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Trapped atomic ions are a promising medium for quantum computing, due

to their long coherence times and potential for scalability. Current methods of en-

tangling ions rely on addressing individual modes of motion within the trap and

applying qubit state dependent forces with external fields. This approach can limit

the speed of entangling gates and make them vulnerable to decoherence due to

coupling to unwanted modes or ion heating. This thesis is directed towards demon-

strating novel entanglement schemes which are not limited by the trap frequency,

and can be made almost arbitrarily fast. Towards this goal, I report here on the first

experiments using ultrafast laser pulses to control the internal and external states of

a single trapped ion. I begin with experiments in ultrafast spin control, showing how

a single laser pulse can be used to completely control both spin degrees of freedom

of the ion qubit in tens of picoseconds. I also show how a train of weak pulses can be



used to drive Raman transitions based on a frequency comb. I then discuss exper-

iments using pulses to rapidly entangle the spin with the motion, and how careful

spectral redistribution allows a single pulse to execute a spin-dependent momentum

kick. Finally, I explain how these spin-dependent momentum kicks can be used in

the future to create an ultrafast entangling gate. I go over how such a gate would

work, and present experimentally realizable timing sequences which would create a

maximally entangled state of two ions in a time faster than the period of motion in

the trap.
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Chapter 1

Introduction

1.1 Quantum Information

Over the past few decades, the ability to precisely control quantum systems

has opened the door to the field of quantum information. Quantum information

broadly refers to the use of quantum phenomena as a tool to encode and process

information. Quantum information has a number of exciting applications. These

include quantum simulation, in which a well-controlled quantum system is used

to emulate the behavior of another, poorly understood quantum system; quantum

cryptography, in which a quantum system is used to ensure secure communication;

and quantum computing, in which a quantum system is manipulated to perform an

algorithm. The work described here deals with quantum information using trapped

atomic ions, which is relevant to all of these applications.

The advantage of using quantum building blocks in these applications rests

with the phenomenon of entanglement. Entanglement is a uniquely quantum phe-

nomenon, in which separate objects can have correlations beyond those allowed

classically. Entanglement provides a new resource which algorithms can draw upon

1



to enable dramatically faster solutions to certain classes of problems [1].

In classical information, the basic element of information is the bit, which can

be in one of two states, typically denoted 0 or 1. A bit is the smallest unit which

contains information, and all larger sets of information can be represented by strings

of bits. Because a bit can only be in one of two states, the bit’s “state space” is

zero-dimensional.

In quantum information, the analogous role is played by the quantum bit or

“qubit.” There are similarly two basis states, denoted |0〉 and |1〉, where the symbol

|·〉 follows Dirac’s bra-ket notation for quantum states. However, unlike in classical

information, qubits can be in superpositions of |0〉 and |1〉. An arbitrary qubit can

be written as:

|ψ〉 = sin

(
θ

2

)
|0〉+ eiφ cos

(
θ

2

)
|1〉 (1.1)

A qubit can be visualized as corresponding to a point on the surface of a sphere,

known as the Bloch sphere [1]. This visualization is shown in figure 1.1. From this

representation, it is clear that a qubit’s state space is two-dimensional.

On the Bloch sphere, the angles θ and φ in equation 1.1 correspond to polar

and azimuthal angles, respectively. The north pole therefore represents |1〉 and the

south pole |0〉. Upon measurement of a qubit in the basis {|0〉 , |1〉}, it will collapse

into either |1〉 with probability cos2 θ
2
, or |0〉 with probability sin2 θ

2
. Therefore, θ

indicates how close the state is to either |0〉 or |1〉. The other angle, φ, is known as

the phase of the qubit. The physical understanding of φ is more difficult to see than

that of θ. Its effect is seen in the response of the qubit to rotations on the Bloch

2
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Figure 1.1: Bloch sphere representation of a qubit. The north and south poles are |0〉
and |1〉 respectively. Every other point on the sphere represents some superposition of |0〉
and |1〉, as in equation 1.1.

sphere – qubits with equal θ but different φ will respond differently to rotations. A

qubit is a far richer object than its classical analog, which is confined to the poles

of the Bloch sphere.

All of this, however, could effectively be represented using a classical analog

computer, with continuous physical variables. A classical analog computer is no

more capable than a classical digital computer. What makes qubits powerful is that

the state of two separate qubits cannot necessarily be understood by describing the

state of each qubit separately. Two qubits can be entangled. For example, two

qubits a and b can be in a superposition of both being |0〉 or both being |1〉. Such

a state is written:

|ψ〉a,b =
1√
2

(|0〉a |0〉b + |1〉a |1〉b) (1.2)

This state cannot be divided into separate parts for a and b, and has no classical

3



analog. Such states were famously highlighted by Einstein, Podolsky, and Rosen

in [2] as paradoxical, now known as the EPR paradox. A measurement performed

on a or b will instantaneously collapse the joint wave function of both qubits, even

when a and b are widely separated. Einstein described such behavior as representing

“spooky action at a distance.” It was later shown by John Bell in [3] that the

behavior exhibited by states such as that in equation 1.2 differs from the behavior

of any conceivable classical state. A wide range of experiments have now shown that

nature does in fact exhibit this “spooky” behavior [4–8]. Indeed, this spookiness

underlies what makes quantum computers powerful and interesting.

1.2 Building a Quantum Computer

Building a functional quantum computer is a daunting experimental challenge.

First believed impractical, the discovery of error correction methods (which allow

some degree of imperfection), together with rapid progress in quantum control of

diverse systems, has made quantum computing appear to be an achievable goal.

The experimental requirements were clearly laid out by DiVincenzo [9]. Slightly

restated, they are:

1. A well-defined set of quantum levels which can be identified as qubits.

2. Complete control over the states of individual qubits. This includes the ability

to initialize a qubit (typically to |0〉) and the ability to execute Bloch sphere

rotations on any qubit.

3. The ability to execute entangling operations (gates) between different qubits.
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4. The ability to measure the state of any qubit.

5. Extraordinarily good isolation from the environment. More precisely, the rate

at which any qubit becomes entangled with its environment (the coherence

time) must be significantly slower than the time it takes to perform a quantum

gate1.

6. Lastly, scalability to systems of many qubits, while still fulfilling all of the

above requirements.

Despite the difficulties inherent in meeting all of these requirements, many

different physical implementations have been proposed, and it is a very active field

of research [10]. Possible experimental platforms include:

• Trapped atomic ions [11–13]

• Neutral atoms in optical lattices [14, 15]

• Photons [10,16]

• Quantum Dots [17,18]

• Superconductors [19, 20]

• Nitrogen-Vacancy centers in diamonds [21]

This list is hardly complete, but provides an idea of the breadth of possibilities. Each

implementation above has different advantages and disadvantages, and struggles

1Error correction allows for the total algorithm time to be longer than the coherence time, as
errors between gates can be corrected.
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with different aspects. The work discussed in this thesis deals entirely with quantum

computing using trapped atomic ions.

1.3 Trapped Ions

Trapped ion quantum computing is arguably the most mature experimental

QI platform. A qubit is identified with two long-lived energy levels of the ion, and

each ion represents one qubit. Different ions can be coupled to one another via their

collective motion [22], or via their emitted photons [8]. Trapped ions can be very

well isolated from the environment in an ultra-high vacuum, resulting in extremely

long coherence times. There are well-established means for single and multiple qubit

control. High fidelity entanglement of ions is now routinely achieved [23–27], as well

as implementations of schemes for analog quantum simulation [28–30] and digital

quantum algorithms [31–33]. Over the last fifteen years, progress has been rapid.

Figure 1.2 shows the number of ions faithfully entangled since the first successful

two-ion entanglement experiments.

The main obstacle currently facing trapped ion quantum computing is scaling

up the number of ions that can be coherently controlled in a single system [11].

Current state-of-the-art systems are limited to ∼10 ions. However, in order to out-

perform a classical computer at tasks such as factoring, a trapped ion quantum

computer would need to control thousands of trapped ions, both for computation

and for error-correction overhead (One notable exception is quantum simulations,

in which systems as small as 40 qubits cannot be simulated on a classical com-

6



A

B

C

D

Figure 1.2: Progress in trapped ion quantum computing, compilation courtesy of Ref. [34].
A: Ref. [35]; B: Ref. [24]; C: Ref. [25]; D: Ref. [27]

puter [36]).

The technique that has become standard for entangling trapped ions is that

of Mølmer and Sørensen, described in Refs. [37–39]. In that scheme, the ions are

coupled via virtual excitation of phonons, using a single normal mode of motion. The

remarkable feature of this scheme is that for sufficiently cold ions, it is independent of

ion temperature. This is in stark contrast to the original ion entanglement proposal

of Cirac and Zoller [40], which required the ions to be in their motional ground

state (a far more difficult experimental requirement). The Mølmer-Sørensen gate

requires the ions to be cooled to the Lamb-Dicke regime. The Lamb-Dicke regime

is a constraint on the ion’s wave packet size, which states that the extent of the ion

wave packet is much smaller than the wavelength of the laser exciting the transition.

The requirement that an individual mode of motion be addressed places a

limit on the maximum speed of such a gate – it must be significantly slower than

the gap between normal mode frequencies of the trap. This follows from a basic

7



fact from Fourier transform theory, which states that to resolve a spectral feature

with resolution ∆ω requires a time of order 1/∆ω. Therefore, if a gate functions by

resonantly coupling to one mode of motion and no other, it must be much slower

than the inverse of the difference between neighboring mode frequencies.

The Mølmer-Sørensen gate has proven highly successful over the past decade.

It has been used to create two ion entanglement with greater than 99% fidelity [23],

and allowed many of the advances mentioned above. However, a number of problems

arise when it is scaled to large chains of ions. In general, a chain of N ions will have

3N normal modes of motion. Each of these modes will typically have a different

frequency. For large N , the spectrum of modes therefore becomes very dense. Based

on the Fourier speed limit mentioned above, the requirement to couple to just one

mode means that the gate speed will have to slow down significantly as N grows.

This will make the gate more vulnerable to a variety of noise sources, discussed

below. This problem can be ameliorated by increasing the normal mode frequencies,

which can be done by reducing the size of the ion trap. However, that has resulted

in significantly higher heating rates, which reduce the fidelity of the entanglement.

There are also technical issues related to the laser driving the gate. Because

the qubit levels are coupled via a Raman transition, off-resonant coupling to the

excited state can result in spontaneous emission. The laser can also change the qubit

frequency via a differential light shift (also called an AC Stark shift). Depending on

the size of this shift, small laser intensity differences at different ions can result in

significantly reduced gate fidelities. These issues are reduced if the laser frequency

is further from resonance, at the expense of requiring more laser power to achieve

8



the same gate speed. Trapped ion frequencies are typically in the ultraviolet (UV),

and high power UV lasers are often not readily available.

These issues are being attacked from a number of different directions. There

are ongoing efforts to reduce heating rates [41, 42]. To limit the number of ions

in a chain at one time, ions could be shuttled around a chip between trap regions

dedicated to computation versus others dedicated to storage [43, 44]. This way,

computations involving many ions could be performed, with only a few ions being

addressed at any one time. Alternatively, computations could be performed on many

small chains of ions, which could then be remotely entangled via their emitted

photons [13]. Addressing the issue of laser induced decoherence, there has been

recent work on “laser-less” gates, wherein the qubit levels are directly coupled [45].

In this thesis, I discuss a different approach from those outlined above. This

work is directed towards using high power UV pulses to create an entangling gate

that differs greatly from the Mølmer-Sørensen gate. This new gate, proposed the-

oretically in [46, 47], works by applying carefully timed sequences of ultrafast spin-

dependent momentum kicks. This ultrafast gate does not spectroscopically resolve

sidebands, and as such does not suffer from the speed limitations discussed above.

It can, in principle, operate far faster than a trap period. By going so fast it is less

sensitive to a wide range of noises sources which decrease in amplitude with fre-

quency (“1/f” noise). Moreover, the fast gate proposed is completely independent

of ion temperature (so long as the motion remains harmonic), and so avoids the

requirement of cooling to the Lamb-Dicke regime. As such, it is insensitive to ion

heating, a serious issue in many ion trapping experiments. This fast gate is enabled
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Figure 1.3: A sequence of pulses produced by a mode-locked laser produces a frequency
comb. In frequency space, the repetition rate of the pulse train ωrep becomes the spacing of
comb lines. The bandwidth of the comb is determined by the duration of each pulse τ . The
width of each comb tooth goes down as the number of pulses N increases, approximately
as ωrep/N . The center frequency of the comb ω0 is determined by the carrier frequency of
the pulse train.

by high power mode-locked lasers, which are a new tool for ion trapping. These

lasers offer a number of advantages, as I will now discuss.

1.4 Pulsed Lasers and Frequency Combs

A mode-locked laser is a laser that produces a periodic sequence of ultrashort,

phase-coherent pulses. The pulse duration of such a laser can be anywhere from

femtoseconds to picoseconds, although all the pulses in this work are ∼10 picosecond

duration. The Fourier transform of such a pulse train is a frequency comb, which

consists of many sharp lines separated by the repetition rate of the pulse train. This

is shown in figure 1.3.

Over the past decade, such frequency combs have revolutionized the field of
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optical frequency metrology [48–51]. This is due to the broad spectrum of lines with

a precisely controllable and measurable spacing (the repetition rate) present in a

frequency comb. This spectrum allows it to serve as a precise connection between

distant frequencies. In the context of metrology, this feature is used as a ruler in

which the spacings between comb lines serve as tick marks. In the context of coherent

control, widely spaced comb lines in a frequency comb can be used to directly bridge

large frequency gaps between energy levels in a controllable way. Because of this

application, mode-locked lasers have a bright2 future as a tool for qubit manipulation

in a number of different quantum computer architectures. They have already been

used to effectively control diverse quantum systems, including multilevel atoms [52],

molecules [53] and semiconductor spin states [54, 55]. In this thesis, I discuss their

use in controlling trapped ions. Much of this work has previously been reported

in [56–59].

From a technical standpoint, the large bandwidth inherent in a comb elimi-

nates some of the complexity and expense of driving Raman transitions. For hyper-

fine qubits in ions, the frequency splitting is typically several GHz. Bridging this

gap with CW beams requires either two separate phase-locked lasers, or a high fre-

quency electro-optic modulator (EOM) (which is typically inefficient). By contrast,

a single mode-locked laser has sufficient bandwidth to directly drive the transition,

without the need for a second laser or a high frequency EOM. Moreover, it is not

necessary to stabilize either the carrier-envelope phase or the repetition rate of the

mode-locked laser, as will be discussed later. This enables the use of commercially

2ha-ha-ha
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available, industrial lasers.

The major advantage of using pulsed lasers, however, lies in their enormous

instantaneous intensity. Typical repetition rates for the lasers used in this thesis

are around 100 MHz. This means that for a 10 ps pulse, the duty cycle is ∼10−3.

