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The quest for a quantum system best satisfying the stringent requirements of

a quantum information processor has seen tremendous progress in many fields of

physics. In the last decade, trapped ions have been established as one of the most

promising architectures to accomplish the task. Internal states of an ion which can

have extremely long coherence time can be used to store a quantum bit, and there-

fore allow many gate operations before the coherence is lost. Entanglement between

multiple ions can be established via Coulomb interactions mediated by appropriate

laser fields. Entangling schemes usually require the ions to be initialized to near their

motional ground state. The interaction of fluctuating electric fields with the motional

state of the ion leads to heating and thus to decoherence for entanglement generation

limiting the fidelity of quantum logic gates. Effective ground state cooling of trapped

ion motion and suppression of motional heating are thus crucial to many applications

of trapped ions in quantum information science.

In this thesis, I describe the implementation and study of several components of

a cadmium-ion-based quantum information processor, with special emphasis on the



control and decoherence of trapped ion motion. I first discuss the building and de-

sign of various ion traps that were used in this work. I also report on the use of

ultrafast laser pulses to photoionize and load cadmium ions in a variety of rf Paul

trap geometries. A detailed analysis of the photoionization scheme is presented, along

with its dependence on controlled experimental parameters. I then describe the im-

plementation of Raman sideband cooling on a single trapped 111Cd+ ion to the ground

state of motion, where a ground state population of 97% was achieved. The efficacy

of this cooling technique is discussed with respect to different initial motional state

distributions and its sensitivity to the presence of motional heating. I also present

an experiment where the motion of a single trapped 112Cd+ ion is sympathetically

cooled by directly Doppler cooling a 114Cd+ ion in the same trap. The implications of

this result are relevant to the scaling of a trapped ion quantum computer, where the

unwanted motion of an ion crystal can be quenched while not affecting the internal

states of the qubit ions. In order to understand the origin of heating in ion traps,

a series of controlled measurements of trapped ion motional heating was performed,

where the proximity of the ion to the electrodes and the temperature of the electrodes

is varied. These measurements are carried out in a novel moveable ion trap structure

that confines laser-cooled ions closer to the electrodes than any previous ion trap.

This study sheds light on an important but poorly understood source of decoherence

in ion traps and possibly other charge-based quantum systems.
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CHAPTER 1

Introduction

In the last fifty years, the ability to store and manipulate single atoms has opened

up many new possibilities for studying the implications of quantum mechanics in

systems that are accessible. It is well known that quantum theory allows for a system

to be placed in a superposition of states, and that these superposed states can interfere

with one another while undergoing unitary evolution. When quantum superposition

involves different parts of a larger system, the different subsystems can be found in

correlated states, which are often referred to as entangled states. It was recognized

early on that that these phenomena form one of the most intriguing parts of quantum

mechanics [1, 2], and the concept of quantum entanglement is now thought to form

the basis of the emerging fields of quantum information and quantum computation

[3, 4].

In order to study and apply these concepts, it is desirable to have the ability

to confine and manipulate single atoms in a well-controlled manner. Larger systems

with many degrees of freedom are not currently convenient platforms for testing these

quantum phenomena because of the uncontrolled interactions between the individual

atoms. Ideally, the degrees of freedom involved in a single atom system (motion and

the internal levels) should be prepared in well defined states and then manipulated in

a precise manner. The ion trap, which confines charged particles by coupling to their

excess charge, allows for the aforementioned degree of control. Charged particles can

typically be confined for hours in potentials that are up to several electron-volts deep,

without perturbing the internal states.

1
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The main categories of ion traps are the Penning and rf Paul traps [5]. The

Penning trap uses a combination of static electric and magnetic fields to confine the

charged particles [6]. The first observation of individual trapped charged particles

involved electrons in a Penning trap, and was based on work done in 1973 at the

University of Washington by Hans Dehmelt and coworkers [7]. On the other hand,

the rf Paul trap dynamically confines charged particles with quadrupole rf electric

fields [8]. In 1980, a single Ba+ ion was confined in an rf Paul trap, also by Dehmelt

and coworkers [9]. The invention of the Penning trap is attributed to Hans Georg

Dehmelt, while Wolfgang Paul is credited with inventing the rf Paul trap. They both

shared one half of the Nobel Prize in Physics in 1989 for their work; the other half was

awarded to Norman Ramsey for his work on the separated oscillatory fields method

and its subsequent use in the hydrogen maser and atomic clocks [10]. The use of static

electric and magnetic fields in the Penning trap has one major advantage over the rf

Paul trap in that there is no “micromotion” and resultant heating of the ion due to

the dynamic fields. However, laser cooling in the Penning trap is more complicated

because one degree of motion (the magnetron motion) is not stable and cannot be

cooled directly. The rf Paul trap does not suffer from this drawback, as all motional

degrees of freedom can be cooled directly. This makes it perhaps more appropriate for

quantum computing applications which use the motional degree of freedom to couple

the ions. For this reason, the experiments presented here are performed using only rf

Paul traps.

The discovery of laser cooling of atoms was a major advance, enabling the precise

control of trapped ions and many other seminal experiments in the atomic physics

field. Today it has become an essential tool with many applications, from preci-

sion frequency metrology to quantum information science and fundamental studies of

quantum mechanics. Laser cooling of atoms was first proposed jointly by two research

groups: Wineland and Dehmelt [11] for studying harmonically bound atoms and by

Hänsch and Schawlow for studying free neutral atoms [12]. The first demonstrations

came three years later with the work of Wineland and Dehmelt [13] using magnesium

ions and independently by Neuhauser et al. [14] using barium ions. More specifically,
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these laser cooling schemes used a technique referred to as Doppler cooling. While

this was sufficient for many applications, cooling to the ground state of motion was

not achieved until 1989, when Wineland’s group at NIST implemented another type

of laser cooling on Hg+ [15], known as resolved sideband cooling. Since then slight

variations of the scheme have been used to cool other ion species to the motional

ground state. In 1995 the NIST group cooled Be+ in all three dimensions of motion,

this time using a two photon resolved sideband cooling technique [16]. In 1999, Ca+

was cooled on a narrow electric quadrupole allowed transition [17]. Some of the work

for this thesis (first performed in 2004) involved cooling Cd+ to its ground state [18],

also using a two photon resolved sideband technique.

The explosion of interest in quantum computing following Peter Shor’s discovery of

a quantum factoring algorithm in 1994 [19] resulted in increased theoretical interest in

finding physical systems amenable to implementing universal quantum gates. In 1995

Cirac and Zoller presented the first formal proposal for implementing a quantum gate

with trapped ions [20]. It was implemented a few months later by the NIST group

[21], who took advantage of the many experimental techniques which had grown

out of the efforts to build frequency standards with cooled trapped ions [22]. The

Cirac-Zoller scheme involves entangling the internal states of the ions by coupling

their collective quantized motion. A particular disadvantage of this scheme is that it

requires the ion to be cooled to and remain near the ground state, making the fidelity

of quantum logic gates sensitive to motional decoherence due to anomalous heating.

Later theoretical proposals [23, 24, 25] somewhat relaxed the constraints on cooling

to the ground state before operating a quantum gate, but are still sensitive to heating

during gate operations. The source of this heating is still poorly understood; every

ion trap in which heating has been measured [15, 26, 17, 27, 28] has shown a heating

rate many orders of magnitude above the expected heating rate from fundamental

mechanisms (Johnson noise). Understanding this decoherence is expected to become

even more critical as ion traps become weaker in order to support larger ion crystals

and allow shuttling of ions through complex and microscale electrode structures.

In this thesis, I describe the implementation and study of several components of
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a Cadmium-ion-based quantum information processor with special emphasis on the

control and decoherence of trapped ion motion. The first part of the thesis (chapters

1-4) describes the basic components involved in the experiments. In chapter 2 I dis-

cuss the building and design of different ion trap geometries. Ancillary components

necessary for the ion trap, such as the vacuum technology and ovens, are also de-

scribed in detail. Chapter 3 presents the characteristic energy levels of the cadmium

ion and the various laser-ion interactions used to manipulate them. In chapter 4,

I describe the experimental setup of the laser system and the experimental control

and data aquisition systems. The second part of the thesis (chapters 5-7) presents

the experimental results. Chapter 5 discusses a clean and efficient ion trap loading

technique using photoionization with ultrafast pulses. With reasonable amounts of

laser power, this technique can nearly ionize every atom traversing the laser beam

within the trapping volume. In chapter 6 the laser cooling and sympathetic cooling

techniques used in these experiments are presented. I discuss the experimental re-

sults, in particular the efficacy of these cooling techniques with respect to different

initial motional state distributions and their sensitivity to the presence of motional

heating. Chapter 7 presents a series of controlled measurements of trapped ion mo-

tional heating, where the proximity of the ion to the electrodes and the temperature

of the electrodes are varied. These measurements are carried out in a novel moveable

ion trap structure that confines laser-cooled ions closer to the electrodes than any pre-

vious ion trap. This study sheds light on an important but poorly understood source

of decoherence in ion traps and possibly other charge-based quantum systems.



CHAPTER 2

Ion trap technology

Significant advances in physics can often be traced back to the invention of a new

device. There are a few modern examples that come to mind: the laser, the electron

microscope, stable RF sources, etc. These inventions all have triggered tremendous

progress in the understanding of many different phenomena. The radiofrequency ion

trap (i.e. rf Paul trap), while not in the same influential category as the laser, falls

within the general realm of devices that have spawned new advances in physics. The

rf Paul trap used in this work was first proposed and experimentally verified in the

1950’s in professor Wolfgang Paul’s laboratory in Bonn, Germany. The ability to

store and interrogate a single atom for an extended period of time has led to several

astonishing experimental observations. Notably, zero-point laser cooling of a trapped

atom [15, 16], observation of quantum jumps [29, 30, 31], realization of the first

quantum logic gate [21], entanglement of an atom and a photon [32], etc. Currently,

the rf Paul trap system is seen as an ideal platform to harbor a quantum information

processor. This chapter will describe the rf Paul traps used in this work and the

technology associated with their operations.

2.1 The Paul trap: Exact 3-D rf quadrupole potential

It is well known that a static electric field cannot produce a three dimensional

confining potential in free space. In other words, any electrostatic potential obeying

the Laplace equation does not have a minima in its solution - a result embodied in

Ernshaw’s theorem [33]. To circumvent this electrostatic constraint, two different

5
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solutions were proposed and experimentally verified in the 1950’s - the Penning and

the rf Paul ion traps. The Penning ion trap uses a combination of a static magnetic

field and a static quadrupole electric field to confine the charged particles, while

the rf Paul trap uses time dependent quadrupole electric fields to dynamically trap

the charged particles. The development of these powerful trapping techniques is

generally attributed to the efforts of Wolfgang Paul and Hans Dehmelt; they both

shared the 1989 Nobel prize for their contributions. For the applications of trapped

ions relating to quantum computing, the rf Paul trap seems, so far, to be the most

suitable technique since every motional degree of freedom can be cooled to the ground

state [5]. For this reason, the work described in this thesis is conducted in several

types of rf Paul traps (to be described in the next section of this chapter).

The essence of the how the rf Paul trap can dynamically confine an ion relies on

its ability to produce a three dimensional (3-D) trapping time-averaged potential.

The confining pseudo-potential produced by the rf Paul trap is 3-D simple harmonic

oscillator potential:

Ψ(x, y, z) =
m

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), (2.1)

where m is the ion mass and ωx, ωy, and ωz are the harmonic frequencies associ-

ated with the x,y, and z directions, respectively. Such a harmonic oscillator pseudo-

potential can be produced by applying an rf potential to the trap electrodes, as shown

in Fig. 2.1. The hyperbolic shaped electrodes, consisting of a “ring” electrode and

two “endcap” electrodes, give rise to a quadrupole potential

V (x, y, z, t) = (U0 + V0cos(Ωrf t)) [
1

2
− (

x2 + y2 − 2z2

d2
T

)] (2.2)

where

d2
T ≡ r2

0 + 2z2
0 with r 2

0
= 2z 2

0 . (2.3)

Here U0 and V0 are the amplitudes of the static and rf voltages applied to the end-cap

electrodes (the ring electrode is held at ground), r0 is the radius of the ring electrode

and 2z0 is the distance between the endcaps, and Ωrf/2π is the rf drive frequency.
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The classical equation of motion (along the ith direction) for an ion immersed in

such a potential reads

mr̈i = −e(~∇V (x, y, z, t) · r̂i), (2.4)

where e is the charge of the ion. These equations can be transformed, through simple

substitutions, into the Mathieu equation [34]. Along the x-direction, the equation

reads
∂2x

∂τ 2
+ [a + 2qcos(2τ)]x = 0, (2.5)

where we have defined

τ ≡ 1

2
Ωrf t, a ≡ 8eU0

mΩ2
rf (r

2
0 + 2z2

0)
, and q ≡ 4eV0

mΩrf
2(r2

0 + 2z2
0)

. (2.6)

Note that the equation along the y-direction is identical to Eq. (2.5), whereas for the

z-direction the parameters a and q are simply multiplied by a factor of -2.

The solution to the equation of motion (Eq. 2.5) for each direction of motion

ultimately yields the expected oscillatory solution of a harmonic oscillator. However,

even though the Mathieu equation is a “linear” differential equation, it cannot be

solved analytically in terms of standard functions. The reason is that one of the

coefficients isn’t constant but time dependent. Fortunately, the coefficient is periodic

in time; allowing the use of the well known Floquet theorem [34].

Before the full analytical solution to the ion trajectory is presented, which can be

tedious, a simple and easy to remember form for the ponderomotive pseudo-potential

is given. This shortcut follows from a heuristic derivation [35]. If satisfied, the reader

may then want to skip the somewhat formal derivation of the Mathieu equation’s

solution that will follow.

Using convincing physical arguments, it is easy to derive the form of the pondero-

motive pseudo-potential that results when an ion is immersed in a potential like that

in Eq. 2.2, with static voltage U0 set to zero [35]. The pseudo-potential that results

is

Ψ(x, y, z) =
e2

2mΩ2
rf

〈

∣

∣

∣

~E(x, y, z, t)
∣

∣

∣

2
〉

avg

, (2.7)

where the expression is to be averaged over a time interval of T=π/Ωrf .
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From here it is very easy to see how the harmonic oscillator pseudo-potential

comes about. The quadrupole electric field is first computed from Eq. 2.2, resulting

in

~E(x, y, z, t) =

[

V0cos(Ωrf t)

d2
T

]

(2xx̂ + 2yŷ − 4zẑ), (2.8)

note that the divergence of the electric field ~E is zero (∇ · ~E=0) as required by

Earnshaw’s theorem. Next, the electric field is inserted into the above equation (Eq.

2.7), leading to the anticipated harmonic oscillator trapping potential

Ψ(x, y, z) =
e2

mΩ2
rf

[

V 2
0

d4
T

]

(x2 + y2 + 4z2). (2.9)

By comparing Eq. 2.1 and Eq. 2.9, we deduce the harmonic oscillator trap frequency

along the z-direction to be

ωz =
2
√

2eV0

mΩrfd2
T

, (2.10)

where the frequencies along the x and y directions are ωx=ωy=(1/2)ωz. The effect

of applying a nonzero static voltage U0 on the end-cap electrodes is a change in the

ratio of the radial (ωx, ωy) and vertical (ωz) oscillation frequencies. For instance, a

positive voltage applied on the end-cap electrodes has the effect of increasing ωz at

the expense of ωx and ωy.

Now we turn to a more rigorous treatment of the solution to the Mathieu equa-

tion (Eq. 2.5). This time, in addition to the rf voltage considered so far, we include

the effect of an applied static voltage U0. This analysis will show the inherent com-

plexity of the full ion trajectory. Additionally it will show that the ponderomotive

pseudo-potential solution described in [35], with U0=0 Volts, is usually an excellent

approximation to the ion trajectory.

By making use of the Floquet theorem the general solution to the Mathieu equa-

tion reads

x(τ) = Ae+iµτφ(τ) + Be−iµτφ(−τ). (2.11)

Here A and B are constants to be determined by simple initial conditions and
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Top end-cap

Bottom end-cap

Ringz

r

0

0

U   + V  cos(    t)Ω
00

Figure 2.1: Schematic of the electrodes for a 3-D rf Paul trap with a

cylindrically symmetric electrode configuration. The rf and static voltages

are applied simultaneously to the end-cap electrodes while the ring electrode

is held at ground. An exact quadrupole potential results when the electrode

configuration satisfies r2
0 = 2z2

0 . Typical dimensions for the inter-electrode

distance are r0 =
√

2z0=50-500 µm, with V0=100-2000 Volts, U0=0-100

Volts, and Ωrf/2π=10-250MHz.
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φ(τ) = φ(τ + π) =
∞
∑

n=−∞
cne2inτ . (2.12)

is a periodic function.

When the characteristic exponent µ has an imaginary component, the motion x(τ)

contains an exponentially growing contribution, leading to unstable motion. But if

instead the characteristic exponent µ is purely real, the solution is bounded and thus

stable. The parameters a and q, dependent on the static and rf voltages applied to

the trap electrodes, determine if the motion is stable or not.

In order to determine the stability of the ion trajectory along the x-direction 1,

given particular values for a and q, we substitute the Floquet trial solution

φ(τ) =

∞
∑

n=−∞
cne

i(2n+µ)τ (2.13)

into the Mathieu equation (Eq. 2.5) and arrive at
∑∞

n=−∞
{

[−(2n + τ)2 + a]cne
i[2n+µ]τ + qcn(e

i[2(n+1)+µ]τ + ei[2(n−1)+µ]τ )
}

= 0.

Then, by shifting the indices of the second and third term, n → n−1 and n → n+1,

respectively, we recover the three term recurrence relation

[−(2n + τ)2 + a]cn + qcn−1 + qcn+1 = 0. (2.14)

When written into a matrix form, this recurrence relation becomes

M ~c =























...
...

...
...

...

· · · q −(−2 + µ)2 + a q 0 0 · · ·
· · · 0 q −µ2 + a q 0 · · ·
· · · 0 0 q −(2 + µ)2 + a q · · ·

...
...

...
...

...

























































...

c−2

c−1

c0

c1

c2

...



































= ~0.

1Recall that the Mathieu Equation reads the same along the y-direction whereas for the z-direction

the parameters a and q are simply multiplied by a factor of -2.
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For a non-trivial solution to this equation (~c 6= 0), the inverse of the matrix M

should not exist. In other words, the determinant of M must be zero 2.

detM = det























...
...

...
...

...

· · · q −(−2 + µ)2 + a q 0 0 · · ·
· · · 0 q −µ2 + a q 0 · · ·
· · · 0 0 q −(2 + µ)2 + a q · · ·

...
...

...
...

...























= 0

(2.15)

It is non-trivial to find the characteristic exponent µ for any given value of the

dimensionless a and q voltage parameters. Usually, in order to access the exponent µ,

one is required to use numerical techniques. Nevertheless, solving this determinant

is extremely helpful as it provides a stability diagram for the solution of the ion

trajectory along each direction of motion[8]. Three dimensional confinement of the

ion is achieved when both the radial x-y motion and the “vertical” z-motion are stable

simultaneously. These constraints imposed on the voltage parameters a and q can be

best assessed with the help of such a stability diagram 3.

Fortunately, for the vast majority of experimental settings, the value of the di-

mensionless voltage parameters a and q are both smaller than unity (|a| << 1, q < 1)

- allowing the determinant of the matrix M to be solved analytically. Indeed, in the

limiting case where |a| << 1 and q < 1, the matrix M can be reduced to a 3 × 3

matrix around n = 0,

M ~creduced =











−(−2 + µ)2 + a q 0

q −µ2 + a q

0 q −(2 + µ)2 + a





















c−1

c0

c1











= ~0. (2.16)

Solving the above set of equations (Eq. 2.16) yields a value for the characteristic

Floquet exponent of

2Recall that the inverse of the matrix M goes as M−1 = cofactorM

detM
3For more information on the stability diagram of the Paul trap, the reader is referred to a very

nice/clear treatment of the topic in [8]
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µ2 =
1

2
q2 + a. (2.17)

At this point, we can already gain some insight into the stability diagram of

the ion trajectory (for the special case of |a| ≪ 1, q < 1). For a stable solution,

the Floquet exponent µ is not allowed to have an imaginary component, hence the

stability condition µ2 = 1
2
q2 + a ≥ 0.

Having the characteristic Floquet exponent µ now yields the following correspond-

ing values for the coefficients c−1 and c1, both in terms of the coefficient c0:

c−1 = qc0 and c1 = qc0.

Plugging these value of cn’s into the Floquet solution (Eq. 2.11) yields, at last,

the complete solution of the ion trajectory. This of course, is in a limited region of

the a-q parameter space, but as mentioned earlier, this particular region of the a-q

stability diagram is usually the assumed mode of operation in an rf Paul trap. The

solution for x(τ) reads

x(τ) = Ac0(e
i[µτ ] + qei[2+µ] + qei[−2+µ]) + Bc0(e

−i[µτ ] + qe−i[2+µ] + qe−i[−2+µ]).

The above expression in its most transparent form reads

x(t) = 2Ac0cos(ωxt)
[

1 − q

2
cos(Ωrf t)

]

, (2.18)

where, without loss of generality, we made use of the initial condition A = B, and

inserted τ = Ωrf t/2. Most importantly we identify the Floquet exponent µ as being

proportional to the trap secular frequency along the x or y direction of motion 4,

where

ωx ≡ Ωrf

2
√

2
µ =

Ωrf

2

√

q2

8
− a

2
. (2.19)

Upon examination of Eq. 2.18, we find that the ion motion x(t) is made up

of two superimposed components: a slow (secular) oscillatory motion at the trap

frequency ωx, and a fast component synchronous with the applied rf frequency Ωrf

(micromotion). The rf voltage parameter q is generally assumed to be smaller than

4The trap frequency along the z-direction is obtained by multiplying the voltage parameters a

and q by a factor of -2.
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unity. In this case, the amplitude of the micromotion is a factor q/2 smaller than the

amplitude of the secular motion. If the micromotion can be neglected, the motion is

then purely that of a three dimensional harmonic oscillator with oscillation frequencies

ωx, ωy, and ωz.

The presence of a static background electric field at the center of the ion trap

modifies Eq. 2.18 somewhat. Assuming an electric field with component E0 along

the x-direction, the equation of motion (Eq. 2.5) becomes

∂2x

∂τ 2
+ [a + 2qcos(2τ)]x =

eE0

m
, (2.20)

with solution

x(t) = x0cos(ωxt)
[

1 − q

2
cos(Ωrf t)

]

+
eE0

mω2
x

+

√
2eE0

mωxΩrf
cos (Ωrf t) . (2.21)

The effect of the background static electric field is seen in the third and fourth term of

Eq. 2.21. The third term represents a constant offset x(E0) in the position of the ion

from the rf node at the center of the trap. The “excess” micromotion that results from

the driven motion at frequency Ωrf is represented in the fourth term. This excess

micromotion differs from the unavoidable micromotion associated with the secular

motion of amplitude x0 in that it cannot be laser cooled because it is driven motion.

The presence of excess micromotion has several adverse effects, including reduced ion

trapping lifetime, significant second order Doppler shifts in spectroscopic studies, and

broadening of the atomic transitions [36]. In this experiment, the excess micromotion

typically caused a significant broadening of the cycling transition used for Doppler

cooling, which prevented the ion motion from being laser cooled to its ground state

(chapter 6) and it also supressed Raman Rabi frequencies from Debye-Waller effect.

In order to cancel the background static electric field E0, static voltages are applied to

compensation electrodes positioned along each principle axis of the ion trap (sections

2.2.1 and 2.2.2).

The harmonic oscillation associated with the secular motion plays a crucial role in

all modern experiments conducted in an rf Paul trap. In general, the ion-trap system

consists of two independent quantum systems: the electronic internal levels and the
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quantized harmonic motion of the ion. As we will see in the following chapters, these

two simple quantum systems can be addressed independently or coupled directly with

the use of appropriate laser beams.

2.2 Ion traps used in this work

The 3-D rf Paul trap discussed in the previous section is an ideal model. That

is, the vast majority of ion traps in use today do not have a hyperbolic electrode

geometry giving rise to the exact quadrupole potential discussed above. As we will

see, the building of perfectly hyperbolic trap electrodes is unnecessarily cumbersome.

In fact, the shape of the electrodes seldom resembles the ideal model, yet in the

neighborhood of the trap center the exact solution described in the previous section

is a very good approximation.

There are two classes of Paul traps in use today – the three dimensional ion trap

and the linear (two dimensional) ion trap. The 3-D Paul trap provides a confining

potential with respect to a single point in space and therefore is mostly used in single

ion experiments. On the other hand, the rf fields applied on the electrodes of a linear

ion trap provide two dimensional transverse confinement. Additional static electrodes

provide for the longitudinal confinement - yielding a static trap along this direction.

In this section I will summarize all ion traps that have been used for this work;

3-D Paul traps (2.2.1) and linear Paul traps (2.2.2).

2.2.1 3-D quadrupole traps

The work in this thesis was conducted over several years, and comprises differ-

ent types of experiments. In order to accommodate the various research directions

through the years, several different rf Paul traps were built. The first two traps built

for the work in this thesis consisted of a simple, yet very robust ring-and-fork design

[37]. A schematic of the ring-and-fork traps is shown in Fig. 2.2; both traps were

built identically to one another.
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The ring-and-fork trap consists of two thin sheets of molybdenum, 125µm thick.

One sheet has a hole in it (ring electrode) with radius r0 ≃200 µm, while the other

sheet, perpendicular to the ring electrode, has a gap (fork or endcap electrode) with

spacing 2z0 ≃300 µm. As mentioned earlier, the resulting confining potential near

the rf node, is, to a good approximation, a quadrupole. Higher order terms or anhar-

monicities of the potential can, in general, be neglected since the excursion of the ion

is typically small, i.e. the ion remains near the trap center.

The only difference encountered in dealing with a non-ideal electrode configura-

tion such as the ring-and-fork trap is a voltage efficiency factor 0 < ǫ ≤ 1, which

characterizes the reduction in trap confinement compared to the analogous quadru-

pole rf trap with ideal hyperbolic electrodes. Additionally, the cylindrical symmetry

characterizing the ideal hyperbolic electrode configuration is broken when using the

ring-and-fork design. The ~E-field gradient giving rise to the restoring force is weakest

along the direction of the fork; we define the x-axis to be along this direction. This

is actually a very useful feature as it allows Doppler cooling with a single laser beam

(see chapter 2). The secular frequencies are

ωx =
Ω

2

√

α2

2
(ǫq)2 − αǫa, ωy =

Ω

2

√

(1 − α)2

2
(ǫq)2 − (1 − α)ǫa, ωz =

Ω

2

√

1

2
(ǫq)2 + ǫa,

(2.22)

where 0 < α ≤ 1/2 characterizes the radial trap anisotropy (α=1/2 for cylindrically

symmetric electrodes).

In general the trap frequencies can be calculated with the help of the formulas in

Eq. 2.22, but this requires precise knowledge of the voltage efficiency ǫ and the trap

anisotropy α parameters. However, for most electrode configurations these quanti-

ties are very difficult to obtain analytically. One is usually forced to use numerical

techniques in order to obtain these parameters.

Generally, the trap frequencies are directly measured and then used to obtain

the trap parameters ǫ and α. One common method used to measure the secular

frequencies is straightforward 5. A small sinusoidal voltage on the order of 1 V is

5In addition to the technique presented here, we will show in chapter 3 that the trap frequencies
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applied to one of the trap electrodes; either the ring or the fork. The secular frequency

is measured by sweeping the applied frequency across the motional resonance. The

feedback is very clear – the image of the ion becomes “fuzzy” as the ion motion

becomes excited by the resonant drive. Using this type of measurement allows the

trap frequencies (typically a few MHz) to be determined well within an error of 10

kHz.

Using this simple technique, some ring-and-fork trap parameters were measured:

when applying an rf voltage of V0 ≃400 Volts with a drive frequency of Ω/2π=50

MHz, and a static potential U0= 30 Volts, The resulting trap secular frequencies

are (ωx, ωy, ωz)/2π ≈ (5.8, 8.9, 9.7)MHz. For U0=6 Volts, the trap frequencies are

(ωx, ωy, ωz)/2π ≈ (4.8, 7.4, 11.3)MHz.

Figure 2.2: Schematic diagrams for the two identical ring-and-fork ion

traps used in this experiment. It is an asymmetric (ωx < ωy) quadru-

pole trap with closest electrode distance z0=150 µm (fork electrode). The

ring electrode has a circular hole in it, with a diameter of 2r0 ≃ 400 µm.

Both electrodes are constructed from 125 µm thick molybdenum sheets.

Compensation of static background electric fields is achieved by applying

appropriate static voltages (∼ 2000 Volts) on three metallic electrodes (not

shown in figure) pointing along each axis of the ion trap.

Additional auxiliary electrodes are added in order to compensate for uncontrolled

background electric fields. These fields, when left uncompensated, displace the ion

can also be obtained with the use of stimulated Raman transitions.
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from the rf node and hence cause an undesirable increase of the micromotion am-

plitude experienced by the ion. All three compensation electrodes are located at a

distance of ∼ 1cm from the trap center, and each is positioned along a particular axis

of the ion trap. Thus applying appropriate static voltages on each one of them al-

lows cancellation of stray ~E-fields pointing in an arbitrary direction. Typical voltages

applied to the ring-and-fork’s compensation electrodes are around 2000 Volts. The

need for such large voltages stems from the fact that the effect of the compensation

electrodes is greatly reduced due to the efficient shielding provided by the ring and

fork metallic electrodes.

