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Abstract

Trapped Cd+ ions offer a promising prospective system for implementation of fast

quantum logic gates [1]. We relate the first work towards experimental realization of a

new, highly scalable scheme for ion trap-based quantum computation [2]. For data bus,

this “pushing gate” relies upon the entanglement of qubit ions in adjacent microtraps

through the use of strong, off-resonant laser pulses. The magnitude of the a.c. Stark

shift (and, implicitly, the dipole force) induced by these laser pulses depends upon the

spin state of the qubit, producing potentially interesting spatial superpositions of the

wavefunction associated with the ion.

We propose to apply a large a.c. Stark shift to a single Cd+ ion located in a large,

asymmetric RF quadrupole trap as a first step towards implementing the “pushing gate.”

The source of the “pushing” laser pulses is a frequency-quadrupled QuantaRay DCR-2

Q-switched Nd:YAG laser (outputting maximum 60mJ, ∼ 6ns pulses at 266nm with a

repetition rate of 10Hz). These high intensity pulses, far red-detuned from both the

Cd+ D1 (S1/2 →P1/2, ∆12 ≈ 197 THz) and D2 (S1/2 →P3/2, ∆32 ≈ 270 THz) lines, will

introduce a large a.c. Stark shift on the atomic ground state and, through interaction

with the optical potential associated with the pulse, potentially impose a strong force

on the ion. We outline the theory underlying the scheme as well as the construction

of an experimental apparatus suitable for introducing strong pulses to the Cd+ atomic

system. Methods for observing and measuring this shift and future applications and

directions are also discussed.
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Chapter 1

Introduction

Ion traps, in one form or another, have been workhorses in experimental physics

for over 60 years now [3]. Laser cooling, now ubiquitous in almost every atomic physics

experiment, was first observed in an ion trap in 1978 [4, 5]. Measurements of electron

and positron g-factors taken in ion traps have provided some of the most precise tests of

QED currently available [6]. Recent success with trapped 199Hg+ ions [7] as a precision

frequency standard may even herald the next generation of atomic clocks.

One of the most active areas of trapped ion research in recent years has been the

application of trapped ions to quantum information science and, specifically, to quan-

tum computing. Trapped atomic ions which closely approximate ideal two- or three-level

quantum systems (such as Be+, Hg+ and Cd+) have shown promise as potential quan-

tum bits (“qubits”). In 1995 the first scheme for ion trap quantum computing, due to

J.I. Cirac and P. Zoller [8], was presented, as was the first experimental realization of an

ion trap quantum logic gate built by researchers at the National Institute of Standards

and Technology in Boulder, Colorado [9]. This scheme employs the individual internal

electronic states of multiple ions stored within a single trap as a data register and the

collective motional state of the ions as a data bus. This type of logic gate scheme is

currently the principal focus of most research groups working in ion trap quantum com-

puting, and has resulted in a number of recent advances towards a practical experimental

realization [10, 1, 11, 12]
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In 2000, a second entirely unique, scheme for ion trap quantum computation was

presented by Cirac and Zoller [2, 13, 14]. Again, the electronic states of individual ions

represent individual qubits, but in this scheme each ion is stored in its own “microtrap”

and a travelling “head” trap is brought to the qubit which is to be read/written. In one

interpretation, an intense, fast pulse of laser light is then used to entangle the ions in

the adjacent traps and information is transferred in this way from qubit to qubit. This

“pushing gate” offers potential advantages over the earlier Cirac and Zoller proposal in

terms of speed and the need for preparative cooling of the qubit ions.

The subject of this thesis is the experimental implementation of such pulses on

single trapped Cd+ ions. This chapter will focus on classical ion trap dynamics that can

be used to describe the general motional dynamics of a trapped ion as well as on the in-

ternal electronic structure of cadmium ions and how this structure is electromagnetically

addressed with laser light. Section 1.4 will conclude the chapter with a discussion of the

synthesis of these ideas into an efficient, theoretical means for quantum computation.

1.1 Dynamics of an Ion in an Ideal RF Quadrupole Trap

While there are a variety of means for electromagnetically confining charged par-

ticles [3], for purposes of quantum computation the RF quadrupole (or Paul) trap is the

only choice. Underlying this preference are the number of particles reasonably confined

(from one to a few hundred), the lengthy periods of time over which they may be stored,

and the SHO-like quantum dynamics of strongly cooled trapped ions. Paul traps are

used exclusively throughout the experiment described here, and this section will provide

a working description of their dynamics as a primer for later analysis.

1.1.1 The Classical Dynamics and the Mathieu Equation

Paul traps can take a variety of forms [3, 16], though they share a common princi-

ple of operation. The electrode configuration depicted in Figure 1.1(a) is representative
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of what is necessary to achieve confinement, and is a fair approximation to those fab-

ricated for this experiment. In this ideal case, each of the three conducting surfaces

are hyperboloids of revolution and therefore symmetric in rotation about the specified

z-axis. The central, closed electrode (from which a cross-section has been removed in

the figure) is commonly referred to as the “ring” and the two others as “endcaps.”

With a potential V0 offset by some static voltage U0 and oscillating sinusoidally at RF

frequency ΩT applied to the ring electrode and with the endcaps held at ground with

respect to the RF, the potential inside the trap is:

V (x, y, z, t) = (U0 + V0 cos (ΩT t))
(
x2 + y2 − 2z2

d2
0

)
, (1.1)

or, defining a radial coordinate in terms of the x- and y-basis:

V (x, y, z, t) = (U0 + V0 cos (ΩT t))
(
r2 − 2z2

d2
0

)
. (1.2)

Figure 1.1: (a) The electrode configuration for an ideal Paul trap [15]. Each of the
electrodes is a three-dimensional hyperboloid. An RF oscillating potential is applied to
the ring electrode (from which a cross section has been removed) while the two endcaps
are held at RF ground. (b) The one-dimensional motion of an ion trapped in a three-
dimensional RF quadrupole trap of the type shown in (a). Note the overall sinusoidal
oscillation (“secular motion”) modulated at its extrema by the RF drive frequency ΩT

(“micromotion”). The trap parameters used to model this motion are approximately
those of the real trap used for this work.
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Here, d0 is a characteristic geometric parameter of the trap, governed by the ring’s

innermost radius r0 and the endcap-to-endcap spacing 2z0:

d0 =
√
r20 + 2z2

0 . (1.3)

The motion of a point particle of massm and chargeQ placed within this potential

is governed by a system of differential equations:

d2r

dt2
+
(

2Q
md2

0

)
(U0 − V0 cos ΩT t) r = 0 (1.4a)

d2z

dt2
+
(

4Q
md2

0

)
(U0 − V0 cos ΩT t) z = 0 (1.4b)

It is useful to perform the following change of variables on these equations:

ar = −az

2
=

8QU0

md2
0Ω

2
T

; qr = −qz
2

=
4QV0

mr22Ω
2
T

; ζ =
ΩT t

2
(1.5)

Which yields:

d2r

dζ2
+ (ar − 2qr cos 2ζ)r = 0 (1.6a)

d2z

dζ2
+ (az − 2qz cos 2ζ)z = 0, (1.6b)

where each of these equations has been expressed in the canonical form of the well-known

Mathieu equation. It follows that when ar, az, qr and qz each fall within the necessary

range of values, solutions to (1.6a) and (1.6b) are bounded and, implicitly, the particle

is trapped within the potential. Such solutions (the so-called Floquet solutions) take

the form of an infinite series and are thus not very tractable for exploring the motion of

the ion unless numeric techniques are employed [15]. Instead, a series of approximations

to the problem offer considerably more practical insight.

1.1.2 The Secular Approximation

In order to represent clearly the dynamics of the particle, it is useful to approach

the ion’s motion along either the r- or z-directions as a sum of two components – a
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small-amplitude, quickly oscillating term (“micromotion”) and a large-amplitude, slowly

oscillating term (“secular motion”). Consider, in z:

z ≡ z′ + zµ (1.7)

Returning to (1.4b) (with U0 = 0):

d2z′

dt2
+
d2zµ
dt2

=
(

4Q
md2

0

)
V0 cos (ΩT t)

(
z′ + zµ

)
(1.8)

We assume z′ � zµ and z̈µ � z̈′, so

d2zµ
dt2

≈
(

4Q
md2

0

)
V0 cos (ΩT t) z′ (1.9)

Integrating this expression over a time t′ sufficiently short that z′ can be considered

constant:

zµ(t) ≈ −
(

4Q
md2

0Ω
2
T

)
V0 cos (ΩT t) z′ (1.10)

In words, the micromotion of the ion is an oscillation at the RF drive frequency with

an amplitude that is linear in the instantaneous magnitude of the secular motion.

We are left to determine the functional form of the secular motion, which is done

by substituting (1.10) into (1.7):

z ≈ z′ −
(

4Q
md2

0Ω
2
T

)
V0 cos (ΩT t) z′ (1.11)

Returning to (1.4b):

d2z

dt2
≈
(

4Q
md2

0

)
V0 cos (ΩT t) z′ −

(
16Q2

m2d4
0Ω

2
T

)
V 2

0 cos2 (ΩT t) z′ (1.12)

Since we have seen that the micromotion oscillates with frequency ΩT , averaging (1.12)

over a single RF period returns
〈
d2zµ/dt

2
〉

= 0 and we have:

1
π

∫ π

0

d2z

dt2
dt =

〈
d2z′

dt2

〉
= − 8Q2V 2

0

m2d4
0Ω

2
T

z′ (1.13)
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It follows that on time scales larger than the period of the RF drive, the secular motion

of the ion is approximated by the equation of motion for a simple harmonic oscillator

with frequency of oscillation, ωz:

ωz ≈
2
√

2QV0

md2
0ΩT

(1.14)

Solving and substituting back into (1.7) along with (1.10), the total motion of the ion

is given by:

z(t) ≈ cos(ωzt)
(

1−
(

4Q
md2

0Ω
2
T

)
V0 cos (ΩT t)

)
(1.15)

Based on these approximations, the motion of the ion along z is then expected to

be a large oscillation with frequency ωz modulated (mainly at the larger oscillation’s

extrema) by smaller micromotion at the RF drive frequency. Figure 1.1(b), a Runge-

Kutta-Felberg numerical integration of (1.6b), exhibits precisely these functional char-

acteristics, verifying equation (1.15).

