nm fluorescence by simply adjusting the focus on the f/2.1

lens.

To measure the cooling efficiency of the modelocked laser, a single Cd+ ion is first

Doppler-cooled a using the narrow-band laser, with the pulsed laser also directed

onto the ion 1. The narrow-band laser beam is then turned off, and an image of the

trapped ion fluorescence is recorded using the camera, with an integration time of

up to 10 minutes. A series of broadband laser-cooled ion images taken at various

detunings δ=ωl−ωa, where ωl is the modelocked laser central frequency, and ωa is the

atomic resonance frequency, is shown in Fig. 7.2(a). The modelocked laser average

power is held constant at 1 mW, which corresponds to individual pulse energies of

about 12.5 pJ. The resulting image is analyzed to measure its rms width, xim, by

fitting its cross section to a Gaussian distribution [Fig.7.2(b)].

To determine the actual Gaussian rms radius xrms of the time-averaged ion posi-

tion, two effects must be considered. First is the finite resolution xr of the imaging

optics, which was measured by recording an image of a narrowband laser-cooled ion

[Fig7.2(c)], resulting in a near point-source with an estimated object size of ∼ 30 nm.

Fitting its cross section [Fig.7.2(d)] to a Gaussian distribution provides a good esti-

mate of xr = 1.15± 0.01 µm. This is about a factor of two larger than the expected

1The initial narrow-band laser cooling is only necessary for technical reasons and does not affect the results of the
pulsed laser temperature measurement. Once the narrow-band laser is turned off, the ion quickly reaches thermal
equilibrium that only depends on the pulsed laser properties.
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Figure 7.2: Ion images with the pulsed laser. (a) Images of a single trapped ion taken at various
pulsed laser detunings δ/2π indicated at the bottom. The pulsed laser beam direction in each image
is diagonal from lower-left corner to upper-right corner. (b) cross sections of the images in (a) along
the vertical direction. The solid lines are Gaussian fits to the data. (c) An image of a narrow-band
laser-cooled ion localized to ∼30 nm, with its cross section and a Gaussian fit plotted in (d).

diffraction-limited image size of about 0.55 µm, which can be attributed to an in-

complete correction of the spherical aberration of the f/2.1 lens. Using properties of

the convolution of Gaussian functions, the resolution-corrected image width is:

xcorr =
√

x2
im − x2

r . (7.2)

The second effect is the modulation of the ion brightness due to laser light intensity

variation across the waist, whose measured rms width is xw = 3.35 ± 0.15µm. The

true rms ion motion size is

xrms =
xwxcorr

√

x2
w − x2

corrsin
2(φ)

, (7.3)

where φ is the angle between the laser beam direction and the direction of ion image

cross section. The temperature is analyzed in the radial and the axial directions,

where φ = ± 45◦.

The effect of the ion micromotion (fast oscillations near the rf drive frequency)

on the image size is negligible in this experiment. With the proper compensation of

the background electric fields, the micromotion amplitude is [41]

xm =

√
2ω

Ωrf

xrms ≃ 0.035xrms, (7.4)
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where ω is the ion’s secular frequency along the particular principal axis. Broadening

of the image due to excess micromotion, which arises from an incomplete compensa-

tion of the background electric fields, is taken to be much smaller than the resolution

xr of our optics.

The ion rms velocity in the trap vrms along a principal axis is directly proportional

to the rms displacement: vrms = ωxrms. The temperature T of the ion (assuming a

normal distribution of its velocity) is then given by kBT = mv2
rms, where kB is the

Boltzmann constant, and m is the ion mass.

A summary of the results is shown in Fig. 7.3. For the ion temperature data

in Fig. 7.3(a), each point is measured using the procedure described above 2. The

absorption lineshape in Fig. 7.3(b) is taken in a separate experiment by measuring the

fluorescence rate of a single cold ion under a pulsed laser average power of 1 mW. For

this, a 100 µs narrowband laser-cooling cycle is interlaced with a 200 µs period when

only the pulsed laser light is incident on the ion and the ion fluorescence is collected.

There is a wide range of pulsed laser detunings in Fig. 7.3(a) for which the ion

temperature is well below 5 K, reaching as low as 1 K. These detunings correspond

to the region of high slope in the absorption line curve, as expected in Doppler

cooling [37]. The ion temperature increases sharply as δ approaches zero; it also

grows significantly on the far-red side of the resonance, where the cooling rate is very

slow due to low photon scatter rate, while additional background heating [117, 60]

presumably increases the equilibrium temperature of the ion.

The bandwidth of the laser pulses used in the experiment is measured to be

∆ ∼ 2π×420 GHz, as shown in Fig 7.3(b), which is almost four orders of magnitude

larger than the linewidth γ/2π ≃ 50.5 MHz of the 5p2P1/2 Cd+ excited state [76].

2Here, we present the analyzed temperature data for radial direction in the trap only (vertical in Fig. 7.2(a)). In
the axial direction (horizontal in Fig. 7.2(a)), the observed temperature is about 5 times lower. This suggests that
our simple theoretical model does not fully describe the cooling mechanism.
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Thus, the velocity-dependent (frictional) force that leads to cooling arises from the

laser line shape rather than the atomic line shape.

7.3 Theoretical Cooling Limit

The cooling mechanism can still be understood in terms similar to conventional

Doppler cooling [37]. The probability of absorbing a photon by the ion is velocity-

dependent, due to Doppler shifts. With the laser central frequency tuned to the

red of the atomic resonance (δ < 0), the atom has higher probability of absorbing a

photon when it is moving toward the laser beam, experiencing a blue Doppler shift.

This absorption reduces the atom velocity in the direction of motion. The following

spontaneous emission is random and equally likely in any direction; thus, the net

effect of absorption and emission is to lower the kinetic energy of the atom. For a

bound atom, as in the case of an ion in an rf trap, only one cooling laser beam is

necessary, provided that its k-vector has components along all three trap principal

axes [39, 40]. The expressions derived for cooling rate and the cooling limit remain

the same for a free atom and three pairs of counter-propagating cooling laser beams.

The average force due to scattering of photons from the laser beam experienced

by the atom along a principal axis in the trap in this configuration is:

F = ∆pRPexc, (7.5)

where ∆p = h̄k/
√

3 is the average momentum kick along the principal axis from

each photon absorption, with k being the photon’s wavenumber, R the modelocked

laser repetition rate, and we assume that ~k has equal components along each trap

axis [40]. The atomic excitation probability Pexc can be derived analytically for

hyperbolic secant pulses [118]

E0 sech(πt/τ) (7.6)
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Figure 7.3: A summary of the cooling measurements. (a) The measured radial ion temperature is
plotted against the pulsed laser detuning δ. The solid line represents the theoretically predicted
temperature [Eq. 7.13]. (b) Photon scatter rate from a single, cold ion is plotted against the pulsed
laser detuning. The vertical dashed line indicates the atomic resonance position, corresponding
to the wavelength 226.57 nm. The solid line is a fit to the data using sech2 spectrum [Eq. 7.7],
indicating ∆/2π ∼ 420 GHz and τ ≃ 1.3 ps
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of electric field amplitude E0 and duration τ , expected from the modelocked laser:

Pexc = sin2(θ/2) sech2(τ(δ + kv)/2), (7.7)

where θ is the Rabi rotation angle from a resonant laser pulse, τ is the pulse duration,

and v is the atom velocity component along the laser beam.

For small values of v, the force [Eq. 7.5] becomes

F ≃ F0 + βv, (7.8)

where the offset force

F0 = ∆pR sin2(θ/2) sech2(τδ/2) (7.9)

shifts the equilibrium position of the trapped atom by F0/(mω
2) ∼ 1 nm in our

trap [40], and

βv = ∆pkτR sin2(θ/2) sech2(τδ/2) tanh(τδ/2)v (7.10)

is a damping force for δ < 0, corresponding to red detuning of the laser, with the

cooling rate β/m. In our experiment, the maximum cooling rate β/m ≃ 2 sec−1.