A third 3-D rf Paul trap was built for the investigation of motional heating in ion

traps (chapter 7). It consists of a cylindrically symmetric (α = 1/2) electrode struc-

ture formed by two opposing tungsten needle-tipped electrodes. They are mounted

on independent translation stages which allows for the tip-to-tip electrode separation

2z0 to be controllably varied over a wide range 0 ≤ 2z0 ≤ 1 cm with micrometer

resolution. This variable ion trap geometry gives the ability to study how the anom-

alous motional heating of trapped ions scales as a function of trap size (as detailed

in chapter 7).

2.2.2 Linear traps

The characteristic feature of a linear Paul trap is its ability to confine a string of

ions along a line (i.e. the rf node line). This is a crucial feature of a trapped ion

quantum register, where linear arrays of ions are required [20]. In a linear Paul trap,

the three-dimensional confinement is realized by the superposition of two confining

potentials: (1) a transverse ponderomotive rf potential, and (2) a longitudinal sta-

tic potential. In Fig. 2.3 is a schematic of the electrode configuration for a generic

linear Paul trap. The rf voltage provides the transverse (x-y) two-dimensional pon-

deromotive confinement, while leaving the longitudinal z-direction unaffected. For

longitudinal confinement, appropriate static voltages are applied to the “endcap”

electrodes. The resulting static trap along the z-axis provides for static confinement
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of the ions, leading to a very simple description of the longitudinal motion. The

potential resulting from applying a static voltage U0 on all endcaps reads

VDC(x, y, z) =
κU0

z2
0

[

z2 − 1

2
(x2 + y2)

]

=
1

2e
mω2

z

[

z2 − 1

2
(x2 + y2)

]

, (2.23)

where κ is a voltage efficiency factor for the static electrodes, ωz/2π is the longitudinal

trap frequency, m represents the mass of the ion and e its charge, and

ωz =

√

2eU0κ

mz2
0

(2.24)

is the longitudinal trap frequency. As seen in Eq. 2.23, the transverse direction is also

affected by the static potential; in fact it leads to anti-trapping along the transverse x-

y plane. This, however, is hardly a problem as the transverse ponderomotive potential

is easily set to overwhelm the anti-trapping effect originating form the static voltage

U0.

The two-dimensional rf ponderomotive potential is derived using the same argu-

ments as in the three-dimensional case (section 1). For this reason, only the main

results are summarized. A potential V0cos(ωrf t) + Ut is applied as depicted in Fig.

2.23. In order for each rod segment to have the same rf potential, each segment is

capacitively coupled to its neighbor. Near the axis of the trap, the resulting potential

reads

Vt(x, y) =
β(V0cos(Ωrf t) + Ut)

2

(

1 +
x2 − y2

R2

)

. (2.25)

Here β is the voltage efficiency factor for the transverse potential, and V0 and Ut

represent the rf and static transverse voltage, respectively. The rf drive frequency is

denoted by Ωrf , and R is the distance between the axis of the trap and the electrode.

The static voltage Ut allows to break the symmetry in the strength of the x and

y confinement, an important condition for effective Doppler cooling. The resulting

secular frequencies are

ωx,y =

√

(

βeV0√
2mΩrfR2

)2

− κeU0

mz2
0

± βeUt

mR2
, (2.26)
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where ± denotes the x, y directions, respectively.

Figure 2.3: Schematic diagram of a generic linear Paul trap. A potential

V0cos(ωrf t)+Ut is applied to two opposite rods, while leaving the other two

electrodes grounded, resulting in a two-dimensional quadrupole potential

near the center of the trap. Each electrode segment is capacitively coupled

to its neighbor, allowing the rf potential to be constant along the rod. The

transverse static voltage Ut gives the ability to lift the degeneracy in ωx and

ωy. Confinement along the z axis is realized by applying static voltages U0

on the endcap electrodes (dark gray). Typically, in order to allow for a string

of ions to be trapped, the transverse confinement is set to be significantly

tighter than its longitudinal static counterpart.

Fig. 2.4 shows a schematic of the three-layer linear Paul used in this experiment.

This three-layer design is nearly identical to the 4-rod linear trap described above, in

the sense that the same expressions for the trap secular frequencies apply. The added

complexity of the three-layer design is justified by two main advantages: (1) the ability

to compensate for a background uniform electric field in any direction, which is more

difficult with the simpler 4-rod design, and (2) an electrode structure compatible with

more complicated ion trap architectures, such as T-junctions [38]. The three-layer

linear trap consists of gold-coated alumina substrates vertically stacked with 125 µm

alumina spacers between them, as shown in Fig. 2.4. The outer electrodes are axially

segmented into three sections with appropriate static potentials applied to each for

axial confinement and for compensation of background static electric fields.
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200 µm

x-axis

400 µm

Figure 2.4: Schematic diagram of the three-layer linear trap used in this

experiment. The rf layer (gray) is 125 µm thick, while the top and bottom

segmented layers are 250 µm thick; the gold-plated alumina layers are sep-

arated by alumina spacers (not shown) with a thickness of 125 µm. The

outer segments of the top and the bottom layers are separated by 400 µm.

The evaporated gold coating on each electrode is approximately 0.3 µm

thick.
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Throughout the experiments, the longitudinal trap frequency ωz/2π ranged from

about 400 kHz to 4 MHz as the potential difference between the outer and the inner

segments was varied from 5 V to 275 V. This potential difference was limited to

275 V in order to avoid discharges across the surface mount capacitors positioned

on the trap itself (rated at 250 V). For transverse confinement, an rf potential with

amplitude V0 ≈ 400 V with respect to the outer electrode layers is applied to the

middle electrode layer, resulting in transverse trap frequencies of ωx/2π ∼8.1 MHz

and ωy/2π ∼8.3 MHz. The degeneracy in ωx and ωy was lifted by applying appropriate

static potentials on the inner electrodes. This also served the important function of

tilting the transverse principle axis of motion, crucial for effective Doppler cooling of

the ion’s motion [39].

2.3 Ion trap components

So far the discussion has been limited to the rf Paul trap itself, leaving out many

crucial auxiliary components that are required in order to load an ion. In the following

sections I will review several important ion trap components, and in the process

explain their fabrication methods (when applicable) and operational settings.

2.3.1 Atomic beam source

Producing Cd+ ions at the center of the rf Paul trap requires the ability to (1)

send a flux of neutral Cd atoms in the trapping region, and (2) efficiently ionize the

neutral atoms. The Cd atomic beam is produced by an oven. Simply put, the oven

consists of a solid source of Cd material placed inside a tube, which, when heated

to a sufficiently high temperature, induces the solid Cd material to effuse through a

single small opening in the direction of the trap center.

Throughout the work described in this thesis, the Cd oven design was improved

significantly. In using a solid piece of Cd material, it was found that while undergoing

a high temperature vacuum bake (T ∼225oC) typically lasting 2 weeks, early oven
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designs would deposit a metallic layer of Cd everywhere inside the vacuum system.

This gray metallic layer was especially pronounced on the surface of gold-coated

linear trap electrodes. This Cd layer can cause many problems, such as degrading

the trap stability [40] or even shorting out adjacent electrodes, and also become an

additional source of electric field noise at the ion’s position [26, 27, 18]. The solution,

which is implemented in the majority of new Cd ovens, is to replace the solid Cd

material (boiling point of 769oC at 1 atm) by cadmium oxide (CdO) - a powder-like

substance with a boiling point of 1559oC at 1 atm. The use of CdO with its lower

vapor pressure virtually eliminated the problem of cadmium coating of the electrodes

during the bake. However, the significantly higher melting point of CdO required the

oven to be completely redesigned. Here I briefly describe both designs.

The first oven design is very simple. It consists of a stainless steel tube with one

end closed shut (pinched with pliers and spot welded) and the other end left open

to let the Cd atoms effuse through. The solid piece of Cd is placed at the bottom

of a tube, with inner diameter of 0.035 in., wall thickness of 0.007 in., and a typical

length of ∼2 cm. In order to produce a Cd vapor, the temperature of the solid Cd is

increased by heating the stainless steel tube with a current running along the tube,

typically on the order of ∼1 A. The most important aspect of operating an oven is

to always make sure that the current is well below its threshold value, typically a few

amps for this setup. At a threshold current, the oven will, in a few minutes, deposit a

visible layer of Cd on nearby surfaces - a regime that must be avoided for previously

mentioned reasons. Of course, since each oven’s characteristics may differ from one to

the next (such as tube wall thickness etc.), testing is an important part of operating

these home-made devices.

The second oven design, which incorporated the use of the CdO powder required

a much higher temperature in order to produce the Cd vapor. The stainless steel

tube was replaced by an alumina tube, which can sustain temperatures as high as

2000oC. A small tungsten filament with diameter 0.0025 in. is tightly wrapped around

a ceramic tube, with inner diameter 0.0625 in. and wall thickness 0.035 in. The oven,

packed with CdO powder, is then heated by running a current through the resistive
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tungsten wire, typically under 1 A. Again, the same care must be taken in knowing

the threshold current (few amps) of the particular oven in use and making sure that

the operating current is always comfortably smaller.

2.3.2 Ionization of Cd

The standard method for producing positively charged trapped ions is electron

bombardment, usually from electron beams having kinetic energies comfortably above

the ionization threshold of the neutral Cd atom (∼ 9 eV). In this experiment, this is

achieved with another home-made device, the electron-gun. The source of high energy

electrons is a thoriated tungsten filament resistively heated to very high temperatures

by running a current through it. The high energy thermal electrons are accelerated

through the hole of a metallic plate, biased at -130V, and are directed toward the

center of the trapping region. The optimal electron-gun settings in our experiment

consisted of a current and biased voltage large enough to produce a total collected

current of ∼150 µA. To load an ion, the electron-gun is turned on until an ion appears

on the camera, then both oven and electron-gun are simultaneously turned off. It is

very costly to leave the oven and electron-gun “ON” longer than is necessary, since

both tend to increase the ambient pressure in the vacuum system, leading to a shorter

lifetime of the ion in the trap.

This use of an e-gun worked fine until the need for simultaneously loading multiple

Cd+ ions of a given isotope. For instance, in order to load two 111Cd+ ions, the oven

and e-gun had to be turned on and off approximately a dozen times. By the time

two 111Cd+ions are loaded, the ion trap lifetime is already reduced from several hours

down to tens of minutes - making any two-ion experiments nearly impossible to carry

out. For this reason and others, an alternative ionization method was implemented.

It consists of using ultrafast laser pulses to photoionize the neutral Cd atoms. This

method is an attractive alternative for many reasons, but mainly it avoids the use of

electron filaments which corrupt the pressure and can be much more efficient than

electron bombardment.



24

This novel ionization technique was an integral part of this work and hence it is

described in great details in chapter 4 of this thesis. The photoionization technique

also required the construction of a long-wavelength pulsed laser, which is described

in section 4.1.3.

2.3.3 Rf voltage source

Typical trapped ion experiments demand secular frequencies on the order of a few

MHz, requiring several hundred volts of rf applied to the trap electrodes. In order

to achieve this, each trap electrode is attached, via a vacuum feedthrough, to the

high voltage end of an rf quarter-wave helical coil resonator. The resonator takes

the output of an rf amplifier (few watts) with 50Ω output impedance, and steps it

up to a voltage as high as a few thousand volts. This voltage is typically limited by

electrical discharge across the vacuum feedthrough, which are commonly rated to a

few thousand volts. As many as 10 resonators were built in order to accommodate

the various experiments described in this thesis. Below I describe the design and

operation of a typical helical coil resonator used in this work.

In principle, a simpler coaxial quarter-wave resonator could be used, however the

wavelengths associated with the typical rf drive frequencies in this work (20-50 MHz)

are on the order of meters, making the coaxial design impractical. The helical design

was first proposed in the late 50’s in a series of papers by W. Macalpine and R.

Schildknecht [41, 42]. This design yields a fairly compact device with a quality factor

Q that can reach a thousand6. However, it has one drawback; the lack of symmetry

makes it very difficult to calculate the electromagnetic field inside the cavity and

hence predict with high accuracy the resulting Q and resonance frequency of the

resonator. For this reason, the design of each resonator was based on an empirical

formula, described in [41]. This formula takes as its input the desired resonance

frequency, quality factor Q, and size of the resonator, and outputs a value for all

resonator parameters needed to build it: the inner coil length, diameter, number of

6The highest quality factor observed for the various resonators in this experiment is ∼600
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turns, wire gauge, winding pitch, and the cylindrical outer conductor’s length and

diameter. In designing the resonator it is important to consider the fact that the

resonance frequency is typically reduced by up to a factor of two when the resonator

is attached to the trap electrodes – due to the parallel capacitive impedance of the

trap+feedthrough, typically around 5 pF.

Often, a trapped ion experiment requires the ability to apply a static potential

U0 to one of the trap electrode (Eq. 2.2). This is achieved by biasing parts of the

resonator at the appropriate voltage. However, in order to avoid large and often

crippling rf reflections, rf low-pass filters must be inserted in series between the DC

voltage supply and the resonator. The low-pass filters used in this work consist of

standard π-networks, typically made from 0.1µF capacitors and 100µH inductors.

An important variation in the standard quarter-wave helical coil resonator design

consists of introducing a second inner coil wounded along the other coil. This type of

resonator, depicted in Fig. 2.5, is typically referred to as a “bifilar” resonator. The

bifilar resonator allows both rf leads going to the trap electrodes to have the same

ac voltage but different bias voltages. In order to ensure that both rf leads have the

same rf amplitude and phase, a shunt capacitor (typically 0.1 µF) is connected across

both leads. The bifilar resonator was important in the motional heating experiment,

where the ability to apply independent static voltages was used to cancel micromotion

(chapter 7).

2.3.4 Vacuum technology

Trapped ion experiments must be performed in an ultra-high vacuum environment

(∼10−11 Torr) in order to achieve long trap lifetimes – typically ranging from a few

hours to several days. The lifetime in the Cd+ ion setup is limited mainly by inelastic

collisions with background atoms and molecules. Calculations show elastic collisional

rate under UHV conditions are expected to occur on the order of 1/min, which has

a negligible effect on experiments that are typically conducted at a repetition rate of

100 Hz. The observed lifetime of hours indicates that the probability of an inelastic
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Figure 2.5: Picture of a typical quarter-wave bifilar helical coil resonator

used in this work. The antenna with its characteristic pigtail shape induc-

tively couples power from the rf amplifier into the resonator. This results

in a high voltage at the other end of the coil, positioned at the center of

the copper cylinder. The three pieces of white material (Teflon) around the

coil serve the purpose of keeping the coil at the center of the resonator and

damp any mechanical vibrations. This particular resonator was the source

of high voltage for the two-needle trap. Since each needle electrode required

its own particular bias voltage in order to compensate for background elec-

tric fields, a bifilar resonator was constructed. Essentially, this resonator

consists of two coils which provide two identical but independent sources

of rf. This bifilar resonator has a Q of ∼300 and a resonance frequency of

Ωrf/2π=29 MHz.
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collision is therefore very small.

The various vacuum systems used in this work are nearly identical to one another.

They primarily consisted of standard (off the shelf) 2 3/4” UHV conflat fittings, with

a few 3 3/8” fittings around the hemisphere containing the trap apparatus. An ion

pump with a pumping speed of 20 l/sec was continuously turned on to keep the ambi-

ent pressure around 10−11 Torr. Additionally, a titanium sublimation pump was run

periodically at a 60 Hz current of 45 Amps for a duration of 90 seconds. The titanium

layer deposited on the surface of the vacuum system provides additional pumping.

Fig. 2.6 shows the picture of a typical vacuum system used in this work7. Clearly

visible in Fig. 2.6 are the various UV compatible fused-silica viewports attached to

the hemisphere, providing the essential optical access to the trapped ion. Also at-

tached to the hemisphere are the various electrical feedthroughs needed to power up

the ion trap apparatus: high voltage rf output from the resonator, high static voltage

for compensation electrodes, and high current (few amps) for the e-guns and ovens

etc.

The most important step in reaching a vacuum pressure as low as 10−11 Torr is

the bake. The required procedure actually consists of several successive steps. First,

before assembling the trapping apparatus, each stainless steel vacuum parts is pre-

baked in an oven at 400oC for a period of a few days. The oxidation layer that forms

on the surface of the stainless steel is thought to help in reducing the outgassing of

material trapped inside the metal. Once the whole trapping apparatus is assembled,

the vacuum system is first pumped under vacuum (∼ 10−6 Torr) with a roughing

pump. The system is then placed in a large oven, where (1) the roughing pump is

turned off and a large 500 L/sec ion pump is turned on, then (2) the oven temperature

is slowly increased toward 225oC 8 for a duration of about 2 weeks. During this time

the pressure is monitored with an ion gauge, signaling the end of the external bake

(with the 500 l/s ion pump) and the beginning of the internal bake (with the 20l/s

7This particular vacuum system contained the three-layer linear trap
8We limit the temperature of the bake to 225oC, since the zero-length quartz-to-metal seal is

rated to a maximum temperature of 250oC
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ion pump) when the pressure reaches a steady state, typically around 10−6-10−7 Torr.

This internal bake proceeds for a few more days, again until the pressure reaches a

steady state, usually around 10−7-10−8 Torr. Then the temperature is slowly reduced

to room temperature. This process is done slowly in order to prevent thermal stresses,

especially with the viewports.

Once at room temperature, the vacuum may or may not be at the target pressure

of 10−11 Torr. Even if it is not there yet, it is a good habit to turn on the titanium

sublimation pump successively at an interval of 1 hour over the course of a day. If at

the end of this step, the pressure is still above 10−10 Torr, this may indicate a vacuum

leak.



29

Figure 2.6: Picture of a typical vacuum system used in this work. The

particular system shown here was built to hold the three-linear trap. The

system is essentially built around the hemispheric chamber from Kimball

Physics, which houses the ion trap along with ancillary components (ovens,

e-guns, etc.). Clearly visible are several critical parts attached to the

hemisphere: the UV compatible vacuum viewports, and various electrical

feedthroughs. The 20 L/s ion pump (black casing) is seen slightly to the

left, while the titanium sublimation pump is the vertical tube, centered in

the picture.



CHAPTER 3

Energy levels of the 111Cd+ ion and relevant laser transitions

A trapped 111Cd+ ion with an energy level structure similar to the hydrogen atom

is manipulated with laser light near 214.5 nm. Typical experiments described in

this thesis consist of successive laser interactions, designed to transform the atomic

wavefunction of the 111Cd+ ion in a specific way. Two types of laser manipulations are

carried out, consisting of resonant interactions, and far-detuned coherent interactions.

Nearly resonant light with a strongly allowed dipole transition Doppler cools the

motion of the trapped ion, initializes its internal electronic state, and detects the

state of the qubit. A pair of non-resonant Raman beams drive two-photon stimulated

Raman transitions, which coherently couple the internal electronic levels and the

motional state of the ion. This tool gives the ability to cool the ion to the ground state

of motion, a crucial aspect of the work described in this thesis. More broadly, these

motional sensitive Raman transitions are used to “engineer” a rich set of interaction

Hamiltonians, notably the well known Jaynes-Cummings Hamiltonian of cavity QED

[43, 36].

3.1 Energy levels of 111Cd+

The majority of atomic species chosen for a trapped ion experiment are alkali-like

elements. That is, once ionized, they are left with a single unpaired valence electron.

Their resulting electronic structure is then very simple and resembles that of the

hydrogen atom. The cadmium atom falls within this category - the ground state

of the neutral Cd atom is comprised of two valence electrons in the 5s2 1S0 state.

30
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Once singly ionized, the resulting Cd+ ion is left with a single valence electron with

a hydrogen-like ground state manifold (5s 2S1/2).

As shown in Fig. 3.1, many naturally occurring isotopes of cadmium are available.

The most attractive isotopes for quantum computing applications possess a ground

state hyperfine structure with a microwave frequency splitting (i.e. nonzero-nuclear

spin), namely the 111Cd+ and 113Cd+ isotopes [44]. This work is carried out using the

111Cd+ isotope, wich has a nuclear spin I = 1/2 and a natural abundance of ∼10%.

The many naturally occuring isotopes of cadmium are expected to play an important

role in the future realization of a trapped 111Cd+ ion based quantum information

processor, insofar as other isotopes having a different laser transition (i.e. isotope

shift) can be used to quench the unwanted motion of the 111Cd+ ion qubits through

“sympathetic cooling” [45].

Relevant energy levels for the 111Cd+ ion are shown in Fig. 3.2, including the

5s 2S1/2 ground state and two excited P state manifolds, namely 5p 2P1/2 and 5p

2P3/2. The two optical transitions used in this work are 2S1/2 → 2P1/2 and 2S1/2 →
2P3/2, with a wavelength of 226 nm and 214.5 nm, respectively. Both are strongly

allowed electric dipole transitions with radiative linewidth γ1/2/2π = 50 MHz and

γ3/2/2π = 60 MHz [46]. Since the quantity γ1/2 is seldom used in this thesis, and the

quantity γ3/2 is ubiquitous throughout, I will simply express the radiative linewidth of

the 2P3/2 level as γ0. The fine structure splitting between the 2P1/2 and 2P3/2 excited

states is 74 THz. The hyperfine splitting of the ground state 2S1/2 is 14.5 GHz, while

for the 2P1/2 and 2P3/2 states, it is ∼2 GHz and ∼800 MHz, respectively. The qubit

(|↓〉 and |↓〉) is formed by two long-lived ground state hyperfine levels: specifically

|↓〉 ≡ 2S1/2 |F = 1, MF = 0〉 and |↑〉 ≡ 2S1/2 |F = 0, MF = 0〉, both expressed in the

total angular momentum basis |F, MF 〉. The fairly simple ground state energy level

structure of the 111Cd+ ion is indeed very convenient, as it allows the qubit to be

formed by these two “clock states” (i.e. MF = 0) that are first-order insensitive

to magnetic field noise . The quantization z-axis is defined by an externally applied

magnetic field. For this, a current of a few amps runs through a primary coil, typically

providing a magnetic field of ∼10 Gauss at the ion’s position. The magnetic field is
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“trimmed” with the use of two auxiliary coils, both oriented perpendicular to the

primary coil. The Zeeman splitting of the magnetic sublevels is given by ∆E =

µBgF BzMF , where µB=1.4 MHz/Gauss is the Bohr magneton, gF is the Lande-

g factor, Bz is the applied magnetic field, and MF is the projection of the total

angular momentum operator F̂ along the quantization axis. For example, taking into

account the different Lande-g factors for each electronic levels1, the cycling transition2

2S1/2→2P3/2 driven with σ+-polarization light is frequency blue-shifted by an amount

µBBz, while the cycling transition driven with σ−-polarization light is frequency red -

shifted by an amount µBBz.

3.2 Resonant laser-ion interactions

Below I describe three single-photon laser processes used in large amounts through-

out the work described in this thesis. They are all near-resonant with the 2S1/2→2P3/2

dipole allowed transition. They form a basic set of tool required in each experiment

involving a trapped ion quantum register, namely, initialization of the electronic state

population, Doppler cooling the ion’s harmonic motion, and detection of the qubit

state.

3.2.1 Qubit state initialization: optical pumping

The beginning of each experiment described in this thesis starts with the initial-

ization of the electronic population into a pure state, in our case |↑〉. To do this,

we use a standard optical pumping technique [47]. We turn on π-polarized laser

light (“π-beam”) near-resonant with the S1/2(F = 1)→P3/2(F = 1) transition. With

spontaneous emission through the various 2P3/2 →2S1/2 decay channels, of which

2P3/2 → |↑〉 is the strongest (see Fig. 3.3), the population quickly approaches unity

1The Lande-g factors are: gF = 5/3 for P3/2(F = 1), gF = 1 for P3/2(F = 2), gF = 1 for

S1/2(F = 1), and gF = 0 for S1/2(F = 0)
2This is a closed transition, due to a single decay channel.
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Figure 3.1: Plot showing the many isotopes of Cadmium. The relative

abundance of all isotopes is plotted against the wavelength of their respec-

tive cycling transition. The wavelength shown in the plot corresponds to

the output of the tunable Ti:Sapphire laser in the infrared, before it is fre-

quency quadrupled to 214.5 nm, which is the wavelength required to excite

the cycling transition of the Cd+ ions. The reason for this is simply that

the wavemeter used to monitor the wavelength operates in the infrared and

not in the deep UV. However, the relative detunings shown on the hori-

zontal axis and the noted frequency spacings between isotopes are in units

of GHz at λ =214.5 nm. Only the 113Cd+ and 111Cd+ isotopes possess

a ground state hyperfine structure with a microwave frequency splitting

(i.e. nonzero-nuclear spin) required for quantum computation using hyper-

fine qubits. The ion used in this experiment (i.e. 111Cd+), has a natural

abundance of ∼10%.
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Figure 3.2: Energy level diagram of the 111Cd+ ion with relevant laser

transitions. Every optical transition shown here couples the 2S1/2 ground

state to the 2P3/2 excited state (radiative linewidth γ0/2π =60 MHz) with a

wavelength of 214.5 nm. The fine structure splitting between the excited P

states is 74 THz. The hyperfine splitting of the 2S1/2 ground state manifold

is 14.5 GHz, while for the 2P3/2 and 2P1/2 excited state manifolds, it is

∼800 MHz and ∼2 GHz, respectively. The ground-state hyperfine levels

used in the experiment are |↓〉 ≡ |1, 0〉 and |↑〉 ≡ |0, 0〉, both expressed

in the |F, MF 〉 basis. The laser light with π-polarization couples to the

2S1/2→2P3/2 transition and is used to initialize the population into the |↑〉
qubit state. Both laser beams with σ+-polarization are used to Doppler

cool the ion’s harmonic motion. Here, the repumper beam is turned on in

order to prevent the electronic population from decaying and subsequently

remaining into the |↑〉 state. Detection of the qubit state is obtained with

the use of the σ+-polarized laser beam, with the repumper beam turned

off. A magnetic field pointing along the z-axis (quantization axis) with a

magnitude of ∼10 Gauss is present at the ion’s position. The resulting

Zeeman frequency splitting between adjacent MF levels is ∼14 MHz.
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in the desired qubit state, namely |↑〉. In principle, a strict S1/2(F = 1)→P3/2(F = 1)

transition has a dark state3, which can reduce the efficiency of this state initialization

step. However, this potential difficulty is removed by off-resonant coupling to the P3/2

(F = 2) manifold. We observed maximum efficiency for the optical pumping when

the π-beam is red-detuned from the P3/2 (F = 1) by 200 MHz, corresponding to a

blue-detuning of ∼600 MHz from the P3/2 (F = 2) manifold. We typically used a

π-beam with ∼50 µW of optical power focused to a ∼15 µm waist; a state preparation

of ≥ 99% was obtained by turning on the π-beam for a time duration of 5 µsec. The

performance of the optical pumping into the |↑〉 state is determined using a qubit

state detection technique, discussed in section 2.2.3.

Figure 3.3: Energy level diagram of the 111Cd+ ion along with 2S1/2→2P3/2

transition amplitudes. Each amplitude is normalized to the strongest al-

lowed transition (i.e. cycling transition).

3Stationary state with respect to the coupling
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3.2.2 Doppler cooling

Another single-photon resonant process that is ubiquitous in this work is Doppler

cooling of the trapped ion’s harmonic motion. Here, only the type of laser interaction

is presented, since the technique as a whole is described in more details in the “laser

cooling” chapter of this thesis (chapter 5).

In order to achieve this, a σ+-polarized laser beam is slightly red-detuned from the

5s 2S1/2 → 5p 2P3/2 cycling transition (λ = 214.5nm), as shown in Fig. 3.2. Specifi-

cally, the intensity and the detuning from the excited state are set to I ∼ Isat/4 and

∆ ∼ γ0/2 =2π(30 MHz), respectively - in order to obtain the most efficient Doppler

cooling [36, 48]. In practice, the polarization of the laser beam isn’t perfectly σ+, and

this imperfection leads to optical pumping into the |↑〉 state, which essentially turns

off the required photon scattering for the remainder of the cooling pulse. To prevent

this, an additional laser beam (“repumper”), resonant with the |↑〉→2P3/2 |1, 1〉 tran-

sition, is turned on with the laser beam that’s resonant with the cycling transition.

In the rest of this thesis, this pair of laser beams is simply referred to as “Doppler

beam.” In order to Doppler cool the ion’s motion along the three principle axes of

the ion trap, the ~k-vector of the Doppler beam must have a component along each

axis.

3.2.3 Qubit state detection

The last “step” in any experiment described in this thesis consists of detecting

the state of the qubit, which is generally found in an arbitrary superposition |Ψ〉 =

α |↑〉+β |↓〉. Simply put, the application of a detection beam results in the presence (or

absence) of light scattering from the ion, which is correlated to the internal electronic

state (|↑〉 or |↓〉). In repeating this measurement “step” a sufficient number of times,

the probabilities |α|2 and |β|2 can be determined with very high fidelity [49].