The instantaneous intensity in a single pulse is therefore three orders of magnitude

larger than that of a continuous wave (CW) laser of equal average power. This has

several advantages. First, large instantaneous intensity allows efficient harmonic

generation. Therefore, pulsed sources of ultraviolet light typically have far higher

average power than CW sources. This high average power in turn allows operating

with a larger detuning, which reduces some of the sources of laser-induced decoher-

ence mentioned above. More fundamentally, the large instantaneous intensity allows

ion manipulation far faster than would be possible with a CW laser. This ultrafast

manipulation opens the door to the ultrafast entangling gates mentioned above. Be-

cause of these advantages, pulsed lasers will likely prove to be a key element in the

trapped ion toolbox in the years to come.

1.5 Outline

In what follows, I will present our work on controlling trapped ions using fast

laser pulses. The layout is as follows:

• Chapter 2 goes over the fundamentals of ion trapping. This includes the

dynamics of the RF Paul trap, normal modes of motion of two ions, and

experimental construction of a Paul trap.
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• Chapter 3 covers the details of using 171Yb+ as a qubit. There I outline the

procedure used for ionization and loading, Doppler cooling, state preparation,

and state detection. The experimental background described in chapters 2-3

provide the framework for the main work presented in chapters 4-6.

• Chapter 4 explains ultrafast spin control with fast pulses. An analytic solution

is developed, and experimental results presented for multiple regimes of pulse

energy.

• Chapter 5 presents ultrafast spin-motion entanglement. There I explain how

an impulsive spin-dependent kick is created, and show data demonstrating the

predicted effects.

• Chapter 6 shows how a two ion gate would work using the techniques described

here, and concludes with an outlook for the future.
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Chapter 2

Ion Trapping

Ion traps have become a major tool to achieve diverse goals, including optical

frequency standards for atomic clocks [60–62], precision spectroscopy [63–67], tests

of fundamental physics [68–70], and (as in this work) quantum information [11].

These applications have been enabled by the ability to laser cool trapped atomic

ions [71,72]. This creates a pristine, exquisitely controlled quantum system.

The two main types of ion traps are the Penning trap [73] and the RF Paul

trap [74]. All of the work described herein was done using a Paul trap. What

follows is an overview of the mechanism by which a Paul trap operates, followed by

the experimental details of the traps used in this work.

Ideally, an ion would be trapped via a configuration of electrodes which pro-

duce a stable potential minimum at some point in space. The ion would then sit at

that point, and any perturbation from the center would result in a restorative force

back towards the center. Electric field lines of such a potential are shown in figure

2.1(a). Unfortunately Earnshaw’s theorem states that such a potential is impossible

to realize. Earnshaw’s theorem can be understood via one of Maxwell’s equations,
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(a) (b) (c)

(d)

Figure 2.1: Different electric field configurations. (a) is physically impossible, but (b)
and (c) are allowed. Alternating rapidly between (b) and (c) creates an effective trap2.
(d) is a mechanical equivalent: a ball can be trapped in a saddle if the saddle is spinning.

which states that the electric field E in vacuum must be divergence-free [75]:

∇ · E = 0 (2.1)

A potential of the form described above would have a non-zero divergence, and is

therefore impossible. For any static set of voltages, the equilibrium position of the

ion will always be unstable along some direction.

A Paul trap circumvents this restriction by using dynamic fields instead of

static fields. At any given instant in time, the equilibrium point is stable along

2In (a)-(c), the electric field lines perpendicular to the plane of the page should be understood
to create a stable minimum, i.e. the electric field lines above and below the page are pointing into
the page. Indeed, (a) would be possible if the elecric field lines perpendicular to the page were
pointing out of the page, creating an unstable equilibrium.
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one axis and unstable along another, as in figure 2.1(b) and (c). The trick is then

to rapidly alternate between which axis is stable and which is unstable. The time

averaged force felt by the ion is then a restoring force in all directions [73]. This is

called a pondermotive potential. A mechanical analog to this type of effect is shown

in figure 2.1(d) – a ball can be trapped in a saddle if the saddle is rotating.

A number of different geometries can be used to create the potential described

above. Two were used in the work presented here. The first is a six electrode

configuration known as a four rod trap, shown in figure 2.2. The four rods create

the oscillating potential. Two of the rods are driven with an oscillating voltage,

while the other two rods are at a fixed DC voltage (typically close to ground). The

oscillation frequency is generally tens of MHz, hence these rods are designated the

radiofrequency (RF) rods. When the RF voltage is positive, electric field lines point

from the RF rods to the DC rods. When the voltage is negative, the field lines

reverse. This creates the pondermotive potential in the plane orthogonal to the

rods. Confinement along the axis of the trap is provided by two endcaps which are

held at a static, positive voltage.

The second geometry is shown in figure 2.3. It consists of four blades in the

place of the four rods. The blades are arranged in an X, as seen in the figure. As

with the four rod trap, there are two RF blades and two DC blades. However, each

DC blade consists of five separate electrodes, each of which can be at a different

voltage. There are therefore a total of ten DC electrodes and two RF electrodes.

Axial confinement is created by increasing the outer segment voltages relative to the

inner segments. This geometry allows slightly more flexibility, as will be discussed
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RF

RF

U0

U0

Figure 2.2: Drawing of four rod RF trap. The two light blue rods are driven with an
oscillating voltage, while the two light red rods are kept at a fixed voltage (approximately
0 V, shown grounded here). The two endcap needles are kept at a fixed, positive voltage
to provide axial confinement.

later. The theory description below is written with the four rod trap in mind, but

applies equally well to the blade trap.

2.1 RF Trap Theory

With the broad outline described above, I will now briefly go over the theoret-

ical analysis of the dynamics of an RF Paul trap. I will not attempt to completely

cover this topic, but merely to outline its salient features. The interested reader can

consult many excellent and thorough analyses [73,74,76,77].

Let the axis of symmetry of the trap define the z-axis, the plane joining the

centers of the RF rods define the x-z plane, and that joining the DC rods define

the y-z plane. Let the origin refer to the center point of the trap. I will refer

to the z-axis as the axial direction, and the x and y axes as the transverse (also

called radial) directions. Let the voltage applied to the RF rods be given by V (t) =

V0 cos (Ωt), where V0 is the RF amplitude and Ω is the RF frequency. Let the

voltages applied to the two endcaps be equal, and given by U0. If the four rods were
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GNDU0U1
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RF

RF

Figure 2.3: Drawing of blade trap used here. The mechanism is the same as the four rod
trap, except that the DC blades are segmented into 5 segments. Axial confinement is then
generated by the outer segments, which are held at U0 and U1. Micromotion compensation
and principal axis rotation can be accomplished by adjusting the 12 DC control voltages
(1 for each RF blade + 5 for each DC blade).

infinite hyperbolic electrodes (rather than cylinders), then the transverse potential

would be analytically soluble, and given by [77]:

V =
1

2
V0 cos (Ωt)

(
1 +

x2 − y2

R2

)
(2.2)

where R is the distance from the trap center to an electrode, as shown in figure

2.4. When the hyperbolic electrodes are deformed into cylinders, the potential is no

longer analytically soluble. However, equation 2.2 remains approximately true close

to the trap axis.

The axial potential has the approximate form:

U =
κU0

Z2

(
z2 − 1

2

(
x2 + y2

))
(2.3)

where κ is a geometric factor (of order 1) and Z is the distance from the origin to
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Figure 2.4: Four rod trap dimensions.

an endcap. The total potential at the trap center is therefore:

Vtot = V + U =
1

2
V0 cos (Ωt)

(
1 +

x2 − y2

R2

)
+
κU0

Z2

(
z2 − 1

2

(
x2 + y2

))
(2.4)

From equation 2.4, the electric field is given by [78]:

E(x, y, z, t) = −∇Vtot

= −V0

(
xx̂− yŷ
R2

)
cos (Ωt)− κU0

Z2
(−xx̂− yŷ + 2zẑ) (2.5)

where x̂, ŷ, and ẑ are unit vectors in the respective directions. Using equation 2.5,

The differential equations governing the motion of an ion with mass m and charge

e follow directly from Newton’s second law:

r̈ =
F

m
=

e

m
E(x, y, z, t) (2.6)

where r = xx̂ + yŷ + zẑ and F is the total force on the ion. Let rx = x, ry = y,

and rz = z. Combining equations 2.5 and 2.6 show that the ion motion is each

dimension is governed by the Mathieu equation:

r̈i +
Ω2

4
(ai + 2qi cos [Ωt]) ri = 0 (2.7)
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where i = x, y, z. The ai and qi parameters characterize the trap in each dimension.

They are given by:

ax = − 4eκU0

mZ2Ω2
ay = − 4eκU0

mZ2Ω2
az =

8eκU0

mZ2Ω2

qx =
2eV0

mR2Ω2
qy = − 2eV0

mR2Ω2
qz = 0

(2.8)

Note that qz = 0 in equations 2.8. Substituting this into equation 2.7 shows that

the equation of motion in the axial direction reduces to that of a simple harmonic

oscillator. The frequency is given by:

ωz =

√
Ω2

4

8eκU0

mZ2Ω2
=

(√
2eκ

m

) √
U0

Z
(2.9)

The first term in parentheses is determined by the choice of ion and by the trap

geometry. The axial frequency is then determined entirely by the endcap voltage

and the distance to the endcaps. This is true in the idealized hyperbolic geometry

solved here; any real trap will have a small but non-zero value for qz. However, the

above result remains approximately true. Describing the motion in the transverse

directions requires solving equation 2.7, discussed below.

2.1.1 Solution

In general, there is no closed form solution to equation 2.7. There are series

solutions; general derivations of those solutions can be found in [76]. For the pur-

poses of this thesis, the trap is operated in a regime where ai � 1 and qi � 1. In

that case, equation 2.7 can be solved to lowest order in ai and qi. The result is [77]:

ri(t) = r0i cos (ωit+ φSi
)
(

1 +
qi
2

cos (Ωt+ φM)
)

(2.10)
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r0

Figure 2.5: Trapped ion position as a function of time along one transverse dimension (x
or y). The main behavior is the ordinary oscillations of a harmonic oscillator, known as
the secular motion. It is superimposed with a faster oscillation at the RF drive frequency,
known as micromotion. The evolution shown here is for typical parameters used in exper-
iments described in this thesis (see sections 2.1.4 and 2.3): A 171Yb+ ion with Ω/2π = 20
MHz, ω/2π = 1 MHz, V0 = 500 V, and R = 500 µm. These parameters lead to q = 0.14.

where r0i is the amplitude (determined by initial conditions), ωi and φSi
are the

frequency and phase of the secular motion, and φM is the phase of the micromotion.

ωi is given by:

ωi =
Ω

2

√
ai + q2

i /2 (2.11)

Examining equation 2.10, it is clear that the condition qi � 1 means that the

behavior is very close to that of a simple harmonic oscillator. This harmonic motion

at frequency ωi (known as the secular motion of the ion) is slightly modulated by

the RF drive at frequency Ω. This small modulation, known as the micromotion of

the ion, is an unavoidable aspect of RF traps. Figure 2.5 shows equation 2.10 as a

function of time for typical trap parameters.
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2.1.2 Excess Micromotion

Equation 2.10 is correct if the electric field is determined entirely by the trap

electrodes. However, in realistic experimental situations there may be uncontrolled

stray electric fields present in the trap as well. These stray electric fields will cause

the equilibrium position defined by the RF fields (the RF null) and that defined

by the DC fields (the DC null) to be in different positions. In other words, the

stray fields will effectively “push” the ion away from the RF null. This will result in

additional micromotion beyond the intrinsic micromotion present in equation 2.10.

When a background electric field is added, the equation of motion in equation 2.10

becomes [78]:

ri(t) = [Bi + r0i cos (ωit+ φSi
)]
(

1 +
qi
2

cos (Ωt+ φM)
)

(2.12)

where Bi is determined by the magnitude of the background field:

Bi =
eEi
mω2

i

(2.13)

where Ei is the magnitude of the stray electric field in direction i. This equation

stems from the fact that the new equilibrium point Bi is that where the trap restoring

force mω2
i ri is equal to the background force eEi.

Micromotion causes the ion to oscillate at the RF frequency. This motion

causes Doppler shifts in the laser frequencies as the ion moves towards or away from

the beams. This can reduce the efficiency of both cooling and state detection (which

are discussed in chapter 3). More generally, micromotion causes the ion motion to

be less harmonic. As trapped ion gates often rely on the harmonic character of the
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ion motion, it is important to eliminate micromotion to the highest degree possible.

This is done by applying small DC voltages to each of the four rods in such a way as

to cancel out the background field at the trap center. There are several techniques

for minimizing the micromotion, they are described in detail in [78].

There are two other potential sources of excess micromotion: a phase differ-

ence between the two RF rods, and RF pickup on one of the DC electrodes. It is

important to try to minimize these sources as well; how this is done is described in

section 2.3.

2.1.3 Equation of Motion from Position and Momentum

The above equations express the ion position at any time t as a function of the

initial amplitude r0i and the secular motion phase φSi
. However, for the application

in chapter 5, it is more convenient to express the position at a later time t as a

function of initial position and momentum. Here I will rewrite equation 2.12 in

terms of position and momentum.

No Micromotion Consider a perfectly harmonic trap3 along one direction with

frequency ω. Let x(t) and p(t) represent the ion’s position and momentum along

this direction, respectively. Define dimensionless coordinates X(t) and P (t) as:

X(t) =
x(t)

x0

(2.14)

P (t) =
p(t)

p0

(2.15)

3This corresponds to q = 0 in equation 2.10, as would be the case for the axial direction in an
idealized trap.
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where x0 is a natural length scale4, and p0 = mωx0. In terms of these coordinates,

the ion motion is given by:

X(t) = A cos (ωt+ φ) (2.16)

P (t) =
1

ω
Ẋ(t) = −A sin (ωt+ φ) (2.17)

where A is the (dimensionless) amplitude, and φ is the phase. We can then form

the complex phase space parameter:

α(t) = X(t) + iP (t) = Ae−iφe−iωt (2.18)

Now noting that α(0) = Ae−iφ, we can write this as:

α(t) = α0e
−iωt (2.19)

where α0 = α(0). This expresses the ion’s state at any time t in terms of its initial

position and momentum. It also shows the well-known result that a freely evolving

harmonic oscillator executes circles in phase space. We would like an analogous

expression for the case of an ion with micromotion.

With Micromotion Define the following function:

M(t) = 1 +
q

2
cos (Ωt+ φM) (2.20)

⇒ Ṁ(t) = −qΩ
2

sin (Ωt+ φM) (2.21)

From equation 2.12, the ion’s (dimensionless) position and momentum are given by:

X(t) = A cos (ωt+ φS)M(t) +BM(t) (2.22)

P (t) =
1

ω
Ẋ(t) = −A sin (ωt+ φs)M(t) +

1

ω
[B + A cos (ωt+ φS)] Ṁ(t) (2.23)

4For a quantum harmonic oscillator, x0 and p0 are normally given by x0 =
√
~/2mω and

p0 =
√
mω~/2, although note that the entire discussion in this section is classical.
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Proceeding as before, we can construct α(t) as:

α(t) = X(t) + iP (t) (2.24)

= Ae−iφse−iωtM(t) +BM(t) +
i

ω
[B + A cos (ωt+ φS)] Ṁ(t) (2.25)

= Ãe−iωt
(
M(t) +

i

2ω
Ṁ(t)

)
+

i

2ω
Ã∗eiωtṀ(t) +B

(
M(t) +

i

ω
Ṁ(t)

)
(2.26)

where Ã = Ae−iφs . Note that Ã = α0 if there is no micromotion.

