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Quantum computers can solve certain problems more efficiently compared to
conventional classical methods. In the endeavor to build a quantum computer,
several competing platforms have emerged that can implement certain quantum al-
gorithms using a few qubits. However, the demonstrations so far have been done
usually by tailoring the hardware to meet the requirements of a particular algorithm
implemented for a limited number of instances. Although such proof of principal
implementations are important to verify the working of algorithms on a physical
system, they further need to have the potential to serve as a general purpose quan-
tum computer allowing the flexibility required for running multiple algorithms and
be scaled up to host more qubits. Here we demonstrate a small programmable quan-
tum computer based on five trapped atomic ions each of which serves as a qubit. By
optically resolving each ion we can individually address them in order to perform a

complete set of single-qubit and fully connected two-qubit quantum gates and also



perform efficient individual qubit measurements. We implement a computation ar-
chitecture that accepts an algorithm from a user interface in the form of a standard
logic gate sequence and decomposes it into fundamental quantum operations that are
native to the hardware using a set of compilation instructions that are defined within
the software. These operations are then effected through a pattern of laser pulses
that perform coherent rotations on targeted qubits in the chain. The architecture
implemented in the experiment therefore gives us unprecedented flexibility in the
programming of any quantum algorithm while staying blind to the underlying hard-
ware. As a demonstration we implement the Deutsch-Jozsa and Bernstein-Vazirani
algorithms on the five-qubit processor and achieve average success rates of 95 and
90 percent, respectively. We also implement a five-qubit coherent quantum Fourier
transform and examine its performance in the period finding and phase estimation
protocol. We find fidelities of 84 and 62 percent, respectively. While maintaining
the same computation architecture the system can be scaled to more ions using

resources that scale favorably (O(N?)) with the number of qubits N.
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Chapter 1: Introduction

Quantum computers can be used to solve certain problems much more ef-
ficiently than conventional computers. The idea of using a quantum system to
process information could be dated back to the early 1980’s when proposals made
by Feynman [1] and Deutsch [2] showed how the quantum mechanical evolution of a
system can be used as a powerful tool for performing computations. In his proposal
Feynman suggested the use of a small well controlled quantum system to emulate
the behavior of a larger poorly understood quantum system. The advantage of this
method becomes apparent when calculations of even moderate size quantum sys-
tems becomes exponentially harder to solve using classical computing methods. It
is relatively easier to address this problem using a quantum simulator which can
be programmed to have nearly the same features as the emulated quantum system.
The other proposal made by Deutsch, which intends to solve a mathematical prob-
lem, is based on evaluating unknown ‘oracle’ functions in order to learn about the
behavior of the function. Due to the availability of quantum superposition as an
intrinsic feature of any quantum system, it was shown how this could be used for
evaluating the function for all possible inputs simultaneously and therefore learn

global properties of the unknown function in a single run. At the heart of such ideas



lies the fundamental properties that are unique to quantum systems alone: namely
quantum superposition and quantum entanglement. The first one allows a system to
be in many possible states at once. Once a system is initialized to such a superpo-
sition, each state can be made to evolve in parallel under the influence of quantum
operations (gates). The elegance of solving a physical or mathematical problem lies
in mapping such a problem to the quantum operation that effects the evolution of
all possible input states therefore leading to an exponential speedup in information
processing due to this quantum parallelism. Such quantum evolutions can often lead
to quantum entanglement. When the final state exhibits such entanglement it can
correlate the different physical parts of the quantum system in a fashion that is not
possible classically.

In order to process information in a quantum system an analog of a classical
bit (0 or 1) is defined in the quantum world as the qubit. The computational
power of a quantum computer is given by its capability of hosting large numbers
of such qubits and having high degree of precision in the manipulation of each of
the qubits in the system. A quantum system of N such qubits spans a Hilbert
space of 2V basis states. Such exponential growth of states is a prime motivation
of using a quantum computer since it makes it possible to evolve an exponentially
large number of states under a single quantum evolution operator. A large part
of the research in quantum information involves finding efficient methods to map
interesting problems into such unitary quantum evolutions. In cases where this can
be successfully done, the quantum parallelism evolves all the basis states together

therefore showing how such an evolution effects all the states. The information



describing the outcome therefore ideally consists of a set of 2 numbers. However,
a measurement of the system following the computation can collapse the system
probabilistically and irreversibly into one of the basis states. This strange quality
is native to quantum systems and does not happen in classical systems. The effect
of measurement can therefore result in a complete loss of information about the
system evolution. This problem could in principal be circumvented by making an
exponential number of measurements to probe all the 2V values which implies that
the computation also needs to be repeated 2%V times. Therefore, at first glance one
might feel that the overall efficiency of a quantum computer only matches that of a
classical computer since the quantum algorithm will have to be run an exponential
number of time which is also how a classical algorithm would solve the problem (by
running it for all 2V possibilities) in the first place. However, this is not entirely true
since most of the information about all the 2V outcomes can be recovered in only a
few runs of the quantum computation if the final superposition state of the system
before measurement primarily consists of only a few basis states and to which the
system collapses on measurement with high probability. In the context of adiabatic
quantum computing this can happen when the system starts in a superposition state
that follows a quantum evolution to converge into only a few possible outcomes that
defines the natural ground states of a physical system [3,4]. Therefore, it takes only
a few measurements to characterize the final quantum state of the system. In the
context of evaluating mathematical functions, the set of 2V numbers that define the
outcome could (for certain function types) have a pattern across them that serves

as an imprint of the functions property. This pattern can then be efficiently derived



by interfering all the 2V numbers using the quantum version of a discrete Fourier
transform. Due to such interference it is possible to obtain a computation result
where the final outcome consists of single or a superposition of a few possible basis
states (much smaller than 2V). Therefore, the computation needs to be run only
for a few times to obtain a global property of the function [5].

A device is a quantum computer if it meets a set of criteria originally proposed

by DiVincenzo [6]. These conditions can be summarized as follows,

A scalable physical systems with well characterized qubits

The ability to initialize the qubits to a simple fiducial state

» Long coherence times compared to the time scale of gate operations
o A universal set of quantum gates

o A qubit-specific measurement capability

Over the years several systems have been developed to serve as a potential
quantum computer. They are based on photonic, solid state or molecular and atomic
systems. Among these, trapped ions are the oldest and most mature technology and
have been shown to satisfy all qualities required to implement a large scale quantum
computer. A qubit in this system is defined by the internal electronic states of an
atomic ion that can be prepared in an initial state, manipulated using external
electromagnetic fields and measured with high precision [7-10]. In this thesis we
will show how one of the candidates (among many other ion species): the 1"*Yb*ion
makes a very high quality qubit by exhibiting long coherence times compared to the

4



time scales of performing quantum gates. Trapped ions are also inherently scalable.
This is given by the fact that the qubit characteristics are defined by the atomic
structure which is the same for all ions of the same element. Therefore increasing
the system size merely requires adding more ions to the system where the same set of
controls for qubit manipulation applies to each one of them. Increasing the system
size by hosting chains of several trapped ions is further aided by the improvement
in the trapping technologies. Atomic ions being charged can be trapped with strong
confinements provided by electromagnetic fields. An ion trap that provides such
fields can be miniaturized to micro-scale sizes with capabilities of fast shuttling
ions [11] and directing laser beams at them using integrated optics [12,13], both
of which are important for performing computations. Trapped ion systems also
come with a repository of techniques to control and manipulate the qubit with
electromagnetic fields in the microwave [14] as well as the optical regime [15, 16].
Individual addressibility of qubits can be based on optical resolution, shelving of
qubits to auxillary states and spectral resolution of qubits using field gradients
across a linear chain of trapped ions [17-19].

Any quantum computation is executed by applying coherent quantum oper-
ations on the qubits. The fundamental operations required for implementing any
computation could be listed as : a) single qubit rotation, and b) the two-qubit en-
tangling gate [20,21]. A system of trapped ions can be individually addressed by
laser beams where single qubit rotations can be implemented. For two-qubit gates
a spin-spin interaction needs to be induced that leads to the entanglement of the

two qubits spin states. In order to mediate such interaction a communication line is



required that connects all the qubits to each other. In trapped ions, strong Coulomb
forces between the ions behave like a connection between them. This influences the
motion of each ion in the chain as the system can now be considered as a set of
harmonic oscillators (one for each ion) that are coupled to each other via the elec-
trostatic repulsion. This results in normal modes of motion of the entire ion chain
where all of them oscillate in sync. It is this motional mode that can be used as a
quantum bus which behaves like an additional degree of freedom outside the spin
Hilbert space where each qubit in the chain can interact with it. Since the normal
modes are distributed over the entire ion chain it can be used to exchange informa-
tion between any two qubits in order to effect two-qubit entangling operations [22].
However, there might be a limitation on the number of ions inside a single ion trap
that can be entangled reliably using such local Coulomb interactions. This limits
the size of a single computation register, often referred to as a module. For systems
that are expected to be larger than a single module the computer can in principle be
distributed over several computational modules. A photonic bus can then be used
to connect these processing units thereby allowing quantum gates to be performed
remotely between modules [23-25].

A quantum computer is scalable when the system size can be increased to have
more qubits available for computations without an exponential overhead of the cost
of doing so. This is only guaranteed when both the multi-qubit system as well as
the multi-qubit control are also scalable. Performing quantum computations on a
multi-qubit system can follow one of two possible methods:

a) The hardware and software of the system is tailored to meet the requirements
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of running a specific quantum algorithm. Early demonstrations of small scale com-
putations have used this method. See for example NMR systems [26-28], photonic
systems [29-31], trapped ions [16,32,33], and solid state systems [34]. A system that
is designed to run specific algorithms by definition does not provide any flexibility
as required for a general purpose machine

b) The execution of a quantum algorithm follows a computation architecture that
decomposes any algorithm into fundamental quantum operations that are executed
on a fixed hardware. Performing computations using this method is more universal
since multiple algorithms can be executed in the same system. However, the scal-
ability in multi-qubit control of such systems strongly depends on the underlying
computation architecture. Using trapped ions as the computing platform already
gives us an advantage on reducing the control parameters since all qubits in the pro-
cessor are identical unlike solid state fabricated “artificial atom” like qubits [35, 36]
where qubit characteristics vary due to inadvertent inconsistencies in the fabrication
of the qubits. A versatile quantum computer requires control at the individual qubit
level but it should also minimize the overhead that is required for this control. For
example while driving a two-qubit entangling operation it is preferable to apply the
gate in a modular fashion only on the participating qubit pair using controls that
are only specified by the pair and does not depend on other qubits in the system.
Although it seems straightforward to carry this out, it is hard to completely satisfy
this criteria in a quantum system since there might be inherent interactions of a
qubit with other qubits or with the bath that cannot be completely removed from

the system. Moreover without proper individual addressing of qubits, quantum



gates applied on targeted qubits might affect spectator qubits due to crosstalk.

The prime objective of the work reported in this thesis is the development of
a programmable quantum computing system with a well defined computing archi-
tecture that supports the reconfigurability required to run arbitrary quantum algo-
rithms in the system. The computation architecture of our system is represented in
figure 1.1 [37]. At the highest level of the computer a user can program a quantum
algorithm using sequences of standard logic gates (high-level commands). These
gates are then decomposed into single-qubit (R) and two-qubit (XX) rotations that
are native to the multi-qubit trapped ion system. This compiler is internal to the
software that follows a specific set of instructions in order to calculate such decom-
positions. In the next step the software calculates optimized pulse shapes that are
used to drive the appropriate XX- and R- gates on the qubits (low-level operations).
This sequence of gates are then effected on the hardware that contains five trapped
"l'YhTions as qubits. The hardware is also setup for individual qubit control using
an array of Raman laser beams that address respective qubits by optically resolving
them in space. This allows us to apply sequences of single- and two-qubit gates that
are optically gated and therefore reconfigurable. By using a static Raman beam ar-
ray to address individual qubits we also achieve a complete set single and two-qubit
rotations that are implemented with a dramatically reduced overhead as compared
to contemporary techniques of shuttling [38,39] and spectral addressing [16,40].

In this thesis we elaborate on the workings of the system. In order to benefit
future members of the lab a didactic tone is maintained throughout where the un-

derlying theory of each experiment is stated in order to corroborate the observations.
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Figure 1.1: Computation architecture. a) Hierarchy of operations from software
to hardware. b, Hardware setup. A linear chain of trapped ion qubits along the
Z axis is shown at the centre of the panel (‘Ton chain’). An imaging objective
(‘Detection optics’) collects ion fluorescence along the Y axis and maps each ion
onto a multichannel photo-multiplier tube (PMT) for measurement of individual
qubits. Counterpropagating Raman beams (‘Global” and ‘Individual’) along the X
axis perform qubit operations. A diffractive beam splitter creates an array of static
Raman beams that are individually switched using a multi-channel acousto-optic
modulator (AOM) driven by radio frequency (‘Control radio-frequency signals’) to
perform qubit-selective gates. By modulating appropriate addressing beams, any
single-qubit rotation or two-qubit Ising (XX-) gate can be realized. For the two-
qubit gates between qubits ¢ and j, we can continuously tune the nonlinear gate
angle x;;. This represents a system of qubits with fully connected and reconfigurable
spin-spin Ising interactions (inset). 9



The thesis is structured in the following way:

In chapter 2 we discuss the theory behind ion trapping that leads to methods
of optimizing the trapping parameters. We describe the ion-trap and give an account
of methods used in assembling the one and the construction of the vacuum system
around it that allows a high optical access for high resolution individual addressing
and detection.

In chapter 3 we discuss the method of qubit manipulation using Raman tran-
sitions. We derive general principles of the process and apply it to pulsed laser
frequency combs and discuss the unique properties that are important for perform-
ing coherent operations.

In chapter 4 we elaborate on the technological side of individual addressing of
ions with Raman beams as well as individual detection of ions using custom designed
high resolution optics. We further quantify the performance of both these processes.

In chapter 5 we discuss the theory behind single qubit R—gates and two qubit
X X —gates and show how a variety of composite modular logic gates can be con-
structed from these native rotations. We quantify the performance of both the
native and logic gates.

In chapter 6 we report the implementations of various quantum algorithms
that are implemented on the 5-qubit processor. The way that these algorithms are
based on the quantum Fourier transform is explained. We also report on a fully
coherent five-qubit quantum Fourier transform and examine its performance in the

protocols of period finding and quantum phase estimation.
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Chapter 2: Experimental System

2.1 Introduction

The trapped ion serves as a pristine quantum system since it can be easily
isolated from the environment. This is due to the fact that it is trapped in ultra
high vacuum (UHV) where the collisions with the background gas are negligible.
This can give a considerable advantage over solid state quantum systems where
the system is in contact with bulk material that forms a thermal bath and leads
to decoherence [36]. Although a trapped atomic ion is free from such a bath, it is
nonetheless not immune to background electric and magnetic fields that can perturb
the energy levels also causing decoherence. However, the strong interaction of an ion
with well controlled electromagnetic fields can give the necessary tools for trapping
and manipulation of the ions.

In this chapter we will discuss the theory behind ion-trapping where static and
dynamic electric fields are used to trap a linear chain of ions that form a Coulomb
crystal due to the joint action of the harmonic trapping potential and the strong
repulsion due to the Coulomb forces between the ions. With the correct engineering

of the harmonic potential using a segmented linear rf-Paul ion-trap [41] a chain of
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many ions can be trapped in a linear configuration with almost uniform spacing
between adjacent ions [42]. For such an arrangement of qubits (ions) an obvious
method to address and detect each one of them is using linear arrays of optics
or optical elements, one assigned to each ion. This will be discussed in detail in
chapter 4. Another advantage of such a linear Coulomb crystal is that they have
normal modes of motion that are common to the entire chain and excite all ions
at once. This is particularly interesting in the context of spin-spin interaction as
one can devise methods to turn on interactions between any pair of qubits (ions)
of the chain by using these common modes of motion as a medium to propagate
perturbations. Since Coulomb interactions are very strong between particles and
are long range therefore the spin-spin interaction between qubits in a chain that are
also strong and long range (chapter 5). This is essential in performing entangling
gate operations between any subsets of qubits in a chain and is one of the prime
motivators for developing traps that can hold and manipulate large linear chains of
ions [43,44].

In our experimental setup we hold a chain of five trapped "' Yb™ions inside
an ultra-high vacuum (UHV) chamber using a linear rf-Paul trap. In principal, it
should be possible to trap and manipulate a chain that is longer than 5 qubits,
however, there are challenges in scaling up the system using a macroscopic (hand
assembled) trap. Most of these problems arise from the fact that a macroscopic trap
does not provide enough controls to engineer perfect trapping potentials as a micro-
trap can [13] and also have imperfections in fabrication that can cause heating of
ions in the trap due to the fact that there might be uncompensated electrical noise
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that gives rise to excess micromotion [45]. However, a macroscopic trap, as reported
here, can provide the easy optical access necessary for high resolution control and
measurement of individual qubits and also give deep harmonic trapping potentials
that allow long trapping lifetimes. In this chapter we will discuss the construction
of the ion trap and the vacuum chamber around it and the usual methods of cooling
and trapping of ion crystals. We will also characterize properties of the trap such
as heating rates, micromotion and drifts in the trapping strength; all of which are

critical for the coherent manipulation of the qubits.