The detection beam is derived from the same source as the π-beam and the Doppler

beam, with its optical power and frequency adjusted appropriately with the use of



37

an acousto-optical modulator (discussed in chapter 4). The polarization (σ+) and

frequency of the detection beam are tuned such that it resonantly couples to the

5s 2S1/2 |1, 1〉 → 5p 2P3/2 |2, 2〉 cycling transition, with wavelength λ = 214.5 nm,

as shown in Fig. 3.2. When the ion is in |↓〉 and the detection beam is turned

on, the ion repeatedly cycles between this state and the excited 2P3/2 |2, 2〉 state,

spontaneously emitting a photon every time. When instead the ion starts in |↑〉, the

detection laser now couples to the |↑〉 → 5p 2P3/2 |1, 1〉 transition, but this time it

is very far blue-detuned from it (by 14.5 GHz-0.8 GHz=13.7 GHz), resulting in very

little photon scattering. Thus, by the presence (absence) of photon scattering, we

can determine with almost 100% efficiency the state of the qubit. We typically refer

to |↑〉 as the “dark” state and |↓〉 as the “bright” state, for obvious reasons. This

technique offers an excellent opportunity to sharpen our intuition vis-a-vis the concept

of quantum measurement. For example, lets assume that the ion starts in the equal

superposition |Ψ〉 = 1√
2
(|↑〉 + |↓〉). Immediately after the detection beam is turned

on, the wavefunction randomly collapses to |↑〉 or |↓〉, with a 50% probability for

each outcome. When the measurement is assumed to be 100% efficient, the previous

example becomes equivalent to a coin toss experiment. Hence, after repeating the

measurement process N times, the probability to be in either qubit state (|↑〉 or |↓〉)
is obtained, along with “statistical” noise proportional to

√
N , commonly referred

as quantum projection noise [50]. This is a fundamental source of noise, which,

for uncorrelated ions (i.e. no entanglement), can only be reduced by increasing the

number N of measurements.

In this work, the discrimination between |↑〉 and |↓〉 was typically achieved with

an efficiency near 99.7%. Several factors contribute to the errors in the detection

process. For instance, while detecting |↑〉, the population should ideally remain in

the dark state. However, there is a small probability that the population will be

optically pumped from the dark state into the cycling transition (bright state), via

off-resonantly coupling to the 2P3/2 |1, 1〉 excited state. This off-resonant coupling

constrains the intensity of the detection beam to be below saturation (I < Isat), in

order to prevent power broadening of the excited state. In fact, in the time interval
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it takes to scatter a single photon while in the bright state, the probability to have a

single photon scattering event from the dark state (error) is proportional to the square

of the ratio of their respective detunings, that is (∆bright/∆dark)
2=(400 MHz/13.8

GHz)2= 8.4×10−4. This small error makes evident a virtue of the 111Cd+ ion, namely

its relatively large hyperfine splitting of 14.5 GHz.

In the case of the bright state detection, the error is dominated by optical pumping

from the cycling transition to the dark state via off-resonant coupling to the 2P3/2(F =

1) excited state manifold. Ideally, this error can be made to vanish for a pure σ+-

polarization, since in this case it would not couple to the 2P3/2(F = 1) manifold. In

order to minimize this error, we “align” the polarization of the detection beam4 while

monitoring the ion fluorescence, where the optimal polarization (maximum amounts

of σ+-polarization) corresponds to a maximum ion fluorescence.

In this work, we typically detected the state of the ion N=100 times. Then by

binning the results according to the number of photons detected, we construct a his-

togram of the photon statistics for that experiment. Two such histograms are shown

in Fig. 3.4 - with the top (bottom) one corresponding to the dark (bright) state. By

direct inspection, we can already see that the distributions have very little overlap,

implying a high detection efficiency. These histograms are accumulated with an opti-

mal detection time and laser beam intensity of 200µs and 0.10Isat, respectively. The

resulting bright state photon counts follow a Poissonian distribution, with average

photon count of 12. On the other hand, the dark state histogram follows a more com-

plicated distribution, consisting of a convolution of different bright state distributions,

each occurring at different off-resonant optical pumping times [49]. The photons are

collected with a photomultiplier tube (PMT), having a quantum efficiency of ∼20%.

However, the total photon collection efficiency of the entire imaging system is approx-

imately 0.3%, primarily limited by the small solid angle of the primary imaging lens

(discussed in more detail in section 4.2).

4The polarization of the detection beam is rotated to σ̂+ by passing it through a λ/4-waveplate.



39

Figure 3.4: Detection histograms of the |↑〉 (top) and |↓〉 (bottom) states

for a single 111Cd+ ion. The bright state photon counts follow a Poissonian

distribution with a mean of 12, while the dark state photon counts follow a

more complicated distribution, which consists of a convolution of different

bright state distributions, each occurring at different off-resonant optical

pumping times. The non zero counts in the dark state distribution are

mainly from light leakage onto the PMT (i.e. room lights). A discriminator

threshold is set at 2 photon counts, above (below) which the ion is assumed

in the bright (dark) state. This leads to a detection efficiency of 99.7%, a

fairly typical condition for each experiments described in this thesis.
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3.3 Coherent ”laser”-ion interactions

With the appropriate application of electromagnetic fields, the internal levels of

the trapped ion (|↑〉 and |↓〉) can be coherently manipulated, as well as coupled to the

motional degree of freedom. Below I give a detailed description of the two techniques

which enable the realization of these type of couplings.

3.3.1 Single-photon transitions

Every coherent interaction used in this work always involves only two internal

levels of the ion. This two-level approximation is justified since the frequency of

the electromagnetic field that provides the coupling is always near resonance of two

internal levels, and the strength of the interaction (i.e. Rabi frequency) is always

much smaller than the detuning to off-resonant transitions. Hence, we conveniently

represent these two-level systems by the analogous spin-1
2

magnetic moment in a

constant magnetic field [51, 52].

The corresponding unperturbed Hamiltonian associated with the internal levels

of the ion (|↑〉 and |↓〉), separated in frequency by ω0 is

Ĥint =
h̄ω0

2
(|↑〉〈↑| − |↓〉〈↓|) =

h̄ω0

2
σ̂z (3.1)

where

σ̂z =





1 0

0 −1



 , |↑〉 =





1

0



 , |↓〉 =





0

1



 .

When the external motional degree of freedom is included, the unperturbed Hamil-

tonian of the trapped ion takes the form

Ĥ0 =
h̄ω0

2
σ̂z + h̄ωxâ

†â. (3.2)

Here, only the motion along the x-axis with secular frequency ωx is considered5.

5In this work, only a single direction of motion is addressed by these “coherent” interactions.

The generalization to more dimensions is straightforward.
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When the external electromagnetic field is turned on, the total Hamiltonian of

the system reads

ĤT = Ĥ0 + Ĥ ′, (3.3)

where Ĥ ′ represent the Hamiltonian provided by the applied field.

It should be noted that both types of coherent couplings used in this work, namely

the magnetic dipole allowed transition and stimulated Raman transition, can be de-

scribed using the same formalism, where we associate a Rabi frequency Ω, effective

frequency ω, and an effective wavevector ~k for each transition type. This, as we will

see, allows for a clear and efficient description of these different interactions.

The following derivation is meant to be general, relevant to any two-level interac-

tion. However, for concreteness in the following derivation, we consider a magnetic

dipole allowed transition, such as that inducing a transition |↑〉 → |↓〉. The perturbed

Hamiltonian reads

Ĥ ′ = −~̂µB · ~B(t), (3.4)

where ~̂µB is the magnetic dipole moment of the two-level system, and ~B(t) = ẑB0cos(kx−
ωt+φ) is the applied time-varying magnetic field with polarization along ẑ, frequency

near ω0, and wavevector direction along x̂. Using the spin-1
2

algebra, the z-component

of the magnetic dipole moment can be rewritten as µ̂ = µ(σ̂+ + σ̂−), where

σ̂+ ≡





0 1

0 0



 , σ̂− ≡





0 0

1 0



 .

Using these results to rewrite the interaction Hamiltonian yields

Ĥ ′ = −µB0(σ̂+ + σ̂−)

2

(

ei(kx̂−ωt+φ) + e−i(kx̂−ωt+φ)
)

. (3.5)

At this point we transform the perturbed Hamiltonian and express it in the interaction

picture. This is a very useful procedure in quantum optics as it results in a time

dependent state vector only if the perturbation is turned on, otherwise the state

remains stationary [52]. The transformed interaction Hamiltonian is obtained by the

following similarity transformation

Ĥint = U †0Ĥ
′U0 (3.6)
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where U0 ≡ e−i
H0
h̄

t is the time evolution operator for the unperturbed system with

Hamiltonian H0. The interaction hamiltonian reads

Ĥint =
h̄

2
Ω(σ̂+eiω0t + σ̂−e

−iω0t)e
i
h̄

â†â
[

ei(kx̂−ωt+φ) + e−i(kx̂−ωt+φ)
]

e−
i
h̄

â†â. (3.7)

By inserting x̂=x0(â + â†), where x0 =
√

h̄
2mωx

is the rms spread of the wavefunc-

tion in the ground state of the harmonic oscillator, and rotating the field into the

interaction frame gives

Ĥint =
h̄

2
Ω(σ̂+eiω0t+σ̂−e

−iω0t)
[

eiη(âe−iωxt+â†eiωxt)e−i(ωt−φ) + e−iη(âe−iωxt+â†eiωxt)ei(ωt+φ)
]

.

(3.8)

In this equation, I have defined the Lamb-Dicke parameter η ≡ kx0.

Now we have to perform the well known rotating wave approximation (RWA), with

the assumption that the applied field is near resonance ω ≈ ω0. The RWA consists

of neglecting the terms that oscillate at optical frequencies, on the basis that upon

integration of the Schroedinger equation for time scales much longer than optical

frequencies, they average to zero. Defining the detuning δ = ω − ω0 of the applied

field from resonance, we have

Ĥint =
h̄

2
Ωσ̂+eiη(âe−iωxt+â†eiωxt)e−i(δt−φ) + h.c. (3.9)

Here, we are assuming that the levels have long lifetimes, which brings us in

the resolved-sideband limit (ωx >> ω). Hence, depending on the detuning δ, the

interaction Hamiltonian will couple particular internal and motional states. To better

see this, we expand the first exponential in a power series, yielding

Ĥint =
h̄Ω

2

[

σ̂+

∞
∑

m=0

1

m!
(iη)m(âe−iωxt + â†eiωxt)m

]

e−i(δt−φ) + h.c. (3.10)

Here we can see that choosing a particular value for the detuning near the reso-

nance of a particular transition δ = (n′−n)ωx+∆, results in a single quasi-stationary

term, with the remaining terms oscillating at frequencies that are at multiples of ωx.

Neglecting these “fast” oscillating terms is yet another iteration of the rotating wave

approximation, where we now assume to be looking at time scales longer than the
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trap frequency ωx. Another way to explain this is that choosing a specific detuning δ

(always assumed near resonance), selects a particular power of â and â†, which then

couple different motional levels together.

At this point we are ready to look at the time evolution of the two-level system’s

state vector, expressed in the interaction frame as

|Ψ〉 =

∞
∑

n=0

∑

K=↑,↓
CK,n(t)|K〉|n〉, (3.11)

where the coefficient CK,n(t) acquires a time dependence only if the interaction is

turned on. Solving for these coefficients using the Schroedinger equation ih̄|Ψ̇〉 =

Ĥint|Ψ〉, yields

Ċ↑,k = −i1+|n−k|e−i(∆t−φ)Ωk,nC↓,n (3.12)

Ċ↓,n = −i1−|n−k|ei(∆t−φ)Ωn,kC↑,k (3.13)

In these equations, we define the generalized Rabi frequency as

Ωn,k = Ω〈n|eiη(â+â†)|k〉. (3.14)

This matrix element is the coupling strength (Rabi frequency) between the two-level

system formed by |↓, n〉 and |↑, k〉. When evaluating this matrix element we obtain

Ωn,k = Ωe−η2/2

√

n<!

n>!
η|n−k|L|k−n|

n<
(η2), (3.15)

where n<(n>) denote the smaller (larger) of n and k, and Lβ
α is an associated Laguerre

polynomial [53]. This expression is somewhat complicated, but it can be simplified

when we are in the Lamb-Dicke limit η << 1, which is often satisfied in quantum

computing applications. In this limit, expanding the Laguerre polynomial to lowest

order in η results in Ωn,n = Ω, Ωn−1,n = Ωη
√

n, and Ωn+1,n = Ωη
√

n + 1. These

are the carrier, upper sideband (blue sideband), and lower sideband (red sideband),

respectively.

These first order differential equations describe Rabi oscillations between the

states |↓, n〉 and |↑, k〉. In a matrix form, if we express the state vector as |Ψ(t)〉 =
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{C↑,k(t), C↓,n(t)}, the time evolution of the system |Ψ(t)〉 = Ûk,n(t)|Ψ(0)〉 is governed

by the time evolution operator Ûk,n(t):





e−i∆
2

t
[

cos
(

Ω′
k,n

t

2

)

+ i ∆
Ωk,n

sin
(

Ω′
k,n

t

2

)]

−iΩk,n
Ω′

k,n

ei(φ+ π
2
|k−n|−∆

2
t)sin(

Ω′
k,n

t

2
)

−iΩk,n
Ω′

k,n

e−i(φ+ π
2
|k−n|−∆

2
t)sin(

Ω′
k,n

t

2
) e−i∆

2
t
[

cos
(

Ω′
k,n

t

2

)

+ i ∆
Ωk,n

sin
(

Ω′
k,n

t

2

)]



 ,

(3.16)

where we identify Ω′k,n =
√

∆2 + Ω2
k,n.On resonance ∆ = 0, the expression for the

time evolution simplifies to

|Ψ(t)〉 =





cos
(

Ωk,nt

2

)

−iei(φ+ π
2
|k−n|sin(

Ωk,nt

2
)

−ie−i(φ+ π
2
|k−n|)sin(

Ωk,nt

2
) cos

(

Ωk,nt

2

)



 |Ψ(0)〉. (3.17)

In order to better understand the meaning of this formalism, we need to see how

these equations relate to a particular type of interaction. These equations imply that

given a single photon transition, say a magnetic dipole allowed transition between

two hyperfine levels of the Cd+ ion, we can apply a driving field (magnetic field) to

induce a coherent population transfer from |↑, k〉 → |↓, n〉. We know we can rotate

a magnetic dipole with microwaves (|↑〉 → |↓〉), but if n 6= k, how can we change

the motional state of the ion? Well, the short answer is that we cannot affect the

motion of a trapped ion with such low frequency, since the momentum of individual

microwave photons is too small. This conclusion is embedded in the generalized Rabi

frequency Ωk,n, where the coupling strength critically depends on the Lamb-Dicke

parameter η = kx0. In the case of a microwave driving field (i.e. 14.5 GHz for

111Cd+) and a trap secular frequency of ωx/2π = 2 MHz, the Lamb-Dicke parameter

is η = 5 × 10−6 << 1. Given such a small Lamb-Dicke parameter simplifies the

expression for the generalized Rabi frequency to Ωk,n = Ω
√

n>!
n<!

ηn−k

|n−k|! . As expected,

in the case of a small Lamb-Dicke parameter (η << 1), this coupling does not allow

the driving field to couple to the ion’s motion.

Having said that, it is important to note that there are physical systems, such as

vibrational transitions in molecules, that are magnetic dipole allowed in the optical

region of the spectrum. Hence, these one-photon magnetic dipole transitions can

have a sizable Lamb-Dicke parameter and thus can drive the motion of a trapped
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ion. In our case, the 111Cd+ ion do not have any magnetic dipole transitions6 at

optical frequencies, hence we use stimulated Raman transitions which provide the

necessary field gradient (or Lamb-Dicke parameter) needed to excite the ion’s motion

(see detailed discussion in section 3.2.2)

The magnetic dipole transition between two hyperfine levels in the ground state

of our Cd+ ion was seldom used for the work described in this thesis. However, it

is such a an easy/simple tool that I will briefly describe how it was implemented.

Additionally, this will give the opportunity to apply the formalism (Eq. 3.16) to a

simple case.

The source of the microwave field is a stable signal generator which is typically

amplified to a power of 1 Watt. The amplified output is then coupled into a mi-

crowave horn, which is located 10 cm away from the trap center and oriented such

that the wavevector of the magnetic field is at an angle of 45o with the x̂-axis of the

trap. The polarization of the magnetic field is mixed, such that all three possible

magnetic dipole transitions in the ground state of the Cd+ ion can be driven. We did

observe that some magnetic dipole transitions were faster than others, presumably

due to the uneven mixture of magnetic field polarization. For instance the “clock”

transition (2S1/2|0, 0〉 →2S1/2|1, 0〉) was typically a factor of ∼2 faster than the other

two transitions (2S1/2|0, 0〉 →2S1/2|1,−1〉 and 2S1/2|0, 0〉 → 2S1/2|1, 1〉). The quanti-

zation ẑ-axis is defined by applying a static magnetic field of 3.75 Gauss, producing

a first order Zeeman shift of 5.75 MHz.

We can use Eq. 3.17 to infer the dynamics of this magnetic dipole transition.

First we assume that the magnetic field is resonant with the transition formed by two

particular ground state hyperfine levels (i.e.∆ = 0). This gives the following time

evolution for the state vector:

|Ψ(t)〉 =





cos
(

Ωt
2

)

−ieiφsin(Ωt
2

)

−ie−iφsin(Ωt
2

) cos
(

Ωt
2

)



 |Ψ(0)〉. (3.18)

As expected, this transformation is completely independent of the motional degree

6Indeed, there are other trapped ion research groups that use one-photon (optical) electric quadru-

pole transitions to excite the motion of trapped ions.
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Figure 3.5: Rabi flopping curves showing “bright state” (F = 1) popu-

lation occupation probability vs application time of the microwave driving

field (14.5 GHz). For the top curve, the frequency of the microwave is reso-

nant with the 2S1/2|0, 0〉 →2S1/2|1, 0〉 “clock” transition (∆MF = 1), while

for the bottom curve, the frequency of the microwave is resonant with the

2S1/2|0, 0〉 →2S1/2|1, 1〉 transition (∆MF = 1). An static magnetic field of

3.75 Gauss is applied in order to define the quantization ẑ-axis. The result-

ing Zeeman shift between adjacent Zeeman levels is 5.25 MHz. The loss of

contrast in the bottom curve (∆MF = 1) is caused by ambient fluctuating

magnetic fields.
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of freedom. Hence the components of the state vector (amplitudes) can be rewritten

accordingly as: |Ψ(t)〉 = {C↑, C↓}. The resulting dynamics consists of oscillatory

population transfer between the two levels |↑〉 and |↓〉, which is commonly referred

to as Rabi flopping. It should be noted that by varying the application time of the

driving field and the phase φ, any arbitrary qubit superposition can be achieved.

Other than being intrinsically useful, this capability constitutes one of the funda-

mental DiVincenzo requirement to having a quantum computer [54]. Fig. 3.5 shows

two such resonant (∆ = 0) Rabi flopping curves. These curves are acquired by

measuring the population transfer from (a) |↑〉 → |↓〉 and (b) |↑〉 →2S1/2|1, 1〉, as

the interaction time is increased in small increments. Prominently, the contrast of

the “clock” (∆MF =0) transition Rabi flopping is much better than its counterpart

(∆MF =1). This difference in contrast can be attributed to the ambient fluctuating

magnetic field, which couples to the ∆MF =1 magnetic dipole transition more effi-

ciently. Specifically, the magnetic field noise sensitivity of the “clock” transition in the

111Cd+ ion is δν = 600Hz
G2 BδB, where for the ∆MF =1 transition it is δν = 1.4MHz

G
δB.

At an applied static magnetic field of 3.75 Gauss, the ratio in the sensitivities is 625.

Using this ratio, we can estimate that the 1/e time for the decoherence of the clock

state due to fluctuating magnetic fields should be on the order of 625 msec. For the

clock transition we observed a decoherence time of ∼50 msec, presumably limited by

phase noise in the electronics used to generate the microwave signal.

3.3.2 Two-photon stimulated Raman transitions

In this section I will describe the technique used to couple the spin and the motion

of the trapped ion. This is a very important aspect of this experiment, as it gives

the ability to laser cool the ion’s motion to its ground state, which in turn, allows

for the observation of motional decoherence (discussed in chapter 7). We already saw

that a driving field which directly couples the two qubit states (|↑〉 and |↓〉) via a

magnetic dipole transition doesn’t have enough momentum to excite the motion (i.e.

η = kx0 << 1). The technique used to obtain the required high field gradient is a
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two-photon stimulated Raman transition through a third, optical level as indicated

in Fig 3.6. Here two laser beams couple the intermediate level |e〉 (2P3/2) to each

qubit levels |↑〉 and |↓〉, where each coupling is through an electric dipole allowed

transition with operators µ̂1 (|e〉 → |↑〉) and µ̂2 (|e〉 → |↓〉). Each laser beam,

~E1(~r, t) = ǫ̂1cos(~k1 ·~r−ω1t+φ1) and ~E2(~r, t) = ǫ̂2cos(~k2·~r−ω2t+φ2), is detuned by ∆R

from the intermediate excited state |e〉 and are assumed to have a non-copropagating

geometry, where ~∆k = ~k2 − ~k1. The difference frequency ∆ω = ω2 − ω1 = ω0 + δω

between the two Raman beams is chosen to be near the frequency splitting of the two

qubit states. In order to change the motional state of the ion, the small detuning δω

is set to near a multiple of the trap frequency ωx (i.e. δω = nωx −∆), as depicted in

Fig. 3.6.

As mentioned in the previous section, both magnetic dipole and stimulated Raman

transitions can be described in a unified framework, which associates an effective

driving field frequency ω, wave vector ~k, and a Rabi frequency Ω with each of these

two transition types. In the case of two-photon stimulated Raman transitions, the

effective driving field frequency and wave vector are ω → ω2 − ω1 and ~k → ~∆k,

respectively. Thus according to Eq. 3.5, the interaction Hamiltonian becomes

Ĥ ′ = − h̄Ω(σ̂+ + σ̂−)

2

(

ei(∆kx̂−(ω2−ω1)t+φ) + e−i(∆kx̂−(ω2−ω1)t+φ)
)

. (3.19)

Here, by having ~∆k · ~̂x = ∆kx̂, I have assumed that we are only sensitive to motion

along the x-direction7. This interaction Hamiltonian describes an effective field with

frequency ω = ω2 − ω1 and wave vector ∆k which directly couples both qubit levels

(|↑〉 and |↓〉). The Lamb-Dicke parameter in this case becomes η = ∆kx0, which

acquires a maximum value of η = 2k1 when both laser beams are set in a counter-

propagating geometry (here I assumed
∣

∣

∣

~k2 − ~k1

∣

∣

∣
≈ 2

∣

∣

∣

~k1

∣

∣

∣
). In this case, the resulting

high field gradient is the ingredient necessary to drive the motion of the trapped ion.

Writing this effective Hamiltonian (Eq. 3.19) by replacing ~k → ~∆k and ω →
ω2−ω1 gives physical insights into this type of transition, but it still does not contain

7The experiments described in this work only require motional sensitivity along a single direction

of motion.
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Figure 3.6: Schematic diagram relevant to the two-photon stimulated Ra-

man transitions coupling the ground states |↑〉 and |↓〉. Raman laser beam 1

(2) having frequency ω1 (ω2) and wave vector ~k1 (~k2), off-resonantly couples

to the electric dipole transition formed by 2S1/2|↑〉 (2S1/2|↓〉) and 2P3/2|e〉.
Each internal state (|↑〉 and |↓〉) is dressed with equally spaced (ωx) har-

monic oscillator levels corresponding to the motion of the trapped ion along

the x-direction.
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an expression for the Rabi frequency Ω, and also does not address the issue of optical

Stark shifts experienced by each qubit state. To obtain these, we need to solve the

three level problem including both qubit levels and the excited intermediate state |e〉.
In the process of doing this, we will recover the effective interaction Hamiltonian (Eq.

3.19), along with expressions for the Rabi frequency and Stark shifts.

Inserting the expressions for the two driving fields into the dipole interaction

Hamiltonian gives

Ĥdip = −~̂µ · ( ~E1 + ~E2) (3.20)

= −h̄
[

g′1e
i(~k1·~̂x−ω1t+φ1) + g′2e

i(~k2·~̂x−ω2t+φ2) + h.c.
]

(3.21)

where ~̂µ is the atomic dipole moment operator, and g′j =
Ej

2h̄
eiφj ǫ̂j · ~̂µ is the jth “electric

dipole” Rabi frequency (where j=1,2).

Using the same notation as in the previous section, we transform the Hamiltonian

into the interaction picture. Then we insert the state vector |Ψ(t)〉 = {C↑,n(t), C↓,n(t), Ce,n(t)}
in the Schrödinger equation, which gives

Ċe,k = i
g1

2

∞
∑

k=0

ei[ωx(k−n)+∆R+δω]t 〈k| ei~k1·~̂x |n〉C↑,n + (3.22)

i
g2

2

∞
∑

k=0

ei[ωx(k−n)+∆R]t 〈k| ei~k2·~̂x |n〉C↓,n

Ċ↑,k = i
g∗1
2

∞
∑

k=0

ei[ωx(k−n)−∆R−δω]t 〈k| e−i~k1·~̂x |n〉Ce,n (3.23)

Ċ↓,k = i
g∗2
2

∞
∑

k=0

ei[ωx(k−n)−∆R]t 〈k| e−i~k2·~̂x |n〉Ce,n, (3.24)

where g1 and g2 are now electric dipole matrix elements connecting the excited state

|e〉 to the ground states |↑〉 and |↓〉, respectively. Here the optical rotating wave

approximation was performed to remove terms oscillating at optical frequencies. Only

the x-direction of motion is considered here, which is represented by the Fock state

|n〉. In order to obtain an effective two-level coupling between both ground states, the

Raman beams are both far-detuned from the excited state |e〉, such that (ΩRaman/∆R

<< 1). Mathematically, this allows to adiabatically eliminate the excited state |e〉
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from the expressions describing the dynamics (Eq. 3.22). In order to do this, we first

transform into a new rotating frame via the substitution Ce,n → C ′e,ne
i∆Rt, yielding

Ċ ′e,k = i
g1

2

∞
∑

k=0

ei[ωx(k−n)+δω]t 〈k| ei~k1·~̂x |n〉C↑,n + (3.25)

i
g2

2

∞
∑

k=0

ei[ωx(k−n)]t 〈k| ei~k2·~̂x |n〉C↓,n − i∆RC ′e,k

Ċ↑,k = i
g∗1
2

∞
∑

k=0

ei[ωx(k−n)−δω]t 〈k| e−i~k1·~̂x |n〉C ′e,n (3.26)

Ċ↓,k = i
g∗2
2

∞
∑

k=0

ei[ωx(k−n)]t 〈k| e−i~k2·~̂x |n〉C ′e,n. (3.27)

The last step in the adiabatic elimination procedure is to neglect the term Ċ ′e,k in

Eq. 3.27, via the assumption that Ċ ′e,k << i∆C ′e,k. Qualitatively, this assump-

tion implies that the long time scale behavior of the resulting two-level system

(1/ΩRaman>>1/∆R) , such as Rabi oscillations between |↑〉 and |↓〉, is not affected by

fast oscillations in the excited state population. In other words, the average excited

state population is sufficient to describe the two-level dynamics. This is not so sur-

prising since the detuning ∆R of both Raman beams from the excited state is always

assumed to be very large, to the extent where the excited state population
∣

∣C ′e,n
∣

∣

2
is

negligibly small at all times.

The average excited state population obtained from the adiabatic elimination

reads

C ′e,k = i
g1

2∆R

∞
∑

k=0

ei[ωx(k−n)+δω]t 〈k| ei~k1·~̂x |n〉C↑,n + (3.28)

i
g2

2∆R

∞
∑

k=0

ei[ωx(k−n)]t 〈k| ei~k2·~̂x |n〉C↓,n

After obtaining the average excited state population from the adiabatic elimina-

tion procedure, we plug it into Eq. 3.26 and Eq. 3.27, yielding the two-level system

dynamics

Ċ↑,n = i
|g1|2
2∆R

C↑,n + i
g1g
∗
2

2∆R

∞
∑

n′=0

ei[ωx(n−n′)−δω]t 〈n| ei∆kx |n′〉C↓,n′ (3.29)

Ċ↓,n = i
|g2|
2∆R

2

C↓,n + i
g∗1g2

2∆R

∞
∑

n′=0

ei[ωx(n′−n)+δω]t 〈n| e−i∆kx |n′〉C↑,n′. (3.30)
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As mentionned earlier, ~∆k = ~k2−~k1 is aligned along the x-axis, thereby providing mo-

tional sensitivity along this direction only. We identify the first term in each equation,

|g1|2
2∆R

and |g2|2
2∆R

, as the AC Stark shift experienced by |↑〉 and |↓〉, respectively. If the AC

Stark shifts are equal to one another, the energy separation of the qubit ω0 remains

unchanged. Their contribution can then be removed by a suitable transformation

to another rotating frame, consisting of C ′′↑,n → C↑,ne
i
|g1|

2

2∆R
t

and C ′′↓,n → C↓,ne
i
|g2|

2

2∆R
t
.