This description of confined motion within a trap, particularly the functional rep-

resentation of micromotion (zµ), holds promise as a gross means for determining the

magnitude of forces induced upon the ion. Furthermore, we have shown that the motion

of a trapped ion is approximately that of a simple harmonic oscillator. When extrapo-

lated to the quantum limit of the ion’s motion, the system exhibits the characteristics

of a three-dimensional quantum SHO [3, 15]. The motional states of the ion in this

limit are given by the generalized Fock (or number) states |n〉 as described in a variety

of introductory references [17, 18]. This quantum treatment is of critical importance to

both the original Cirac and Zoller scheme and the “pushing gate” scheme, and it will

be discussed below.

1.2 The Atomic Structure of Cd+

Thus far we have considered only the motion of an ion in a quadrupole trap with

no regard for the ion’s internal degrees of freedom. Trapped, singly ionized atomic



7

Figure 1.2: Diagram of the relative isotopic abundances of cadmium [19]. Isotopes
shown in red are potential qubit ions with non-zero nuclear spin and associated hyperfine
structure.

cadmium, which will be the medium for this experiment, offers a rich structure of

electronic energy levels in each of the eight naturally stable isotopes (see Figure 1.2). Of

particular importance among these isotopes are the two with odd atomic mass (111Cd+

and 113Cd+) and associated non-zero nuclear spin (I = 1/2 for both). Coupling of

this spin to the spin of the ion’s valence electron introduces hyperfine splitting of the

ion’s electronic energy levels. This experiment is mediated through the interaction of

these hyperfine energy states with intense, monochromatic electromagnetic radiation

(ie: laser light). Figure 1.3 shows the energy level structure for 111,113Cd+ in the

|F,mF 〉 basis (shown also are the hyperfine qubit states |1〉 and |0〉 and the detuning

of quadrupled Nd:YAG radiation the from P1/2 and P3/2 states). Appendix A depicts

the same energy level structure along with the dipole matrix elements for each possible

transition between states.

A “good” qubit manifests itself as a robust, two-level quantum system which

can be addressed and prepared in a relatively accessible fashion. Any such system
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Figure 1.3: Representative (not to scale) energy level diagram for 113,111Cd+ in the
|F,mF 〉 eigenbasis. The resonant wavelengths for the D1 (2S1/2 ↔2P1/2, γ1/2 ≈ 37MHz)
and D2 (2S1/2 ↔2P3/2, γ3/2 ≈ 47MHz) transitions as well as the magnitude of the
hyperfine splitting in each of the fine structure levels are pictured. Also represented is
the resonant cycling transition (dipole matrix element of 1, see Figure A.2) between the
2S1/2 |1, 1〉 and 2P3/2 |1, 2〉, which is driven by a σ+ polarized 214.5nm beam and used
for detection of the ion. For reference in future sections, the detuning of light produced
by frequency-quadrupling the Nd:YAG 4F3/2 →4I11/2 transition (266nm) from the 2P1/2

(∆12) and 2P3/2 (∆32) states is also shown.
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is mathematically equivalent to a quantum spin, and this analogy will be employed

throughout this discussion. As mentioned, the hyperfine structure of Cd+ is what

makes it so appealing, both as a qubit and as a candidate for implementing strong,

spin-dependent forces. In particular, the S1/2 manifold is used as a ground state with

its two hyperfine levels corresponding to F = 0, 1 functioning as qubit levels; for this

experiment, the |0〉 ≡ |0, 0〉 state is effectively “spin down” while |1〉 ≡ |1, 1〉 corresponds

to “spin up.” The Zeeman splitting between |1, 0〉 and |1,−1〉 , |1, 1〉, in analogy to

hydrogen, goes as the Bohr magneton:

∆ν
B

= µB = 1.4MHz/Gauss (1.16)

Within the trap, in its ground state, the ion is detected by optically pumping

the system to the |1〉 state using a σ+ (relative to the quantization axis of the ion)

214.5nm “detection” laser beam which is resonant with the S1/2 ↔P3/2 transition. Once

pumped to |1〉, the detection beam drives a cycling transition (dipole matrix element of

1) between the ground state and the state labelled |e〉 in Figure 1.3. The 214.5nm light

scattered by this transition is then used to resolve the state of the ion.

However, with the ion in the |0〉 state, the detection beam is ∼ 15GHz detuned

from P3/2 and unable to couple to any transitions to other states. In order to make a

transition from this “dark state” back to the F = 1 manifold, it is possible to add a

14.5GHz (15.4GHz for 113Cd+) optical beatnote to the detection beam using an electro-

optic modulator. Another recently cited method is to drive high-fidelity stimulated

Raman transitions between the two states by again using an EO [20]. This technique

involves Rabi oscillation between |1〉 and |0〉, allowing for the creation of coherent su-

perpositions of qubit states.

Ultimately, the differences in how light couples to |1〉 and |0〉 will provide the

spin-dependence of the laser-induced force which will be discussed in the next section.

Just as with the detection beam, in the dark state the system will interact in a different
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way with the detection laser than in the spin down state (by virtue of the detuning

difference introduced by the hyperfine splitting). We will return to this concept in the

final section of this chapter.

1.3 The a.c. Stark Shift and the Dipole Force

The last theoretical component to be considered is the nature of the laser-atom

interaction which mediates the mapping of the Cd+ spin state to the motion of the

ion. Specifically, we will be addressing the a.c. Stark shift (or light shift) and the

reactive dipole (or gradient) force on the associated ion. The simplest and most concise

means for introducing both phenomena is to address each on a two-level atom and

then extrapolate to the more complicated Cd+ atomic structure. Alternate methods for

performing the derivation below are given in references [21, 22].

1.3.1 The a.c. Stark Shift

Consider an electron in a simple atomic system consisting of two stationary eigen-

states of the system Hamiltonian, H0, |g〉 (ground) and |e〉 (excited). We perturb the

system with a laser field described by:

~E(z, t) = E0ε̂ cos(kz − ω`t) (1.17)

We are interested in finding the motion of the system under this perturbation as gov-

erned by a new, interaction Hamiltonian, H′(t). In constructing this Hamiltonian, we

make the key assumption that the two energy levels are coupled by electric dipole radi-

ation from the laser in such a way that the spacial extent of the electron’s wavefunction

is orders of magnitude smaller than the optical wavelength λ of the laser. In this limit,

we may ignore the spatial variation of ~E(z, t) as we integrate over the Hamiltonian and

thus we write (after some non-trivial algebraic manipulation [23]):

H′(t) = −µ̂ · ~E(t). (1.18)
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Quantum mechanically, µ̂ ≡ er̂, or, component-wise, µjk ≡ e 〈j|r̂|k〉 such that:

H′
jk(t) = −~

(
e 〈j|r̂|k〉

~
E0

)
cos (ω`t)

= ~Ω cos(ω`t), (1.19)

where we have defined the so-called Rabi frequency:

Ω ≡ −e 〈e|r̂|g〉
~

E0. (1.20)

An arbitrary, time-dependent wavefunction for an electron in this system takes

the form:

|ψ(t)〉 = ce(t) |e〉 e−ıωegt + cg(t) |g〉 e−ıωget

= ce(t) |e〉 e−ıωt + cg(t) |g〉 eıωt, (1.21)

where we have noted that ω ≡ ωeg = −ωge.

The time evolution of this expression is described by the time-dependent Schrödinger

equation as a coupled system of differential equations:

ı~
dce(t)
dt

=
~Ω
2
cg(t)

(
eı(ω+ω`)t + eı(ω−ω`)t

)
(1.22a)

ı~
dcg(t)
dt

=
~Ω∗

2
ce(t)

(
e−ı(ω+ω`)t + e−ı(ω−ω`)t

)
. (1.22b)

Assuming |(ω` − ω)| � ω, we invoke the rotating wave approximation (RWA), ignoring

terms which oscillate quickly (at frequency ω` + ω) with respect to those that oscillate

slowly (at ∆ ≡ ω` − ω) [23]:

ı~
dce(t)
dt

=
~Ω
2
cg(t)eı∆t (1.23a)

ı~
dcg(t)
dt

=
~Ω∗

2
ce(t)e−ı∆t. (1.23b)

We are principally concerned with determining the time-independent shift in en-

ergy of each of |e〉 and |g〉 induced by the laser, so we now move to a rotating frame in
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which the weighting coefficients absorb the time dependence of H′(t). Redefining the

c’s:

c′g(t) ≡ cg(t) (1.24a)

c′e(t) ≡ ce(t)e−ı∆t. (1.24b)

Essentially, by requiring that the state vector precess at a frequency ∆, the Hamiltonian

appears stationary. Substituting these new expressions into (1.23):

ı~
dc′e(t)
dt

=
~Ω
2
c′g(t)− ~∆c′e(t) (1.25a)

ı~
dc′g(t)
dt

=
~Ω∗

2
c′e(t). (1.25b)

These expressions are entirely algebraically equivalent to (1.23). In matrix notation this

new, static interaction Hamiltonian takes the form:

H′ =
~
2

 −2∆ Ω

Ω∗ 0

 . (1.26)

The eigenvalues of this matrix are the energy shifts produced by the interaction:

Ee,g = −~
2

(
∆±

√
∆2 + |Ω|2

)
. (1.27)

It is reasonable under certain circumstances – when coupling these states with far-

detuned radition of modest intensity – to assume Ω � |∆|.1 In this approximation,

Taylor expansion of the square root term in (1.27) leads to:

∆Eg =
~|Ω|2

4∆
(1.28a)

∆Ee = −~|Ω|2

4∆
. (1.28b)

These perturbations are known, appropriately, as a.c. Stark shifts or light shifts. Qual-

itatively, it is worth noting that a red-detuned beam (∆ > 0) shifts both |g〉 and |e〉 an

equal amount apart whereas a blue-detuned beam (∆ < 0) shifts the two closer. The
1 The validity of this approximation in actual practice is discussed in the following chapter.
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shift is also dependent on Ω2 ∼ E2
0 ∼ I0, the intensity of the beam. In this respect,

a spatially-dependent optical intensity is equivalent to a spatially-dependent potential

felt by the electron.

1.3.2 The Dipole Force and The Optical Potential

In the previous section, equation (1.28b) describes the shift in energy induced

by an interaction with a laser for the ground state of a two-level atom as a function

of laser detuning and Rabi frequency. While the detuning is a purely experimental

quantity, the expression given in (1.20) for the Rabi frequency, however exact, does not

relate Ω2 to tangible experimental variables. In order to express the “dipole potential”

(the potential felt by the electron because of the light shift as a function of the spatial

characteristics of the laser beam) in purely experimental terms, we seek to re-define the

square of the Rabi frequency.