Let M0 = M(0) and Ṁ0 = Ṁ(0). To determine the final state from the initial

state, we must rewrite equation 2.26 in terms of α0:

α0 = ÃM0 +BM0 +
i

ω

[
B + Re(Ã)

]
Ṁ0 (2.27)

⇒ Ã =
1

M0

[
α0 −BM0 −

iṀ0

ωM0

Re(α0)

]
(2.28)

Substituting equation 2.28 into equation 2.26 yields:

α(t) =
1

M0

(
α0 −BM0 −

iṀ0

ωM0

Re(α0)

)(
M(t) +

i

2ω
Ṁ(t)

)
e−iωt+

i

2ω

1

M0

(
α∗0 −BM0 +

iṀ0

ωM0

Re(α0)

)
Ṁ(t)eiωt+

B

(
M(t) +

i

ω
Ṁ(t)

)
(2.29)

Equation 2.29 is the desired equation. Note that unlike in equation 2.19, the evolved

position does not depend only on the initial position and momentum. It also depends

on the initial phase of the RF drive φM , through M0 and Ṁ0.

2.1.4 Trap Parameter Estimation

Using equations 2.8 and 2.11, we can now get an idea for the physical param-

eters appropriate for an ion trap. As explained in chapter 3, the ion is cooled via
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Doppler cooling along a single direction. In order to minimize the total ion energy,

the Doppler cooling direction is chosen to have an equal projection along each of the

three principal axes [79]. In this configuration, the lowest achievable total energy

along a single principal axis is given by [79]:

Emin =
~Γ

4
(2.30)

where Γ is the spontaneous emission rate of the cooling transition. This equation is

valid so long as the cooling transition can be approximated as a two-level system,

the Doppler cooling beam intensity is well below saturation, and its detuning from

resonance is Γ/2 (Doppler cooling is discussed in chapter 3). Ideally the Doppler

cooling process will reduce the ion’s energy sufficiently such that the average number

of harmonic oscillator phonons n̄ is small along the direction which is used for

quantum information purposes. The energy of a one-dimensional harmonic oscillator

of frequency ω with n̄ phonons is well-known to be ~ω (n̄+ 1/2) [80]. Setting this

equal to equation 2.30 yields:

ω =
Γ

4(n̄+ 1/2)
(2.31)

For 171Yb+, Γ = 1.23 × 108 s−1. Therefore, a Doppler-limited phonon number of

n̄ < 10 is achieved for frequencies ω/2π > 0.47 MHz. From equations 2.8 and 2.11,

the secular frequency in the transverse direction (x or y) is given by:

ω ≈
(

e√
2m

)(
V0

R2Ω

)
(2.32)

The first term is fixed by the choice of ion, while the second term contains the

design parameters: RF voltage, RF frequency, and trap size. From equation 2.32 it
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is clear that the secular frequency will increase (and hence n̄ will decrease) as the

trap is made smaller, the RF drive frequency is made slower, or the RF voltage is

made larger. In order for the first order approximation made in writing equation

2.10 to be valid, we must have Ω � ω. If the target ω is in the MHz range, this

constrains Ω to be at least tens of MHz. The drive voltage V0 is limited to be < 1

kV for practical reasons – for typical distances between the wires leading to the RF

and DC electrodes, voltages around 1 kV can create an RF discharge, which can

destroy the trap. Because of the dire consequences of applying too much voltage,

the RF voltage is normally kept well below 1 kV. For an RF voltage of 500 V and

frequency of 20 MHz, a 1 MHz transverse trap frequency is achieved for an ion-

electrode distance of R ≈ 500 µm. These estimates typify parameters for an ion

trap. Similar estimates could be done for the axial direction; however the gates

described in chapter 6 are all done using transverse modes for reasons described

there. Other trapped ion gates also benefit from using transverse modes, see [81].

As a side point, equation 2.32 also explains one motivation for the entire line

of research described in this thesis. In order to improve existing gates, there is

strong motivation to make the ion secular frequency as large as possible. This is

because, as discussed in chapter 1, gate speed is limited by the frequency of the ion’s

motion. Moreover, high trap frequencies result in a lower n̄ after Doppler cooling.

For the reasons described above, the only free parameter available to significantly

increase the trap frequency for a given ion is the ion-electrode distance R. For this

reason, many ion trapping groups have endeavored to make their traps as small

as possible [11]. However, these small traps are plagued by high heating rates.
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These high heating rates interfere with entangling operations and reduce fidelities.

The source of these heating rates is poorly understood, but it seems to scale as

1/R4 [82]. Because of this unfavorable scaling and the high desirability of small

traps, a number of research groups are working on studying and eliminating this

heating. By contrast, the entangling operation described in chapter 6 is not limited

by the trap frequency and does not require the ions to have a low n̄. It is therefore

not necessary to have large trap frequencies, and relatively large, macroscopic traps

can be used.

2.2 Two Ion Normal Modes

Equation 2.11 gives ωx,y,z for a single ion. For two ions, there will be six

normal mode frequencies. In each direction, the ions can oscillate in phase (called

the center of mass mode) and out of phase (called the relative motion mode, or

“stretch” mode for z and “tilt” or “rocking” mode for x and y). I will label these

frequencies ωxC and ωxR , respectively, and similarly for y and z.

2.2.1 Axial Modes

The axial mode case is shown in figure 2.6(a). Let z = 0 be the trap center,

and z1 and z2 be the positions of ions 1 and 2. In the harmonic approximation, the

confining force of the trap on ion i is given by Ftrap = −mω2
zzi. The Coulombic

repulsion between the ions is FCoulomb = e2/4πε0
|z1−z2|2

. The equations of motion for z1 and
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Figure 2.6: Coordinates for analysis of two ion normal modes. (a) axial modes, (b)
transverse modes.

z2 are therefore:

mz̈1 = −mω2
zz1 −

e2/4πε0

|z1 − z2|2
(2.33)

mz̈2 = −mω2
zz2 +

e2/4πε0

|z1 − z2|2
(2.34)

At equilibrium, the ions are a distance d apart, and sit at positions z1 = −d/2 and

z2 = d/2. d is obtained by setting 2.33 or 2.34 equal to zero:

d =

[
e2/4πε0
mω2

z/2

]1/3

(2.35)

Define the displacements from equilibrium z̃1 = z1 + d/2, z̃2 = z2 − d/2. Moreover,

assume that the displacement from equilibrium is small: z̃1,2 � d. In that case, we

have:

e2/4πε0

|z1 − z2|2
=

mω2
zd

3/2

|z̃1 − z̃2 − d|2
≈ mω2

z (d/2 + z̃1 − z̃2) (2.36)

Equations 2.33 and 2.34 then become:

¨̃z1 = ω2
z (−2z̃1 + z̃2) (2.37)

¨̃z2 = ω2
z (z̃1 − 2z̃2) (2.38)
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Taking the sum and difference of these equations shows that the sum and difference

oscillations are decoupled:

d2

dt2
(z̃1 + z̃2) = −ω2

z (z̃1 + z̃2) (2.39)

d2

dt2
(z̃1 − z̃2) = −3ω2

z (z̃1 − z̃2) (2.40)

This shows the well-known result that the axial center-of-mass frequency ωzC is

equal to the single ion frequency ωz, while the relative motion frequency ωzR is
√

3

times larger:

ωzC = ωz ωzR =
√

3ωz (2.41)

2.2.2 Transverse Modes

The transverse mode case is shown in figure 2.6(b). In this case, the equilib-

rium position of both ions is at x = 0. As for the axial modes, assume that the

displacement from equilibrium is small compared to the ion separation: x1,2 � d.

The Coulomb force in the x direction on ion 1 is given by:

FCoulomb =

(
e2/4πε0

d2 + (x1 − x2)2

)(
x1 − x2

d

)
(2.42)

=

(
mω2

zd
3/2

d2 + (x1 − x2)2

)(
x1 − x2

d

)
(2.43)

≈ mω2
z

2
(x1 − x2) (2.44)

The differential equations for ion 1 and 2 are therefore:

ẍ1 = −ω2
xx1 +

ω2
z

2
(x1 − x2) (2.45)

ẍ2 = −ω2
xx2 +

ω2
z

2
(x2 − x1) (2.46)
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As in the axial case, the sum and difference oscillations are decoupled:

d2

dt2
(x1 + x2) = −ω2

x (x1 + x2) (2.47)

d2

dt2
(x1 − x2) = −

(
ω2
x − ω2

z

)
(x1 − x2) (2.48)

The frequencies are therefore:

ωxC = ωx ωxR =
√
ω2
x − ω2

z
(2.49)

Equation 2.49 shows that the ratio of normal mode frequencies for the trans-

verse modes can be adjusted by changing the axial potential. By contrast, the

frequency ratio for axial modes is fixed at
√

3 according to equation 2.41. This fact

will become important in the discussion of ultrafast gates in chapter 6.

2.2.3 Two Ion Hamiltonian

Continuing with the previous discussion of normal mode frequencies, I will

show here how the Hamiltonian for two ions can be recast in terms of normal modes.

I will consider only the transverse modes in one dimension; extension to axial modes

is straightforward.

In terms of each ion’s displacement from equilibrium, the Hamiltonian is:

H =
1

2
mω2

xx
2
1 +

1

2
mω2

xx
2
2 +

p2
1

2m
+

p2
2

2m
+

e2

4πε0

(
1√

d2 + (x1 − x2)2
− 1

d

)
(2.50)

≈ 1

2
mω2

xx
2
1 +

1

2
mω2

xx
2
2 +

p2
1

2m
+

p2
2

2m
− mω2

z

4
(x1 − x2)2 (2.51)

The first four terms represent each ion’s kinetic and potential energy, while the last

term represents the Coulomb potential energy. In equation 2.51 I have used equation

2.35, and made the small displacement approximation.
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Define the normal mode positions and momenta as:

xC =
1

2
(x1 + x2) pC = p1 + p2 (2.52)

xR =
1

2
(x1 − x2) pR = p1 − p2 (2.53)

In terms of these coordinates, we have:

x2
1 + x2

2 = 2(x2
C + x2

R) (2.54)

p2
1 + p2

2 =
1

2
(p2
C + p2

R) (2.55)

The Hamiltonian in equation 2.51 can therefore be recast in terms of normal mode

coordinates as:

H =
1

2
mω2

x2x
2
C +

1

2
mω2

x2x
2
R +

1

2

p2
C

2m
+

1

2

p2
R

2m
− 1

2
2mω2

zx
2
R (2.56)

=
1

2
Mω2

xC
x2
C +

1

2
Mω2

xR
x2
R +

p2
C

2M
+

p2
R

2M
(2.57)

where in equation 2.57 I have used equation 2.49. Here I have defined the effective

mass of the normal modes: M = 2m. As discussed above, the two harmonic

oscillators are now decoupled. The important point about equation 2.57 is that

with the normal modes defined as in equations 2.52 and 2.53, the effective mass of

the normal mode oscillations is equal to twice the mass of a single ion. I will use

this result in chapter 6.

As a side point, note that the coordinate choice in equation 2.52 and 2.53

is not unique. Indeed, normal modes could be defined as xC,R = (x1 ± x2)/a,

pC,R = a (p1 ± p2) /2, for any value of a. Normal modes defined as such will have an

effective mass of M = (a2/2)m. For example, a =
√

2 produces a more symmetric
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definition than a = 2. I have chosen a = 2 because the result is that xC and

pC correspond to the physical center of mass and total momentum of the system.

Other choices do not necessarily have as clear a physical interpretation. Of course,

all choices result in the same physics.

2.3 Experiment Construction

Almost all of the experiments described in this thesis were performed using

a four rod trap, as shown in figure 2.2. The trap was made out of tungsten wire,

with dimensions as shown in figure 2.4. Towards the end of my graduate school

career, we built a new trap, as shown in figure 2.9. This blade trap featured several

improvements over the four rod trap.

The four rod trap was nearly completed when I joined the lab. However, I was

heavily involved in the construction of the blade trap. I will therefore describe the

blade trap construction procedure below. The four rod trap procedures were very

similar to those described in [83].

2.3.1 Vacuum Chamber

Trapped ion experiments require ultrahigh vacuum (UHV), so as to keep the

collision rate with background gas to a minimum. Collisions can cause the ion to

fall into the 2F7/2 state, which requires the experiment to be paused until the ion

can be returned to the cooling cycle (this is discussed in chapter 3). Collisions can
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also form the YbH+ molecule, which often requires reloading the trap5. In general,

collisions do not result in the ion being expelled from the trap, as the trap is much

deeper than the energy of a room temperature molecule. At a pressure of < 10−10

Torr, the ion falls ion the 2F7/2 state at a rate of a few times per hour.

To create an ultrahigh vacuum, the chamber was built out of ConFlat (CF)

stainless steel vacuum components. An AutoCAD image of the experiment chamber

is shown in figure 2.7. Each metal piece was wrapped in foil and baked in air at 250◦

C for a week. This was to reduce outgassing once the chamber was assembled [85].

The chamber was then assembled as in figure 2.7. OFHC copper gaskets were used

to seal each mating surface.

In order to maintain UHV, it is necessary to continuously pump the chamber

during operation. This is because outgassing of materials from the chamber walls

must be removed. For this reason, two pumps are integrated into the chamber

– an ion pump and a non-evaporable getter (NEG) pump. The ion pump works

by ionizing background atoms and then accelerating them into a surface using a

high voltage. The NEG pump, by contrast, works via passive chemical adsorption

of background gas. The NEG is is an alloy of zirconium and aluminum. Once

activated via heating, it will continuously remove gas from the vacuum chamber.

The NEG cartridge is designed to have a very high surface area, to increase pumping

speed. In addition to the NEG cartridge, pieces of NEG ribbon material were placed

directly in the spherical octagon containing the trap. This is because pumping

5It is possible that the YbH+ molecule can be resonantly dissociated by the cooling laser,
see [84].
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speed is ultimately limited by the diameter of the tube leading to the pumps. By

placing some NEG material near the ion, the local pressure can in principle be

improved. Anecdotal evidence suggests that the nearby NEG material does improve

the pressure near the ion. However, no careful measurements were performed.

Once the chamber was fully assembled, a turbomolecular pump was used to

pump it down to ∼2 × 10−6 Torr. The chamber was then placed in an oven and

heated to 200◦ C for a week. At this temperature, the water that is adsorbed onto

the walls of the chamber can evaporate and be pumped out of the system. During

the first half of the bakeout, a large external ion pump pumped gas out of the

chamber. Halfway through, the valve was closed and the internal ion pump turned

on. The bakeout also activates all of the NEG material in the chamber.