However, when the AC Stark shifts are not the same, the qubit spacing is shifted

accordingly. A frequency scan of the Raman laser beatnote ω = ω2 − ω1 typically re-

veals such differential AC Stark shifts. A common experimental situation where this

comes up is when the waist of a single Raman laser beam, say beam 1, is realigned

onto the ion. The increased intensity at the ion due to Raman beam 1 results in an

additional AC Stark shift to |↑〉, while the AC Stark shift of |↓〉 remains unchanged,

thereby producing a differential AC Stark shift.

Assuming that we are in the rotating frame of the Stark-shifted resonance, and

that the detuning δω is chosen such that the Raman beatnote is near resonance to a

particular transition δω = ωx(n − n′) + ∆, we can apply the motional rotating wave

approximation which results in a single stationary term in the sum, hence a much

simpler expression. The equations of motion are then

Ċ↑,n = −iΩn,n′e−i∆tC↓,n′ (3.31)

Ċ↓,n = −iΩ∗n,n′ei∆tC↑,n′. (3.32)

Here we identify Ωn,n′ = Ωn′,n as the generalized Rabi frequency - already discussed

in the context of 1-photon transitions in the previous section (Eq. 3.14). It reads

Ωn,n′ =
g∗1g2

2∆R

〈

n
∣

∣

∣
eiη(â+â†)

∣

∣

∣
n′
〉

, (3.33)

where the previous expression for the Lamb-Dicke parameter in Eq. 3.14 is mod-

ified by replacing k → ∆k, yielding η = ∆kx0. The only difference between this

expression and the one in Eq. 3.14 is the base Rabi frequency Ω. For the case of

a single-photon magnetic dipole transition, the base Rabi frequency reads Ω = µBB
2h̄

,

which depends linearly on the field. Whereas in the two-photon case, the base Rabi
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frequency is replaced by
g∗1g2

2∆R
, which has a quadratic dependence on the field strengths

- a characteristics of coherent two-photon processes.

The expressions in Eq. 3.31 are analogous to the ones in Eq. 3.14 as they both

describe Rabi flopping in a two-level system. However, this time, the spin and mo-

tional state of the ion can simultaneously undergo a population transfer, such as

|↑, n′〉 → |↓, n〉. Thus choosing a particular frequency beatnote between the two Ra-

man beams ωn′→n = ω0 + ωx(n
′ − n), results in a simultaneous coupling between all

pairs of levels separated in frequency by ωn′→n. The coupling strength for each mani-

fold (two-level system) is given by Ωn′,n and generally varies as the quantum number

n increases. This feature becomes evident as multiple motional levels simultaneously

undergo Rabi oscillations, each at a different Rabi frequency. Similar behavior is ob-

served in the cavity QED system, where the motional degree of freedom is replaced by

a single quantized mode of the electromagnetic field. There, “collapse” and “revival”

in the Rabi flopping signal is observed, and is attributed to the interference between

the superposed Rabi oscillation curves, each corresponding to different number of

photons (|n〉) in the cavity [55].

In order to maximize the motional coupling (i.e. n′ 6= n), both Raman beams

must propagate in directions such that ~∆k = ~k2 − ~k1 is largest. Ideally, a coun-

terpropagating geometry would certainly achieve the objective, however the ion trap

electrode structure prevents this particular arrangement. Instead we adopt a 90o non-

copropagating geometry, as shown in Fig. 3.7. Both Raman beams are propagating

in perpendicular directions and each is directed at an angle of 45o to the x-axis of the

ion trap. The resulting wave vector difference
∣

∣

∣

~∆k
∣

∣

∣
=

√
2k (assuming

∣

∣

∣

~k1

∣

∣

∣
≈
∣

∣

∣

~k2

∣

∣

∣
= k)

allows coupling to the ion’s motion along the x-direction. With a Raman wavelength

of λ = 214.5 nm and a 111Cd+ ion mass of m = (111)1.67×10−27 kg, the Lamb-Dicke

parameter is η = 0.28√
νx

, where νx denotes the trap frequency (MHz) along the x-axis.

At a typical trap frequency of νx =2 MHz, the Lamb-Dicke parameter is 0.2, which

gives an appreciable coupling strength for the first order sidebands (i.e. |n′ − n|=1).

The polarization of each Raman laser beam is constrained for two reasons: (i)

the desired coupling between |↑〉 and |↓〉 constitutes a ∆MF = 0 transition, while
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Figure 3.7: Schematic of the polarization and propagation geometry of

the Raman laser beams. In order to maximize the Lamb-Dicke parameter

η = ∆kx0, the Raman beams are each propagating at an angle of 45o with

respect to the trap x-axis, and are propagating at an angle of 90o from

one another. The resulting wave vector difference
∣

∣

∣

~∆k
∣

∣

∣
=

√
2k is aligned

parallel to the x-axis of the ion trap (assuming
∣

∣

∣

~k1

∣

∣

∣
≈
∣

∣

∣

~k2

∣

∣

∣
= k). An external

magnetic field ~B is applied in order to define the quantization axis. It is

directed at an angle of 45o with respect to the x-axis of the trap. The

polarization of the two Raman beams is perpendicular to each other and

the quantization axis. Given the propagation geometry, this polarization

arrangement achieves an optimal coupling to the excited state.
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−
σ

Figure 3.8: Schematic of the stimulated Raman transition paths (σ̂+ and

σ̂−) along with relevant Clebsch-Gordon coefficients. Both Raman beams

are linearly polarized as shown in Fig. 3.7 and are red detuned ∆R/2π=127

GHz from the 2S1/2→2P3/2 transition. The polarization of Raman beam 1

is rotated perpendicular to that of Raman beam 2, in order to account for

the π-phase shift between the σ̂+ and σ̂− Raman transition paths.
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(ii) Raman beam 1 (2) propagates in a direction that is parallel (perpendicular) to

the quantization axis. The polarization arrangement of the Raman beams that yields

the optimal coupling is shown in Fig. 3.7. In addition to these two constraints, the

signs of the various dipole transition matrix elements (Fig. 3.3) which enter into the

bare Rabi frequencies (
g∗1g2

2∆R
) of both Raman transition paths (σ̂+ and σ̂− in Fig. 3.8),

require the polarization of Raman beam 1 to be rotated at an angle of 90o with respect

to that of Raman beam 2, as shown in Fig. 3.7. This polarization setting, combined

with the particular dipole transitions signs result in constructive interference between

both Raman transition paths, as depicted in Fig. 3.8.

Some experimental data showing resonant Rabi flopping with the non-copopragating

and polarization Raman beam setup discussed above is shown in Fig. 3.9. Each data

set is taken at a trap frequency of ωx/2π = 2.8 MHz, resulting in a Lamb-Dicke para-

meter of η = 1/6. Before acquiring each Rabi flopping curve, the motion is prepared

to its ground state (|n = 0〉), resulting in simple expressions for the Rabi frequency of

the (a) carrier (Ωn,n = Ω), and the (b) first lower (red) sideband (Ωn−1,n = ηΩ). For

each data set, the Rabi frequency can be extracted by fitting the curve to sin2(Ωt
2

).

The expected difference in the Rabi frequency between these two transitions is clearly

visible in Fig. 3.9, where the Raman beam application time required for a complete

population transfer (π-pulse) is 6 times longer for a first rsb as compared to the

carrier, which is consistent with a Lamb-Dicke parameter of η = 1/6.

The nature of the stimulated Raman process presented here always involves a

certain amount of spontaneous emission, originating from the small population in

the excited |e〉 state (Eq. 3.28). A convenient metric for this source of decoherence

involves comparing the spontaneous emission rate to the Rabi flopping rate. For

typical operations involving large Raman beam detunings from the excited state (i.e.

∆R >> γ0), the spontaneous emission rate γsp goes as γsp = s0γ0/(8∆2
R), where s0

denotes the saturation parameter (s0 = I/Isat). Comparing this spontaneous emission

rate to a Raman transition rate of s0γ
2
0/∆R, yields a γ0/8∆R probability of decay

for each coherent π-pulse driven by stimulated Raman transition. With a typical

detuning ∆R/2π=150 GHz, the probability of decay is approximately 10−4. This of
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Figure 3.9: Motional sensitive (a) carrier and (b) first red sideband

(rsb) Rabi flopping curves showing the ground state occupation proba-

bility P (F = 1) vs application time of the Raman beams. Both Raman

beams are coupled to the excited 2P3/2|F = 1, MF = ±1〉 states with a de-

tuning of ∆R/2π = 127 GHz, while the Raman frequency beatnote ω is

tuned to ω0 and ω0 − ωx in order to resonantly excite the carrier and first

rsb, respectively. The trap frequency along the x-direction is ωx/2π =

2.77 MHz, giving a Lamb-Dicke parameter η = 0.16. For each set of data

the motion is initially prepared in the the ground state |n = 0〉, yielding

Ωn,n = Ω and Ωn,n+1 = Ωη for the carrier (|↑, 0〉 → |↓, 0〉) and rsb transi-

tion (|↑, 0〉 → |↓, 1〉), respectively. The vertical gray line indicates the Ra-

man beam application time required for a population inversion (“π-pulse”),

which is factor of 1/η=6 longer for the first rsb transition, as compared to

the carrier.
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course, is a fairly acceptable level of decoherence. However, the actual decoherence

level from spontaneous emission is observed to be an order of magnitude higher. The

cause of this discrepancy has not yet been understood.

In order to determine the amount of spontaneous emission present in each Rabi

flopping curves, as for the ones shown in Fig. 3.9, a “spontaneous emission time

scan” is performed. The qubit is initially prepared in |↑〉, then the Raman beams are

turned on for a time t while being off-resonantly detuned from any transition (|↑, n〉 →
|↓, n′〉). The state of the qubit is then detected, yielding the amount of population

that has been optically pumped from the dark state |↑〉 into the bright state (F=1) via

spontaneous emission. Fig. 3.10 shows a typical “spontaneous emission time scan”.

Here the bright state (F=1) population increases linearly showing increased optical

pumping as the Raman beam application time is increased. In the time required

for a π-pulse on the carrier (∼12 µs, Fig. 3.10), the probability of spontaneous

decay is about 5%. In order to reduce the decoherence due to spontaneous emission,

the detuning ∆R of the Raman beams can be increased further. However, for the

experiment presented here, this level of spontaneous emission per Rabi cycle is already

comparable to the decoherence originating from laser fluctuations (i.e. beam pointing

noise).

The relatively large hyperfine splitting (ω0/2π =14.53 GHz) in the 111Cd+ ion

system is advantageous in terms of realizing near perfect detection of the qubit state

[44]. However, in order to obtain two Raman beams having a 14.53 GHz frequency

beatnote and relative phase stability, this large frequency splitting prevents the use

of standard techniques. Typically, with a smaller hyperfine splitting such as in the

9Be+ (1.25 GHz) and 25Mg+ (1.8 GHz) ions, an acousto-optic modulator (AOM) is

used to frequency shift one Raman beam with respect to the other, thus creating

the phase-stable pair of Raman beams with proper frequency difference. In order to

accommodate the large hyperfine splitting of the 111Cd+ ion, we instead modulate a

single laser source with an electro-optic modulator (EOM) which produces a frequency

comb with the needed high frequency spacings [56]. Below I briefly describe the “EOM

setup” used to drive the stimulated Raman transitions.
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Figure 3.10: Plot of spontaneous emission vs Raman beam application

time. The population is initially prepared in the dark state (|↑〉), then the

Raman beams are applied for a time t while being tuned off-resonance to

any nearby transition (i.e. |↑, n〉 → |↓, n′〉). The population in the bright

state (F=1) is then measured, yielding the amount of population that has

been optically pumped from the dark state |↑〉 to the bright state (F=1) via

spontaneous emission. Due to the particular Raman beams polarizations

(Fig. 3.8) and various transition matrix elements (Fig. 3.3), spontaneous

emission is expected to produce a maximum bright state population of 2/3

as the optical pumping approaches steady state. In looking at Fig. 3.9,

steady state seems to correspond to a Raman beam application time of

0.2 sec, which is much longer than any Raman pulse time involved in this

experiment. This spontaneous emission time scan belongs to the same data

set as the curves shown in Fig. 3.9.
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Commercially available EOM’s cannot operate at a short wavelength of 214.5 nm,

mainly due to the lack of materials having a combined high transmissivity and high

electro-optic coefficient at this wavelength. For this reason, we instead modulate a

2×214.5 nm (429 nm) laser beam at a frequency of ω′0 = 2π (7.265 GHz). The UV

sidebands spaced by ω0 = 2π (14.5 GHz) are generated by frequency-summing the

laser output of the EOM in a build-up cavity containing a BBO nonlinear crystal. The

free spectral range of the cavity is properly tuned to a subharmonic of the modulation

frequency (ωfsr = ω′0/8 in the setup used for the experiment) such that all comb lines

resonate simultaneously inside the cavity.

The electric field of the EOM output at 429 nm can be written as

Eblue =
E0

2
ei(kx−ωt)

∞
∑

n=−∞
Jn(φ)ein[(δk)x−ω′

0t/2] + c.c., (3.34)

where E0 is the electric field amplitude of the EOM laser input, Jn(φ) is the n-th order

Bessel function with modulation index φ, and δk is the wave vector difference between

two adjacent sidebands spaced by a frequency ω′0/2. The resulting UV output, at a

wavelength of 214.5 nm is

EUV = χEblueE
∗
blue = χ

E2
0

4
e2i(kx−ωt)

∞
∑

n=−∞
Jn(2φ)ein[(δk)x−ω′

0t/2] + c.c., (3.35)

where χ denotes the conversion efficiency of the frequency summing process (assumed

constant over the bandwidth of the 429 nm frequency comb). The UV output is the

same as the 429 nm frequency comb, but with a phase modulation of 2φ. All pairs of

spectral components separated by 14.5 GHz produce the required beatnote to drive

a stimulated Raman transition. To obtain the net bare Rabi frequency
g∗1g2

2∆R
, all

beatnotes at 14.5 GHz are superposed, which gives

Ω = 2Ω0

∞
∑

n=−∞
Jn(2φ)Jn+2(2φ)ei[(2δk)x] = 0. (3.36)

This result can be justified by considering the fact that a phase modulated laser

beam does not have an intensity beatnote at 14.5 GHz, which is required to drive a

2-photon stimulated Raman transition. In fact, the intensity of the phase modulated

laser beam is constant in time.
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An additional trick is used to modify the relative phases of the spectral component

pairs (beatnotes), such that they no longer completely destructively interfere [56, 57].

The technique consists of splitting the UV laser beam at one location and recombine

it at the ion. This essentially forms a Mach-Zehnder interferometer, where the relative

length of paths A and B can be adjusted such that the total destructive interference

between the beatnotes is removed. It should be noted, that the Mach-Zehnder tech-

nique arises naturally with the non-copopagating Raman beam geometry discussed

earlier (Fig. 3.7), where both Raman beams are recombined at the ion with an angle

of 90 degrees between them. Assuming a relative path length of ∆x between arm A

and B, the total field at the ion is

EUV = χ
E2

0

4
e2i(kx−ωt)

∞
∑

n=−∞
Jn(2φ)ein[(δk)x−ω′

0t/2]
{

1 + ei(2k+nδk)∆x
}

+ c.c. (3.37)

The resulting Rabi frequency in this case is

Ω = 2Ω0e
i(δk)(2x+∆x)

∞
∑

n=−∞
Jn(2φ)Jn−2(2φ)cos [(2k + (n − 1)δk)∆x] . (3.38)

Here, for δk · ∆x = (2m + 1)π, where m is an integer, the Rabi frequency can be as

high as 0.48Ω0 for a phase modulation of φ=0.764. The 0.48 prefactor multiplying

the Rabi frequency can be interpreted as the efficiency factor for the Mach-Zehnder

method with this particular arrangement. The optical wave vector k inside the cosine

term requires the Mach-Zehnder setup to be interferometrically stable, which is very

difficult to realize as the path lengths A and B are typically on the order of 1 meter. In

order to eliminate this optical phase stability requirement, we introduce a frequency

shift ∆ω >> Ω between each arm (A and B) of the Mach-Zehnder interferometer.

To keep the frequency beatnotes resonant with the qubit, this shift is compensated

by changing the modulation frequency of the EOM by ±∆ω/2, resulting in a Rabi

frequency of

Ω = Ω0e
iβ

∞
∑

n=−∞
Jn(2φ)Jn−2(2φ)ein(δk)∆x = Ω0e

iβJ2

(

4φsin(
δk∆x

2
)

)

. (3.39)

where eiβ=e−i(k+2δk)∆x is a phase that does not affect the magnitude of the Rabi

frequency, and ∆ω << ω′0. Here, when the relative path length ∆x is set to zero, the
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Rabi frequency is zero as well, as expected since in this case the Raman frequency

beatnotes do not acquire a relative phase shift. When the relative path length is

instead set to δk∆x = (2m + 1)π, the Rabi frequency can be as high as 0.244Ω0 for a

modulation index of φ=0.764. Fig. 3.11 shows measurements of the Rabi frequency

obtained as the relative path length difference ∆x is varied for two different value

of the phase modulation index φ. The expected variations in the Rabi frequency

over a path length of ∆x = 2π/δk=4.13 cm is clearly visible [56]. We fit Ω to Eq.

3.39 in order to extract the modulation index φ for each curve. The extracted values

of the modulation index φ is in good agreement with a direct measurement using a

Fabry-Perot spectrum analyser.

Figure 3.11: Rabi frequency vs Mach-Zehnder path length difference ∆x

for two different values of the modulation index φ. The line represent the

theoretical prediction and the data are fitted to Eq. 3.39 using the vertical

axis and modulation index as fitting parameters. The EOM modulation

index φ is independently measured with a Fabry-Perot spectrum analyser,

which agrees well with the fits. The vertical axis denotes the ratio to the

Rabi frequency with the Mach-Zehnder setup vs the Rabi frequency if the

same optical power is contained in two laser beams having a 14.5 GHz

frequency beatnote. The vertical axis can be interpreted as the efficiency

of the Mach-Zehnder setup.
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Using this particular Raman laser beam setup yields a frequency spectrum of

Raman laser-ion resonances. Typically, in order to locate the resonances, such as

the carriers and the sidebands, the EOM comb spacing is kept fixed (resonant with

the BBO cavity), while the AOM’s located in each arms (A & B) of the Mach-

Zehnder interferometer are used to change the Raman frequency beatnote to access

the various resonances (discussed in section 4.2.2). Alternatively, it is also possible to

observe the frequency spectrum by varying the EOM comb spacing while keeping the

AOM’s at a fixed frequency. This, however, is not the preferred method to observe

the spectrum. As the frequency of the EOM is scanned across the various laser-ion

resonances, the frequency comb spacing becomes increasingly detuned from the BBO

cavity, introducing an unnecessary systematic in the data. Fig. 3.12 shows a Raman

frequency spectrum obtained by varying the relative frequency of the Mach-Zehnder

AOM’s, while keeping the EOM drive frequency fixed. The Raman beams are applied

for 8 µs between the initialization (prepared into |↑〉) and detection steps. One AOM

is driven at a fixed frequency of 212 MHz, while the frequency of the other (displayed

on the plot’s horizontal axis) is varied in order to excite the various resonances.

Inspection of the Raman spectrum shows that there are twice as many resonances as

one would initially guess; two carrier resonances, two first rsb resonances, etc. The

reason for this stems from the relative frequency shift ∆ω between the two arms of

the Mach-Zehnder interferometer, which, as previously mentioned, was introduced

in order to remove the constraint of interferometric stability of the Mach-Zehnder.

For this data, the EOM is driven at a frequency of 7266.45 MHz, which gives UV

spectral features that are about 2×(1.2) MHz blue detuned from the qubit resonance

ω0
8. In order to drive a carrier transition, the relative frequency of the Mach-Zehnder

AOM’s need to be set to ∆ω=2π(2.4) MHz. Fig. 3.12 shows that when the drive

frequency of the variable AOM is tune ±∆ω=2.4 MHz relative to the fixed AOM

(212 MHz), a carrier transition is driven, in agreement with the previous statements.

This frequency scan serves an important function, in that it gives the ability to preset

the various rf generators to the appropriate frequencies needed to drive a particular

8Here, ω0/2π denotes the Stark shifted resonance frequency of the qubit.
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sequence of Raman transitions making up an experiment.

3.3.3 Sideband thermometry

The motional sideband transitions described above form the basis of many trapped

ion quantum computing schemes [20, 4], where the ion motion can be viewed as an

ancillary degree of freedom through which trapped ions are linked to one another, and

hence entangled. An implicit requirement in these trapped ions quantum computing

schemes is laser cooling of the ions motion to near the ground state, which is also

based on the ability to perform motional sideband transitions. Here I present yet

another common use of motional sideband transitions, which I refer to as “sideband

thermometry”. Essentially, this technique gives the ability to measure the average

motional state population 〈n〉 for the particular case of a thermal distribution, which

applies for Doppler cooling and most ground state cooling techniques since they leave

the motion in a thermal state [39]. Essentially, the technique is based on the ability

to observe the increased asymmetry in the k-th order blue and red sidebands as the

mean motional state 〈n〉 decreases toward |n = 0〉. In the opposing limit of n → ∞,

the technique fails as the asymmetry in the blue and red sidebands disappears, an

expected result in the classical regime. Below I give a brief description of the method.

The qubit is first prepared in |↑〉, and then the k-th order blue (red) sideband is

turned on for a varying time t, resulting in a population transfer between |↑, n′〉 and

|↓, n〉. The population in the |↓〉 (“bright”) state is then measured, yielding

P rsb
↓ (t) =

∞
∑

m=0

Pmsin2

(

Ωm,m+kt

2

)

(3.40)

P bsb
↓ (t) =

∞
∑

m=0

Pmsin2

(

Ωm,m−kt

2

)

(3.41)

=
∞
∑

m′=0

( 〈n〉
1 + 〈n〉

)k

Pm′sin2

(

Ωm′,m′−kt

2

)

,

where Pm =
(

〈n〉
1+〈n〉

)m (
1

1+〈n〉

)

is the occupation probability for a thermal state dis-
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Figure 3.12: Plot of the Raman spectrum with a variable Mach-Zehnder

AOM frequency. Initially, the motion is Doppler cooled and the qubit is

prepared into |↑〉. The Raman beams are then turned on for a fixed time

duration of 8 µs with a variable beatnote frequency. The population in the

bright state (F=1) is then detected and displayed on the vertical axis. The

EOM is driven at a fixed frequency of 7266.45 GHz, yielding UV spectral

features that are 2.4 MHz blue detuned from the qubit’s Stark shifted reso-

nance. In order to drive the two possible carrier transitions, the frequency

of the variable AOM (horizontal axis of the plot) is set ±2.4 MHz detuned

from that of the fixed AOM (212 MHz). The various sidebands shown in

the plot are spaced by a frequency of 1.38 MHz, corresponding to the trap

frequency ωx/2π. The purpose of this scan is to give the ability to preset

the various rf generators to the appropriate frequencies needed to drive a

particular sequence of Raman transitions making up an experiment.
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tribution. Using the equivalence Ωm+k,m = Ωm,m+k, Eq. 3.41 can be rewritten as

r ≡
P bsb
↓ (t)

P rsb
↓ (t)

=

( 〈n〉
1 + 〈n〉

)k

. (3.42)

The measurable asymmetry or ratio r in these probabilities is independent of the

Raman application time t, carrier Rabi frequency Ω, or Lamb-Dicke parameter η

[26].

Typically, the ratio r is extracted from Rabi flopping curves over each sidebands

while keeping the light intensity constant and directly yields the mean occupation

〈n〉 =
r1/k

1 − r1/k
(3.43)

of the thermal motional state. While Eq. 3.42 predicts a greater sensitivity when

using high order sidebands (k > 1), the reduced strength of the high order sidebands

typically leads to prohibitively noisy signals. Hence, the first order sidebands are

typically chosen for the task. The sideband thermometry method presented here is

one of the main tool in this experiment, as it allows us to determine the particular

parameter settings required to reach the ground state of motion (chapter 6), and gives

the ability to study motional decoherence from fluctuating background electric fields

(chapter 7).



CHAPTER 4

Experimental setup

In this chapter I will describe the apparatus used to carry out the experiments

described in this thesis. First, I will describe the different laser systems used to ma-

nipulate the motional and internal states of the trapped ion. Each laser system is

characterized by an output wavelength in the deep UV - near 215nm and 229nm cor-

responding to the S1/2−P3/2 transition of the 111Cd+ ion and the 1S0−1 P1 transition

of the neutral Cd atom, respectively. Primarily due to the deep UV requirement,

each laser system is quite extensive. Hence I will present detailed schematics of how

the particular laser output is generated and delivered to the trapped ion. Next, I

will describe the UV imaging system used for photon counting during detection of

the electronic state of the ion and also used for imaging the trapped ion. Then I will

describe the experimental control and data aquisition part of the experiment.

4.1 Laser systems

In this section I describe three different laser systems used to (1) optically pump,

Doppler cool, and detect the qubit state of the 111Cd+ ion; (2) drive stimulated

Raman transitions between |↑〉 and |↓〉; and (3) photoionize the neutral Cd atoms via

resonant coupling to their 1S0-
1P0 transition at a wavelength of 228.9 nm.

4.1.1 Resonant laser setup

The laser source used for the task of optical pumping, Doppler cooling, and qubit

67
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state detection must meet several stringent requirements. It must be a tunable con-

tinuous wave (cw) laser with a center wavelength of 214.5 nm, and it must output a

few mW of optical power with a linewidth under 1 MHz. The laser used for the task

is depicted in Fig. 4.1. Below I give a brief description of each optical subsystems

(shown in Fig. 4.1) located between the pump laser (532nm) and the three laser

outputs at 214.5 nm.

Figure 4.1: Schematic of the laser setup used to resonantly excite the

2S1/2-
2P3/2 cycling transition of the 111Cd+ ion. A Ti:Sapphire laser pumped

by a 10W Nd:YVO4 laser produces 1.6W of tunable infrared radiation at a

wavelength of 858 nm. The infrared is frequency doubled by an LBO crystal

placed inside a build-up cavity and frequency doubled once more by a BBO

crystal placed inside another cavity. The tunable UV output with an optical

power of 5 mW is used to drive various resonant 2S1/2-
2P3/2 transisitions.

The output of the Ti:Sapphire laser is locked to a Te2 resonance (13 MHz

linewidth) producing a linewidth under 1 MHz.

The source of infrared laser light is a Coherent MBR-110 cw Ti:Sapphire laser

pumped by a 10W Nd:YVO4 (Coherent) laser at 532 nm. The Ti:Sapphire produces
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a ∼1.6 W tunable output centered at a wavelength of 214.5 nm. The tunability is

obtained with two intra-cavity elements (birefringent filter and etalon) and an external

reference cavity. The birefringent filter (BRF) selects optical frequencies over a 1 THz

range; whereas the etalon selects optical frequencies over a smaller range (∼40 GHz)

with a resolution of approximately 100 MHz. The infrared output of the Ti:Sapphire

is partially reflected and coupled into a temperature controlled Fabry-Perot reference

cavity. The reference cavity can be tuned directly from the front panel or controlled

by an external scan signal, providing tunability with a resolution of a few MHz. When

the laser is locked, the reference cavity generates an error signal which is fed back to

the internal laser cavity via a piezo mounted on one of the mirrors. When locked,

the linewidth of the MBR-110 is well under 1 MHz which corresponds to 4 MHz in

the UV. Additional Doppler-free saturated absorption spectroscopy on Te2 molecules

provides feedback for the reference cavity and locks the MBR-110 to within a 1 MHz

bandwidth (at 214.5 nm). This small bandwidth requirement originates from the need

for the various resonant lasers to remain well within the linewidth of the 2S1/2-
2P3/2

transition, which is γ0/2π = 60 MHz.

An additional benefit of using Doppler-free saturated absorption spectroscopy as

a frequency reference is that, unlike the MBR-110 reference cavity, it does not suffer

from long term drifts due to temperature or mechanical vibrations. The Tellurium

molecular reference (Te2) is a convenient choice since it contains a strong resonance

at 429 nm (13 MHz linewidth), which when frequency doubled lays approximately 3.5

GHz below the 2S1/2-
2P3/2 cycling transtion in the 111Cd+ ion. At 429 nm, which is

the wavelength of the Te2 setup, this frequency offset corresponds to a 1.75 GHz shift,

which is easily obtained with the use of a double pass 875 MHz AOM. Essentially,

this setup uses the frequency dependent laser absorption within the Te2 Doppler-free1

linewidth of 13 MHz to generate an error signal which is fedback to the MBR-110,

thus providing a stable reference over time scales longer than the bandwidth of the

lock (∼1 sec).

1In order to remove the Doppler shifts due to the high temperature vapor cell (500oC), an

appropriate pump-probe beam arrangement is used.
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The fine tuning of the detection laser frequency (≤ 1MHz) is obtained with

the use of a “lock-box”. The lock-box generates a variable voltage output (via a

user controlled potentiometer) which is superposed onto the Te2 setup error signal.

The external scan input (MBR-110) accepts this error signal, which scans the cavity

within a range corresponding to a scan bandwidth (typically set to 10 GHz) in the

Ti:Sapphire laser.