In order to explore this problem, we introduce the density matrix formalism with

regard to the two-level atom described in the previous subsection. In terms of the

weighting coefficients ce and cg, above, the density matrix ρ is given as:

ρ ≡

 ρee ρeg

ρge ρgg

 =

 cec
∗
e cec

∗
g

cgc
∗
e cgc

∗
g

 , (1.29)

or, in terms of the rotating frame given by c′g and c′e, above:

ρ̃ =

 ρee ρ̃eg

ρ̃ge ρgg

 =

 cec
∗
e cec

∗
ge
−ı∆t

cgc
∗
ee

ı∆t cgc
∗
g

 . (1.30)

The terms ρ̃eg and ρ̃ge are known as coherences, while ρgg and ρee describe the popula-

tions of the ground and excited states, respectively.

Any description of the evolution of the system in terms of the density matrix is en-

tirely equivalent to the independent description given in the previous section. However,

there is one aspect of the system which was not included in the previous discussion, but
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proves crucial in “real” atoms: the spontaneous emission of light quanta of energy ~ω as

the electron relaxes from the excited state to the ground state. The importance of this

phenomenon and the technique for modeling it are discussed in a number of references

[23]. Here, we simply assume it can be described as the decay of the coefficient ρeg(t)

at a rate γ/2 = ω3µ2/6πε0~c3 (the linewidth), where µ is the dipole moment of the

system: (
dρeg

dt

)
S.E.

= −γ
2
ρeg. (1.31)

Using the analogues of equations (1.22) for the density matrix formalism, we arrive at

what are known as the semiclassical optical Bloch equations (OBE):

dρgg

dt
= +γρee +

ı

2
(Ω∗ρ̃eg − Ωρ̃ge) (1.32a)

dρgg

dt
= −γρee +

ı

2
(Ωρ̃ge − Ω∗ρ̃eg) (1.32b)

dρ̃ge

dt
= −

(γ
2

+ ı∆
)
ρ̃ge +

ı

2
Ω∗ (ρee − ρgg) (1.32c)

dρ̃eg

dt
= −

(γ
2
− ı∆

)
ρ̃eg +

ı

2
Ω (ρgg − ρee) . (1.32d)

In order to simplify this system of equations, we assume (with physical motivation)

that the population of the system is conserved, ρgg + ρee = 1, and that the optical

coherences are related by ρ̃eg = ρ̃∗ge. Defining a new term, w ≡ ρgg − ρee, the OBE can

be re-expressed as two differential equations:

dρ̃eg

dt
= −

(γ
2
− ı∆

)
ρeg +

ıwΩ
2

(1.33a)

dw

dt
= −γw − ı

(
Ωρ̃∗eg − Ω∗ρ̃eg

)
+ γ. (1.33b)

We are interested in the steady state solutions to these equations – particularly those

in which the laser field is uniform. In this case ẇ = ˙̃ρeg = 0, and we solve:

w =
1(

1 + |Ω|2
2

1
γ2/4+∆2

) (1.34a)

ρ̃eg =
ıΩ

2 (γ/2− ı∆)
(
1 + |Ω|2

2
1

γ2/4+∆2

) (1.34b)
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Both expressions bear the term:

s ≡ |Ω|2

2
1

γ2/4 + ∆2
= s0

1
1 + (2∆/γ)2

(1.35)

s0 ≡
2|Ω|2

γ2
. (1.36)

We have arrived at a new relationship which describes how the quantity |Ω|2 governs

the population of the system. We know from previous discussion that Ω(z) ∼ E(z); and

thus it follows that |Ω(z)|2 ∼ I(z), the intensity of the laser. Thus we write:

s0 =
2|Ω(z)|2

γ2
≡ I(z)
Isat

(1.37)

⇒ |Ω(z)|2 =
γ2

2
I(z)
Isat

(1.38)

Where Isat is a dimensionless constant of proportionality which depends upon (1.20),

and can expressed in terms of experimental quantities as Isat ≡ πhcγ/3λ2.

Returning, at last, to equation (1.28b), we define the potential felt by the system

in state |g〉:

Udip(z) = ∆Eg(z)

=
~
8
I(z)
Isat

γ2

∆
(1.39)

Taking the gradient of this potential, we arrive at the goal of this discussion: an equation

describing the dipole force imposed on a simple two-level atom by an off-resonant laser

beam:

Fdip = −∇Udip = −~
8
∇I(z)
Isat

γ2

∆
(1.40)

1.3.3 Generalizing to the Far Off-Resonant Regime

In order to arrive at equation 1.40, the RWA – that the effect of the quickly

rotating terms of order exp(ω` + ω) is negligible with respect to the more slowly rotat-

ing terms of order exp(ω` − ω) – was made in subsection 1.3.1. This is often a valid
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Figure 1.4: (a) Near-resonant radiation couples a two-level system. The counter-rotating
frequency (ω` + ω) is far from the resonant transition, while the slowly rotating term
(∆ = ω` + ω) is very near. Here the RWA applies, and the contribution from counter-
rotating is negligible. (b) In the case where ∆ is on the order of ω` + ω, both terms
contribute significantly to the overall a.c. Stark shift.

approximation, especially when coupling the states of a pure two-level system with near-

resonant radiation. However, in the case of a three-level system, light near resonance

for one transition might couple weakly to a far off-resonant transition and induce a

secondary a.c. Stark shift. In this far off-resonant regime, the RWA fails and we must

approach the problem from a slightly different angle.

To visualize the problem, consider Figure 1.4. Generally, the RWA applies when

∆ � ω � (ω` +ω), but fails when ∆ is on the order of (ω` +ω). In this limit, equations

(1.22) cannot be expressed in terms of a time-independent Hamiltonian matrixsuch as

(1.26), and no closed form energy eigenvalues exist. However, in hydrogen-like systems

such as Cd+, it is often valid to regard the rotating and counter-rotating terms as

individual beams coupled to the excited state with detunings of ∆ ≡ ω` − ω and ∆′ ≡

ω`−ω, respectively [24]. Here ∆′ is, equivalently, a second, counter-rotational detuning.

By analogy, equation (1.28b), the magnitude of the a.c. Stark shift on the ground state
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becomes:

∆Eg = −~Ω2

4

(
1
∆

+
1
∆′

)
. (1.41)

Similarly, analogous to (1.39) and (1.40):

Udip(z) =
~γ2

8
I(z)
Isat

(
1
∆

+
1
∆′

)
, (1.42)

Fdip(z) =
~γ2

8
∇I(z)
Isat

(
1
∆

+
1
∆′

)
. (1.43)

1.3.4 Application to the 111,113Cd+ System

The two-level system discussed above is, of course, an incomplete description of

physical atoms comprised of many more than two electron energy levels coupled by

dipole radiation. The principles and assumptions underlying the derivation of equation

(1.40) are, nonetheless, applicable to these more complicated systems. Whereas for the

two-level system the dipole transition strength is β = 1 for the single, allowed transition,

in the multilevel case we generalize (1.38) to:

Ω = β
γ2

2
I

Isat
. (1.44)

Or, in terms of the total dipole force on the atom for all m allowed transitions:

Udip =
∑
m

βm

(
~γ2

8
I(z)
Isat

(
1
∆

+
1
∆′

))
m

, (1.45a)

Fdip = −
∑
m

βm

(
~γ2

8
∇I(z)
Isat

(
1
∆

+
1
∆′

))
m

. (1.45b)

The two equations given by (1.45) are directly applicable to the 111,113Cd+ system

described in section 1.2. The dipole matrix elements which govern the coupling strengths

β for each of the allowed transitions in Cd+ are presented in Appendix A.

1.3.5 Spin-Dependent a.c. Stark Shifts

The structure of odd-isotope Cd+ ions (Figure 1.3) is such that two qubit states in

the S1/2 manifold may experience a.c. Stark shifts of significantly different magnitudes
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when addressed with light of a fixed polarization and detuning. This differential Stark

shift is the result of a number of distinct effects – polarization selection rules, the

structural differences between the P1/2 and P3/2 manifolds, hyperfine splitting in each

of the fine structure levels, differences in the dipole matrix elements and linewidths

for the D1 and D2 lines, and Zeeman splitting of the F = 1 submanifold of the S1/2

state. The magnitude of each of these effects is governed by the detuning of the laser

from resonance, the polarization of the beam, and the two S1/2 hyperfine states being

considered as spin (qubit) states.

With these parameters in mind, it is valuable to examine the following contrived

but illustrative example. With |0, 0〉S12 ≡ |0〉 and |1, 1〉S12 ≡ |1〉 as the two qubit states,

σ+-polarized laser pulses of optical frequency ω` couple the system to the P1/2 and P3/2

manifolds. The a.c. Stark shift on |1〉 (which couples only to P3/2, F = 2,mF = 2) is

given by (1.45b):

U|1〉(z, ω`) =
~γ2

3/2

8
I(z)

(Isat)3/2

(
1

ω3/2 − ω`
+

1
ω3/2 + ω`

)
, (1.46)

while the shift on |0〉 (which couples to P3/2, F = 1,mF = 1 and P1/2, F = 1,mF = 1)

is:

U|0〉(z, ω`) =
~
24
I(z)

(
2γ2

3/2

(Isat)3/2

(
1

ω3/2 − ω`
+

1
ω3/2 + ω`

)
+

γ2
1/2

(Isat)1/2

(
1

ω1/2 − ω`
+

1
ω1/2 + ω`

))
(1.47)

It is useful to find the zero of this equation (i.e., the laser frequency at which

there is no net a.c. Stark shift upon the |0〉 level). Using given values for the linewidths

and transition frequencies in question, we have:2

ωc = 8461THz or, (1.48)

λc = 222.77nm (1.49)

It is worth noting that the counter-rotating terms in the expressions above (added as
2 It is worth observing that this number is not entirely arbitrary – a laser of this wavelength could be
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Figure 1.5: A representation of a spin-dependent force acting on a qubit in the pure
states a.) |1〉 and b.) |0〉 as well as on the (unnormalized) superposition state c.)
1√
2
(|1〉+ |0〉). Note that the third case results in a mapping of the superposition of

qubit spin onto a superposition of the ion’s spatial wavefunction.

an extra measure for when the RWA fails) change the value of λc by only .03%.

A Cd+ ion in the |0〉 state under these conditions will experience no net a.c.

Stark shift, while an ion in the |1〉 state would experience some non-zero shift given

by equation (1.46). An ion in the even superposition state 1/
√

2 (|0〉+ |1〉) will evolve

into an a.c. Stark-shifted superposition. In this case, any dipole force resulting from

interaction with the laser’s optical potential will map the ion’s internal electronic state

onto its spatial wavefunction. This phenomenon is one practical realization of a spin-

dependent force which will be crucial in the following discussion of the Cirac-Zoller

“pushing gate” (see Figure 1.4 for an illustration of this principle).