2.2 Ion trapping theory

Intuitively, since an ion carries a charge it should be possible using electric
fields that confine it in all three dimensions in space. Implementing this is a bit
more tricky since, in practice, it is not possible to have electric field lines point
inward to a point without either having a charge at the point or having them leave
away from that point in some direction thereby causing anti-trapping. This rule,

also known as the Earnshaws theorem [46], can be encapsulated in the equation

.<]|
esf
I

o

(2.1)

for the electric field bar E in vacuum much like the kind of ultra high vacuum envi-
ronment in which we intend to trap an ion.

In order to create trapping for charged particles, oscillating (rf) electric fields
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Figure 2.1: RF quadrupole field for ion trapping. The RF electric field is gen-
erated by four cylindrical rods running parallel to each other along the Z. Electrodes
2 and 3 are driven by a rf source at voltage V' and frequency () whereas electrodes
1 and 4 are grounded. The figure shows the electric field projection in the X-Y
plane. The quadrupole field has zero magnitude at (xq, ). The pseudopotential
confinement of an ion happens at this position with a harmonic confinement in the
radial direction (XY plane). While trapping multiple ions, the ion chain is aligned
along the trapping axis which is parallel to Z and passes through the quadrupole
null point (xg,y0). Here R is the distance of any of the four trap electrodes from
the quadrupole null. We assume that the cylindrical rods have very small diameter
compared to R.
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are used instead of static ones as proposed by Wolfgang Paul and Hans Dehmelt
[41,47] for which they shared the 1989 Nobel prize. The idea is illustrated in figure
2.1. A quadrupole electric field is created using four electrodes, two of which are
driven by an oscillating rf voltage Vcos(€2t) at the angular frequency 2. As a result
of this an oscillating potential is created near the trapping zone (o, yo) whose spatial

dependence is of the form,

(o t) = ‘;cos(m) (1 N }gf) (2.2)

where R is the distance of (zg,70) from the electrodes and we have limited this
treatment to be in the X-Y plane only. This is appropriate in the case of a truly
linear ion trap with axial (Z) homogeneity since there will not be any potential
gradient (or electric field) along the Z direction. Therefore, the idea behind this
derivation is to derive the (radial) confining pseudopotential in the X-Y and hence
prove that this scheme works for trapping ions. Here, we assume that the position
x and y are measured along the X and the Y axes respectively from the quadropole
null (xg,yo) which we define to be the origin (zg = 0,yo = 0). Note that this
expression of the potential satisfies the boundary condition at the electrode surfaces
(¢ = Veos(Qt) for rf electrodes and ¢ = 0 for ground electrodes).

In the next step lets write the electric field as a negative divergence of the

potential,

E(x,y,t) = —?gb(x,y,t) = —]‘;(:pf — yi)cos(Qt) = E_'O(x,y)cos(Qt). (2.3)
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Note that the electric field agrees with Earnshaws theorem (equation 2.1). In order
to understand how this field causes a pseudopotential attracting an ion towards
(x0,y0) through a harmonic pseudo potential we Taylor expand the electric field

about this origin,

oF

OB\ (o) — o) + S

E_O(‘T’y, t) = E_o(xg,yo)cos(Qt) + a—
€T 'Zo

W -w)  (24)

We can substitute (x(t) — xo) and (y(t) — yo) by integrating the force equation

obtained from equation 2.3,

mi = ek, = —i;cos(ﬂt) (2.5a)
mj = ek, = +i¥cos(§2t)y (2.5b)

where & = 0%z /0%, §j = 0*y/0t?. E, and E, are the X and Y components of the
electric field, respectively. We use the following initial conditions that z(0) = x
and #(0) = 0 for integrating equation 2.5 where we assume that the variation of

x is small such that the spatial variation of the field 65;“ is negligible over the

integrated time and can be considered independent of time on the right hand side
of the equation. We can also apply this rule while calculating (y(t) — yo). We then

obtain the following solutions,

oV
PR ————cos(Qt)x (2.6a)

eV
y(t) —yo = PR ————cos(Qt)y (2.6b)
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Now we can use equation 2.6 and equation 2.3 to rewrite equation 2.4. Additionally
we can also multiply the electric field E(z,y,t) with the charge of the "' YbTion e

to obtain the force acting on the ion,

2 2

m;iwcos%ﬂt)xf - LCOSQ(Qt)yyA (2.7)

F(z,y,t) = e | Eg(xo, yo)cos(t) — mO2 R4

In order to find the overall effect of the force on the ion over long time scales we
can average it over time by integrating equation 2.7 over a time period that is
much longer than the oscillation period of the rf-electric field (1/2). Here, the first
term averages to 0 and we are left with an average force that acts towards the trap

axis (zg,yo) and the strength is proportional to the displacement like a harmonic

potential,
_ 62v2 62V2
Flz,y) = —————1& — ————y1J 2.8
@9) = = mi ™~ oY) (2:8)
Comparing this to the force equation of a harmonic potential F(r) = —mw?r, we

obtain the oscillator frequency (or the secular frequency) of the harmonic trap as,

eV

YT SRmOR?

(2.9)

2.3 Ion trapping in practice

In the experiment we trap ions using a four blade linear rf-Paul trap. The
computer design is shown in figure 2.2. The four blades are analogous to the four

cylindrical electrodes shown in figure 2.1 where the diagonally opposite DC elec-
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450 pm

DC

Figure 2.2: Linear rf-Paul trap using segmented blades. In practice we use
four blades as the electrodes of the linear Paul trap. These blades are segmented
along the trap axis Z. a) A view of the segmented blades of each of the four electrodes
that form the ion trap. Each of the five segments of each DC electrode (front up
and bottom back) are driven by independent DC voltage sources. By applying
appropriate voltages in these segments confinement along the trap axis (along Z)
can be achieved. b) XY cross section of the four blades that form the radial (XY)
quadrupole potential. Opposite blades (RF1 and RF2) are driven at an rf voltage to
create the oscillating quadrupole near the trap axis thereby radially confining ions
in XY. The DC electrodes are rf-grounded using shunt capacitors (such that they
behave as grounded electrodes 1 and 4 as shown figure 2.1). Although rf electrodes
are mechanically segmented, they are electrically connected and carry the same
applied voltage.
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trodes behave as rf ground electrodes as they are connected to ground through a
large capacitance (~ 1nF). Each blade is segmented along the trap axis (Z) direc-
tion such that different DC voltages may be applied to individual segments. Each
segment is 250 um in length along 7 with a spacing of about 50 um between adjacent
segments. The distance of the trap axis from each electrode (R, see fig 2.1) is about
250 pm.

Both the RF electrodes are driven by the rf voltage Vcos(€Qt), where Q =
21 x 23.83 MHz. This provides strong radial harmonic confinement in the X and Y
direction with a secular frequency that approximately follows equation 2.9. In the
experiment we measure the secular frequency to be w,, ~ 27 x 3 MHz which gives
the approximate value of the rf amplitude V' ~ 400 V.

Although the rf electrodes are segmented, they share a common voltage such
that a uniform rf quadrupole potential can be maintained along the trap axis and
with no projection of E along Z. This is necessary since trapped ions align them-
selves along the trap axis and they should all see a translationally invariant radial
confinement: a property of the linear ion trap. However, in practice it is hard
to achieve a truly linear trap unless the electrodes are translationally invariant as
well. In our blade-trap the segmentation of the electrodes leaves room for imperfect
fabrication which might lead to deviations from the trap behaving linearly.

The segmentation of the electrodes, particularly in the DC electrode, is nec-
essary for confinement of the ions in the axial (Z) direction. The confinement is
achieved by applying relatively high potentials at segments that are on either side
of the trapping zone compared to the segments in the trapping zone. For example,
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in order to trap in the middle zone DC3 and DCS8 are kept at a negative potential
while a positive potential is applied to electrodes DC2, DC7, DC4 and DC9. This
creates a ‘direct’ harmonic confinement potential due to a DC quadrupole along the
Z axis, which is usually an order of magnitude weaker (w, ~ 0.3 MHz) than the
radial (a bit more ‘indirect’) harmonic psedopotential confinement.

An ion trap needs to be characterized before use in trapped ion manipulation.
One of the things to be checked is whether it behaves as a linear trap and if not
whether it might be possible to tune the trapping voltages to create the most stable
and close to linear behavior. We perform a series of measurements using a single
trapped ion in order to answer these questions. However, in order to corroborate
experimental observations (shown in section 2.6) with theory, we need to consider
the most general treatment of the motion of an ion in the presence of static and
oscillating potentials at the trapping zone of the blade trap [48,49].

In the presence of the rf and the DC voltages of the segmented blade trap as
discussed above the most general form of the potential near the trapping zone is
quadrupole in nature and can be written down in the following form [10],
by = m}‘; (ozx2 + By? + 722) cos(Qt) + K/; (o/x2 + B'y* + 7’22) + Vocos(02t) + Uy

(2.10)
where (z,y, z) is the displacement from the quadrupole null position (zg = 0,yy =
0, 2o = 0) where the electric field strength is 0. U and V" are the applied DC and RF
voltages, respectively with values Uy and Vj at the quadrupole null position. From

Earnshaws theorem (equation 2.1), note that a« + 5+ =0 =« + 5 + 4. The
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constants k and k' are geometric factors that take into account the specific shape
and orientation of the RF and DC electrodes of the ion trap, respectively and are
fixed values for a given ion trap. In figure 2.1 the null position of the quadrupole is
at (o, yo) in the XY plane. In the case of the blade ion-trap the application of the
DC voltages on the segments now creates a null position zy in the third dimension
along the trap axis as well (fig 2.2).

Under ideal conditions v = 0 and a4+ = 0. In equation 2.10, we have included
a static quadrupole potential proportional to U that arises due to the application of
unequal voltage values to the DC segments. For confinement along 7 we need to set
the voltage values such that 4" > 0, which as a result creates a static anti-trapping
potential in the XY plane as o’ + 3/ = —y' < 0. However, this DC anti-confinement
is weak so that when it is added to the radial pseudopotential the net potential is
still confining. Another effect of the DC quadrupole on that radial confinement is
that it can break the degeneracy of the radial confinement where w, = w, = w (eqn.
2.8 and 2.9) by setting different anti-trapping strengths along X and Y such that
o £ 5.

In order to explain the trap behavior, as observed experimentally, we are going
to assume that the trap is not linear («, 5,7 # 0). Under this condition, the trap
in principle will successfully provide confinement in all three directions even if no
DC quadrupole is applied (o, 3,7 = 0). Given the geometry of the blade trap
we expect v to be very small thereby only providing a very weak pseudopotential
confinement along Z. Hence we find it necessary to apply a DC quadrupole by setting

voltages on the DC electrodes such that o/ + 5 = —+' < 0 in order to trap along
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Z. We could also assume without loss of generality that there is a background static
field given by the potential ¢,. We can write this background electric field potential
as,

oo =E,x+ Ey+ E.z+ ¢ (2.11)

In the absence of this field the ion is most likely to be trapped at this quadrupole
null position (zg, o, 2z0). However, in practice such stray uniform electric fields are
present in the system which then shifts the quadrupole null to a different position
[45]. Therefore the total force acting on the ion is now given from equation 2.10 and
2.11 as follows,

F(x,y,2) = —eV(d, + bp) (2.12)

We can use this to write down the equation of motion in all the three directions [45],

02 E;
i + [a; + 2g;cos(Qt + 6’)]ZuZ = ¢
m

(2.13)

where w; is the displacement of the ion from the rf null position along the i-th
direction where i = {x,y, z}. The term q; is a dimensionless quantity that represent

the strength of the DC quadrupole along the i-th direction.

, 8r'elU

, 8r'elU , 8r'elU
e

mR2Q2’ @ =7 mR2Q)? (2.14)

=0

A, =

The term g; is a dimensionless quantity that represent the strength of the rf quadrupole
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along the i-th direction.

4reV 4reV 4reV

mrze @ = Vg = Ve (215)

e = &

The equations of motion resembles Mathieu equations with a general solution sug-
gested by the Floquet theorem [50]. The solution to the equations of motion, there-

fore, is of the following form,

wi(t) = [A; + Bicos(wit)] |1 + % cos(Qt + ) (2.16)
Note that the displacement has a fast oscillating component at the rf drive frequency
Q. This is referred to as micromotion. The term A; is the displacement of the ion
from rf null due to the background electric field F; and w; is the net secular frequency
of the harmonic trap confinement given by the combination of both the static dc
potential and the dynamic rf pseudopotential. When the ion is at equilibrium the
force due to the harmonic trap is equal and opposite to the force from the background

static field. This can be used to evaluate A; to be,

eF;
A= —1 2.17
mw? (2.17)
where,
1 q? :
wi =5 <a + 5 ) (2.18)

We can clearly see that in the absence of a background field A; = 0 the displacement
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nearly follows a harmonic oscillation at a slow secular frequency with an amplitude
B; that determines the average energy of the harmonic oscillator. In order to make
the trap more harmonic one should reduce the parameter g; which also can be
written as ¢ = 2v/2w;/Q in the limit where |a;| < ¢? (which is true since the
axial confinement is usually much weaker than radial confinement). In any trapped
ion experiment it is usually preferable to have a high radial confinement where the
secular frequency can be set to have a higher value by increasing the amplitude of
the rf voltage V' and decreasing {2. However, in order to keep the micromotion low
it is necessary to have the trap secular frequency much smaller than the rf drive
frequency ().

Figure 2.3a shows a simulation of the ion motion for A; = 0. It is clear that
the ion follows a fast micromotion at the frequency €2 with an amplitude that is
directly proportional to the displacement of the ion from the rf null. Therefore for
trapped ions, such micromotion always exist on top of the slower oscillation from
the harmonic pseudo potential confinement. In the presence of the background field,
however, there is a finite displacement of the equilibrium ion position from the rf null.
In such a scenario the ion motion is mostly dominated by the micromotion. This
‘excess micromotion’, as shown in figure 2.3b, can be eliminated by compensating for
background electric fields by providing appropriate DC voltage bias to the segmented
electrodes of the trap. In section 2.6 we will discuss the techniques of measuring
such ‘excess micromotion’ and eliminating the stray background field in order to

position the trapped ion at the real rf null of the blade trap.
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Figure 2.3: Simulated radial motion of an ion in a linear trap a) Normal
micromotion on top of the secular oscillation is simulated for the radial secular trap
frequency of w, = 27 x3.0 MHz and rf drive frequency 2 = 27 x23.83MHz. The solid
blue line shows actual ion motion. The dashed red curve shows oscillation at the
same secular frequency for a perfect harmonic confinement. b) Excess micromotion
due to background electric field causing a displacement of the ion from rf null that
is 10 times the secular oscillation amplitude (A; = 10 X B;). This roughly magnifies
the micromotion to 10 times that of the normal micromotion.

25



2.4 The '"'YbTqubit

There are many competing trapped ion systems that can be used for quantum
information processing such as Ba™, Ca™, Mg*t, Hg*, Srt, Cd", Yb" etc. [51].
Each system has its own sets of advantages and disadvantages. '"'Yb™, which is
one of the heavier ions is our system of choice. It has a ground state hyperfine
manifold, much like a hydrogen atom, that serves as a qubit. More specifically, the
(F =0,mp = 0) and the (F = 1, mp = 0) hyperfine levels of the 25, ground state
forms the qubit. The relevent level structure of "' Yb"is shown in figure 2.4.

There are several advantages of this system that can be deduced from the
1"yb*level structure [52]. The hyperfine qubit has an energy splitting of wypr =
21 x 12.6428 GHz at zero applied magnetic field where the only way state |1) can
decay to |0) is through a magnetic dipole transition. At this energy splitting this
spontaneous emission rate is virtually zero [53,54]. In the lab frame the "' Yb™ qubit

evolves as

[) = al0) + e'rrtOrp|1) (2.19)

where amplitudes o and [ are real. Since qubit splitting energy is in the microwave
regime, microwave synthesizers and Raman laser beams that coherently manipulate
the qubit can all be synchronized by a single microwave synthesizer which is locked
to a pristine frequency standard !. The hyperfine qubit is also quite stable against

dephasing noise that can be caused by fluctuations in the hyperfine splitting. For

!Stanford Research Systems FS725 Rubidium Frequency Standard
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Figure 2.4: The '"'Yb"energy level diagram. The partial level structure of
1Y h*shows the transitions that are pertinent to the experiment. The solid arrows
shows lasers that are used in inducing spontaneous emission in "*Yb™as is necessary
for dissipative processes such as doppler cooling of the ion, state preparation and
detection of the qubit. The blue (dotted) arrow shows an off-resonant 355 nm mode
locked laser that is used to perform coherent manipulations on the qubit using
Raman transitions.
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example the variation of the qubit splitting § near zero magnetic field only varies
in a quadratic way with the applied field as § = 27 x 310.8 3% where the shift is in
Hertz and the magnetic field is in Gauss. The smallness of § makes the qubit not
only long lived but also fairly stable with a coherence time usually of the order of a
few seconds which can be extended to several thousands of seconds with shielding
from magnetic field fluctuations. This is why the qubit levels are often referred to as
“clock” states [55]. In our setup we achieve coherence times of the order of 1 second
and is typically limited by the coherence of the driving laser field rather than the
qubit itself. This coherence time is ~ 103 times longer than the duration of typical
experiments.