This cooling is opposed by diffusion heating resulting from photons emitted by

the atom in random directions:

D =
1

3
(2Er)RPexc, (7.11)

where

Er =
(h̄k)2

2m
(7.12)

is the photon recoil energy, and the factor of 1/3 is due to the diffusion energy equally

distributed between the three degrees of freedom [40]. Equating the cooling power

βv2 to the heating power D, one can find the equilibrium temperature of the atom:

T =
h̄√

3τkB

1

tanh(τδ/2)
, (7.13)
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where substitutions for β and Pexc have been made. The lowest possible temperature

is similar to narrow band Doppler cooling, but with a final temperature of

T =
h̄γ√
3kB

. (7.14)

The predicted ion temperature T corresponding to Eq. 7.13 is plotted in Fig. 7.3(a)

in a solid line. Note that this line is not a fit to the data; rather, it is a theoretical

prediction based on the laser and trap parameters used in the experiment. The

theory and experiment are in a good agreement for the radial measurements, while

the measured axial temperatures (not shown in Fig. 7.3) were consistently lower than

the theory 3.

It is important to point out that the lifetime of the Cd+ 5p 2P1/2 excited state is

only 3.15 ns [76], while the period of the laser pulses is 12.5 ns. Thus, by the time the

next laser pulse arrives, the excited state population is only about 2%. This cooling

process is then primarily due to absorbing single photons from individual pulses, and

not due to an optical frequency comb effect [113, 114, 119]. For optimal cooling of

a given atomic species, the pulsed laser repetition rate should be of the order of the

atom’s excited state linewidth, while the energy in each laser pulse should correspond

to Pexc ≃ 1

The laser-cooling of a single, trapped atom by broadband, modelocked laser pulses

has been observed and quantified. The cooling is efficient, while the lowest temper-

atures are in single digits Kelvin. Such cooling of ions in strong rf traps localizes

them to under 1 µm, which allows diffraction-limited ion imaging. Lower tempera-

tures should be possible if longer modelocked laser pulses are used, as predicted by

Eq. 7.13, where the final atom temperature scales approximately as the inverse of

3Here, the analyzed temperature data are presented for radial direction in the trap only (vertical in Fig. 7.2(a)).
In the axial direction (horizontal in Fig. 7.2(a)), the observed temperature is about 5 times lower. This suggests that
our simple theoretical model does not fully describe the cooling mechanism.
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the pulse duration τ .ed and quantified. The cooling is efficient, while the lowest tem-

peratures are in single digits Kelvin. Such cooling of ions in strong rf traps localizes

them to under 1 µm, which allows diffraction-limited ion imaging. Lower tempera-

tures should be possible if longer modelocked laser pulses are used, as predicted by

Eq. 7.13, where the final atom temperature scales approximately as the inverse of

the pulse duration τ .
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CHAPTER VIII

Ultrafast S to P Rabi Oscillations

8.1 Motivation

Recent progress in trapped ion quantum computing has relied on the entangle-

ment of internal electronic states through the Coulomb-coupled motion of multiple

ions mediated by optical dipole forces [9, 10, 18, 20, 21, 22]. However, these entan-

gling operations require that the ions be kept in a pure motional quantum state,

or at least within the Lamb-Dicke regime, where the ions are localized to well be-

low an optical wavelength. Alternative entanglement schemes significantly relax this

stiff requirement at the expense of controlling a coupling between trapped ions and

ultrafast laser pulses [27, 28, 29, 24, 25, 26, 30].

In this Chapter, experiments are described that implement key components of

these alternative quantum logic gate schemes by using ultrafast optical pulses to

drive picosecond optical Rabi oscillations between the 5s 2S1/2 and 5p 2P3/2 states

in a single trapped cadmium ion [120]. Such an ultrafast excitation results in the

spontaneous emission of at most one photon which is crucial for the probabilistic

generation of entanglement between ions based on the quantum interference of pho-

tons [27, 28, 29]. By adding a second, counter-propagating ultrafast pulse, the atom

is excited from S1/2 to P3/2 then de-excited back to the S1/2 ground state. The
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resulting 2h̄k momentum kick from the pulse pair is a fundamental component of

ultrafast quantum logic gates [24, 25, 26]. When the ultrafast excitation drives an

initial superposition stored in S1/2 hyperfine qubit states of the ion, the frequency

of the spontaneously-emitted photon becomes entangled with the hyperfine qubit,

evidenced by the loss and recovery of contrast in a Ramsey interferometer. The

entanglement of trapped ion qubits with photonic frequency qubits is critical to the

operation of quantum gates between remotely-located ions [30].

8.2 Pulsed Excitation Experiments

A diagram of the experimental apparatus is shown in Fig. 8.1(a). Individual cad-

mium ions are trapped in a linear rf Paul trap with drive frequency ΩT/2π = 36 MHz

and secular trapping frequencies (ωx, ωy, ωz)/2π ≈ (0.9, 0.9, 0.2) MHz [76]. Fig-

ure 8.1(b) shows the energy levels of 111Cd+ relevant for the picosecond (ps) pulse

excitation. The bandwidth of the ps pulses (∼ 420 GHz [116]) is much larger than

both the ground state and excited state hyperfine splittings (14.5 GHz and 0.6 GHz

respectively) but is much smaller than the excited state fine structure splitting

(∼ 74, 000 GHz), enabling simultaneous excitation of all hyperfine states without

coupling to the 5p 2P1/2 excited state. In addition, the pulse length is much shorter

than both the 2.65 ns excited state lifetime and the oscillation period of the ion in

the trap (> 1 µs), allowing for fast excitations without spontaneous emission or ion

motion during the excitation pulse [76].

The ion is prepared in the F = 0,mF = 0 ground state (|↑〉) through optical

pumping [121]. The ion is then excited from |↑〉 to the P3/2 excited state F ′ =

1,m′

F = 0 (|↑′〉) by a single linearly polarized ps laser pulse [Fig. 8.1(b)]. Selection

rules prevent the population of the F ′ = 2,m′

F = 0 (|↓′〉) excited state. After
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Figure 8.1: Rabi oscillation experiment setup. (a) A picosecond mode locked Ti:sapphire laser is
tuned to four times the resonant wavelength of the ground state to 5p 2P3/2 transition in 111Cd+.
The 80 MHz pulse train is sent through an electro-optic pulse picker, allowing the selection of
single pulses while blocking all other pulses with an extinction ratio of better than 100:1 in the
infrared. This single pulse is then frequency-quadrupled through non-linear crystals, filtered from
the fundamental and second harmonic, and directed to the ion. The extinction ratio is expected to
be on the order of 108:1 in the UV. An amplified cw diode laser is also frequency quadrupled and
tuned just red of the S1/2 to P3/2 transition for Doppler cooling of the ion within the trap, optical
pumping to the dark state (|↑〉) and ion state detection using the σ+ cycling transition. Acousto-
optic modulators (AOMs) are used to switch on and off the cw laser and to shift the optical pumping
beam. Photons emitted from the ion are collected during state detection by an f/2.1 imaging lens
and directed toward a photon counting photo-multiplier tube. (b) The relevant energy levels of
111Cd+ where the π-polarized ultrafast laser pulse excites the ion from the ground state to the
excited state. Selection rules prohibit both the |↑〉 → |↓′〉 and the |↓〉 → |↑′〉 transitions. The three
possible decay channels for each excited state are shown with fluorescence branching ratios. (c)
The first ultrafast laser pulse coherently excites and the second pulse coherently de-excites the ion.
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waiting a time (10 µs) much longer than the excited state lifetime, the resulting

atomic ground state populations are measured through fluorescence detection [122].

All three F = 1 states are equally bright, while the F = 0 state is dark [71]. The

results for 60,000 runs at each pulse energy are fit to known bright and dark state

histograms [70] giving an average ion brightness shown in Fig. 8.2(a). The probability

of measuring a bright state is 1/3 the excitation probability of the P3/2 excited state,

as expected from the fluorescence branching ratios [Fig. 8.1(b)]. Therefore, the bright

state probability as a function of pulse energy is fit to Pbright = (1/3) sin2 (θ/2),

where the Rabi oscillation rotation angle θ = a
√
E for a single pulse energy E (in

pJ) and fit parameter a. The single fit parameter for the data shown in Fig. 8.2(a) is

a = 0.42 pJ−1/2, which on the same order as the estimated value (0.28 pJ−1/2) based

on the beam waist, pulse length, and pulse shape (Appendix C). The maximum

rotation angle was approximately θ = π, limited by the available UV laser power.