1.4 A Microtrap-Based Scheme for Quantum Computation

1.4.1 The Original Theory

Finally, we describe the Cirac-Zoller “pushing gate” which motivates this entire

discussion. It can be shown that any arbitrary quantum computational algorithm can be

implemented through the use of a series of single qubit phase gates and two-qubit CNOT

realized experimentally by frequency quadrupling a Ti:Sapphire laser, or through use of a KrCl excimer
laser.
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gates [25]. A quantum system which can be manipulated to perform these operations

with high fidelity is a potential quantum information processor.

Specifically, we define an operation G on a two qubit computational basis

{|00〉 , |01〉 , |10〉 , |11〉} (1.50)

as:

G ≡
1∑

α,β=0

|αβ〉 〈αβ| eΘαβ , (1.51)

equivalently:

G =



eıΘ00 0 0 0

0 eıΘ01 0 0

0 0 eıΘ10 0

0 0 0 eıΘ11


. (1.52)

Through a series of unitary rotations, the operator G can be transformed into an op-

erator Pϑ, a general two-qubit phase gate (which applies a rotation only to the |11〉

state):

Pϑ =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 eıϑ


. (1.53)

where, neglecting a global phase of (Θ01 + Θ10)/2:

ϑ = Θ11 −Θ10 −Θ01 + Θ00 (1.54)

In the case ϑ = π, the operator Pϑ represents a two-qubit CNOT gate. Therefore, the

evolution of any system represented by appropriate G can be transformed into a CNOT

gate.
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Now consider two ions, each in its own so-called “microtrap” – a miniature

(d0 ∼ 100µm) Paul trap of the type discussed in Section 1.2. These two traps are

positioned so that there is an inter-ion spacing of r ∼ 1−500µm, and a Coulomb repul-

sion is present between the ions. Both ions are prepared in the spin-dependent manner

discussed for Cd+ in subsection 1.3.4, with appropriate laser pulses of Gaussian profile

and width τ interacting with them in an effectively simultaneous manner. We assume

for now the adiabatic approximation that τ � (ωz)−1, where ωz is the secular trap fre-

quency – this approximation, used in the original Cirac-Zoller paper, is not valid in this

experiment,however, and unnecessarily limits the gate speed. Under these conditions,

|0〉 experiences no net Stark shift while |1〉 undergoes a net displacement x̄ (x̄ � r)

because of the dipole force.

The Hamiltonian for this system is given by:

Hα,β =
p2

α

2m
+

(
p′β

)2

2m
+

1
2
mω2

z (xα + r/2)2 +
1
2
mω2

z

(
x′β − r/2

)2
+ (v − xα − r/2)Fα(t) +

(
v′ − x′β + r/2

)
Fβ(t) +

q2

4πε0
1

|x′β − xα|
(1.55)

where we have assumed a notation where primed coordinates correspond to the “second”

ion, while unprimed coordinates correspond to the “first.” Subscripts α = |1〉1 , |0〉1 and

β = |1〉2 , |0〉2 correspond to the internal states of the first and second ions respectively.

The charge on each ion is given by q; and v and v′ are a measure of the potential associ-

ated with the first and second Paul traps respectively when the ions are at equilibrium

(xα = r/2, x′β = −r/2). The two quantities Fα(t) and Fβ(t) model the spin-dependent

dipole force. It is beneficial [14] to move to a COM frame where the Hamiltonian can

be re-written:

Hα,β =
p2

α

2m
+

(
p′β

)2

2m
+

1
2
mω2

z

[
(xα − x̄α)2 − x̄2

α + 2x̄αv
]

+
1
2
mω2

z

[(
x′β − x̄′β

)2 − (x̄′β)2 + 2x̄′βv
′
]

+
q2

4πε0
1

|r + x′β − xα|
, (1.56)
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where we have:

x̄α(t) = Fα(t)/mω2
z (1.57)

x̄′β(t) = Fβ(t)/mω2
z (1.58)

The evolution of this two-ion system is given by the unitary evolution operator

[18]:

Uα,β = exp
(
− ı

~

∫ t

t0

Hα,β(t′)dt′
)
, (1.59)

as:

Uα,β |αβ〉 = eıΘα,β |αβ〉 . (1.60)

In words, the dipole-force inducing pulse imposes a phase shift on the ions equal to:

Θα,β = −1
~

∫ t

t0

Hα,β(t′)dt′. (1.61)

Integrating (1.56) returns the sum of five independent terms. The first four of these

are equivalent to single particle phases - unavoidable perturbations to the individual

phase of each ion. However these are well known and can later be accounted for using

single ion phase gates. The term of interest – the term containing the two-ion phase

corresponding to ϑ, above – is the last term which results from the Coloumb interaction

between the ions:

φα,β = − q2

4πε0~

∫ t

t0

1
r + x′β − xα

dt′. (1.62)

Expanding this equation in a Taylor series about zero:

φα,β = − q2

4πε0~

∫ t

t0

∞∑
n=0

(
xα − x′β

r

)n

dt′. (1.63)

Examining this series, term-by-term we see that the zeroth order (n = 0) term con-

tributes a uniform phase to both ions and thus can be neglected, the first order (n = 1)

term contributes only linearly in xα and x′β and thus amounts to only single ion phases,
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and, finally, the second order and higher (n ≥ 2) terms contribute phase terms which

apply to both ions and are thus the terms which are of concern for the logic gate oper-

ation.

1.4.2 Proposed Implementation

In their original paper [2], Cirac and Zoller proposed a system composed of a

two-dimensional array of small traps as a quantum data register. Information is trans-

ferred to and from single ions stored in each trap by moving a single “head” trap from

location to location and applying a pushing gate (see Figure 1.6) Information from any

of the memory ions can be read onto the head ion, brought to another location and put

through some quantum logic operation. Through repetition of this process an effective,

constructed “quantum computer” has been constructed.

Figure 1.6: A two-dimensional array of microtraps for scalable quantum computation
[2]. The head trap moves relative to the array, interacting with target ions through a
strong dipole force induced by the interaction laser.
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1.4.3 Limitations and the Fast Pulse Regime

In the theoretical discussion of the original pushing gate scheme the adiabatic

approximation τ � (ωz)−1 was made. In general, practical ion traps are described by

ωz ≈ 1MHz, and so we are limited in the speed of the pushing gate by the restriction

τ � 1µs or by a maximum gate repetition rate of a few hundred kilohertz. Ideally we

would like to see much faster gate speeds and so we look to explore the regime wherein

τ is very small.

In the original proposal, it is feasible to envision the ion “sloshing” slowly in

the trap due to the pushing laser pulse and eventually returning, adiabatically, to its

original state of motion as the pulse ends. Much shorter pulses can be regarded as

an impulsive force on the ion, suddenly jarring the ion away from the center of the

trap. Through constant repetition of such pulses, the ion could potentially gain a large

amount of kinetic energy and become difficult to control in a coherent fashion. In order

to counteract this effect it is possible to engineer the pushing pulses to bring the ion

back to very nearly its initial position and momentum at the end of a pulse sequence.

A paper describing this scheme and engineering the pulses necessary to implement it is

currently under progress [26].



Chapter 2

Experimental Procedure

2.1 Experimental Parameters and Goals

The speed with which data is processed in a “pushing gate” is a function of the

interaction time of the laser pulse with the trapped ion. We are limited in this parameter

by the inverse of the natural linewidth γ for the off-resonant transition. In this limit,

it is convenient to deal with nanosecond-scale laser pulses. Such pulses, if they are to

impart an appreciable force upon the ions, must be of relatively high intensity and thus

must induce large Rabi frequencies, Ω. Therefore we must address the state of the ions

in the so-called strong coupling regime(Ω � ωz).

As a step toward the implementation of a “pushing gate,” the goal of the research

described in this thesis is the demonstration of spin-dependent a.c. Stark shifts and,

potentially, dipole forces in the strong coupling regime of trapped Cd+ ions. Specifically,

this paper will outline the process of assembling the instrumentation and procedures

necessary to observe and measure such effects. Because to rigid time constraints on the

submission of this thesis, measurement data will not be available.
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2.2 Inducing and Detecting the a.c. Stark Shift

2.2.1 Inducing the Shift

The ideal laser for inducing strong, differential, spin-dependent a.c. Stark shifts

on the |1, 1〉 and |0, 0〉 states of a Cd+ ion is a nanosecond pulsed laser at 222.71nm

with a high repetition rate, single spatial mode, and little variation in energy from

pulse to pulse. Such a laser is commercially available in the form of the Indigo DUV

tunable, pulsed Ti:Sapphire laser from Positive Light Corp.. However, in order simply to

demonstrate the principle underlying this phenomenon (and, perhaps, in the process, to

demonstrate the need for the Indigo DUV laser), a significantly less costly pushing laser

will be employed. This laser is the QuantaRay DCR-2 Q-switched, flashlamp-pumped

Neodymium-Yttrium Aluminum Garnet (Nd:YAG) pulsed laser.

While details regarding the design and operation of this laser are presented in

the next chapter, the parameters of this experiment must be specified with respect to

the pushing laser, and so a few aspects of the DCR-2 are worth mentioning here. The

DCR-2, Q-switched and fully amplified, produces ∼ 800mJ, 8− 9ns-wide pulses with a

rep-rate of 10Hz at the YAG fundamental 1064nm line. By passing this light through a

properly phase-matched deuterated potassium dihydrogen phosphate (KD*P) crystal,

the fundamental is converted into ∼ 200mJ of 532nm light in 6 − 7ns wide pulses.

A second phase-matched KD*P crystal doubles the second harmonic to the YAG 4th

harmonic at 266nm in ∼ 60mJ, 4− 5ns pulses.

This light is 270THz detuned from the D2 line (at 214.5nm), and 197THz detuned

from the D1 line (at 226.5nm) (see Figure 1.3). The energies per pulse given for each of

the laser harmonics indicate the maximum value and are continuously variable to under

500µJ per pulse by adjusting the polarization of the fundamental injected into the first

KD*P crystal. These pulses can be of sufficient intensity and detuning when focused to

a narrow waist on the the ion to produce a large differential a.c. Stark shift between the
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qubit states (though the shift on |0〉 will be nonzero). The magnitude of this induced

differential shift will be discussed in the next subsection.