The ground 25 /2 and the excited 2P, j state can be coupled with a UV laser at
369.5 nm that is resonant with this electric dipole transition. Even though there is
a small branching ratio to the ®Dj /s state this transition is nearly cyclic and allows
one to perform dissipative processes like doppler cooling, qubit state preparation
and measurement quite efficiently (fig. 2.4) [53,56]. Another added benefit to
this is that the optical addressing techniques (if necessary) for the aforementioned
processes is naturally more resolved at this shorter (UV) wavelength. This can help
in high fidelity state preparation or measurement of individual qubit within a chain

of multiple ions.
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2.4.1 Loading '""Yb"ions

The first step towards trapping '"'Yb'ions is photo-ionization where one of
the outer electrons of a neutral atom is stripped using a two photon process to
create singly ionized Ytterbium. This involves two transitions, the first being the
excitation of the electron from the 'Sy to the ' P, level in neutral Ytterbium. This
is accomplished by applying a continuous-wave (c.w.) laser light at 398.5 nm. Once
the electron is excited to the ' P level it requires a second photon that has enough
energy to excite it to the continuum thereby forming the "'YbTion. Since the
second photon is required to have a wavelength less than 394 nm, we can either use
c.w. light at 369.5 nm that is already used for the 25; /2 to ’p /2 transition or pulsed
laser light at 355 nm (used for Raman transitions).

During the loading of ions an oven containing small fragments of enriched
YD (about 95% isotope purity) within a stainless steel tube is resistively heated by
passing a current (2.4 A) such that an atomic beam of neutral Ytterbium is created
and directed towards the ion trap. About 600xW of 398.5nm light (ionization beam)
and 500 W of 369 nm (or > 1 mW of 355 nm) light are focused to a beam waist
of 50 pum and overlapped at the trapping zone during loading. The temperature
of the atomic beam is above room temperature and the velocity distribution of
neutral Ytterbium is peaked at several hundred meters per second. This gives rise
to Doppler shifts of the frequency of the ionizing laser beams as seen by the moving
neutral atom. Therefore the frequency of the ionization beam is shifted by £500

MHz range depending upon the angle of the beam k-vector with the atomic beam.
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Additionally, the radial confinement of the trap is also lowered by a factor of 10 in
order to trap ions that are at the lower velocity rage of the velocity distribution.
This allows the slow moving ions to be cooled easily such that they can form a
Coulomb crystal. In the experiment, it is the combination of both reduced trapping
rf amplitude and the appropriate shift of the frequency of the ionization beam that

optimizes the trapping rate.

2.4.2 Doppler cooling

Once a neutral Ytterbium atom is ionized within the trapping zone it ‘sees’
the trapping potential. Initially the ion is at a much higher temperature due to its
initial velocity and needs to be rapidly cooled down nearer to the ground state of
the harmonic well. This is achieved by doppler cooling of the ion using a laser that
is detuned from an optical transition between two electronic levels of the atom [53].

The scattering rate in this case is given by,

53
l=——2 o 2.20
1+ s+45; (2.20)

where the saturation parameter s = [/I; is the ratio of the beam intensity to
the saturation intensity. The saturation intensity I, = whc/3A37T depends on the
wavelength A of light resonant with the transition and the lifetime of the excited
state 7. The parameter I' is the natural radiative linewidth of the decay from the
excited state to the ground state and A is the detuning of the excitation laser

frequency from resonance.
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Figure 2.5: '"'Yb"Doppler cooling, optical pumping and state detection
schemes. The solid arrows indicate applied frequency and polarization components
in the 369.5nm beams and gray lines show the possible routes for spontaneous emis-
sion to the ground state manifold. a) Doppler cooling frequencies and polarization.
b) Optical pumping frequencies and polarization required for qubit state preparation
in |0), ¢) Frequency and polarization components for qubit state detection .
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In 'YbTthe 25, /2 and ’p, /2 levels form a nearly cyclic two-level system con-
nected by optical transitions, where there is a high probability for the ion to be
in these two levels during repeated scattering events of excitation and spontaneous
emission (fig. 2.4). The only minor variation from the ideal two-level system is the
hyperfine splitting of both levels. This might require additional frequencies to be ap-
plied during doppler cooling in order to prevent the population from getting trapped
(pumped) to some auxiliary state and prevent any further scattering. Figure 2.5a
shows that the light resonant with the 25,2, F =1 to ?P; /2, F = 0 transition also
requires a second frequency that is higher by 14.7 GHz to excite population that
might be trapped in the |0) state. This additional frequency of the 369.5 nm cooling
beam is obtained from a second-order sideband generated by an electro-optic modu-
lator (EOM) 2 that is resonant at 7GHz and driven with ~ 1W of rf power. In figure
2.4 we also note that there is a 0.5% chance of the 2P1/2 state to fall into the 3D3/2
manifold. In order to depopulate from this state an IR laser at 935.2 nm is used to
excite from the *Ds /5 to the bracket state 3[3/2]3/5. Due to the nuclear spin I = 1/2
of ™YDbTboth these levels also have a hyperfine structures which then requires an
additional frequency on the 935.2 nm beam that is higher by 3.07 GHz. This com-
ponent is given by the first-order sideband created by modulating the beam using a
fiber EOM 2 that is resonant at 3.07 GHz and driven by ~ 10 mW of rf power. The
polarization of the beams are also critical as seen in figure 2.5a and needs to have

both linear along 7 and circular & components. This can be achieved by adjusting

2EOM from New Focus, model 4857 with resonance at 7.37 GHz
3EOSpace
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the angle between the polarization vector of the beams with the quantization axis for
the ion, that is defined by a magnetic field B = 5.2 G applied along the X direction
of the trap (as shown in fig. 2.2). This magnetic field also removes the degeneracy
between the mprp = £1 and mpr = 0 states of the ground state 251/2, F' = 1 manifold
by increasing the Zeeman splitting between the levels. This prevents the ion from
getting pumped into a coherent dark state that, depending on the cooling beam
polarization, is such a coherent superposition of the Zeeman states that it can have
zero net coupling to the excited 2P /2, F"' =0 level [57]. The applied magnetic field
helps to destabilize this dark state by evolving the phase the constituent Zeeman
states at different rates. Nonetheless, due to a presence of this approximate dark
state there is a reduction in the overall scattering rate compared to a pure two-level
system as suggested in equation 2.20. Additionally the rate also suffers from the
branching to and the subsequent depumping from the 3 D5 /2 manifold. This however,
might be substantial if either the polarization or the frequency of the 935.2nm laser
is not optimized to efficiently depopulate this state. This is due to the fact that the
#Djy)s state has a life time of 52.7 ms which being much longer that the P, life
time of 8.12 ns can temporarily trap the ion in this dark state (see fig. 2.4) [58].
Once the system of lasers are optimally tuned to make an '"Yb™ion to contin-
uously scatter light like a two-level system, we can perform doppler cooling by red-
detuning the 369.5 nm cooling laser from resonance (decreasing the laser frequency)
[10,59]. The scattering is mostly from the transition between the {252, F = 1} and
{2P1/2, F = 0} levels. At this point we can write the detuning in equation 2.20 as

A = § — k.0 where § < 0 is the detuning of the cooling laser from resonance and k.o
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gives the first order doppler shift of the ion with velocity v scattering a cooling beam
photon with k-vector k. Therefore, while traveling towards the incident photon the
ion has a higher rate of scattering a photon since k.o < 0 . This process leads to a
higher likelihood of absorption of a low energy photon by the atom thereby reducing
its momentum by Ak. In order to find the overall change in the momentum of the
ion the recoil momentum from the spontaneous emission of a higher energy photon
should also be taken into account. Fortunately the effect from the latter process
averages to zero over several scattering events, since the spontaneous emission is
isotropic and both 7 and & photons are emitted with equal likelihood. Therefore,
the net effect of this scattering process is the loss of kinetic energy of the ion along
the k direction of the doppler cooling beam which leads to the eventual cooling of
the ion.

During the loading of 1" Yb*ions in the trap the initial kinetic energy of an ion
is relatively higher and needs to be reduced by doppler cooling using a beam that is
far detuned from resonance (by 0 = —27 x 300 MHz) compared to the natural line
width of the transition I' = 27 x 19.7 MHz, such that higher scattering rates are
achieved (A is small) even for large doppler shifts seen by a fast moving ion. This
beam is the same as the one used in the photo-ionization process discussed earlier.
Furthermore, the atomic transition is power broadened by increasing the intensity
beyond saturation s > 1. Once the ion has scattered enough photons from this
beam and lost sufficient energy, it can now be more efficiently cooled with a weaker
cooling beam that is detuned by 6 = —I'/2 &~ 27 x 10MHz from resonance. With the

power set close to saturation the ion is now efficiently cooled down to close to the
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motional ground state. We apply ~ 10 uW of power to this beam with its ~ 50 ym

beam waist at the trapping zone.

2.4.3 Qubit state initialization

At the beginning of every experiment the qubit needs to be initialized to a pure
state. We choose the state |0) where the qubit is prepared through optical pumping.
In any experimental sequence this qubit initialization follows doppler cooling which
resulta in the population being spread over all the ground state hyperfine manifold.
In order to remove population from the {?5; /5, F' = 1} manifold a laser is tuned to
resonance on the {25}/, F = 1} and {*P, /5, F = 1} transition . This is achieved by
modulating the original 369.5nm beam with an EOM?* that is driven by ~ 0.5W of rf
power at 2.1 GHz. As shown in figure 2.5b this leads to spontaneous emission with a
high branching ratio to the state |0). Since the laser frequencies are detuned enough
not to excite from this state there is near a 100% probability of all the population
to accumulate in this state after only a few scattering events. In the experiment the
optical pumping takes less than 5 us duration to transfer > 99.7% of the population

to the state |0).

2.4.4 Qubit state detection

The state detection of the ' Yb T qubit is performed at the end of an experi-
ment and therefore is an important step in determining the fidelity of gate operations

preceding it. In other words, the detection fidelity is required to be high in order to

4EOM from New Focus, model 4431 with resonance at 2.105 GHz
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make a good estimate of the process fidelity of gate operations on the qubits in the
chain. The detection scheme of the '"'Yb™"qubit is based on state dependent fluo-
rescence. Basically, if the qubit is in the state |1) (bright state) it scatters photons
when illuminated by the ‘detection’ laser beam at 369.5 nm. This is accomplished
by tuning the laser to be resonant with the transition from {251/2, F=1mp=0}
to {*Py2, ' = 0,mp = 0}. As shown in figure 2.5¢ this also requires both ¢ and
7 polarizations due to the eventual participation of all the Zeeman levels of the
{2512, F = 1 ground state manifold. Although the Zeeman splitting between the
levels of the {?S}/2, F' = 1} manifold is about 7 MHz it is well within the line width
of the transition and any population in these states gets excited thereby forming
a cyclic process where many photons are scattered. For the state |0) (dark state),
however, the frequency of the laser is off resonant by about 14.7 GHz for the dipole
allowed transitions to the {*P; /2, F = 1} manifold and therefore does not result in
any photon scatter.

In the experiment an imaging objective with a numerical aperture (NA) of
0.37 collects fluorescence from the ions during state detection and images them on
single channels of a multi-channel photo-multiplier tube (PMT). We will discuss the
optical and electrical design of the imaging system in more detail in chapter 4. The
detection beam intensity is maintained close to saturation and is actively stabilized
using a digital PID-lock (noise eater) while monitoring the beam intensity using a
fast photo diode and feeding back by regulating the power of the rf signal driving
the acousto-optic modulator (AOM) that is used to switch the detection beam. We

use an FPGA with on board ADC and DAC to readout the intensity from the
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photo diode, calculate the PID response and output the analog voltage to a voltage

variable attenuator (VVA) that regulated the power of the driving rf signal.
Although the detection scheme has excellent fidelity as transitions from |0)are

far off resonance and the nearly cyclic nature of the scatter, it is still not a 100%

due a several reasons. These are

« Branching from the excited {*P; /o, F = 0} state to the long lived {*D3/s, F' =
1} state as shown in figure 2.4 requires the 935.2nm de-pump laser to be opti-
mally tuned to depopulate efficiently from this manifold and bring it back to
the ground state {?S;,2, F' = 1} within the detection time. In the experiment
we observe that the polarization of the de-pump laser is critical and requires
readjusting on a regular basis in order to maximize fluorescence scatter from

a ‘bright’ ion.

o It is important to have a high count of collected photons in a short duration
during detection. This is due to the fact that an off resonant excitation to
the {?P /5, F = 1} manifold might inadvertently pump the atom to state |0)
on emitting a photon. Hence, even if the qubit originally collapsed to state
|1) at the onset of the detection process it could be detected as a dark state
|0). The off-resonant excitation that gives rise to this error is only 2.1 GHz
(or 100 natural line widths of the transition) away from resonance and has
a higher probability of happening for a longer detection duration or due to
excess intensity in the detection beam that can cause power broadening of

this transition.
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o Background scatter of the detection beam from ion-trap features near the
trapping zone can give false photon ‘clicks’ at the PMT and must be removed
by using high NA imaging objective along with spatial filters in the optical
system in order to selectively collect photons from a very small (real) space
containing the trapped ions. This affects the detection fidelity of the dark

state |0) since ideally, no photons should be scattered in this case.

During the design of the trap and imaging optics the second and third points
can be addressed by making appropriate provisions in the design. For example, the
trap assembly must allow short working distance between the ion and the imaging
objective that collects fluorescence from the ion. Given that in most traps the
objective is placed outside the vacuum chamber this can be achieved by the use of
re-entrant windows and an optically open trap such that the Numerical aperture
(NA) of light collection can be maximized. This is useful not only in reducing the
detection duration but also in achieving shallow depth of focus of the objective that
acts like a spatial filter along the optical axis thereby dramatically reducing the
collection of background scatter. An optically open trap with sufficient clearence
between the detection beam and the trap electrodes also reduces the background
scatter.

In the experiment the detection beam is turned on for a duration of 150 us
during which the ion scatters light based on the collapsed state. The probability
distribution of detecting a certain number of photons for a typical experimental run

is shown in figure 2.6 for both the dark |0) and the bright |1) state. For state |1) on
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Figure 2.6: Distribution of collected fluorescence from a single ion. The
probability distribution of collecting a certain number of scattered photons per ex-
perimental shot is plotted for the bright |1) and the dark |0) state over a 150 us state
detection. Each histogram nearly follows a Poisson distribution with an expectation
value close to 0 for the dark state and 9 for the bright state. By discriminating
events based on > 1 collected photons during the detection cycle, single shot state
detection of the qubit can be performed with reasonably high fidelity.
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an average 9 photons are scattered while for state |0) no photons are detected. In
order to measure the qubit state one can employ a discriminator technique which sets
a threshold on the number of detected photons such that if > 1 photons are detected
for an experimental run the measured state is assigned to be |1) and |0) otherwise.
This single shot detection is critical for several quantum algorithms and protocols
where measurement-based quantum gates are performed. In these processes single
shot measurements are performed within a sequence of gate operations and therefore
need to be of high fidelity such that errors do not accumulate while performing
repeated measurements along the sequence. In our system we achieve a fidelity of
99.66(3)% for the preparation and measurement of state |0) and 99.04(5)% for state
1).

In principle, the discrimination technique works for single as well as multiqubit
detection by using multiple channels of a PMT array The details will be discussed in
chapter 4. We will see that besides the usual error (< 1%) in the single qubit detec-
tion, for two or more qubits additional errors arise due to signal cross-talk between
neighboring channels of a multi-channel PMT as well as higher rates of background
scatter as we bin together more channels of the PMT array for state detection. In
order to circumvent these errors a second method can be adopted based on the his-
togram of scattered photons. Usually this distribution is Poissonian which centers
around a value ~ 0 or 10 or 20 photons for two qubit states in |00), (|01)or|10))
and [11), respectively. A state detection in this case can be performed by fitting
the measured histogram to known basis histograms. We verified this procedure by

detecting two qubit states initialized in |00) after performing an XX-gate entangling
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Figure 2.7: Two-qubit state detection using histogram fitting. Measurement
of a two-qubit state using histogram fitting. a) Basis histograms are obtained by
preparing two qubits in one of the four basis states and subsequent measurement of
fluorescence. b) Output state histogram is obtained after performing an XX-gate on
two qubits initially in |00) and measuring the detection fluorescence. The expected
output state is %(]0@ + ¢|11)). ¢) The population in the four basis states is
obtained from fitting the measured histogram to a linear combination of the basis
histograms.
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operation [60,61]. As shown in figure 2.7a, a set of basis histograms are obtained
for each of the four basis states, which can be prepared with high fidelity (using
microwave Rabi rotations). The basis histograms can be distinguished from one
another as they are centered around different values of the average photon number.
These basis states can then be used for a two-qubit state detection. Figure 2.7b
shows one such example where a histogram obtained from measuring a two-qubit
entangled state %(\OO} + €|11)). This histogram can then be fitted to a liner

combination of basis distributions,

H(n) = PoBo(’fl) + PlBl(n) + PQBQ(H), (221)

where H(n) is the measured histogram obtained from several experimental repeti-
tions with n as the number of photons detected for single runs of the experiment.
The B;(n) are the basis histograms for ¢ bright ions (in state |1)). The fitted pa-
rameters P; correspond to the diagonal elements of the two qubit density matrix p
as Py = poooo, Pr = piogo + por,o1 and P = pi111. Figure 2.7 is one such example
illustrating the fitting process where, 2.7c shows the measured population obtained
from fitting the output histogram in Fig.2.7b to the basis histograms in Fig.2.7a.
Histogram fitting is a very useful technique that can be used for the calibra-
tion of an XX-gate where the variation of populations in the |00) and |11) state
is observed as a function of the intensity of the laser that drives the gate. A low
population for single bright states (or low value of P;) suggests a high gate fidelity.

