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Abstract

Trapped ion systems are promising candidates for scalable quantum computation
[1],[2],[3]. Many scalable quantum computing architectures have been proposed, but the
one presented here involves using two-dimensional ion trap arrays.

This thesis is concerned with the design, simulation, construction, and operation
of a two-dimensional ion trap array. In the trap array, ions can be shuttled linearly,
around a corner of a T-junction, through a junction as well as separated and combined
in the same trapping zone. This proof of principle experiment shows that it is possible to
shuttle ions throughout a two-dimensional array of ion traps in the spirit of the quantum
computing scheme proposed by Kielpinski, Monroe, and Wineland [2]. In this particular
scheme, ions can be shuttled into interaction zones where ions may be entangled, and
storage zones where ions may be sent to store quantum information.

The electric pseudo potential is simulated by constructing basis functions for the
trap electrodes. The basis function for each electrode is calculated by simulating the
electric pseudo potential with one volt applied to the electrode with the rest of the
electrodes grounded. By using symmetry, the number of calculations is greatly reduced.

A discussion concerning adiabatic shuttling is given. Trapped ions are bound
in a harmonic oscillator potential and cooled using standard laser cooling techniques.
Conditions are given as to how fast the strength of the harmonic well can be changed
and how the ion can be accelerated in the potential well while still preserving the number
state of the ion during shuttling. The derivation is general and applies to the transport
of any cold atoms in a harmonic well.

The inner workings of the T-junction ion trap along with its associated electronic
and vacuum components are given. The four shuttling protocols necessary for two di-
mensional control of trapped ions are presented along with the necessary voltage controls
needed to shuttle ions around linearly, to shuttle ions around corners, to separate, and
to combine ions in the same trapping zone. A composite protocol which combines the
four necessary shuttling protocols is implemented to swap the positions of two trapped
ions.

Lastly, a general discussion is given concerning the design challenges and require-
ments of future experiments to build large, many-zone ion trap arrays for scalable quan-
tum computation in light of what has been learned about trying to have two dimensional
control of trapped ions in an 11-zone ion trap array.
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Chapter 1

Introduction

1.1 Trapped Ion Systems as Quantum Computers

A quantum computer is unlike a classical computer in that the information that

is stored in a quantum computer may be in a superposition of logical states α|0〉 and

β|1〉, whereas a classical computer has states 0 or 1. There are only a few known

instances where a quantum computer could have a significant speed advantage over a

classical computer; two of the most well-known processes where a quantum computer

can offer a significant speed up over a classical computer are Shor’s factoring algorithm,

and Grover’s algorithm which is a search of an unsorted database. For example, Shor

proved that a quantum computer can factorize a number in polynomial time as the

number becomes larger whereas a classical computer’s run time scales exponentially

with the size of the number [4]. Before Shor and Grover discovered their algorithms,

Feynman pointed out that there is an essential difficulty in simulating quantum systems

on classical computers because even for a two level system of 500 particles, the Hilbert

space has 2500 states. However, he pointed out that it might be possible to overcome

these difficulties if one built a quantum computer to simulate quantum systems. If

superposition states of all 500 particles can be experimentally achieved, then single

operations can act on all 2500 states at the same time. After Deutsch’s discovery that

any physical process can be simulated on a quantum computer[5], a large area of research

in quantum information theory became to try to figure out what kinds of problems are
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better suited for quantum computers and what kinds of problems are more suited for

classical computers [6].

At first glance, a quantum computer seems to hold a great deal of information.

Consider a two level quantum system with N particles. Each particle has two states: say

spin up (|1〉) and spin down (|0〉). The total Hilbert space then has 2N amplitudes whose

states are of the form |100 . . .〉 + |010 . . .〉 + |001 . . .〉 + . . . However, the measurement

of the spin of such states is random! Carefully designed algorithms are needed to get a

result out of a quantum computer whose result is meaningful for the problem at hand.

Because a quantum computer can essentially be thought of as an analog computer, they

are highly suseptible to noise. However, the advent of quantum error correction and

fault tolerant computation makes errors possible to deal with[6].

There are many proposed schemes for building a quantum computer using a

variety of physical systems. The first quantum computing scheme with trapped atomic

ions was proposed by Cirac and Zoller in 1995 [1] which involves using a linear chain of

trapped ions in the same trap. Another scheme was proposed by Kielpinski, Monroe,

and Wineland [2] and involves the use of trapped ions in an array of ion traps where the

arrays of ion traps can be arranged in channels so that ions can be shuttled throughout

the entire trap array (see Fig. 1.1). Different regions of the entire trap array could serve

different purposes. For example, certain regions of the trap array could serve as memory

regions where ions are sufficiently decoupled from the environment so that quantum

information can be stored in the different internal or external degrees of freedom of the

ions. There could be other regions in the trap array that could serve as interaction zones

where ions can be sent to be entangled or have some other logical operation performed

on their states.

In trapped ion systems, the |0〉 and |1〉 states are typically chosen to be the

electronic hyperfine states of a singly ionized hydrogen-like atom with a spin 1/2 nucleus.

The general spirit of quantum computation using trapped ions thus far is to modify the
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Figure 1.1: Proposed quantum computing scheme with many ions in an array stucture
of ion traps[2]. Ions can be shuttled from interaction zones (shown in the center of
the figure) where ions may be entangled and other logical gates can be performed to
memory zones (depicted in the exploded view in the upper right) where ions can be sent
to store quantum information.

hyperfine state of the atom based on the states of other nearby atoms. For example,

in a spin 1/2 system, the spin of ion A may be conditionally flipped based on the spin

state of its neighbor or neighbors.

1.1.1 DiVincenzo Scalability Requirements

There is much debate as to what should go into building what is deemed a scalable

quantum computer. Scalable means that more ions can be added to the system in a

straightforward way without exponentially increasing the amount of overhead needed

to operate the system. An example of a system that is not scalable is the confinement

of hundreds of ions in a single ion trap because it becomes extremely difficult to resolve

and cool the vibrational states of the ions. There is a set of generally agreed upon

scalablility requirements for a quantum computer put forth by David DiVincenzo[7].

(1) A scalable physical system with well characterized qubits

(2) Initialization of the qubits to a well-known state
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(3) A universal set of quantum logic states

(4) Read-out of the qubits

(5) Long coherence times compared to the typical duration of a gate

Many of the items have been demonstrated on this list in various trapped ion

systems to some extent. For example, the initialization of qubits to a well known state

in trapped ion systems involves optically pumping trapped cadmium ions to hyperfine

states and has been widely demonstrated [8]. Many quantum logic gates have been

experimentally demonstrated [9],[10], [11], [8], [12] and efficient readout of cadmium

qubit states has demonstrated to various levels [13]. Long coherence times have been

observed that are much longer than the typical duration of a gate; a 15 second spin

coherence time has even been observed [14].

The primary work for this thesis is based on development of the first item in

DiVencenzo’s list and has received lots of attention as of late [15],[16],[17],[18]. The

idea of how to physically connect up a quantum system is a very interesting question.

There are many proposals about how to do this, but they generally involve two basic

principles in trapped ion systems: the ability to interconvert between flying qubits

and stationary qubits, and the ability to faithfully transfer flying qubits from location

to location. The jargon “flying qubit” typically refers to photons, and entanglement

between photons and ions has been demonstrated by Blinov et al [17]. However, flying

qubits need not be photons; shuttling ions can be considered a means spatially moving

quantum information despite the slower “flying” speed. Shuttling ions may be a better

way to faithfully transmit quantum information as opposed to single photons in certain

instances.
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Figure 1.2: An idealized Paul trap. The center ring is a distance r0 from the center
of the trap and carries RF voltage with angular frequency Ω. The endcap electrodes
confine the ion in the z-direction are located a distance z0 away from the center of the
trap as shown in the figure and have a voltage difference of U0 + V0cos(Ωt) between the
ring and endcaps. Note that in an ideal Paul trap, the endcaps are hyperbolic.

1.2 Ion Dynamics in an Ion Trap

It is impossible to confine charged particles in free space using static electric fields

because the divergence of the electric field in free space is zero. It is possible to confine

a charged particle in all three spatial directions using time-varying electric fields [19].

A classic ion trap geometry consists of hyperbolic trap electrode endcaps where static

voltages are applied to confine ions in the z-direction, and a ring that carries RF which

provides confinement in the xy plane. An ideal Paul trap can be seen in Fig. 1.2. The

potential in the ion trap is:

V (~r, t) = U0 + V0cos(Ωt)
r2 − 2z2

d2
0

(1.1)

where r is the radial coordinate, z is the height above or below the center of the ring

electrode, Ω/2π is the RF frequency, d0 is a characteristic ion trap parameter d0 =

(r2
0 + 2z2

0)
1/2. The equations of motion for a particle with mass m and charge e in the
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Figure 1.3: Mathieu stability paramters for idealized Paul trap with hyperbolic elec-
trodes. The bounded region in the center of the plot shows the parameters with bounded
solutions to the Mathieu equations (Eq. 1.5)

r and z directions are:

∂2r

∂t2
+

2e

md2
0

(U0 + V0cos(Ωt))r = 0 (1.2)

∂2z

∂t2
− 4e

md2
0

(U0 + V0cos(Ωt))z = 0 (1.3)

A change of variables (Ωt/2 = ζ), these equations can be changed into Mathieu equations

with the following characteristic a-q parameters [19]:

ar = −az

2
=

8eU0

md2
0Ω2

; qr = −qz

2
=

4eV0

mr2
0Ω2

; ζ =
Ωt

2
(1.4)

Substitution of the parameters in Eq. 1.4 and the change of variables into Eq. 1.2, the

ion’s motion is now represented by two Mathieu equations.

∂2r

∂ζ2
+ (ar − 2qrcos(2ζ))r = 0 (1.5)

∂2r

∂ζ2
+ (az − 2qzcos(2ζ))z = 0 (1.6)

These differential equations are well studied and numerical solutions are known

[20]. The motion of an ion is bounded or unbounded based on the parameters a and q.

It is possible to plot regions in the a-q plane that result in bounded motion.

It is possible to break up the motion of the ion in to a time-averaged, slow, secular

motion and a fast oscillation. In the radial direction, the ion’s motion may be thought
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Figure 1.4: Numerical integration of Mathieu equations of motion in an ideal Paul trap.
The equations of motion of an ion of mass m and charge e are in Eq. 1.5. Numerical
integration of these equations shows a large secular motion of a harmonic oscillator that
is modulated by the RF drive frequency Ω. The values for a and q in this plot are 0
and 0.175 respectively.

of as a sum of secular motion r′ and micrmotion rµ so that r = r′ + rµ. After setting

U0 = 0 for convenience, Eq. 1.2 in the r-direction breaks up into secular motion and

micromotion.

∂2r′

∂t2
+

∂2rµ

∂t2
=

4e

md2
0

V0cos(Ωt)(r′ + rµ) (1.7)

The secular motion is typically much larger than the micromotion, so it is a good

approximation that r′ � rµ. The micromotion is typically at a higher frequency (the

RF drive frequency), so r̈µ � r̈′. With these two approximations, Eq. 1.7 becomes

∂2rµ

∂t2
=

4e

md2
0

V0cos(Ωt)r′ (1.8)

Integration twice yields:

rµ = − 4e

md2
0Ω2

V0cos(Ωt)r′ (1.9)

The sum of the secular and micromtion is then:

r = r′ − 4e

md2
0Ω2

V0cos(Ωt)r′ (1.10)

Eq. 1.10 can be put back in to Eq. 1.2 to yield:

∂2r

∂t2
=

4e

md2
0

V0cos(Ωt)r′ − 8e2

md4
0Ω2

V 2
0 cos2(Ωt)r′ (1.11)
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To extract the secular motion behavior of the ion, the above equation can be averaged

over one RF period because the RF period is much shorter than the period of secular

motion.

〈r̈〉 =
Ω
2π

∫ 2π
Ω

0

∂2r

∂t2
dt =

Ω
2π

∫ 2π
Ω

0

( 4e

md2
0

V0cos(Ωt)r − 8e2

m2d4
0Ω2

V 2
0 cos2(Ωt)r

)
dt

= − 4e2V 2
0

m2d4
0Ω2

r (1.12)

In Eq. 1.12, the micromotion term averages to zero because the cosine term averages

to zero. The resulting averaging yields the equation of motion for a simple harmonic

oscillator. To make this more explicit:

〈r̈〉 = − 4e2V 2
0

m2d4
0Ω2

〈r〉 (1.13)

This is the equation of motion for a simple harmonic oscillator with secular frequency

ω :

ωr =
2eV0

md2
0Ω

(1.14)

An approximation for this equation of motion is a product of the secular frequency and

a term which represents the micromotion of the ion. Similar analysis of the equation of

motion in the z-direction yields a harmonic potential with secular frequency ωz =
√

2ωr.