In order to achieve rotations larger than π, the first ps pulse is retro-reflected via

a curved mirror (radius 10 cm) and sent back to the ion as a second pulse. The

time delay between the two pulses is approximately 680 ps corresponding to the

position of the retro-reflecting mirror (an optical path delay of about 20 cm) giving

a probability of spontaneous emission of ∼ 23% between the pulses. The second

pulse changes the state population of the ion [Fig. 8.2(b)] by adding coherently

to the rotation of the first pulse. However, over many runs the relative optical

phase between these rotations is scrambled, owing to the thermal motion of the ion.

The rms extent of the Doppler-cooled motion is about twice the optical wavelength

(k
√

〈x2
ion〉 = η

√
2n̄+ 1 ≈ 1.9 where η ≈ 0.22 is the Lamb-Dicke paramter and n̄ ∼ 40

from Doppler cooling). Therefore, even though each pair of counter-propagating

pulses interacts with the ion on a time scale much faster than the motional period
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of the ion, there is an incoherent averaging over many runs of the optical phase

between the two pulses. For a two-level system without spontaneous emission and

with the same rotation angle θ for both pulses, an average of many experiments gives

an excited state population of sin2(θ) 〈cos2(kxion)〉. This has twice the Rabi rotation

angle but, after averaging over the motional extent of the ion, half the brightness of

the single pulse experiment (Appendix D). Numerical solutions to the Optical Bloch

Equations (OBE) for the relevant states including spontaneous emission are shown

in Fig. 8.2(b) for various attenuation levels of the second pulse due to imperfect

transmission of the vacuum windows, beam clipping on the optics, and imperfect

focusing (Appendix E). The OBE solution for 60% attenuation is in qualitative

agreement with the data compared to the ideal case, where the ion brightness is

larger than the expected maximum of 1/6 due to spontaneous emission and second

pulse attenuation.

8.3 Ramsey Experiments

To show coherence in the ultrafast excitation of the ion, these optical pulses

are inserted into a Ramsey interferometer consisting of two microwave π/2-pulses

(Ramsey zones). The ion is again initialized to the dark (|↑〉) state and the first

microwave π/2-pulse prepares the ion in the superposition |↑〉 + |↓〉 of the ground

state “clock” qubit, where |↓〉 is the F = 1,mF = 0 ground state. A single ultrafast

laser pulse of variable energy is sent to the ion and the resultant ion state is rotated

with a second microwave π/2-pulse, phase shifted with respect to the first after a

time delay sufficiently long to allow for spontaneous emission. The ion brightness is

measured as a function of the second microwave pulse phase, giving Ramsey fringes

[inset of Fig. 8.3(a)]. The contrast of the Ramsey fringe is extracted from a sinusoidal
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Figure 8.2: The ion bright state population as a function of pulse energy. (a) Each point represents
a collection of 60,000 runs where the ion was prepared in the dark state (|↑〉), a single laser pulse
was applied, and then the ion state was measured. The collection of runs is fit to known bright/dark
state histograms [70]. As the pulsed laser drives a π-pulse from the S1/2 to P3/2 states, the bright
state population approaches 1/3 (horizontal dashed line), determined by the spontaneous emission
branching ratio [Fig. 8.1(b)]. The data are fit to a single parameter giving a value a = 0.42 pJ−1/2.
(b) A second laser pulse, delayed by approximately 680 ps, further drives the ion, limited by the
spontaneous emission probability (23%) and attenuation between the first and second laser pulse
intensities. The solutions to the Optical Bloch Equations (OBE) are shown for a second pulse with
60% attenuation and no attenuation.
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fit and is shown as a function of pulse energy [Fig. 8.3(a)]. The single laser pulse

drives the ion to a superposition of the P3/2 excited state “clock” hyperfine levels

|↓′〉+ |↑′〉 [Fig. 8.1(b)]. Upon spontaneous emission of a π-polarized photon, the ion

hyperfine and photon frequency qubits (|νr〉 and |νb〉, νb − νr ≈ 13.9 GHz) are in

the entangled state |↑〉|νr〉 + |↓〉|νb〉 [30, 123, 124]. However, in this experiment the

photon is not measured in a controlled, precisely timed fashion. This corresponds

to tracing over the photon portion of the density matrix which leads to a loss of

coherence in the ion superposition, leaving the ion in a mixed state of |↑〉 and |↓〉.

Thus, a loss of coherence in the Ramsey fringes is consistent with prior entanglement

between the photon frequency qubit and the ion hyperfine qubit. The loss of contrast

as a function of the pulse energy is shown in Fig. 8.3(a) and is related to the ion

excitation probability [Fig. 8.2(a)] through spontaneous emission.

In order to show that this ultrafast coupling is coherent and that the emitted

photon is indeed entangled with the atomic qubit, a two-pulse experiment is per-

formed [Fig. 8.1(c)]. A second pulse (delayed from the first pulse by 680 ps) is sent

to the ion between the Ramsey zones. In each individual run, the second laser pulse

adds coherently to the first pulse with optical phase kxion as before. However, this

dependence on the optical phase can be eliminated by using an appropriate combi-

nation of counter-propagating π-pulses [71]. The recovery of contrast in the Ramsey

experiment shown in Fig. 8.3(b) indicates a coherent, controlled interaction where

the first pulse transfers the superposition up to the excited state and the second

pulse partly returns the population back to the ground state. The Ramsey fringes

accumulate a phase during the time t(≈ 680 ps) spent in the excited state that is

approximately ∆ωHF t = 18.9π, where ∆ωHF is the frequency difference between the

ground state and excited state hyperfine splittings. By reducing the delay between
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Figure 8.3: Ramsey fringe contrast. (a) The contrast of the phase curve in a Ramsey experiment
with the pulsed laser interjected between the two Ramsey zones as a function of pulse energy. The
contrast disappears with a π excitation because, on spontaneous emission, the photon is measured
and coherence in the ion superposition is lost. The solid curve is the OBE solution for the single
pulse. The inset shows the Ramsey fringes for no ultrafast pulse and for the maximum pulse energy.
(b) A second laser pulse, coherently driving the population back down to the ground state, partially
recovers the phase coherence of the ion with a phase shift of 18.9π. The inset shows the Ramsey
fringes for no laser pulses, a single π-pulse, and two ultrafast pulses. The OBE solution for 60%
attenuation of the second pulse is shown as the dashed line. The dotted line is the same model for
no attenuation of the second pulse.
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two π-pulses to be much less than the excited state lifetime, full Ramsey contrast

can be recovered.

Numerical solution to the Optical Bloch Equations (OBE) are again used to de-

scribe the ion-pulse interaction in the Ramsey experiments including spontaneous

emission. The value of the fit parameter a from Fig. 8.2(a) is used as the only free

parameter in the model, giving the solid curve in Fig. 8.3(a). The two curves from the

OBE in Fig. 8.3(b) use the value of a, the second pulse delay (680 ps), and are shown

for two different values of attenuation of the second pulse. The OBE solution for

60% attenuation describes well the disappearance and revival of the Ramsey fringe

contrast. The counter-propagating pulses also impart a momentum kick of 2h̄k to

the ion, but since this impulse is independent of the qubit state in this experiment,

this results in a global qubit phase and the motional state factors.