The cw output of the Ti:Sapphire laser must be efficiently quadrupled from a

wavelength of 858 nm to 214.5 nm. In order to achieve this, two Wavetrain doubling

cavities (Spectra-Physics) are placed back-to-back, as shown in Fig. 4.1. The first

doubling cavity converts the infrared output of the Ti:Sapphire laser to 429 nm blue

light using a LBO (Lithium Triborate, LiB3O5) nonlinear crystal placed inside a

build-up cavity. The build-up cavity is characterized by a free spectral range of 1.72

GHz and a linewidth of approximately 15 MHz, giving a finesse of ∼120. The LBO

cavity outputs 400 mW with an infrared input power of 1.6 W, corresponding to a

conversion efficiency of ∼20%. The 400 mW of blue light is sent to the next doubler,

which is identical to the previous one except for the use of a BBO (beta-BaB2O4)

nonlinear crystal instead of LBO2, yielding an output of ∼5 mW at 214.5 nm. Due to

the fact that BBO crystals are hydrophilic, dry air is forced into the build-up cavity,

thus preventing water vapor from being absorbed by the crystal. Additionally, the

BBO crystal can be damaged (locally) by blue and UV light, requiring the crystal to

be translated across the intra-cavity laser beam. Typically, the BBO crystal would

require this procedure once a week3.

When the Te2 lock is engaged, the UV output of the BBO doubling cavity is set

215 MHz red detuned from the 2S1/2-
2P3/2 cycling transition in the 111Cd+ ion. From

there, three different laser beams are generated using frequency shifters (AOM’s),

as depicted in Fig. 4.2. The AOM’s used in this experiment were purchased from

Brimrose Co., each with a center frequency between 210 MHz and 400 MHz and a

2The free spectral range of the cavity had to be modified from its original setting in order to

accomodate the repumper sidebands which are spaced by 4ωfsr=(14.53-0.8)/2 GHz.
3There were instances where the crystal’s condition remained stable for weeks.
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Figure 4.2: Schematic of the various laser beams used to resonantly excite

the 2S1/2-
2P3/2 cycling transition of 111Cd+ (detection laser). The output of

the BBO doubling cavity is detuned 215 MHz below the 2S1/2-
2P3/2 tran-

sition. This laser beam is then subsequently split and frequency shifted in

order to produce the Doppler beam (#1), Detection beam (#2), and op-

tical pumping beam (#3). The large frequency shift of (14.5-0.8)/2 GHz

required for the repumper is realized with the use of an EOM placed in

front of the BBO doubling cavity.
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bandwidth(3dB) of 40 MHz. The detection beam (beam #2) is obtained by frequency

up-shifting the output of the BBO cavity by 215 MHz, resulting in a beam resonant

with the cycling transition. The optical pumping beam (beam #3) is obtained by

upshifting the output of the BBO cavity by 900 MHz. This large frequency upshift is

realized by using a 450 MHz AOM in a double-pass configuration. The Doppler beam

(beam #1) is a little more complex as it requires two beams with a frequency difference

of 13.7 GHz (section 3.2.2): a beam red-detuned from the 2S1/2-
2P3/2 cycling transition

by γ0/2 = 2π(30) MHz and a repumper beam resonant with the 2S1/2|0, 0〉→2P3/2|1, 1〉
transition. In order to bridge this very large frequency spacing, the BBO doubling

cavity converts the output of an EOM driven at (13.7)/2 GHz, resulting in a UV

comb with spectral features separated by (13.7)/2 GHz (see section 3.3.2). Only

one of these features is used as a repumper. The near resonant part of the Doppler

beam is generated with the same AOM used for the detection beam, except that it is

now upshifted by 185 MHz, bringing the beam at the optimal detuning for Doppler

cooling.

4.1.2 Raman laser setup

The laser system used to drive the stimulated Raman transitions is nearly identical

to the setup described in the previous section (Fig. 4.1). The output of a cw tunable

Ti:Sapphire laser (∼1.5 W) at 858.11 nm is frequency quadrupled yielding 5 mW of

optical power, 150 GHz red detuned from the 2S1/2−2P3/2 transition. As previously

mentioned in section 3.3.2, the large frequency beatnote between the two Raman

beams required to bridge the hyperfine splitting of the 111Cd+ ion (14.5 GHz) is

generated by an EOM placed in front of the BBO doubling cavity. The free spectral

range of the BBO doubling cavity is tuned such that every spectral features emerging

from the EOM are resonant with the Fabry-Perot build-up cavity (section 3.3.2). Fig.

4.3 shows the Mach-Zehnder interferometer consisting of two Raman beams traveling

along different paths (A & B), each with a typical length of 1.5 meter. The first

diffracted order of AOM 1 is directed along path A. This AOM is driven at a fixed



73

Figure 4.3: Schematic of the Mach-Zehnder interferometric setup used

to carry out the motion sensitive stimulated Raman transitions. The UV

output of the BBO doubling cavity passes throught two AOM’s. The first

diffracted order of AOM 1 is sent along path A into the trap, while the

zeroth order is sent to AOM 2 with its first diffracted order also directed

into the trap at an angle of 90o with respect to the other Raman beam. The

first AOM is driven at a fixed frequency of 212 MHz while the second one is

driven at a variable frequency near 212 MHz, allowing the Raman frequency

beatnote to be tuned across the various transitions, as shown in Fig. 3.12.

The UV output of the BBO cavity is typically 5 mW, giving approximately 1

mW in each Raman beam as they enter the vacuum chamber. Both Raman

beams are focused onto the ion using a 10 cm focal length lens, producing

a beam waist of approximately 15 µm.
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rf frequency of 212 MHz, thus upshifting the frequency of the Raman beam along

path A. The zeroth order output of AOM 1 is sent along path B to AOM 2 and

is similarly upshifted by a variable frequency near 212 MHz, where the exact value

selects a particular Raman transition, as shown in Fig. 3.12. Both Raman beams

intersect the trapped ion at an angle of 90o with respect to one another. As shown

on the right hand side of Fig. 4.3, the differential path length (∆x) of the Mach-

Zehnder interferometer is varied by translating a retroreflector made from two 90o

mirrors. This effective “corner cube” gives the ability to change ∆x while keeping

the Raman beams focused on the ion. The Raman beams are aligned onto the ion

with collimating lenses mounted on stable XYZ mounts (LineTools), and focused onto

the ion with a 10 cm lens producing a Raman beam waist of approximately 15 µm.

4.1.3 Photoionization pulsed laser setup

In this section I give a detailed description of the femtosecond pulsed laser used

to photoionize the Cd atoms through an intermediate atomic resonance (discussed in

chapter 5). The mode-locked Ti:Sapphire pulsed laser is characterized by an output

wavelength of 916 nm with a ≤10 nm bandwidth4 and 86 MHz repetition rate. The

infrared pulses are frequency quadrupled to a wavelength of 228.9 nm, corresponding

to the intermediate resonance of the Cd neutral atom. In order to keep the cost to

a minimum, the pulsed laser was hand-built using various off-the-shelf components.

The design of the oscillator is largely based on the “standard cavity” first described

in [58]. However, tuning the cavity to an infrared wavelength of 916 nm requires

some important and non intuitive modifications to the standard setup. Below I give

a detailed description of the various components making up the long-wavelength fsec

pulsed laser, shown in Fig. 4.4.

The Ti:S crystal is pumped with 5W of green light from the output of a Spectra

Physics Millenia and is focused into the crystal with a 12.5 cm focal length lens (New-

4As described in chapter 5, the photoionization scheme is more efficient for longer pulse duration

and thus, smaller bandwidth.
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Figure 4.4: Schematic of the long-wavelength mode-locked Ti:S pulsed

laser setup. The Ti:S crystal is pumped by 5W of green light (532nm)

which is focused into the crystal with a 12.5 cm lens. The cavity contains

five mirrors: M1 and M2 are 1/2 inch diameter curved mirrors both having

a 10 cm radius of curvature and a reflectivity of ≥ 99.8% (916 nm); M3 and

M4 are flat 1 in. diameter mirrors with a ≥ 99% reflectivity (at 916nm);

and the output coupler (OC) with a 95% reflectivity at 916 nm. The fused

silica prism pair are Brewster cut with an apex angle of 69.1◦. In order to

compensate for the dispersion aquired in passing through the crystal and

both prisms, the distance separating the prisms is set to 64 cm. A small

portion of the infrared output is sent to a spectrum analyser with a 1 nm

resolution, giving easy measurement of the pulse bandwidth (typically 10

nm). The infrared is first frequency doubled through a 7 mm long LBO

nonlinear crystal and further doubled in a 5 mm long BBO nonlinear crys-

tal - typically yielding 10 mW at the excitation wavelength of 228.9 nm.

Each nonlinear crystal is critically phased matched (angled tuned) at their

corresponding wavelengths.
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port Corp.). The laser has two flat end mirrors (OC and M4), two curved mirrors

with 10 cm focal length (M1 and M2), and two fused silica prisms used to compen-

sate for the group velocity dispersion (GVD). The asymmetric cavity arrangement

gives a total length of 184 cm, with 65 cm in one arm of the cavity, and 119 cm

in the arm containing the dispersion prism pair. The Ti:S crystal, purchased from

Crystal Systems, is 5 mm long (i.e. 3x3x5mm) and has a gain coefficent of α=4.44.

The 1/2 inch diameter output coupler is characterized by a 5% transmission and a

reflective GVD of −20fs2 per pass at 916nm. This low transmission loss of 5% is

a requirement stemming from the lower gain of the Ti:S crystal when operating at

916nm. A transmission of 20% is typically used when operating at 800nm. Both

1/2 inch diameter curved mirrors have a ≥ 99.8% reflection and a reflective GVD of

−50fs2 at 916nm. The OC and both (M1, M2) were purchased from LayerTec in

Germany with part numbers: OC (101907), M1&M2 (101241). The fused silica prism

pair are Brewster cut with an apex angle of 69.1◦ and give a transmissive GVD of

∼ 290fs2/cm. In order to compensate for the dispersion aquired in passing throught

the crystal and both prisms, the distance separating the prisms is set to 64 cm. Both

1 inch diameter flat mirrors (M3 and M4) have reflectivities of ≥ 99% and reflective

GVD of ∼ −20fs2. The fused silica prisms and both flat mirrors (M1 & M2) were

puchased from Newport corp. with part number: fused silica prism pair (06SB10),

and M3-M4(10B20UF.20).

A typical average output power of 550 mW at 916nm is first frequency doubled

throught a 7 mm long LBO nonlinear crystal and further doubled in a 5 mm long

BBO nonlinear crystal - typically yielding 10 mW at the excitation wavelength of

228.8 nm. Each nonlinear crystal is critically phased matched (angled tuned) at their

corresponding wavelengths. As shown in Fig. 4.4, a small portion of the infrared

output is sent to a spectrum analyser with a resolution of ∼1nm, which allows the

pulsed bandwidth, and thus pulse duration, to be determined (assuming transform-

limited pulses).

As far as operating the laser, an excellent description for this type of cavity op-

erating at 800 nm is provided in [58]. However, when operating at a far-infrared
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wavelength, there are a few additional requirements. For instance, when the laser

oscillates above 900nm, we observe that heating of the crystal from the pump laser

prevents the laser from mode-locking. This behavior does not occur below an operat-

ing wavelength of 900nm. We find that by providing good thermal contact between

the crystal and its metallic housing and water cooling the Ti:S crystal assembly com-

pletely eliminates the problem. Another important issue is that of proper choice of

optical coating. It is known that care must be taken in making sure that cavity

mirrors have matched coatings - both curved mirrors are especially sensitive to this

requirement [59]. In fact it is very common that even if all mirrors are from the same

coating run, one of them may somehow prevent mode-locking to occur - the reason for

this is not well understood but nevertheless, mode-locking can be recovered by simply

removing the “faulty” optics [59]. Although this last requirement is true at all wave-

lengths, it becomes increasingly important as the laser is tuned to the far-infrared

part of the spectrum where the gain is significantly lower.

4.2 UV imaging optics

The ion fluorescence is the means by which we can (i) detect the presence of

ions in the trap and (ii) measure the state of the qubit (α|↑〉 + β|↓〉) following a

particular sequence of engineered laser interactions. The UV imaging system used

for the task is depicted in Fig. 4.5. Simply put, the imaging system consists of two

lenses with an aperture between them, with photon detection carried out with a UV

sensitive imager or a photomultiplier tube (PMT). The first optical element (L1) is an

objective lens (CVI, # UVO-20.0-10.0-193-248) with f/2.1 and focal length of 14.8

mm. An aperture with a 400 µm diameter hole is placed at the ion image produced

by L1, and is used to filter out any scattered UV light that is not directly from the

ion. This image is typically located at a distance of 2.6 cm in front of the second

lens L2, which consists of two plano-convex singlet lenses, both having a 5 cm focal

length. Lens L2 images the ion+pinhole onto the imager or PMT, typically placed

∼60 cm away. The magnification of the whole imaging system was usually kept near
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M=250 and the diffraction efficiency typically gave a resolution of ∼1 µm in the ion’s

plane, which is small enough to distinguish two trapped ions, typically spaced by

1-3 µm for trap frequencies of 1-5 MHz 5. The diffraction efficiency of the imaging

system is strongly dependent on the distance between the ion and the objective lens

L1. In fact simulations6 show that the object distance must remain within ±1/10

mm of the optimal placement in order to have at least 85% of the optical power

contained in the central spot of the Airy diffraction pattern. This optimal object

distance is determined by the particular thickness of the viewport used (6.35 mm

in this experiment), which is located between the ion (vacuum) and lens L1 (air)

(Fig. 4.5). A reduction in the viewport thickness tends to reduce the optimal object

distance. The total object distance is composed of three lengths: (A) ion-viewport

distance, (B) viewport thickness, and (C) viewport-lens L1 distance. Fig. 4.6(a)

shows the result of an imaging simulation for a typical arrangement with (A) 8.5

mm, (B) 6.35 mm, and (C) 2.2 mm., which yields a diffraction limited spot size at

the image plane (pinhole). Fig. 4.6(b) shows the simulation results for a non-ideal

arrangement of the object distances. In this case, the viewport-lens L1 distance is

increased by 0.3 mm, resulting in large spherical abberations.

Two types of UV cameras were used in this experiment. The first is a single-photon

imaging detector system (model 2601B) from Quantar Technology Inc., which has

photon-counting capability and x-y position sensitivity. The camera has a circular

active area of 23 mm with quantum efficiency of ∼1% at a wavelength of 215 nm. Over

the course of several months of usage, “bleaching” spots appeared on the active area

causing localized reduction in the quantum efficiency. The other imager is a Princeton

instrument PI-MAX intensified CCD camera, with a 512x512 pixel array and total

quantum efficiency of ∼20%. The PI-MAX camera was used for the majority of the

work described in this thesis.

The camera is invaluable as it gives the ability to align the imaging system with

5The distance s between two trapped ions at a particular trap frequency ωx/2π is given by

s = (e2/4πǫ0mω2
x)1/3, where e and m are the ion’s electric charge and mass, respectively.

6The simulations are carried out in the optical design software Oslo
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respect to the trap electrodes and thereby allows one to “see” the loaded ions. We

used a Hamamatsu H6240-01 PMT with a quantum efficiency of ∼20%. The output of

the PMT consists of TTL pulses with a 35 ns resolution. When the ion’s fluorescence

is saturated, giving a scattering rate of γ0/2 = 2π(30MHz), the overall detection

efficiency of the system (∼0.3%) gives a photon count rate of 650 KHz.

Figure 4.5: Schematic of the UV imaging system. The objective lens

L1 is a triplet (CVI) with f/2.1 and focal distance of 14.8 mm. Lens L2

is a doublet made from two plano-convex lenses, both with a 5 cm focal

lengths. The overall magnification of the system was typically kept near

M = 250. The object distance of the objective lens L1 is composed of three

lenghts: (A) ion-viewport distance, (B) viewport thickness (6.35 mm), and

(C) viewport-L1 distance. To achieve a diffraction limited image, the total

object distance has to be 17±0.1 mm.

4.3 Experimental control and data aquisition

In the course of a particular experiment with typical time duration of a few msec,

a series of up to a hundred TTL pulses are sent to various RF switches which, depend-

ing on their logic state, turn on(off) various laser interactions by allowing(blocking)

rf signals from driving certain optical modulators (AOM’s and EOM’s). A computer

running a LabView program is used to control the whole experiment. It gives the

ability to initialize the output frequencies of each rf generators, store a particular

sequence of TTL pulses making up a particular experiment, execute and deliver the
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Figure 4.6: Imaging simulations of the objective lens L1 showing the im-

age spot size with (a) an optimal object distance of 17 mm, and (b) an

increased object distance of 17.3 mm. The result in (b) clearly shows the

severe spherical abberations that distort the otherwise diffraction limited

spot size shown in (a). In order to have at least 85% of the optical power

in the central spot, the object distance must be 17±0.1 mm. For a smaller

viewport thickness, the object distance must be reduced in order to main-

tain a diffraction limited spot size.
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sequence of TTL pulses according to a preset schedule, collect and store data com-

ing from the experimental apparatus (i.e. photon counts), and finally display the

experimental results through a graphical interface.

Specifically, a National Instrument PCI “pulser” card (6534) is the source of the

TTL pulses, and its 32-bit TTL signal output is the logical control sent to the various

rf switches. Each rf switch typically connects a single rf generator to a particular

optical modulator in the experiment. However, several optical modulators such as the

detection AOM and the variable Mach-Zehnder AOM require fast switching between

several rf input signals having different frequencies. In this case, the rf switches are

used as de-multiplexers, where the TTL logic signal determines which rf input is sent

to the particular AOM. The rf switches (Mini Circuit ZFSWA-2-46) with an in-out rf

isolation of 30 dB (Typ.), did not lead to any observed optical power leakage through

the AOM’s when the rf input is off. In order to drive the various AOM’s, each rf

switch output was typically amplified to ∼1 W (and 2W for some AOMs).

A National Instrument 6602 PCI counter card is used to gather the photon counts

from the PMT during the qubit state detection procedure. During the detection time,

a gate pulse from the pulser card (6534) is used to arm/disarm the PCI counter in

order to filter out the photon counts that occured outside of the detection window. In

order to avoid dead time from downloading the counter card (photon counts) at each

detection event, the photon counts are stored in a buffer on the counter card. When

the data is ready to be analyzed, the content of the counter card is downloaded by the

LabView software. The photon count data is first converted into a histogram, and

then properties such as average photon counts and standard deviation are displayed

in various forms.

Before each experiment, the particular sequence of pulses is preset and stored

in the memory of the 6534 pulser card. Each experiment is composed of various

“chapters”, whose lengths can be scanned or delayed appropriately. At the start of

every chapter, a specific set of 32-bit signals is sent out allowing several AOM’s and

EOM’s to be turned on simultaneously. For example, in the Doppler cooling chapter,

the repumper EOM and the detection AOM are turned on simultaneously. Typically,
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Figure 4.7: Pulser card output for a typical experiment. The pulse se-

quence reads from left to right. First the motion of the ion is Doppler

cooled for 1 msec and then the qubit is prepared in |↑〉 by applying the op-

tical pumping beam (π-beam) for 5 µs. The “experiment” is composed of

a pulse sequence tailored for a specific outcome (i.e. Raman laser cooling).

The last pulse always involves the qubit detection, typically on for 200 µs.

Each line show the TTL pulses that are used to control the state of the rf

switches.
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each experiment consisted of four distinct parts: (i) Doppler cooling pulse is turned on

for 1 msec, (ii) qubit state initialization where the optical pumping beam is turned

on for ∼5 µs, (iii) particular set of chapters making up a specific experiment (i.e.

Raman cooling), and (iv) qubit state detection step where the detection beam and

photon counter are pulsed for 200 µs. Fig. 4.7 depicts the timing for a general pulse

sequence. Here, for simplicity, only 5 channels out of the 32-bit signal are shown.

Each channel carries timed TTL pulses to turn on/off the rf switches to which they

are assigned. Each vertical dotted line denotes the start of a new chapter, which as

previously mentioned, can be delayed or scanned appropriately.

In taking data, the experiment is usually repeated many times while a particular

parameter is progressively changed. The experiment thus consists of two time scales:

a msec time scale where all parameters in each chapters are fixed as the sequence of

pulses is executed once, and a ∼500 msec time scale corresponding to the number of

times the pulse sequence is repeated (typically 100 times7). Repeating the experiment

many times in succession is important as it reduces the fundamental and technical

noises associated with the data. For example, while performing a frequency scan as

shown in Fig. 3.12, the frequency of the variable Mach-Zehnder AOM is initially set

to 205 MHz. Using this fixed AOM frequency for the Raman chapter, along with

the particular settings of the other chapters, the experiment is repeated 100 times,

lasting approximately 500 msec. The photon counts are analysed and displayed as

a single point on the AOM frequency scan shown in Fig. 3.12. The computer then

increases the AOM frequency, via a GPIB controlled SRS function generator, by a

user-specified step size of, say, 5 kHz. Following the frequency increase of the AOM

(now at 205.005 MHz), the experiment is again repeated 100 times. Again, the photon

counts are analysed and displayed on the plot, and so on. The total time required

to gather the frequency scan in Fig. 3.12 is approximately 30 sec. This scan time

varies as the number of repetition and frequency step size are changed. The data

contained in the entire frequency scan is typically saved for later analysis. It should

7For laser beam alignment, the number of repetitions is typically reduced to ∼30, yielding faster

scan times.



84

be noted, that changing the ouput frequencies of the various sythesizers through GPIB

connections can only occur on a time scale of a few msec(∼15 msec). Here, since the

frequency is changed after 100 repetition of the experiment (∼500 msec), this GPIB

reset time did not significantly affect the duty cycle of the experiment.

Before taking data, the real-time feedback provided by the LabView plots (photon

counts) is used to precisely align all laser beams onto the ion. For instance, before

taking the frequency scan shown in Fig. 3.12, the waist of each focused Raman

beams is aligned by inserting a long pulse time in the Raman chapter (typically 10

msec which is hundreds of time longer than a coherent carrier π-pulse). When the

Raman beams are aligned on the ion, there is some population that appears in the

bright state (F=1). This increased bright state population is caused by spontaneous

Raman scattering, optically pumping the population in the 2S1/2(F = 1) levels (see

Fig. 3.10). Obtaining the spontaneous emission signature requires careful alignement

of the Raman beams onto the ion, which can sometime take as long as 10 minutes.

As for the alignement of the detection beam, it is carried out by maximizing the

averaged photon counts received during the detection time (200 µs). The π-beam on

the other hand is aligned by optimizing the optical pumping efficiency from the bright

state (F=1) to the dark state (initialization, section 3.2.1). In order to increase the

sensitivity of the π-beam alignment, the pulse length is typically reduced to ∼200

nsec. At the completion of the alignment, the length of the π-beam is returned to its

saturation value of 5 µs.

The experiment involves many rf generators at different frequencies which can be

divided into two classes: (1) the rf generators that are phased-locked to a common 10

MHz stable clock signal (Raman setup), and (2) the ones that are not (i.e. detection

AOM, repumper EOM, etc.). When a sequence of Raman pulses are applied to

the ion (i.e. Ramsey experiment), the phases of each Raman pulse with respect to

the first one determine the final state of the qubit, hence the requirement of phase

stability in the Raman setup. However, for the experiments reported here, phase

stability between Raman pulses was not required between pulses8. Here I describe

8For instance, Raman laser cooling and motional heating do not require multiple pulses to be
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the various sythesizers used in the Raman setup. In order for the various Raman

synthesizers to have a resolution of the order of 1 Hz, each rf synthesizers in the

Raman setup are phased-locked to a stable 10 MHz SRS-DS345 arbitrary waveform

generator. The Raman EOM is driven by an HP8672A synthesizer which is modified

to be phase-locked to the external 10 MHz clock signal9. The variable Mach-Zehnder

AOM is driven by the octupled output of a SRS-DS345 synthesizer. The octupler,

with a center wavelength of 26 MHz and bandwidth of ±1 MHz, takes the phase-

locked output of various SRS-DS345 frequency synthesizers oscillating near 26 MHz

and converts them to a stable signal around 208 MHz. The fixed Raman AOM is

driven by an HP8660C, which is also phase-locked to the 10 MHz clock signal. The

other AOMs such as the one used for the detection beam, are driven, for the most

part, by HP8640B’s.

coherent with respect to the others.
9In fact, in order to have phase-locked signals for the microwave horn (14.5 GHz) and the Raman

EOM (7.266 GHz), both signals are derived from the same HP8672A



CHAPTER 5

Photoionization-loading of trapped Cd+ ions with ultrafast pulses

An important practical aspect of operating an ion trap is the efficient and con-

trolled loading of ions into the trap. The standard method for producing positively

charged trapped ions is electron bombardment (discussed in section 2.3.1), usually

from electron beams having energies (i.e. ∼100 eV) comfortably above the ionization

threshold. However, electron-beam loading of ions can adversely impact ion trap per-

formance by degrading vacuum quality, charging nearby insulators, and corrupting

the surface quality of the trap electrodes. Photoionization-loading of ion traps is an

attractive alternative, as it avoids the use of electron filaments and can be much more

efficient than electron bombardment.

Several groups have enjoyed the benefits of photonionization-loading with particu-

lar atomic ions, including Mg+ [60] and Ca+ [61, 62]. Loading of ions is fairly efficient

in these systems, with the photoionizing lasers tuned to an intermediate atomic reso-

nance en route to ionization. Furthermore, the use of narrowband photoionizing lasers

allows isotopic selectivity, as the optical isotope shift in the intermediate resonance

is typically larger than the resonant linewidth of the atom.

In this chapter I describe a technique which uses ultrafast laser pulses to photo-

nionize and load cadmium ions in a variety of rf trap geometries. The laser center

frequency is tuned to an intermediate resonance in neutral cadmium, and the same

pulse then has enough energy to promote the electron to the continuum, or alter-

natively a continuous-wave laser beam used for laser-cooling the ion can itself ionize

the neutral from the intermediate resonance. Owing to the large bandwidth of the

86
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laser, all velocity classes of a room-temperature cadmium vapor can be ionized, re-

sulting in an extremely efficient method for producing trapped cadmium ions. Also,

due to this high loading efficiency, the atomic flux aimed at the center of the rf trap

can be reduced to a level where negligible coating of the electrodes occurs. The re-

sulting operation of clean ion traps may help in quenching the suspected electrode

contamination-driven heating of trapped ions [36, 18, 26].

5.1 Photoionization scheme

The relevant energy levels of the neutral cadmium atom are shown in Fig. 5.1(a).

The output of a quadrupled Ti-Sapphire (Ti:S) mode-locked pulsed laser with wave-

length at 228.8nm is resonant with the 5s2 1S0 → 5s5p 1P1 transition (γ/2π =

84.4MHz). The same laser then promotes the intermediate 1P1 state population

to the continuum 3.6 eV above the ionization threshold. Fig. 5.1(b) shows the en-

ergy levels of a singly ionized even isotope1 of cadmium (CdI). In order to crystalize

and detect the presence of the newly trapped ion, the output of a quadrupled cw

Ti:Sapphire laser (Doppler beam) is red-detuned from the 5s2S1/2 → 5p 2P3/2 transi-

tion of the particular Cd+ ion isotope loaded (Fig. 3.1). The photons in the Doppler

beam also have enough energy to ionize from the intermediate 1P1 state, but as we

will show below, its relative importance in the photoionization process is dependent

on the ratio of the average optical power of the pulsed laser and Doppler beam.

Other typical trapped ion species such as Be, Mg, Ca, Ba, Hg , Yb, and Sr can also

utilize the same two-photon process described here - they all have an intermediate

excited 1P1 state further in energy than halfway toward the continuum (Table 5.1).

However, some species may require a different laser setup than what is used in this

experiment by virtue of the fact that their particular 1S0→1P1 transition wavelengths

may be significantly different from that of Cd. The 2-photon ionization path described

1Energy levels for both odd isotopes of singly ionized Cd (111Cd+ and 113Cd+) have the same

structure (shown in Fig. 3.2). In this experiment, however, the hyperfine structure of the odd

isotopes plays no role since the repumper beam is always turned on (section 3.2.2).
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Figure 5.1: (a) Relevant energy levels for the neutral Cd atom. The

intermediate excited 1P1 state (γ = 84.4MHz) is located 1.8 eV above the

midpoint of the energy difference between the 5s2 1S0 ground state and the

continuum, which places the second transition (5s5p 1P1→∞) comfortably

above the continuum treshold. (b) Energy levels for a singly ionized even

isotope of Cd with zero nuclear spin (I = 0). The hyperfine structure of

the odd isotopes (111Cd+ and 113Cd+, shown in Fig. 3.2) plays no role in

this experiment, since the repumper beams are always turned on (section

3.2.2). The output of a continuous wave Ti:S laser having σ+ polarization

(Doppler beam) is tuned near the resonance of the 5s 2S1/2 → 5p 2P3/2

cycling transition (λ = 214.5nm). The excited 5p 2P3/2 state has a natural

linewidth of γo/2π = 60MHz. The laser Doppler cools the motion of the

newly formed ions - crystalizing them at the center of the rf trap. Typically,

the average optical intensity of the Doppler beam at the center of the trap

is on the order of 50Isat.
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Atoms Cd Be Ca Sr Ba Mg Hg Yb Zn

1S0→1P1, λ (nm) 228.5 235.5 272.2 293 350.2 285.3 185 398 213.8

1S0 → ∞, λ (nm) 139 133 202.8 217.7 237.9 162 119 198 132

Table 5.1: Typical atomic species used in ion trapping experiments along

with their relevant transition wavelengths. For each atom, the chosen in-

termediate excited 1P1 state is the first that lies above the midpoint in

the energy separating the ground state and the continuum - thus making

a 2-photon ionizing process feasible. The laser setup used in this experi-

ment can be directly applied to all atomic species listed in the table - with

the exception of Hg which requires a laser output with prohibitively low

wavelength (185nm). Two ions in particular can use a direct 1-photon ion-

ization scheme with realistic laser wavelengths, namely Sr (217.7nm) and

Ba (237.9nm).
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here can be viewed as a special case of all possible n-step photoionization processes.