The DCR-2 has a few significant limitations. First is the 10Hz repetition rate of

the laser’s pulses. While logic operations can be performed on nanosecond time scales,

the delay from operation to operation (and from individual experiment to experiment)

is on the order of milliseconds. Also, because of inhomogeneity in the intensity of the

flashlamp bursts which pump the laser, the pulse energy stability for the DCR-2 is only

±4%. Lastly, because of the cavity design of the laser, both the spatial and temporal

modes of the beam are very high order and non-Gaussian. These last two limitations

make it difficult consistently to model the spatial intensity profile of the focused beam,

I(z), which is needed in equation (1.45) to determine the dipole force upon the ion.

2.2.2 Characterizing the Shift

We are able to characterize the energy per pulse by extracting a small sample of

the pushing beam from a calibrated 95/5 fused silica beam splitter. The less intense

beam is measured with an Ophir Optronics PE-25BB pyroelectric power sensor which

returns per-pulse energy at 266nm with an error of ±5%. Using this sensor, it is also

possible to make a gross characterization of the laser’s spatial mode in the far-field. By

incrementally inserting a razor blade across the profile of the beam and measuring the

average energy per pulse of the transmitted portion of the beam over a few hundred

pulses, we were able to measure a rough cross-sectional intensity profile along horizontal

and vertical axes (Figure 2.1). In general, this procedure was limited by fluctuations

in the temporal mode of the beam and by limited resolution of the micrometer used

to translate the razor and at best, provides confirmation that the beam is far from

TEM00. Given the non-Gaussian nature of the beam, it is useful to treat the intensity

of the focused beam as a Heaviside step of height I0 and width equal to the theoretical



28

“Gaussian” beam waist, w, where:

I0 =
4πEpulse

w2
. (2.1)

Here, Epulse is a quantity measured with the pyroelectric sensor and w can be de-

termined experimentally by measuring the transmission of the focused beam through

incrementally smaller pinholes.

In this approximation, the dipole force cannot be treated because there is no

spatial gradient of the beam’s intensity at the ion. The a.c. Stark shift on the ground

state is still present and is given by:

∆Eg =
∑
m

βm

(
π~γ2

2w
Epulse

Isat

(
1
∆

+
1
∆′

))
m

, (2.2)

uniformly throughout the cross-sectional area of the beam. This formula resulted in

Chapter 1 primarily from the approximation Ω � |∆|. This condition is not guaranteed

in the limits of large values of Epulse and small values of w, though its functional form is

much more tractable than the exact solution. Table 2.1 presents the approximate error

in the magnitude of the a.c. Stark shift at 266nm due to this approximation (calculated

for the shift on state |1, 1〉 in σ+ radiation).

Figure 2.1: By incrementally moving a razor blade into the beam path of the DCR-2,
the energy as a function of spatial location in the cross section of the beam (as a broad
horizontal or vertical area) is mapped.
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Table 2.1: Lookup table for error in a.c. Stark shift magnitude due to the approximation
Ω � |∆|. The horizontal lookup gives the pulse energy in mJ while the vertical lookup
gives beam waist in µm. The error in equation (2.2) is given in percent as function of
the two lookups.

1mJ 3mJ 5mJ 7mJ 9mJ 11mJ 13mJ 15mJ 17mJ 19mJ 21mJ
5µm 0.68 2.02 3.32 4.59 5.83 7.05 8.24 9.40 10.55 11.67 12.77

10µm 0.17 0.51 0.85 1.19 1.52 1.85 2.18 2.51 2.83 3.16 3.48
15µm 0.08 0.23 0.38 0.53 0.68 0.83 0.98 1.13 1.28 1.43 1.58
20µm 0.04 0.13 0.21 0.30 0.38 0.47 0.55 0.64 0.72 0.81 0.89
25µm 0.03 0.08 0.14 0.19 0.25 0.30 0.36 0.41 0.46 0.52 0.57
30µm 0.02 0.06 0.10 0.13 0.17 0.21 0.25 0.28 0.32 0.36 0.40
35µm 0.01 0.04 0.07 0.10 0.13 0.15 0.18 0.21 0.24 0.27 0.29
40µm 0.01 0.03 0.05 0.07 0.10 0.12 0.14 0.16 0.18 0.20 0.22
45µm 0.01 0.03 0.04 0.06 0.08 0.09 0.11 0.13 0.14 0.16 0.18
50µm 0.01 0.02 0.03 0.05 0.06 0.08 0.09 0.10 0.12 0.13 0.14
55µm 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.10 0.11 0.12
60µm 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
65µm 0.00 0.01 0.02 0.03 0.04 0.04 0.05 0.06 0.07 0.08 0.09
70µm 0.00 0.01 0.02 0.02 0.03 0.04 0.05 0.05 0.06 0.07 0.07
75µm 0.00 0.01 0.02 0.02 0.03 0.03 0.04 0.05 0.05 0.06 0.06
80µm 0.00 0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.05 0.05 0.06
85µm 0.00 0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.04 0.05 0.05
90µm 0.00 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.04 0.04
95µm 0.00 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.04 0.04

100µm 0.00 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.03 0.04



30

It follows that for values of w greater than about 20µm and pulse energies less

than 10mJ, the error due to the approximation is negligible. This, then, will be the

regime in which the measurement of the a.c. Stark shift will be performed.

2.3 The Experiment

In order to measure the a.c. Stark shift, a single Cd+ ion will be trapped and

stored in an asymmetric quadrupole trap of the kind discussed in the first chapter and

in more detail in the Chapter 3. The state of the ion will be prepared using cw lasers,

and then a Ramsey experiment will be performed with the focused strong laser pulse

inducing the phase shift which will be measured interferometrically.

2.3.1 Ramsey Interferometric Detection

2.3.1.1 Theory

The hyperfine qubit states in Cd+ which are manipulated by the pushing beam

can be viewed, as can all qubits, as a spin vector [25]. As such, as the evolution of the

system between |0〉 and |1〉 can be modelled as rotation of the state vector about the

Bloch sphere. The detection of pushing laser-induced a.c. Stark shifts will be treated

in this respect as a canonical Ramsey experiment. A slight variation on this technique

was recently reported for low-intensity laser beams on 40Ca+ ions [27].

The experimental procedure begins by preparing the ion in the |Ψ〉 = |0〉 state (by

optically pumping there using an electrooptic modulator, for instance). Next a short

“π
2 ”-pulse of 14.5GHz microwave radiation (resonant with the |0〉 ↔ |1〉 transition) is

applied. This rotates the spin vector in the Bloch sphere to the state

|Ψ〉 =
1√
2

(|0〉+ ı |1〉) . (2.3)
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A few microseconds after the π
2 -pulse, the pushing laser is triggered to fire and is focused

upon the ion. The system evolves according to the unitary evolution operator:

U = e−
ı
~

∫ τ
0 H′(t)dt, (2.4a)

= e−
ı
~

∑
α ∆Eατ , (2.4b)

= e
− ıπτ

2w

∑
α

(∑
m βm

(
γ2 Epulse

Isat
( 1

∆
+ 1

∆′ )
)

m

)
α , (2.4c)

where α sums over |0〉 and |1〉. Essentially, the strong pulses shifts the phase of the spin

vector by an angle:

φα =
πτ

2w

∑
m

βm

(
γ2Epulse

Isat

(
1
∆

+
1
∆′

))
m

, (2.5)

so that after the pulse, the state vector of the ion is given by:

|Ψ〉 =
1√
2

(
e−ıφ0 |0〉+ ıe−ıφ1 |1〉

)
(2.6a)

=
e−ıφ0

√
2

(
|0〉+ ıe−ı∆φ |1〉

)
(2.6b)

where ∆φ is the differential phase shift between the two states.

Next, a second π
2 -pulse is applied such that the strong pulse falls exactly in

between it and the first. This rotates the state of the ion to:

|Ψ〉 =
e−ıφ0

2

((
1− e−ı∆φ

)
|0〉+ ı

(
1 + e−ı∆φ

)
|1〉
)

(2.7)

In order to detect this state we measure fluorescence from the |1〉 ↔ |2, 2〉 cycling

transition, and so we project (2.7) onto |1〉:

P1 = 〈1|Ψ〉 =
ıe−ıφ0

2

(
1− e−ı∆φ

)
(2.8)

Ignoring the global phase:

P1 =
1
2
(
1 + cos2 (∆φ)

)
(2.9)

Therefore, by measuring ion fluorescence as a function energy per pulse from the DCR-2,

a fringe pattern of frequency ∆φ appears and can be used to determine the differential

interaction of the pushing laser with the qubit states of a single ion.
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Figure 2.2: The sequence of pulses needed to carry out a phase detection Ramsey
experiment. The prepare pulse at 214.5nm pumps the system to the |0〉 state, the
π
2 pulse is a 14.5GHz microwave pulse which rotates the system’s spin vector 90o in
the Bloch sphere, the strong laser pulse at 266nm is as described above, followed by
another π

2 pulse and finally a pulse which drives the |1〉 cycling transition (which scatters
detectable light).

By solving equation (2.5) for a variety of values of Epulse and w, a lookup table

presenting induced differential phase shift in radians with pulse energy and beamwaist

as indices is presented in Table 2.2.

2.3.1.2 Implementation

The series of pulses which comprise the method described above is illustrated

in Figure 2.2. These pulses are implemented experimentally in LabView through a

simple user interface which controls a Berkeley Nucleonics Corp. TTL pulse generator.

The preparation and detection pulses are controlled using an acousto-optic modulator to

switch the cw 214.5nm detection beam on or off. When preparing, an additional 6.8GHz

“repumper” beatnote (in the blue) is added to the beam using an electro-optic modulator

driven by a TTL switchable HP 8684D signal generator. The π
2 pulses are generated

using an HP 8672A synthesized microwave generator operating at 14.5GHz which is

externally switched by an American Microwave Corp. high-speed SPDT microwave

switch. These microwave pulses are coupled into a custom-built KU-band directional
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Table 2.2: A lookup table for a.c. Stark shift-induced differential phase shift (in radians)
on the state vector of the ion. The horizontal lookup gives the pulse energy in mJ while
the vertical lookup gives beam waist in µm. Calculations have assumed a uniform
intensity distribution (as discussed above) and a 5ns strong pulse width.