8.4 Excited State Hyperfine Splitting Measurement

The phase shift of the Ramsey fringes [inset of Fig. 8.4] is also used to make a

precise measurement of the frequency difference ∆ωHF between the ground state and

excited state hyperfine splittings. The curved retro-reflecting mirror was replaced by

a 7.5 cm lens and a movable flat mirror to control the pulse separation. The pulse

energy was set to give a π-pulse on the single S1/2 to P3/2 transition, and the retro-

reflected pulse recovers the phase coherence with a contrast of about 40%. The delay

of the second pulse is then varied by translating the mirror, and the phase of each

curve is extracted via a sinusoidal fit to the data. The phase as a function of pulse

delay is shown in Fig. 8.4 along with the linear least-squares fit. The slope of the line

gives a frequency difference of dφ/dt = ∆ωHF = 2π×13.904±0.004 GHz. Compared

with the known frequency of the ground state hyperfine splitting of 14.530 GHz, this
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yields the excited state hyperfine splitting of 626±4 MHz. This measurement is

insensitive to fluctuations in the laser pulse energy as well as small changes in the

ion position, as both of these change the contrast but not the phase of the Ramsey

fringes. The precision of this measurement is limited by statistics but, in principle,

this technique appears to be only limited by the accuracy of the pulse delay timing

as well as systematic effects common with trapped ion frequency standards [125].
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Figure 8.4: Excited state hyperfine splitting measurement. The phase of the Ramsey fringes as a
function of the time delay between two picosecond laser pulses, set by the linear translation of the
retro-reflecting mirror. The uncertainty in the time delay of each point is 0.1 ps and the uncertainty
in the phase is 0.01 rad. The slope of the line gives the frequency difference between the ground
state and excited state hyperfine splittings of ∆ωHF = 13.904± 0.004 GHz. The inset figure shows
three Ramsey fringes for three relative delays.

In conclusion, it was shown that with a single ultrafast laser pulse, one can drive

with near unit probability the optical S1/2 to P3/2 transition in a single trapped

cadmium ion. The coherent coupling between the atomic hyperfine qubit and photon

frequency qubit, shown in the disappearance and revival of Ramsey fringes, is the key

component for operating probabilistic quantum logic gates that are not dependent on

ion motion [30]. The resulting momentum kick is also crucial to ultrafast quantum
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logic gates using Coulomb-coupled ions without stringent motional requirements [25,

26].

161



CHAPTER IX

Conclusion

Throughout this work we have shown key components for building a scalable

trapped ion quantum computer. The techniques for ion trap modeling and desing

that were described in this work have been expanded and used by many researchers

in building advanced ion trap structures. The three-layer ceramic trap was used in

many quantum information experiments in our research group and was a successful

design. In addition, the use of three-layers made the design expandable to the first

two-dimensional ion trap experiments that included ion shuttling around a corner.

That advanced trap was based on the technology developed in this work.

The fabrication and successful operation of the GaAs microtrap was a key result

in opening the possibility of making semiconductor-technology based ion traps. In

order to scale up the number of traps in a given structure as well as to dramatically

increase the trap zone density, researchers have continued to pursue similar technolo-

gies including single-layer planar traps. Research is continuing in the development

of more advanced traps with better trapping characteristics for scalable quantum

computing.

Although most of the work in trapped ion quantum information has been done

using the quantum control of the common-mode motion of ions in tightly confined
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traps, there are other possible avenues of research that are, in principle, scalable.

The research described in this work involving the interaction of ultrafast laser pulses

with single ions is fundamental in the implementation of these alternatives. We have

shown that we can make a very precise measurement of the excite state lifetime, cool

using the ultrafast laser pulses, and that we can coherently control the excitation

of the electronic states of the ions. In addition, because we can excite superposi-

tion states, this allows the creation of quantum logic gates that use the ion-photon

entanglement.

Future work in ion-pulsed laser interactions include the application of spin-dependent

momentum kicks. It is possible to entangle Coulomb-coupled ions in thermal states

of motion using these ultrafast momentum kicks. Another direction of research is to

use the ultrafast excitations as a means of generating single-photon, single-ion en-

tangled states for the generation of remotely located entangled states of ions. Both

of these experiments are currently being pursued by researchers in our group.
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APPENDIX A

Coaxial Resonator Fields

The properties of a quarter-wave coaxial resonator can be calculated exactly.

Although the helical resonator (from Section 2.7.1) has a more complicated design,

the coaxial approximation is sufficient to understand the operation of the resonator.

From the resonator, it is necessary to know the relationship between the input power

P , the resonator Q and the maximum voltage applied to the trap V0. To find this

relationship, the fields inside the resonator must first be found. The current on the

center post of the resonator [Fig. A.1(a)] as a function of position and time is

I(z, t) = I0 sin(kz) cos(ω0t) (A.1)

where I0 is the maximum current, k = 2π/λ is the wavevector and ω0 = kc is

the natural frequency of the resonator. The magnetic field can be calculated from

Ampere’s Law (neglecting edge effects) and is

~B(ρ, z, t) =
µ0I0
2πρ

cos(kz) cos(ω0t)φ̂. (A.2)

for radial distance ρ from the center and azimuthal angle φ [Fig. A.1(c)]. The electric

field is straightforward to calculate from the magnetic field of Eq. A.2 and is

~E(ρ, z, t) =

√

µ0

ǫ0

I0
2πρ

sin(kz) sin(ω0t)ρ̂. (A.3)
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Note that the resonator is assumed to not be filled with any dielectric material. If it

were, the appropriate changes must be made to accommodate the material properties

in Eqs. A.2 and A.3.

z=λ/4z=0

ρ=a

ρ=b

ρ

z B

E

B

I(z,t)

B

E

E
B

(a)

(b)

(c)

Figure A.1: Electromagnetic fields in a coaxial resonator. (a) A side view of the coaxial resonator.
The current is carried on the center post and is grounded at the back. Electric and magnetic
fields vectors are show along with the current as a function of position along the z-axis. (b) The
magnitude of the electric and magnetic fields as a function of position along the z-axis. (c) The
direction of the electric and magnetic fields in a transverse view of the coaxial resonator. The
current is carried on the center post.

The voltage drop between the center post and the outside conductor in the coaxial

resonator can now be calculated from the electric field at the point z = λ/4, the

length of the quarter-wave resonator:

∆V =

∫ b

a

~E(ρ, λ/4, π/2ω0) · d~ρ (A.4)

where the voltage maximum at t = π/2ω0 was used. Because the electric field is

along the ρ̂ direction, the integral is straight-forward to carry out giving

∆V =

√

µ0

ǫ0

I0
2π

ln
b

a
. (A.5)

The electric field from Eq. A.3 can now be re-written in terms of the maximum
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voltage drop V0 ≡ ∆V .

~E(ρ, z, t) =
V0

(

ln b
a

)

ρ
sin(kz) sin(ω0t)ρ̂. (A.6)

The resonator Q = ω0U/Ploss is a function of the frequency ω0, the average energy

stored in the resonator U and the power lost in the resonator Ploss. In steady-state,

the power lost in the resonator is equal to the power sent to the resonator, P . The

average energy stored in the resonator can be calculated from the time average of

the electric field:

U =

〈
∫

V

ǫ0

∣

∣

∣

~E
∣

∣

∣

2

dV

〉

(A.7)

=
ω0

2π

∫ π/ω0

−π/ω0

∫

V

ǫ0

∣

∣

∣

~E
∣

∣

∣

2

dV dt (A.8)

=ǫ0

[

V0

ln b
a

]2
ω0

2π

∫ π/ω0

−π/ω0

sin2(ω0t)dt

∫ 2π

0

dφ

∫ b

a

1

ρ2
ρdρ

∫ λ/4

0

sin2(kz)dz (A.9)

=ǫ0

[

V0

ln b
a

]2
(

1

2

)

(2π)

(

ln
b

a

) (

λ

8

)

(A.10)

=
ǫ0πλV

2
0

8 ln b
a

(A.11)

The relationship between the wavelength and the frequency λ = 2πc/ω0, and the

speed of light c = 1/
√
ǫ0µ0 can be used to re-write Eq. A.11.