A plot of this motion can be seen in Fig. 1.5 and shows the same qualitative behavior

as the numerical integration of Eq. 1.2; the ion oscillates back and forth with a slow

secular frequency that is modulated by micromotion at the RF drive frequency.

r(t) ≈ cos(ωt)
(
1− 4e

md2
0Ω2

(U0 + V0cos(Ωt))
)

(1.15)

1.3 A Model Ion Trap: Rotating Saddle Surface

A pedogogical example of an ion trap potential is a rotating hyperbolic paraboloid

(a saddle surface) on which a ball can be trapped. A symmetric saddle surface can in

general be descibed by f(x, y) = η(x2 − y2) where η is a geometrical parameter that
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Figure 1.5: Plot of ion motion in Eq. 1.15 vs. time in seconds. The ion’s motion is
that of s simple harmonic oscillator that is modulated by the RF drive frequency. The
amplitude of oscillation is normalized.

specifies the curvature of the saddle and has units of inverse length. As pointed out by

Thompson et al [21], the analogy between a rotating saddle surface and the effective

ponderomotive potential of an ion trap is not exact. The ponderomotive potential in an

ion trap is that of a saddle in two dimensions, but the time evolution of the potential is

one that flaps up and down. The mechanical rotating saddle does not have a flapping

potential; the potential rotates (see Fig. 1.6). The mechanical analogue also differs

from an actual ion trap in other ways. The rotating saddle and ball system has the

effects of friction and rolling because the ball is in contact with a hard surface. Despite

the seemingly large differences between the two systems, a ball on a rotating saddle

surface is analogous to an ion trap and was referred to by W. Paul in his Nobel lecture

concerning his work in ion trapping [22]. As will be shown, simulations of Lagrange’s

equations of motion show that a ball will become trapped in rotating saddle potential

and will undergo motion that is qualitatively similar to a trapped ion.

The potential of the system is [21]:

V (x, y, t) = mgη
(
(x2 − y2)cos(2Ωt) + 2xysin(2Ωt)

)
(1.16)

In Eq. 1.16, m is the mass of the ball in the well, g is the gravitational acceleration, Ω

is the angular drive frequency of the spinning saddle, and η is a geometrical constant

with units length that specifies the curvature of the saddle surface. The Lagrangian of
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Figure 1.6: The flapping potential is that of a real ion trap system while the rotating
potential is from the mechanical analogue of an ion trap. The above figure shows the
time evolution of the potential of a real ion trap. The potential does not rotate in
time but instead flaps up and down and is flat half way through the RF period. A real
rotating trap also differs in that there is a damping force due to friction as well as the
effect of a mass rolling around on the surface.

the system is:

L =
1
2
(ẋ2 + ẏ2)− gη

(
(x2 − y2)cos(2Ωt) + 2xysin(2Ωt)

)
(1.17)

There is no ż term because the ball is being a priori constrained to the surface of

the rotating saddle so the z-direction is not an independent coordinate. This is assumed

to be true because for slow enough rotations; the ball does not leave the surface of

the rotating saddle. The specified Lagrangian also assumes that the ball in the saddle

surface only slides and does not roll. Lagrange’s equations of motion for a sliding, non-

rolling particle that is constrained to move on the surface of a spinning saddle potential

are:

ẍ = −2gη
(
xcos(2Ωt) + ysin(2Ωt)

)
(1.18)

ÿ = −2gη
(
xsin(2Ωt)− ycos(2Ωt)

)
(1.19)

z = η(x2 − y2) (1.20)

As is pointed out in the literature, it is possible to analytically solve these coupled

differential equations [21], but the utility of the analytical solutions of Eq. 1.18-1.20 is

somewhat diminished due to the fact that friction and rolling are neglected. However,
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the analytical solution of Lagrange’s equations of motion yields a condition for whether

or not the motion of the ball is bounded in the trap neglecting friction and rolling.

Making the coordinate transformation ζ = Ωt:

∂2x

∂ζ2
= −2q

(
xcos(2ζ) + ysin(2ζ)

)
(1.21)

∂2y

∂ζ2
= −2q

(
xsin(2ζ)− ycos(2ζ)

)
(1.22)

In Eq. 1.21-1.22, q = gη/Ω2. As pointed out in [21], it is possible to solve these two

coupled differential equations by defining z = x + iy and adding Eq. 1.21 and i times

1.22 to yield:

∂z

∂ζ
+ 2qz∗e2iζ = 0 (1.23)

The solution to this differential equation is of the form:

z(ζ) = f(ζ)eiζ (1.24)

This equation for z (or z∗) can be substituted back into Eq. 1.23 to yield two differential

equations that are second order in either f(ζ) or f∗(ζ). The f∗ can be eliminated by

subsitution to yield:

∂4f(ζ)
∂ζ4

+ 2
∂2f(ζ)

∂ζ2
+ (1− 4q2)f(ζ) = 0 (1.25)

The solution to Eq. 1.25 can be expressed as a linear combination of four exponentials

whose coefficients depend upon the intial conditions of the system:

f(ζ) = Aeβ+ζ + Be−β+ζ + Ceβ−ζ + De−β−ζ (1.26)

β± =
√
±2q − 1 (1.27)

Clearly the only way to prevent a solution that is unbounded is if all of the exponentials

are complex. This leads to the requirement that:

2q =
2gη

Ω2
≤ 1 (1.28)
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As pointed out by Thompson [21], the analogy of a ball in a spinning saddle to an

ion trap may become clear. If Eq. 1.28 is true, then the ball is trapped since the motion

is bounded. To see the connection between a ball confined to a spinning saddle surface

and an ion trap, assume that the motion of a sliding, non-rolling ball on the spinning

saddle surface well can be broken up into two terms z = Z + δ where Z describes the

secular motion of the ball while δ describes a superimposed micromotion of the ball.

Plugging this in to Eq. 1.23:

∂2Z

∂ζ2
+

∂2δ

∂ζ2
+ 2q(Z∗ + δ∗)e2iζ = 0 (1.29)

Since the frequency of oscillation of the micromotion δ is high compared to Z, its second

derivative with respect to ζ is generally much greater than that of the secular motion.

The secular motion Z is generally much larger than the micromotion δ. Both of these

facts mean that δ∗ and ∂2Z/∂ζ2 are insignificant in Eq. 1.29.

∂2δ

∂ζ2
= −2qZ∗e2iζ (1.30)

Integration of the above equation yields:

δ =
1
2
qZ∗e2iζ (1.31)

The complex conjugate of the above equation for δ may be taken and plugged into Eq.

1.29 to yield:
∂2Z

∂ζ2
+

∂2δ

∂ζ2
+ 2qZ∗e2iζ + q2Z = 0 (1.32)

Since the micromotion of the system is fast compared to the secular motion, an average

value of Z may be taken. The fast micromotion term ∂2δ/∂ζ2 averages to zero while

the 2qZ∗e2iζ term also averages to zero because Z∗ hardly varies while the exponential

averages to zero. The only significant terms remaining are:

∂2Z

∂ζ2
+ q2〈Z〉 = 0 (1.33)

〈Z̈〉+ q2Ω2〈Z〉 = 0 (1.34)
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Figure 1.7: Simulation of the motion of a sliding, non-rotating ball on a rotating saddle
surface with curvature η =0.962 m−1 that is rotating at 2.7 Hz to give a trapping
parameter of q = 0.033. The ball is initially at rest and is displaced from equilibrium
by 10 cm. Numerical integration of Eq. 1.18 shows a characteristic secular frequency
that is modulated by micromotion whose effect becomes noticeable when the ball is at
the extrema of its motion.

The solution to Eq. 1.34 is harmonic motion with a frequency qΩ/2π Hz. According

to Thompson et al [21], this approximation begins to break down when the trapping

parameter q is greater than about 0.15. The behavior of a sliding, non-olling ball in

a rotating saddle surface displays some of the properties of an ion trap. The pseudo-

potential approximation of the rotating saddle surface leads to an effective harmonic

bowl as can be seen in Eq. 1.34. The simulated motion of the ball displays similar

dynamics to that of a trapped ion in a flopping potential as can be seen in Fig. 1.7.

Note that the time evolution of an ion in an ion trap and a ball confined to slide

without rolling on a rotating saddle surface displays a large secular motion and a fast

micromotion. It is even possible to feel the ponderomotive potential of the rotating

saddle surface by placing a finger on the center of the saddle surface as it rotates and

moving the finger radially outward.

A model rotating saddle was built that has trapping times of order minutes and

a record trapping time of five and a half minutes. The hyperbolic paraboloid surface

was machined out of high density polyethylene to η = 0.962m−1 to give a trapping

parameter of q = 9.44/Ω2. The trap is powered by a record player motor that rotates
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Figure 1.8: Top and side view of rotating saddle surface trap. The trap rotates at
frequency Ω/2π = 2.7 Hz and has a geometrical factor η = 0.962 m−1 to give a trapping
parameter of q = 0.033.

the trap at ∼ 2.7 Hz so that q = 0.033, well in the limit that 2gη/Ω2 ≤ 1 to give

bounded motion if the trapped ball were only sliding and not rolling and well within

the pseudopotential approximation of q ≤ 0.15.

Unlike the trap reported in [21] that had trapping lifetimes of order 10 seconds,

the rotating saddle with q = 0.033 had trapping lifetimes as long as 5.5 minutes. Other

than the different geometrical parameter η, the rotation frequency of the trap was almost

a factor of 2 higher than the Calgary trap.

As reported by Thompson et al [21], the trapping lifetime strongly depends on

the angle of tilt of the saddle. For small tilt angles, it was possible to find a “sweet spot”

where the ball could be trapped for several minutes. These long trapping times were

achieved by first allowing the ball to spin up so that the tangential velocity associated

with the rotation of the ball matched the tangential velocity of the rotating saddle.

The trapping lifetime also strongly depends on the ball used in the trap. Several

different size steel ball bearings and a bowling ball were used to test trapping lifetimes.

The larger balls were trapped much longer than smaller balls by orders of magnitude.

For example, a steel ball bearing with a 1/8 inch diameter stays in the trap for about

1 second, a half inch diameter ball bearing can stay trapped for up to a minute. A one

inch diameter steel ball bearing had up to a 5.5 minute lifetime.



Chapter 2

Electric Potentials and Ion Motion in Ion Trap Arrays

2.1 Simulation of the Electric Pseudo Potential in Ion Trap Arrays

via Basis Functions

In order to have control over hundreds or thousands of trapped ions, it is necessary

to be able to simulate the electric potential in an array of ion traps. Many quantum

computing schemes involve shuttling ions between interaction zones and entanglement

zones, so it becomes necessary to simulate the potential due to the time varying voltages

of the control electrodes that are used to shuttle ions. For large ion trap arrays, the cost

of calculating the electric field due to many trap electrodes and at each point in time

during a shuttling operation is prohibitive. An alternative approach to simulating the

electric potential in large ion trap arrays is to develop a set of “basis functions” for the

electric potential, and scale them by appropriate multiplicative factors that represent

the time-varying voltages of the control electrodes. The total electric potential in a

many-array ion trap is then the sum of the scaled basis functions. The reason that this

approach saves simulation time is that only the basis functions need to be accurately

simulated because once the basis functions for the electric potential is known, it is

simple to calculate the electric potential for any arbitrary voltage configuration of the

electrodes. The only draw back to this approach is that the basis functions are for a

fixed geometry; if a different trap geometry is to be explored (this includes electrode

sizing and spacing), the basis functions must be re-calculated.
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As can be seen in the subsequent section, the basis functions are constructed by

grounding every trap electrode and applying a unit voltage to a single control electrode.

This proces is repeated for every individual electrode in the ion trap array, although

the total number of basis function simulations that need be calculated can be reduced

if the ion trap has some planes of symmetry.

2.1.1 Justification for the Basis Function Technique

It is possible to simulate the potential in any complex, multi-zone ion trap by

developing electric potential basis functions. The electric potential for any arbitrary

voltage configuration of the trap electrodes can then be built up as a linear combination

of the basis functions. The electric potential of any arbitrary charge configuration with

Dirichlet boundary conditions at a particular moment in time can be written as[23]:

Φ(~x) =
1

4πε0

∫
V

ρ(~x ′)G(~x, ~x ′)d 3x ′ − 1
4π

∮
S

Φ(~x ′)
∂G(~x, ~x ′)

∂n′
da′ (2.1)

In Eq. 2.1, the first integral is an integral over the volume interior to the boundary

with the appropriate symmetric Green function G(~x, ~x ′). Inside of an ion trap, there is

no free charge so ρ(~x ′) = 0 making the first term of Eq. 2.1 zero. The second integral is

an integral over the surface of the boundary only, i.e. the trap electrodes. Φ(~x ′) is the

potential on the surface of each electrode multiplied by the outward normal derivative

of the Green function with respect to the surface n′, the normal direction to the trap

electrodes. It is possible to write the potential that is specified on every trap electrode

as a sum of potentials on each individual electrode.