A UHV ionization gauge was used to monitor the pressure in the chamber both

during and after the bakeout. Once the chamber had cooled to room temperature,

it reached a steady pressure of 7 × 10−11 Torr. This is higher than expected –

the final pressure should have been closer to < 1 × 10−11 Torr. The reason for

this anomalously high pressure reading is unknown. It could be a contaminant in

the vacuum chamber, or the gauge could be improperly calibrated. However, the

pressure is still in the UHV regime, and is sufficiently low to enable the experiments

presented here.

2.3.2 Blade Trap

The ion trap itself is made out of four gold coated alumina blades. The design

of the blade is shown in figure 2.8. Before gold coating, 50 µm channels are cut
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Figure 2.7: Vacuum chamber for ion trap. After bakeout, the system was continuously
pumped by an ion pump and a non-evaporable getter pump. These were sufficient to
maintain a pressure of 7 × 10−11 Torr. Two electrical feedthroughs on either side of the
chamber pass through the signals for the blade voltages and the oven currents. The large
top window is made reentrant so as to allow maximal light collection from the ion(s).
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Part Quantity Vendor Part Number
Spherical Octagon Chamber 1 Kimball Physics MCF450-SphOct-E2A8

Groove grabbers 5 Kimball Physics MCF450-GrvGrb-C01
4-Way Standard Cross 1 Kurt J. Lesker C-0275

Standard Tee 2 Kurt J. Lesker T-0275
Conical Reducer Nipple 1 Kurt J. Lesker CRN275X133

Full Nipple 1 Kurt J. Lesker FN-0337
All metal bakeable valve 1 Kurt J. Lesker VZCR40R

Macor Blade Holder 1 Maryland Machine N/A
Gold coated blade 4 Laser Micromachining Ltd. N/A

In vacuum capacitors 10 ATC 116UL821M100TT
Isotopically enriched 171Yb a few mg ORNL N/A

Natural abundance Yb oven 1 Alvasource AS-2-Yb-95-F
Natural abundance Ba oven 1 Alvasource AS-2-Ba-55-F
15 Pin vacuum feedthrough 1 MDC 9162002
2 Pin vacuum feedthrough 1 MDC 9422011

1.33” window 6 MDC 9722013
4.5” reentrant top window 1 UKAEA N/A
4.5” large bottom window 1 UKAEA N/A

Ion gauge 1 Agilent Technologies 9715007
Ion pump 1 Agilent Technologies 9191145

NEG cartridge 1 SAES Getters 4H04193
NEG cartridge feedthrough 1 SAES Getters 4H04023

NEG ribbon 40 cm SAES Getters 4F0280D

Table 2.1: List of important vacuum chamber parts. Standard gaskets, screws, wire, etc.
are not listed.
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25.2 mm
9 m
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250 µm50 µm

Figure 2.8: One of the DC blades used in the blade trap. The segmentation electrically
isolates the segments from one another, allowing each of the five segments to be set to a
different voltage. The RF blades look the same, except that the gold coating extends over
the entire surface, such that the entire blade is at a single voltage.

through the alumina, creating five separate “prongs” or segments. The DC blades

are then gold coated only on the segmented section, as seen in the figure. This

creates five separate electrically isolated electrodes, which can each be set to a

different voltage. By contrast, the RF blades are uniformly gold coated across

their entire surface, such that the entire blade is at one voltage. The channels cut

in the RF blades are irrelevant; they are present simply because all the blades are

identical before they are gold coated. The segmentation of the DC electrodes creates

the axial trap. The inner segment is set to a lower voltage than the outer segments,

which provides axial confinement. This is in contrast to the four rod trap, in which

axial confinement is provided by separate endcap electrodes. The segmentation also

allows rotation of the trap’s transverse principal axes. In the four rod trap, the two

transverse principal axes are fixed to lie in the plane joining the RF rods and the
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plane joining the DC rods. In the blade trap, the principal axes can be rotated by

adjusting the voltages on the DC electrodes [86]. Lastly, the segmentation allows

the creation of a more “flat-bottomed” trap, in which more ions can be held with

equidistant spacing.

To connect the blades to the electrical feedthroughs, gold ribbon wire was wire-

bonded to each electrode. That wire was then spot welded to pieces of constantan

foil, which were in turn spot welded to Kapton coated copper wire. The constantan

foil was used simply because it is extremely difficult to make a good spot weld

between two wires. By using a folded piece of constantan foil, a good connection

can be made between each wire and the foil, thereby connecting the wires.

The blades were attached via screws to a custom machined holder made out

of Macor. Macor is a ceramic which is well-suited for this purpose. It is machinable,

vacuum-compatible, and has a low coefficient of thermal expansion. The four blades

were carefully aligned by eye under a microscope. When viewed from the side, the

lines joining the short edge of each blade form a rectangle, as shown in figure 2.9(c).

This rectangle has dimensions 1215 µm × 539 µm. This was larger than the design

goal, but still sufficiently small to attain transverse secular frequencies > 1 MHz.

It is important to minimize RF pickup (and other noise) on the DC blades.

For this reason, each signal going to the DC blades is filtered. However, as can be

seen in figure 2.7, the DC feedthrough is relatively far from the trap itself (∼50 cm).

The effectiveness of a filter external to the vacuum chamber is therefore limited by

the inductance of the internal wire leading from the trap to the feedthrough. For

this reason, 820 pF ceramic capacitors were attached next to each blade segment, as
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can be seen in figure 2.9(a). By reducing the blade to capacitor distance to ∼1 cm,

the RF pickup could in theory be significantly reduced. However, no measurements

were attempted to determine how much (or if) the nearby capacitors helped.

2.3.3 Helical Resonator

As discussed in section 2.1, the voltage on the RF blades must be at a frequency

in the tens of MHz, with an amplitude in the hundreds of volts. However, ideally

no current is driven, so that the power required is nearly zero. The logical choice

to provide such a signal is a quarter-wave resonator [75]. However, at a frequency

of 20 MHz, a simple coaxial quarter wave resonator would be almost four meters

long. This would be experimentally impractical. To solve this, the inner conductor

of the resonator can be wound into a helix, creating a helical resonator [87, 88].

Such helical resonators are dramatically smaller, and can still attain high Q factors.

Straightforward design guidelines for such a resonator are given in [87, 88]. The

resonator consists of a copper shield with a helical coil of copper wire inside. The

coil is grounded to the shield at the input side. RF power at the resonance frequency

is inductively coupled in at the input, resulting in high RF voltage on the output

end of the coil. Such a resonator is shown in figure 2.10.

The description above is slightly complicated by the need to compensate for

stray electric fields at the trap center. Because of this requirement, it is important to

be able to bias the RF electrodes with small DC voltages. Moreover, it is important

to be able to have different biases on each RF electrode. For that reason, the

helical resonator is constructed with two closely spaced inner helices rather than
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Figure 2.9: (a) view of the assembled trap, with one of the DC blades seen clearly. Note
the segmented gold coating. The small chip capacitors are each circled; their bottom layer
is connected to the blade, while their top layer is connected to a grounding wire. (b) Top
down view of the trap. (c) Side-on view of the trap, showing dimensions.
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one (a “bifilar”). The input side of each coil is connected to an SMA feedthrough

to allow for the application of a DC bias voltage. It is also connected to a filter,

which provides a capacitive ground for the RF voltage. The output side of each coil

connects to one of the RF electrodes, via the feedthrough. It is also very important

that there be no phase difference between the two RF electrodes. A phase difference

between the RF electrodes leads to ion micromotion [78]. To match the phase on

each electrode, a large capacitor is placed between the two coils right before the

feedthrough. This capacitor acts as an RF short, guaranteeing that the RF voltage

is the same while allowing for a different DC bias.

To couple power into the resonator, a small antenna coil is wound on the

input side of the resonator, with its ends connected to an SMA bulkhead. The

antenna coil is placed inside the larger helical coil. The antenna is shown in figure

2.10(a). RF is applied to the SMA connector, thereby inductively coupling to the

resonator. The procedure to tune the coupling is as follows: First, the RF frequency

applied to the resonator is scanned around the design frequency, while monitoring

the reflected power. Away from resonance, all the power is reflected. However, a

small dip in reflected power will be seen at some frequency, hopefully close to the

design frequency. This is the resonance frequency. The antenna position inside the

coil is then adjusted to minimize the reflected power on resonance. Sometimes the

antenna will have to be modified in order to achieve good coupling. Without too

much difficulty, the reflected power can be reduced to 0.1% of the incident power.

The resonator Q is typically 100-200.

42



(a) (b)

(c)

Figure 2.10: Pictures of a typical helical resonator. One inch spacing of table holes
provides a scale. (a) Antenna for coupling in RF power. Antenna shape is adjusted by
trial-and-error to minimize reflection. (b) Typical helical resonator. Coil is held in place
with Teflon pieces, and connected to an SMA feedthrough to allow for DC bias. Shown
here is a single coil resonator, as opposed to the two coil configuration discussed in the text.
(c) Assembled resonator attached to vacuum chamber. At the output end (not shown),
the coil is bent out into a straight line, which is then connected to the feedthrough using
an in-line barrel connector.
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Chapter 3

The Ytterbium Qubit

The previous chapter dealt with the theory and implementation of ion trap-

ping. This chapter now turns to the specific ion used. The list of ions which are

appropriate for trapped ion quantum information is rather limited. As a first limi-

tation, the ion should be able to be easily Doppler cooled. That restricts the list to

those ions which are alkali-like, meaning they have a single unpaired valence elec-

tron. In order for the ion to be useful as a qubit, it must have a long lived pair

of energy levels which can be identified as the qubit levels. Moreover, there must

be a mechanism by which to initialize, detect, and couple those levels. With these

restrictions, there is a short list of appropriate atoms. Figure 3.1 shows the periodic

table, with those atoms whose ions have been Doppler cooled highlighted. Each of

these ions has various advantages and disadvantages for quantum information. The

work in this thesis was all done using the 171 isotope of the Ytterbium ion, using

the methods described in [89].

The 171Yb+ ion is appealing for a number of reasons. Its 2S1/2 → 2P1/2 transi-

tion is at 369 nm, which is relatively long wavelength UV. At this wavelength, fibers
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can be used, simplifying optical setups. The hyperfine splitting ωhf in the 2S1/2

ground state manifold is 12.6 GHz, which is large enough to enable efficient state

preparation and detection, described below. The fine structure splitting between the

2P1/2 and 2P3/2 levels is 100 THz, which is extremely large. This enables operating

with a very large detuning in between the P states, which reduces spontaneous emis-

sion and differential light shifts of the qubit levels. Lastly, all the research discussed

in this thesis requires a high power, picosecond mode-locked laser. The ideal center

frequency for this laser is located between the P states, such that the differential light

shifts from the two P states partially cancel while the Raman transition amplitudes

coherently add (discussed later). Coincidentally, such a laser exists and is readily

available. The third harmonic of solid state neodymium vanadate (Nd:YVO4) lasers

is at 355 nm, which is extremely close to the ideal wavelength (see figure 4.3). This

coincidence makes the 171Yb+ system uniquely well-suited for this work.

3.1 Ionization

To create a source of Ytterbium, a tube packed with Ytterbium metal is placed

in the vacuum chamber. The tube has a single opening, which is directed towards

the center of the ion trap. To load ions into the trap, two amps of current are then

run through this tube, resistively heating it. This acts as an effusive oven, creating

a stream of Yb atoms flowing through the trap.

Ionization then proceeds via a two photon process known as resonantly en-

hanced multi-photon ionization (REMPI) [90]. A 399 nm laser beam with 1.5 mW
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Figure 3.1: Periodic table of elements. Highlighted are those atoms which have been
Doppler cooled when singly ionized.

of power is focused at the center of the trap to a waist of ∼50 µm1. This excites the

1S0 → 1P1 transition in the neutral Yb emanating from the oven. A second laser

at 369 nm (also focused at the center of the trap) then ionizes the atom, producing

Yb+. The 369 nm beam has approximately 50 µW of power, and is focused to a

waist of ∼15-30 µm2. Because this process takes place at the trap center, the atom

is trapped as soon as it is ionized. Moreover, the 369 nm beam which ionizes the

neutral Yb is at the appropriate frequency for Doppler cooling Yb+. Therefore, as

soon as the atom is ionized it is trapped and cooled. Once a single ion is observed

on the camera, the 399 beam and the oven are turned off. This process works well,

producing a trapping rate of one ion every ∼2 minutes for the optical powers and

oven current mentioned.

1The 399 waist was not measured, and this is an extremely rough estimate based on the focusing
lenses used.

2Also a rough estimate.

46



to pumps and
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Figure 3.2: Top down view of experimental octagon, showing laser beam paths and
oven locations. Light from the ion is collected from above. The barium oven is for
possible future experiments, and was not used in any of the experiments in this thesis.
In principle, isotopic selectivity during loading would be improved if the 399 beam were
closer to orthogonal with the atomic beam emanating from the ovens, thereby minimizing
Doppler shifts. However, this was not found to be a problem.
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The 171Yb+ isotope has a nuclear spin of 1/2, resulting in a hyperfine inter-

action with its valence electron. This level splitting creates the states which define

the qubit levels, and is therefore critical. However, it also complicates the cooling

process, as there are a number of dark states which must be continuously depop-

ulated during the cooling process (discussed below). It is therefore often useful to

trap 174Yb+ for diagnostics. The 174 isotope has a nuclear spin of 0, resulting in

a simpler level structure and fewer dark states. Because there is less that can go

wrong, 174Yb+ is typically trapped when the experiment is first getting set up, and

for troubleshooting. Isotopic selectivity is achieved via the frequency of the 399

laser. The 399 beam is only resonant with the S → P transition of one isotope of

Yb, meaning only that isotope is ionized.

The natural abundance of 174Yb is 32%, while that of 171Yb is 14%. In prin-

ciple, a single oven loaded with natural abundance Yb could therefore be used as

a source of both isotopes. However, the isotopic selectivity provided by the 399

frequency is imperfect due to Doppler broadening in the atomic beam. Because the

abundance of 171Yb is only 14%, using a natural abundance source to trap 171Yb

would often result in trapping the wrong isotope, especially when attempting to trap

long chains of 171Yb+ ions. For that reason, two Yb ovens are placed in the vacuum

chamber. One of them contains naturally occurring Yb, and is used to load 174Yb+.

The second oven is isotopically enriched with 171Yb, and enables efficient trapping of

171Yb+. In addition to improving isotopic selectivity, the enriched oven also enables

much faster loading of 171Yb+ for the same total oven flux. The locations of the

ovens, together with the laser beam paths, are shown in figure 3.2.
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3.2 Qubit Initialization and Detection

The 369 nm light is split into three beams which are used to cool (and ionize),

optically pump, and detect the ion. Electro-optic modulators (EOMs) add appro-

priate sidebands to the cooling and optical pumping beams, as shown in figure 3.4.