In principle this technique provides a better, than might be expected, estimate of
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the gate fidelity as the basis histograms already include the state preparation and
measurement (SPAM) errors. For example, non zero photon counts due to back-
ground scatter or imperfect optical pumping to the dark state |00) is reflected in
the basis histograms as photon counts are sampled over thousands of experimental
repetitions. This also applies to histograms of single or double bright ions that
contain events with zero photon scatter due to a small but non-zero probability of
off-resonant pumping to the dark state and due to the fact that the Poisson distri-
bution also gives a small but non-zero probability of events where < 1 photon is
detected . Therefore the final measurement of state populations exclude the SPAM
errors. The down side to this technique, however, is that the basis histograms can
only be used for fitting as long as the system is sufficiently stable to maintain the
same rate of fluorescence scatter from the ions. A number of factors such as drifts
in laser power/polarization and optical alignment of the imaging system can lead
to deviations. A practical approach to tackling this problem is characterizing time

scales for systematic drifts and recalibrating the basis histograms accordingly.

2.5 Ion trap assembly and vacuum system

Trapped ion experiments require extreme isolation of the trapped ion from col-
lisions with background gas molecules. Such collisions, when elastic, can cause the
heating of the ion thereby reducing its lifetime in the trap. In case of "'Yb™, col-
lisions can also cause transition to the 2F% /2 manifold, which has a long lifetime for

spontaneous decay to the ground state and therefore requires an additional laser to
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depopulate. In addition chemical reactions occur due to inelastic collisions between
the ion and a background Hydrogen molecule forming the hydride ion YbH™ [62].
This is our most likely way of ion loss even at our ultra high vacuum (UHV) condi-
tions. A low pumping rate and residual leakage of Hydrogen through the chamber
walls and fused silica windows is to blame. It is therefore desirable to produce a
vacuum environment, which is as good as one can reach with efficient pumping for

Hydrogen.

2.5.1 Chamber assembly

The vacuum chamber constructed for the experiment is shown in figure 2.8. It
is designed to achieve ultra-high vacuum (UHV) pressures of ~ 107! Torr. Achieving
such low pressure is non trivial and requires special attention during the assembly of
the vacuum chamber. All components (see table 2.5.1) are chosen such that they are
UHV compatible, which implies that the rate of outgassing and leakage is very low.
We choose ConFlat (CF) flanges for all stainless steel components, which allows
all-metal seals with joints formed by stainless steel knife edges pressing into soft
copper gaskets permanently deforming it to form a high quality vacuum seal. All
windows and electrical feedthroughs have UHV compatible metal to glass seals. It
is also necessary to carry out the assembly in a clean room environment to prevent
contamination of the vacuum parts from dust particles. Special care is taken to
remove and prevent any bodily oils, skin contact, hair etc. from the parts. Each

stainless steel component is cleaned in an ultrasound bath of Acetone followed by
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Figure 2.8: Vaccum system for trapping ions. A computer design of the vac-
uum system that contains the ion trap. All components have standard ConFlat (CF)
flange connections deigned to operate at ultra-high vacuum (UHV). Once assembled
the chamber is baked at 200° C, it is pumped externally through the bakeable valve.
The pressure is monitored using an ion gauge. Under normal operation the bake-
able valve is closed. Pumping using an internal NEG-Ion pump keeps the chamber
pressure at 1071t Torr. The chamber is fitted with fused-silica windows for optical
addressing of ions using laser beams. All electrical feedthroughs are UHV compatible
and allow electrical connections to the trap as well as the Ytterbium ovens.
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wiping with Methanol using cleanroom compatible wipes.

As shown in figure 2.8 the ion trap is hosted inside a ‘spherical-cube’ chamber
with several 4.5” and 1.33” diameter CF flanges. There are two custom designed
40 mm re-entrant windows with a clear aperture of 38 mm that are installed for

5 A third 48 mm re-entrant window ¢ with a clear

the delivery of Raman beams
aperture of 32 mm is installed to collect ion fluorescence along the vertical (Y)
direction using an imaging objective with 0.37 NA. The main chamber hosting the
ion-trap is connected to an NEG-Ion pump (internal to the chamber) via a 5-way
cross that also has a 15-pin d-sub feedthrough for DC voltage delivery to the trap.
The feedthrough is connected to the DC electrodes through 28AWG Kapton coated
cables that are about 30 cm in length. The rf feedthrough with two solid copper
wires on the other hand is mounted on the main chamber such that relatively short
16 AWG Kapton coated cables (of about 7cm length) can carry the rf voltage to the
trap. Each segment of the blades have gold ribbons that are wire bonded to them.
The DC ribbons are additionally rf grounded by bonding in-vacuum capacitors to

them as shown in 2.9. The cables from the feedthroughs are then connected to the

blades by spot welding both the ribbon and the cables to a common constantan foil.

2.5.2 Yb oven

In order to produce an atomic beam of Ytterbium, an oven is constructed using

a stainless steel tube that contains a few shards of enriched "™Yb (1 mm in size).

>Thickness: 3.5mm. Material: UV-Fused silica (Spectrosil). BBAR coated: 350-700nm. Sur-
face irregularity: /8.

6Thickness: 3.0mm. Material: UV-Fused silica (Spectrosil). BBAR coated: 350-700nm. Sur-
face irregularity: A\/8.
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Figure 2.9: The assembly of the blade trap. a) Blades are mounted on a Macor
trap holder using stainless steel screws. Each blade is pressed against a thin kapton
film which prevents it from sliding during alignment. Each DC segment is grounded
to the chamber body through a capacitor using gold ribbons. b) The trap holder
is mounted on stainless steel adapters that secure it to the vacuum chamber. The
adapters also form the ground connection of the trap to the chamber. The figure
also shows the routing of the kapton coated RF and DC cables near the trap. .
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Part

Quantity

Vendor

Part number

Spherical Cube-4.5"
Groove grabbers
Trap mount (SS)

Trap mount adapter (SS)

Ion trap DC blades

Ton trap rf blades
Blade holder (Macor)

In vacuum capacitors
5-Way cross 4.5”
Conical reducer -6” to 4.5”
6”7 to 4.5” reducer flange
4.5” to 2.75” reducer flange
Mounting brackets
Mounting flange
Tee-standard 2.75”
Full nipple 2.75”
UHYV Ion gauge
Bakeable all metal angle valve
Zero length viewport
1.33” Window
Recessed viewport
Reentrant Raman window
Reentrant Imaging window
rf power feedthrough
15 D-sub DC feedthrough
Yb oven feedthrough
1.33” Blank
NEG-Ion pump
NEG-ribbon
Isotropically enriched 1"*Yb

e I R e e e e e S e~ R U U R

2’ long
few mg

Kimball Physics
Kimball physics
Maryland machining
Maryland machining
Laser micromachining
Laser micromachining
Maryland machining
ATC
MDC
Kurt J. Lesker
Kurt J. Lesker
Kurt J. Lesker
Kimball Physics
Kimball Physics
Kurt J. Lesker
Kurt J. Lesker
MDC
Kurt J. Lesker
Kurt J. Lesker
Kurt J. Lesker
UKAEA-CCFE
UKAEA-CCFE
UKAEA-CCFE
MDC
Accu-Glass
Accu-Glass
Kurt J. Lesker
SAES getters
SAES getters
ORNL

MCF450-SphCube-E6AS
MCF450-GrvGrb-C02
N/A
N/A
N/A
N/A
N/A
116UL821M100TT
406004
CRN600X450
RF600X450
RF450X275
MCF450-ExtBrkt-LS
MCF450-MtgFlg-E2
T-0275
FN-0275S
432004
VZCR40R
VPZL-450Q
VPZL-133Q
N/A
N/A
N/A
9422010
100210
10600
F0133X000N
NEXTorr D-300-5
4F0280D
N/A

Table 2.1: List of important parts for the vacuum chamber construction. Standard
accessories such as copper gaskets, bolts, cables, vented screws etc. are excluded.
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During loading of ions a spray of atomic Yb is created when this tube is resistively
heated by passing a current. The temperature reached depends on the current and
the duration it is turned on. If either of these are too high or long it causes rapid
evaporation of Yb thereby forming a spray dense enough to coat surfaces in its way
(such as the ion trap electrodes or vacuum windows). In order to prevent this, each
oven is tested beforehand by putting them inside a bell-jar under vacuum (10~7 Torr)
and calibrating the current value for which it forms a mild spot of Yb on the glass
surface when it is run for 10 minutes. This sets an upper limit to the current that
is allowed to run through the oven. We prepared two ovens with current thresholds
of 3.4 A and 4.9 A respectively. Each oven is mounted such that the atomic beam
coming out is directed towards the trapping zone. The ovens are constructed using
of a 10 mm long stainless tube. On one side of this tube a Tantalum wire (0.5 mm
diameter) is inserted and the tube is crimped to form an electrical contact. The
other end of the tube is left open with another Tantalum wire spot welded to it.
Each of the Tantalum wires are then connected to copper wires that connect the
oven to the feedthrough pins. The choice of these dissimilar materials is made in
order to maintain the stainless steel tube at a higher temperature than the copper
wires. Both Tantalum and steel have a much lower thermal conductance (and higher

electrical resistivity) than copper.
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2.5.3 Blade trap assembly

The blade trap as illustrated in figure 2.2 consists of four blades. Each blade
is a 50 pm thick Alumina plate that is segmented along the tapered edge with a
spacing of 50 um between segments. In the trapping zone each segment is 250 ym
long except the end segments which are ~ 10 mm long. The blades are coated with
gold such that they behave as trap electrodes. The coating on the DC blades is such
that each segment is electrically isolated from the other. The rf blades on the other
hand have all segments electrically connected. In order to assemble the ion trap each
of the blades is mounted on a specially designed holder that is made of Macor as it
has low thermal coefficient of expansion. The design of the holder is based on the
desired orientation and spacing between the trap electrodes. During assembly, the
blades are first mounted on the holder and then adjusted under a microscope such
that the segments from all four blades are aligned with each other along the Z-axis
where they run parallel to each other and the desired spacing is achieved between
the blades. Each blade is then secured to the holder using stainless steel screws.
The holder also has provisions for routing gold ribbons that are wire bonded to the
blade segments. This prevents them from coming in contact with the electrically
grounded re-entrant windows.

As shown in figure 2.9 each DC ribbon is bonded to a in-vacuum 800 pF
capacitor. The other terminal of each capacitor is bonded to a common gold ribbon
that is electrically grounded to the chamber. Since, Macor has ceramic like qualities

it is good for machining but at the same time is quite brittle. Therefore, additional
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strain relief rods are used to secure the DC cables (5 cables per blade) which are
then spot welded to the DC ribbons. The holder is then mounted on a stainless
steel adapter that mechanically attaches it to the rest of the chamber via a pair of

groove grabbers at the bottom flange of the spherical-cube chamber.

2.5.4 Chamber bake-out

Once the chamber is assembled it is baked at a high temperature to remove
any water from the surface. This also expels Hydrogen that is in the bulk of the
stainless steel components. In principle a higher temperature is preferable during
the bake as it reduces the duration of the process. However, there is a practical
limit to this temperature due to the fragile glass to metal seals of vacuum windows
and feedthroughs. Considering all the constraints, we bake the vacuum chamber at
200°C over several days. Since the internal ion pump is not used during most of the
bake-out the magnets attached to it 7 are removed to protect them from thermal
demagnetization. The bake-out is periodically monitored.

In the beginning the chamber is pumped using a roughing pump and a turbo-
molecular pump through a bakeable valve. After initial pumping over a few hours
a pressure of 1077 Torr is reached. At this point the Yb ovens are degassed by
running current through them (below threshold value). The internal ion gauge is
also degassed several times before running it continuously for pressure monitoring.
The chamber is then gradually heated at a rate of 0.5°C/min using an industrial

oven with a closed loop temperature stabilization. When the chamber temperature

"maximum allowed temperature for the ion pump magnets is 150°C
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reaches 200°C the NEG element (of the NEG-Ion pump) is ‘activated’” by heating it
to 550°C using a power supply ® that monitors and controls the NEG temperature.
During this process the adsorbed molecules on the the surface of the NEG is dissolved
into the bulk thereby renewing the surface. The process also expels a substantial
amount of Hydrogen from the bulk of the NEG. The Hydrogen partial pressure then
rises and needs to be pumped out efficiently. Figure 2.10 shows the spike in pressure
during activation. At other times the NEG element is held at a temperature of 300°C
which is slightly higher than that of the chamber (200°C). This ‘conditioning’ mode
of the NEG is maintained in order to prevent pumping of Hydrogen by the NEG
thereby saturating it. After activation the chamber is baked for several days under
pumping by an external ion pump (500 litres/sec).

Although the NEG is held at 300°C during the bake-out it still pumps by
absorbing Hydrogen into its bulk. This is evident from the observation of increased
chamber pressure due to the release of this absorbed Hydrogen when the NEG
temperature in increased during the bake-out. Due to this residual pumping of
Hydrogen it is possible to saturate the NEG? during a prolonged bake-out. In this
case we need to recover the pumping speed of the NEG which is why it is activated
several times during the bake out, each time for a duration of ~ 2 hours. During
activation both the TMP and the external ion-pump is used for pumping.

When the bake-out is over, the chamber is cooled down slowly in order to

prevent stress from building up due to thermal gradients in the glass to metal

8NIOPS-04-Power supply
9pumping speed of the NEG falls by 10% when saturated
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Figure 2.10: Temperature and pressure plot vs. chamber bake-out time.
The vacuum chamber is baked at ~ 200°C for several days while externally pumping
using a turbo molecular pump (TMP) and an ion pump (500 1/sec). The non-
evaporable getter (NEG) is constantly maintained at 300°C during the bakeout
(conditioning) with occasional activation at 550°C when the surface of the getter is
renewed and Hydrogen is expelled from the bulk of the getter and pumped using
the external ion-pump and TMP. Here the NEG is activated three times during the
bake-out. The pressure displayed in the plot is measured at the ion-gauge inside the
vacuum chamber.
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seals. At 150°C the magnets for the internal ion pump is mounted and the pump
is started. At this point the chamber is pumped using the NEG-ion pump alone as
the bakeable valve is closed (hand tightened). At room temperature the chamber
reaches a pressure of 7 x 107! Torr as read by the ion gauge. However, the pressure
at the ion gauge is possibly higher than that at the ion trap. This is due to local
heating of the nipple (which is at 60°C) that surrounds the ion gauge and the
poor vacuum conductance to the NEG-ion pump. Once the system reaches thermal
stability the bakeable valve is closed by applying the appropriate (operating) torque
and a pinch-off valve is installed that helps to maintain a pressure of ~ 107% Torr

on the non-UHYV side of the valve.

2.6 Micromotion compensation

While trapping an ion in a linear Paul trap, it is important to move it to the
rf quadrupole null position (g, Yo, 20) Where it does not have excess micromotion.
We can apply combinations of DC voltage values that drive individual segments
of the DC blades and a DC offset on the RF blades to move the ion in the three
orthogonal directions independently and obtain the rf-null position. In order to
accomplish this knowledge of the excess micromotion is necessary. According to
equation 2.16 excess micromotion in direction ¢ is proportional to the displacement
of the ion from the null position in that direction. In the case of trapping using the
blade trap we find that it is not an ideal linear rf-Paul trap. This is confirmed by

detecting micromotion along the axial Z direction of the trap, which implies v # 0.
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We can therefore apply equation 2.16 in the Z direction to obtain,

u,(t) = [A, + B.cos(w,t)] [1+ %COS(Qt +6) (2.22)
where u,(t) is the displacement of the ion along Z and A, is the displacement of the
ion from axial rf null position along Z. In order to set A, = 0 we need to probe u,(t)
and minimize its micromotion. One way to probe u,(t) is to align a cooling laser
beam along the Z direction and scatter light as given by the rate equation 2.20 [45].
Since the detuning of the beam is velocity dependent A = § — k.(9u.(t)/0t) this
gives rise to a perioding modulation of the scatter rate at frequency €2. The phase
and amplitude of this modulation relative to the trap rf signal is plotted in figure
2.11. Here a single trapped ion is displaced along the Z direction to vary A,. As the
ion position moves through zy the displacement A, changes sign (from positive to
negative) which leads to a change in phase (by 7) of the correlation signal as well.
Near the null position the amplitude of the oscillations also goes to a minima (zero).
By tracking the patterns of this micromotion signal we find the null position zy to
be in the trapping zone nearest to DC segments 4 and 9. The same exercise can be
repeated in the X and Y directions to find (xg,yo). However, since the quadrupole
potential {g,,¢q,} is of much higher strength in these directions the micromotion
signal is almost an order of magnitude more sensitive to displacements A,,,. This
implies that it is more important to position the ion chain closer to the radial
rf-null (g, o) in order to have an overall lower value of the micromotion. The

axial positioning on the other hand is more forgiving where the axial micromotion
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increases at a relatively smaller rate with the ion displacement from axial rf-null
position zy. We take advantage of this fact while trapping a chin of five ions where
there is residual axial micromotion of the ions since they spatially separated along

the Z direction.