Φ(~x ′) =
∑

i

Φi(~x ′) (2.2)

This changes Eq. 2.1 to
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Φ(~x) = − 1
4π

∑
i

∮
Si

Φi(~x ′)
∂Gi(~x, ~x ′)

∂n′i
da′ (2.3)

= − 1
4π

∮
S1

Φ1(~x ′)
∂G1(~x, ~x ′)

∂n′1
da′ − 1

4π

∮
S2

Φ2(~x ′)
∂G2(~x, ~x ′)

∂n′2
da′

− 1
4π

∮
S3

Φ3(~x ′)
∂G3(~x, ~x ′)

∂n′3
da′ − ... (2.4)

As can be seen in Eq. 2.3, the total electric potential Φ(~x) is a sum of the

potentials produced by each electrode surface individually. Secondly, the form of Eq.

2.3 is such that if every electrode potential is set to 1 volt times a constant ai, the

potential becomes

Φ(~x) = −
∑

i

ai

4π

(∮
S

I(~x ′)
∂G(~x, ~x ′)

∂n′
da′

)
i

(2.5)

where Ii(~x ′) is the boundary of the i-th electrode with magnitude 1 volt. Eq. 2.5 can

be interpreted as a linear combination of basis vectors (the quantity in parantheses of

Eq. 2.5) multiplied by coefficients −ai/4π. The ai can be adjusted to any arbitrary

voltage and the electric potential can then be computed by multiplying the ai by the

basis vectors defined in Eq. 2.5. When shuttling ions, the ai will become ai(t), so the

electric potential can be calculated as a function of time simply by summing the basis

functions by a scaled coefficient that represents the voltage on the i-th electrode as a

function of time. Each individual basis function can be calculated by applying 1 volt to

a single electrode and grounding all other electrodes.

During a shuttling operation, it is possbile to separate the potential into a product

of time-dependent and space-dependent functions because the wavelength of the electro-

magnetic disturbances produced by the transient (∼ 106Hz) and rf fields (∼ 107Hz) is

on the order of tens or hundreds of meters, while the trap dimensions are typically of or-

der millimeters. Thus, the change of the potential in the trap region is uniform through-

out, and essentially simultaneous with the change in voltage on the electrode.
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2.1.2 Building up Basis Functions in Symmetric Ion Trap Arrays

Having a certain amount of symmetry in ion trap arrays is very helpful in reducing

the total number of basis functions that are necessary to calculate. Two important

symmetry operations to consider are rotational symmetry and mirror plane symmetry.

Consider a three-layer T-junction ion trap array which has a C2 principle rotation axis

as well as one non-trivial mirror plane that passes directly through the central RF layer.

This dramatically reduces the number of simulations needed to construct the basis for

the electric pseudo-potential of the entire trap array. In this particular geometry, by

simulating the potential of one electrode with one volt applied to it with all other

electrodes grounded, one immediately knows the effect of simulating the voltage of the

electrode of the electrode on the opposite side of the C2 axis as well as effect of applying

voltage to the electrode on the opposite side of the RF layer because of the mirror plane.

The effect of applying voltage to the electrode that is both opposite the C2 axis and

on the opposite side of the RF layer is known by symmetry as well via the successive

application of a reflection and C2 rotation. In other words, for every one electrode basis

function that is simulated, four basis functions are extracted. The exception to this is

the RF layer because it lies on the reflection plane and the RF layer is monolithic in

the T-trap. In a three layer, single X-junction ion trap, it is possible to extract 16 basis

functions for every one basis function simulation of an electrode that is not on the corner

of the junction and 8 basis functions for an electrode that is on the corner. The reason

that a different number of basis functions may be extracted in the X-junction geometry

is because some of the electrodes in the X-junction geometry lie along the mirror planes.

The larger number of extracted basis functions is due to the higher degree of symmetry

in a three-layer, X-junction ion trap than in a three-layer T-junction ion trap. More

precisely, the three layer-layer X-junction has less geometrically distinct electrodes than

a three-layer T-junction trap array.
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Geometrically distinct electrodes are any two electrodes that cannot be brought

onto each other via any number of symmetry operations associated with the symmetries

of the ion trap array. For example, in the three-layer T-junction ion trap example, if an

electrode cannot be brought to the location of another electrode by any combination of

C2 rotations about the principle axis or reflections about the mirror plane through the

RF layer, the two electrodes are geometrically distinct and require separate simulations

to construct their basis functions. As ion trap arrays grow larger, more basis function

calculations are necessary to simulate the electric pseudo-potential but the construc-

tion of trap arrays with high degrees of symmetry greatly reduces the number of basis

function calculations that need be carried out.

Note that this reduction in the number of simulations required to fully construct

the electric pseudo-potential basis applies to the symmetry of the entire array of ion

traps. In other words, connecting two, three-layer X-junction ion traps and simulating

the potential with one non-grounded electrode yields either 16, 8, or 4 basis functions

basis functions depending on which electrode is simulated. If many X-junction ion

traps are to be connected to form a large square array of ion traps, it may seem like

symmetry does not help that much if there are thousands of geometrically distinct

electrodes. However, if the trap array grows sufficiently large, the electrodes near the

center of the array are approximately geometrically indistinct because the trap looks

approximately isotropic to the electrodes that are near the center of the array. A single

basis function simulation may yield an accurate enough approximation of the electric

pseudopotential basis of many trap electrodes.

2.2 Simulation of Ion Shuttling in Ion Trap Arrays

Using the calculated basis functions, it is possible to build up arbitrary time

dependent potentials in ion trap arrays. Since the gradient of the pseudo-potential is

proportional to the force on the ion, it is straightforward to write down the classical
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equations of motion for the ion.

3∑
i=1

ẍi +
q

m
∇iΦ(x, t) = 0 (2.6)

The classical equations of motion in Eq. 2.6 do not consider micromotion because

Φ(x, t) is the pseudo-potential. It is not necessary to simulate ion shuttling quantum

mechanically because the action of motion of the ion during typical shuttling operations

is much larger than ~ ([25],[16]).

There are many possible numerical methods that could be used to simulate Eq.

2.6, but the method that was primarily used to simulate the classical motion of the

ion to successfully shuttle an ion around the corner of a T-junction ion trap array was

the Bulirsch-Stoer method. This numerical method yields high-accuracy solutions very

efficiently, although it does not yield low-accuracy solutions very efficiently and thus

would be a poor choice for doing rough simulations[26]. This numerical method does

not work very well for rough or discontinous potentials either. A full explanation of

the Burlish Stoer method and other numerical methods and how they apply to sim-

ulating shuttling ions throughout an array of ion traps is presented by M. Yeo in his

undergraduate honors thesis[27].

2.3 Adiabatic Shuttling

The ability to shuttle ions adiabatically may turn out to be very important in a

quantum computer. Many proposed algorithms thus far involve coupling the internal

and external degrees of freedom of the ion; the Molmer-Sorenson gate couples the spin

of the ion to its motion. Adiabatically shuttling ions ensures that the ions remain in the

same motional state throughout the shuttling process which may be vital to preserving

quantum information.
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2.3.1 Theory of Adiabatic Shuttling

There are many definitions of what it means for a process to be “adiabatic,” but

for the purposes of ion trap quantum computing, we will focus on the interpretation

that during a linear shuttling process, not enough energy is added to the system to allow

for transitions to other quantum states. If a system starts out in the state Ψn and there

are various excited states Ψm, of particular interest are the following two conditions:

|〈Ψ(t)|Ψf
n〉|2 ≈ 1

|〈Ψ(t)|Ψf
m〉|2 ≈ 0 (2.7)

These conditions say that when an ion starts out in some ground state, the quan-

tum state of the ion does not change after the ion is shuttled in some amount of time T.

Classically, one can think of this as having a marble oscillating in a bowl. If the bowl is

carried around slowly enough, marble will not acquire much energy and its amplitude

of oscillation will not increase. This is not the only demand that will be made on the

system though. Since the calculation of |〈Ψ(T )|Ψf
m〉|2 ≈ 0, and since this calculation

will be carried out to first order, we will demand that there is a first order cancellation

of the transition probablility from state |Ψ(T )〉 to the state |Ψf
n〉.

The potential of a harmonic oscillator with a translating minimum point in time

and whose curvature is modulated in time is given by:

V (x, t) =
1
2
mω2(t)[x− x0(t)]2 (2.8)

It is convienent to transform in to the frame of the moving harmonic oscillator and define

a new coordinate s = x − x0(t). Doing this introduces a virtual force which modifies

the potential in Eq. 2.8 because x0(t) may have non-zero second time derivatives; the

potential could be accelerating. Following the treatment of the adiabatic approximation

in Griffiths[28], it is convienent to write the potential as a product of spatially dependent
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terms and time-dependent terms in the moving frame:

V ′(x, t) =
1
2
mω2(t)s2 + mẍ0(t)s (2.9)

=
1
2
mω2

0[1 + f(t)]s2 + mẍ0(t)s (2.10)

In Eq. 2.9, the function f(t) modulates the potential so that the initial secular

frequency ω0 changes in time (f(0) = 0). The Hamiltonian of the system in the moving

frame is then:

H =
p2

2m
+

1
2
mω2

0s
2︸ ︷︷ ︸

H0

+
1
2
mω2

0f(t)s2 + mẍ0(t)s︸ ︷︷ ︸
H′

(2.11)

Eq. 2.11 is a sum of the unperturbed harmonic oscillator Hamiltonian H0 and a

perturbation Hamiltonian H ′. Note that the momentum operator does not need to be

modified since s = x− x0(t), so ∂x = ∂s.

Suppose that the state of the system is Ψi
n where n is the initial eigenstate of the

unperturbed Hamiltonian, and suppose that Ψf
m is the m-th eigenstate of the perturbed

Hamiltonian at the end of the shuttling time t = T . As discussed earlier, during a

shuttling operation it may be desirable to prevent the ion from making a transition from

the n-th eigenstate of the initial, unperturbed Hamiltonian a different, m-th eigenstate

of the final Hamiltonian. In other words, although the position representation of the

ion may be different at the end of the shuttling operation (Ψi
n 6= Ψf

n), the number state

of the ion is the same after the ion is shuttled. The final available eigenstates in the

position representation Ψf
n of the ion in the moving frame can be written in terms of

the initial wavefunction Ψi
n using first order time independent perturbation theory.

Ψf
n(s) ≈ Ψi

n(s) +
∑
k 6=n

Wkn(s, T )
~ωkn

Ψk(s) (2.12)

The time independent perturbations are straight forward to write out. If the total

shuttling time is T, then:

Wkn =
1
2
mω2

0〈k|s2|n〉f(T ) + m〈k|s|n〉ẍ0(T ) (2.13)

= W1,knf(T ) + W2,knẍ0(T )
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The matrix elements in Eq. 2.13 are easy to calculate using raising and lowering op-

erators [24] and yields the selection rule ∆n = 0,±1,±2. The total shuttling time T

can refer to one of several things. In order for Eq. 2.12 to be valid, the initial and final

Hamiltonians cannot be much different from each other between t = 0 and t = T be-

cause Eq. 2.12 assumes that the perturbation is small. In general the final Hamiltonian

could be drastically different from the initial Hamiltonian, in which case Eq. 2.13 is

not valid because there is no longer a small perturbation. However, in principle the

total shuttling time can be broken up into a small interval of time T that makes the

perturbation Hamiltonian small. Each small interval T can then be used in succession

to track the available eigenstates of the system as the Hamiltonian evolves in time.

If the total shuttling time is a length T, the wavefunction Ψ(T ) can be written

down using first order time dependent perturbation theory. For an ion initially in the

n-th eigenstate of a system:

Ψ(s, t) =
∑

`

c`(t)Ψ`e
−iω`t (2.14)

The time dependent coefficients in Eq. 2.14 can be written out explicity for the

case when n = ` and when n 6= `. For mathematical clarity, define the initial acceleration

of the potential ẍ0(0) and f(0) = 0 as before.

n = ` : c`(t) = 1− i

~
W1,nn

∫ t

0
f(t′)dt′ (2.15)

n 6= ` : c`(t) = − i

~
W1,`n

∫ t

0
f(t′)eiω`nt′dt′ − i

~
W2,`n

∫ t

0
ẍ0(t′)eiω`nt′dt′ (2.16)

The quantity ω`n is equal to ω`−ωn. In Eq. 2.15, there is no matrix element from

the W2,nn term because the selection rule for the W2,nn is ∆n = ±1. Using integration

by parts, it is possible to re-write Eq. 2.16:

n 6= ` : c`(t) = −
W1,`n

~ω`n

(
f(T )eiω`nT−

∫ T

0

df(t)
dt

eiω`ntdt

)
−

W2,`n

~ω`n

(
ẍ0(T )eiω`nT−

∫ T

0

dẍ0(t)
dt

eiω`ntdt

)
(2.17)
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We can now explicity write out Ψ(T ) using Eq. 2.14 with coefficients c`(t) defined

by Eq. 2.15 and Eq. 2.16.