The 369 nm light is generated by frequency doubling light from a 739 nm diode laser.

The timings of the events are controlled by gating the RF applied to acousto-optic

modulators (AOMs)3 in each beam. The AOMs also allow separate control of the

optical frequency of each beam, and their amplitudes.

3.2.1 Cooling

Cooling is accomplished via the standard technique of Doppler cooling [91].

The cooling laser beam is red-detuned from the 2S1/2 → 2P1/2 transition and focused

onto the ion. The ion’s temperature is reduced due to the preferential scattering of

photons when moving towards the cooling beam. The cooling is maximally efficient

when detuned by half the 20 MHz transition linewidth away from resonance. A

single cooling direction is sufficient to cool all three dimensions, so long as the laser

is not perpendicular to a principal axis of the trap [79]. There are however a number

of dark states into which the ion can fall, and leave the cooling cycle. Here “dark

state” refers to any long-lived state which does not fluoresce in response to the main,

single frequency 369 nm cooling beam. It is necessary to continuously repump out

of each dark state, described below.

3IntraAction ASM-2002B8
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Figure 3.3: Relevant energy levels of 171Yb+. The 2S1/2 and 2P1/2 levels at 369 nm
(811 THz) nearly form a cycling transition, allowing for efficient Doppler cooling. 0.5%
of scattering events place the ion in the 2D3/2 state, from which it must be repumped
by a 935 nm (321 THz) laser. To repump out of both hyperfine states of the D level,
sidebands at 3.07 GHz are added to the repump laser. To prevent population trapping in
the F = 0, mF = 0 level of the 2S1/2 manifold, sidebands at 14.7 GHz are added to the
369 nm cooling laser. A final repump laser at 638 nm (469 THz) is used to pump out of
the 2F7/2 state, which is populated via collisions with background gas atoms a few times
per hour.
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Figure 3.4: Beam paths for the 369 nm beams. Half-wave plates and polarizing beam
splitters allow adjustment of how much power goes into each beam. EOMs add the
appropriate sidebands to the cooling and optical pumping beams. AOMs in each beam
line allow for fast switching, frequency control, and amplitude control. The detection and
optical pumping beams are on resonance, and the cooling beam is 10 MHz red detuned.
The beams are combined on beam splitters and sent to the ion through a single fiber.

The cooling laser normally cycles the ion between the 2S1/2, F = 1 manifold

and the 2P1/2, F = 0 state. The 2P1/2, F = 0 state cannot decay to 2S1/2, F = 0

due to selection rules. Occasionally through off-resonant excitation the 2P1/2, F = 1

state is populated, which can decay to the 2S1/2, F = 0 state. Once there, the cooling

laser is far off resonance and the ion goes dark. To avoid this, the cooling beam

has 14.7 GHz sidebands added to repump out of that state. This is shown in figure

3.5(a). As a technical point, it is very difficult to obtain a resonant EOM at 14.7

GHz, so instead a 7.3 GHz EOM is used4. The second sideband then acts as the

repump sideband.

Without a magnetic field, the cooling process will pump the ion into a coherent

dark state, in which it no longer fluoresces [91]. To avoid this coherent population

4New Focus model 4851 EOM
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trapping, a 2.9 gauss magnetic field is created at the ion position using three copper

coils. Three coils are used to allow control over both the magnitude and direction

of the magnetic field. This magnetic field creates a Zeeman splitting of 4 MHz

(= 2.9 gauss × 1.4 MHz/gauss). This 4 MHz splitting is sufficient to eliminate the

coherent dark state. Increasing the field further, however, results in a decreased

cooling efficiency, as the cooling laser becomes further and further from resonance

with the shifted F = 1,mF = ±1 Zeeman states. 3 gauss is near an optimum field

for cooling efficiency, balancing the coherent dark state and off-resonant effects. The

magnetic field direction also defines the quantization axis, which is discussed later.

One out of every 200 scattering events, the ion decays into the 2D3/2 state,

which has a lifetime of 52.7 ms. Because of this long lifetime, it is important to

continuously pump out of this state. This is done with a 935 nm laser5, which

excites the 2D3/2 → 3[3/2]1/2 transition. Similar to the cooling beam, this beam also

requires sidebands at 3.1 GHz to pump out of the different hyperfine levels. From

the 3[3/2]1/2 state, the ion can quickly decay back to the cooling cycle.

This four level cooling scheme is nominally closed. However, occasionally a

collision with a background gas atom can populate the low-lying 2F7/2 state. This

state is extremely long lived [92], and an ion which is not repumped from this state

is effectively lost. A second repump laser6 at 638 nm repumps from this state.

Population of the 2F7/2 state is relatively rare (every 30 minutes - an hour), so it

is not necessary to use sidebands to depopulate both hyperfine levels. Instead, the

5Toptica Photonics DL100
6Toptica Photonics DL100
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Figure 3.5: The processes performed by the 369 nm laser (not to scale). The magnetic
sublevels of the F=1 hyperfine triplets are not shown for clarity. Also not shown is
the 935 repump transition, which is present in all three processes. (a) Doppler cooling.
The light is 10 MHz detuned from resonance, and cycles the ion between 2S1/2, F = 1
and 2P1/2, F = 0. Occasional off-resonant excitation to 2P1/2, F = 1 allows decay to
2S1/2, F = 0, which requires a repump sideband, shown in gray. (b) Optical pumping. A
sideband at 2.1 GHz excites the ion from 2S1/2, F = 1 to 2P1/2, F = 1. From there it can
decay to 2S1/2, F = 0, where it is trapped. (c) Detection. The light is on resonance. This
scatters many photons from 2S1/2, F = 1, and almost no photons from 2S1/2, F = 0.

638 nm laser frequency is slowly scanned back and forth between the resonance

frequencies for the two hyperfine manifolds.

For a single ion experiment, population in the 2F7/2 state is evidenced by a

lack of fluorescence during Doppler cooling. When this happens, the experiment is

paused until fluorescence returns. After a few minutes, the ion is assumed lost and

the trap is reloaded.

3.2.2 Optical Pumping

Initialization of the qubit is done via the technique of optical pumping [93].

Instead of the 14.7 GHz EOM used in the cooling beam, a 2.1 GHz EOM7 is used

to add sidebands to the 369 nm light. After Doppler cooling, the ion is in a mixed

7New Focus model 4431
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Figure 3.6: Optical pumping decay curve. After a few µs, the ion is primarily in |0〉.

state of all the levels in the 2S1/2 hyperfine manifold. The 2.1 GHz sideband drives

population from the 2S1/2, F = 1 levels to the 2P1/2, F = 1 level. From this excited

state, the ion can decay back down to the F = 1 or F = 0 levels. However, any

population which decays to the F = 0 level is trapped there, because the light is

far off-resonant. Therefore, after a few cycles, the ion is entirely in the 2S1/2, F = 0

state with high fidelity. This state is identified as the qubit level |0〉. In effect the 2.1

GHz optical pumping sideband plays the opposite role from the 14.7 GHz cooling

sideband. This is shown in figure 3.5(b).

Figure 3.6 shows the state as a function of optical pumping time. The ion

is initially Doppler cooled, and then the optical pumping beam is turned on for a

variable length of time, followed by state detection. After just a few µs, the state

is in |0〉 with high fidelity. The curve continues to decay beyond what is shown in

figure 3.6, typically reaching a minimum value of 0.5% afer a few tens of µs. This

is likely limited by state detection errors, as will be discussed in the next section.
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3.2.3 State Detection

State detection is accomplished through state-dependent fluorescence [77,94].

For the state detection beam, no EOM is necessary. The frequency is set to be

resonant with the 2S1/2, F = 1 → 2P1/2, F = 0 transition. If the ion is in the

state |1〉, the light is resonant. It will therefore cycle between the S and P states,

scattering photons. If the ion is in the state |0〉, the light is far off-resonant. It will

therefore scatter no photons. The presence or absence of scattered photons thus

indicates the state of the ion. This is shown in figure 3.5(c).

During detection, the detection beam is switched on for 500 µs. Light scattered

by the ion is collected by a microscope objective8 with a numerical aperture (NA)

of 0.27. This results in a collection efficiency of about 2% of the total light emitted

by the ion. This light is sent onto a photomultiplier tube (PMT) with a quantum

efficiency of 15%. The combined result, together with losses in other optics, is that

roughly one photon is detected out of every thousand emitted.

While the detection beam is on, the total number of photons detected by the

PMT is counted. If the number of photons counted during detection is greater than

one, the ion is considered “bright,” and is therefore determined to be in the |1〉

state. If zero or one photon is detected, the ion is in the “dark” state |0〉. For an

arbitrary quantum state |ψ〉 = c0 |0〉 + c1 |1〉, the measurement procedure causes

the state to “collapse” into |0〉 or |1〉 with probability |c0|2 or |c1|2, respectively.

Typically an experiment is repeated hundreds of times to build up sufficient statistics

8Special Optics 54-17-29-370nm
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to reconstruct |ψ〉. So, for example, if 1000 experiments were performed in which

300 scattered ≤ 1 photon and 700 scattered > 1 photon, the ion would be considered

70% bright: |c1|2 = 0.7, |c0|2 = 0.3. Determining the complex phase relationship of

c0 and c1 requires another set of experiments in which |ψ〉 is rotated by π/2 on the

Bloch sphere.

This simple counting procedure is sufficient to determine the state of the ion

with 97% fidelity. This is shown in figure 3.7. Each histogram shows the number

of photons collected for 10,000 runs of the experiment. In figure 3.7(a), the ion

was prepared in |0〉 via optical pumping. In 99.41% of those experiments, zero or

one photon was detected. In figure 3.7(b), the ion was prepared in |1〉 via optical

pumping followed by a microwave π-pulse (see below). In that case, in 97.7% of

experiments two or more photons were detected. As in the case of the cooling

beam, the 935 nm repump laser is critical during detection, so that the ion continues

scattering light throughout the detection process.

The primary source of detection error is off-resonant pumping from the bright

state to the dark state [95]. During the detection cycle, it is possible for the detection

beam to turn a bright ion dark. When that happens, no more fluorescence will be

detected from the now-dark ion. If this happens before > 1 photon is detected, the

ion will be incorrectly determined to be dark. This effect can be seen clearly in figure

3.7(b). Ordinarily one would expect the distribution to be a perfect Poissonian, as

shown in red. Indeed, the data is very close to a Poissonian, but the zero and one

bins are higher than would be expected. This is due to the bright→dark leakage.

Analogously, a dark ion can be pumped bright. However, the detection light is 14.7
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Figure 3.7: Histograms showing number of photons collected for 10,000 experiments, for
ion in |0〉 vs |1〉. In (a), the ion was optically pumped to |0〉, followed by 500 µs of detection
light. In the vast majority of experiments zero photons are collected. The small number
of experiments in which one photon is collected is primarily due to dark counts. There
are also a very small number of experiments in which more photons are collected due to
off-resonant pumping to |1〉, but there are so few that they cannot be seen on this scale.
In (b), a microwave π-pulse was used after optical pumping to move the ion to |1〉. The
number of collected photons has a nearly Poissonian distribution. A perfect Poissonian
is shown in red. The unexpectedly high “shelf” in the zero and one bins is caused by
off-resonant pumping to |0〉.

GHz off-resonant for pumping a dark ion, as compared to 2.1 GHz off-resonant for

pumping a bright ion. This effect is therefore so small that it can barely be seen in

figure 3.7(a). A detailed analysis of the expected distributions can be found in [95].

Both types of off-resonant pumping can be dramatically reduced by increasing the

photon collection efficiency, using a high NA lens or a better detector. With a high

NA lens, detection fidelities as high as 99.92% have been measured in 171Yb+ [96].

The functions discussed above – Doppler cooling, optical pumping, and de-

tection – form the setup for any experiment performed. A standard experimental

sequence is shown in figure 3.8. The ion is Doppler cooled for 1.4 ms, followed by 30

µs of optical pumping. This prepares the ion in the state |0〉 with a relatively cold

motional state. The experiment is then performed (whatever it might be). At the
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Wavelength Precise Frequency Purpose
369 nm 811288.860 GHz S → P transition (and ionization)
399 nm 751527.140 GHz Ionization
935 nm 320569.257 GHz repump from D state
638 nm 469445 GHz/469442 GHz repump from F state
355 nm Broad bandwidth qubit Raman transitions

Table 3.1: Laser frequencies used for 171Yb+ experiments. 1 MHz is the precision of
the wavemeter, hence that is the precision quoted here. However, only the 369 nm
laser need be accurate to 1 MHz. The 399 nm laser can vary by up to ±100 MHz
without much affecting loading, due to the thermal distribution of the atomic beam.
The 935 nm laser is sufficently intense to power broaden the repump transition, hence
it can vary by several MHz without any effect.

Frequency Purpose
12.642815 GHz qubit microwave rotations

2.105 GHz Sidebands for optical pumping
3.070 GHz Sidebands for 935 nm repump
14.748 GHz Sidebands for Doppler cooling
4.855 GHz EOM frequency for iodine lock

Table 3.2: Microwave frequencies used for 171Yb+ experiments.

1.4 ms

30 µs

500 µs

Doppler cooling

Optical pumping

EXPERIMENT

State detection

Figure 3.8: Standard experimental sequence. The ion is Doppler cooled for 1.4 ms,
followed by optical pumping for 30 µs. This keeps the ion’s motional state cold, and
prepares the ion in |0〉. An experiment is then performed, followed by 500 µs of state
detection. This sequence is typically repeated hundreds of times to build up statistics.
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(a)

(b)

Figure 3.9: False color images of trapped ions. In these images, light scattered by the
ions during Doppler cooling was sent onto an ICCD camera. (a) One ion. (b) Two ions.
The two ions sit ∼5 µm apart.

conclusion of the experiment, the state detection beam is turned on for 500 µs, and

the state of the ion (|0〉 or |1〉) is determined by counting the number of photons

detected by the PMT, as discussed above. This experimental sequence is repeated

several hundred times for any given experiment.

Camera The light collected can also be directed onto a camera rather than a PMT.

A camera typically has a lower quantum efficiency than a PMT, and is therefore

worse for state detection. However, a camera provides spatial information, which

is crucial for knowing how many ions there are, the ion spacing, whether there are

any dark ions, whether the ions are in focus, etc. The camera used is an intensified

CCD (ICCD)9. Images of one and two trapped ions obtained with the camera are

shown in figure 3.9.

9Cooke corporation DiCam Pro
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3.2.4 Laser Locking

As mentioned previously, the linewidth of the 2S1/2 → 2P1/2 transition is 20

MHz. It is therefore critically important that the frequency of the 369 laser be stable

to < 1 MHz. To this end, a series of locks are used to stabilize the frequency on

different time scales.