2.7 Secular frequency stabilization

The secular trap frequency in the radial direction is important for performing
certain quantum operations where the qubit spin is coupled to the motional mode
of the ion defined by the radial or transverse harmonic confinement. One such
example is the two qubit entangling X X —gate which will be discussed in chapter 5.
Therefore, it is essential to stabilize the radial secular frequency in order to achieve
a high fidelity of such gate operations. According to equation 2.9 or 2.18, this can
be achieved if we stabilize the amplitude of the applied RF voltage V' while keeping
the rf drive frequency € constant [63]. Figure 2.12 shows a schematic of the analog
electrical circuit used for this purpose. We use a capacitive divider to pick-off a
fraction of the rf voltage Vcos(€2t) at the rf feedthough followed by a rectifier in
order to obtain a DC signal. This can then be stabilized against a reference voltage
Vier as explained in the figure.

The necessity of the secular frequency stabilization stems from the fact that
the RF signal that drives the trap has drifts in the amplitude. This can happen
due to several reasons. Like any RF circuit, this one has a reactive impedance

that depend on the physical dimensions of the distributed circuit which can change
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Figure 2.11: Measurement and compensation of micromotion. a), b), ¢), d)
Photon scattering rate from a doppler cooling beam along Z. The plots correspond
to four ion positions indicated by the (colored) vertical lines in panel (e) and (f).
Since the scatter rate is correlated with micromotion the time scan is triggered by
the trap rf signal. The amplitude of the oscillating scatter rate shows the magnitude
of micromotion and the phase reversal is indication of the ion crossing the rf null
position. e) As the ion is moved along the Z-direction of the trap the amplitude of
the micromotion signal is measured. The minimum amplitude corresponds to the
axial pseudopotential null position zy. f) The measured phase of the micromotion
signal which flips by 7 across zy. Panel (d) shows the micromotion signal from the
ion at the axial rf-null position.
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due to slow temperature changes thereby changing the impedance. One example is
the quarter wave resonator [64-66] that is used to amplify and deliver a higher RF
voltage to the trap. Other components in the circuit such as rf power amplifiers can
have drifts in their gain due to thermal effects as well. It is therefore, necessary to
probe the value of the rf voltage at the trap and stabilize it by comparing it to a

stable reference.
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Figure 2.12: Stabilization of transverse trap frequency. a) Circuit schematic
for amplitude stabilization of trap RF voltage V. A DDS generates the RF signal
which is sent to a resonator that amplifies the signal and delivers it to the trap rf-
blades. A capacitive divider ‘picks-off” a small fraction (Cy/C} = 100) of this voltage
at the rf-feedthrough which is rectified to give a DC signal. The signal is compared
to a programmable reference voltage V,.; and locked using a PID (servo controller)
that sends a feed back to a voltage variable attenuator (VVA). By programming a
value of V,..; the trap rf potential is stabilized. By programming linear ramps in time
the trap confinement can be lowered for ~ 1sec as is required during the loading of
1lYb*. b) The drift in the secular transverse trap frequency w, in the X direction
over time without the amplitude lock. The transient drift occurs when the rf is
turned off (set to very low value) for 5 mins and then set back to the normal (high)
value. The data points show secular frequency measured using a single ion and
Raman sideband spectroscopy (section 3.5). ¢) Same as (b) but with the amplitude
lock. The drift is suppressed by a factor of &~ 6 but still remains due to thermal
effects that might be affecting the capacitive divider or the rectifier itself. The long
term stability of the trap frequency, however, is within 0.3 kHz. In order to avoid
these transient effects the trap rf amplitude is lowered for a short duration of 1 sec
during loading which helps in maintaining a thermal equilibrium in spite of large
ramps in the rf power. 59



Chapter 3: Coherent Control of Qubits

Quantum gates are nothing but coherent rotations of qubits. Common tech-
niques of such qubit manipulation involve perturbing the qubit two-level system
with electromagnetic radiation that is resonant with the energy splitting of the
qubit levels. In '™ Yb*the hyperfine qubit has an energy splitting of 12642.821 MHz
and we can implement coherent rotations of the qubit by performing Rabi flopping
by directly applying resonant microwave radiation. In practice, the microwave horn
that generates such a field is usually situated outside the vacuum chamber several
centimeters from the trap. Due to the spread of this microwave field over the entire
trap, the microwave Rabi rotations do not provide spatial selectivity of individual
qubits in a chain of multiple trapped "' YbTions. Microwaves also do not provide
the spin-motion coupling necessary for implementing two-qubit entangling XX-gates
due to their relatively long wavelength (2.4 cm at 12.6 GHz). For these reasons the
alternative method of stimulated Raman transition is preferred where a pair of laser
beams from a 355nm mode-locked pulsed laser is used to perform coherent rotations
of the qubit. By tightly focusing the laser beam on single ions in a chain, individual
optical addressing can also be achieved. In this chapter we will discuss the theory

behind Raman transitions and provide experimental details of implementing and
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characterizing this technique of qubit manipulation using optical fields.

3.1 Raman transitions

A stimulated Raman transition can be described as a two photon process
where a two level system is coupled via a third auxiliary state thereby forming a
A— system as shown in figure 3.1 [56]. For this derivation, we can assume that the
electric fields are generated from continuous wave (c.w.) laser beams and can be

written as

EO =z cos(k‘—o> cT —wht 4 ¢p), (3.1a)
Ei = a)cos(z-?—wft+¢1), (3.1b)

where ¢ and 27 are the field vectors of the two Raman beams, respectively. Also
the beams have a wave vectors Eg and El}, respectively that sets spatially-dependent
phase offsets. The ion position 7 is classical and fixed for this treatment. Additional
phase offsets ¢y and ¢; can be added to each field using acousto-optic modulators
(AOMs). These phases can be varied by simply changing the the RF signal that
drives the AOM responsible for switching each of the Raman beams during an
experimental sequence.

The first step toward analyzing a Raman process is to recognize the unper-

turbed Hamiltonian of the system in the absence of any external fields. We can
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write this as

Ho = wol0)(0] + wi[1) (1] + we[e) {e], (3.2)

where the qubit levels |0) and |1) have energies hiwy and hw;, respectively and the
auxiliary sate |e) has energy hw,. In this expression and henceforth we set & = 1 for
simplicity.

We can write down the time varying wave function of this three level system

in the following manner

U(t) = co(t)0) + c1(£)|1) + ce(t)e) (3-3)

where the complex amplitudes ¢;(t) of the basis states |j) are time varying and j =
{0,1,e}. Integrating the Schrodinger equation i%ﬁt) = Hyy(t) for the unperturbed
Hamiltonian H, we obtain

c; = cj(0)e ™" (3.4)

where ¢;(0) are the respective amplitudes of the basis states |j) at time ¢ = 0.
When a perturbation is applied using a pair of Raman beams, the laser fields
as expressed in equation 3.1 interact with the atomic dipole. This gives rise to the

following interaction Hamiltonian

H; = _d. E?; (3.5a)

— —[doel0) (€] + dael 1) (€] + deole) (0] + dele) (1]] - [ + Br). (3.5b)
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Figure 3.1: Stimulated Raman transition using c.w. laser beams. a) Raman
beam setup.A pair of Raman laser beams with wave vector k, electric field vector &
and frequency w”. b) Stimulated Raman transition as a two-photon process. Two
laser beams with frequencies wf and wi couple the qubit levels |0) and |1) to the
auxiliary state |e), respectively. The couplings are given by single-photon Rabi
frequencies ggp and g1; for the two Raman beams detuned by A from excited state
le) and A > {goo, g11}. Coherent Rabi flopping between state |0) and |1) happens
at a Rabi frequency Q = googi;/2A when the beat-note between the Raman beams
is tuned close the qubit splitting wy;. Here the detuning of the beat-note u is set
according to the requirements of a quantum gate.
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Here, 7 is the electric dipole moment operator that gives the dipole moment

vector of the atom and has the following matrix elements:

doe = (0[ de), (3.6a)
die = (1[d |e), (3.6b)
dey = i, = {e| d|0), (3.6¢)
do = &, = (e| d |1). (3.6d)

In order to solve for the system dynamics we can apply the Schrodinger equation for
the total Hamiltonian H = Hy + H; and find the time dynamics of the coefficients
cj(t) of the wave function.

This gives the following relations:

ico(t) = woco(t) — douca(t) - [4 cos(ky - T — wht + ¢o) + &1 cos(k, - T — wht + 1)),
(3.72)
i61(t) = wier(t) — drece(t) - [5 cos(ky - T — wit + o) + B cos(ky - 7 — wht + )],
(3.7b)
i6o(t) = wece(t) — [deoco(t) + derer (B)] - [55 cos(ky - T — wlt + o) + 51 cos(ky - T — wht + ).

(3.7¢)

In order to solve the above equations we first transform to a rotating frame
with respect to the unperturbed Hamiltonian Hj, as interaction term H; leads to

dynamics that is much slower than those due to Hy. We define slowly varying
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amplitudes Cy,C; and C, as,

Co(t) = co(t)e™", (3.8a)
Ol(t) = Cl(t>€iwlt, (38b)
Co(t) = co(t)e™e", (3.8¢)

and insert into equation 3.7. We further expand each cosine term of the electric

fields as exponentials and obtain

. 1- . = =
ZCO(t) = — §d0ece(t)6_moet X [8_0> <el(k0'7—w§t+¢o) + e_z(ko'?—wét-Hi)o))

(3.9)
v E <6i(lc—>1-?—wft+¢1) n €—¢<H.7_w5t+¢1>>]7
iCl (t) _ ;d_lec’e(t)eiwlet . [8_3 (ei(k_)o-?wéﬂr(bo) + ei(lv_g?wéﬂr%))
(3.10)

+& (ei(ﬁ?wftwl) + ei(k—;'?wfﬂr(bl))]’

. 1 - ) _ ) e e
iC(t) = = SldaCo()e™* + duC(t)e] - [ (/BT —wbtrsn) o (T witiin))

+ (em-?wftwl) n ei(ﬁ?wftwl))].
(3.11)

Then we can apply the Rotating Wave Approximation (RWA) to the above
equations, where we ignore terms that oscillate at a much higher rate than others.
In order to do this we first note that there are terms on the right-hand side, which
oscillate at sums and differences of two large optical frequencies. For a A—system
implemented on ""Yb", the qubit energy splitting wg;, the detuning of the Ra-

man laser frequency A and the Raman beatnote detuning p are chosen such that
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{wor, 1, A} < {wl, wl, woe,wie}. Keeping terms that oscillate at {wor, 4, A} equa-

tion 3.9,3.10 and 3.11 can then be written as

iColt) = 5C.(0) (3o

eIt 4 gme*(A*“*wOl)t) : (3.12)

. A 1 —i(A—w -
iCa(t) = 5Ce(t) (groe"(A7w00" 4 gye(Atmt) (3.13)

1

iCo(t) = SCo(t) (gooe™ + ggelHreot) 4 5C1() (gro€ @0 + gppelatmt)

T2

(3.14)

Note that the above equations also represent the Schrédinger equation showing the

evolution of the system in the rotating frame instead of the lab frame. Each term on

the right-hand side corresponds to an off-diagonal coupling term of the Hamiltonian.

These terms are proportional to single-photon couplings g3, where « represents one

of the qubit levels (|0),]1)) coupled to |e) by field &3, (3 = 0,1). These couplings

are position dependent single-photon Rabi frequencies. Assuming that the electric

field vector is real valued we can explicitly write down the single photon couplings

as

goo =do. -
go1 =do. -
gio :dle :
g11 =dy -

€—0>6—i(l?0-?+¢0)’ (3.15a)
8—1>6_z‘(1~c_{-?+¢1)7 (3.15Db)
5—0>€—z'(k_’o~?+¢o)7 (3.15c¢)
ae,i(k—{.yml). (3.15d)
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Next, we approximately solve equations 3.12-3.14 by the method of adiabatic
elimination. To apply this method we first we consider equation 3.14 under the
assumption that coefficients Cy(t) and Ci(t) slower than C.(t). This is true since
the states |0) and |1) are not directly coupled. This allows us the integrate equation

3.14 keeping Cy(t) and C(t) constant and find

i t , .
Colt) == 5Colt) || (oo™ + goye@Hro) at

) t . ,
_ ,Cl(t)/o (QTOQZ(A—wm)t + gEe”L(Aw)t) dt

i eiAt -1 § 6i(A+u+w01)t -1
=— -Co(t) [QOOA + 9o1 AT it wor ]

ei(A—wm)t -1 ei(A-i—/,t)t _ 1‘|

1 (3.16)
- 56100 [ o

A — Wo1
~ = —[Colt) (gooe™ + gye Aot — gi) — gy

+ Cu(t) (gfoei(A_w01)t + gpy et — 910 — 9?1)]‘

when C,(t = 0) = 0. In the last step we use that A > {u,wo;}. We can then use

equation 3.12 and 3.16 to obtain

A i —1 - w x 1 * 1 wi * *
Co(t) = AA (9006 Bt gore AT 01)t> [Co(?) (9006 2+ goie (Bruten)t Yoo — 901)]

+ C1 (1) (gfoei(A_w(H)t + g, A — gl — gfl)]-
(3.17)

Here, we apply RWA again and ignore terms >t and (A +#+«00t that oscillate much
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faster and hence average out to zero. Therefore, the expression for Cy(t) is

) Z * 1 W * —1 W
Co(t) = E[Co(t) (’900\2 + 1901 [* + googgr e “TV + g gore” ¢ F Ol)t)

+Git) (googflei“t + googioe O + gorgioe WO 4 9019?16_1'%11&)].
(3.18)

We can make another RWA to this expression where we assume that the beat-note
between the two Raman beams wpy; + p is tuned close to qubit resonance such that
i << wpp. This is a valid assumption since wy; = wyprp = 27 x 12.642 GHz is
the qubit splitting energy and in the experiment we usually set the value of the
detuning parameter p in the range 0 < |u| < 3.1 MHz while performing coherent

gate operations on the qubit. Therefore, equation 3.18 becomes

Co(t) = 75 [Cot) (lgool” + lgor[*) + C(t)googise™] (3.19)

Similarly, we can calculate the dynamics of coefficient C(t) and find

Ci(t) = —L[Co(t) G10950€"™"" + gr1g50e” " + grogiy € P 4 gy gy et
4A

+ C1 (t) (’910|2 —+ ’911‘2 + glogiklei(meru)t + gllgikoefi(woyru)t)]?
(3.20)

which can be simplified using the RWA by removing the fast oscillating terms to

give

i

() = AA

[CO(t)gE)koglle_wt + Ci(t) (’910\2 + \911’2)] : (3.21)

Equations 3.19 and 3.21 can now be used to calculate the evolution of the qubit
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in the interaction picture. In fact, the Hamiltonian in this frame can be written as

1 |(g00l® + g01]?) googi €™

"TIA . it 2 NE
Jooge ™ (lg101* + [911]°)

(3.22)

where the diagonal terms cause rotation of the qubit about the Z-axis of the Bloch
sphere (see section 5.1). This is the well known light shift (AC-Stark shift) due to
off-resonant electric-dipole coupling of the qubit states to the auxiliary state |e) [56].
We will discuss this in more detail in the following sections. The off-diagonal term
in the Hamiltonian, on the other hand, is responsible for rotating the qubit state
about an axis on the equator of the Bloch sphere (see section 5.1). This is the more
important evolution as it coherently transfers population between the basis states
|0) and [1) at a (Rabi-)rate which is proportional to the magnitude of the product

of the single photon dipole couplings ggpog11 and indicate a two photon process.

3.2 355nm pulsed laser for Raman transitions

In order to perform Raman transitions in the '"'YbTqubit one can choose
c.w. lasers with two frequency components as discussed in the previous section.
In order to obtain the two laser beams that are (optically) phase locked to each
other and have frequencies separated by 12.6 GHz from one another, one could
modulate the beams with an AOM or EOM, both of which is difficult to implement
at the required frequency due to the limited bandwidth of these devices. We can

circumvent this problem by using a train of pulses from a mode-locked laser where
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the pulses have a bandwidth in the optical domain [68]. We use a 355nm mode-
locked pulsed laser (Nd:YVO4)!. With a pulse duration of ~ 10ps its full bandwidth
is about dpy = 200 GHz [69]. This is sufficient for bridging the hyperfine gap
between the two levels of the qubit. However, it is not straightforward to implement
Raman transitions because a) the central wavelength of the laser (355nm) couples
the ground state to both the Py, and ?Pj/, state with a detuning of A = 33 THz
and A = —66 THz, respectively as shown in figure 2.4, and b) in the frequency comb
regime there are multiple frequency components in the optical spectrum that can
potentially drive resonant and off-resonant Raman transitions between the qubit

levels.