Ψ(T ) =

[(
1− i

~
W1,nn

∫ T

0
f(t)dt

)
Ψn −

∑
` 6=n

(
W1,`n

~ω`n

(
f(T )eiω`nT −

∫ T

0

df(t)
dt

eiω`ntdt
)

+
W2,`n

~ω`n

(
ẍ0(T )eiω`nT −

∫ T

0

dẍ0(t)
dt

eiω`ntdt
))]

e−iωnT (2.18)

Using Eq. 2.12, it is possible to write out the final available states of the ion at

the end of the perturbation:

Ψf
m = Ψi

m +
∑
k 6=m

W1,kmf(T ) + W2,kmẍ0(T )
~ωmk

Ψk (2.19)

The transition amplitude between Ψ(T ) and Ψf
m is:

〈Ψ(T )|Ψf
m〉 =

(
1 +

i

~
W1,nn

∫ T

0
f(t)dt

)(
W1,nmf(T ) + W2,nmẍ0(T )

~ωmn

)
eiωnnT

− W1,nm

~ωmn

(
f(T )eiωmnT −

∫ T

0

df(t)
dt

eiωmntdt

)
eiωnnT

− W2,nm

~ωmn

(
ẍ0(T )eiωmnT −

∫ T

0

dẍ0(t)
dt

eiωmntdt

)
eiωnnT + O(W 2)(2.20)

Recall that the shuttling process should not cause any transitions between the

n-th eigenstate of the initial Hamiltonian in the position representation to the m-th

eigenstate of the final Hamilitionian in the position representation (m 6=n). One way to

do this is to make the the following condition true:

f(T )eiωmnT �
∫ T

0

df(t)
dt

eiωmntdt (2.21)

ẍ0(T )eiωmnT �
∫ T

0

dẍ0(t)
dt

eiωmntdt

If the above conditions are true, it can be seen that there will be a first order

cancellation of the transition amplitude in Eq. 2.20. One way to ensure that the
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conditions in Eq. 2.21 are met is to follow the suggestions of Griffiths[28].∣∣∣f(t)W1,nm + ẍ0W2,mn

∣∣∣� ∣∣∣W1,mnḟ

ωmn
+

W2,mn

ωmn

dẍ0

dt

∣∣∣ (2.22)

To see why this makes Eq. 2.21 true, consider the ratio:∫ T
0 ∂tf(t)eiωmntdt

f(T )eiωmnt
=
∫ T

0

∂tf(t)
f(T )

eiωmn(t−T )dt � 1 (2.23)

If the ratio of ∂tf(t) to f(T ) is nearly constant over the integral, then it can be pulled

outside of the integral to a very good approximation. The remaining integral is an

elementary integral of an exponential:

∂tf(t)
iωmnf(T )

(
1− e−iωmnT

)
� 1 (2.24)

Since the magnitude of the exponential oscillates between zero and one, the only way

to make Eq. 2.24 always true is to make the modulus of the fraction in Eq. 2.24 much

less than unity.

An objection to this method for obtaining the adiabatic constraints in Eq. 2.21

or Eq. 2.22 is that the perturbation of the Hamiltonian may not in the perturbative

regime and first order perturbation theory may not be valid. However, as pointed out

by Griffiths [28], this derivation for the adiabatic condition holds for large perturba-

tions W too. If the perturbations are large, the shuttling time T can be divided into

N subintervals for which it is applicable to apply first order perturbation theory, par-

ticularly when writing out the wavefunction of the final Hamiltonian in terms of the

initial Hamiltonian in Eq. 2.19. Since there are N total subintervals, the transition

amplitude would be proportional to N(W/N) which can be large if the perturbation is

large. However, the transition amplitude is proportional to N(W/N)2 = W 2/N which

tends to zero as N goes to infinity.

The adiabatic condition in Eq. 2.22 is not necessarily the only unique way to

shuttle an ion adiabatically. The equation assumes that the change of the Hamiltonian

is slow; there may be other methods of shuttling ions very quickly. For example, if
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one had access to the phase of oscillation of the ion in the trap, it might be possible

to translate the trap in such a way that the change in acceleration of the trap does

not give energy to the ion. This is similar to the way a crane operator moves a heavy

object. Near the end of the movement of the object, the crane operator decelerates and

then speeds up again to match the oscillation of the object. The adiabatic condition

in Eq. 2.22 may be the easiest to perform experimentally because it does not require

any knowledge about the phase of oscillation of the ion or the details of how the ion

is accelerating during its secular motion. The tradeoff is that the adiabatic condition

in Eq. 2.22 may not yield the fastest shuttling time while preserving the number state

of the ion. There are two important special cases to be illustrated using the adiabatic

equation of constraint presented here. If the ion is not accelerated then ẍ0(t) = 0 and

the condition on adibaticity is:

ωmn �
˙f(t)

f(T )
(2.25)

If the ion is shuttled with constant secular frequency, then f(t) = 0 making the adiabatic

condition:

ωmn �
1

ẍ0(T )
dẍ0(t)

dt
(2.26)

In both Eq. 2.25 and Eq. 2.26, there is a clear comparison of the internal time of the

system (the period of oscillation) and the external time of the system (the change of

the Hamiltonian). Both equations demand that the ion sweep out its phase space many

times before the effective potential changes very much. Secondly, Eq. 2.26 says that

if an ion is to be shuttled between two trapping zones as quickly as possible, then it

is better to have a high secular frequency than a low secular frequency. Lastly, Eq.

2.26 specifies a design parameter with which to optimize a method of accelerating an

ion. The optimal way to shuttle an ion with constant secular frequency is to minimize

∂tẍ0(t)/ẍ0(T ).

The appearance of a third derivative of x0(t) at first may seem suspect, but it
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makes sense physically. An acceleration of the potential alone (with constant secular

frequency) does not induce transitions in the number state of the ion because in the

moving frame, the originally quadratic potential only experiences as deformation with

constant accleration. However, if the acceleration is changing in time, the effective

potential in the moving frame changes in time. This can induce transitions between the

number states of the ion. The adiabatic condition only depends on the first derivative

of the function f(t) because if f changes in time, the effective potential in the frame of

the ion changes as well.

Although the adiabatic transport of an ion in the context of quantum informa-

tion is presented here, the derivation of the transport of matter in a harmonic oscillator

potential is completely general and may be an important consideration in other atomic

physics experiments where it is desirable to transport cold matter adiabatically in har-

monic wells so that atoms are not excited out of their ground state.

2.3.2 Adiabatic Optimization

The ideal shuttling protocol keeps constant secular frequency and does not have

a changing acceleration. The constant secular frequency keeps the energy level spacing

from changing because the energy level spacing of a quantum harmonic oscillator is

given by the secular frequency of the ion. Although it may seem like having a constant

acceleration will give the ion more energy, a constant acceleration by itself does not

induce transitions in the number state of the ion during a shuttling protocol. As can be

seen in Eq. 2.11, a constant acceleration of the harmonic oscillator looks like a warping

of the potential in the frame of the ion. A perturbed harmonic oscillator that is static

in the frame of the ion does not induce transitions to other harmonic oscillator number

states. However, a change in the acceleration of a harmonic well can induce transitions

to other number states during the shuttling process.

The important question to ask about quickly shuttling ions between trapping
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zones is as follows. Given a particular distance and a particular time in which to

traverse the given distance, what is the best way to change the equilibrium position of

the ion in the harmonic well so that the shuttling process gives a minium probability of

transition to other number states during the shuttling process.

Clearly via equation 2.22, one good way to do this is to shuttle the ion with

constant secular frequency and to translate the potential with constant velocity. This of

course should correspond to no change in the ion’s state because physics is not sensitive

to constant velocity and an unchanging secular frequency means that the energy levels

are not being perturbed. There may be other ways to do this as well, such as to

implement some kind of complicated simultaneous change in the acceleration of the ion

and its secular frequency in order to optimize the adiabatic approximation. There may

be even better ways to adiabatically shuttle if the phase of oscillation of the ion is known

and an appreciable change in the equilibrium position of the ion can take place on the

timescale of the period of oscillation of the ion’s motion.

A question arises about the adiabaticity at the beginning and end of the shuttling

procedure with constant linear velocity because it is necessary to start moving and to

stop moving at the end of the shuttling protocol. In other words, there is a disconti-

nuity in the velocity of the ion and hence the acceleration diverges at these start and

stop points. In a real world ion trap system, it is impossible to change the voltages

on the electrodes infinitely fast to kick the ion infinitely fast because there must be

some sort of low pass filter element in the circuit. In fact, low pass filters are typically

implemented to filter out RF noise from the RF electrodes. In other words, there are

no difficulties with infinities arising from stopping and starting the shuttling process.

However, a sudden commencement and finish of the shuttling protocol with constant

velocity shuttling in between can cause transitions and in general depends on the details

of the characteristic RC time constant of the electrical system that connects up the elec-

trodes. However, neglecting the problems with starting and stopping the ion, shuttling
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the ion with constant velocity is clearly the most adiabatic way to shuttle because there

is no pertubration of the Hamiltonian.

2.3.3 Transition Probabilities of Real Shuttling Protocols

No real world shuttling protocol will ever be perfectly adiabatic, so it is interesting

to look at what the transition probabilities are for non-ideal shuttling. In other words,

by not imposing the restrictions from Eq. 2.21, the remaining first order transition

amplitude is:

〈Ψ(T )|Ψf
m〉 = eiωnt

(
W1,mn

~ωmn

∫ T

0
∂tf(t)eiωmntdt +

W2,mn

~ωmn

∫ T

0

...
x 0(t)eiωmntdt

)
(2.27)

The probability of a transition between the different number states is the modulus

squared of the above equation. There are several features to note about the above

equation as well. The first is the selection rule of the transition. The static parts of

the perturbation (W1,mn and W2,mn) allow for dipole and quadrupole transitions. The

scaling of the perturbations is interesting as well. Almost every factor in the first term

of Eq. 2.27 cancels, but when the integral is performed, the transition amplitude will be

proportional to the area under the f(t) term from t = 0 to t = T and will be inversely

proportional to the difference between ωm and ωn. In other words, the tighter the trap is,

the less sensitive the ion will be to undergoing transitions due to a modulated potential

well curvature. The second term is inversely proportional to ω0 to the 3/2 power, so

again, shuttling is more adiabatic with a higher secular frequency. Integration of the

second term makes the transition amplitude inversely proportional to ωm − ωn. The

second term also scales linearly in the acceleration of the harmonic well, so minimizing

the acceleration is important. The second term is also proportional to the square root

of the mass of the ion, so for a fixed shuttling protocol, shuttling is more adiabatic with

a lighter ion!



Chapter 3

Experimental Apparatus

3.1 T-trap Design

3.1.1 T-junction Ion Trap Array Design

The purpose of building and testing the T-junction ion trap array was to perform

a proof of principle experiment toward the vision of Kielpinski et al[2] where ions could

be arbitrarily shuttled throughout a two dimensional ion trap array. The T-trap consists

of two, three-layer linear traps that are joined at a 90 degree angle (see Fig. 3.1, 3.2).

There are 11 trapping zones in the T-trap as can be seen in Fig. 3.1 numbered a-k. The

number of trapping zones was chosen so that if an ion is confined in zone k, other ions

can be shuttled from zone a and zone h greatly perturbing in the trapping potential in

zone k.

There are 48 control electrodes in the T-junction ion trap as indicated in Fig. 3.1

of which 28 are not grounded and are used to shuttle ions. The non-grounded control

electrodes have a width of 400 µm away from the junction region, but are much wider

(∼800-900 µm) around the junction. The larger electrodes are not ideal for preciely

controlling the potential near the junction region; smaller electrodes near the junction

region are desirable so that the motion of the ion can be more precisely controlled in the

junction region. The channels are 200 µm wide and the bottom to top layer separation

is also 200 µm. The RF layer in the center is a single, non-segmented electrode to ensure
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Figure 3.1: T-junction ion trap array schematic. This 11-zone, three layer T-junction
ion trap has 48 control electrodes of which 28 are non-grounded and a central RF layer.
Fig. 3.1a shows a top view of the T-trap. The 11 trapping zones are indicated with
letters a-k. The control electrodes are numbered with G indicating a grounded electrode.
The parantheses indicate the bottom layer. Fig. 3.1b shows a cross section view of the
T-trap looking down a channel. The top and bottom layers are consist of segmented
control electrodes that are used to trap ions and shuttle them. The central RF layer
confines the ions in the xy plane. Fig 3.1c shows the top layer of the actual T-junction
ion trap.

that the phase and voltage of the RF is approximately the same everywhere in the trap.