The 739 nm laser used to produce the 369 nm light is an external cavity

diode laser (ECDL)10. The frequency can be controlled by adjusting the voltage

on a piezoelectric transducer (PZT) on the diffraction grating, or by changing the

current going to the laser diode. The grating control is slower but can scan further,

while the current control is faster. Both the grating and the current are locked to a

confocal cavity using the Pound-Drever-Hall (PDH) technique [97].

The cavity consists of two spherical mirrors glued to a hollow tube of Invar-

36. The low coefficient of thermal expansion of Invar-36 makes it an excellent

material for building an optical cavity whose length is stable. However, the optical

path length between the mirrors does drift slowly over the course of seconds. The

primary contribution to this drift is likely the changing temperature and pressure of

air inside the cavity. This in turn can change the index of refraction and hence the

effective optical path length of the cavity. One of the cavity end mirrors is therefore

mounted to a PZT, which allows small adjustments of the cavity length. The length

is then stabilized to a transition in molecular iodine. This absolute reference leads

to a stable frequency.

10Toptica Photonics TA-100
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Finally, the doubling cavity which produces the 369 nm light is stabilized to

be resonant with the 739 nm frequency, through another PDH lock. The doubling

cavity is a commercial doubling system11.

Cavity Lock The 739 nm cavity lock layout is shown in figure 3.10. A 22 MHz

oscillator12 is used to modulate the current on the 739 laser, producing FM sidebands

(the modulation index is small, meaning very little power is in these sidebands).

The light from the laser is then directed into the confocal cavity described above.

The light reflected is measured on a photodiode, and the signal is mixed with the

original 22 MHz oscillator. The low frequency signal is then the lock signal [97].

On resonance with the cavity, the signal will be zero. Off resonance it will be either

positive or negative. The mixed down signal is then divided and sent through two

PIDs, one to the grating and one to the current. The current lock compensates for

high frequency noise, while the grating lock compensates for slower drifts.

The sidebands on the 739 nm light do not appear on the 369 nm light. This is

because the sidebands are not resonant with the doubling cavity, and are therefore

not doubled.

Iodine Lock The iodine lock layout is shown in figure 3.11. The lock signal is

obtained using Doppler-free saturated absorption spectroscopy of iodine [98]. Iodine

has many absorption lines in the visible and infrared, making it a useful reference.

Consulting an atlas of transitions in iodine shows that there are several transitions

11Spectra-Physics WaveTrain
12Protek DDS B8040FD
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Figure 3.10: Cavity locking schematic. Optical paths are shown in red, electronic paths
in black. A 22 MHz oscillator is used to modulate the current on the 739 nm laser via a
bias-T. The light from the laser is sent into a 15 cm confocal optical cavity. The reflected
light from that cavity is picked up on a fast photodiode, which is then mixed with the
original 22 MHz signal. The resulting low frequency signal is used as the error signal.
It is sent through a PID into the grating and current control ports of the laser, which
stabilizes the laser’s frequency to the cavity length. The cavity length itself is stabilized
to molecular iodine.

within a few GHz of the desired frequency for 171Yb+ [99, 100]. However, those

absorption lines are very weak at room temperature. For this reason, the glass cell

containing iodine13 is heated to 530 ◦C. At this temperature, the relevant absorption

lines are significantly stronger [101]. The cell also features a “cold finger,” which is

a small glass projection kept at room temperature. This cold finger reduces pressure

broadening of the transition [101].

To lock to one of the iodine lines, the laser frequency must be shifted to the

proper value. Examining the iodine atlas shows that there are three candidate

features close to the 171Yb+ transition. They are at −5 GHz, +10 GHz, and +13

GHz [99]. We used the feature at −5 GHz. The laser frequency was shifted using a

free space resonant EOM14 at 4.855 GHz.

13Triad Technologies TT-I2/19x300-V-Q
14New Focus EOM model 4431
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Figure 3.11: Iodine lock schematic. Optical paths are in red, electronic paths in black.
The laser is sent through an EOM, and then split into the pump, probe, and reference
beams. The pump and probe beams are sent counterpropagating through the iodine cell,
with the pump beam passing through a frequency modulated AOM. The probe beam and
reference beam are sent into the two ports of a balanced photodetector. The photodetector
output is then sent into a lock-in amplifier, together with the modulation signal on the
AOM. The resultant signal is used to stabilize the cavity length.

After the EOM, the 739 nm light is divided into a pump beam, a probe beam

and a reference beam. The pump beam is sent through a 110 MHz AOM15, which

shifts its frequency up. It is then sent through the iodine cell, counterpropagating

with the probe beam. For those iodine molecules whose velocity is such that the

pump beam is Doppler shifted 55 MHz red and probe beam shifted 55 MHz blue, the

pump and probe beam have the same frequency16. When that frequency matches

resonance, the probe beam transmission is increased due to the saturated absorption

effect. This increased transmission only occurs for that unique velocity class, and is

therefore “Doppler-free.”

15Crystal Technology 3310-110
16Traditionally this sort of spectroscopy is done with the zero velocity class. However, that

would have required a second AOM on the probe beam, and would have resulted in a reduction
in probe beam intensity. It also would not have increased the signal to noise by any appreciable
amount.
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The power in the reference beam is matched to that of the probe beam, so

that it differs only in that the probe beam passed through the iodine cell. Both

beams are then sent onto a balanced photodetector17, which takes the difference of

the signals. This allows elimination of amplitude fluctuations that are common to

both beams, and leaves only the signal due to the iodine. Measuring the differential

transmitted probe intensity as a function of laser frequency then results in very

narrow peaks, on top of the large, Doppler-broadened background absorption.

The signal is then differentiated to produce a lock signal using FM spectroscopy

and lock-in detection. The oscillator18 driving the pump beam AOM is frequency

modulated at 18 kHz. This modulation can only appear on the probe beam via the

pump-probe interaction in iodine, which strongly suppresses DC noise. The output

of the balanced photodetector is then sent to a lock-in amplifier19, together with the

18 kHz modulation signal. The resultant DC output is sent through a PID and then

to the cavity PZT. The integration time on the lock-in amplifier is 100 ms, meaning

the bandwidth of the signal sent to the cavity PZT is < 10 Hz. An example of the

output of the lock-in as a function of frequency is shown in figure 3.12. The lock

point is the highest frequency zero crossing, which is the farthest right zero crossing

in the plot.

17Thorlabs PDB150A
18HP 8640B
19Stanford Research Systems SR510

64



si
gn

al
 (a

rb
. u

ni
ts

)

frequency

6 MHz

Figure 3.12: Signal out of lock-in amplifier as a function of frequency. The laser is locked
to the farthest right zero-crossing. The sharp slope over a 6 MHz range allow for a stable,
sub-MHz lock.

3.3 Microwave Transitions

The simplest way to drive transitions between the two qubit levels is by di-

rectly applying microwave radiation which is resonant with the qubit splitting. The

oscillating magnetic field component of the microwaves creates a coupling between

|0〉 and |1〉, which drives magnetic dipole transitions. The result is Rabi flopping be-

tween |0〉 and |1〉. More details on the coupling mechanism between the microwaves

and qubit can be found in [83].

Experimentally, the microwaves are introduced via a microwave horn20 point-

ing at the trap center. About one Watt of microwave power is sufficient to drive a

π-pulse in 36 µs. Figure 3.13 shows typical Rabi flopping driven by microwaves.

Microwave transitions are useful as a tool for diagnostics, detection character-

ization, and Ramsey-type experiments. However, they cannot be used for two-ion

gates based on the Coulomb interaction. This is because these gates rely on spin-

20Pasternack PE9854/SF-10
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Figure 3.13: Data showing microwave Rabi flopping. The experiment consists of applying
microwave radiation for a variable time t to an ion initially in |0〉. The measured brightness
of the ion (|c1|2) is shown as a function of time t.

dependent momentum transfer, as explained in chapters 5 and 6. The momentum

transferred by a single microwave photon is five orders of magnitude weaker than

that transferred by optical photons, and is insufficient to drive the gate in a reason-

able amount of time21.

In addition, the transition strength is much weaker for the |0〉 → |1〉 magnetic

dipole transition than it is for the S → P electric dipole transition. This means

that laser based transitions can in general be far faster. The ultrafast Raman tran-

sitions discussed in chapter 4 are six orders of magnitude faster than the microwave

transitions shown here.

21It should be noted, however, that it is possible to drive two-ion Coulomb gates via near field
microwave gradients; see [45].
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Chapter 4

Ultrafast Spin Control

The principal way in which the |0〉 and |1〉 states are coupled is via a stimulated

Raman transition. A Raman transition is a three level “λ” process, whereby two

electronic ground levels are coupled via virtual excitation of a third, excited level.

The atom is able to undergo a transition between the qubit levels by absorbing light

at a frequency ω and emitting at frequency ω±ωhf, where ωhf is the ion’s hyperfine

splitting. The laser frequency ω is detuned by ∆ from resonance with the excited

state. For sufficiently large ∆ the Raman process results in negligible population in

the excited state, and the system behaves as an effective two-level system.

Traditionally, Raman transitions have been driven with two CW laser beams,

which have a frequency difference between them of ωhf. The ion can then execute

transitions by absorbing from one beam and emitting into the other. Alternatively, a

single fast pulse can drive a Raman transition, if its bandwidth is significantly larger

than ωhf. This is the approach I will present. The light driving the transition will

consists of one (or many) ∼10 picosecond laser pulses. This chapter deals primarily

with processes that do not couple to the ion’s motion, but only drive transitions
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between the qubit levels.

4.1 Schrödinger equation

The time-dependent Schrödinger equation is (setting ~ = 1):

i
∂

∂t
|Ψ〉 = H |Ψ〉 (4.1)

The system consists of an atom interacting with an electromagnetic field. The

Hamiltonian H can thus be divided into three parts, corresponding to the internal

energy of the atom Hatom, the internal energy of the applied field Hfield, and the

interaction energy between them Hint [91]:

H = Hatom +Hfield +Hint (4.2)

I will proceed in the semi-classical limit, in which the field is treated classically. The

energy of the field can therefore be neglected (Hfield = 0), so that H becomes:

H = Hatom +Hint (4.3)

Next assume that Hatom has some known set of atomic eigenstates |ψn〉. These

atomic eigenstates are the levels shown in figure 3.3. Moreover, the lifetime of any

atomic eigenstate will be assumed to be infinite, i.e. spontaneous emission is ignored

throughout. This approximation is justified so long as population only accumulates

in states whose lifetime is many orders of magnitude longer than the duration of an

experiment, which will be seen to be true.

An arbitrary wave function |Ψ〉 can be decomposed in terms of the atomic
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eigenstates:

|Ψ〉 =
∑
n

cn |ψn〉 (4.4)

which is possible because the set |ψn〉 is a complete orthonormal basis. This can

then be used to rewrite equation 4.1 as [102]:

iċn = ωncn +
∑
m

Vnmcm (4.5)

where ωn and Vnm are defined as:

ωn = 〈ψn |Hatom|ψn〉 (4.6)

Vnm = 〈ψn |Hint|ψm〉 (4.7)

Equation 4.5 is just the Schrödinger equation rewritten in the basis of atomic eigen-

states, in terms of the matrix elements of the interaction Hamiltonian Vnm.

Without any interaction (Vnm = 0), the solutions to equation 4.5 are cn =

Ae−iωnt+B, where A and B are constants. This zero-field precession can be absorbed

into the cn by moving to the rotating reference frame. Define:

c̃n = cne
iωnt (4.8)

⇒ ˙̃cn = eiωnt (ċn + iωncn) (4.9)

In terms of these rotating variables, equation 4.5 becomes:

i ˙̃cn =
∑
m

Vnme
iδnm c̃m (4.10)

where I have defined δnm to be the frequency difference between states |n〉 and |m〉:

δnm = ωn − ωm (4.11)
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2P1/2

2S1/2 ωq/2π = 12.6 GHz

2P3/2

370 nm

35
5 

nm

33 THz
67 THz

|0〉
|1〉

σ+σ−

Figure 4.1: The 355 nm laser drives Raman transitions between |0〉 and |1〉 via virtual
excitation to the 2P1/2 levels. This can be done either using σ+ or σ− light.

Equation 4.10 now encapsulates the dynamics of the Schrödinger equation that are

driven by the interaction. The levels that are relevant to the interaction considered

here are shown in figure 4.1. The transition can proceed via σ+ or σ− polarized

light. Note that π-polarized light cannot drive transitions. This is because neither

of the 2P1/2, mF = 0 levels have dipole allowed transitions to both of the 2S1/2,

mF = 0 levels, due to selection rules.

To begin, I will only consider these three atomic levels:

|0〉 ≡
∣∣2S1/2, F = 0,mF = 0

〉
(4.12)

|1〉 ≡
∣∣2S1/2, F = 1,mF = 0

〉
(4.13)

|2〉 ≡
∣∣2P1/2, F = 1,mF = 1

〉
(4.14)
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This will be generalized to include the other excited states later. For these three

levels, δ10 = ωhf = 2π × 12.6 GHz (the hyperfine splitting), δ20 = ω2 = 2π ×

405657GHz (the energy of the excited state), and δ21 = ω2−ωhf = 2π×405645GHz.

In addition, the laser does not directly couple |0〉 and |1〉, so V01 = V10 = 0. Equation

4.10 then becomes:

i ˙̃c0 = V02e
−iω2tc̃2 (4.15)

i ˙̃c1 = V12e
−i(ω2−ωhf)tc̃2 (4.16)

i ˙̃c2 = V ∗02e
iω2tc̃0 + V ∗12e

i(ω2−ωhf)tc̃1 (4.17)

4.1.1 Matrix Elements

To proceed, we need to determine the matrix elements Vnm for the interaction

at hand. We will initially consider a single laser beam incident from one direction.

The laser beam will consist of picosecond pulses, meaning the electric field has a

time-dependent envelope E(t). That envelope is slowly varying compared to the

laser frequency ω. The electric field can be written as:

E = Re
[
ε̂E(t)e−i(ωt+φ)

]
(4.18)

where ε̂ is the complex polarization vector, E(t) is the envelope, ω is the laser

frequency, and φ is a phase factor. Here the position dependence of the beam is

encapsulated in φ; it will not be important until the motional coupling is discussed.