U =

√

ǫ0
µ0

π2V 2
0

4ω0

ln
b

a
(A.12)

The resonator Q can now be described in terms of the maximum voltage drop at

z = λ/4 and the applied power P

Q =ω0
U

Ploss

(A.13)

PQ =ω0

[

√

ǫ0
µ0

π2V 2
0

4ω0 ln b
a

]

(A.14)

PQ =

√

ǫ0
µ0

π2V 2
0

4 ln b
a

(A.15)
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This last equation can be inverted, solving for the voltage V0 giving

V0 =

[

4

π2

√

µ0

ǫ0
ln
b

a

]1/2
√

PQ (A.16)

which is the same as Eq. 2.21 with

ζ =

[

4

π2

√

µ0

ǫ0
ln
b

a

]1/2

. (A.17)

This scale factor is geometric in nature and for a ratio of b/a = 5, the scale factor is

ζ ≈ 16. This scale factor for the helical resonator is not the same, but experimental

evidence shows that it is still on the order of about 10.
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APPENDIX B

Analytic Solution of the Transverse Potential

Figure B.1: A linear microtrap model in the complex plane. The linear microtrap model in the
complex w plane with semi-infinite electrodes that terminate at ±a/2± id/2 with applied voltages
±V0/2.
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The cross-section of the linear microtrap can also be modeled as semi-infinite

electrodes in a complex plane. This model enables calculation of an analytic solution

for the geometric factor η in the limit of infinitely thin electrodes. Following the

analysis of parallel-plate capacitor fringe fields of Valluri et.al [126], the cross-section

of the left cantilever electrodes are described in the complex plane as lines that go

from negative infinity along the real axis and terminate at −a/2± id/2, as shown in

Fig. B.1. The right set of electrodes (not shown) are a mirror image across the x = 0

line and terminate at a/2 ± id/2. The electrodes are then mapped to an infinite

parallel plate capacitor. The function that does this mapping is

±2wπ

d
+
aπ

d
− 1 = z + ez. (B.1)

The positive value maps the parallel plate capacitor to the left set of electrodes in

the w plane, and the negative corresponds to the right set. The potential in the

strip between the two electrodes in the z plane is simply the potential between two

parallel plates in a capacitor, written in complex notation:

Φ =
V0

2π
Im(z), (B.2)

where Im(z) denotes the imaginary part of z.

To find the potential of the original electrode geometry, the inverse function of

Eq. B.1 is needed. With that inverse map the potential in the w plane can be

evaluated. The inverse map can be written in terms of the Lambert W function,

Wk(ξ), following [126].

z± = ζ± − Wk

(

eζ±
)

(B.3)

where ζ± = ±2wπ
d

+ aπ
d
− 1 is a scaled complex variable. The Lambert W function

y = Wk(x) is the solution to the equation x = y exp y. For complex variables, it is
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important to select the proper branch of Wk(ξ) when evaluating the function. The

appropriate branch is found using [126]

k =

⌈

Im(ζ) − π

2π

⌉

, (B.4)

where ⌈⌉ denotes the ceiling function which indicates that the argument inside the

ceiling function should be rounded up to the nearest integer.

If the tip-to-tip cantilever separation a is much greater then the layer separation

d (α = a/d ≫ 1), the potential at the center of the trap can be approximated as

the linear combination of the potential from both the left electrodes and the right

electrodes

Φ =
V0

2π
(Im(z+) + Im(z−)) . (B.5)

With this approximation (α ≫ 1) an asymptotic form of the Lambert W function

exists that leads to a simplification of the inverse map Eq. B.3. The principal branch

of the Lambert W function has an asymptotic form:

W0(ξ) ≈ ln ξ − ln(ln ξ), ξ ≫ 1. (B.6)

Inserting Eq. B.6 into Eq. B.3, the inverse map becomes: z ≈ ln ζ±. Expanding the

log function about w = 0, Eq. B.3 can be written:

z± = ln(
aπ

d
− 1) +

[

± 2πw

aπ − d
− 1

2

[

2πw

aπ − d

]2

+ . . .

]

. (B.7)

Since the potential is the linear combination of Im(z+) and Im(z−) (Eq. B.5) and the

linear terms are opposite in sign, only the quadratic term contributes to the potential

of the microtrap. Squaring the complex variable w = u + iv and keeping only the

second-order imaginary terms, one finds that the potential is

Φ = − 4πV0

(aπ − d)2uv. (B.8)
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By rotating the coordinate system about the origin by θ = π/4, the potential is

written in a form that allow for easy comparison with the quadrupole potential of

Eq. 4.11:

Φ =
2πV0

(aπ − d)2

(

u′2 − v′2
)

. (B.9)

The geometric factor η can be found for a microtrap with effective distance ℓeff =

√

(a/2)2 + (d/2)2.

η =
4π

(aπ − d)2 ℓ
2
eff

= π
α2 + 1

(απ − 1)2 . (B.10)

This analytic solution of the geometric factor is valid in the limit where the trap

aspect ratio is large: when the tip-to-tip cantilever separation is much larger then

the layer separation. The geometric factor asymptotically approaches η = 1/π in this

limit. The analytic solution (Eq. B.10) is shown as the solid line in Fig. 4.5. Note

that this complex model assumes infinitely thin electrodes which correspond to a

large value for the ratio of the layer separation to the layer thickness δ = d/w → ∞.

The values for η found via numerical simulations approach the analytic solution as

δ increases and also approach the asymptotic value of η = 1/π for large α.

In addition, the analytic model can be used to calculate the asymptotic values for

the ponderomotive potential depth and the maximum trap size along the weak axis

rmax. Inserting the asymptotic form of the Lambert W function (Eq. B.6) directly

into the potential (Eq. B.5) and evaluating the imaginary part, the potential can be

written directly as a function of u and v.

Φ =
V0

2π

[

tan−1

(

2v

2u+ a− d/π

)

+tan−1

( −2v

−2u+ a− d/π

)]

(B.11)
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The pseudopotential can then be directly evaluated, using a two-dimensional gradi-

ent, from Eq. 4.8. The maximum of the pseudopotential along the v-axis (v = rmax)

lies at

rmax =
1

2π
(aπ − d)

=
a

2
(1 − 1

πα
). (B.12)

The location of the potential maximum asymptotically approaches rmax = a/2 as the

aspect ratio goes to infinity. The trap depth is the pseudopotential evaluated at this

maximum:

ψ(rmax) =
e2V 2

0

4mΩ2
T

1

a2π2
(

1 − 1
απ

)2 . (B.13)

The analytic solution for the scaled trap depth is shown in Fig. 4.7 and approaches

the asymptotic value of 2694 [K·µm2/V2] for large α.
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APPENDIX C

Picosecond Pulse Generation and Characterization

C.1 Picosecond Generation

Generation of picosecond laser pulses in the infrared is done via the Millenia-

pumped Spectra-Physics Tsunami Ti:Sapphire laser. The Ti:sapphire cavity is ac-

tively mode locked using an acousto-optic modulator (AOM) as the means of shifting

cavity losses above and below the lasing threshold. In addition a Gires-Tournois In-

terferometer (GTI) is inserted into the cavity, fixing the pulse width of the laser in

the picosecond range, nominally at 2 ps. The wavelength of the cavity is tuned with a

birefringent filter (bi-fi) and can be set to sub-nanometer precision. The wavelength

is measured with the Burleigh wavemeter with the Tsunami not mode-locked. The

nominal wavelength is 906.28 nm (858.03 nm), four times the S1/2 to P1/2 (P3/2)

transition wavelength in singly ionized cadmium. With 10 W of pump power, the

Tsunami produces 1.7 W (2.5 W) average power in the IR.

The pulse shape is determined by the mode-locking mechanism. Because the

dominant pulse generating mechanism is the optical Kerr effect, the electric field in

the time domain has the envelope of a sech function [127]:

E(t) =

√

W

2τs
sech

(

t

τs

)

eiωt+ϕ (C.1)

where W is the pulse energy and τs is the pulse width.
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C.1.1 Pulse Width Measurement. The width of the intensity envelope can be

measured directly using an auto-correlator. The intensity of the pulse is

I(t) = Ipeak sech2

(

w
sech
t

τ
FWHM

)

(C.2)

with peak pulse intensity Ipeak, full width half max (FWHM) of the peak τ
FWHM

. The

scale coefficient w
sech

comes from the sech2 by solving for the FWHM of the function

f(t) = sech2(t). Since the maximum of this function is f(0) = 1, the FWHM is

twice the inverse function of f(t) = 1/2. This can be written as

w
sech

= 2 ln(1 +
√

2) ≈ 1.76. (C.3)

The functional form of the sech and sech2 functions can be seen in Fig. C.1.

Figure C.1: Functional form of sech pulses. The functional form of f(t) = secht, f(t) = sech2t
and a square pulse of width w

sech
.