1mJ 2mJ 3mJ 4mJ 5mJ 6mJ 7mJ
5µm 563.377 1126.755 1690.132 2253.509 2816.886 3380.264 3943.641

10µm 140.844 281.689 422.533 563.377 704.222 845.066 985.910
15µm 62.597 125.195 187.792 250.390 312.987 375.585 438.182
20µm 35.211 70.422 105.633 140.844 176.055 211.266 246.478
25µm 22.535 45.070 67.605 90.140 112.675 135.211 157.746
30µm 15.649 31.299 46.948 62.597 78.247 93.896 109.546
35µm 11.497 22.995 34.492 45.990 57.487 68.985 80.482
40µm 8.803 17.606 26.408 35.211 44.014 52.817 61.619
45µm 6.955 13.911 20.866 27.821 34.776 41.732 48.687
50µm 5.634 11.268 16.901 22.535 28.169 33.803 39.436
55µm 4.656 9.312 13.968 18.624 23.280 27.936 32.592
60µm 3.912 7.825 11.737 15.649 19.562 23.474 27.386
65µm 3.334 6.667 10.001 13.334 16.668 20.002 23.335
70µm 2.874 5.749 8.623 11.497 14.372 17.246 20.121
75µm 2.504 5.008 7.512 10.016 12.519 15.023 17.527
80µm 2.201 4.401 6.602 8.803 11.003 13.204 15.405
85µm 1.949 3.899 5.848 7.798 9.747 11.696 13.646
90µm 1.739 3.478 5.216 6.955 8.694 10.433 12.172
95µm 1.561 3.121 4.682 6.242 7.803 9.364 10.924

100µm 1.408 2.817 4.225 5.634 7.042 8.451 9.859
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microwave horn and inserted into the trap.

Ideally, we would set the pushing laser to a given energy per pulse, run the

experiment some large number of times, average that set of data (i.e.: photon scatter

rate as collected by the high quantum efficiency Hamamatsu PMT described in the

next chapter), plot the data point, and move on to the next value of energy per pulse.

However, as discussed, we are limited in our experiment by the significant fluctuations in

energy per pulse from the DCR-2 pushing laser. For a given DCR-2 control setting, data

will pour in for energy per pulses in a ±4% around a single value, which will effectively

wash out the expected cosine squared dependency. In order to eliminate this problem,

we propose a “back-office feed-forward” mechanism whereby for each data point a small

portion of the pushing beam will be picked off using a calibrated beam splitter and

measured to a few tenths of a percent accuracy using an Ophir Optronics 25BB-PE

SmartHead. As the experiment runs, we simply feed the points into a database where

they are sorted into bins corresponding to the energy of the pulse associated therewith.

As this data is binned and plotted, we expect to see a cosine squared dependence, as

derived above, which will confirm the strong field a.c. Stark interaction is as described.

A National Instruments LabView program to automate this process is currently being

designed and written.

2.3.2 Experimental Concerns

There are a few relative unknowns in this experiment as well. This is arguably

the first experiment in which an ion is addressed in the so-called “strong excitation

regime” [28] wherein the Rabi frequency is much larger than the trap secular frequency

(Ω � ωz). In fact, for a pushing beam producing 5mJ per pulse at a 30µm waist, the

approximate Rabi frequency in the ion will be almost seven orders of magnitude larger

than the trap frequency. A few concerns – particularly with regard to the high intensity

of the pushing pulses – need to be addressed.
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One of the challenges associated with using the DCR-2 is safely steering the

tightly focused beam through the trap and out the other end of the chamber. We have

observed that, at its focus, the beam is capable of ablating through a 125µm-thick sheet

of molybdenum – the same material used to construct the trap – in around 10 pulses

(or one second). Any incidence upon the trap could potentially destroy the electrodes

and pollute the local vacuum. Additionally, the amount of 266nm light scattered during

an interaction between the beam and the trap could potentially damage the sensitive

positional PMT used to image fluorescence from the ion. The trap must be large enough

so that if it is vibrating significantly, for any reason, the optical access through the trap

is of sufficient area to pass the beam. Additionally, a filter which blocks 266nm and

passes 214.5 is a desirable optic for the imaging apparatus. The optical viewports

through which the beam passes into the vacuum chamber must be highly transmitting

at 266nm in order to prevent backscatter and they must also be mechanically stable

under thermal shock induced by beam as it is transmitted. These issues are addressed

in the next chapter in a discussion of a discussion of the apparatus built specifically for

this experiment.

One final concern is that the pushing laser may drive multiphoton second ion-

ization of the Cd+ target ion (producing trapped Cd2+ ions). The second ionization

potential of cadmium is 16.9eV and 266nm photons carry 4.7eV of energy which means

this would be a 4-photon interaction. Modeling multiphoton ionization theoretically in

a complicated atomic system is a difficult matter. The best indication as to whether

this will be a problem for the experiment is simply to apply the beam and observe the

effect [29]. Experimental tests are pending.



Chapter 3

Experimental Apparatus

3.1 Design and Construction of a Paul Trap

3.1.1 The Vacuum Chamber

There were two principal criteria used to select the optimal trap vacuum cham-

ber for this experiment. First, the stringent optical access requirements of the strong

beam dictated that the beam should enter and leave the chamber at normal incidence

through 266nm AR coated windows in order to minimize secondary reflections. The

remaining detection (and potentially Raman) cw beams required a 45o geometry and

so a Madgeburg spherical, cubical, or octagonal chamber could have proven feasible.

The second requirement was that the trapping region be located within ∼ 10mm of an

optical viewport in order to obtain the proper objective distance for the imaging PMT.

This narrowed the possibilities down to a thin spherical octagon (see Figure 3.1).

The resulting chamber offers eight 11
3” Conflat (CF) feedthrough ports on its

side and two 41
2” CF feedthroughs on top and bottom. The smaller surfaces are used

as optical access ports and electronic feedthroughs, while the top 41
2” surface is coupled

with a custom-made CF reentrant viewport from Insulator Seal Inc.. The bottom of

the chamber is attached to a system of 23
4” CF tube which contains a 20liter/s Varian

StarCell ion pump, an ion pressure gauge, a titanium sublimation filament, and a

sealable valve for external pumping.
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Figure 3.1: (a.) The layout of the spherical octagon used as a trapping chamber. Note
that the beams have a 45o geometry, as required, and that the chamber has a narrow
(∼ 11

2”) side profile (bottom right). (b) The fully assembled trap chamber.
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Figure 3.2: This figure shows the pressure in the experimental vacuum chamber (as
measured by a Varian ion gauge) and chamber temperature (in oF) as a function of
time and date. Note that the chamber went from 3× 10−6Torr at room temperature to
2.6× 10−11Torr at room temperature after the bake was completed.

Four of the 11
3” surfaces are connected to 11

3” CF UV-grade fused silica viewports.

These are used for transmitting lower power cw beams. Two more of these surfaces are

connected to 11
3” → 23

4” tapered flange adapters. The 23
4” surfaces of these adapters are

sealed with 23
4” CF UV-grade fused silica viewports (see Figure 3.1(b)). These tapered

adapters are used for the strong beam so that when the beam enters and leaves the trap

it is expanded and significantly less intense. Also, this moves the surface of the viewport

farther from the trapping region, lessening the chance that material ablated from the

silica might interfere with the local vacuum pressure. Each of these six viewports was

AR-coated at 266nm.

The completed chamber was roughed out using a turbopump (to ∼ 1×10−6Torr)

and subsequently baked to 375oF in a large oven while connected through bellows to an

external 200Liter/s ion pump. The motivation for this bake-out was to pump off water



39

Figure 3.3: A photograph of the in-vacuum electronic instrumentation which is used
to trap. Inset are a schematic drawing of the “real” trap electrodes and, further inset,
is an image of a horizontally-arrayed crystal of Cd+ ions trapped within the chamber
described herein. This horizontal crystal of ions was observed to undergo rapid phase
transitions between horizontal and vertical when a laser cooling beam was applied.

and volatile organics which are nongaseous at room temperature. The bake took place

over two weeks as document in Figure 3.2

3.1.2 Trap Electrodes an Associated Electronics

The ion trap built for this experiment has approximately the same design as that

described in section 1.1. The electrodes in the ideal case are geometric hyperboloids

of revolution, but in this experimental a much simpler design also proves effective.

The “ring” and two “endcap” electrodes of an ideal trap are replaced by a “fork” and

“ring.” The fork electrode used in this chamber is a thin (∼ 5mm wide, 125µm thick)
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strip of molybdenum sheet with a 1.3mm-wide notch (in analogy to the endcap spacing

in Chapter 1) cut in one end. A 1mm hole (analogous to r0 in Chapter 1) is drilled near

the end of a second thin strip of molybdenum. The trap is constructed by spot welding

these two pieces to separate electrical feedthroughs and centering the hole within the

notch. Molybdenum is used because of its electrical conductivity and relative rigidity.

By holding the notched piece (the fork) at RF ground and placing an oscillating voltage

on the piece with the hole (the ring), a trapping potential is produced which is analogous

to the hyperbolic case (with some additional multiplicative geometric constant).1 This

configuration is shown inset in Figure 3.3. The dimensions of the fork and ring were

selected so that the trap geometric parameter d0 is a near-integer number – in this case

d0 ∼ 2.

As mentioned previously, a high RF voltage is applied to the ring electrode with

the fork held at RF ground. In order to obtain a large RF voltage which is impedance

matched to the trap structure, a helical 1
4 -wave RF resonator was constructed (using

the method of MacAlpine and Schildknecht [30]) from plumbing-grade copper pipe and

refrigerator tubing. A variable amount of RF produced by an HP 8640B signal generator

and amplified by an Isomet RFA-108 +40dB, 8W saturation RF amplifier is coupled

inductively into the resonator system. The resonator has an observed resonant frequency

of 56.3407MHz and a loaded Q-factor of 295, given by:

Qres =
ν+ − ν−
ν0

, (3.1)

where ν+ and ν− are the observed frequencies when the power reflected from the res-

onator is
√

2
2 times the difference between the observed maximum and minimum reflected

power, and ν0 is the frequency at which the back reflected power is minimized. The

resonator is loaded by coupling the end of the resonator helix externally to the vacuum

feedthrough which has been spot welded to the ring electrode. The feedthrough spot
1 This is, in general, true for the so-called “Asymmetric Quadrupole” geometry described here. For

a more detailed discussion of this trap electrode design see ref [15].
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Figure 3.4: Electroncs used to load the RF trap. (a) The neutral cadmium oven. A
current applied across the stainless steal tube into which cadmium metal has been placed
boils off a directional beam of atoms. The aluminum mounting block acts both as a
heatsink for the tube and a means for attaching the oven to the vacuum chamber. (b)
The trap electron gun consists of two stainless posts held apart by a uranium glass
insulator and connected at one end by a thin tungsten filament. The leads of the
gun are biased at −100V and a current is applied across the filament which ejects
electrons towards a grounded focusing plate held a few mm away. The electrons are
focused through the plate and towards the trapping region. The chamber built for this
experiment contains two Cd ovens and two e−-guns.

welded to the fork electrode is connected to a DC voltage supply through a 1kΩ-1µF-

1kΩ pi network (which prevents feedback between the RF signal and the floating ground

provided by the power supply (this voltage is analogous to U0, above). The resonator

has a breakdown RF insertion power which was unfortunately observed +41dBm. The

system presently couples +38dBm of RF power which provides sufficient potential to

trap reliably. The trap is loaded by simultaneously directing an atomic beam of neu-

tral cadmium and a beam of medium-energy electrons towards an intersection within

the trapping potential. The neutral cadmium beam is produced by passing a current

through a thin stainless steel tube which has been crimped closed at one end and placed

in a custom-machined aluminum mount with the remaining open end pointing towards

the trapping region (see Figure 3.4(a)). Ohmic heating of the stainless boils off a small
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amount of neutral, naturally occurring cadmium which was placed into the tube in

metal form. We have observed that this atomic beam travels with relatively high di-

rectionality away from the end of the tube. Since the tube is held parallel with respect

to the optics table, the crimped end is bent slightly downwards to prevent the molten

liquid cadmium from flowing out of the tube into the chamber. Two such cadmium

ovens were constructed and placed within the vacuum chamber described above using

“groove grabbers.”