E(t) is assumed to vary slowly compared to ω, and is real. The interaction is an

electric dipole transition, meaning that the interaction Hamiltonian is given by [91]:

Hint = −µ · E = −µ ·
(

1

2
ε̂E(t)e−i(ωt+φ) +

1

2
ε̂∗E(t)ei(ωt+φ)

)
(4.19)
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where µ is the electric dipole moment. We now define the single photon Rabi

frequencies:

g02(t) = −E(t)e−iφ 〈0 |µ · ε̂| 2〉 (4.20)

g12(t) = −E(t)e−iφ 〈1 |µ · ε̂| 2〉 (4.21)

Here I have made the electric dipole approximation, in that I have assumed that

the wavelength of the light is far larger than the size of the atomic wave packet

[103]. From the Hermiticity of Hint, it follows that 〈0 |µ · ε̂| 2〉 = 〈2 |µ · ε̂∗| 0〉. The

interaction matrix elements are therefore given by:

V02 = −〈0 |µ · E| 2〉 =
1

2
g02(t)e−iωt +

1

2
g∗02(t)eiωt (4.22)

V12 = −〈1 |µ · E| 2〉 =
1

2
g12(t)e−iωt +

1

2
g∗12(t)eiωt (4.23)

Equations 4.15-4.17 now become:

i ˙̃c0 =
1

2

(
g02e

−i(ω+ω2)t + g∗02e
−i∆t) c̃2 (4.24)

i ˙̃c1 =
1

2

(
g12e

−i(ω+ω2)t + g∗12e
−i∆t) eiωhftc̃2 (4.25)

i ˙̃c2 =
1

2

(
g∗02e

i(ω+ω2)t + g02e
i∆t
)
c̃0 +

1

2

(
g∗12e

i(ω+ω2)t + g12e
i∆t
)
e−iωhftc̃1 (4.26)

Here I have defined the laser’s detuning from the excited state ∆:

∆ = ω2 − ω (4.27)

For the physical system in question, ω ≈ ω2 ≈ 5× 1015 s−1, ∆ ≈ 2× 1014 s−1,

Ė(t)/E(t) . 1011 s−1, and ωhf ≈ 8× 1010 s−1. Therefore:

ωhf . Ė/E � ∆� ω + ω2 (4.28)
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Upon integration, terms that oscillate as ω + ω2 will be scaled by a factor of 1
ω+ω2

,

while those oscillating at ∆ will be scaled by 1
∆

. The evolution will therefore be

dominated by the co-rotating terms (ei∆t), while the counter-rotating terms (ei(ω+ω2))

will be negligibly small. We can therefore make the Rotating Wave Approximation

(RWA) and set the counter-rotating terms to zero [91]:

i ˙̃c0 =
1

2
g∗02e

−i∆tc̃2 (4.29)

i ˙̃c1 =
1

2
g∗12(t)e−i(∆−ωhf)tc̃2 (4.30)

i ˙̃c2 =
1

2
g02(t)ei∆tc̃0 +

1

2
g12(t)ei(∆−ωhf)tc̃1 (4.31)

4.1.2 Adiabatic Elimination

We now wish to eliminate reference to the excited state in equations 4.29 -

4.31. To do this, we make the ansatz that c̃0, c̃1, g02(t), and g12(t) vary far more

slowly than ei∆t in equation 4.31. We therefore can directly integrate equation 4.31,

assuming everything is constant except the exponential terms. This process is known

as adiabatic elimination, and can be formalized [104]. Taking c̃2 = 0 at time t = 0,

integration yields:

c̃2 =
g02(t)

2∆

(
1− ei∆t

)
c̃0 +

g12(t)

2(∆− ωhf)

(
1− ei(∆−ωhf)t

)
c̃1 (4.32)

Substituting equation 4.32 into equations 4.29 and 4.30 yields a pair of differential

equations for c̃0 and c̃1:

i ˙̃c0 =
|g02|2

4∆

(
e−i∆t − 1

)
c̃0 +

g∗02g12e
−iωhft

4(∆− ωhf)

(
e−i(∆−ωhf)t − 1

)
c̃1 (4.33)

i ˙̃c1 =
g∗12g02e

iωhft

4∆

(
e−i∆t − 1

)
c̃0 +

|g12|2

4 (∆− ωhf)

(
e−i(∆−ωhf)t − 1

)
c̃1 (4.34)
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As in equation 4.28, note that ∆ � ωhf. This means that ∆ − ωhf ≈ ∆. We can

again apply the RWA, this time eliminating the ei∆t terms:

i ˙̃c0 = −|g02|2

4∆
c̃0 −

g∗02g12e
−iωhft

4∆
c̃1 (4.35)

i ˙̃c1 = −g
∗
12g02e

iωhft

4∆
c̃0 −

|g12|2

4∆
c̃1 (4.36)

We now define the effective Rabi frequency Ω, together with the two-photon light

shifts δL0 and δL1 :

Ω =
g∗02g12

2∆
(4.37)

δL0 =
|g02|2

4∆
(4.38)

δL1 =
|g12|2

4(∆− ωhf)
(4.39)

With these substitutions, equations 4.35 - 4.36 become:

i ˙̃c0 = −δL0 c̃0 −
Ω

2
e−iωhftc̃1 (4.40)

i ˙̃c1 = −Ω

2
eiωhftc̃0 − δL1 c̃1 (4.41)

In the non-rotating frame, this becomes:

iċ0 = −
(ωhf

2
+ δL0

)
c0 −

1

2
Ωc1 (4.42)

iċ1 = −1

2
Ωc0 −

(
−ωhf

2
+ δL1

)
c1 (4.43)

which corresponds to an effective two-level Hamiltonian:

Heff = −1

2

(
ωhf + 2δL0 Ω

Ω −ωhf + 2δL1

)
(4.44)

= −1

2
[Ωσ̂x + (ωhf + δL0 − δL1) σ̂z + (δL0 + δL1) 1] (4.45)
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where in the second equality of equation 4.45, the Hamiltonian has been expressed

in terms of Pauli spin operators. Note that the hyperfine precession frequency is

now modified by the differential light shift, δL0 − δL1 , and x rotations are driven by

Ω.

4.1.3 Multiple Excited States, Multiple Beams

While the above analysis was done for the case of a single excited state, it

is not difficult to generalize it to multiple excited states. For σ+ light incident on

171Yb+, there are three nearby excited states:

∣∣2P1/2, F = 1,mF = 1
〉
≡ |2〉 (4.46)∣∣2P3/2, F = 1,mF = 1
〉
≡ |3〉 (4.47)∣∣2P3/2, F = 2,mF = 1
〉
≡ |4〉 (4.48)

The states |2〉 and |3〉 couple to |0〉 and |1〉, while |4〉 couples only to |1〉. let gij

denote the single photon Rabi frequency between states |i〉 and |j〉. Let ∆j = ω0−ωj.

The couplings to each excited state add, and the result is a modification of equation

4.37-4.39:

Ω =
g∗02g12

2∆2

+
g∗03g13

2∆3

(4.49)

δL0 =
|g02|2

4∆2

+
|g03|2

4∆3

(4.50)

δL1 =
|g12|2

4(∆2 − ωhf)
+

|g13|2

4(∆3 − ωhf)
+

|g14|2

4(∆4 − ωhf)
(4.51)

Similarly, the result can also be generalized to multiple laser beams. The net

single photon Rabi frequency between states i and j from multiple beams is given
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by the sum over the single photon Rabi frequency from each individual beam. This

can be seen by replacing equation 4.18 with a sum over each electric field from each

beam, which then appears in equations 4.20 and 4.21. If gijk is the single photon

Rabi frequency between states i and j from beam k, equation 4.49 becomes:

Ω =
1

2∆2

(∑
k

g∗02k

)(∑
k

g12k

)
+

1

2∆3

(∑
k

g∗03k

)(∑
k

g13k

)
(4.52)

Here I am assuming that the multiple beams are all of the same frequency.

Recall that gij, defined in equation 4.20, is complex. Its complex nature stems from

the eiφ coefficient in equation 4.20. The optical phase φ is determined by the ion

position (i.e. φ = k · r + φ0, where k is the wave vector of the laser, r is the ion

position, and φ0 is a constant offset). When multiple beams are added, each with

a different wave vector k, the complex character of the Rabi frequency results in

position-dependent cross terms in equation 4.52. These cross terms are what will

create the spin-motion coupling, discussed in chapter 5.

4.1.4 Calculation of Single Photon Rabi Frequencies

To determine the single photon Rabi frequencies, we need to know the dipole

matrix element 〈i |µ · ε̂| j〉 in equations 4.20-4.21. This matrix element will depend

on the details of the electronic wave function. Ab initio calculations of matrix

elements for large atoms such as 171Yb+ are extraordinarily difficult, and are an

active area of research [105, 106]. However, the matrix element can be written in

terms of the spontaneous emission rate of the P state, which can then be determined

experimentally.
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As discussed in chapter 3, 171Yb+ has a single valence electron, and is therefore

approximately hydrogenic. The 2S1/2 and 2P1/2 energy eigenstates of 171Yb+ are

characterized by the valence electron’s spin S and orbital angular momentum L, the

nuclear spin I, total atomic angular momentum F and atomic angular momentum

projection mF . J represents the total electron angular momentum L + S. For

171Yb+, S = 1/2 and I = 1/2.

Using the Wigner-Eckart theorem [91, 107], the dipole matrix element can be

expressed in terms of a reduced matrix element and angular momentum coupling

coefficients as:

〈α′F ′M ′
F |µ · ε̂|αFMF 〉 =

(−1)J
′+I−M ′F

√
(2F + 1)(2F ′ + 1)

{
J ′ F ′ I
F J 1

}(
F 1 F ′

MF q −M ′
F

)
〈α′J ′||µ||αJ〉

= C(F,mF , J, F
′,m′F , J

′, I, q) 〈α′J ′||µ||αJ〉 (4.53)

Where q indicates the polarization ε̂: q = −1 is σ−-polarized, q = 0 is π-polarized,

and q = +1 is σ+-polarized. The above formula applies for pure polarizations; gen-

eralizing to arbitrary polarization is straightforward. The coefficient of the reduced

matrix element are Wigner 3j and 6j symbols [108], which are products of Clebsch-

Gordan coefficients. The reduced matrix element can then be found in terms of the

spontaneous emission rate γ between J and J ′ using Fermi’s golden rule for an atom

coupled to free space [109]:

|〈α′J ′||µ||αJ〉|2 =
3πε0~c3(2J ′ + 1)γ

ω3
0

(4.54)

Combining equations 4.20, 4.53 and 4.54 yields an expression for the single
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Figure 4.2: Angular momentum coupling coefficients for relevant 171Yb+ transitions.

Single photon Rabi frequency is Cγeiφ
√

I
2Isat

, where C is the number labeled on the

transition.

2S1/2: F = 0,mF = 0 2S1/2: F = 1,mF = 0
2P1/2: F = 1,mF = +1 1/

√
3 −1/

√
3

2P3/2: F = 1,mF = +1
√

2/3 1/
√

6
2P3/2: F = 2,mF = +1 0 1/

√
2

2P1/2: F = 1,mF = −1 1/
√

3 1/
√

3
2P3/2: F = 1,mF = −1

√
2/3 −1/

√
6

2P3/2: F = 2,mF = −1 0 1/
√

2

Table 4.1: Single-photon coupling coefficients relevant for Raman transitions in
171Yb+. Numbers follow from equation 4.53.
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photon Rabi frequency:

gij = −E(t)e−iφ 〈i |µ · ε̂| j〉

= −E(t)e−iφC(F,mF , J, F
′,m′F , J

′, I, q)

√
3πε0c3(2J ′ + 1)γ

~ω3
0

(4.55)

This can be simplified by defining the saturation intensity Isat [91], and replacing

the electric field envelope E(t) with the intensity envelope I(t):

Isat =
~ω3

0γ

12πc2
(4.56)

I(t) =
cε0E(t)2

2
(4.57)

The single photon Rabi frequency then becomes:

gij = C̃(F,mF , J, F
′,m′F , J

′, I, q)e−iφγ

√
I(t)

2Isat

(4.58)

where C̃ = C
√

(2J ′ + 1). The values of C̃ are shown in figure 4.2 and table 4.1 for

relevant transitions. Equation 4.58 allows us to calculate the Rabi frequency and

light shifts in equations 4.49 - 4.51:

Ω(t) =
I(t)

12

[
− γ2

2

∆2Isat2

+
γ2

3

∆3Isat3

]
(4.59)

δL0(t) =
I(t)

24

[
γ2

2

∆2Isat2

+
2γ2

3

∆3Isat3

]
(4.60)

δL1(t) =
I(t)

24

[
γ2

2

(∆2 − ωhf)Isat2

+
γ2

3

2(∆3 − ωhf)Isat3

+
3γ2

4

2(∆4 − ωhf)Isat4

]
(4.61)

The relevant atomic parameters are shown in table 4.2. Substituting these

values into equations 4.59-4.61 yields numerical values for Ω, δL0 , and δL1 in terms

of the intensity profile:
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2P1/2
2P3/2

Spontaneous emission rate γ 1.238× 108 s−1 1.627× 108 s−1

Saturation intensity Isat 510.3 W/m2 950.6 W/m2

Detuning ∆/2π +33 THz −67 THz
Ratio γ2/Isat 3.003× 1013 s/kg 2.785× 1013 s/kg

Table 4.2: Spontaneous emission rate, saturation intensity and detuning for 2P1/2

and 2P3/2. Spontaneous emission rate values were taken from [110,111]. Saturation
intensity was calculated from equation 4.56.

Ω(t) =

[
−1.76× 10−2 s−1

W/m2

]
I(t) (4.62)

δL0(t) =

[
5.231× 10−4 s−1

W/m2

]
I(t) (4.63)

δL1(t) =

[
5.264× 10−4 s−1

W/m2

]
I(t) (4.64)

⇒ δL1(t)− δL0(t) =

[
3.3× 10−6 s−1

W/m2

]
I(t) (4.65)

The small values for the light shifts relative to the Rabi frequency are due

to the fact that the laser frequency is blue detuned of the 2S1/2 → 2P1/2 line and

red detuned of the 2S1/2 → 2P3/2 line. The detunings ∆2 and ∆3,4 therefore have

opposite signs, leading to partial cancellation between the light shifts from the two

P states in equations 4.60 and 4.61. However, the coupling coefficients in table 4.1

also have opposite sign, resulting in constructive interference in equation 4.59. The

net result is that the differential light shift is vanishingly small compared to the

Rabi frequency:

δL0 − δL1

Ω
= 1.88× 10−4 (4.66)

This excellent suppression of the light shift is due to the laser wavelength (355 nm)

being near optimal for 171Yb+. Figure 4.3 shows the differential light shift to Rabi
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Figure 4.3: Differential light shift (as a fraction of the Rabi frequency) and spontaneous
emission probability during a π- pulse as a function of laser wavelength. The white squares
indicate 355 nm, which is nearly at the minimum for both processes. The plot has a broad
divergence at the 369 nm (resonance for the 2P1/2 state) and 329 nm (resonance for the
2P3/2 state). There is also a narrow divergence at 348 nm due to the presence of a bracket
state at that frequency, not discussed in the text.

frequency ratio as a function of wavelength. The minimum is extremely close to 355

nm. Note that the light shift does not pass through zero (i.e. there is no “magic

wavelength”) because what is relevant here is the differential light shift between |0〉

and |1〉, rather than the absolute light shift of either level. Each separately pass

through zero at different points, but the difference does not.

Also shown in figure 4.3 is the spontaneous emission probability during a Ra-

man π-pulse. This plot uses the approximation for spontaneous emission probability

given in [57, 112, 113]. Because of the large detuning from each excited state, the

spontaneous emission rate is also nearly minimal.