Hence in general, one question arises: what are the considerations in determining the

optimal number of transition steps in the photoionization process? For instance, in

most circumstances a single photon process will be the most efficient path toward

the continuum. However, for most trapped ion species the wavelength of this direct

process is prohibitively low (<205nm, optical absorption), hence making it impractical

with current technology. Notable exceptions are Sr (217.7nm) and Ba (237.9nm) -

where a direct 1-photon ionization process may then be the favoured scheme (Table

5.1).

The loading rate of ions is expected to depend strongly on the particular ion trap

geometry being used. The loading rate dependence on trap parameters such as loading

volume, trap depth, and secular frequency, which often characterize a particular trap

geometry, is investigated. As such, pulsed laser photoionization loading is carried out

in several types of ion trap: an asymmetric quadrupole ring-and-fork trap (section

2.2.12), a symmetric quadrupole two-needle trap (section 2.2.1), a three-layer linear

trap (section 2.2.2), a four-rod linear trap (section 2.2.23), and a microfabricated

GaAs linear trap (basic schematic shown in Fig. 5.2). Their relevant operational

characteristics, such as trap depth, loading volume, secular and drive frequencies are

listed in Table 5.2. The characteristic trapping volume for all traps extends over a

wide range, from a linear dimension of 45 µm for the two-needle trap up to a dimension

of 750 µm for the ring-and-fork trap. The trap depth ranges from values near room

temperature (1/40 eV) in the cases of the needle and microfabricated GaAs ion traps,

while at the other extreme, the three-layer linear trap has a trap depth sometimes

exceeding 5 eV. Below I discuss how different values of these parameters are observed

to impact the loading rate.

2The asymmetric quadrupole trap used here is a scaled up version of the one described in section

2.2.1
3The four-rod linear trap used here is similar to the one depicted in Fig. 2.3, except that the

endcaps, providing the static confinement, are replaced by needle-like electrodes positioned on each

side of the trap center and aligned in a direction parallel to the rods.
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Traps Depth (eV) Trap size (µm) ω1, ω2, ω3 (MHz) Ωrf (MHz)

4-rod 0.35-1.8 700 (0.25-0.7,0.8,0.81) 36

Ring-and-fork 0.8 750 (0.5,0.75,1.25) 50

3-layer 0.2-5 200 (0.6-4,8.1,8.3) 47

GaAs chip trap 0.08-0.125 60 (0.8-1,3.3,4.3) 16

Two-needle trap 0.02-5 46-600 (0.25-5,0.25-5,0.5-10) 29

Table 5.2: Ion trap geometries where ions are loaded using ultrafast laser

pulses along with the operational range of relevant trap parameters.

5.2 Theoretical ion production rate

In this section, we calculate the expected photoionization rate for a 2-photon

process. The resulting expression highlights the dependence of the loading rate on

controlled experimental parameters such as pulse energy, pulse time duration, loading

volume, and neutral atom density. As such, we solve the optical Bloch equations

for the photoionization rate of a single atom excited to an intermediate resonance

following Fig. 5.1(a). We assume the pulsed laser peak intensity to be in the weak

perturbative regime [63], so that no other electronic states are involved in this process,

and that the applied laser radiation does not couple to quasi-bound resonances above

the ionization threshold.

The laser pulse train consists of individual pulses of duration (τ) 0.1 − 1.0 psec

and peak intensity I, separated by a pulse period of T = 12.5 nsec. The pulsed

laser resonantly couples the initial ground 5s2 1S0 electronic state to the intermediate

exited 5s5p 1P1 state, with Rabi rotation angle θ = gτ , where the Rabi frequency

g = γ
√

I/2Isat, and γ and Isat are the 1P1 →1 S0 decay rate and saturation intensity,

respectively. The same laser pulse is capable of sequentially ionizing the atom. The

photoionization rate from the 1P1 state is Γ = Iσ/h̄ω, where σ is the 1P1 photoioniza-

tion cross-section and ω is the laser frequency. A continuous-wave laser with intensity

Icw used for laser-coooling of the eventual ion can also ionize the neutral atom once
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in the 1P1 state with rate Γcw = Icwσcw/h̄ωcw ≪ γ, where the cw laser parameters

are defined analogously to the pulsed laser.

When the 1P1 spontaneous emission lifetime is much shorter than the laser pulse

period (γT ≫ 1), the neutral atom returns to the ground 1S0 state before the next

pulse (unless it has ionized). We therefore consider the net probability of ionization

per laser pulse period T , including the effect of the cw laser, by integrating the optical

Bloch equations in time:

Pion = 1 − e−Γτ/2

(

1 +
Γτ

2

sinθ

θ

)

+ e−Γτ/2

(

Γcw

2γ

)

(1 − cosθ) (5.1)

In this expression, we have assumed that the photoionization rate from the 1P1

state is much weaker than the coherent coupling between the 1S0 and 1P1 states in

the atom, or Γ ≪ g. This is valid for typical atomic systems considered here and for

typical (perturbative) laser intensities, presuming no above-threshold resonances.

The first two terms in the equation arise from photoionization from the pulsed

laser exclusively, while the last term describes the contribution from the cw laser.

For similar average intensities of the cw and pulsed lasers (Icw ≈ I = Iτ/T ) and

assuming that the photoionization cross section from the 1P1 state is similar for the

two processes, we find that photoionization probability from the pulsed laser alone is

roughly γT times larger than the photoionization from the cw laser. In the cadmium

system considered here (1/γ ≈ 2 nsec and a 1/T = 80 MHz laser repetition rate), this

amounts to the pulsed laser ionizing the atom about 6 times more effectively than

the cw laser with the same average laser powers. Below, we assume that the cw and

pulsed lasers have equivalent average laser intensity and therefore neglect the effect

of the cw laser on photoionization.

For Γτ/2 ≪ 1, the ionization probability from the pulsed laser alone simplifies to

Pion ≃ Γτ

2

(

1 − sinθ

θ

)

(5.2)

≃ θ2Γτ

16
(5.3)

with the last approximation accurate to within 25% for 0 < θ ≤ π.
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Since the ionization cross section from the cadmium 1P1 state is not known pre-

cisely, we use as guides previous measurements in atomic magnesium [64], calcium [62]

and barium [65], since the electronic structure of these two-electron systems are sim-

ilar. These experiments reported photoionization cross sections from their respective

1P1 states using laser radiation well above the ionization theshold by similar amounts

of energy to that considered here. We estimate to an order of magnitude that the

cadmium cross section is σ ∼ 10−16 cm2 for light at 229 nm. Expressed in terms of

average laser pulse power P for an 80 MHz laser repetition rate and focused down to

a waist of w ∼ 10µm, we find Pion ∼ 5 · 10−5τP
2
, with τ in psec and P in mW.

We now solve for the experimental quantity of interest - the loading rate of ions

Rion into the trap. The following calculation gives a lower estimate, as it assumes

that the source of Cd atoms is from the background vapor pressure of Cd at room

temperature (10−11torr). The rms velocity of cadmium atoms in a vapor is roughly

vth ∼ 150 m/s in a given direction, so a typical atom travels vthT ∼ 2µm in the

time between successive laser pulses. We can therefore estimate the total rate of ions

produced in the loading volume V formed by the intersection of the trapping region

and the laser beam by

Rion =
1

4
[1 − (1 − Pion)M ]nAvth (5.4)

where M = 4R/3
vthT

is the number of laser pulses an atom moving with velocity vth

will experience traversing a trap volume (assumed spherical with radius R), n is the

density of cadmium atoms in the vapor, and A = πR2 is the transverse cross-sectional

area of the loading volume. For Pion ≪ 1, we find Rion = PionnV/(4T ). This can

be compared to the total rate of atoms traversing the same region R0 = nAvth/4 by

defining the efficiency parameter η = Rion/R0 = 4RPion/3vthT . The vapor pressure

of cadmium metal at room temperature is roughly 10−11 torr [66, 67], giving a density

of n ∼ 3 × 105 atoms/cm3. For an 80 MHz laser repetition rate focused down to a

waist of ρ ∼ 10µm, we find Rion ∼ 1.27τP
2

and η ≃ 0.0004τP
2
, with τ in psec and

P in mW. For 2 psec pulses at an average power of P = 10 mW, the efficiency is

η ≃ 8%, and for P ≡ 100 mW the efficiency is expected to be near unity.
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5.3 Laser system and experimental setup

Three lasers are used in this experiment: two photoinization pulsed lasers (λ =

228.9) and a cw laser (λ = 214.5nm) used to crystalize the ions and image them onto

an intensified CCD camera (Doppler beam). Two different time scales are investigated

in the photoionization process - one pulsed laser provides excitation on the picosecond

time scale (psec laser) while the other provides excitation on the femtosecond time

scale (fsec laser). The psec excitation pulses at a repetition rate of 80 MHz are

generated by a mode-locked Ti:S pulsed laser from Spectra-Physics (Tsunami). A

typical average output power of 1W at 916 nm is first frequency doubled throught a

12mm long LBO nonlinear crystal and further doubled in a 10mm long BBO nonlinear

crystal - typically yielding 1mW at the excitation wavelength of 228.8 nm. Both

nonlinear crystals are critically phased matched (angled tuned) at their corresponding

wavelengths. The fsec laser, which is also used in other experiments presented in this

thesis, is described in section 4.1.3. It is characterized by an average output power of

550mW (λ = 916nm) with a repetition rate of 86 MHz. It is first frequency doubled

through a 7mm long LBO nonlinear crystal and then further doubled through a

5mm long BBO nonlinear crystal - typically yielding an output of 10mW at 228.8

nm. Again, both nonlinear crystals are critically phase matched. A spectrum analyser

with a resolution of ∼1 nm is used to determine the pulse bandwith and time duration.

The layout of the experiment is depicted in Fig. 5.2. Both lasers enter the trapping

region at an oblique angle of 45◦ with respect to the principle axis of the rf Paul trap

allowing the cw Doppler cooling beam to cool all three directions of the ion’s motion.

The scattered light from the ions is captured by an f/2.1 imaging system and is

sent onto the intensified CCD camera. Most ion traps, with the exception of the

microfabricated GaAs trap [68], did not require the use of a Cd oven for the loading

of ions. The large vapor pressure of Cd at room temperature (10−11 torr) resulted in

just the right amount of background neutral Cd atoms - large enough for practical

loading rates (Rions ≥ 1sec−1) while still small enough to not compromise the lifetime

of the ions in the rf traps through collisions. However, even in the case where the oven
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is heated to increase the flux of neutral Cd atoms in the trapping region, the velocity-

induced Doppler shifts are negligible compared to the laser bandwidth (>1THz). This

removes the requirement of having the atomic beam from the oven directed at a 90

degree angle with respect to the photoionization laser beam in order to be insensitive

to Doppler broadening.

 45 
 o 

 Cd oven 

 f/2.1 

 CCD camera

 Trap 

 Pulsed laser

 Doppler beam

Figure 5.2: Schematic for the layout of the photoionization experiment.

The Doppler and pulsed laser beams typically enter the trapping region at

an oblique angle of 45◦ with respect to the principle axis of the rf Paul trap.

The scattered light from the ion is captured by an f/2.1 imaging system and

is sent onto the intensified CCD camera (section 4.2). Most ion traps, with

the exception of the microfabricated GaAs chip trap, did not require the use

of a Cd oven for the loading of ions. However, when used, the atomic beam

from the oven is directed toward the center of the trap where it intersects

the Doppler and pulsed laser beams. The ion trap depicted in the figure is

the GaAs chip trap (Table II).

5.4 Experimental results

In this section I present two experimental results: (i) the loading rate of ions vs
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average optical power of the photoionization beam, and (ii) the loading rate of ions vs

pulsed laser detuning from the intermediate 1P1 state. These results are aquired by

recording the loading rate of a single ion as a function of the parameter to be varied

(average optical power or detuning of the photoionization laser). I will conclude this

section with some qualitative observations regarding the dependence of the loading

rate on several ion trap parameters, such as loading volume, trap depth, etc.

A plot of the loading rate of ions vs average optical power of the photoionization

beam is shown in Fig. 5.3. The loading rate is monitored as the average optical

power in the photoionization beam is increased. These data are taken in the three-

layer linear trap (Table II) using the fsec pulsed laser. The probability of occupying

the intermediate 1P1 state is expected to reach a value of 1.5% when the average

optical power is at its maximum value of 4mW (with a beam waist of 10 µm) - well

within the perturbative regime. As previously mentioned (Eq. 5.2), this regime is

characterized by a quadratic dependence of the photoionization rate (loading rate)

on the average optical power of the pulsed laser. Fig. 5.3 indicates this nonlinear

behavior.

The steps involved in aquiring a single data point are as follows: the photoioniza-

tion beam, focused at the center of the ion trap with a waist of ∼10 µm, is turned ON

for a duration of 5 or 10 sec, which corresponds to a slightly shorter time interval than

what is required to load a single ion. Then the Doppler cooling beam (I ∼ 50Isat) is

turned ON, initially red-detuned from the cycling transition of every Cd+ isotope (i.e.

∼300 MHz red detuned from the 111Cd+ cycling transition). In order to determine

if an ion has been loaded, the wavelength of the Doppler beam is then progressively

tuned toward the resonance of each isotope, where the resulting strong fluorescence

is the unmistakable signal indicating the presence of a trapped ion. Finally, in order

to prepare for the next loading sequence, the ion trap is “dumped” (rf voltage turned

off and on) which ejects any Cd+ ion that had just been loaded. For each average

optical power of the photionization pulsed laser, these loading steps are repeated ∼ 8

times, giving the loading rates displayed in Fig. 5.3. The main factor which limits

this sample size is the slowly fluctuating beam-steering noise of the photoionization
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pulsed laser. Observations indicate that loading rate fluctuations caused by this beam

steering noise occur on a time scale of 20-30 minutes, which limits the number of times

a single ion can be loaded.

Fig. 5.4 shows the loading rate of ions vs pulsed laser detuning from the interme-

diate excited 1P1 state. The loading rate of ions is monitored as the center wavelength

of the excitation pulsed laser is progressively detuned from the intermediate 1P1 state.

This is done using the same sequence of steps described previously. The data for this

curve is taken in the asymmetric quadrupole “ring and fork” ion trap (Table II) using

the psec pulsed laser. The photoionization pulsed laser is focused at the center of the

trap to a ∼10 µm waist and has an average optical power of 1 mW. By examining

Fig. 5.4, the process is seen to be resonant in the sense that the loading rate is

maximized when the photoionization laser is on resonance with the intermediate 1P1

state. The width of the photoionization curve corresponds to the bandwidth of the

excitation laser (bandwidth ∼ 1THz). This large bandwidth can be beneficial insofar

as Doppler shifted levels from all velocity classes are simultaneously resonant with

the pulsed laser, thus allowing for the possibility to photoionize each atom passing

through the loading region.

The loading rate is observed to depend on several trap parameters. Here we list

a few intuitive, albeit qualitative, observations. A large loading volume as well as

a large trap depth consistently display a higher loading rate. This observation was

best examplified when comparing the behavior of the large 4-rod linear trap and the

microfabricated GaAs trap (see Table II for trap parameters). For instance, the 4-

rod linear trap shows loading rates on the order of 1 sec−1 while using background

vapor pressure of Cd (@300K), where on the other hand, the microfabricated GaAs

trap can only load by significantly increasing the number density of Cd atoms in the

loading region by heating a Cd oven. Similarly, the same behavior is observed in

the two needle trap, where, as the trap size is varied from 46 to 300µm, the loading

rate is seen to increase dramatically. As previously mentioned, the Doppler beam,

with an average optical power comparable to the pulsed laser, should not significantly

contribute in the photoionization process. In order to test this assertion, we compared
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Figure 5.3: Loading rate vs optical power in the photoionization pulsed

laser. The data for this curve is taken in the three layer linear trap (Table

II) using the fsec pulsed laser. The source of neutral Cd atoms is from the

background Cd vapor pressure in the vacuum system, corresponding to a

number density of 3×105/cm3 of at room temperature. The photoionization

pulsed laser is focused at the center of the trap to a ∼10 µm waist. For

each detuning, the loading is aquired by: (1) turning ON the pulsed laser at

the center of the ion trap for a fixed time interval of either 5 or 10 seconds

(slightly shorter than the time to load multiple ions); (2) turning ON the

Doppler beam in order to detect the presence of a trapped ion; (3) and then

”dumping” the ion trap (rf voltage is turned off and on) which ejects any

Cd+ ions that have just been loaded. For each value of the average optical

power in the pulsed laser, these loading steps are repeated ∼ 8 times. The

perturbative regime, where the population in the intermediate state is much

smaller than unity, is characterized by a quadratic dependence on the optical

power of the pulsed laser (Eq. 5.2). The curve clearly shows the nonlinear

increase in the loading rate as the average optical power of the pulsed laser

is increased. The solid line is a quadratic fit to the data.



99

the loading rate with and without having both Doppler and pulsed laser beams turned

ON at the same time. We observed that the loading rate does not seem to be affected

by the added presence of the Doppler beam. This was tested in the large 4-rod linear

trap and the small GaAs linear trap.

In summary, we have demonstrated efficient photoionization loading of trapped

cadmium ions using frequency-quadrupled Ti:S mode-locked pulsed lasers. The laser

pulses resonantly promote neutral cadmium atoms to an intermediate excited state

that subsequently photoionizes. Observed loading rates of about 1 ion/sec are con-

sistent with a simple model of the photoionization process. Because the pulses are

broadband, all velocity classes of atoms can be photoionized, leading to a very efficient

loading technique. With reasonable intensities, we expect that ultrafast laser pulses

can successfully load every atom that traverses the laser beam within the trapping

volume. This may allow ion trap electrodes to be cleaner than in previous systems,

and lower pressures in the trapping region.
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Figure 5.4: Loading rate vs detuning of the photoionization laser from the

intermediate 1P1 state. The data for this curve is taken in the asymmetric

quadrupole “ring and fork” ion trap (Table II) using the psec pulsed laser.

The source of neutral Cd atoms is from the background Cd vapor pressure

in the vacuum system, corresponding to a number density of 3 × 105/cm3

at room temperature. The photoionization pulsed laser is focused at the

center of the trap to a ∼10 µm waist and has an average optical power of

1 mW. For each detuning, the loading is aquired by: (1) turning ON the

pulsed laser at the center of the ion trap for a fixed time interval which

is slightly shorter than the time to load multiple ions, (2) turning ON the

Doppler beam in order to detect the presence of a trapped ion, and (3)

“dumping”the ion trap (rf voltage turned off and on), ejecting any Cd+ ion

that had just been loaded. For each value of the pulsed laser detuning, these

loading steps are repeated ∼8 times. The data clearly shows the resonant

nature of the photoionization process, where the loading rate is significant

only when the pulsed laser bandwidth overlaps with the intermediate 1P1

state. In this case, the bandwidth of the laser used is 1 THz, which matches

with the width of the curve. The solid line is a a guide to the eye showing

the pulsed laser bandwidth.



CHAPTER 6

Laser cooling of trapped 111Cd+ ions

For most experiments that require entangling ions through their collective motion,

it is a prerequisite that the secular motion of the ion be cooled to near its ground state

〈n̂〉 ∼ 0. Immediately after loading the ion into the trap the kinetic energy is on the

order of the trap depth (0.05-10 eV, see chapter 5), which, for typical trap frequencies

of a few MHz, corresponds to a thermal distribution of motional levels having a mean

of 〈n̂〉 ∼ 106. The ground state is reached with the help of two successive cooling

stages. Doppler cooling first takes the ion’s motion from room temperature down to

a temperature of ∼1 mK, but the corresponding mean number of motional quanta

in the harmonic well depends on the trap stiffness. For typical trap frequencies in

this experiment of 2 MHz, the average number of quanta that results from a Doppler

cooling stage is 〈n̂D〉 ∼13. The remaining excess energy is removed with a stage of

resolved sideband stimulated Raman cooling, which takes the motion down to near

the motional ground state.

While these two cooling techniques are a ubiquitous feature in all experiments

involving trapped ions, they are only useful at the beginning of such experiments.

The removal of entropy, necessary in all cooling processes, relies on spontaneous

emission of the ion being cooled. This of course, precludes the use of these techniques

if the electronic level coherence is to be preserved. An alternative is to sympathetically

cool the motion of an ion (qubit) by directly cooling a neighboring ”‘refrigerator” ion.

The motional coupling between the ion to be cooled (qubit) and the cold reservoir

(ancillary ion) is provided by their coulomb coupled motion.

101
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I will first describe the underlying mechanisms of these two cooling stages and

then present experimental data showing their implementation in the Cd+ system.

I will then conclude the chapter by describing the experimental demonstration of

sympathetic cooling of a probe ion (112Cd+) through direct Doppler cooling of a

neighboring refrigerator ion (114Cd+).

6.1 Doppler cooling

The concept of Doppler cooling the motion of atoms was first proposed jointly

by two research groups: Wineland and Dehmelt [11] for harmonically bound atoms

and by Hänsch and Schawlow in the case of free neutral atoms [12]. The proposed

cooling technique was first demonstrated three years later in the work of Wineland

and Dehmelt [13] and Neuhauser et al. [14]. The relative simplicity of this cooling

technique makes remarkable the wealth of scientific discoveries it would later enable.

Nowadays, it is assumed that a Doppler cooling stage is the starting point of any

experiment involving the motion of a trapped atom.

There are two regimes to distinguish in the motion of a trapped ion: the weak-

binding limit (ωx ≪ γo) and the resolved sideband or strong-binding limit (ωx ≫ γo).

The concept of Doppler cooling only applies to the weak binding case, where, due to

the short lifetime of the excited state, the ion position does not change significantly

during each photon scattering event. This allows an intuitive picture to be developed.

For simplicity we assume that the motion of the ion is along a single direction and that

the laser beam used for Doppler cooling is directed along the same axis of motion. The

Doppler beam is tuned below resonance of the strongly allowed dipole transition used

to scatter photons, as shown in Fig 3.2. When the ion travels in a direction opposing

the ~k-vector of the Doppler beam, the laser appears blue shifted toward resonance in

the frame of the moving ion, hence increasing the photon scattering rate. Here we are

assuming that the Doppler shift δωD = ~k·~v is much smaller than the natural linewidth

of the cycling transition. Each time the ion absorbs a photon, it recoils in a direction

opposing its motion, so as to reduce its kinetic energy. Of course every absorption
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is accompanied by a spontaneously re-emitted photon. However, since the emission

occurs symmetrically, the net recoil following many scattering events averages to zero.

On the other hand, when the ion is moving in the opposite direction (away from the

Doppler beam), the laser now appears further red shifted with respect to resonance,

resulting in a lower photon scattering rate. This imbalance in the photon scattering

rate has the net effect of reducing the ion’s motional kinetic energy.

In order to Doppler cool all three directions of motion, the wave-vector of the

Doppler beam is directed at an oblique angle with respect to the trap’s principle axes.

In the case where two trap frequencies are degenerate, there is always a mode that is

uncoupled to the Doppler beam. This mode is therefore not laser cooled, however its

motion is heated due to the recoil from the spontaneously emitted photons. Every

traps described here possessed some inherent asymmetry which prevented this from

occurring.

In general, the limiting kinetic energy associated with this laser cooling technique

is 〈ED〉 = h̄γ0/2 = h̄ωx 〈n̂〉 [48]. However, this cooling limit is only approximate as

it does not account for the non-isotropic radiation pattern that is associated with

the spontaneously emitted photons. Including this and the fact that the Doppler

beam has a 45o angle with respect to the principle axis of interest (x-axis), the

Doppler cooling limit is reduced to 〈ED〉 = 17h̄γ0/40. For a typical trap frequency

of 2 MHz, this corresponds to a thermal distribution having a mean of 〈n̂D〉 = 13.

This cooling limit can be understood in terms of the ion undergoing a random walk

in momentum space with discrete steps of h̄~k, where each step corresponds to the

recoil from a spontaneously emitted photon. The random walk model predicts a

net momentum gain of zero 〈∆~p〉=0, however the residual kinetic energy due to

the random momentum kicks is nonzero since it is proportional to the square of the

momentum (ED ∼ 〈(∆~p)2〉 6= 0). When the Doppler cooling rate comes to equilibrium

with this residual heating mechanism, steady-state is reached, leaving the motion in

a thermal distribution [39] with a probability of occupying the vibrational state n

expressed as

P (n) =

( 〈n̂〉
1 + 〈n̂〉

)n(
1

1 + 〈n̂〉

)

. (6.1)
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The first step in Doppler cooling the ion’s motion is to cancel background static

fields and minimize micromotion, as shown in Fig. 6.1. Once micromotion is can-

celled, a Doppler beam with an intensity at the ion of I ≈ Isat/10 is turned on for a

duration of 1 msec, providing for ∼1000 photon scattering events (the Doppler pulse

time of 1 msec was determined to be the shortest time duration yielding the Doppler

cooling limit). In order to measure the temperature using the thermometry technique

described in chapter 2, the population is initialized into the |↑〉 state. The first red or

blue sideband is turned on for a variable time, which maps the motional information

onto the spin degree of freedom. We then measure the population in the bright state

(F=1) with the detection beam. Fig. 6.2 shows Rabi flopping on the first (a) red and

(b) blue sidebands, taken immediately following Doppler cooling stages. The data is

taken in the needle trap described in chapter 7, where the secular trap frequency was

3.48 MHz (ηx ≃ 0.15). The red and blue sideband asymmetry indicates a thermal

distribution with average population of 〈n̂D〉 ≃6.5(2). In order to cool the motion

below the Doppler limit, we use a resolved sideband cooling technique, which I discuss

in the next section.

6.2 Resolved sideband laser cooling

6.2.1 Single-photon resolved sideband cooling

The thermal distribution resulting from a Doppler cooling stage with typical av-

erage population 〈n̂D〉 ≥ 1 requires an additional cooling stage in order to reach the

ground state of motion. It is interesting to note that if the secular trap frequency

was larger than the natural linewidth of the excited P state (strong binding limit,

ωx ≫ γo), the implementation of Doppler cooling described above would, with proper

laser detuning from the excited P state, become the implementation of resolved side-

band cooling. Single-photon resolved sideband cooling is relatively easy to implement

and is a very efficient laser cooling technique. Unfortunately, the secular frequency
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Figure 6.1: Plots of cycling transition lineshapes showing residual mi-

cromotion in the ring and fork trap. The detection laser is tuned below

resonance of the cycling transition and the fluorescence count rate is dis-

played on the vertical axis. Due to the micromotion at the drive frequency

(Ωrf/2π =48 MHz), the detection laser aquires micromotion sidebands

which smear the otherwise natural lineshape of γ0/2π= 60 MHz. The laser

is on resonance at 992 MHz and the actual UV frequency shift is 4 times the

scale on the axis. The square boxes show the case of minimized micromotion

and have a FWHM linewidth of 72 MHz. The lineshapes with triangles and

circles correspond to increased levels of micromotion with different static

offsets, as shown in the legend. Typically, the reduced slope in the atomic

line shape used for Doppler cooling results in significantly hotter Doppler

cooled distributions. The resulting thermal distributions are unable to be

Raman cooled, as discussed in Fig. 6.5 and Fig. 6.6. This can be over-

come by applying static voltages which offset the background field, as in

the lineshape corresponding to square boxes.
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Figure 6.2: Rabi flopping on the (a) first red sideband and (b) first blue

sideband, showing the ground state occupation probability P(F=1) vs the

application time of the Raman beams. The trap frequency in the x-direction

is 3.48 MHz, giving a Lamb-Dicke parameter of η=0.15. The data is taken

following a Doppler cooling stage which leaves the ion’s motion in a thermal

distribution with an expected mean of 〈nD〉=7.3. By considering the asym-

metric ratios between the blue and red sidebands, we obtain a measured

value of 〈nD〉 ≃ 6.5(2). The different rabi frequencies in a) and b) stems

from beam-steering of the Raman laser beams as the AOM is frequency

shifted to access a particular resonance. Each point is averaged over 50

experiments, and the solid red lines are fits to the data.
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of the trapped ion is usually constrained to be well within the weak binding limit -

the excited P state linewidth is usually on the order of tens of MHz for most atomic

species (i.e. γBe+ = 19MHz, γCd+ = 59MHz, γCa+ = 23MHz) and the secular fre-

quency is typically well below 10 MHz. Notable exceptions are situations where a

weaker electric quadrupole transition is available. The linewidth of such transition

being in the Hz range places it comfortably within the strong binding limit. In fact,

the first demonstration of laser cooling of a bound atom to its ground state of motion

was done using such a narrow transition. In 1989, a NIST research group led by

Diedrich et al. used the narrow S1/2 − D5/2 electric quadrupole transition in 199Hg+

to cool its motion to 〈n̂〉 ∼ 0 [15]. Although this seems easy to implement, the use

of such narrow transitions requires a correspondingly narrow linewidth laser to excite

the transition, making the method much less attractive.