Alumina substrates were laser machined to have a T-junction cut in them. The

segmented control electrodes (top and bottom layers in Fig. 3.1 b) were made using wet

chemical etching and dry-film photolithography techniques by first depositing 0.015 µm

thick titanium tracks on the two outer alumina substrates, followed by a 0.4 µm thick

layer of gold on the titanium. The non-segmented central RF layer was coated with a

layer of gold by using an electron beam evaporator, and the three layers are pressed

together by mount bars and are separated by 125 µm thick alumina spacers.

The electrodes are wire bonded to a gold bond pads that coat a quartz plate (see

Fig. 3.2). The quartz plate also has chip resistors and capacitors that are wire bonded

to more gold bond pads; the circuit is arranged to form a single pole, low pass RC

circuit with RC = 1 µs (R = 1 kΩ, C = 1 nF) for each non-grounded control electrode.

The low-pass RC filters are needed to filter noise that is near the secular frequency of

a trapped ion (usually a few MHz) so that the noise can not resonantly drive the ion’s
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Figure 3.2: T-junction ion trap array with associated wires. The three layers of the
T-junction ion trap are held together with alumina mount bars, and alumina spacers
separate the three layers. The chip capacitors are visible near the top and bottom of
the quartz plate near the top and bottom of figure.

motion. The assembled and mounted trap array before it was mounted in the vacuum

chamber is shown in Fig. 3.2.

As can be seen in Fig. 3.2, the wiring of the T-trap is quite complex. There

are wire bonds that connect each eletrode to its own low-pass RC filter. The RC filter

elements are wire bonded to gold on a quartz substrate and are wired to each other with

wire bonds. The vacuum leads that supply voltage to the T-trap control electrodes are

all wire bonded to the RC filters. Wire bonds connect the RF ground of all of the RC

circuits together. In all, there were over 2000 wire bonds necessary to hook up 28 out

of the 48 control electrodes and to ground the remaining electrodes as well as provide

RF filtering. If a trapped ion system is to be built with hundreds thousands of trapped

ions, it is necessary to take the physical wiring of the system in to consideration. It will

become necessary to integrate filtering circuits and wiring directly on the substrate, and

it will also become necessary to have a chip carrier so that ion traps may be “plugged” in

to a vaccum system to prevent the need for manual wiring. Lastly, it may be necessary

to have a vacuum electronics board that has one end in vacuum and one end out of

vacuum so that the circuit can be modified externally.



33

Figure 3.3: CAD drawing of T trap mounting range and hemispherical vacuum setup.
Fig. a shows the relationship of the cadmium ovens (green), electron guns (grey),
and mounting range (orange) to the alumina substrate where the T-junction electrodes
are deposited (light grey slab). There are two cadmium flux mask planes mounted
orthogonal to the alumina substrate that are designed to limit the exposure of the
electrodes to direct cadmium flux from the ovens as well as aid in the acceleraton
of electrons from the electron guns. Fig. b shows how the T-trap is mounted in a
hemispherical vacuum chamber and shows the optical access to the T-trap through
windows on both the sides and near the top of the chamber as depicted by white lines.
The large viewport is screwed on the the vaccum chamber on the flat side of the chamber
in Fig. b. Scattered light from the ions is collected through this veiwport.

3.1.2 Vacuum Design

The T-trap is mounted in a hemispherical vacuum chamber near a large fused

silica viewport that is parallel the plane of the T-trap. There is optical axis through the

large viewport window as well as two windows that are at a ∼54 degree angle relative

to the normal direction of the large viewport window. These windows give optical axis

to the stem of the T-junction where ions are primarily loaded. There is also another

viewport that is tipped up to allow for optical axis into the top of the T. A drawing

of the mounted T-trap inside a vaccum hemisphere can be seen in Fig. 3.3a,b. In Fig.

3.3a, the relationship of the ovens (green), electron guns (gray), and mounting range

(orange) to the T-trap can be seen. Cadmium ovens reside in the chamber and point

toward the stem of the T much like a musket. Tungesten wire is wrapped around the
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oven and current is run through the wire to heat cadmium oxide in the oven. In order

to wrap the tungensten wire around the ceramic tube, it is useful to first wrap the wire

through a screw and then twist the wire off of the screw. The ceramic tube can then

be inserted in the center of the wire wrapping. The bottom of the tube is filled with

ceramic paste to prevent cadmium from falling toward the mounting range where the

temperature is much lower. After packing the tube ∼1cm with cadmium oxide, it is

helpful to glue an aperture over the opening of the tube. After the oven is fired for the

first time, the remaining cadmium in the tube will become a solid pellet instead of a

powder, and the pellet will be too wide to pass through the aperture.

The cadmium ovens contain a brownish-red cadmium oxide powder. The ovens

are tested under vacuum (∼ 10−6 Torr) in a bell jar where cadmium flux is measured

using a residual gas analzyer. After such tests, the brownish-red cadmium oxide powder

becomes a solid grey pellet, suggesting that heating cadmium oxide under vacuum can

remove the oxygen atoms to leave solid cadmium in the ovens. A measured cadmium

partial pressure of 10−10 to 10−9 Torr in the bell jar is sufficient amount of cadmium

flux to load ions in an ion trap. It is actually possible to forgo ovens in a cadmium

system because the partial pressure of cadmium at room temperature is approximately

10−11 Torr in our vacuum systems. This is approximately equal to the background

pressure needed for trapping. It is possible to simply place a small piece of cadmium in

the vacuum chamber and use a pulsed laser to ionize the background vapor of cadmium

in the trapping region. The non-use of cadmium ovens may decrease the amount of

cadmium coating on the gold trap electrodes. This coating process may contribute to

the observed anamolous heating of trapped ions [29],[30],[31].

Fig. 3.3b shows the T-trap mounted inside a hemisphere vacuum chamber. The

white mount bars clearly visible in Fig. 3.2 are grey rectangles. The dark green quartz

plate is has all of the wire bonds attached to it near the top and bottom of Fig. 3.2. The

T-trap is mounted sideways in Fig 3.3 so that the stem of the T is horizontally oriented
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and the top of the T is oriented vertically. The hemispherical chamber is designed so

there is optical access to the stem of the trap through two small windows on the side of

the chamber. The optical access to the top of the T is provided by the larger window

shown in Fig 3.3. The white lines in the figure show the region of the vacuum where

there is optical access.

A 50-pin feedthrough was used to connect all of the wires that come off of the

T-trap as can be seen in Fig. 3.2. It is tempting to use wire with extra metal insula-

tion around the insulator to provied better shielding as is shown in Fig. 3.2, but this

should be avoided at all costs. When pushing the vacuum feedthrough onto the vacuum

chamber, the loose metal insulation will be pushed up the kapton wire and could short

or break wire bonds.

3.1.3 Electronics

It is necessary to have high-voltage, fast, low noise amplifiers to control the trap-

ping potential of the ions and to shuttle them using control electrodes. In order to

shuttle ions around the corner in the T-junction, it was necessary to be able to change

the output of the amplifiers by 10 volts in 1 µs. This was accomplised using PA85A

amplifiers from Apex. This op-amp was chosen specifically because the amplifier has an

output voltage range of 450 Volts, a high slew rate of 1 kV/µs and a measured voltage

noise of less than 3 µV/
√

Hz. The circuit diagram is in Fig. 3.4. There are several

design parameters to consider when picking resistance values for the amplifier circuit.

In order to limit the current output, the value of RCL may be adjusted according to the

following equation:

RCL(Ω) =
0.7

Imax/(A)− 0.016
(3.1)

We chose to limit the current to 40 mA.

In order to change the voltages on the control electrodes as quickly as possible,

the circuit was optimized to give the fastest voltage swtiching time for a given voltage
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gain. Because the computer controlled analog output card is limited from +10V to

-10V, an op-amp gain of ∼30 was chosen. The original resistance values of R1 and R2

were 56 kΩ and 1.56 MΩ respectively. The large resistance values were chosen so that

there would be little current flow through the resistors to place as little strain on the

op-amps as possible. These large resistance values slowed down the slew rate of the

op-amps, so the values of R1 and R2 were changed to 12 kΩ and 400 kΩ respectively.

This change offered nearly a factor of 10 speed up in the voltage switching time.

The op-amp circuit has a frequency response that resembles a low pass RC filter

with a 3dB point at ∼ 125 kHz which gives an effective RC time constant of 8 µs.

Since this time constant is about 8 times larger than the RC filtering circuit next to ion

ion trap array on the quartz plate, the frequency response of the op amp circuit is the

dominant factor in determining the frequency response of the system.

The amplifying circuit used in the T-trap is shown in Fig. 3.4 is used to amplify

the voltages from the output of computer controlled analog voltage output cards (Na-

tional Instruments 6733). The noise from the analog output card and the noise from

the amplifying circuit is less than 3 µV/
√

Hz. The analog voltage output voltages in

discrete time steps and can be programmed with LabView software. Because the output

of the voltage card is discrete in time, the potential in the ion trap can change abruptly

if the voltage card puts out voltages at a rate that is much slower than the RC time

constant of the trap filters and op-amp circuit. The voltage cards are able to output a

new voltage every µs, so the the op-amp frequency response smooths out any voltage

steps.

3.2 Photoionization of Neutral Cadmium

In order to trap cadmium ions in an ion trap, neutral cadmium atoms are ionized

by removing the a 5s electron to give a singly ionized Cd+ ion with a single s-shell

electron. The electron can be removed via electron impact ionization or with photoion-
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Figure 3.4: The value of R1 is 12 kΩ and R2 = 400 kΩ so that the gain is approximately
34.3. The capacitor CBY filters the input power supply so that fast (of order MHz)
noise from the power supply noise does not interfere with trapping if the amplifier is
run near rail and has a value of 10 µF. The series RC circuit consisting of Rφ and Cφ

compensate for phase differences during amplification of time-dependent voltages and
have values of 220 Ω and 10 pF respectively. The resistor RCL limits the current output
of the amplifier as descirbed by Eq. 3.1. The current was limited to 40 mA by selecting
RCL = 30 Ω.

ization. With electron impact ionization, a neutral cadmium gas is bombarded with

∼200 eV electrons. The disadvantage of using this method is that the electrons can

charge up dielectric surfaces near the trap and alter the electric field in the ion trap

potentially creating difficulties with trapping ions.

Photionization of cadmium is a clean way to remove the outer electron from

cadmium. A mode-locked Ti:Sapphire pulsed laser is frequency quadrupled to produce

∼5-10 mW of average power at 228.8 nm and focused down to a ∼ 15µm waist to

photoionize neutral cadmium in a two photon process. One photon promotes a 5s 1S0

electron to the 5p 1P1 level. A second photon then takes the 1P1 population into the

continuum by ∼3.6 eV. The pusle duration of the laser is of order 1 ps, so the bandwidth

of the laser is ∼10nm. The large bandwidth of the laser will photoionize all velocity
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Figure 3.5: Photoionization process for neutral cadmium. A frequency quadrupled
mode-locked Ti:Sapphire laser excites the 5s 1S0 electron to the 5p 1P1 level which is
then excited to the continuum by a second photon at 228.8 nm. The bandwidth of the
pulsed laser is large enough to photoionize all velocity classes of atoms.

classes of neutral cadmium atoms in the trapping region. Although isotope selectivity

is not obtained with a pulsed laser, the loading rate is about 0.1-1 ion per second, so

effective isotope selectivity can be obtained by dumping the trap and loading a different

ion[32].

Ions are loaded into the trap by applying ∼ 400V RF at ω/2π ∼ 48 MHz, 17V to

confine the ion in the x direction, and -3V to the electrodes nearest the trapping zone.

Cadmium oxide ovens are heated to supply cadmium vapor, although loading of ions is

still possible without running the ovens due to the vapor pressure of cadmium at room

pressure and at ultra-high vacuum pressures inside the vacuum chamber[32].

3.3 Laser Cooling and Detection

Singly ionized 111Cd+ has a single valence shell electron and a spin 1/2 nucleus

and thus have a hydrogen-like energy level structure (see Fig. 3.6). The ground state of

both species is split into singlet and triplet hyperfine states by the spin-spin coupling of

the nuclear magnetic moment to the valence shell electron’s magnetic moment. Unlike

hydrogen, the nuclear magnetic moment of cadmium is negative, so the triplet state

is lower in energy than singlet state. Singly ionized cadmium also has a much larger

hyperfine splitting (14.5 GHz) than hydrogen (1.42 GHz). The energy levels of cadmium
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Figure 3.6: 111Cd+ energy level structure. The 111Cd+ level structure is similar to
atomic hydrogen because both species have a single valence electron. The 111Cd+

hyperfine structure is large compared to the linewidths of the S and P manifold energy
levels. The large hyperfine structure of the 1S1/2 ground state allows for good detection
efficiency between the |F,mf 〉 = |1, 0〉 and the |0, 0〉 state using the a laser that is
resonant with the S1/2 F=1 manifold and the P3/2 manifold.

are typically expressed in the |F,mF 〉 basis where F = J + I is a sum of the valence

electron’s spin and orbital angular momentum and the spin angular momentum of the

nucleus.