3.2.1 The frequency-comb picture

As a first step towards understanding Raman transitions caused by a pulsed
laser let us assume a setup as in figure 3.2a, where a pair of Raman beams from the
same mode-locked laser is split into two beams propagating along different paths,
and modulated with AOMs driven at frequencies waponr1 and waope. The electric

field as seen by the ion from one of the beams (say Raman beam 1) is

N
E(t)=Ey Y. f(t — nT)e  Wetwaorn)tte, (3.23)

n=0

where f(t) is the pulse shape in the time domain, 7" is the time separation between

successive pulses, and w, is the carrier frequency of the laser (this is at a wavelength

!Coherent Palladin. Average power power: 4 Watts
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of 355 nm). Here ¢ is the spatially dependent phase of the field. For the next step of
this derivation to be valid, we keep the intensity of the laser low enough such that a
single pulse only perturbs the qubit by a small amount. This implies that, in order
to perform any kind of coherent transition on the qubit, the ion needs to be hit by
many pulses (N — o0). Mathematically, this allows us to describe the electric field
in the frequency domain [60], where there are frequency components spaced by the
repetition rate of the laser w, = 27 /T (see figure 3.2b).

By taking the Fourier transform of equation 3.23 and assume large N we find

+oo
E = E, Z f(jwr)e*i(jwr+wc+wAOM1)tei(k?'er%) (3.24)

j=—o00

where f(w) is the Fourier transform of the pulse envelope f(t) and kj is the wave
vector for the j-th frequency component. wapn1 and ¢ are the angular frequency
and phase respectively, of the rf driving AOM1. We can write down a similar

expression for the second Raman beam. The total electric field is then given by

+00 +oo
ET — EO Z aje—i(jwr+wc+wAOM1)t + El Z bj6—”i(jwr-i-wc-i-uJAOM2)157 (3.25)
j=—00 J=—00

where E, and E; are the electric field vectors for Raman-1 and Raman-2, respec-

tively. We define variables a; and b; as

a; =[(juw,)e'F o), (3.26a)

by =F (juw, ek a+en), (3.26b)
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Figure 3.2: Raman transitions driven by pulsed laser. a) A 355nm pulsed
laser output is split equally into two beams that are modulated using AOMs that
are driven at frequencies waop1 and waone, respectively. The beam paths have
equal lengths such that pulses are temporally overlapped at the ion position. b)
The frequency comb as seen by the ion. Comb-lines are separated by the rep-rate
of the laser w, ~ 119 MHz. The frequency offset of each comb is adjusted by the
AOMs such that a beat-note arising from the interference between the jth combline
of Ramanl and j + kth combline of Raman 2 is tuned close to qubit resonance
where the detuning p is controlled to drive either a carrier or a motional sideband

transition of the qubit.
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We need to find out the dynamics of Cy(t),Ci(t) and C.(t) again for this
frequency comb picture. For this derivation we assume a A-system like in figure 3.1
and follow the same series of equations as discussed in the c.w. case. However, now
we have an electric field that is a sum over the entire set of c.w. components of the
frequency comb. In fact instead of separating the frequencies of two c.w. Raman
beams by wypr = wg1 = 12.6 GHz like in figure 3.1 we are going to find many pairs
of comb-lines of the total electric field E7 that give ‘beat-notes’ resonant with the
qubit splitting wyp.

We go to the rotating frame and applying the RWA to obtain a set of equations

similar to Eqn. 3.12 -3.14

1

iCo(t) = 506(15) (Goo + Gor) e ™, (3.27)
iCy(t) = ;Ce(t) (Gro + Gyy) e Brwnrt, (3.28)
- 1 . o\ 1 . N A

Here the single photon coupling terms are

GOO :dOe . EO Z aje_Z(J“"J“wAOMl)t, (330&)

j=—00
— - +m s

Go1 =doe - B4 Z bje—z(]wr—&-on]m)t’ (33013)
Jj=—00

GlO :dle : Eo Z Clje_l(]wr+wAON11)t, (330C)
j=—00

Gii =dy. - By Y bjeiertwaom)t, (3.30d)

j=—o00
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The difference of these equations of motion from the c.w. case (equation 3.13-
3.15) is that the single photon coupling terms G;; are not time independent. Next
step we can adiabatically eliminate the excited state. Here, we assume that the
coefficients Cy(t) and Ci(t) vary slowly compared to C.(t). We integrate equation

3.29 with initial condition C,(t = 0) = 0. We find

1 _ ei(A+jwrtwaom)t _ el(Bdtjwrtwaom2)t _
C.(t) = — =Cy(t)d}, -
Q 2 ot)dse Z “ A+]wr+wA0M1 Z J A+]wr+WAOM2
el i(A—wpptjwrtwaor)t _ | e'(A—wHF+jw7~+wAOM2)t -1

1 _
~ G (B Z YA = Gur + jor + waonn +E ; TA —wpp + jwr + WAOM2).
(3.31)
Now we substitute C, in equations 3.27 and 3.28 and get the equations of
motion. At this point it is important to expand the G;; in order to apply the RWA
and ignore all terms that oscillate too fast. For the sake of cleanliness let us write

the equations of motion

’LCo<t> = OéCo(t) + BCI (t), (332)
iCy(t) = vCo(t) + 6Cy (1), (3.33)

where the coefficients o and 6 correspond to terms that shift the qubit levels |0)
and |1), respectively. The coefficients 5 and v on the other hand correspond to the
coupling strength between the two levels, also known as the Rabi frequency. For the
interaction Hamiltonian (as suggested by equations 3.32 and 3.33 ) to be Hermitian
these off-diagonal terms should satisfy the relation g = *.

We can now calculate the coefficients based on the frequency comb picture in

figure 3.2b. We assume that the frequencies of the AOMs are such that waonr1 #

74



wWaomz and kw, + waone — wWaom1 = wyr + . Here we assume that the detuning
1 << wy,waon, waonme and for all practical purposes are nearly 0. From equation
3.27 we can write down the DC terms in the expression of « as,

|b;|°
A+ jw, +waom2

1({ - = la;|? -
= — | |dpe.Eo|? ! doe- By |?
“ 4 <| 0e-Fo| ;A+jwr+wAOM1+| oe- 1| ;

) . (3.34)

Similarly we find

1 - = a;l? - = bi|?

= S Y )
(3.35)
We note that the main difference between the two light shift terms is in the
denominator with the presence of the finite energy splitting of the qubit states (wyp).
Assuming that the qubit energy splitting is much smaller than the bandwidth of the
laser we have |a;| =~ |a;j1,|. Also the detuning A and the AOM drive frequencies
are much larger than the laser bandwidth. This allows us to Taylor expand the

“’HFT””T, respectively .

denominator in equations 3.34 and 3.35 in terms of j% and
From equations 3.26 we also note that |a;|* = |b;|>. Using these relations we obtain

approximate light shift terms

1

1, - - -
a=7 (Idoe- Eol® + |doc. B [?) N (3.36)
and
_Llas s 7o) L WHF
0= 1 (’dle-EO‘ + |die- B | ) A <1 + A) : (3.37)
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J=—00 A

as the terms containing jw, add up to zero ( =0) and 3 |a;|* = 1.
Next we can calculate the terms g and ~. If we choose to write equation 3.32
and 3.33 in the standard form of the Schrédinger equation ih2|¢) = Hy|t) then
these terms are the off diagonal terms of the interaction Hamiltonian H that couple
the qubit levels |0) and |1). This gives rise to coherent rotations of the qubit in
a Bloch sphere [53,56]. Unlike the diagonal terms a and 3, which correspond to
light shifts, the off-diagonal terms contain products of dipole couplings that have
contributions from both Raman beams or more specifically two different frequency

components of the frequency combs (Fig. 3.2b). We first expand C, in equations

3.27 and 3.28 to obtain the expressions

1 .
& ZE(GOO + Go1)€_mt><

_ i(A—whptjwrtwaonm)t _ 1 _ ci(A—waptjwrtwaom2)t _
Fie - (Bo z]: G;A —whr + Jwr +Waom T 2]: b;A —WHF + Jwr + Waom2
(3.38)
v :le(Gw + Gy e ATwnr)ty
el(Atjwrtwaon)t _ el(Atjwrtwaoma)t _ (3.39)

o - (Ey XJ: 9 A+ jw, + waonm +E z]: b A+ jw, + waonme

In order to expand the single photon coupling terms G;; in 8 and v and perform
a RWA, we need to consider two scenarios.

Case 1: Coherent rotations with a single Raman beam frequency
comb. Let’s assume a situation where the qubit levels can be coupled using a single
frequency comb. This implies that kw, = wyr + p where k is an integer and p < w,

is a small detuning from resonance. If we have control over the rep-rate w, of the

pulsed laser then we might as well set i to zero in order to drive resonant Rabi-flops
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of the qubit. We make another assumption that waonn # waone # 0. Now we can

inspect equation 3.38 and apply the RWA and find

ez’,ut _ _ _ — 1
= d* E* d e-E a% aj )
o] 1 (die-Ep)(do 0); Jt+k A A juwr + waom + 1

(3.40)

it 1

€ KO\ [ 7* T *
4 ( 1e'E1)( Oe'El);ij“kbjA—i—jwr

+ .
+ waom2 + @

Similarly, for v we use equation 3.39 and applying the RWA to find

et 1
=———(dy,.E5) (dre. B a0 :
177 (doe- E) (s 0); TSN+ jwr + waonn

(3.41)

et 1

+ T(dée.ET)(Jle.El) > bjbs
J

A+ jw, +waoms

At this point we can ignore p in the denominator since it is much smaller than A
and zero when the qubit is resonantly driven.

Case 2: Coherent rotations with two Raman beams. This scenario fits
best to our experimental setup since the rep-rate of the pulsed laser is non-adjustible
and a single beam cannot drive resonant transitions. This implies kw, # wyp for
any integer k. The frequency comb picture of the two Raman beams in figure
3.2 closely resembles the system in this case, where the frequency of the AOMs
waom1 and waone are adjusted to create a beatnote between sets of comb-lines
belonging to both Raman beams. This beat-note can then be tuned to be resonant
with the hyperfine qubit splitting wgypr. This resonant condition is satisfied when

kw, + waone — waom1 = whr + . We can now keep the ‘DC’ terms in equation
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3.38 and applying the RWA. This leads to

et - 1
= —(d..E")(doe.E, b . : 3.42
6 4 ( le 1)( 0 0)%:% j+kA+]Wr+WAOM1+,U ( )

Applying the RWA to equation 3.39 gives the following expression

e~ 1

7= (dée-ES)(dle-El)Z@§bj+k
J

. . 3.43
A+ jw, +waonn ( )

Like in case 1, we can ignore y in the denominator.

We note that the diagonal terms of H; that provide the light shift are ‘scalar’
quantities that depend on the strengths of the coupling between the qubit levels
and the excited state and are the same for the two scenarios (case -1 and -2),
where the Raman transition is resonantly driven by a single beam or both Raman
beams. We also note that the light shifts are controlled by the intensities (o |E;|* =
I;) of each Raman beam. However, for practical purposes we are interested in
the differential light shift, which is the measure of how much the qubit hyperfine
splitting changes due to the unequal shift of the levels. To have a rough idea of
the magnitude of this shift, lets consider case-1 where Rabi flopping is performed

by each beam and is also o |E;|> = I; of each beam. We can write the Rabi

rate of this case as Q, = {(|d.Eo|* + |d.E1*) %, where we assume do. = die = d
* 1 4021 1 .
and the sum Y3;aj 4 aj i~ ~ Y;laj[*y = x. Under these assumptions

a = Y|d.Eo|* + |d.-Er|*) L and § = L(|d.Eo|* + |d.E1|*) L (1 + <4E). Therefore the
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Figure 3.3: Relevant Clebsch-Gordon coefficients in "' Yb" for Raman tran-
sition. Here we show the relative dipole coupling strengths for the allowed transi-
tions that couple the qubit levels to excited P levels.

differential light shift is

1, -= - = 1w
Agisp =0 —a = Z(|d.E0|2+|d.E1|2)Z% s
3.44

WHF 4
=0, — =~ Q, x4 x10
A X 4 X

for A = 27 x 33 THz. This implies that while performing coherent single qubit
rotations using a pair of Raman beams with equal power the Stark shift causes a
residual Z-rotation in the Bloch sphere at a rate that is ~ 10~* times slower than

the rate the qubit is rotated around an axis on the equator of the sphere.
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3.2.2 Raman transitions via multiple excited states

In ''Yb*, the hyperfine qubit levels are coupled to more than one excited
state by the 355 nm Raman laser. The relevent excited states are in the 2P /2 and
the 2P;, manifold as shown in Fig. 2.4 where the detuning of the Raman laser from
the virtually excited states are A = 33 THz and A’ = —67 THz, respectively. It
is straightforward to extend the results of Raman processes obtained using a single
excited state (as discussed in the previous section) to the one having multiple excited
states. In order to do so we first need to define the excited states as |el), |e2), |e3)
etc. all of which couple to the qubit levels via single-photon coupling terms Goge1,
Gooe2, G1oe1, Groe2 €te. From left to right the indices of these terms depend on the
qubit level (|0) or |1)), the coupling electric field (Ey or E;) and excited state (|el),

le2) etc.). For example coupling term Goge1 can be explicitly written as

— —_ +Oo . .
Gooer = doer-Fo Y, aje "Uertwaoant (3.45)

j=—o0

where the dipole matrix element do.; is between |0) and |el). Using these terms we
can modify equation 3.27 and 3.28 which will now contain more terms each corre-
sponding to the amplitude of the excited states Cei(t), Cea(t), Cea(t) ete. Addition-
ally we also get more equations like equation 3.29 for the excited state amplitudes.
We can adiabatically eliminate each excited state and substitute their amplitudes
in 3.27 and 3.28 to obtain equations of motion for the two level system.

Next we can evaluate the total light shift a and ¢ and the off diagonal terms
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and v that give the net coupling between the qubit levels. From the solution of the
general set of equations (that are similar to equation 3.27, 3.28 and 3.29) we find
that these terms are simply a sum of the contributions of all the A— systems that
are formed from each of the excited states that contribute to the Raman transition.
This is shown in figure 3.3 where Clebsch-Gordan coefficients are represented for
each dipole coupling term along with the electric field polarizations required for each
coupling. Now we can expand the dipole coupling term dy.;.Ey in the expression of
Gooer as doe1-Ey = —|Eo|(0|u.€ylel) where € is the unit vector of the electric field
and g is the dipole moment of the atom. We can rewrite the term (0|u.€|el) in

terms of the Clebsch-Gordan coefficient to give the following expression [49]

- = . r
dOel-EO = [OC(O, 61)(60 . O'i)ﬁ, (346)
sat

where C(0,el) is the Clebsch-Gordan coefficient for angular momentum coupling
between |0) and |el), I" is the natural radiative linewidth of the transition, and Iu
is the saturation intensity. Iy = |Ey|* and & are the intensity and unit vector of the
electric field, respectively. The unit vector 64 defines pure right and left circular
polarization, respectively whereas &, defines (7-)polarization along the quantization
axis.

Using equations 3.45 and 3.46 we evaluate the diagonal terms of the interaction

Hamiltonian

1 1 2 1,2 2
= ()l + )= Nl + 1) 2
4A(3)(0+ 1)215at1+4A/(3)(0+ 1)2[sat2’

«

(3.47)
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—N(lo+ I
)< 0+ 1)2[sat27

. 1 WHF 1
5= xRN o+ g+ TH 0+ T30

A 3

(3.48)

where I, and I.,0 and I'y and I'y are the saturation intensities and natural line
widths of the 25’1/2 to 2P1/2 and 251/2 to 2P3/2 transitions, respectively.

Next we can calculate off diagonal terms S and . However, for the sake of
completeness we will consider the two cases as discussed before:
Case 1: Coherent rotation with single Raman beam frequency comb. We
can calculate 8 from equation 3.40 by substituting the terms that contain the dipole
interaction with the electric field using expressions that are of the form as shown in

equation 3.46. The expression is

[€iut FQA A FQA A/
b= 012 ( 2 — 2B (—Joou P+ oo )

]16wt F2Bk A F2Bk7A/
o (BB - BB ooy )

[satl [sat2

(3.49)

Isatl ]sat2

where we have defined the electric field in terms of angular momentum-1 polarization
vectors which consists of components of circular o— and 7w— polarizations with
respect to the quantization axis (defined by the magnetic field B). We define the
component of electric field E, that is right circularly polarized as oo, = &.6, and
similarly the component that is left circularly polarized o¢_ = €éy.6_. The electric

field in these coordinates can be expressed as

Ey =\/Io (00461 + 00_6 + mo7), (3.50a)
By =1, (0116 + 016+ m7) (3.50b)
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and terms A, and By, are defined as

aat
Apa = gtk 3.51
e z]: A+ jw, + waom’ (3:51a)

b:b*
Bia=)

IYi+k
5 , 3.51b
j A+]wr+wA0M2 ( )

where we have removed the detuning g from the denominator. Since we already
showed in equation 3.41 that v = §* we do not need to explicitly write down its
expression. At this point we also can expand the terms a; and b; as in equation 3.26

and extract the phase offsets to write down [ as
Q iut _i(Ak.z+A¢)
p= 7€ HEehar: : (3.52)

where Ak = l_cj — l_€j+k which is independent of j and A¢ = 0. Here 2 is defined as
the Rabi frequency.