The single-photon resolved sideband cooling technique was not used in the work

described in this thesis, however plans were made to use such cooling technique with

the two-needle trap apparatus (chapter 1 and 6), but time constraints prevented its

implementation. The strong binding limit was going to be reached by increasing the

secular trap frequency above the 2S1/2 −2 P3/2 cycling transition linewidth (γ0/2π=60

MHz) used for Doppler cooling. In order to keep the motion of the ion stable (see sec-

ular approximation, section 1.2.2), this very large trap frequency (> 60MHz) required

the building of a very high frequency bifilar helical coil resonator (≥ 250MHz).

The underlying mechanism of the single-photon resolved sideband cooling tech-

nique is very simple and yet quite revealing, it can be explained as follows: for

simplicity we again assume that the motion of the trapped ion is along a single di-

rection (x-axis), with a trap frequency ωx. We further assume that the laser beam

used for cooling is directed along the direction of motion and is tuned near resonance

of the S1/2 − P3/2 cycling transition. In the required strong binding limit (ωx ≫ γo),

the ion undergoes several oscillations before it absorbs a photon from the laser. The

oscillating ion thus develops well resolved absorption sidebands composed of a central

“carrier” at frequency ω0 surrounded by resolved sidebands spaced by multiples of

the trap frequency ωx (i.e. ω0 + nωx, where n is an integer). This can be understood
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by considering how the laser beam appears in the frame of the ion as it oscillates back

in forth in the trap. The laser beam appears to be frequency modulated at the trap

frequency ωx, thus yielding the discrete sideband spectrum described above. At this

point, laser cooling occurs if the laser is tuned to the first red sideband at a frequency

ω = ω0−ωx. Simply put, the ion absorbs a photon with energy h̄(ω0−ωx), and spon-

taneously emitted photons with energy h̄(ω0 − ωR) return the ion to the electronic

ground state, where h̄ωR ≡ (h̄k)2/2m is the recoil energy associated a spontaneously

emitted photon. For each absorption-emission cycle, the kinetic energy of the ion’s

oscillation is damped by h̄ωx, assuming ωR ≪ ωx. The recoil energy associated with

the 2S1/2→2P3/2 transition in the Cd+ ion (ωR/2π = 39 kHz) is much smaller than

typical trap frequencies of a few MHz, which justifies the last assumption. In this case

the motional state changes with probability η2(n + 1/2), where η is the Lamb-Dicke

parameter given by η = kx0. Considering the case of small vibrational quantum

number n and η2 ≡ ωR/ωx ≪ 1, the probability of changing the motional state upon

recoil is negligible. For this type of cooling, the expression for the limiting tempera-

ture is very similar to the one for Doppler cooling, and is given by 〈n̂min〉 ≈ (γ0/2ωx)
2.

However, this time, since γ0 ≪ ωx, the final mean vibrational number is much smaller

than unity (i.e. 〈n̂min〉 ≪ 1).

6.2.2 Two-photon resolved sideband cooling

As previously mentioned, the combination of a natural linewidth γ0/2π=60 MHz

for the 2S1/2→2P3/2 transition in Cd+ and typical trap frequencies of a few MHz,

does not easily lend itself to laser cooling the motion to its ground state using a

single-photon resolved sideband cooling technique. Instead, we use a two-photon

stimulated Raman transition process (discussed in chapter 2). The single-photon

technique has the advantage of simplicity over the two-photon technique. However,

since the frequency beatnote required for Raman cooling is generated by a stable rf

synthesizer, the relative phase of the two Raman beams can be controlled with rf

accuracy, and not too high demands are put on the absolute stability of the laser.
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Figure 6.3: Raman spectra for an ion in the quadrupole trap with a secular

frequency of ωx/2π=5.8 MHz. Both plots show probability for population

transfer to the “bright state” P(|↓〉 = |F = 1, MF = 0〉) vs δ or frequency

of the beatnote from a carrier transition. Both lower(left) and upper(right)

sidebands are displayed following (a) Doppler cooling to n̄ ≃ 5(3), and

(b) subsequent Raman cooling to n̄ ≃ 0.03(2) where the upper sideband

vanishes. The strength of the transitions are Ω0/2π = 100 kHz and Ω0,1/2π

= 10 kHz. The Raman probe pulse is exposed for 80 µsec. The lines are a

Lorentzian fit to the data points
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The steps involved for sideband laser cooling using stimulated Raman transitions

are illustrated in Fig. 6.4. The initial overall quantum state consists of having the

motion Doppler cooled in a thermal state and internal level initialized to the |↑〉 state.

In order to reduce the vibrational energy, a first blue sideband drives the |↑, n〉 →
|↓, n − 1〉 transitions. Then by applying the optical pumping beam, the electronic

state population is recycled back into the |↑〉 state. During this recycling process, the

recoil energy associated with the spontaneously emitted photon is assumed to have

negligible effect on the motion for η2n ≪ 1. This, as previously mentioned in the

case of single-photon sideband cooling, is usually a good assumption since the recoil

frequency ωR/2π=39 kHz associated with the recycling step is much smaller than

typical trap frequencies of a few MHz. This cycle is repeated many times until the

mean vibrational state n=0 is reached. The cooling limit for this technique is typically

limited to off resonant coupling to neighboring motional levels and by spontaneous

emission from the small population in the excited state |e〉 (section 3.3.2).

In order to efficiently bring the motional state distribution to the ground state, the

blue sideband cooling pulse lengths are typically adjusted in order to accommodate

the variation in its coupling strength as a function of the vibrational state n. To

illustrate, if n corresponds to the largest vibrational state we want to cool, then the

first cooling cycle will involve a π-pulse on the |↑, n〉 → |↓, n − 1〉 transition, with

a time duration tn→n−1 = π/Ωn,n−1. In the second cooling cycle, the π-pulse which

couples the |↑, n − 1〉 → |↓, n − 2〉 transition is then applied for a time tn−1→n−2 =

π/Ωn−1,n−2, and so on until the ground state is reached. This type of cooling schedule

sequentially empties one motional level at a time.

Before the experiment starts, the cooling schedule is preset in Labview. By using

the trap frequency and the π-pulse time for the |↑, 1〉 → |↓, 0〉 transition as parameters,

the subroutine calculates the appropriate application times of the Raman pulses in the

sequence. The simple expression for the blue sideband Rabi frequency Ωn,n−1 = Ωη
√

n

is not valid outside the Lamb-Dicke limit, which typically corresponds to the tail end

of the Doppler thermal distribution we are trying to cool. For this reason, the exact

expression for the blue sideband Rabi frequencies involving Laguerre polynomials (Eq.
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Figure 6.4: Schematic diagram depicting a single Raman cooling cycle.

The Doppler-cooled thermal state is initialized to |↑〉. Then a blue sideband

resonant with the |↑, n〉 → |↓, n − 1〉 transition reduces the motional kinetic

energy by h̄ωx. The internal state population is recycled to the |↑〉 state

by applying the optical pumping beam for ∼5 µs. This process is repeated

many times until the motional ground state |n = 0〉 is reached.
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Figure 6.5: Plot of (a) the thermal distribution of motional levels with

〈nD〉=30 following a Doppler cooling stage, and (b) the normalized first blue

sideband strength (relative to the copropagating carrier Ω0). These plots

were calculated with ωx/2π =1 MHz and η =0.28. Note that the strength

of the blue sideband nearly vanishes at n ≃46, which results in ineffective

Raman cooling for thermal distributions having significant population above

n ∼46.
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Figure 6.6: Simulation results for Raman cooling to near the ground state of

a large thermal distribution with 〈nD〉=30 (as in Fig. 6.5). An adaptive Raman

pulse sequence initially sets the blue sideband pulse length to correspond to a

π-pulse for n=75 and subsequently adapts the length for lower n as the cooling

process evolves. The simulation takes into account the effect of recoils from

spontaneous emission and assumes a motional heating rate of .05 quanta/ms.

The thermal distribution is shown in (a) after 24 Raman cooling cycles (starting

at n=75). Note the peak in the population at n ≃46, which corresponds to the

null in the blue sideband strength as shown in Fig. 6.5. The thermal distribution

after 75 cooling cycles, a near-complete cooling process, is shown in (b). The

population which could not be cooled past n ≃46 remains, though this is small

compared to the >99% ground state population.
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3.33) is used to calculate the Raman pulse times. Here, there is a little inconsistency

in having the ground state Rabi frequency as an input parameter for the Raman

cooling schedule. Typically, we get around this by making an initial guess for the

π-pulse time of the blue sideband in the ground state, and iteratively we change the

value until the cooling is optimal. In the laboratory we observe that for larger thermal

distributions corresponding to trap frequencies below ∼1.3 MHz, ground state Raman

cooling fails [18]. This is presumably due to nulls in the first blue sideband and recoils

from spontaneous emission, as discussed in Fig. 6.6.

Fig. 6.3 shows a Raman spectra for the red and blue sidebands for both the (a)

Doppler cooling and with subsequent (b) Raman cooling in the ring-and-fork trap with

ωx/2π = 5.8MHz (ηx ≃ 0.12). The change in the sideband asymmetries indicates

cooling from approximately 〈n̂D〉 ≃ 5(3) to 〈n̂Raman〉 ≃ 0.03(2), corresponding to a

probability P0 ≃ 97% of ground state occupation. No further cooling is observed

when more than about 40 Raman cooling cycles are used, and the results were found

to be largely independent of the details of the Raman cooling schedule. For instance,

a uniform setting for the Raman cooling sideband pulse works nearly as well as the

adaptive pulse schedule. Similar results are observed in both the quadrupole and the

linear traps for various frequencies between 1.3 MHz to 5.8 MHz. For instance, in the

linear trap with ωx/2π = 2.69 MHz (ηx ≃ 0.17), we reach a probability P0 ≃ 83% of

ground state occupation, requiring no more than 90 Raman cooling cycles.

6.3 Sympathetic cooling

This section describes the demonstration of sympathetic cooling on a small ion

crystal. The need for sympathetic cooling stems from the fact that direct laser cooling

of the qubit ions is not generally possible without disturbing/destroying the internal

qubit coherence. An illustrative example where the use of sympathetic cooling is nec-

essary is when ions are non adiabatically shuttled between different trapping regions

[38, 27] as proposed in most large-scale quantum computing schemes [36, 69, 26, 70],

their motion must then be re-cooled for subsequent logic operations. Furthermore,
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sympathetic cooling of the motion of the ion crystal (quantum data bus) during com-

putation can help to eliminate decoherence due to motional heating of the ion crytal

caused by noisy background electric fields [26, 18].

As mentioned above, in order to preserve the internal qubit state coherence, it

is generally not possible to directly laser cool the motion of the qubit ions. Instead

additional “refrigerator” ions in the crystal can be directly laser cooled, with the qubit

ions cooled in sympathy by virtue of their Coulomb-coupled motion [71]. The laser

cooling of the refrigerator ions can quench unwanted motion of the ion crystal, while

preserving the internal electronic coherence of the qubit ions [36, 72, 73]. Before our

demonstration of sympathetic cooling in 2001, this cooling scheme had been observed

in several systems: large ensembles of ions in Penning traps [71, 74], and small ion

crystals consisting of a single species, where strong laser focusing was required to

access a particular ion (refrigerator) without affecting the other (qubit) [75]. The

experiment described in this thesis was the first demonstration of sympathetic cooling

in a small ion crystal with two different species where both species are independently

optically addressed. It should be noted that since then, an experiment was performed

by the group at NIST where they also demonstrated the cooling of a two species ion

crystal, but this time, consisting of two different atomic species: a 9Be+ and a 24Mg+

ion [76]. The advantage of using different atomic species for the qubit (9Be+) and the

refrigerator (24Mg+) ion has the obvious advantage of completely isolating the qubit

ion from the cooling laser only resonant with the refrigerator ions. The disadvantage

however, comes in the added laser system needed to directly cool the 24Mg+. The

Cadmium ion offers a distinct advantage with the many isotopes that are readily

available (section 2.1). For instance when using the 111Cd+ ion as the qubit and

116Cd+ ion as the refrigerator ion, the isotope shift between these two species is

∆/2π ≃5.2 GHz. It is large enough to neglect qubit decoherence from spontaneous

emission and AC stark shifts of the qubit ion originating from the cooling laser applied

to the refrigerator ion (116Cd+), yet the isotope shift is small enough so that optical

modulators can provide the cooling radiation without the need for additional laser

sources.
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In the experiment presented here, we sympathetically cool the motion of a 112Cd+

ion by directly laser cooling a refrigerator ion (114Cd+) – both isotopes have zero nu-

clear spin. Specifically, the refrigerator ion is continuously Doppler-cooled by a laser

beam red detuned from its D2 line (S1/2 − P3/2), while the other isotope (the qubit

or probe ion) is either Doppler cooled or Doppler heated by another beam, whose

frequency is scanned around its D2 resonance line. The effect of sympathetic cooling

is to enable measuring fluorescence on the blue side of the probe ion’s resonance. Or-

dinarily, when the probe laser beam is tuned to the blue of the probe ion’s resonance,

the ion ceases fluorescing due to Doppler heating, but the sympathetic cooling from

the refrigerator ion keeps the probe ion cold and fluorescing regardless of the probe

tuning. The respective D2 lines of these two neighboring isotopes are separated by

680 MHz (section 2.1), with the heavier ion at a lower absolute frequency, and the

natural linewidth of each ion’s excited P3/2 state is γ0/2π ≃59MHz.

6.3.1 Experimental apparatus

The experimental apparatus is schematically shown in Fig. 6.7. The resonant

light with the Cd+ D2 line near 214.5 nm is generated by a quadrupled narrowband

Ti:Sapphire laser. The quadrupled UV output is split into two parts; one part is

upshifted by ∼ 420 MHz, while the other is downshifted by ∼ 400MHz using acousto-

optical frequency shifters. The two beams are then directed into the ion trap through

separate viewports. both beams uniformly illuminate the ion crystal into the trap.

The upshifted UV beam (probe beam) is scanned in frequency around the 112Cd+ ion’s

D2 line, while the downshifted UV beam (refrigerator ion) frequency is always kept to

the red of the 114Cd+ ion’s D2 line. The UV fluorescence from the ion is collected by

an f/5.6 lens and imaged onto a microchannel plate detector. the fluorescence counts

are integrated for 10 s for each data point in a frequency scan.

The experiment is carried out in the very first ion trap constructed in the Monroe

lab - a standard 3D rf-quadrupole ring-and-fork Paul trap (trap 1 in section 1.2). The

trap’s rf drive frequency is Ω/2π ≃38.8 MHz, and the secular frequency is ωx/2π ≃2.8
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MHz, corresponding to an rf voltage amplitude of about 200 V. We set the trap’s

compensating electrode voltages such that the 112Cd+ (probe) ion is near the rf null of

the trap to minimize its micromotion and thus avoid the influence of the micromotion

on the line shape [77].

To study sympathetic cooling, we load a 112Cd+ ion and a 114Cd+ ion into the

trap by directing ∼ 1 mW of UV radiation focused to under 20 µm onto the trap

electrodes, which have been previously coated with neutral cadmium. Presumably,

the UV radiation ablates cadmium from the electrodes in ionic form. Due to the high

abundance of isotopes 112 and 114 in neutral cadmium (24% and 29%, respectively),

loading the proper two isotopes is not unlikely. This loading method now appears

somewhat primitive in comparison to the photoionization loading scheme described

in chapter 4 of this thesis.

6.3.2 Experimental results

In Fig. 6.8 the fluorescence of the 112Cd+ ion is plotted against the probe beam

frequency. In Fig. 6.8(a) both the probe and the refrigerator laser beams are on,

while for the data in Fig. 6.8(b) the refrigerator beam is turned off. Note the

telltale drop in fluorescence as the probe beam is tuned to the blue side of the 112Cd+

resonance line in Fig. 6.8(b) is caused by Doppler heating. On the other hand, the

fluorescence curve in Fig. 6.8(a) is symmetric, demonstrating that the 112Cd+ ion is

sympathetically cooled by the 114Cd+ ion even as the probe beam is tuned to the blue

of the resonance.

Images of the two ions at different lighting conditions are shown in Fig. 6.9; the

probe ion (112Cd+) is on the left, while the refrigerator ion (114Cd+) is to the right.

Both the probe and the refrigerator beams are turned on for Fig. 6.9(a). In Fig.

6.9(b) only the probe beam is turned on, while in Fig. 6.9(c) only the refrigerator

beam is on. Note the very faint images of the 114Cd+ ion in Fig. 6.9(b) and the

112Cd+ ion in Fig. 6.9(c). These images originate from the residual fluorescence from

the far-detuned beams.
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Figure 6.7: Schematic diagram of the sympathetic cooling experiment.

The 858 nm light from the Ti:Sapphire laser is frequency quadrupled to

a wavelength of 214.5 nm with a typical optical power of ∼15 mW. The

UV beam is then split into two parts, each of which is frequency shifted by

AOMs and directed into the trap. Note that the laser setup is described in

greater detail in chapter 3 of this thesis.
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(a)

(b)

Figure 6.8: UV fluorescence count rate from the 112Cd+ probe ion (a)

with and (b) without sympathetic cooling, plotted against the probe beam

frequency detuning from resonance. Solid lines represent fits to the data

using (a) a Voigt profile and (b) a Voigt shape for the below-resonance part

of the data and a straight line for the above-resonance part of the data.

The resonance is shifted about 10 MHz blue with respect to the resonance

without. This shift is consistent with the expected ac stark shift of the

112Cd+ levels due to the off-resonant 114Cd+ cooling radiation.
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For the data shown in Figs. 6.8 and 6.9, the probe beam intensity is Iprobe=0.35Isat,

while the refrigerator beam intensity is Iref=12Isat, where the saturation intensity

Isat ≃0.6W/cm2. Such high refrigerator beam intensity is necessary because of the

large amount of refrigerator ion micromotion; recall that only the probe ion (112Cd+)

is located at the rf null of the trap. The effect of micromotion is a broadening of the

line shape of the refrigerator ion, which reduces the efficiency of Doppler cooling [28].

The shift of the probe ion resonance line in Fig. 6.8(a) by about 10 MHz compared to

Fig. 6.8(b) is consistent with the ac Stark shift induced by the off resonant refrigerator

beam.

To demonstrate that the cooling seen in Fig. 6.8(a) is not caused by directly

Doppler cooling the 112Cd+ probe ion by the refrigerator beam (which indeed is red

detuned from the 112Cd+ ion’s D2 line) we load a single 112Cd+ ion into the trap,

while shining both the refrigerator and the probe beams onto the ion. The curve in

Fig. 6.10 shows the resulting fluorescence as a function of the probe laser frequency.

When tuned to the blue of the resonance, the ion’s fluorescence quickly drops to zero,

indicating that the ion is heated by the probe beam; the direct Doppler cooling by

the far-detuned refrigerator beam is not sufficient to keep the ion cold.

In conclusion, we have sympathetically cooled a single trapped 112Cd+ ion via

Doppler cooling of a neighboring 114Cd+ ion. This, at the time, was the first demon-

stration of optically addressing a single trapped ion being sympathetically cooled by

an ion of a different species. The sympathetic cooling of multiple ion species is an im-

portant step toward scaling the trapped ion quantum information processor, as it can

reduce decoherence associated with unwanted motion of trapped ions, while preserv-

ing the internal qubit coherence. The Cd+ system is convenient, as the sympathetic

cooling can be accomplished without extra lasers and without strong focusing.
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(a)

(b)

(c)

114Cd+112Cd+

Figure 6.9: Images of the 112Cd+ and 114Cd+ ions while illuminated by (a)

both the refrigerator and the probe beam, (b) only the probe beam, and (c)

only the refrigerator beam. The 112Cd+ ion is on the left, while the 114Cd+

ion is on the right. The 2 ions are separated by 2∼µm. Note very faint

images of the 114Cd+ ion in (b) and the 112Cd+ ion in (c) from the residual

fluorescence from far detuned beams, partially obscured in this picture by

the Airy rings. The scale below is linear in the integrated photon counts.

The exposure time is 10 sec. for each picture.
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Figure 6.10: UV fluorescence from a single 112Cd+ ion while illuminated

by both the refrigerator and the probe beam, plotted against the probe

beam detuning from the resonance. The solid line is a Voigt fit to the data

below the resonance and a hand-drawn curve above the resonance.



CHAPTER 7

Investigation of motional heating in ion traps

An important source of decoherence in the trapped ion system is the heating of

trapped ion motion, arising from noisy electrical potentials of unknown origin on

the trap electrode surfaces [36, 26, 18]. This decoherence is expected to become

even more critical as ion traps become weaker in order to support larger ion crystals

[20], and allow shuttling of ions through complex and microscale electrode struc-

tures [70, 78, 27, 38, 68]. In a more general view, the anomalous heating of trapped

ions from electrode surface noise may also be related to parasitic electrical noise ob-

served in many condensed-matter quantum systems such as Cooper-pair boxes [79]

and Josephson junctions [80].

In this chapter, I first summarize the motional heating measurements that have

been made so far by several trapped ion groups worldwide. The various heating

measurements in the Cd+ ion system are also presented along with the technique used

to quantify this heating. Then I discuss two models for the source of motional heating:

namely, thermal (Johnson) noise and “patch” potential noise. Finally, I present the

results of a controlled study of the character of trapped ion motional decoherence

in a novel trapping geometry (two-needle) that permits the electrode spacing to be

adjusted in situ. Measurements of motional decoherence at varying distances between

the ion and the electrodes allow some characterization of the spatial extent of noisy

patch potentials [81] on the electrodes. In addition, the electrodes in this apparatus

can be cooled through contact with a liquid nitrogen reservoir. When the temperature

of the electrodes is reduced from 300 K to about 150 K, the anomalous heating rate

of trapped ion motion drops by an order of magnitude or more, but is still higher

123
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than that expected from thermal (Johnson) noise in the electrical circuit feeding the

electrodes. This provides direct evidence that anomalous heating indeed originates

from the electrode surfaces and can be significantly suppressed by modest cooling of

the electrodes.

7.1 History of heating measurements in ion traps

The first observation of anomalous motional heating occurred in 1989 by the NIST

research group [15]. This was the first time a trapped ion was cooled to its motional

ground state, which is one of the main requirements of the thermometry technique

discussed in section 3.3.31. The heating rate was measured to be orders of magnitude

above what is expected from thermal noise which originates from resistances in the

trap electrodes (discussed in more detail in the next section). In fact, the time for

the motion to increase by one quanta was expected to be 95 hours, which is orders

of magnitude from the measured heating rate of 6 quanta/sec. The next heating

measurement was made in 1995, again in the NIST group with Be+, where they

observed a larger heating rate of 1 quanta/msec. This increase in the heating rate

as compared to the 1989 Hg+ ion experiment was the first observation of the strong

dependence of the heating rate on the ion-electrode distance. From there on, every

ion trap having the capability to laser cool the motion to its ground state produced a

new heating data point. A plot of the various heating measurements vs ion-electrode

distance are shown in Fig. 7.1. These include other ion species such as 137Ba+ [40],

40Ca+ [17, 78], and 111Cd+ [18]. Included in the Be+ data are 3 data points from

an experiment reported in 2002 [27] which observed a correlation between electrode

surface purity and smoothness and the ion heating rate. Trap electrodes that were

electroplated with gold were observed to have a lower heating rate than electrodes that

were coated with gold evaporation. The heating rate was also observed to increase

within the first few weeks of operation, indicating that the surface layer of Be (from

1The sensitivity of this technique is at a maximum for n̄∼1 and quickly diminishes as n̄

approaches ∼10.
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firing the Be oven) coating the electrodes caused the heating. In the 137Ba+ [40]

experiments a gradual degradation of trap stability as the electrodes became coated

with Ba was also observed.

µ

Figure 7.1: Observed heating rate ˙̄n vs ion-electrode distance d observed

by research groups worldwide. The heating measurements shown here are

for trap frequencies between 2.9 MHz and 6.0 MHz. The dashed line is

a guide to the eye for the 1/d4 scaling of the heating rate predicted by a

model of microscopic potential fluctuations [26].

The results for 111Cd+ (red points on the graph) were taken from experiments

performed in both the ring-and-fork trap and also the three-layer linear trap (sections

2.2.1 and 2.2.2). The measured heating rates were observed to be slightly lower than

what is expected from the trend in Fig. 7.1, but still much higher than what is

expected from thermal noise. The heating rates were measured using the previously

mentioned sideband thermometry technique with different delay times (with no laser

interaction) between the ground state cooling and the temperature measurement.

These measurements of n̄ are repeated with increasing time delay until a heating rate

can be extracted. An example of data from the quadrupole trap (ωx/2π = 5.8 MHz)

is shown in Fig. 7.2, where a linear fit of the data (n̄ vs time delay) yields a heating
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rate of ˙̄n= 0.0248(3) quanta/msec. Fig. 7.3 displays a series of measured heating

rates in the two traps as a function of the trap frequency ωx. In the quadrupole trap,

ωx is varied by changing the rf voltage V0 and/or the static voltage U0, whereas in

the linear trap, ωx is varied by adjusting only the static potentials on the electrodes.

Figure 7.2: An example of heating data taken in the quadrupole trap, with

a trap frequency of ωx/2π=5.8 MHz. Mean motional quanta n̄ is plotted

vs time delay. The insets show sideband Rabi oscillations from which n̄

is inferred; the black points represent the first red sideband and the open

points represent the first blue sideband. The solid line is a linear fit to the

data from which a heating rate of ˙̄n ≈ 0.0248(3) quanta/msec is obtained.

The experiments listed in Fig. 7.1 allow us to make some weak conclusions about

the characteristics of the anomalously large heating rates observed in all trapped

ion systems. First, according to Fig. 7.1, the heating rate has a stronger scaling

with ion-electrode distance than what is expected from thermal (Johnson) noise,

which should scale as 1/d2 (explained in detail in the next section). In addition,

the source of the noise seems to be located at the electrodes, and not electric field

noise from outside laboratory sources. It should be clear, however, that the main

cause of this heating is still not well understood. This lack of understanding is the
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motivation for our experiments with the needle trap which allows to vary the ion-

electrode distance and electrode temperature in situ. This is the first experiment

to allow the controlled-adjustment of the trap dimensions and temperature. These

experiments will be presented in the next sections, following a theoretical discussion

of the models of thermal and patch potential noise.

Figure 7.3: Observed heating rates ˙̄n vs trap frequency in the 111Cd+ ion

system. The solid line is a fit to the heating rates in the linear trap where

the rf electrode voltage V0 is constant. The fit to the data in this trap shows

a trap frequency scaling of ω−1.4
x , yielding a frequency dependence for the

spectral density of electric field noise of SE(ω) ∝ ω−0.4. The error bars

represent the statistical noise in the linear regression from which a heating

rate is inferred (as shown in Fig. 7.2). The heating measurements were

taken over a period of five months in the quadrupole trap and two months

in the linear trap.



128

7.2 Sources of motional decoherence

A single trapped ion is heated when noisy electric fields at the ion’s position

couple to its charge. These fluctuating forces are particularly effective at imparting

energy when the frequency of the noise corresponds to the trap secular frequency or

its micromotion sidebands. For the origin of the motional heating, we distinguish

between two sources of noise: thermal (Johnson) noise and patch potential noise.

The motion can also be heated through various other mechanism, such as electronic

voltage noise from lab equipment, ion collisions with background atoms, and field

emitter points on trap electrodes, to name a few. The research group at NIST did

an extensive study which ruled out all of these as significant sources of noise [36, 26],

justifying the focus on thermal and patch potential noise.

In order to determine the heating rate arising from electric field fluctuations at the

trapped ion’s position, consider the Hamiltonian for an ion confined in a harmonic

well subjected to the noisy field E(t), given by

Ĥ(t) =
p̂2

x

2m
+

1

2
mω2

xx̂
2 − eE(t)x̂. (7.1)

Here E(t) represents the x-component of the fluctuating electric field at the center of

the trap. From first-order perturbation theory [52], the average rate at which an ion

initially in the state |n, t = 0〉 makes a transition to the state |m 6= n〉 in a time T is

expressed as

Γm←n =
1

T

[−i

h̄

∫ T

0

dt′
〈

m
∣

∣

∣
Ĥ ′(t′)

∣

∣

∣
n
〉

eiωmnt′
] [

i

h̄

∫ T

0
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〈

m
∣

∣

∣
Ĥ ′(t′′)

∣

∣

∣
n
〉

e−iωmnt′′
]

.

(7.2)

Inserting the expression for the perturbation Ĥ ′(t) = −eE(t)x̂ in Eq. 7.2 and

rearranging the integrals yields

Γm←n =
e

h̄2T

[
∫ T

0

∫ T

0

dt′dt′′ |〈m |x̂|n〉|2 E(t′)E(t′′)eiωmn(t′−t′′)

]

(7.3)

=
e2

h̄2 |〈m |x̂|n〉|2
∫ ∞

−∞
dτeiωmnτ 〈E(t)E(t + τ)〉 . (7.4)

Here, we assumed that the time over which the motional state population varies is

longer than the averaging time T , and that the correlation time of the fluctuating
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electric field E(t) is short compared to time T . This allows us to extend the limits of

integration for the time delay τ to ±∞. We identify the expression for the spectral

density of electric field noise as

SE(ωx) ≡ 2

∫ ∞

−∞
dτeiωxτ 〈E(t)E(t + τ)〉 , (7.5)

with units of (V/m)2Hz−1. This expression is reminiscent of the relationship be-

tween the self coherence function of a light source, typically written as Γ(τ) =

〈E(t + τ)E(t)〉, and its power spectral density [82]. In the case of the Michelson

interferometer, the time delay at which the interference fringe contrast at the output

diminishes to half of its zero time delay value allows one to determine the power

spectrum of the light source.