The |F,mF 〉 = |1, 0〉 and |0, 0〉 hyperfine states of odd isotopes of cadmium

(111Cd+, 113Cd+) are the |0〉 and |1〉 qubit states. Either state can easily be prepared

using standard optical pumping techniques[33]. The |0, 0〉 state can be prepared using

a π- polarized laser tuned the S1/2 F = 1 → P3/2 F = 1 transition. The most probable

decay channel is from P3/2 F = 1→S1/2 F = 0, so all of the population eventually ends

up in the S1/2|0, 0〉 state. The S1/2 |1, 0〉 state can be prepared by first intializing to

the S1/2|0, 0〉 state and then performing a microwave transition. The hyperfine states

of cadmium are attractive candidates for qubits because they are insensitive to mag-
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netic fields to first order (mF = 0) and the hyperfine splitting is much larger than the

linewidths of any of the P3/2 states, so it is possible to efficiently detect either qubit

state. The ground state of cadmium has a large hyperfine splitting of 14.5 GHz which

is much greater than the natural linewidths of the hyperfine states or the 800 MHz hy-

perfine splitting of the P3/2 level. The large hyperfine splitting makes it easy to detect

the |F,mF 〉 = |0, 0〉 and the |F,mF 〉 = |1, 0〉 level because the |1, 0〉 level can be tuned

to the S1/2 → P3/2F = 2 transition while the |0, 0〉 → P3/2F = 2 is too far off resonance

to couple to the P3/2 manifold.

The photon scattering rate γs of a trapped ion is given by the following Lorentzian

[34]:

γs =
s0γ/2

1 + s0 + (2(∆ + ωD)/γ)2
(3.2)

where γ is the excited state linewidth (∼2π x 60 MHz for 111Cd+), ∆ is the detuning from

the resonant transition, s0 = I/Isat is the ratio of the laser intensity to the saturation

intensity. The saturation intensity is related to the natural linewidth of the excited

state and the wavelength:

Isat =
πγhc

3λ3
(3.3)

The other term in the denominator of Eq. 3.2 (ωD)is the doppler shift as seen by the

moving atoms in the path of the laser: ωD = −~k · ~v. The minus sign gives a positive

doppler shift if the ions’ velocity is opposite of the k-vector of the laser beam. The force

on the ions is given by the time derivative of the expectation value of the momentum

operator [34].

~F = ~~kγp (3.4)

Ion’s are slowed when ∆ + ωD � γ, and the force on the ions due to the laser saturates

at large s0 to Fmax = ~kγ/2. If the ion is moving toward a laser that is red detuned

from the resonant transition (~k · ~v < 0), the ions will scatter more light because in the

frame of the ion, the light will appear closer to resonance. If the ion is moving away
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Figure 3.7: Photon scattering rate near S1/2 → P3/2 as function of detuning for typical
laser parameters. The detection laser at 214.5nm with a power of 300 µW is focused
down to a 15µm waist. The cadmium ion scatters approximately 75 million photons per
second when the resonant laser is detuned about one linewidth red of of the S1/2 → P3/2

resonance.

from a red-detuned laser (~k ·~v > 0), the ions will scatter less light because in the frame

of the ion, the light appears to be further from resonance. The overall imbalance of

the photon scattering rate makes ions slow down more when they are moving into the

k-vector of the laser because the ions scatter more photons. Counter-propagating beams

are not needed in ion traps because the restoring force of the trap will allow the ion to

lose kinetic energy when the phase of the ion’s oscillation is such that ~k · ~v < 0.

Dectection of a trapped and cooled ion is done by imaging the scattered photons

from the ion. Light that is σ+-polarized and tuned to the S1/2 → P3/2 transition

optically pumps the ion into the S1/2|1, 1〉 state. The cycling transition between the

S1/2|1, 1〉 state and the S3/2|2, 2〉 scatters ∼75 million photons per second for a detuning

of -200 MHz from resonance.

The detection wavelength of 214.5 nm is generated by using a 10 W Nd-YAG

pump laser to pump a Ti:Sapphire laser to produce ∼1.5 W of light at 858 nm. This

infrared laser is frequency doubled with an LBO crystal inside of a cavity to yield 300

mW of light at 429 nm. The resulting blue light is then frequency doubled a second
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Figure 3.8: A 10.5 W Nd-YAG laser pumps a Ti:sapphire laser to produce 1.5 W of
light with wavelength of 858nm. This light is frequency doubled in an LBO cavity to
give 300 mW of light at 429 nm. Part of this light is picked off and directed to a Te2

reference cell to feed back into the cavity of the Ti:Sapphire laser. The rest of the light
at 429 nm is frequency doubled in a BBO cavity to give the radiation necessary for
cooling and detecting ions in an ion trap. The scattered photons are imaged on a CCD
camera.

time with a BBO cavity inside of a cavity to yield ∼5mW of UV light at 214.5 nm. The

laser set up is shown in Fig. 3.8. The scattered photons are collected by f/2.1 optics

and imaged on a CCD camera. The image is magnified so that a 550 x 550 µm area

can be seen in the trap so that ions can simultaneously be imaged in zone d and zone i

or f. The nearly diffraction limited ion appears to be a bright spot that is a few pixels

wide on the CCD camera.
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Figure 3.9: Trapped ions imaged with a CCD camera. The picture on the left shows
an ion trapped in zone f in the T-junction ion trap array. A corner electrode is plainly
visible. The picture on the right shows a chain of four trapped ions. The third ion
from the left is a different isotope of cadmium so the S1/2 → P3/2 transition is at a
different wavelength and the ion scatters fewer photons than the other three ions near
their S1/2 → P3/2 transition.



Chapter 4

Surface Electrode Chemistry

The trapping potential of ion traps is highly harmonic, so the treatment of the

quantum states of the ions is that of the quantum harmonic oscillator. Gates that

could be used for quantum computing schemes involve entangling the Coulomb-coupled

motional states of ions to their electronic states[35],[36],[37].

There is an observed anomalous heating rate of the quantum state of motion of

the ions in ion traps that causes decoherence [38],[39],[40]. The heating mechanism

is from noisy electric potentials on trap surfaces that scales with the distance of the

trapped ion to the nearest electrode z−3.47±0.16 and is nonlinear in the temperature of

the trap electrodes[41]. The electrical noise is theorized to come about from fluctating

patch potentials near the trap secular frequencies that resonantly drive the ions’ secular

motion.

Anomolous heating above the Johnson noise limit has been observed in many

ion trap systems and appears to become worse as the trap electrodes are coated with

neutral atoms [39]. Curiously, most trap electrodes are gold and beryllium [42], barium

[43], mercury [44], cadmium [45], calcium [46], and ytterbium [47] all form alloys with

gold. Although the melting points of all of these materials is much higher melting points

than will be experienced in typical ion trap experiments, the melting points of these

materials may be significantly lower under high vacuum. At least two of these elements

tend to stick to gold (cadmium and beryllium [39]) which may make it difficult to keep
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Figure 4.1: Gold electrodes coated and not coated with cadmium. Fig. fig:cdelectrodea
is from one layer from a three-layer, one zone linear trap that was heavily used. The
gold trap electrodes appear yellow because they are coated with cadmium. Fig. 4.1b is
part of the same trap but part of a gold track that was partially shielded from cadmium
oven flux. There is a sharp division between coated and uncoated gold.

the electrodes clean during vacuum bake outs and firing ovens to provide atomic flux

to load an ion trap.

4.1 Atomic Force Microscopy Examination of Trap Electrodes

Significant cadmium deposition on gold trap electrodes results from operation of

cadmium ovens and possibly from the 2000C bakeout of the trap. The gold electrodes

become coated with cadmium as can be seen in Fig. 4.1. These electrodes were bom-

barded with ∼100eV electrons, exposed to 214.5 nm radiation with an intensity of order

103 W/cm2, baked at 2000C while under vacuum as low as 10−12 Torr while being ex-

posed to a neutral cadmium flux and background cadmium vapor. These environmental

conditions made the gold electrodes turn to a dull grey color as they were coated with

cadmium. In Fig. 4.1a, the top layer of a three-layer linear trap that has been heavily

used in experiment is shown. The electrodes are no longer a bright, golden yellow color

because cadmium has coated them to make them appear grey. Fig. 4.1b shows a gold

track away from the trap electrodes that was partially shielded from cadmium flux.

There is a sharp division between the area that is cadmium coated and the area that is
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Figure 4.2: Gold cadmium boundary near a shielded electrode. The above figure
shows the region where the gold (flat in the AFM scans) becomes heavily coated with
cadmium (bumpy). Fig. 4.2a,b show slightly closer to the Au-Cd boundary than
fig:afmaucdboundaryc,d. The bottom of 4.2a extends in to the top of 4.2c as can be
seen from the large scratch in the gold in both AFM scans.

not cadmium coated.

These areas were examined using a Quesant Q-350 atomic force microscope in

order to see if there is any macroscopic structure to the cadmium coating. In order

to measure a lower bound on the thickness of the cadmium coating, the gold cadmium

boundary in Fig. 4.1b was found. The atomic force microscope scan is in Fig. 4.2a-d.

Fig. 4.2b shows that the cadmium coating is at least 4 µm thick near the gold-cadmium

boundary shown in Fig. 4.1b. The gold itself is very flat as can be seen in Fig. 4.2c,d.

AFM scans of the beveled side and top of the smallest middle electrode segment seen in

Fig. 4.1a can be seen in Fig. 4.3a,b. The small electrode is closest to the center of the

one zone linear trap from which this electrode layer was taken. There is a characteristic
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Figure 4.3: AFM scan of ion trap electrodes. Fig. 4.3a,b are scans of the
beveled face of the cadmium-coated center electrope in Fig. 4.1a and have much
smaller cadmium bumps than Fig. fig:afmtrapelectrodesc,d. The AFM scans in Fig.
fig:afmtrapelectrodesc,d are from the top of the center, cadmium coated electrode in
Fig. 4.1a.

bump size of 0.7 - 1.7 µm in the xy-plane of the scan and only 0.2 - 0.4 µm in height.

The surfaces of these electrodes were most likely to be hit with the detection laser on

a day to day basis. AFM scans were also taken of the top (non-beveled surface) of the

center trapping electrode seen in 4.1b and are shown in Fig. 4.3c,d. The characteristic

cadmium bump size is 1.4 - 2.2 µm in the xy-plane and 0.8 - 1.2 µm tall. These cadmium

clumps are about 4 times as tall as the cadmium clumps on the beveled sides of the

trap electrodes. The explanation for this may be that cadmium is laser ablated off of

the trap electrodes, and since the beveled edge is more likely to be hit by the detection

layer and (ionization laser in other traps), more cadmium should be removed from the

in this region than on the top of the trap electrode. It should be noted that when the
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detection laser or ionization laser is incident on the electrodes, the time it takes to load

an ion decreases [32].



Chapter 5

Experimental Results

5.1 Classical Shuttling Protocols

If the vision of Kielpinski et al [2] is to be realized, it is necessary to have full, two

dimensional control of ion shuttling so that any two arbitrary ions may be brought next

to each other to be entangled in interaction zones. Linear shuttling alone is not enough

because ions need to be sorted in an arbitrary order so that any two can be brough next

to each other. Secondly, since ions need to be brought next to each other in the same

trapping zone and then separated, there needs to be a way to separate ions that are

in the same trap so that they may be shuttled to different trapping zones. There also

needs to be a way to bring ions that are initially in different trapping zones together so

that they are both in the same trapping zone.

In a two-dimensional array of ion traps, it is necessary to experimentally perform

the following operations before a scalable two-dimensional geometry that relies on ion

shuttling can be claimed:

(1) Linearly shuttling ions through channels and junctions

(2) Shuttling ions around corners

(3) Separating ions in the same trapping zone and combining ions into the same

trapping zone
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The goal of the T-junction ion trap experiment was to experimentally demonstrate all of

these protocols as a proof of principle experiment for quantum computing schemes that

involve the use of shuttling operations. However, at the time of the writing of this thesis,

the DiVincenzo requirements for quantum computing have not been demonstrated in

the T-trap.

5.2 Linear Shuttling

Linearly shuttling ions in linear Paul traps has been widely demonstrated by the

NIST group ([48], [49], [10], [11]) and others [16]. Linear shuttling in the T-trap has

proven very robust in the sense that the ion is not lost. The success rate of linearly

shuttling ions between adjacent trapping zones (∼ 400µm) is greater than 99.9% even

when the ions are shuttled in only 20µs.

Linearly shuttling across the junction of the T-trap has also been carried out

with an efficiency of ∼ 98%, however, the total shuttling time required required to have

this kind of efficiency is of order 10 ms. The ion is lost from the trap if one tries to

shuttle the ion across the junction in 10s of µs. This effect is presumably due to the

ion’s acquired kinetic energy after being pushed over an RF hump that leads into the

junction region. A faster shuttling time gives the ion too much kinetic energy resulting

in the ion being ejected from the trap.