The electron gun used to ionize the neutral cadmium beam within the trapping

region is constructed by firmly separating two stainless steel posts with a uranium glass

insulator and spot welding a thin tungsten filament across the leads (see Figure 3.4(b)).

Passing a current across the leads ejects non-directional electrons from the tungsten

filament. By biasing the two leads at −100V and placing a grounded plate with a hole

directly above the filament, the electrons are accelerated towards the plate, through

the hole, and focused towards the trapping region. An induced current of ∼ 20µA

is observed on the trap electrodes with 129mA of current placed through the leads,

confirming that the electron gun is well-aimed. Two such e−-guns are located within

the vacuum chamber beneath the trap electrodes (see Figure 3.3). Chapter 4 describes

the loading mechanism in further experimental detail.

3.2 The DCR-2 Nd:YAG Pulsed Laser

As was discussed in the previous chapter, the “pushing” laser used in this experi-

ment is the 4th harmonic (266nm) of a QuantaRay DCR-2 pulsed Neodymium Yttrium

Aluminum Garnet (Nd:YAG) laser. The DCR-2 is a flashlamp-pumped, two stage, Q-

switchable nanosecond pulsed laser outputting an approximate maximum of 800mJ of

1064nm light per pulse when fully Q-switched and amplified. The resonant cavity is

of an unstable resonator design with concave back reflector and convex output mirror.

The laser operates in three pulse modes – long pulse; Q-switched short pulse; and am-
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plified, Q-switched short pulse. The Q-switch mechanism is an electro-optic Pockel’s

cell which, when “crowbared,” dumps the cavity in an approximately 10ns pulse. The

optimal pulse repetition rate for the Q-switched cavity (by design) is 10Hz, but this fre-

quency is variable from 1 to 20Hz with less stability in energy per pulse and degraded

mode quality as a trade-off. When the Q-switch is off, the laser outputs pulses which

are less intense and microseconds long. The Q-switched pulses are optionally amplified

in a secondary flashlamp-pumped Nd:YAG cavity.

The process by which the laser produces nanosecond pulses is as follows:

• Step 1: The master oscillator (at 10Hz) produces the oscillator sync trigger

pulse (3ms wide, 3.3V high, < 10ns rise/fall time).

• Step 2: This pulse triggers the quarter wave Pockel’s cell relay as well as the

flashlamp relay.

• Step 3: The Xe flashlamps fire a ∼ 200µs pulse which optically excites the

Nd:YAG crystal in the cavity.

• Step 4: On the trailing edge of the flashlamp pulse, the Pockel’s cell voltage is

turned off with a 10ns fall time.

• Step 5: ∼ 50ns after the Pockel’s cell is turned off the laser pulse (lasing the

Nd3+ 4F3/2 →4I11/2 transition) occurs with an 8 to 9ns envelope width.

• Step 6: The Pockel’s cell voltage is ramped back to maximum over ∼ 20µs and

then dropped back to zero roughly 1ms later, ending the pulse sequence.

The spatial and temporal modes of this pulse appear non-Gaussian, even in the far-field

limit (as discussed previously). The (non-Gaussian) diameter of the beam is on the order

of 7mm. For a discussion of the output spatial modes of an unstable resonator cavity, see

ref. [31]. The direct output from the laser is linearly polarized and oriented vertically
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for maximal second harmonic generation (SHG). At the fundamental, the stability in

energy per pulse is ±1%, but this figure degrades through subsequent optical frequency

doubling.

The Nd:YAG fundamental produced by the DCR-2 is passed directly through an

angle-tuned, temperature-regulated deuterated potassium dihydrogen phosphate (KD*P)

crystal where it undergoes type II SHG. A portion of the fundamental is converted to

532nm light (approximately 50%) while the remaining portion is transmitted. The

conversion efficiency can be adjusted linearly by rotating the polarization of the fun-

damental. The second harmonic pulses are shorted from 8-9ns to 6-7ns and have a

pulse-to-pulse energy stability of ±3%. The co-propagating second harmonic and fun-

damental beams are made incident upon a 1064nm/532nm dichroic mirror from which

the second harmonic is reflected, and the fundamental is transmitted and eliminated in

a high-power beam dump.

The reflected second harmonic is passed through a second KD*P crystal cut for

fourth harmonic generation (4HG). This crystal is angle-tuned, but does not need to be

Figure 3.5: Process diagram for 266nm pushing beam generation.
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temperature regulated. Conversion efficiency from 532nm to 266nm is on the order of

40%. The resulting fourth harmonic pulses are vertically polarized and 4-5ns in length

with an energy stability of ±4%. The remaining second harmonic is filtered out by two

532nm/266nm dichroic mirrors and a sequence of 266nm HR coated steering mirrors.

3.3 Visualizing and Measuring the Ion

3.3.1 The Detection Beam

The position and state of the ion are determined by resonantly scattering ∼ 1ms

pulses of 214.5nm σ+-polarized light from the S1/2 |1, 1〉 ↔P3/2 |2, 2〉 cycling transition.

This light is generated through the process shown in Figure 3.6. A ∼ 3W Coherent

Verdi V10 (DPSS Nd:YAG×2, 532nm) laser pumps a continuous wave (cw) Coherent

MBR 110 Titanium Sapphire laser cavity. By tuning the etalon and servo of this

cavity, the wavelength of the Ti:Sapphire is set to ∼ 858.0300nm and is is tunable and

mode-hop-free over a few GHz. This beam is coupled into a SpectraPhysics Wavetrain

lithium borate (LBO) optical frequency doubling cavity tuned for converting 858nm→

429nm. The ∼ 400mW of 429nm light produced in this cavity is then sent into a similar

Wavetrain barium borate (BBO) frequency doubling cavity (tuned for 429nm→ 214.5nm

generation). The end result is ∼ 10mW of tunable 214.5nm UV light light (the desired

detection beam).

In the near future, the first three components of this system (the Verdi V10, MBR

110, and LBO WaveTrain doubler) will be replaced by a Toptica TA-SHG 100 which

consists of a tunable external cavity diode laser of Littrow design at 858nm injected

into a tapered amplifier and doubled in a potassium niobate optical frequency doubling

cavity.

The wavelength of the detection beam is made stable to within 1MHz through

use of a Doppler-free spectroscopic Te2 optical frequency reference cell. Doppler-free
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spectroscopy is a well-established method for stabilizing tunable cavity lasers [32]. The

Te2 molecule has a rich spectrum of transitions in the visible, including a line near the

858.0300nm second harmonic at 429.0150nm. This line (referenced as #989 in the Te2

spectral atlas [33]) lies at 429.0140nm.

In order to observe this line, a small fraction of the 429nm beam is picked off

using a beamsplitter and subsequently separated into “pump” and “probe” beams for

nonlinear spectroscopy. The “pump” beam carries 5 times more power than the “probe”

and is transmitted through a Te2 gas cell (at ∼ 500oC in an oven) along an arbitrary

+k-vector. This beam interacts with those Te2 molecules moving at sufficient velocity

+v so that the current wavelength of the laser is Doppler shifted onto resonance with the

desired transition. Having absorbed the incident photons, these molecules are said to

be “saturated” or unable to absorb any further light; they have removed some number

Figure 3.6: Process diagram for detection beam generation.
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of photons from the incident beam. By scanning the wavelength of the laser and simply

observing the absorption of the “pump” beam, the profile of the transition takes the

shape of the molecular distribution of speeds – a broad Gaussian on the order of a few

hundred megahertz wide.

In order to obtain resolution of the line below so-called Doppler broadening, a sec-

ond, less intense “probe” beam is directed through the cell along the −k-vector. These

photons interact with molecules having velocity −v (on the other wing of the Gaussian),

again saturating this small population. With both beams incident simultaneously, the

two saturated populations on either wing of the Gaussian are called “Bennet holes.”

(See Figure 3.7.) The shape of these Bennet holes is approximately the Lorentzian

shape of the natural line.

The two Bennet holes do not interact with one another - they are separate pop-

ulations of molecules - until the wavelength of the laser is such that those shifted onto

resonance with the “pump” beam are also shifted onto the “probe” beam. As the laser

is scanned exactly onto resonance with the line, the more intense “pump” beam satu-

rates the cell and the transmission of the “probe” beam increases while the two Bennet

Figure 3.7: The convergence of Bennet holes “burned” into the Gaussian lineshape of a
gas yields a Lamb dip which bears the shape of the natural molecular transition. Figure
taken from [32].
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holes overlap (since the population resonant with the “probe” beam has already been

saturated). This sudden transmission increase of the “probe” is called a “Lamb dip”

and takes approximately the shape of the natural line. By measuring the transmission of

both beams (the pure Gaussian “pump” transmission and the Gaussian with Lamb dip

transmission of the “probe”) with a New Focus Nirvana-brand photodetector, and then

subtracting the electronic signals, the Gaussian is subtracted away and what remains is

an electrical signal in the ∼ 15MHz-wide shape of the desired transition.

This signal is differentiated electronically by the Nirvana and fed into the circuit

depicted in Figure 3.8(a) where is integrated and returned to the external servo scan

of the Ti:Sapph fundamental, increasing or decreasing the wavelength so that the laser

is always centered on the Lamb dip to within a few percent of the width of the dip (or

a few kHz). The circuit of Figure 3.8(b) is an external, manual wavelength scanning

device (essentially a linear voltage supply) used to find and measure the desired line.