An optical intensity autocorrelation measurement uses second-harmonic genera-

tion (SHG) to measure the overlap of two pulses. The autocorrelation function that
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is measured is

A(2)(τ) =

∫

∞

−∞

I(t)I(t+ τ)dt (C.4)

where the (2) indicates that this is a second-order autocorrelation. The intensity

envelope must be integrated to fit to the data. The autocorrelation not only gives

information about the pulse width, but it also gives information about the pulse

shape. A Gaussian pulse shape has a different autocorrelation from a sech pulse. The

difference in shape of the autocorrelation can be seen in Fig. C.2. The autocorrelation

function of the sech2 pulse is

A(2)(τ) =
3 (τ cosh τ − sinh τ)

sinh3 τ
(C.5)

and the autocorrelation function of the Gaussian pulse is

A(2)(τ) = e−τ2/4. (C.6)

The pulses from the Tsunami mode-locked laser were measured using the autocorre-

lation technique to have a pulse width of τ = 1.8 ps.

C.1.2 Pulse Power There is a relationship between he peak power of the pulses and

the average power. Because the average power is easier to measure experimentally,

this relationship can be used to extract the peak power. Average power is defined as

the time integral of the peak times the repetition rate R of the pulses

Pavg = R

∫

∞

−∞

Psingle(t)dt. (C.7)

The single pulse power can be written as

Psingle = Pmax sech2w
sech
t/τ

FWHM
. (C.8)

Integrating over the pulse width, the average power is

Pavg = aRτ
FWHM

Pmax (C.9)
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Figure C.2: Autocorrelation data and functional form of sech versus Gaussian pulses. The data are
the measured autocorrelation of the Tsunami pulsed laser. The two curves are not fits, but rather
sech2 and gaussian curves. The pulse width is approximately 1.6 ps.

where a = 2/w
sech

≈ 1.13 for sech2 pulses and a =
√

π/4 ln(2) ≈ 1.06 for Gaussian

pulses. The energy of a single pulse is found by inverting Eq. C.9.

E =
Pavg

R
= aτ

FWHM
Pmax (C.10)

C.1.3 Second Harmonic Generation. When a pulse is frequency doubled, the

electric field gets quadrupled. The change in the intensity envelope of the pulse after

the electric field is thus squared. The pulse width shrinks for the doubled pulse- the

new width is w(2)
sech

= 2 sech−1(1/21/4). The ratio of the fundamental to the harmonic

pulse widths is approximately 1.45. After a second SHG stage, the ratio of the initial

to quadrupled pulse widths is approximately 2.11 for sech2 pulses. This same factor

is 2 for Gaussian pulses. This relationship is

τ (4) = 1/bτ (0) (C.11)

where b = 2.11 for sech2 pulses and b = 2 for Gaussian. The (4) is for the fourth

harmonic (UV) of the fundamental (0) or (IR).
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C.2 Atomic Transitions.

The rotation of the atomic state in the Bloch sphere is dependent on the electric

field pulse area. For a simple square wave, or for cw radiation this is simply θ = gt,

where g is the Rabi frequency g = µE/h̄ and t is the time of the square wave. For

a pulse, the rotation is also the pulse area, but the electric field must be integrated

over the time duration of the single pulse. The rotation becomes

θ =
µ

h̄

∫

∞

−∞

E(t)dt. (C.12)

Alternatively, one could rewrite this in terms of Rabi frequencies, simplifying the

connection to experiment. Let

g(t) = gmax sech
w

sech
t

τuv
FWHM

(C.13)

where τuv
FWHM

is the width of the intensity envelope of the ultraviolet radiation, reso-

nant with the S1/2 to P3/2 transition. The rotation in the Bloch sphere then becomes

θ =

∫

∞

−∞

g(t)dt. (C.14)

This integral is evaluated, giving a rotation of

θ =
πgmaxτ

uv
FWHM

w
sech

. (C.15)

To make the connection with experiment, the saturation parameter, which relates

the Rabi frequency with the intensity of the pulse is used:

g2
max

γ2
=
Imax |c|2

2Is
(C.16)

where Imax is the maximum intensity of the pulse, γ is the linewidth of the P1/3 state,

Is is the saturation intensity for the transition, and |c|2 is the relevant Clebsh-Gordon

coefficient.
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In addition, the maximum intensity Imax is written in terms of the maximum

power, focused to a 1/e Gaussian waist of w (or beam area πw2:

Imax =
Pmax

πw2
(C.17)

Substituting back in, the rotation angle as a function of single pulse energy (Eq. C.10)

in the UV and the pulse width in the IR (Eq. C.11), which are the two parameters

easily measured in the lab is

θ2 =
π2

abw2
sech

γ2 |c|2 τ IR
FWHM

E

2Isπw2
. (C.18)

The first section is the factor that the non-square pulse shape contributes to the ro-

tation angle. For sech2 pulses, this factor is approximately 1.33. Using the following

experimental values: γ = 2π60.1 MHz, R = 80.5 MHz, Is = 7955 W/m2, |c|2 = 2/3

for σ+ polarization, a beam spot area of πw2 = 1.88 × 10−10 m2, and assuming

τ IR
FWHM

= 1.8 ps for sech2 pulses, the rotation, as a fraction of π is

θ = (1.33)(0.057)
√
E (C.19)

where the pulse width is expressed in ps and the pulse energy E. The first factor,

1.33 comes from the sech2, the second contains the atomic physics including the

beam area on the ion and the pulse width. Combining the two gives approximately

θ = 0.28
√
E. (C.20)

For a 1.8 ps pulse width, the pulse energy required for a π pulse is 130 pJ, or an

average power of 10 mW. The probability of being in the excited state, and therefore

detecting a spontaneously emitted photon is shown in Fig. C.3.
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Figure C.3: Excitation Probability as a function of laser pulse energy. Probability of making the
transition from the S1/2 ground state to the P3/2 excited state as a function of pulse width and
average pulse energy. The pulse energy is in the UV.
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APPENDIX D

Two-Level Ultrafast Rabi Oscillation

D.1 Introduction

The pulsed laser interaction can be described analytically because the electric

field pulse envelope is approximately a hyperbolic secant function. The following

will cover the basic formalism for the two-level Rabi oscillation problem with the

solution for the case of the hyperbolic secant pulses.

D.2 Simple Introductory Two Level Problem

D.2.1 Two Level Setup. The P3/2 excited state is denoted |e〉 and the S1/2 ground

state, is labeled |g〉. The frequency difference between these two states is the char-

acteristic frequency of the atom, ωa, and is an optical frequency of order 1500 THz.

The unperturbed Hamiltonion of the two-level system has eigenstates and energies

H|e〉 = h̄ωa|e〉 (D.1)

H|g〉 = 0. (D.2)

The wavefunction describing these states is a general superposition of both levels

ψ(t) = cg(t)|g〉 + ce(t)|e〉.

The Hamiltonian is modified with the application of the laser pulse, following [128]

H =
~p2

2m
− e2

4πǫ0
− ~µ · ~E = H0 − ~µ · ~E (D.3)
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where the electric field is

~E = ~E0(t) cosωlt (D.4)

where E0(t) = E0 secht/τs is a slowly (compared to the optical frequency) varying

envelope for the electric field with pulse width τs. The dynamics of the problem are

found in the solution to the Hamiltonian for the interaction term −~µ · ~E.

D.2.2 Schrödinger Equation. The time evolution of the wavefunction is described

by the Schrödinger equation using the unperturbed Hamiltonian of an atomic system

from Eq. D.3.

ıh̄
∂ψ

∂t
= H0ψ − ~µ · ~Eψ (D.5)

Writing out this equation in terms of the wavefunction amplitues and then taking

the product with 〈g| and 〈e|, one finds

ıh̄
∂

∂t
(cg(t)|g〉 + ce(t)|e〉) = H0 (cg(t)|g〉 + ce(t)|e〉)

−~µ · ~E (cg(t)|g〉 + ce(t)|e〉) (D.6)

ıh̄ (ċg(t)|g〉 + ċe(t)|e〉) = ce(t)h̄ωa|e〉

−~µ · ~E (cg(t)|g〉 + ce(t)|e〉) (D.7)

Now, taking the product with 〈g| and 〈e| to get the amplitudes by themselves:

〈g| [ıh̄ (ċg(t)|g〉 + ċe(t)|e〉) = ce(t)h̄ωa|e〉

−~µ · ~E (cg(t)|g〉 + ce(t)|e〉)
]

(D.8)

〈e| [ıh̄ (ċg(t)|g〉 + ċe(t)|e〉) = ce(t)h̄ωa|e〉

−~µ · ~E (cg(t)|g〉 + ce(t)|e〉)
]

(D.9)

The end result gives a set of coupled differential equations for cg(t) and ce(t).
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ıh̄ċg(t) = −〈g|~µ · ~E|e〉ce(t)

ıh̄ċe(t) = h̄ωa − 〈e|~µ · ~E|g〉cg(t)

(D.10)

A substitution is then made in this problem and the Rabi frequency is defined using

the amplitude of the electric field, but not the hyperbolic secant envelope.