Case 2: Coherent rotation with two Raman beams. From equation 3.42
we can obtain the off diagonal term 3 in the case where coherent Raman transition

is performed by tuning frequency combs of two Raman beams. We find

8=

ViILie" (TiD 2Dy
o ( el k’A>(—Uo+0T++ao_oi‘), (3.53)
satl sat2

where

a;b;
Dy A = I gtk 3.54
A ZJ: A + jw, +waomn (3:54)

and we use v = *. At this point we also can expand the terms a; and b; as in
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equation 3.26 and extract the phase offsets to write down 3 as

8= geiutei(Ak.x+A¢)7 (3'55)

where Ak = l;:? — k]l 41 1s the same for all pairs of comblines separated by £ X w,.
Assuming that the pulse shape envelope in the frequency domain is real (f(jw,)) the
Rabi frequency (2 is real. The phase offset A¢p = ¢y — ¢; is set by the phase of the
rf that drives the two Raman beam AOMs. Here (2 is defined as the Rabi frequency
and contains terms that are static in time and independent of the ion position.

Now that we have obtained the values of «, 3, v and 6 for the "'Yb™ qubit

we can obtain the interaction Hamiltonian. By inspecting equations 3.32 and 3.33

and comparing it to the Schrodinger equation =5~ w(t) = H(t) we can write down
the Hamiltonian as,
a f Q it i(ARa+a QO _iut i(akata
H= = Ad+ Ao, + e HARTTAD) 5t 1 e ARt A) 5= (3 56)

where A, = (a+0)/2, Ay = (o« —0)/2 and ot and o~ are the spin raising and
lowering operators. Here A, is a shift common to both qubit levels and therefore
adds an overall phase during the evolution of the state which can then be ignored.
We need to keep the remaining three terms to calculate the evolution of the qubit

state. We define the state ¢ (t) as

=Y (Con(®)[0)n) + C1n(t)[1)]n)) (3.57)
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where |n) is the motional number (Fock) states of the ion. When the qubit is not
entangled with the motion C;,, = C;f,. In chapter 2 we discussed the harmonic
confinement of the ' YbTion in the trap. The motional state of the ion is a result
of this confinement. In principal there are three orthogonal axes (two radial and
one axial) along which the motional state can be decomposed. However, we will be
mostly concerned with the radial mode that is aligned with the Ak vector of the two
Raman beams since it can be coherently excited. Since this mode does not couple
to the other radial and axial modes (at least in the regime in which the ion trap
operates) we can ignore the state of the other mode.

The dependence of the Rabi frequency €2, derived above on the two cases of
Raman transitions indicates a few properties that are important to keep in mind
while setting up the Raman beams in the experiment. For example, if we want to
drive coherent rotations using a single Raman beam frequency comb (eq. 3.49, case
1) it is important to use circularly polarized light for maximizing Rabi-frequency.
We also note that the Rabi frequency depends linearly on the beam intensity. A &
polarization component does not contribute to coupling between the qubit levels.
Therefore, it is useful to have the B field parallel to the Raman beam. For case 2
where we use two frequency combs to drive coherent rotations the Rabi rate can be
maximized by choosing a “lin-perp-lin” configuration of the Raman beams and the
B field. Here the beams are setup counterpropagating to each other and parallel
to the B field. Their linear polarizations are orthogonal to each other and to the
field. This is relatively easy to do since the output of the laser is linearly polarized

and the AOMs also prefer linear polarization. We also note that the contributions
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to the Rabi frequency from the 2P /2 and 2P3/2 excited states ‘add up’ since the
detunings from the states are such that Dy A and Dy A have opposite signs. On
the other hand the two-photon differential Stark shift A, have contributions from
the two excited levels that partially cancel each other due to opposite signs of the

detunings and are weaker by an extra factor of “4~.

3.3 The fourth-order Stark shift

The differential AC-Stark shift A, in the Hamiltonian of equation 3.56 is
important in the evolution since it effects a o, rotation on the qubits and therefore
needs to be taken into account while driving coherent rotations. This light shift
simply arises from the fact that the qubit levels are coupled to the excited states
through the off resonant Raman beams. A similar shift would occur between the
qubit levels themselves if they were to be coupled through a off-resonant microwave
field near the qubit frequency wyp. A single frequency comb from a single pulsed
laser beam can also provide a perturbation near the qubit frequency [70]. Case 1 as
defined in the previous section precisely encapsulates this concept, where Equations
3.40 and 3.49 give the expression of the Rabi frequency from the beat note between

the j—th and the (5 + k)—th frequency comb line

(3.58)

I'2A T2A4, A
Qk:IO(—|00+|2+|ao_|2)< 177kA 22 M).

GIsatl 6]sat2
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Figure 3.4: Fourth order stark shift from a single Raman beam. a) The light
shift from a single individual addressing Raman beam is measured using Ramsey
spectroscopy. The net shift is negative and its magnitude varies quadratically with
the Raman beam intensity verifying it to be the fourth order Stark shift. The shaded
area shows the range of power used for performing gate oprations. b) Light shift on
five ions are measured for different \/4 wave-plate positions. At waveplate positions
+50% or —40° the polarization of the beam is mostly circular which results in large
shifts (see eqn. 3.58 and 3.59).
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This Rabi frequency is zero when the polarization is purely linear. However, if there
is an imbalance in the |og4| and |og—| component of the Raman beam the Rabi
frequency is non zero which off resonantly couples the qubit states. This leads to a

fourth order stark shift given by,

0 2
AS4:_Z&

3.59
o (3.59)

where k defines the the pair of of comb lines that provide the off-resonant beatnote.
The detuning in this case is given by ux = kw, —wyp.

The repetition rate of the pulsed laser used used in the experiment is w, = 27 X
118.314MHz which gives us a set of detunings {ux} = 2rx{+16.7, —101.5,+135.1, —219.8,-- - }
MHz arranged in increasing order of the detuning magnitude. We observe that the
leading contribution to the total shift comes from a beatnote that has a positive
detuning which causes the net shift to be negative. We measure this shift using
Ramsey spectroscopy as a function of the beam intensity and polarization (figure
3.4). A quarter waveplate is installed in each of the Raman beams to remove any
circular component of the polarization as shown in figure 4.5. However, there are
some uncompensated fourth order shifts that come from residual circularly polar-
ized light (probably due to mixed polarization) from each Raman beam. In the
following sections we will include both the second and fourth order stark shifts in
the o, terms of the Hamiltonian and denote it as the total light shift seen by a qubit

As = ASQ + A54-
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3.4 Locking the Raman beat-note

The 355 nm pulsed laser used is a Coherent Palladin? with average power of
4 Watts. It has a repetition rate of w, = 27 x 118.314 MHz. In order to perform a
stimulated Raman transition we choose to use pairs of frequency comb-lines that are
separated by nearly wyp = 12.642 GHz. The repetition rate of the laser is chosen to
be such that a single frequency comb does not drive any resonant transition. In the
experiment this is true as the closest beat note from a single comb is detuned from
resonance by |107 X w, —wgp| ~ 2m x 17 MHz. Therefore in this setup we perform
coherent operations using the technique discussed in case 2 in the previous section.
The frequency comb picture in this case is shown in figure 3.2 where we will satisfy

the following condition,

waom + kw,(t) — waomz2(t) = wpr + 1 (3.60)

In figure 3.2a AOM2 is a speciality multi-channel AOM which has a rf drive fre-
quency at 210 MHz. Therefore, in order to satisfy the resonance condition we choose
the parameters: a) k = 108 and b) wapp1 = 75 MHz. Note that the repetition rate
of the laser is a time varying. This is because the internal cavity of the laser is not
actively stabilized and therefore has slow drifts in its length. This causes w, to vary
in time. This drift is monitored and fed back to the frequency of AOM2 such that

the beat-note is stable [71]. We accomplish this by directly probing the term kw, (%)

2Palladin compact 355-4000; S/N: 99627610188
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in equation 3.60 using an ultra fast photo-diode® where we measure the frequency of
the 108th comb-line and implement a phase-locked feed back loop that modulates
the frequency of wapnr2 to compensate for the drift. The schematic of the lock is
shown in figure 3.5.

While performing coherent rotations on the qubit AOMI is driven by an ar-
bitrary waveform generator (AWG) that can be programmed to produce sinusoidal
waveforms with a time step resolution of 1 ns and an a 12-bit resolution of the am-
plitude. By varying the AWG frequency (waon1) we can also change the beatnote
detuning p from qubit resonance.

In figure 3.5 a large bandwidth photo detector is used to directly measure the
rf frequency comb of the pulsed laser. The 108th comb-line can be isolated from the
others using band pass filters. It is then referenced to a stable synthesized RF signal
(at 12.567 GHz). This is done by mixing them together to extract the difference
frequency between the two, which is then isolated using filters. Ideally this is the
frequency at which AOM2 should be driven in order to produce a stable beatnote
between the two Raman beams at the ion (Eq. 3.60). However, due to spectral noise
on the signal it is important to filter it further. To achieve this we drive AOM2 with
a separate signal generator (HP8640B) and phase lock its frequency to that signal
generated from the laser comb line. This is accomplished using a phase-locked loop
which modulates the frequency produced by the generator. However, in this case a
“tunable low pass filter” sets the modulation bandwidth. By setting this to a lower

threshold w4oae can be made to have a spectral linewidth narrow enough while it

3UPD-30-VSG-P; rise time < 30 ps; band-width > 10 GHz
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Figure 3.5: Beat note lock setup. An ultra fast photo detector is used to measure
the frequency components of the pulsed laser out of which the 108th comb line is
filtered and mixed with a standard synthesizer. The output corresponds to the time
varying frequency wanro2. A frequency modulated rf signal from a signal generator
is phase locked to this signal using a phase-locked loop (PLL) as showed in the
shaded region. Part of this phase locked RF signal is then sent to the AOM2 for
shifting Raman beam 2 frequency comb-line. The relevent powers of rf signals are
shown in dBm.
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slowly changes its value to keep up with the drift in the frequency comb line. In
the end it works out such that the optical beatnote that drives the qubit is phase
locked to the reference provided by the synthesizer which in turn is referenced to a

stable Rubidium signal.

3.5 Single qubit Rabi flopping

The interaction Hamiltonian in equation 3.56 can be transformed to another
rotating frame where the qubit splitting is additionally shifted by the stark shift
which is w; — wg + Ag. The interaction Hamiltonian in this frame is then given by
H; = etHot He=Hot where Hy = Ago,. We can write it as

0 Q (=D )t i Ak.a+A)
2
H; = . (3.61)
%e—i(u—As)te—i(Ak.x—i—Aqﬁ) 0
This interaction coherently transfers population between the |[0)|n) and |1)|n’) states
and can be strongly dependent on the motional state of the ion. This comes from
the fact that the ion may seem a modulation of the beatnote phase based on its
position. The equations of motion of the state amplitudes in this case are given by
i

CO,TL = — §ei(u_AS)t6iA¢Qn,n/Cl7n/7 (362&)

Cliw = — %e—““—As”e—mQ;n,(Jo,n, (3.62b)
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where the Rabi frequency is
Qo = Q|+ D|n) = D, Q. (3.63)

We expand the term Ak.x = n(a + a') where 7 is the Lamb-Dicke parameter and
a is the motional mode lowering operator. The Debye-Waller factor D, , gives the
strength of the coupling based on the motional states involved [10,72]. Here we can
tune the detuning such that y— Ag = 0 such that there are no time varying terms in
the off diagonal terms. This gives rise to resonant Rabi flopping between the states
|0)|n) and |1)|n) that coherently transfers the population between the states. This
is usually referred to as a carrier transition as it does not change the motional state
of the ion and only changes the qubit spin. In this case the Debye-Waller factor can
be derived to be

n2
D, = e*TLg(nz), (3.64)

where L0 (n?) is the generalized Laguerre polynomial. For the ion near the motional
ground state and n? < 1 we get D, , ~ 1.

In figure 3.6a we perform rabi flopping using co-propagating beams where
1n < 1 and therefore the Rabi frequency is practically insensitive to the ion motion.
However, since the polarization of the beams is mostly linear hence the Rabi fre-
quency is much smaller compared to the counterpropagating geometry (fig. 3.6b).
For this Raman beam geometry n =~ 0.12 and therefore the the Rabi frequency has

a strong dependence on the motional state of the ion. As shown in the figure the
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Figure 3.6: Carrier Rabi flopping. a) Rabi flopping using co-propagating Raman
beam geometry. Due to relatively small Ak the Rabi frequency € has no dependence
on the motional state of the ion which leads to the high contrast. b) Rabi flopping
using counter propagating Raman beams. Here Ak is relatively large such that
has n dependence. The fit shows a carrier Rabi-flop when the ion is in a thermal

state with n ~ 2
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rabi flopping is not as clean since the ion is in a thermal state with average phonon
number n = 2 which varies the Rabi frequency over the different Fock state compo-
nents of the qubit. This causes a decay in the Rabi flopping due to interference of
the different Rabi rates.

In order to couple spin to the motion of the ion we can change the detuning
i such that y — A, = +w,, where w, is the secular frequency of the radial mode
of motion along the Ak vector of the Raman beams. This coherently transfers
population between the |0)|n) and the |1)|n £ 1) state. This is commonly referred
to as the sideband Rabi flop where that is ‘blue” when the motional phonon number
is increased by 1 and ‘red’” when the phonons number is decresed by 1 while flipping
the qubit spin from |0) to |1). As discussed earlier the secular trap frequency is
~ 3 MHz which gives a Lamb-Dicke parameter n = 0.12 for counterpropagating
Raman beams. Rabi rate in this case is given by €, ,11 = D, 119 where the

Debye-Waller factor is

D, i1 =€ 2 2R , 3.65

n+1 =€ ] n 1 ( a)
2, Q)

D, 1 =€ 2 L.n"~—. 3.65b

Here we have considered n? = 0.014 < 1 which gives an approximate Rabi frequency
that depends on the motional Fock state |n). In figure 3.7 we plot theoretical Rabi
flops for various thermal states of the ion (n = 0.1 and n = 2). The carrier rabi
frequency is faster than the sideband by the factor n. We also find out that when

the ion is not cooled near to the motional ground state there is significant loss
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Figure 3.7: Carrier and sideband Rabi flopping for thermal states a) Sim-
ulation of a carrier Rabi flopping at two photon Rabi frequency 2 = 40 kHz at

n = 0.1. The red and blue sideband rabi-rates are weaker by a factor of n ~ 0.12

which is the Lamb-Dicke parameter for a radial trap frequency of w, = 3.0 MHz.

The red sideband transition is suppressed when the ion is initialized to the state

|0)|n) where motional phonon number n — 0. b) Simulated Rabi flopping for the
ion in thermal state with n = 2. The decay in the carrier Rabi flopping is due to the

n—dependence of {2 which leads to the interference of slightly different Rabi rates

over the thermal distribution of n.
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of contrast in the Rabi flops due to the variation of €2,,,,. Therefore, we choose to
perform Raman sideband cooling to initialize the qubit close to the motional ground
state before performing any coherent rotations on it.

For a counter propagating beam geometry as shown in figure 3.2a the wave

vector difference between the Raman beams is of the order Ak = 2m(£ 4 — )\’_:k 7) ~
J J
%i nm~!. Since the two Raman beams propagate along separate beam paths it

is possible to have differential optical path lengths dz in the two arms causing the

2m

525 Where 0z is expressed in nm. This can be

phase of the beatnote to change by dx
caused by air currents that give rise to local changes in the refractive index or can
occur due to vibrations in optical elements (mirrors) in each path. A good way to
quantify this ‘phase jitter’ is by performing a Ramsey interferometry experiment as
shown in figure 3.8. Any phase jitter due to the interferometric instability of the
two Raman beams can reduce contrast of Ramsey fringes when the qubit and the
beatnote are allowed to evolve with respect to each other for sufficient amounts of
time such that the relative phase coherence between the two is lost due to either
‘phase jitter’ or fluctuation is the qubit energy splitting (due to magnetic field noise
etc.). The measured coherence in the counter propagating geometry is quantified as
the coherence time which is measured to be T, = 400 ms. In order to achieve this
we put an enclosure around the Raman beams in order to reduce air currents on
the optics table. By using stable configurations of mounting mirrors beam pointing
errors can be reduced as well.

It is important to note that a co-propagating geometry is less sensitive to

interferometric instability due to two reasons:
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Figure 3.8: Coherence measurement. a) A Ramsey interferometry sequence for
coherence measurement. The qubit is initialized to state |0) and near the motional
ground state. Counterpropagating Raman beams drive Rabi flop between the qubit
levels. A 7 pulse drives the qubit to the equator of the Bloch sphere where it
evolves during the delay time 7 at the difference frequency between the beatnote
and the qubit splitting wyr. A § pulse at the end maps this evolution to the bright
state probability Prob |1). b) Ramsey fringes observed as an oscillation of Prob |1).
The fringe contrast indicates a high degree of coherence between the freely evolving
qubit and the driving beatnote. The contrast should exponentially decay when the
driving beatnote (or qubit splitting) has noise that destroys the coherence. The time
constant for the decay is exterpolated to be T, = 400 ms where 7. is the coherence
time at which the contrast goes to 1/e.
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a) Both the Raman beams share the same optical path due to which any variation
in the optical paths of the two presents itself as a ‘common mode’ noise that affects
both the beams equally therefore canceling the effects. This implies that dx — 0.

b) The difference in the k vectors of copropagating beams is given by Ak = 2#(%@—
J

1 A) ~ 2mx12.6 GHz
c

NoL) =~ Z which is the inverse of a 12.6 GHz microwave wavelength which
J

in free space is 2.4 cm. Usually variations in the optical path lengths of the Raman
beams are much smaller than this length scale.