5.3 Corner Shuttling

Shuttling ions around a corner is a non-trivial task because of the existence of

RF humps in the pseudopotential near the junction region that are ∼0.1 eV high and

are about ∼200µm in extent. A trapped ion that is doppler cooled to n = 20 has about

10−7eV of energy, so the RF humps are quite significant. It is necessary to push the ion

over the RF humps, but in doing so, the ion acquires a lot of kinetic energy. Secondly,

creating a potential gradient that is large enough to push the ion over the hump can
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Figure 5.1: RF humps in the potential near the junction of the trap array. The RF
humps are ∼1.0 eV high, ∼200 µm in extent, and lead into the T-junction from all
three directions. The scale is saturated at 0.2eV. Fig. 5.1b shows a perspective view
of the potential looking down the top of the T. This figure also shows a hump in the
z-direction so there is no path from the stem to the top of the T that completely avoids
the RF hump.

Figure 5.2: T-junction ion trap array schematic. The figure shows all eleven trapping
zones labeled a-k. The stem of the T includes zones a-d, while the top includes zones k
through h. The control electrodes are numbered and the numbers in brackets indicate
the bottom layer. An electrode labeled “G” is grounded. The origin (x,y)=(0, 0) is in
the center of the junction near zone e.

destabilize the trap in the transverse direction (in the z-direction).

If an ion is to be shuttled from zone d to zone i, the four most important control

electrodes are control electrodes 8, 17, 9, and 16 (see Fig. 5.2). In order to push the ion

toward the center of the T-junction (zone e), the voltages of control electrodes 6, 7, 26,
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Figure 5.3: The figure on the left is the voltage profile used to shuttle an ion around a
corner from zone d to zone i. The control electrode numbers are indicated in the legend.
The figure on the right is the pseudo-potential in the trap near the junction at t = 25µs,
just before the voltages on electrodes 8, 17, 9, and 16 abruptly change. There is a local
maxmimum in the center of the trap, and based on the ion’s phase of oscillation, the
ion could be on either side of this local maxmimum.

and 27 are simultaneously raised to 200V in 25µs following a hyperbolic tangent time

profile (see Fig. 5.3). At the same time, the voltages on control electrodes 8 and 17 are

raised from -4V to 0V to provide more potential gradient to force the ion toward zone

e. The voltages on control electrodes 9 and 16 are lowered from 80V to -0.3V to pull

the ion into the junction.

For the first 16 µs, the ions total energy has increased by approximately 0.1

eV, enough to just scale the RF hump. At t=17 µs, the ion has enough energy to

overcome the RF hump, and at t=19 µs, the begins to rapidly pick up kinetic energy as

it accelerates toward the junction. The steep potential gradient is necessary because the

control electrodes must over write the RF hump, but the voltages on the four junction

electrodes need to converge toward a common value so that zone e does not become

anti-trapping out of the plane of the T. Because the potential is so flat in zone e and

the ion has picked up a lot of kinetic energy going over the RF hump, the ion has a lot

of freedom to move in the x-direction. Depending on the initial conditions of the ion,

the ion could go either left or right around zone e because there is a local maximum in
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Figure 5.4: Simulated ion motion during corner shuttling when shuttling from zone d
to zone i using the Burlish-Stoer method to integrate the ion’s equations of motion.
The whole shuttling process takes 26µs. The ion acquires a lot of kinetic energy and
oscillates wildly in the junction region of the trap becasue the ion enters the relatviely
flat potential in the junction after overcoming the RF hump.

the potential until t = 25µs.

The next step toward trapping an ion in zone i is to catch the ion in zone i as

it oscillates in the x-direction. As can be seen in Fig. 5.6, the ion has enough kinetic

energy to oscillate back and forth between zone i and zone f. Because the phase of this

oscillation is unknown during the corner shuttling procedure, catching the ion in zone i

while minimizing the acquired kinetic energy is very difficult. However, when simulating

the ions motion, care was taken to design a method of catching the ion in zone i so that

if the ion is near zone i just after 25µs, the ion will acquire very little kinetic energy

as the voltages on control electrodes 16 and 17 are abruptly raised to ∼10V while the

voltage on control electrodes 8 and 9 decrease abruptly to ∼ -10V. The ion would then

have approximately 1.0 eV of energy in zone i and could still oscillate over a region of

about 400m in the x-direction. Even though the ion has so much kinetic energy, we can

image it on a CCD camera because the ion is cooled with a laser that is red-detuned

from the S1/2 → P1/2 transition, so the ion does recrystalize. A simulation of the ions

motion in the x and y directions can be seen in Fig. 5.4.

The voltages used to shuttle an ion from zone d to zone i create a local maximum

in the pseudopotential while the ion is in the junction region as can be seen in Fig. 5.3.



54

Figure 5.5: Simulation of the acquired kinetic during corner shuttling that takes the ion
from zone d to zone i. The ion acquires ∼1.2 eV of kinetic energy during the shuttling
process. The ion begins to pick up a lot of kinetic energy after going over the RF hump
at t = 17 µs.

This means that the direction the ion begins to oscillate in the junction could either be

in the +x or -x direction depending on the phase of oscillation of the ion at the start of

the shuttling procedure. Simulations confirm that the ions motion in the junction can

go in wildly different directions depending on the phase of oscillation of the ion as it

enters the junction region. If the ion ends up going over the potential maximum toward

zone f instead of zone i, then at t = 26µs when the voltages rapidly changes, the ion

may gain a lot more than than 1 eV of kinetic energy .

There is experimental evidence that this is a real effect. When an ion is shuttled

around a corner, the phase of its secular motion in zone d is unknown. This means that

the ion can acquire vastly different amounts of kinetic energy during corner shuttling

depending on whether or not the ion goes toward zone i or zone f when it intially goes

in to the junction region. When the ion leaves the doppler/detection beam in zone d,

it can take different amounts of time for the ion to recrystallize in zone i. Despite the

fact that the shuttling sequence takes 26 µs, sometimes it takes almost 1 full second for

the doppler beam to recrystallize the ion in zone d.

A nice graphical way to illustrate the energy acquired during the corner shuttling

process is shown in Fig. 5.6. The evolution of the pseudo-potential as a function of
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Figure 5.6: Potential energy during a corner shuttling operation that shuttles an ion
from zone d to zone i as viewed from the bottom layer of the control electrodes. The
black regions indicate regions of the ion trap that the ion is allowed to traverse because it
has enough kinetic energy to do so. The black dots at the earlier times during shuttling
are not to scale and are meant to give a visual representation where the ion is in the
T-trap during the T-trap before the ion acquires a lot of kinetic energy.

the control electrode voltages is shown at different times during the shuttling protocol.

The black dots near the beginning of the shuttling protocol indicate the position of the

ion. Up until t = 16µs, the ion has gained very little kinetic energy. At t = 17µs,

the ion has gained a lot of kinetic energy. This is depicted by the black region in the

figure. The enclosed black region represents the areas of the T-junction trap that the

ion has enough energy to go if the time evolution of the pseudo-potential were suddenly

frozen. The black region has nothing to do with the spread of the wavefunction of the

ion because shuttling an ion around the corner in the T-trap is in the classical regime

as discussed earlier in this thesis. The corner shuttling operation is over at t = 26µs

but the ion has acquired a lot of kinetic energy in the process as is depicted by the wide

black ring.

The ion does not always end up with ∼1.0eV of energy though, because as the

final voltages rapidly rise to try to catch the ion, they can actually give the ion more

kinetic energy because the ion experiences an electric field gradient for a longer amount
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of time. Simulations show that the ion will still be forced toward zone i, but the

amount of kinetic energy acquired will be much larger. Altough the ion is nearly always

successfully shuttled around the corner (>99.9% success rate with >1000 attempts),

there is experimental evidence that the ion acquires a different amount of kinetic energy

during the shuttling process. There is a noticeable difference in the amount of time it

takes the ion to recrystallize in zone i after it has left the doppler beam in zone d. The

amount of time it takes to recrystallize the ion depends on how much kinetic energy the

ion has.

Shuttling back from zone i to zone d is not as straightforward as reversing the con-

trol electrode voltage program in time for several reasons. Although Newton’s equations

are symmetric in time, the ion acquires a lot of kinetic energy upon forward shuttling.

The negative of the ion’s initial momentum vector when starting in zone i is not even

close to the the ion’s final momentum vector after being shuttled from zone d to zone i.

The geometry of the T-trap does not allow for a simple permutation of electrode control

voltages to shuttle back from zone i to zone d based on the control voltage scheme used

to shuttle from zone d to zone i. When shuttling from zone d to zone i, the ion can run

into the very steep RF potential at the very top of the T-junction (to the right of zone

e in Fig. 5.2). When shuttling from zone i to zone e, there is no RF layer for the ion

to run straight in to. Lastly, there is a misalignment of the three layers in the T-trap

due to the manual assembly process. This misalignment manifests itself in the fact that

spatially reflecting the voltage sequence used to shuttle an ion from zone d to zone i

does will not successfully shuttle the ion to zone f. It is still possible to shuttle an ion

from zone i to zone d with near unit efficiency, but the shuttling time is much longer; it

takes 20 ms to shuttle from zone i to zone d as compared to the 26 µs it takes to shuttle

from zone d to zone i. Optimizing the shuttling scheme to go from zone i to zone d is

still being researched.

None of the corner turning protocols that have succeeded thus far are expected
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Figure 5.7: Reverse corner shuttling voltage profile to shuttle an ion from zone d to zone
i. This shuttling protocol has near unit efficiency but takes almost 103 times longer than
it takes to shuttle from zone i to zone d. There is no straightforward way to adopt the
voltage scheme used to shuttle an ion from zone d to zone i in order to shuttle from
zone i to zone d. This is due to the large amount of kinetic energy acquired during
the forward shuttling process, the geometrical asymmetry between forward and reverse
shuttling, and the misalignment of the three electrode layers relative to each other owing
to the manual assembly process.

to be adiabatic with this ion trap geometry. The main reason that it is not possible

to smoothly transport ions through the junction region is because of the RF humps.

Understanding the scaling of the RF humps as a function ion trap array geometry will

be crucial for designing adiabatic corner shuttling processes.

5.4 Separation and Recombination

Two ions that are in the same trapping zone can be separated from each other

and shuttled to two different trapping zones by slowly bringing up a potential wedge

in between the two ions. The secular frequency decreases from ∼1 MHz to only ∼20

kHz during this process as the potential wedge is brought up between the two ions.

The efficiency of separation is only 58% if two ions are separated in 10 ms, but the

separation voltage control sequence has not yet been optimized. The T-trap may be

fundamentally limited in its ability to separate two ions because the smallest electrodes

are 400µm wide [48]. Previous ion separation experiments have been carried out where
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ions were separated with near unit efficiency [10] using a small separation electrode that

was 100µm wide.

Ions that are initially in different trapping zones can be brought together in the

same trap by reverse the separation protocol in time. This has been done experimentally

in the T trap and works with near unit efficiency, but if the requirement is made that the

ions cannot switch places during the shuttling protocol, then the probability of success

is ∼ 40 %.

5.5 Swapping

Linear shuttling, corner shuttling, separation, and recombination protocols may

be combined to swap the positions of two ions that are initially trapped in the same

trapping zone. The step-wise process is depicted in Fig. 5.8. Two ions are initially

trapped in zone d, and in order to tell that the two ions have successfully swapped

positions, two different isotopes of cadmium ions are trapped in zone d. The two

different isotopes have different S1/2 to P3/2 resonance frequencies, so the ions scatter a

different number of photons when a detection laser is incident upon them. The difference

in photon scattering can be seen in the first panel of Fig. 5.8.

The ions are shuttled to zone b where they are separated by a potential wedge

comes up and separates the ions. One ion is shuttled to zone a while the other is shuttled

back to zone d where it is doppler cooled. The ion is then shuttled around the corner of

the T-junction from zone d to zone i after which it is linearly shuttled to zone k (step

3 of Fig. 5.8) while the other ion is shuttled from zone a to zone d where it is doppler

cooled. The ion in zone d is then shuttled to zone i (where the ion is again doppler

cooled) after which it is shuttled through the junction to zone f. As of the time of the

writing of this thesis, attempts to shuttle ions around the corner from zone d to directly

to zone f have proven unsuccessful owing to the electrode misalignment of the three

layers of the T-junction trap array. The ion in zone f is linearly shuttled to zone h. Ion
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Figure 5.8: Diagram of experimentally demonstrated ion swapping. Two ions are ini-
tially trapped in zone d. They scatter a different number of photons because the two
ions are different isotopes and thus have two slightly different S1/2 to P1/2 transitions
due to the isotope shift. The ions make a successive three point turn by sending one
ion around the corner one way and the other ion around the corner in the other direc-
tion. The two ions are brought back in the opposite order so that they have switched
places. This protocol makes use of linear shuttling, corner shuttling, separation, and
recombination.