Ω =
〈e|~µ · ~E0|g〉

h̄
. (D.11)

Using this in equation D.10, moving the constants to the right side of the equations,

and recalling the form of the electric field [Eq. D.4], one finds

ċg(t) = ıΩ sech(t/τs) cos(ωlt)ce(t)

ċe(t) = −ıωa + ıΩ sech(t/τs) cos(ωlt)cg(t).

(D.12)

The energy of the eigenstates are shifted to the atomic reference frame to make

the RWA.

ce(t) = c̃e(t)e
−ıωat. (D.13)

This is substituted in equation D.12 and the time derivative is taken. To match

notation, the substitution cg(t) = c̃g(t) is also made, which corresponds to a zero

energy shift. The equation for the excited state is simplified, giving

ċe(t) = ˙̃ce(t)e
−ıωat − ıωac̃e(t)e

−ıωat (D.14)

and the right side becomes

ċe(t) = −ıωac̃e(t)e
−ıωat + ıΩ sech(t/τs) cos(ωlt)c̃g(t). (D.15)
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Equating these gives the amplitudes

˙̃ce(t)e
−ıωat = ıωac̃e(t)e

−ıωat − ıωac̃e(t)e
−ıωat

+ıΩ sech(t/τs) cos(ωlt)c̃g(t) (D.16)

and, examining both amplitudes,

˙̃ce(t) = ıΩ sech(t/τs) cos(ωlt)c̃g(t)e
ıωatc

˙̃cg(t) = ıΩ sech(t/τs) cos(ωlt)c̃e(t)e
−ıωat

(D.17)

D.2.3 Rotating Wave Approximation. At this point in the solution of the problem,

the Rotating Wave Approximation (RWA) is made by re-writing the cos(ωlt optical

frequency term using the exponential expansion. It is then assumed that the ωl +ωa

terms are negligible because they rotate at essentially twice the optical frequency.

On the time scale of the laser pulse, these terms are average out to approximately

zero. The coupled equations for the amplitudes, where the laser frequency is equal

to the atomic frequency, are

˙̃ce(t) = ıΩ
2

sech(t/τs)c̃g(t)

˙̃cg(t) = ıΩ
2

sech(t/τs)c̃e(t)

(D.18)

These coupled differential equations are solved exactly for the hyperbolic secant

pulse envelope. The solutions for the inital conditions ce(−∞) = 0 and cg(−∞) = 1

are

c̃e(t) = cos [τsΩ tan−1 tanh (t/τs)]

c̃g(t) = ı sin [τsΩ tan−1 tanh (t/τs)]

(D.19)
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The probability of being in the excited state is

|ce|2 = sin2
[

τsΩ tan−1 tanh (t/τs)
]

(D.20)

Note that, as explained in the text, the Rabi frequency Ω is the electric field, or which

is proportional to the square root of the laser power
√
P . The rotation angle after the

pulse has interacted with the ion is the integral of the argument to the sine function.

For times much longer then the pulse width τs, the function tan−1 tanh (t/τs) is equal

to π/4. The rotation angle is thus θ = πτsΩ and the excited state probability is

|ce|2 = sin2 θ

2
(D.21)

The wavefunction, as a function of time, is thus

ψ(t) = cos
θ

2
|g〉 − ıe−ıωat sin

θ

2
|e〉 (D.22)

where the wavefunction starts in the ground state at time t = −∞.

D.3 Two Pulse Approximation

If a second pulse is sent to the ion after the first pulse has rotated the state by an

angle θ, the wavefunction will rotate again on the Bloch sphere. However, the optical

frequency component of the wavefunction must also be accounted for. After the first

pulse, the atom is in a superposition of the ground and excited states [Eq. D.22].

The second pulse has a phase shift with respect to the first based on the time delay

between the first and second pulses. The probability of being in the excited state

after the secon pulse is

|ce|2 = sin2 θ

2
cos2

(

ωaδt

2

)

. (D.23)

Although the ion is not in the Lamb-Dicke limit, the two pulses interact with the

ion on a time scale much faster the the ion motion, so the phase ωaδt is well de-
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fined. However, averaging over an ensamble of experiments, each one with a slightly

different delay, the second term becomes 1/2, reducing the excited state population.
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APPENDIX E

Ultrafast Optical Bloch Equations

E.1 Density Matrix Setup

The density matrix and the solutions to the optical Bloch equations (OBE) can be

used to get a better understanding of the dynamics of the two pulse experiment. The

energy levels of cadmium are described in an approximate fashion by only looking

at the mF = 0 excited states. The pulsed laser, with a bandwidth much larger then

the hyperfine splitting, is assumed to couple all the ground states equally. However,

to use the rotating wave approximation (RWA), the pulsed laser is initially approx-

imated as a bichromatic field coupling both hyperfine levels equally. In addition,

there is a microwave field that couples the F = 0,mF = 0 ground state to the

F = 1,mF = 0 ground state. The pulsed laser field is

~E1(~x, t) =
∣

∣E0
1(t)

∣

∣ ǫ̂1 cos
(

ωl1t− ~k1 · ~x− φ1

)

(E.1)

~E2(~x, t) =
∣

∣E0
2(t)

∣

∣ ǫ̂2 cos
(

ωl2t− ~k2 · ~x− φ2

)

(E.2)

where

E0
1(t) ∼ E0

2(t) ∼ sech(t/τs) (E.3)

is the slowly (compared to the optical frequency) varying envelope of the laser pulse.

The field E1 couples the F = 0 ground state with the F = 1′ excited state manifold.
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The other field, E2 couples the F = 1 ground state with the F = 2′ excited state.

The microwave field couples the two ground state levels and is insensitive to the ion

position and motion:

~M(t) = |M0| ǫ̂µW cos (ωµW t− φµW ) . (E.4)

The OBE is the density matrix version of the Schördinger equation ρ̇ = [H, ρ] and

can be written in matrix component form:

ρ̇ij = − ı

h̄

∑

k

(Hikρkj − ρikHkj) . (E.5)

There are five relevant energy levels in our approximate system shown in Fig. E.1.

The F = 0,mF = 0 ground state population is represented by ρ00. The F = 1,mF =

0 ground state population is ρ11. There is another, auxiliary, ground state population

that represents any population in either the F = 1,mF = ±1 states (ρaa), which are

equally bright and, in this approximation, will not interact further with the laser.

This will lead to a solution that is slightly brighter then the actual physical situation,

but only by a small percentage.

The two excited hyperfine states are F ′ = 1,m′

F = 0, which has a population

ρ1′1′ , and F ′ = 2,m′

F = 0 with population ρ2′2′ . There are coherences coupling the

two hyperfine ground states to each other and to the two excited states.