Despite the obvious advantages of interferometric stability of copropagating
beams we will use the counterpropagating geometry due to the large value of Ak
achieved in this case. This allows us to excite the motional modes of the ions with
a force that is proportional to n{2 by increasing the value of 7. Using the counter
propagating geometry we can probe the motional state of the ion in the radial
direction. By tuning the Raman beatnote at the blue and red sideband frequencies
we can rabi flop between |0)|n) and |0)|n £ 1) accordingly. By fitting this to a
thermal state we can extract the average phonon number of the mode. We use
this technique in order to find the motional heating rate (72) of the ion in the trap
which is an important figure of merit for the ion trap and also sets a limit on the
duration of coherent operations that can be performed before re-cooling it to the
ground state. Figure 3.9 shows an experimental sequence that initializes a single
ion close to the motional ground state and probes its temperature at different times

by performing sideband Rabi flopping.
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Figure 3.9: Measurement of trap heating rate using sideband spectroscopy
a) Experimental sequence. The ion is prepared in the |0)|n = 0) ground state. A
red or blue sideband rabi flop is implemented by spectrally addressing the |0)|n) —
|0)|n — 1) or |0)|n) — |0)|n + 1) transition respectively. b)-f) Red and blue side
band Rabi flopping after different wait times after side band cooling. Due to a finite
heating rate of the trap the ion heats up to a thermal state with n # 0. By fitting
the Rabi flopping the average phonon number n can be determined as a function
of time. g) Linear fit to phonon number vs. time plot. This gives a heating rate
n = 101 phonons/s.
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Chapter 4: Individual Qubit Addressing

The implementation of quantum algorithms require control and readout of
individual qubits. In order to do so, naively one might consider placing qubits far
from each other such that they can be manipulated separately with high isolation.
However, this also prevents them from interacting with each other specially when
such interactions occur though local couplings when they are physically placed close
to each other. Using trapped ions a multi-qubit system is often prepared by trapping
several ions (each representing a qubit) in a single harmonic trap such that they
can strongly interact with each other through electrostatic Coulomb repulsion. By
taking advantage of these interactions we can implement two qubit quantum gates
between any pairs of ions. By setting trap parameters one might arrange the ions
as a linear chain Coulmb crystal. With the ion separation usually of the order of a
few microns in this configuration it is challenging to address each one of them.

A few techniques well known for individual addressing are based on spectral
resolving of qubits using field gradients [17-19], shelving of qubit states to other
electronic levels [16] and spatially resolving individual ions through optical resolu-
tion [73]. In our experiment we use the technique of optically (spatially) resolving

individual ions for control as well as readout. Unlike spectral resolution, using spa-
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tial resolution is not limited by a frequency bandwidth and spectral crowding for
more qubits. It also does not interfere with the qubit levels as in shelving techniques.
Also, since no two ions can be at the same position, optical resolution techniques
are inherently scalable for larger ion chains.

In this experiment we use five "' Yb"ions that are trapped in a linear chain
configuration with approximately 5 ym spacing between adjacent ions. We imple-
ment readout using state dependent fluorescence that is collected by a 0.37 numerical
aperture (NA) objective. The state detection is an incoherent process where the fi-
delity of the measurement is determined by the amount of collected fluorescence.
Using a high NA objective not only ensures this but also improves the resolution of
imaging individual ions which in turn minimizes errors due to the optical crosstalk
between the light collected from different ions in the chain. The coherent qubit con-
trol on the other hand is implemented by tightly focussing individual Raman beams
on each ion in the chain. Since qubit manipulation is a coherent process therefore
there is a trade off between maintaining high optical resolution during addressing
while maintaining a high phase and intensity stability of the Raman beams. In the
following sections we will discuss how we implement high optical resolution in both

individual qubit control and measurement.
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4.1 Individual qubit state detection

In order to improve state detection we improve the numerical aperture from
0.23 ! to 0.37 by designing a custom objective lens. The lens design is shown in
figure 4.1 with the design parameters shown in table 4.1. Due to high NA the light
collection is increased almost by a factor of 3. The lens is designed at 369.5 nm
which is the wavelength for the 25, /2 to p /2 transition in 1'Yh*. Therefore, the
expected resolution for the imaging of a single ion is 0.5 pym.

The design of the objective is based on the constraints given by the vacuum
chamber and the trap(see section 2.5.1). In order to have high NA access in both
the detection and Raman beams directions re-entrant windows are used to reduce
the working distance of the lens from the trap. However, due to the dimensions of
the ion trap and the re-entrant windows the shortest working distance available for
imaging is ~ 20 mm. We use a 32 mm clear aperture on the light collection window
which allows a window thickness of about 3 mm. The lens assembly is chosen to be
composed of standard 1”7 singlets with a lens holder that attaches to standard SM-1
lens tubes 2.

The objective lens assembly is designed and optimized in OSLO. In this ap-
proach we start by setting the NA of the system to be low and simulate spherical
aberrations. As the NA is gradually increased aberrations also increase which can

then be reduced by adding more singlets to the assembly [74]. The lens assembly

LCVI objective used in previous version of the experiment
2Thorlabs
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No name UNITS: MM
FOCAL LENGTH = 18.67 NA = 0.3749 DES: OSLO

6.8/ -
3mm Fused silica window
WD =18.3 mm
o
o| 3 \
E| E
E| E
) <
v -
lon
Position

objective housing

Lens 1 Lens 2

Figure 4.1: Lens design for light collection. A 6-element lens design for a 0.38
NA light collection from a trapped ion. The design is adapted for a 3mm thick fused
silica vacuum widow. The outer diameter of the lens tube agrees with a 17-SM1
(Thorlabs) lens tube system and is fitted in a re-entrant viewport with 38mm inner
diameter. Lens-1 and Lens-2 are custom designed elements. The remaining singlet
lenses in the assembly are commercially available. The design can be optimized to
be near diffraction limited for a different window thickness by adjusting the position
of Lens 1.
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SRF | Radius | Thickness Aperture Glass Description
(mm) (mm) radius (mm)
OBJ - o0 — AIR X
AST - 0 6.800 AIR X
2 -22.299 V 4.230 V 7.000 HK9L Custom Lens-1
3 00 2.055 V 8.000 AIR K
4 -82.200 3.600 12.700 HK9L Thorlabs
5 -32.100 0.500 12.700 AIR LE1234-A
6 353.300 4.000 12.700 HK9L Thorlabs
7 -60.020 0.500 12.700 AIR LBF254-100-A
8 60.020 4.000 12.700 HK9L Thorlabs
9 -353.300 0.500 12.700 AIR LBF254-100-A
10 32.100 3.600 12.700 HK9L Thorlabs
11 82.200 0.500 12.700 AIR LE1234-A
12 13.782 V 3.000 8.000 HKIL Custom Lens-2
13 33.693 V 1.500 6.575 AIR X
14 o0 3 17.000 UVES Vacuum
15 00 0 17.000 VACUUM window
IMS — 14.276 — — X

** This spacing can be adjusted to correct for variable vacuum window thickness.
SRF- Surface

OBJ- Object

AST-Aperture stop

IMS- Image stop

V- Variable parameter for optimizing the design for minimal aberration

S- Aperture radius calculated from ray tracing

HK9L - Also knows as N-BK7 Borosilicate crown glass is manufactured by CDGM.
It has internal transmittace of 0.993 at 370 nm for 10 mm glass thickness.

Table 4.1: Lens design for a 0.38NA objective lens assembly for collecting fluo-
rescence from ions for imaging and detection. It is designed to compensate for
aberrations introduces by a 3mm fised silica vacuum window. Each surface is spher-
ical and is characterized by its radius of curvature, aperture size and the thickness
of glass following it.
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is divided in three parts: a) positive meniscus lens close to the window (Lens-2) ,
b) a symmetric arrangement of 4 singlets (positive) and c¢) a negative lens (Lens-1).

This design has the following properties:

o Due to several components the peripheral rays are gradually bent over several

surfaces thereby keeping the spherical aberration to the lowest order.

» Each singlet with a positive focal length adds a positive aberration component
where as Lens 1 and the vacuum chamber window adds a negative aberration

component.

o The four singlets in the middle are symmetrically arranged such and the rays
bend symmetrically as well across the elements. This minimizes the aberration

from this section of the assembly.

o The two lenses in the center of the assembly are chosen to be best form lenses
which are optimal since the rays bend around them in an infinite conjugate
fashion. The two lenses next to these on either side are positive meniscus
lenses that are used to further bend the rays that are already converging on

either side of this section.

« Since the spherical aberration contribution from each singlet is in the lowest
order therefore we can nearly cancel the positive against the negative aberra-
tions. In order to do so we simply vary the thickness and surface curvatures

of Lens-1 and Lens-2 in the design to reach an aberration minima.

o Any excess aberration due to a different vacuum window thickness can be
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reduced simply by changing the position of Lens-1.

In this design we use BK-7 glass which is of higher refractive index than UV-
grade fused silica. This helps in reducing spherical aberrations. Singlets in the
middle section are commercially available? whereas Lens-1 and Lens-2 are custom
designed. One advantage of this design is that it can be adapted for a thicker window
using the same lens stack. Due to a infinite conjugate performance the objective
forms an image at infinity. This gives flexibility in setting a variable first stage
magnification of the imaging system using a singlet ‘tube lens’ that allows for easy
alignment of the system. Before mounting the objective it is experimentally verified
to operate near the diffraction limit (see Appendix A for theoretical simulation and
experimental verification of lens performance).

Figure 4.2 shows the setup used for the imaging of ions. Fluorescence from
each ion is collected using the objective lens. Collimated output is focussed using
a 200 mm focal length best form lens? to form an intermediate image with roughly
x 10 magnification. Figure 4.2a shows the first stage with an aperture at the image
plane. This is used to spatially filter out any background scattered light outside the
desired field of view of the objective. Figure 4.2b shows the second stage where a
doublet ® with effective focal length of ~ 22 mm is used to form an image on an
intensified charged couple device (ICCD) camera. The doublet is mounted such that
its position can be varied in order to image the aperture onto the camera.

Although the objective is designed to be near diffraction limited there can still

3Thorlabs best-form and positive meniscus lenses
4Thorlabs LBF254-200-A
52 Thorlabs LA4765-UV singlets
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Figure 4.2: Imaging system for individual detection. a) First stage imaging
using a +200 mm tube lens. A 200 pm x 1000 um aperture is placed at the image
plane as a spatial filter. The field of view is set to be 20x 100um at the ion. b) Second
stage imaging used to image the aperture to a camera or a PMT. ¢) Defocussed (top)
and focussed (bottom) image of an ion when astigmatism is undercompensated
(D=164 mm). d) Image of the ion when astigmatism is perfectly compensated
(D=167mm). e) Image when astigmatism is overcompensated (D=169 mm).
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be aberrations introduced from imperfections of the vacuum window and other op-
tical elements in the imaging system. However, since the beam is weakly converging
(or diverging) after the tube lens it has a relatively much lower NA and therefore
aberrations introduced by the subsequent lens elements are negligible. Therefore,
the main contribution of aberration comes from the vacuum window which is situ-
ated between the ion and the objective. Due to an NA of 0.37 of the beam at this
place very slight misalignments or deviation of the window glass from being perfectly
flat can introduce considerable aberrations. We expect to see spherical aberrations
due to bending of the window glass in a away that is cylindrically symmetric about
the principal axis of the optics. We expect to see ‘coma’ if the ion is placed off axis
and finally ‘astigmatism’ if the window is not perfectly perpendicular (tilt) to the
axis or has a bend that is not cylindrically symmetric. Out of these three aberra-
tions we rule out ‘coma’ because the ion has to be very close to the principal axis in
order to form an image at the aperture (which it does) and the aperture is very well
aligned to the principal axis of the objective by mounting them both to a common
lens tube.

Since the vacuum window is mounted independently it is more likely to have a
tilt which introduces astigmatism in the ion image. This is shown in figure 4.2 c)-e)
where we place a slowly focussing cylindrical lens ¢ between the tube lens and the
aperture and vary its position to perfectly compensate astigmatism. In this figure
we show defocussed images of the ion that gives a elliptical or circular halo that

is more prominently indicative of uncompensated and compensated astigmatism,

6Thorlabs LJ4530RM-A
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respectively. After correcting for aberrations the ion image is resolved to 0.55 pm.

For implementing individual state detection of ions we use an array of photo-
multiplier tubes ” which has a quantum efficiency of ~ 40% at UV. Each channel
of the PMT is 0.8 mm wide with a 0.2 mm deadzone between adjacent channels.
Due to non trivial electronic signal crosstalk between adjacent channels of the PMT
array we map adjacent ions on alternate channels of the PMT. In order to regulate
this mapping we implement a third magnification stage for imaging of the ion to the
PMT. By changing the position of lens L3 we adjust the magnification to optimize
photon counts from each of the five ions on their respective PMT channel.

Figure 4.3 a shows the imaging of individual ions on the channels of a PMT.
In this case alternate channels with relatively high photon counts are are the ones
that are assigned for state detection for each ion. When a photon is incident on a
given channel it generates a photo-electric current which produces a ~ 10mV signal
with about 1 ns rise time across a 50 €2 load. This signal is amplified by a factor
of 100 and discriminated against a reference of ~ —1 V which produces a digital
TTL signal. This circuit is shown in figure 4.3 b. We use a two stage amplifier
that is capacitively coupled to remove any DC signal. The reference voltage on
the discriminator is adjusted to remove background noise from a) secondary pulses
from internal reflection in the cable b) dark counts that has lower signal strength.
Additionally each TTL is stretched to a 40 ns pulse using an FPGA to prevent
double counting.

Next we consider the possible sources of measurement cross talk. The cross

"Hamamatsu: H7260-200
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Figure 4.3: Individual detection using 32-channel PMT array. a) A linear
chain of 5 trapped ""Yb"ions imaged on a camera and a PMT. The PMT signal is
in terms of photon counts for each channel. The optical imaging maps adjacent ion
images to alternate channels of a 1D PMT array. b) An analog circuit for amplifying
signal from each PMT channel followed by a discriminator that generates a TTL
pulses for each incident photon signal. The circuit for one (out of eight) of the
amplifier modules is shown that is used for channel-1 through -4 of the PMT array.
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talk between photon counts of adjacent ions are dominated by intrinsic signal cross
talk between PMT channels where the nearest neighbor cross talk is about 3% where
as the to the next to nearest neighbor is about 0.5 %. The second contribution to
crosstalk comes from the resolution of the optical imaging system. It is important
to remove aberrations that can cause such spillover. After removing all aberrations

we achieve a near diffraction limited image with a ratio of the resolution to the inter

0.55 pm

Sam Although this is within a reasonable limit it is important

ion distance being
to note that there is always some residual error due to the outer rings of the point
spread function (PSF) which describes the intensity spread of the ion image. This
is shown in appendix 1. By choosing alternate PMT channels for mapping the ions
we measure a ~ 1% total spill over in photon counts between nearest ion channels.
In order to experimentally determine the single qubit state detection fidelity
and effect of cross on the state detection we look at three relevant scenarios. a)
Spillover to neighboring ion channels when an ion is prepared in the |0) state (figure
4.4a). We apply the discriminator method to measure the probability of detecting a
bright state (|1)) state in all three channels and the 0.26 % is the state preparation
and measurement (SPAM) error for dark state |0). Since the ion does not scatter
many photons in this state the spillover does not affect the nearest channels. b)
Spillover to neighboring ion channels when an ion is prepared in the bright state |1)
(figure 4.4b). Here we see that the SPAM error for the bright state |1) is 0.91 %.
Since the bright ion scatters an average of 10 photon during the detection cycle there
is higher spillover to neighboring channels. We find that measuring the neighboring

ion channels gives a false positive for a bright state with a probability of 0.3 % and
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Figure 4.4: Detection fidelity with crosstalk between PMT channels. a)
Single shot probability (using discriminator method) of detecting bright state |1) in
three adjacent PMT channels with a dark ion in the middle channel (prepared in
state |0)). b) Probability of detecting a bright state with a bright ion in the middle
channel. Probability of detecting bright state with the middle ion dark and outer
ions bright in a three ion chain. d) State preparation and measurement (SPAM)

fidelity for 5-qubit states. e) SPAM cross talk matrix with only off diagonal terms
for 5-qubit states.
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0.8 %, where the asymmetry comes from the inherent asymmetry of the signal cross
talk between neighboring channels of the PMT array itself. c¢) Spillover from two
adjacent bright ions when the middle one is in the dark state (figure 4.4c). This gives
rise to maximum error due to spillover from bright ions on both side. By comparison
with fig. 4.4a we see an additional error of 1.4 % in the dark state detection of the
middle ion on top of the SPAM error.

Now we can go ahead and measure the SPAM error matrix for five ions by
measuring photon counts from each of the five corresponding PMT channels and
applying a discriminator to perform single shot 5-qubit state detection. Figure 4.4
d) and e) shows the SPAM fidelity f<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>