With the laser locked to the desired Te2 line, its frequency is stable and precisely known

within the measured accuracy of the line.

The Te2 feature to which the laser is locked is not on resonance with the Cd111

cycling transition at 858.0261nm (∼ 1GHz in the IR from the lock), so a small bit of

additional frequency adjustment is necessary. With the laser locked, the beam is coupled

through acousto-optic modulators (AOMs) driven by Hewlett Packard 8640B signal

generators. These AOMs, down-beam from the Doppler-free beamsplitter, modulate

the frequency of the beam, compensating for the distance between the tellurium feature

and the cadmium feature. Since 8640B generators are frequency stable to well under a

kilohertz, the stability of the lock remains intact.

3.3.2 Imaging and Measurement Apparatus

Trapped ions are imaged by collecting laser light scattered from the ion in some

manner of position-resolving photodetector (MCA photomultiplier tube, CCD camera,



49

Figure 3.8: Te2 optical frequency reference servo lock circuit diagrams. (a) The Lamb
dip observed electronically through saturated absorption spectroscopy, corresponding
to the non-Doppler broadened 23309.2481cm−1 molecular transition in Te2, is either
disregarded, differentiated and used as a weak “aquire” signal to reference a Ti:Sapph
cavity, or integrated and used as a strong “lock” signal to reference the cavity. The gain
of the servo is adjusted through a 10kΩ potentiometer. b.) A simple DC voltage source
with a switchable sweep signal used to tune the Ti:Sapph cavity linearly, scanning the
laser’s wavelength in order to located the desired Te2 feature.
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etc.). For this experiment, a position-sensitive, UV-active photomultiplier tube appara-

tus built by Quantar Technology, Inc. was employed with a more efficient Hamamatsu

PMT used for data collection. Light scattered from ions in the trap is collected by a CVI

triplet lens with a focal length of 21cm at a distance of 7mm above the ion trap (made

possible using the 41
2” re-entrant window discussed above). This image is spatially fil-

tered for background light using a 50µm pinhole inside of a 1” diameter camera tube

which runs the length of the imaging apparatus (see Figure ??). This section of camera

tube is position on a Line Tool X-Y-Z translation stage which allows imaging over the

entire spatial extent of the trapping region. The light from the triplet next enters a

columnating doublet lens and is sent through a 0o-incidence 266nm HR-coated suprasil

optical blank which filters 99.9% of 4th-harmonic YAG light and transmits ∼ 30% of

the detection light. This optic is in place to prevent damage to the high sensitive PMT

imaging devices at the end of the imaging apparatus from the high-intensity pushing

beam light.

Finally the image enters a custom-built, black-anodized light-tight aluminum box

mounted 51
2 ’ above the optics table. Contained within the box is a Hamamatsu UV-

sensitive PMT (∼ 50% quantum efficiency and not position-resolving) and the aperture

of a UV-sensitive Quantar microchannel plate PMT camera (∼ 1% quantum efficiency).

The image can be switched between the two devices using a 214.5nm HR-coated mirror

on a remote-controlled automated flip mount. Images taken using the Quantar can be

seen in chapter 4. A single ion, brightly fluorescing in the trap produces ∼ 8K counts

per second while the Hamamatsu PMT yields ∼ 85K counts per second. In general

then the Quantar will be used to resolve and characterize ions in the trap while the

Hamamatsu will be used for data collection, as described in the previous chapter.
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Figure 3.9: Imaging apparatus for detecting trapped Cd+ ions.



Chapter 4

Data and Analysis

4.1 Observed Trap Characteristics

As of the writing of this thesis the trap described in the previous chapter has

successfully and reliably been used to trap and image Cd+ ions. The probability of

successfully loading an ion (of any isotope) during a single firing of both e−-guns and

Cd ovens is a function of the current passed through each and can be varied from 100%

at large currents to as little as 5% or less at lower currents. Loading during every trial

is undesirable as this indicates an over-saturation of the trapping region with neutral

cadmium. Such an over-saturation has been observed in other experiments in this labo-

ratory to coat vacuum viewports (limiting laser transmission) and in-vacuum electronics

(producing potential electrical shorts). Another problem that can potentially result is

degraded local vacuum in the trapping chamber which would, in turn, increase the cross

section for a collision of trapped ions with background gas that might subsequently eject

the ions from the trap.

A reliable scheme for loading successfully during approximately 10% of attempts

has been found to consist of passing ∼ 1.2A through the first of two e−-gun filaments

and ∼ 1.3A through the first of two Cd ovens for a period of around 70s with the

detection laser set to 214.5075nm. This results in an increase in pressure at a non-

local ion pressure gauge of about one order of magnitude (or from ∼ 2 × 10−11 Torr

to ∼ 2 × 10−10 Torr). In order to maintain the local vacuum, a period of 10 minutes
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is allowed between subsequent attempts to load during which the vacuum pressure

generally returns to its original value. The laser wavelength is crucial because it puts

the beam to the red of the resonant frequency for all isotopes of cadmium thus preventing

“Doppler heating” and ejection of the ions as soon as they are loaded. Ions are imaged

by centering and focusing the detection beam through the trapping region, locating each

of the two “sides” of the trap (inside edges of the ring electrode which lie parallel to

one another) using the micrometer-mounted CVI triplet lens described previously and

using these as guides to the center of the trapping region (towards the local RF zero,

or the place at which ions are expected to experience strongest confinement).

The laser wavelength is scanned from 214.5074nm (resonant for 116Cd+) to 214.5065nm

(resonant for 111Cd+). As the resonant frequency for a given isotope is approached, ions

of this isotope in the trap begin to fluoresce and are resolved using the imaging appara-

tus discussed previously. Integrated images of this fluorescence have been captured and

are shown in Figure 4.1. We have observed that in this particular trap that multiple

ions tend to load simultaneously, producing a cloud-like image which often fluoresces

at a number of frequencies (corresponding to the different isotopes which comprise the

cloud). It also been observed that by removing and re-introducing the detection beam

that these clouds will momentarily crystalize into a vertical or horizontal crystal such as

that shown in 4.1(d). Single ions (4.1(c)) have also been observed with trapping times

in excess of 3 hours.

It has been found that ions stored in the trap with the fork electrode held at

ground (U0 = 0) are poorly resolved even as single ions. The cause of this phenomenon

was determined to be secular motion driven by spurious electric fields resulting from

asymmetries in the trap and charge buildups on adjacent objects. The effect can be

counteracted by applying a static negative voltage to the fork (tightening the trap

along the vertical axis). It was found that an applied voltage between U0 = −14V

and U0 = −20V provides much better spatial resolution. Voltages more negative than
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Figure 4.1: A collection of images of ions confined in the Paul trap built for this ex-
periment. (a) A diffuse cloud of trapped ions fluorescing weakly at 214.5074nm (the
first ions seen in this trap). (b) A more clearly resolved cloud of ions again fluorescing
at 214.5074nm. (c) A single, well resolved 114Cd+ ion stored in the trap with a bias
voltage U0 = −14V applied to the fork electrode. (d) A 5µm-long, horizontally arried
crystal of trapped ions (the number of ions in the crystal is either three or four, though
the precise number was not resolved).
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U0 = −20V result in ejection of the ion (which can be thought of the trap becoming

“too tight” in the vertical direction and forcing the ion out). Positive fork electrode

voltages, as expected, tend to weaken the trap resulting in poor spatial resolution of

the ion and, at around +15V, ejection of the ion.

4.2 Data and Observations

At present the pushing laser as been successfully coupled through the trap with

no observable damage to the vacuum instrumentation and collection of data from the

Ramsey experiment discussed in the previous chapter is expected to begin within the

next two weeks (i.e.: mid-April, 2003).

4.3 Future Directions

While initial experimental data is presently pending, there a variety of future

considerations which might bring the Cirac-Zoller pushing gate further towards fruition.

First is the implementation of a more suitably engineered pushing laser. The Positive

Light Indigo DUV tunable, pulsed Ti:Sapphire laser discussed in chapter 2 (or the similar

Quantronix Proteus tunable Ti:Sapphire) would be particularly well suited to the task

as it offers a much larger repetition rate with precisely the wavelength (222.76nm)

necessary for the interactions of the laser with the |0〉 state to exactly cancel. This

laser offers a kilohertz repetition rate which, in the long term, might be too slow to

practically implement logic operations. In the future it might be beneficial to explore

picosecond pulsed Ti:Sapphire lasers with larger repetition rates and perhaps even bring

the experiment into the possible regime of real-time quantum feedback.

Another future concern is the implementation of the array of “microtraps” de-

scribed by Cirac and Zoller [2]. Current work within this research group by M. Madsen,

D. Stick and W. Hensinger is yielding potentially useful grids of microscopic traps with

characteristic dimensions on the order of 20µm. This work, currently in progress and
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the subject of an upcoming research paper, is further discussed in Appendix B.

4.4 Conclusions

We have described the design and initial operation of instrumentation for the

purpose of measuring strong laser field-induced spin-dependent a.c. Stark shifts in Cd+

ions. We have thoroughly discussed the theory underlying spin-dependent dipole forces

in hydrogen-like systems such as Cd+. The apparatus built and installed exclusively

for this experiment includes a high-power nanosecond pulsed laser, a ultrahigh vac-

uum trapping chamber, electronics requisite to produce a working ion trap, a deep UV

(214.5nm) detection laser, and a system for detecting light scattered from ions within

the trap. This apparatus is pictured in Figure 4.2 as it is currently installed on our

optics bench. We expect to begin taking data within the next three weeks and this final

chapter will be revised with results from the first run.
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Figure 4.2: The experimental apparatus contructed for this experiment. (a) The DCR-2
pulsed laser with its associated doubling, quadrupling, filtering and focusing optics. (b)
The trapping chamber as it currently sits on the table. (c) A side view of the trapping
chamber and the lower half of the 80/20 extruded aluminum table which holds the
imagining apparatus above the ion trap.



Appendix A

Matrix Elements
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Figure A.1: Relative transition amplitudes for transitions between hyperfine levels (in
the |F,mF 〉 basis) for the Cd+ D1 (S1/2 ↔P1/2) line at 226.5nm [34].
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Figure A.2: Relative transition amplitudes for transitions between hyperfine levels (in
the |F,mF 〉 basis) for the Cd+ D2 (S1/2 ↔P3/2) line at 214.5nm [34].
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