The final set of coupled differential equations for the density matrix elements are,
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Figure E.1: The energy levels for the OBE model. Shown are the transitions between |0〉 and |1′〉
via E1, between |1〉 and |2′〉 via E2, and |0〉 and |1〉 via M . The fluorescence branching ratios are
also shown to the inital states as well as the auxillary state |a〉.

in the RWA and without spontaneous emission

ρ̇2′2′ =
ı

2
(Ω2(t)ρ̄

∗

2′1 − Ω∗

2(t)ρ̄2′1) (E.6)

ρ̇1′1′ =
ı

2
(Ω1(t)ρ̄

∗

1′0 − Ω∗

1(t)ρ̄1′0) (E.7)

ρ̇11 = − ı

2
(ΩM ρ̄

∗

01 − Ω∗

M ρ̄01) −
ı

2
(Ω2(t)ρ̄

∗

2′1 − Ω∗

2(t)ρ̄2′1) (E.8)

ρ̇00 =
ı

2
(ΩM ρ̄

∗

01 − Ω∗

M ρ̄01) −
ı

2
(Ω1(t)ρ̄

∗

1′0 − Ω∗

1(t)ρ̄1′0) (E.9)

˙̄ρ2′1 =
ıΩ2(t)

2
(ρ11 − ρ2′2′) −

ıΩM

2
ρ̄2′0 (E.10)

˙̄ρ1′0 =
ıΩ1(t)

2
(ρ00 − ρ1′1′) −

ıΩ∗

M

2
ρ̄1′1 (E.11)

˙̄ρ1′1 = − ıΩ2(t)

2
ρ̄1′2′e

−ı∆ωt +
ıΩ1(t)

2
ρ̄01 −

ıΩM

2
ρ̄1′0 (E.12)

˙̄ρ2′0 = − ıΩ1(t)

2
ρ̄∗1′2′e

ı∆ωt +
ıΩ2(t)

2
ρ̄∗01 −

ıΩ∗

M

2
ρ̄2′1 (E.13)

˙̄ρ01 =
ıΩM

2
(ρ11 − ρ00) −

ıΩ2(t)

2
ρ̄∗2′0 −

ıΩ∗

1(t)

2
ρ̄1′1 (E.14)

˙̄ρ1′2′ =ı∆ωρ̄1′2′ +

(

ıΩ1(t)

2
ρ̄∗2′0 −

ıΩ∗

2(t)

2
ρ̄1′1

)

eı∆ωt (E.15)
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There are three Rabi frequencies listed in these coupled differential equations,

each one represents an electromagenetic field (Eqs. E.1, E.2, E.4). The two laser

frequencies contain the slowly varying time envelope from Eq. E.3.

Ω1(t) =
E0

1

h̄
〈0|µ1 · ǫ̂1eı~k1·~x|1′〉 sech(t/τs) ≡ Ω01 sech(t/τs) (E.16)

Ω2(t) =
E0

2

h̄
〈1|µ2 · ǫ̂2eı~k2·~x|2′〉 sech(t/τs) ≡ Ω02 sech(t/τs) (E.17)

ΩM(t) =
M0

h̄
〈0|µ1 · ǫ̂µW |1〉 (E.18)

(E.19)

The optical coherences are each rotating in the frame of the atomic frequency

difference, and the hyperfine coherences are rotating in the frame of the ground state

hyperfine splitting.

ρ2′1 =ρ̄2′1e
−ıωl1t (E.20)

ρ1′0 =ρ̄1′0e
−ıωl2t (E.21)

ρ1′1 =ρ̄1′1e
−ı(ωl1+ωHF )t (E.22)

ρ2′0 =ρ̄2′0e
−ı(ωl2−ωHF )t (E.23)

ρ01 =ρ̄01e
−ıωHF t (E.24)

ρ1′2′ =ρ̄1′2′e
−ıωl2t (E.25)

The frequency relationships that are characteristic to this system are the atomic

frequency difference between the F = 2′ excited state manifold and the F = 0

ground state, ωa, the ground state hyperfine splitting ωHF and the excited state

hyperfine splitting ωHF ′ . It follows from the structure of 111Cd+ that
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ωa =ωl1 − ωHF ′ (E.26)

ωa =ωl2 − ωHF (E.27)

∆ω =ωHF − ωHF ′ (E.28)

E.2 Microwave Rotations

When microwaves are sent to the ion, the density matrix evolves with a non-zero

element ΩM , but the other two Rabi frequencies are zero. The coupled differential

equations that describe the time evolution of the system are as follows. The time

evoluation is assumed to be the a rotating frame of frequency ωHF .

ρ̇11 = − ı

2
(ΩM ρ̄

∗

01 − Ω∗

M ρ̄01) (E.29)

ρ̇00 =
ı

2
(ΩM ρ̄

∗

01 − Ω∗

M ρ̄01) (E.30)

˙̄ρ2′1 = − ıΩM

2
ρ̄2′0 (E.31)

˙̄ρ1′0 = − ıΩ∗

M

2
ρ̄1′1 (E.32)

˙̄ρ1′1 = − ıΩM

2
ρ̄1′0 (E.33)

˙̄ρ2′0 = − ıΩ∗

M

2
ρ̄2′1 (E.34)

˙̄ρ01 =
ıΩM

2
(ρ11 − ρ00) (E.35)

˙̄ρ1′2′ =ı∆ωρ̄1′2′ (E.36)

For an initial population of only the dark state ρ00, the microwaves couple to

the other hyperfine ground state ρ11 as well as establish a coherence ρ01. The other

entries in the density matrix remain zero. A second microwave pulse could be applied

at some time t after the first with a phase φ with respect to the first. Because the

microwave radiation is resonant with the atom, this second pulse would shift the
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population of the first, changing ΩM to ΩMe
ıφ (noting that the complex conjugate

must be taken where appropriate).

E.3 Ultrafast Laser Rotations

The interaction between the ultrafast laser pulses and the atom using the OBE

and this description of the density matrix can be approximated by assuming that

the two transitions between the ground and excited states couple with equal strength

and are both real amplitudes:

Ω01 = Ω∗

01 ≈ Ω02 = Ω∗

02 ≡ Ω0 (E.37)

With this approximation, the time evolution of the density matrix over the time

during which a laser pulse arrives is described by the following coupled differential

equations.

ρ̇2′2′ =
ıΩ0 sech(t/τs)

2
(ρ̄∗2′1 − ρ̄2′1) (E.38)

ρ̇1′1′ =
ıΩ0 sech(t/τs)

2
(ρ̄∗1′0 − ρ̄1′0) (E.39)

ρ̇11 = − ıΩ0 sech(t/τs)

2
(ρ̄∗2′1 − ρ̄2′1) (E.40)

ρ̇00 = − ıΩ0 sech(t/τs)

2
(ρ̄∗1′0 − ρ̄1′0) (E.41)

˙̄ρ2′1 =
ıΩ0 sech(t/τs)

2
(ρ11 − ρ2′2′) (E.42)

˙̄ρ1′0 =
ıΩ0 sech(t/τs)(t)

2
(ρ00 − ρ1′1′) (E.43)

˙̄ρ1′1 = − ıΩ0 sech(t/τs)

2

(

ρ̄1′2′e
−ı∆ωt + ρ̄01

)

(E.44)

˙̄ρ2′0 = − ıΩ0 sech(t/τs)

2

(

ρ̄∗1′2′e
ı∆ωt + ρ̄∗01

)

(E.45)

˙̄ρ01 = − ıΩ0 sech(t/τs)

2
(ρ̄∗2′0 − ρ̄1′1) (E.46)

˙̄ρ1′2′ =ı∆ωρ̄1′2′ +
ıΩ0 sech(t/τs)

2
(ρ̄∗2′0 − ρ̄1′1) e

ı∆ωt (E.47)
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The time scale of the ultrafast pulses is much shorter then spontaneous emission (with

excited state lifetime γ) for a single pulse. However, if there is some time between

two or more ultrafast pulses, then spontaneous emission must be accounted for. In

that case, the period during which spontaneous emission may occur is described by

the following coupled equations.

ρ̇2′2′ = − γρ2′2′ (E.48)

ρ̇1′1′ = − γρ1′1′ (E.49)

ρ̇11 =
2

3
γρ2′2′ (E.50)

ρ̇00 =
2

3
γρ1′1′ (E.51)

˙̄ρ2′1 = − γ

2
ρ̄2′1 (E.52)

˙̄ρ1′0 = − γ

2
ρ̄1′0 (E.53)

˙̄ρ1′1 = − γ

2
ρ̄1′1 (E.54)

˙̄ρ2′0 = − γ

2
ρ̄2′0 (E.55)

˙̄ρ01 =0 (E.56)

˙̄ρ1′2′ =0ρ̇aa =
γ

3
(ρ2′2′ + ρ1′1′) (E.57)

One other consideration is made when using multiple ultrafast laser pulses in the

OBE. If the optical phase is not stable between the pulses, or if on average the phase

is random, this can be accounted for by resetting the values of the optical coherences

to zero before applying the next ultrafast pulse. However, if the phase is maintained

and controlled, the optical coherences will carry over from one pulse to the next.
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