Since the heating rates are typically measured from the motional ground state,

the transition rate from the ground state |n = 0〉 to the first excited state |n = 1〉 is

Γ1←0 =
e2

2h̄2 |〈1 |x̂| 0〉|
2 SE(ωx). (7.6)

Inserting the matrix element |〈1 |x̂| 0〉|2 = x2
0 = h̄/2mωx yields a simple form for the

heating rate, given by

˙̄n ≡ Γ1←0 =
e2SE(ωx)

4mh̄ωx
. (7.7)

In general, for an ion confined in a combination of static and rf fields, the motion

of the ion has additional components2 at frequency ωrf ± ωx. The electric field noise

at these frequencies can also couple to the ion motion at frequency ωx, and therefore

contribute to the motional heating [36, 26]. Taking this into account, the generalized

heating rate ˙̄n reads

˙̄n =
e2

4mh̄ωx

(

SE(ωx) +
ω2

x

2Ω2
rf

SE(Ωrf ± ωx)

)

. (7.8)

The coefficient in front of the second term in Eq. 7.8 (ω2
x/2Ω2

rf ∼ 10−3) is often

small enough to justify neglecting the rf heating contribution altogether. However,

the presence of the resonator with a resonance frequency at Ωrf and quality factor Q

2A notable exception is the longitudinal confinement in a linear trap, which originates from

applied static fields (section 2.2.2).
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can sometimes amplify this source of noise to an appreciable level. But again, in order

to reduce the rf pick-up, the trap electrodes typically have low-pass filters attached

to them which filter most of this rf noise. This was the situation for the two-needle

trap (discussed below).

Thus, in order to calculate the expected heating rate ˙̄n for a ion confined in a trap

with frequency ωx, we need a knowledge of the fluctuating electric field, specifically

the spectral density of electric field SE(ωx) at the ion position. In principle, if we

could directly measure SE(ωx) with a probe, the expected ion heating rate could be

calculated exactly. However, the best probe to measure this quantity (actually the

only probe) is the ion itself. Thus, to calculate the expected heating rate, we need

to consider a model for each source of electric field noise at the ion position. In the

next two sections, I discuss the models for the thermal and patch potential noise and

give expressions for the spectral density of electric field noise in each case.

7.2.1 Heating rate for thermal (Johnson) noise

Quantifying the spectral density of electric field noise at the center of the trap

due to thermal (Johnson) noise is greatly simplified by the fact that the wavelengths

associated with the thermal radiation (at typical trap secular or drive frequencies) are

much larger than the resonator+trap electrodes setup. This allows one to describe the

distributed electrode resistance, capacitance, and inductance by an equivalent RLC

circuit with discrete elements [83, 84, 36]. The effective lumped-circuit resistance

R gives rise to a voltage noise on the electrode given by SV (ωx) = 4kBTR(ωx) [85,

26], where kB is the boltzmann constant, and T is the temperature of the electrode

(typically at 300K). The resulting spectral density of electric field noise at the trap

center is given by

SE(ωx) = ǫ24kBTR(ωx)

d2
, (7.9)

where d is the distance from the ion to the trap electrode, and ǫ is a geometrical

efficiency factor that relates a given potential difference across the noisy electrode

and the grounded electrodes to the resulting electric field at the trap center. For
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instance, a parallel plate capacitor has an efficiency factor ǫ=1. Fig. 7.7 shows the

results of a simulation for the efficiency factor in the needle trap, giving a value of

ǫ = 70% over the range of needle spacings used in the experiment.

As mentioned earlier, estimates of this heating consistently lead to values that are

orders of magnitude lower than what is observed by all trapped ion research groups.

In order for thermal noise to be the source of the anomalously large heating rates,

an electrode temperature on the order of ∼106 K would be required! The simplicity

of Eq. 7.9 can be misleading. In general, to estimate the ion heating due to thermal

noise, the trap electrode geometry, rf filtering characteristics, and resonator type must

be included in the analysis. As an example, in the case of the ring-and-fork trap

(section 2.2.1) with symmetrically aligned electrodes, a voltage noise at the fork or

ring electrode results in a null electric field at the ion position, which further reduces

the heating rate predicted by Eq. 7.9. Another good example of these considerations

is provided below in the results section, where I describe the calculation of thermal

noise estimation for the two-needle trap experiment.

7.2.2 Heating rate for uncorrelated fluctuating patch-potential noise

The term “patch-potential” noise is used to cover many different mechanisms, such

as randomly oriented domains at the surface of the electrodes or adsorbed materials

on the electrodes [26]. Static patch potentials are a well known source of noise in

experiments sensitive to noisy static electric fields, such as Rydberg atoms in cavities

[86] and charged particles in drift tubes [81, 87]. On the other hand, little is known

about fluctuating patches in the MHz frequency range, which is required to account for

this anomalous heating [88, 89, 81]. An observation supporting the model of localized

voltage patches is that the heating rate as a function of ion-electrode distance d scales

more strongly than what is expected from correlated voltage noise (i.e. thermal noise)

across the whole electrode structure (∼ 1/d2).

The following is a derivation of the spectral density of electric field noise at the ion

position caused by patch potentials. We define the x-component of the electric field
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at the trap center from the n-th patch to be En(s, t) = Vn(t)ξn(s), where ξn(s) can be

thought of as the electric field at the ion per unit voltage on the patch at a distance

s away. Here the time dependence is associated with the patch voltage only. In order

to get the total electric field at the ion position we must add the contributions from

all patches, which gives ETotal =
∑N(s)

n=1 Vn(t)ξn(s). Inserting this expression into Eq.

7.5 yields

SE(ωx) = 2

∫ ∞

−∞
dτeiωxτ

〈

N(s)
∑

n=1

Vn(t)ξn(s)

N(s)
∑

m=1

Vm(t + τ)ξm(s)

〉

(7.10)

= 2

N(s)
∑

n=1

N(s)
∑

m=1

∫ ∞

−∞
dτeiωxτξn(s)ξm(s) 〈Vn(t)Vm(t + τ)〉 (7.11)

Assuming the fluctuating voltage noise Vn(t) for different patches is uncorrelated, a

single sum remains, giving

SE(ωx) = 2

N(s)
∑

n=1

[ξn(s)]2
∫ ∞

−∞
dτeiωxτ 〈Vn(t)Vn(t + τ)〉 (7.12)

= 2





N(s)
∑

n=1

[ξn(s)]2



SV (ωx) (7.13)

where SV (ωx) is the spectral density of voltage noise on each patch.

The above expression is useful in that it shows how SE(ωx) can be separated into

a product of a geometrical factor and SV (ωx). Solving for the geometrical factor

typically requires a complicated calculation, and depends on the particular electrode

geometry and the size and distribution of patches. However, useful insights can be

gained by considering a few simple electrode geometries. For instance, following the

derivation in Turchette et.al. [26], we can get an expression for SE(ωx) for the special

case of a closed spherical electrode of radius d. Consider a patch of radius rp ≪ d

with spectral density of voltage noise SV (ωx) that is located on the inner surface of

the sphere. The electric field noise per unit volt from the n-th patch is given by

ξn(d) = −3r2
p cos θ/4d3, where θ is the angle between the x-axis and the line joining

the n-th patch to the ion at the center of the sphere. Assuming a patch coverage C,

where 0 ≤ C ≤ 1, the total number of patches N(d) contributing to an electric field
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noise at the trap center is N(d) = 4Cd2/r2
p. Inserting these expressions into Eq. 7.13

and averaging over the angle θ, we recover the result in [26] given by

SE(ωx) =
3Cr2

p

2

SV (ωx)

d4
. (7.14)

As previously mentioned, the introduction of localized voltage patches does result

in a stronger heating rate dependence on the ion-electrode distance ( ˙̄n ∝ 1/d4) than

what is expected from thermal (Johnson) noise (i.e. 1/d2) [26]. When considering

more realistic electrode geometries such as the two-needle trap, the geometrical factor

in Eq. 7.13 is very difficult to calculate. However, the heating rate measurements

described below for the two-needle trap yields an unambiguous scaling law.

7.3 Experimental apparatus

The two-needle trap electrode geometry, built for measuring motional heating, is

depicted in Fig. 7.4. This cylindrically symmetric (α = 1/2) rf Paul trap is formed by

two opposing tungsten needle-tipped electrodes, mounted on independent translation

stages allowing for the tip-to-tip electrode separation 2z0 to be controllably varied over

a wide range 0 ≤ 2z0 ≤ 1 cm with micrometer resolution. The needles are also aligned

to be co-axial with transverse translation stages, again with micrometer resolution.

An electrical rf voltage U0 + V0cos(Ωrf t) is applied to each electrode with respect to

a pair of recessed grounded sleeves surrounding the needles. The tungsten needle tip

is approximately spherical with a 3 µm radius and it is supported by a conical shank

with a half-angle of 4 degrees. The potential is delivered through a dual (bifilar)

rf resonator (section 2.3.3), allowing the two electrodes to be independently biased

with static voltages. This arrangement gives the ability to cancel static background

electric fields pointing along the z-axis. Two additional electrodes (not shown in Fig.

7.4) are located a distance of ∼7 mm away from the trap center, allowing for the

cancellation of stray electric fields along the transverse x-y directions.

Each sleeve electrode is machined from a single piece of aluminum. The sleeve’s

extremity consists of a hollow cylinder with a length of 1 cm, and a 3 mm inner



134

L

Figure 7.4: Schematic diagram for the electrodes of the needle trap. The

needle trap is formed by two opposing tungsten needle-tip electrodes. The

electrodes are mounted on independent translation stages, allowing the tip-

to-tip electrode separation 2z0 to be controllably varied between 0 ≤ 2z0 ≤ 1

cm. An electrical potential U0 + V0 cos(Ωrf t) with frequency Ωrf/2π=29

MHz is applied to each electrode with respect to a pair of recessed grounded

sleeves (aluminum) surrounding the needles. The sleeve and the needle

electrodes are separated by a gap of 1 mm; the space is filled with an alumina

tube, press-fit in place. An independent static voltage is applied to each

needle, allowing for compensation of stray background ~E-field along the z-

axis. Compensation along the x-y directions is obtained by applying static

voltages to two auxiliary electrodes (not shown in figure) positioned ∼7

mm away from the trap center. The tungsten needle tip is approximately

spherical with a radius of ∼3 µm, and the needle shank recedes with a

cone half-angle of approximately 4 degrees. The horizontal distance L from

needle tip to the nearest rf ground (sleeve) is 2.3 mm.
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Figure 7.5: A picture of the experimental apparatus used to investigate

motional heating.
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and 5 mm outer diameter. The distance L between the sleeve’s extremity and the

needle tip is 2.4 mm. The space between the needle and the sleeve electrode is

filled with an alumina tube, press-fit in place. The alumina tube serves two main

purposes: to electrically insulate the sleeve from the needle electrode and to provide

thermal contact between the sleeve and the needle. The trap apparatus also allows

the temperature of both electrodes to be cooled down near liquid nitrogen (LN2)

temperature (77 K). This is achieved by bringing a liquid nitrogen reservoir in thermal

contact with the sleeve, which in turn, is in thermal contact with the needle via the

alumina spacer. Fig. 7.6 describes in detail the LN2 setup.

The experiment conducted in the needle trap used a tip-to-tip needle distance 2z0

ranging from 75 µm to 500 µm, which required a large voltage efficiency factor ǫ in

order to maintain a reasonable trap depth over this range. This along with other ex-

perimental constraints required running a substantial number of simulations in order

to obtain the optimal sleeve and needle electrode configuration giving the maximum

voltage efficiency factor ǫ. Most of these simulations were done using the 3-D elec-

trostatic finite element analysis software Maxwell3. An electrostatic simulation may

seem irrelevant when dealing with a radiofrequency Paul trap, but it turns out that in

order to obtain the pseudo-potential seen by the trapped ion (Eq. 2.7), and hence the

secular frequencies, only the instantaneous electric field is required. Fig. 7.8 shows

the result of the simulation. Here the voltage efficiency factor ǫ is plotted versus

the tip-to-tip electrode distance. The parameter ǫ is found to level off to a value

of approximately 17±1% for trap sizes 2z0 ≥ 75µm. As the needles are gradually

brought closer to one another, the efficiency is seen to approach zero. This is not so

surprising when one considers the fact that in the limit where the needle spacing is

smaller than the tip diameter, the electrode pair looks like a parallel plate capacitor,

which of course lacks the electric field gradient required for a ponderomotive force.

In the opposite limit, as the needle spacing becomes much larger than the tip diam-

eter, the efficiency factor presumably levels off. Due to computational requirements,

simulations could not be run to confirm this assumption.

3Maxwell (v10) - distributed by the Ansoft corporation.
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Figure 7.6: A picture of the mainshaft assembly used to (1) hold each

of the trap electrodes (needles), (2) translate the trap electrodes linearly

with a resolution of ±1µm, and (3) provide thermal contact with a liquid

nitrogen reservoir at 77 Kelvin. Part 1 is a reducing flange used to join the

linear positioner (Part 2 on the right, CF 2 3/4) to the hemisphere (not

shown on the left, CF 1 1/3). Part 2 is a linear positioner which allows the

main shaft to be extracted (inserted) through and into the hemisphere. The

only portion of the linear positioner shown in the drawing is the accordeon

bellow allowing compression/extension over a range of 1 in. while keeping

vacuum. Part 3 is the the main shaft (”cold finger”) extending throughout

the drawing. As depicted, this part is hollow allowing LN2 to be inserted.

The thermal contact between the reservoir (LN2) and the trap electrode

is at the end (left on drawing) of the main shaft. The trap electrode is

mounted with a screw which fits into the end of the main shaft. All three

parts were purchased from the Kurt J. Lesker Company.
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η

Figure 7.7: This plot shows the results of a simulation that calculates the

geometrical efficiency factor η, which relates a given potential difference

across the needle gap 2z0 to the resulting electric field at the ion position.

This is useful for comparisons of heating rate to trap potential noise. The

efficiency for the needle trap is 70% over the range of spacings used in the

experiment.
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Figure 7.8: Voltage efficiency factor ǫ plotted versus the tip-to-tip elec-

trode distance (2z0). Two different ion trap building iterations were nec-

essary in order to find a two-needle design compatible with the controlled

motional heating experiment. The lower graph (blue squares) shows the

voltage efficiency factor ǫ vs the tip-to-tip distance 2z0 for the first two-

needle trap, having a tip diameter of 15µm and conical shank of half-angle

4 degrees. This design did not have a nearby ground (no sleeves), resulting

in a lower voltage efficiency. But most importantly, due to its susceptibil-

ity to slowly changing background electric fields from a lack of shielding,

this open geometry was found to be inadequate for the motional heating

experiment. The addition of nearby grounded sleeves in the second design

iteration solved this problem. The needle tip diameter was reduced to 6µm

while the conical shank half-angle remained 4 degrees. The voltage effi-

ciency of the second design is shown (red squares) to be roughly constant

over the distance interval of 75 ≤ 2z0 ≤ 500µm, with a value of 17±1%.

This distance corresponds to the trap sizes used in the motional heating ex-

periment. These results were simulated using a 3-D electrostatic simulation

package (Maxwell v10).
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7.4 Experimental results

Single cadmium ions are confined in the needle trap formed by two opposing elec-

trodes in a vacuum chamber, as depicted in Fig. 7.9. A dual bifilar resonator is used

to apply an electrical potential U0 +V0 cos(Ωrf t) with Ωrf/2π = 29 MHz to the needle

electrodes, also shown in Fig. 7.9. In order to compensate for a uniform background

electric field along the z direction, each electrode can be independently biased with

a static potential difference δU0. Ions are loaded into the trap by photoionizing a

background vapor of Cd atoms at an estimated pressure of 10−11 Torr (chapter 5).

The observed lifetime of an ion in the trap is typically several hours.

The axial secular oscillation frequency of an ion in the needle trap is given by

ωz =

√

eU0ǫ

mz2
0

+

(

eV0ǫ√
2mΩz2

0

)2

(7.15)

under the pseudopotential approximation (ωz ≪ Ω) (chapter 2), where e is the charge

and m the mass of the ion. The voltage efficiency factor η characterizes the reduction

in trap confinement compared to the analogous quadrupole rf trap with hyperbolic

electrodes of endcap spacing 2z0 and ring inner diameter 2
√

2z0 [35]. According to

electrostatic simulations of the needle electrodes and grounded sleeves (Fig. 7.8),

the voltage efficiency factor is ǫ = 0.17 to within 5% over the range of ion-electrode

distances z0 = 23 − 250µm used in the experiment. Without the grounded sleeves,

simulations predict that the voltage efficiency factor drops to ǫ ∼ 0.06, as the effective

ground electrode is several cm removed from the needle tips. This is consistent with

measurements of the trap frequency in an earlier (sleeveless) version of the trap.

The axial secular oscillation frequency of a trapped 111Cd+ ion is measured to be

ωz/2π = 2.77 MHz for U0 = 0 V, V0 ∼ 600 V at z0 = 136µm, consistent with

simulations.

In order to measure the decoherence of ion motion in the trap, a single 111Cd+

ion is first laser-cooled to near the ground state of motion through stimulated-Raman

sideband cooling, as described in chapter 6. Doppler pre-cooling prepares the ion

in a thermal state with an average number of quanta n̄ < 20. Up to 60 cycles of
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Figure 7.9: (a) A schematic of the ion trap used in this experiment. The

tungsten electrodes are mounted on movable translation stages, allowing

the distance between the electrodes 2z0 to be varied continuously from 0

to 1cm with a resolution of ∼1µm. The electrodes can also be adjusted

transversely with a resolution under ∼1µm. As depicted in the inset, the rf

voltage is directly applied to the needle electrode (part 1) while the sleeve

(part 2) is held at 0 volts. The space between the sleeve and the needle

is filled with alumina. The LN2 nitrogen used to cool the electrode is fed

through the hollow stainless steel tube and is in thermal contact with the

sleeve. A thermocouple used to monitor the temperature of the electrodes

is attached to the sleeve. (b) A schematic of the resonator with the trap

electrode circuit. V1 and V2 represent uncorrelated voltage noises (Johnson

noises) originating in the series resistance in each filter box attached to each

coil of the bifilar resonator. A shunt capacitor CS is attached between the

electrodes such that voltage noise from each coil can be applied symmetri-

cally on both electrodes so as to reduce the voltage noise at the ion due to

Johnson noise.
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pulsed sideband cooling reduce the average occupation to n̄ < 0.3. As described

previously, the value of n̄ is determined by measuring an asymmetric ratio in the

strength of the stimulated-Raman first-order blue and red sidebands, which is given

by n̄/(1 + n̄) for a thermal state of motion. We estimate that the systematic error in

measuring n̄ is no more than 10%, originating from effects such as ion fluorescence

baseline drifts, Raman laser intensity imbalances on the sidebands, and non-thermal

vibrational distributions. Motional decoherence is measured by inserting a delay time

(up to τ = 50 ms) after Raman cooling but before the sideband asymmetry probe.

The decoherence or heating rate ˙̄n of trapped ion motion is then extracted from the

slope of n̄(τ), as shown in Fig. 7.10. The linear growth of n̄ in time indicates that

the time scale for the ion to reach equilibrium with the heat reservoir is much longer

than the measurement time (e.g., for a reservoir at temperature 300K, it would take

tens of years for the ion to reach equilibrium).

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

Delay Time τ (ms)

n(
τ)

Figure 7.10: Average thermal occupation number n̄ measured after var-

ious amounts of delay time τ . The axial trap frequency is ωz/2π = 2.07

MHz with an ion-electrode spacing of z0 = 64µm. The linear growth in

time indicates a motional decoherence or heating rate of ˙̄n = 2380 ± 440

quanta/sec.
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Measurements of ion heating rates are presented in Fig. 7.11 at various trap

frequencies ωz for a fixed ion-electrode spacing of z0 = 103µm. In this data set,

the trap strength is varied by applying different static potentials U0 while the rf

potential amplitude is held constant at V0 ≈ 600 V, with an exception for the point

at ωz = 4.55 MHz, where V0 ≈ 700 V. The data indicates that the heating rate

decreases with trap frequency as ˙̄n ∼ ω−1.8±0.4
z , or equivalently that the electric field

noise spectrum scales as SE(ω) ∼ ω−0.8±0.4
z . Overall, these heating rates are similar

to the previous measurements in other Cd+ traps of similar size and strength (section

7.1), and anomalously higher than the level of heating expected from thermal electric

field noise.
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Figure 7.11: Measured axial heating rate ˙̄n as a function of axial motional

trap frequency ω. For this data, the ion-electrode spacing is fixed at z0 =

103µm and the trap strength is varied by changing only the static potential

U0 while fixing V0, except for the highest frequency point where V0 is 15%

higher. The line is a fit to a power law, yielding ˙̄n ∼ ω−1.8±0.4, implying that

the electric field noise spectral density varies roughly as SE(ω) ∼ ω−0.8±0.4

over this frequency range.
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The two needle electrodes are wired to independent but identical circuits (Fig.

7.9b), and the thermal (Johnson) noise from the resistive elements of the electrode

circuits can be easily estimated. A circuit model with discrete elements is justified

because the wavelength of the relevant time-varying fields is much larger than the

trap structure. The net voltage noise across the needle electrodes is

SV (ω) =
8kBTR(ω)

1 + R(ω)2C2ω2
+ 8kBT ′r(ω), (7.16)

where kB is Boltzmann’s constant. The first term describes noise originating from

a resistance R(ω) at temperature T attenuated by a capacitive low-pass filter, while

the second term describes noise driven directly by resistance r(ω) at temperature T ′

after the capacitive filter. The net voltage noise SV (ω) gives rise to an electric field

noise at the ion of SE(ω) = (η/2z0)
2SV (ω), where the geometrical efficiency factor

η ≈ 0.7 relates a given potential difference across the needle gap 2z0 to the resulting

electric field at the ion position (see Fig. 7.7).

Thermal noise at frequency ωz is driven by the series resistance of the needle

electrode tips, estimated to be ρ/(πr0tanθ) ≈ 0.1Ω, where ρ is the resistivity of the

electrode material at 300 K, r0 is the needle tip radius assumed to be much smaller

than the skin depth multiplied by tanθ, and θ is the half-cone angle of the conical

shank. We expect a similar level of thermal noise from the upstream rf choke of

resistance R(ωz) = RF ∼ 3Ω, attenuated by filter capacitance CF + CS = 0.2µF

as shown in Fig. 7.9b. The thermal noise at the rf sideband frequencies Ω ± ωz

is dominated by the large effective resistance of the resonator circuit R(Ω ± ωz) ≈
(Ω/2ωz)

2Rres [36], where Rres ∼ 0.1 Ω is the dc series resistance of the resonator.

But this near-resonant enhancement is offset by the (ωz/Ω)2 term in Eq. 7.8, and

because the resulting noise is strongly suppressed by the resonator shunt capacitor CS,

this source of thermal noise can be neglected compared to above. For “symmetric”

trap designs where the rf electrodes symmetrically surround the ion and are wired

together, the resulting common-mode thermal noise from the rf leads should vanish

due to symmetry [36, 68] In summary, we expect a thermal heating rate of ˙̄n ∼
(200/z0)

2(ωz/2π)−1 sec−1 at 300 K, where z0 is expressed in µm and ωz/2π in MHz.
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At a temperature of 150 K, we expect a heating rate a factor of ∼ 6 lower, including

a factor of 3 reduction in the resistivity of tungsten.

Fig. 7.12 shows several measurements of heating rates at various values of the

distance z0 between the ion and the needle electrodes. In these measurements, the

axial trap frequency is held to ωz/2π = 2.07 MHz by varying both the rf and static

potentials V0 and U0 as the needle spacing is changed. Previous measurements of

axial heating of trapped Cd+ ions in the linear trap (section 7.1) show no correlation

between the heating rate and the rf trapping voltage amplitude V0. These earlier

measurements were performed over similar ranges of rf voltages and trap frequencies

as used for the current experiment. We therefore assume that the origin of anomalous

heating measured for the needle trap is not directly influenced by the rf voltage

amplitude. As seen in the figure (solid points), the heating rate fits well to a power

law, scaling as ˙̄n ∼ z−3.47±0.16
0 . Again, the measured heating is much higher than

that predicted from thermal fields and is in rough agreement with previous heating

measurements [26, 18]. The observed anomalous heating is thought to originate from

fluctuating patch potentials on the electrode surfaces, and the scaling of this heating

with electrode proximity provides valuable information regarding the spatial size of

presumed patches. For patches that are much smaller than the electrode tip, the

electric field noise is expected to scale as z−4
0 . The electric field from a single patch

on a planar or concave conducting surface is expected to scale in the far field as z−3,

from the dipole field originating from the patch and its image [26]. However, for a

convex surface such as the needle electrodes in this work, the image does not balance

the original patch, and the electric field scales as z−2
0 , as if from a free charge. The

electric field noise power scales as the square of these expressions. For uniformly

distributed microscopic patches on the needle electrodes, the electric field noise is

expected to scale between z−2 and z−4, depending on the details of the geometry

and the patch density. On the other hand, correlated voltage noise across the entire

electrode structure (e.g., from thermal Johnson noise or applied voltage noise) is

expected to scale as z−2. The observed intermediate z−3.5 scaling indicates that

anomalous ion heating indeed originates from very small patch potentials.
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Figure 7.12: Axial heating rate ˙̄n as a function of distance z0 from trapped

ion to each needle electrode, for warm and cold electrodes. All of the

data corresponds to a trap frequency of ωz/2π = 2.07 MHz, as the rf

and static trapping potentials are increased as the trap is made larger.

The measurements fit well to a scaling of heating rate with trap dimension

of ˙̄n ∼ z−3.47±0.16
0 (dashed line). The lower set of measurements (hollow

points) are acquired with the needle electrodes cooled to approximately

150K through contact with a liquid nitrogen reservoir. These three points

were measured using one and the same trapped atomic ion. (The 42µm

cold measurement was performed at ωz/2π = 4.9 MHz and has been scaled

upward by a factor of ∼ 3 to the expected heating rate at ωz/2π = 2.07

MHz.) The shaded band at bottom, scaling as z−2
0 , is the expected range

of heating from thermal noise from the trap circuitry.
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We repeat the measurement of axial motional heating rate of a trapped ion at

various values of z0, but this time with the needle electrodes cooled via contact with

a liquid nitrogen reservoir. While the electrode mount is measured to be 80 ± 5 K

with a vacuum thermocouple, the needle tip is significantly hotter due to absorption

of blackbody radiation at 300 K and the limited heat conduction from the very narrow

needle electrode to the mount. We measure the shank of the needle to be 120 K, and

we estimate that the needle tips are cooled to a temperature of 150 ± 20 K. The

measured heating rates for cold trap electrodes is plotted in the lower set of data

in Fig. 7.12. The three measurements were performed on one and the same atomic

cadmium ion, over a 6-hour period. The measured heating rate with cold electrodes

is still higher than the expected thermal noise by about two orders of magnitude, as

shown in the figure. However, the nonlinear dependence of observed ion heating with

electrode temperature is clear. The ion heating rate is reduced by a factor of ten or

more for a decrease in electrode temperature by only a factor of two, suggesting that

the anomalous heating observed in ion traps may be thermally driven and activated at

a threshold temperature, and that further cooling to 77 K or lower may even quench

this anomalous heating completely.

In summary, we present a series of controlled measurements of trapped ion mo-

tional decoherence, varying both the proximity of the ion to the electrodes and the

temperature of the electrodes. These measurements are performed in a novel mov-

able ion trap structure that confines laser-cooled ions closer to the electrodes than

any previous ion trap. The measurements of heating in this system provide some in-

formation regarding the spatial size of presumed fluctuating surface patch potentials

in ion traps, while also showing that the heating is strongly suppressed through mod-

est cooling of the electrodes. While the mechanism of heating remains unclear, by

comparing the heating data obtained from the needle trap side by side with historical

data from other ion systems as shown in Fig. 7.13 and Fig. 7.14, we can see that,

although very noisy, it seems consistent with a scaling near 1/d4. This investigation

into a poorly understood source of motional decoherence in trapped ions is of great

interest to ion trap quantum information processing and may also have relevance to
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condensed matter systems that are sensitive to fluctuating electrical potentials.

Figure 7.13: A combination of all the heating data ˙̄n from the needle trap

and from other ion trap research groups worldwide. The heating measure-

ments are shown for trap frequencies from 0.6-6.0 MHz. The dashed line is

a guide to the eye for 1/d4 scaling.
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Figure 7.14: A combination of all the spectral density of electric field noise

SE(ωx) data from the needle trap and from other ion trap research groups

worldwide. Since SE(ωx) does not depend on any particular trapped-ion

species, it provides a useful metric for comparison. The heating measure-

ments are shown for trap frequencies from 0.6-6.0 MHz. The dashed line is

a guide to the eye for 1/d4 scaling.
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