B is shuttled back to zone i then to zone d (step 5) where it can be doppler cooled after

which it is shuttled to zone a. Ion A is then shuttled from zone h to zone i where it can

be doppler cooled, and then Ion B is shuttled to zone d. The ions are then recombined

in zone b and shuttled together to zone d where they are doppler cooled and imaged.
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The net effect is that the ions have switched places by executing a three point turn in

the T-junction ion trap array.

This process is carried out in successive 10 ms steps and has an overall success

rate of only 24%, but this is mainly hampered by the 58% success rate of the initial

separation attempts and the final recombination attempts. Excluding the separation

step at the beginning of the swapping protocol, the success rate of the remaining steps

is 82%. Other than a failed separation, the main cause of a failed swapping protocol

is that ions can swap places during the recombination step. Note that this protocol is

carried out in successive 10 ms steps instead of as a continuous process. The reason that

the swapping procedure was tested in a stepwise fashion was to ensure the success of

each individual step of the protocol. If the entire protocol was run at once, it would be

impossible to tell if the ions were actually separated or not. If the separation step fails,

then both ions could be shuttled together and could switch positions during the corner

shuttling process. The quoted 82% success rate may also be strongly dependent on

Doppler cooling the ions whenever they are in zones d or i. Future work will characterize

the success rate these protocols without Doppler cooling beams during the swapping

process.



Chapter 6

T-trap Relevance to Quantum Computing

The ion trap stands out as an attractive candidate for making a scalable quan-

tum computer[2],[3]. A hurdle toward realizing such a scalable system with ion traps is

the full, two dimensional control of the ions within the trap. Several experiments have

demonstrated the shuttling of ions between linearly adjacent trapping zones, the sepa-

ration of two ions in the same ion trap, and the recombination of two ions into the same

trapping zone[48]. These protocols have been successfully used for entanglement[10],

implementation of a quantum Fourier transform[11] that is essential for implementing

Shor’s Algorithm[4], and error correction[49].

There are two major issues to contend with when talking about a scalable geome-

try. The first is the actual physical layout of the ion trap electrodes. It may be possible

to implement calculations using hundreds of trapped ions that are in the same trap or in

a separate trapping zones in a linear chain. However, such a geometry requires the use

of many pairwise entanglements two entangle ions that are separated by many trapping

zones. The ability to sort ions requires at least two dimensional control of trapped ions,

so a two dimensional geometry can be considered scalable.

The other aspect to geometrical scalability is the manufacturing process. The

first experimental demonstration of two dimensional control of trapped ions by W.K.

Hensinger et al [16] was quasi-scalable system because the three layers of the trap were

manually aligned above each other. This manual assembly resulted in a misalignment
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Figure 6.1: A scalable geometry and a scalable manufacturing process: T-junction ion
trap array and AlGaAs ion trap. The T-trap is an example of a working trap with a
scalable geometry and the AlGaAs trap is an example of a working trap with a scalable
manufacturing process.

of the three layers which resulted in a breaking of the symmetry of the T-trap’s mirror

plane about its C2 axis. This made it impossible to reflect the necessary voltages profiles

of the control electrodes needed to shuttle an ion around a corner to successfully turn

the other direction. If hundreds or thousands of ions are to be trapped in a multi-

zone ion trap, it may be necessary to have many junctions. If turning the corner of

each junction in each direction requires the development of a custom control electrode

voltage profile, such a geometry cannot be said to be scalable. An example of a scalable

trap manufacturing process that was successfully used to trap individual ions was first

demonstrated using an AlGaAs trap in a seminal experiment by D. Stick et al [15].

Fig. 6.1 shows both the T-trap where a proof of principle experiment was performed to

show that ions can be controlled in two dimensions, and the AlGaAs trap where a proof

of principle experiment was performed showing that ions can be trapped and linearly

shuttled in a trap made using semiconductor etching techniques.

There are other aspects to scalable manufacturing prcesses as well; as the number

of trap electrodes increases, it becomes increasingly more difficult to wire up all of the

electrodes and filters. The greater challenge lies in designing automated sequences to
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simulate the potential and work out how the voltages should be optimally changed so

that arbitrarily long and complex shuttling operations can be carried out.



Bibliography

[1] J.I. Cirac, P. Zoller. Phys. Rev. Lett. 74, 20 (1995).

[2] D. Kielpinski, C. Monroe, and D. J. Wineland, Nature 417, 709 (2002).

[3] A. M. Steane, quant-ph/0412165.

[4] Shor, Peter W. SIAM Journal on Computing. 1997. 26(5). 1484-1509.

[5] D. Deutsch. Proc. Roy. Soc. London Ser. A. 400, 97 (1985).

[6] I.L. Chuang, M.A. Nielsen. Quantum Computation and Quantum Information.
Cambridge University Press. Cambridge, MA. 2000. Pg. 7.

[7] D.P. DiVincenzo. Fortschritte der Physik, 48, 771-783, (2000).

[8] K.-A. Brickman, P.C. Haljan, P.J. Lee, M. Acton, L. Deslauriers, C. Monroe. Phys.
Rev. A 72, 050306(R) (2005).

[9] H. Haffner, W. Hansel, C.F. Roos, J. Benhelm, D. Chek-al-kar, T. Korber, U.D.
Rapol, M. Riebe, P.O. Schmidt, C. Becher, O. Guhne, W. Dur, R. Blatt. Nature
438, 643-646. (2005).

[10] M.D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J.D. Jost, E.
Knill, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, Nature 429, 737
(2004).

[11] J. Chiaverini, J. Britton, D. Leibfried, E. Knill, M. D. Barrett, R.B. Blakestad,
W.M. Itano, J.D. Jost, C. Langer, R. Ozeri, T. Schaetz, and D.J. Wineland, Science
308, 997 (2005).

[12] P.C. Haljan, P.J. Lee, K.-A. Brickman, L. Deslauriers, C. Monroe. Phys. Rev. A
72, 062316 (2005).

[13] M. Acton, K.-A. Brickman, P.C. Haljan, P.J. Lee, L. Deslauriers, C. Monroe. quant-
ph/0511257 (2005).

[14] C. Langer, R. Ozeri, J.D. Jost, J. Chiaverini, B. DeMarco, A. Ben-Kish, R.B.
Blakestad, J. Britton, D.B Hume, W.M. Itano, D. Leibfried, R. Reichle, T. Rosen-
band, T. Schaetz, P.O. Schmidt, D.J. Wineland. Phys. Rev. Lett. 95, 060502 (2005).



65

[15] D. Stick, W.K. Hensinger, S. Olmschenk, M.J. Madsen, K. Schwab, C. Monroe.
Nature Physics 2, 36 (2006).

[16] W.K. Hensinger, S. Olmschenk, D. Stick, D. Hucul, M. Yeo, M. Acton, L. Deslau-
riers, C. Monroe, J Rabchuk. App. Phys. Lett. 88, 034101 (2006).

[17] B.B. Blinov, D.L. Moehring, L.-M. Duan, C. Monroe. Nature 428, 153-157 (2004).

[18] S. Seidelin, J. Chiaverini, R. Reichle, J.J. Bollinger, D. Leibfried, J. Britton, J.H.
Wesenberg, R.B. Blakestad, R.J. Epstein, D.B. Hume, J.D. Jost, C. Langer, R.
Ozeri, N. Shiga, D.J. Wineland. quant-ph/0601173.

[19] H.G. Dehmelt. Adv. At. Mol. Phys. 3, 53 (1967).

[20] Abromowitz, M; Stegun, I.A. Handbook of Mathematical Functions. US Depart-
ment of Commerce National Bureau of Standards. Applied Mathematics Series 55.
1964; Ch. 20.

[21] R.I. Thompson, T.J. Harmon, M.G. Ball. Canadian Journal of Physics; Dec 2002;
80, 12. pg. 1433.

[22] W. Paul. Proc. International School of Physics Enrico Fermi. 9-19 July 1991. Ames-
terdam, NY. 1992 pg. 497-517.

[23] Jackson, John D. Classical Electrodynamics. 3rd ed. John Wiley & Sons, Inc. Hobo-
ken, NJ. 1999; Pg. 39.

[24] Cohen-Tannoudji, Claude; Diu, Bernard; Laloe, Franck. Quantum Mechanics vol
II. John Wiley and Sons. New York, NY. 1977. Pg. 1110.

[25] W.K. Hensinger, N.R. Heckenberg, G.J. Milburn, H. Rubinsztein-Dunlop, J. Opt.
B: Quantum Semiclass. Opt. 5, R83 (2003).

[26] Press, William H; Teukolsky, Saul A; Vetterling, William T; Flannery, Brian P.
Numerical Recipes in C: The Art of Scientific Computing. 2nd ed. Cambridge
University Press. New York, NY. 2002. Ch. 16.

[27] Yeo, M. Undegraduate Honors Thesis. University of Michigan. 2006.

[28] Griffiths, David J. Introduction of Quantum Mechanics. Prentice Hall Inc. Upper
Saddle River, NJ. 1995. Pg. 327.

[29] D.J. Wineland, C. Monroe, W.M. Itano, D. Leibfried, D.E. King, D.M. Meekhof.
Journal of Research of the National Institute of Standards and Technology. 103,
259 (1998).

[30] L. Deslauriers, P.C. Haljan, P.J. Lee, K.-A. Brickman, B.B. Blinov, M.J. Madsen,
C. Monroe. Phys. Rev. A 70, 043408 (2004).

[31] Q.A. Turchette, D. Kielpinski, B.E. King, D. Leibfried, D.M. Meekhof, C.J. Myatt,
M.A. Rowe, C.A. Sackett, C.S. Wood, W.M. Itano, C. Monroe, D.J. Wineland.
Phys. Rev. A 61, 063418-8 (2000).



66

[32] “Efficient Photoionization-Loading of Trapped Cadmium Ions with Ultrafast
Pulses,” L. Deslauriers, M. Acton, B.B. Blinov, K.-A. Brickman, P.C. Haljan,
W.K. Hensinger, D. Hucul, S. Katnik, R.N Kohn, P.J. Lee, M. A. Madsen, P.
Maunz, D.L. Moehring, S. Olmschenk, D. Stick, C. Monroe. (submitted, 2006).

[33] A. Kastler. J. Phys. Rad. 11, 255 (1950).

[34] Metcalf, Harold J.; van der Straten, Peter. Laser Cooling and Trapping. Springer-
Verlag New York Inc. New York, NY. 1999. Ch. 6.

[35] J.I. Cirac and P. Zoller. Phys. Rev. Lett. 74, 4091 (2004).

[36] K.Molmer, A. Sorensen. Phys. Rev. Lett. 82, 1835 (1999).

[37] G.J. Milburn, S. Schneider, D.F.V. James. Fortschr. Physik 48, 801 (2000).

[38] D.J. Wineland et al. NIST J. Res. 103, 259 (1998).

[39] Q.A. Turchette et al. Phys. Rev. A 61, 063418 (2000).

[40] L. Deslauriers et al. Phys. Rev. A 70, 043408 (2004).

[41] L. Deslauriers, S. Olmschenk, D. Stick, W.K. Hensinger, J. Sterk, C. Monroe.
quant-ph/0602003.

[42] A.R. Peaker, U. Kaufmann, Z.-G. Wang, R. Worner, B. Hamilton, H.G. Grimmeiss.
J. Phys. C: Solid State Phys. 17, 6161-6167 (1984).

[43] B. Predel, Au-Ba (Gold-Barium), Landolt-Bornstein - Group IV Physical Chem-
istry, Vol. 5, Issue 1, Jan 1991.

[44] M.A. George. PhD Thesis Arizona State University. Disseration Abstracts Inter-
national, Vol 52-11, B, 5904 (1991).

[45] A. Olander. Journal Am. Chem. Soc. 54, 10, 3819 (1932).

[46] B. Predel, Au-Ca (Gold-Calcium), Landolt-Brnstein - Group IV Physical Chem-
istry, Vol. 5, Issue 1, Jan 1991.

[47] V.O. Heinen. PhD Thesis Michigan State University. Dissertation Abstracts Inter-
national, Vol. 44-09, B, 2803 (1983).

[48] M. A. Rowe, A. Ben-Kish, B. DeMarco, D. Leibfried, V. Meyer, J. Beall, J. Brit-
ton, J. Hughes, W. M. Itano, B. Jelenkovic, C. Langer, T. Rosenband, and D. J.
Wineland, Quantum Information and Computation 2, 257-271 (2002).

[49] J. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett, R. B. Blakestad, J. Britton,
W.M. Itano, J.D. Jost, E. Knill, C. Langer, R. Ozeri, and D.J. Wineland, Nature
432, 602(2004).