Because of the strong suppression seen in equation 4.66, the differential light

shift can be neglected in equation 4.45, resulting in the following two-level Hamil-
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Figure 4.4: Comparison of sech and sech2. The blue curve is sech2(x). The red curve is
sech(1.542x).

tonian:

Heff = −1

2
Ω(t)σ̂x −

1

2
ωhfσ̂z (4.67)

Equation 4.67 must now be solved for a given pulse shape.

4.2 Pulse Shape

From equations 4.20, 4.21 and 4.49, the Raman Rabi frequency is proportional

to the square of the electric field envelope of the laser pulse, which is its intensity

envelope. For mode-locked lasers pulses, the electric field envelope is theoretically

given by a hyperbolic secant [114,115]. Because the fundamental pulse at 1064 nm

is frequency tripled, one would expect the 355 nm pulse envelope to go as sech3(t),

and its intensity envelope to go as sech6(t). However, the shape of powers of sech

are very similar to the shape of sech itself, as is seen in figure 4.4. We can make

the approximation:

sech2(x) ≈ sech(1.542x) (4.68)
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Using this approximation, we will assume that the intensity of the pulse, and

hence the Rabi frequency, has a sech envelope. This assumption will allow an

analytic solution. Numerical simulations show that using the more exact pulse

shape does not lead to any significant modification of the results. I will therefore

assume that the intensity profile of the pulse is given by:

I(t) = I0 sech

(
πt

τ

)
(4.69)

where τ is the pulse duration, and I0 is the peak intensity. With this definition,

the full width half max (FWHM) of the pulse is 0.838τ . From equation 4.59, the

Raman Rabi frequency is proportional to the intensity:

Ω(t) =
θ

τ
sech

(
πt

τ

)
(4.70)

where θ is the pulse area, given by:

θ =
I0τ

12

[
− γ2

2

∆2Isat2

+
γ2

3

∆3Isat3

]
(4.71)

=

[
−1.76× 10−2 s−1

W/m2

]
I0τ (4.72)

θ can also be expressed in terms of the laser’s average intensity Ī and repetition

frequency ωrep (equal to 2π/T , where T is the time between pulses), using the

relation I0τ = 2πĪ/ωrep:

θ =

[
−1.76× 10−2 s−1

W/m2

]
2πĪ

ωrep

(4.73)

This is typically the more useful form, as Ī and ωrep are far easier to measure than

I0 and τ . With θ defined as in equation 4.70, the integrated Rabi frequency is equal
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to the pulse area: ∫
Ω(t)dt =

∫ ∞
−∞

θ

τ
sech

(
πt

τ

)
dt = θ (4.74)

Equation 4.73 allows us to estimate the intensity necessary to produce a pulse of

area θ = π. For a repetition rate of 80 MHz, a single pulse has area π if the average

intensity is given by Ī = 1.4 × 1010 W/m2. This would be achieved, for example,

with a 4 Watt beam focused down to a spot with a ∼13 µm waist.

To measure the pulse shape, we used the setup shown in figure 4.5(a) to

perform an electric field autocorrelation [116]. As shown in the figure, a pulse is

split and then recombined with a variable delay. In a traditional autocorrelation

measurement, there is no AOM. When the pulses in the two paths overlap in time,

interference fringes appear. This measurement requires the setup to be stable to

much less than one wavelength in order to get meaningful results. The function

of the AOM is to relax this requirement. The AOM effectively averages out the

optical frequency fringes, leaving a signal that oscillates at the AOM frequency.

The contrast of that signal is then proportional to the amount of overlap between

the pulses.

The results of this measurement are shown in figure 4.5(b). The autocorrela-

tion signal is given by:

V (t) ∝
∫
E(t′)E(t+ t′)dt′ = 2t csch

(
2.036t

τ

)
(4.75)

The best fit corresponds to a pulse duration of τ = 7.51 ps.

The above analysis is only an accurate reflection of the pulse duration if the

pulse is transform-limited, meaning that the pulse carrier wave is of a fixed frequency.
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Figure 4.5: (a) Experimental setup to perform electric field autocorrelation. The AOM
effectively averages out the fast fringes, such that the apparatus does not require inter-
ferometric stability. (b) Results of electric field autocorrelation. For each delay time, the
signal contrast output by the photodetector is recorded. The curve is a best fit to equation
4.75.

If this is not true, the pulse is called chirped. For a chirped pulse, the electric field

autocorrelation described above will yield a shorter pulse duration than is accurate.

This is because the leading edge and trailing edge of the pulse have slightly different

frequencies, and so the interference is reduced.

For a linear pulse chirp, the pulse carrier wave becomes eiωt+bt
2
. The mea-

surement above then yields approximately 1/(bτ), rather than τ . To separately

determine b and τ , we would ideally perform an intensity autocorrelation. How-

ever, this is very difficult with UV pulses. While there do exist methods to do

this [117–119], we instead inferred the values from measurements made with the

ion, as will be described later.
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4.3 Rosen-Zener Solution: Single Pulse

Equations 4.67 and 4.70 show that the effective Hamiltonian is:

Heff(t) = −1

2

θ

τ
sech

(
πt

τ

)
σ̂x −

1

2
ωhfσ̂z (4.76)

This Hamiltonian is rare in that it has an analytic solution in terms of well-known

special functions. It was solved by Rosen and Zener in 1932 [120]. The solution is

derived in appendix A. The Rosen-Zener solution provides a solution for all time t to

the Hamiltonian in equation 4.76. However, for our purposes this is overly general –

we are only interested in the resultant state after the pulse, not the dynamics during

the pulse. We can therefore write down an evolution operator U which takes the

state directly to the final state [121,122]:

U =

 A iB

iB A∗

 (4.77)

where A and B are given by:

A =
Γ2 (ξ)

Γ
(
ξ − θ

2π

)
Γ
(
ξ + θ

2π

) (4.78)

B = − sin

(
θ

2

)
sech

(ωhfτ

2

)
(4.79)

ξ =
1

2
+ i

ωhfτ

2π
(4.80)

where Γ is the Gamma function. For an ion initialized to |0〉, the final state will be:

|ψfinal〉 = A |0〉+ iB |1〉 (4.81)

At first glance the physics described by these equations is perhaps a little opaque.

To understand them better, first consider the limiting case of an infinitesimally short
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“δ-function” pulse: τ = 0. In that case:

A→ cos

(
θ

2

)
(4.82)

B → − sin

(
θ

2

)
(4.83)

U →
(

cos (θ/2) −i sin (θ/2)
−i sin (θ/2) cos (θ/2)

)
= cos (θ/2) 1− i sin (θ/2) σ̂x (4.84)

This corresponds to a rotation about the x axis of the Bloch sphere by an angle θ.

For a δ-function pulse, the action is a pure σ̂x rotation. For non-zero pulse duration,

equations 4.78-4.80 represent a correction to the simple delta function case. If the

pulse is fast compared to the hyperfine frequency (ωhfτ < 1), the correction will be

small.

From equation 4.81, the probability that an ion initialized to |0〉 will be sub-

sequently measured in |1〉 after a pulse is given by:

P0→1 = |iB|2 = sech2
(ωhfτ

2

)
sin2

(
θ

2

)
(4.85)

As a function of θ, the maximum achievable population transfer occurs at θ = π,

and is given by sech2(ωhfτ/2). For non-zero τ , this function is always less than

one. This leads to the conclusion that a single sech pulse cannot fully transfer the

ion from |0〉 to |1〉. Conceptually, this is not due to insufficient pulse area (indeed,

the result is true for any pulse area), but rather due to how that area is spectrally

distributed. By reshaping the spectrum, the pulse can fully transfer population to

|1〉. This will be revisited later.

Figure 4.6 shows the state of the ion described by equations 4.78-4.80 as a

function of pulse area θ for ωhf = 12.6 GHz, τ = 15 ps. Note that what is shown here
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Figure 4.6: Final ion state as a function of θ for hyperbolic secant pulse, as θ goes from
0 to π.

is not the trajectory as a function of time governed by the Rosen-Zener dynamics

derived in appendix A. Rather, it is the final state as a function of θ. Note that for

small values of θ, the evolution is nearly exactly a rotation about the x-axis, as in

the δ-function case. As θ increases, the “twist” becomes larger and larger.

4.4 Single Pulse Experimental Results

Two different lasers were used to study the effect of a single pulse: the Paladin1

and the PicoTrain2. Their properties are tabulated in table 4.3. Both lasers are

frequency tripled mode-locked Nd:YVO4 lasers.

To control how many pulses are directed onto the ion, a fast Pockels cell

followed by a PBS acts as a pulse picker3. When no signal is applied to the Pockels

1Coherent Paladin Compact 355-4000
2High Q PicoTrain Model: IC-1064-50000/532-20000/355-8000 ps, 80MHz
3Fast Pulse Technology model 5046SC
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Paladin PicoTrain
Pulse Duration τ 14.8 ps 7.6 ps

Repetition rate ωrep/2π 118.30575 MHz 80.160000 MHz
Average power 4 Watts 8 Watts

Table 4.3: Laser properties for mode-locked lasers used in experiments.

cell, the pulses are rejected by the PBS. When a voltage pulse is applied, the cell

rotates the polarization and the pulses are transmitted by the PBS. This system

works well and can allow a single pulse to be picked from the train, with extinction

ratio > 100 : 1. Moreover, controlling the amplitude of the applied voltage pulse

allows control over the energy.

As a first experiment, the pulse picker was used to select a single pulse from

the pulse train, which was then focused onto the ion. The final state of the ion

was then measured as a function of pulse area, by adjusting the power in the 355

beam. Losses in the pulse picker and other optics resulted in a maximum power

of approximately 3 Watts arriving at the ion. The results are shown in figure 4.7.

Some of the pulse was sampled and sent onto a fast photodiode. The maximum

voltage on the photodiode was then measured on an oscilloscope. That voltage is

the x-axis in figures 4.7(b) and (c). The correspondence between the voltage and

the actual pulse area is not known to a high degree. For the Paladin data in figure

4.7(c), the peak corresponds to 12 ± 2 nJ pulse energy. From equation 4.73, the

maximum spin flip of slightly less than 2π corresponds to a waist of approximately

7 µm, which is consistent with the expected performance of the focusing lens.

The data agree with equation 4.85. The behavior is Rabi flopping as a function

of θ, but with a maximum brightness limited by the non-zero pulse duration. Figure
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Figure 4.7: Response of an ion to a single laser pulse as a function of pulse area. (a)
Theoretical maximum as a function of pulse duration, from equation 4.85. Black dots
show points corresponding to (b) and (c). (b) Data showing Rabi flopping from a single
pulse for the PicoTrain laser. The maximum at 0.91 indicates a pulse duration of 7.6 ps.
(c) Single pulse Rabi flopping from the Paladin laser, showing a 14.8 ps pulse duration.
The fit curve in (b) and (c) is a best fit to theory.

90



4.7(a) shows the theoretical maximum from equation 4.85, with black dots indicating

the pulse durations that correspond to the maxima in (b) and (c).

The autocorrelation data shown in section 4.2 was done for the Paladin laser.

The data there showed a pulse duration of 7.5 ps, significantly less than the 14.8 ps

indicated by the ion data. We believe this discrepancy is due to a chirp in the pulse

carrier. The two pulse data shown in figure 4.9 supports this assertion, as will be

discussed there.

4.5 Multiple Pulses

We now wish to consider the effect of N such pulses, with a repetition period

T = 2π/ωrep. The combined operator for a pulse followed by free evolution for a

time T is given by taking the product of U with the free evolution operator. The

result is:

Ũ =

 AeiωhfT/2 iBeiωhfT/2

iBe−iωhfT/2 A∗e−iωhfT/2

 (4.86)

The operator Ũ represents a rotational transformation of the Bloch sphere.

According to Euler’s fixed point theorem, any such operator can always be written

as a pure rotation operator by some angle ϕ about a single axis n̂:

Ũ = eiϕn̂·~σ/2

= cos
(ϕ

2

)
1 + i(n̂ · ~σ) sin

(ϕ
2

)
(4.87)

=

(
cos (ϕ/2) + inz sin (ϕ/2) i sin (ϕ/2) (nx − iny)
i sin (ϕ/2) (nx + iny) cos (ϕ/2)− inz sin (ϕ/2)

)
(4.88)

Setting equation 4.88 equal to equation 4.86 yields four equations for the rotation
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axis n̂ and rotation angle ϕ [116]:

cos
(ϕ

2

)
= Re

(
AeiωhfT/2

)
(4.89)

nz sin
(ϕ

2

)
= Im

(
AeiωhfT/2

)
(4.90)

nx sin
(ϕ

2

)
= B cos (ωhfT/2) (4.91)

ny sin
(ϕ

2

)
= −B sin (ωhfT/2) (4.92)

Equation 4.88 allows the evolution operator to quickly be extended to N equally

spaced pulses – N rotations by ϕ about n̂ is equal to a single rotation by Nϕ:

ŨN = eiNϕn̂·~σ/2 (4.93)

The transition probability after N pulses can be read off from equation 4.88, replac-

ing ϕ with Nϕ:

P0→1 =

∣∣∣∣i sin

(
Nϕ

2

)
(nx + iny)

∣∣∣∣2
=

(
|B|2

sin2
(
ϕ
2

)) sin2

(
Nϕ

2

)
(4.94)

Equation 4.94 represents discretized Rabi flopping with the number of pulses N ,

with contrast given by |B|2/ sin2(ϕ/2). Setting this equal to one gives the condition

under which population can be fully transferred:

sin2

(
θ

2

)
sech2

(ωhfτ

2

)
= sin2

(ϕ
2

)
(4.95)

If equation 4.95 is satisfied, then equation 4.94 goes to 1 for φ = π/N . This result

shows that for N > 1 the transition probability can be made exactly equal to 1

even for non-zero pulse duration. Note that for N = 1 there is no solution, because
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φ = π sets the RHS equal to 1 in equation 4.95, while the LHS is strictly less than

1.

To understand the condition in equation 4.95, consider again the limiting case

of the δ-function pulse, τ → 0. In that case, equation 4.95 becomes:

sin2

(
θ

2

)
= sin2

(ϕ
2

)
(4.96)

From equation 4.89,

cos
(ϕ

2

)
= cos

(
θ

2

)
cos

(
ωhfT

2

)
(4.97)

= cos

(
θ

2

)
cos

(
πωhf

ωrep

)
(4.98)

Equation 4.96 and equation 4.98 can only both be true if cos(πωhf/ωrep) = ±1,

which implies the resonance condition:

ωhf = nωrep, n ∈ Z (4.99)

This condition has a straightforward physical interpretation. In order for the pulses

to coherently add, each pulse must arrive at the same phase of the hyperfine pre-

cession. This is equivalent to the statement that the hyperfine frequency must be

an integer multiple of the repetition rate.

As before, introducing a non-zero pulse duration will result in a slight correc-

tion to equation 4.99. To extract this correction, first let the complex phase of A in

equation 4.78 be given by πδ:

A = eiπδ|A| (4.100)
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Substituting this expression for A into equation 4.89 yields:

cos
(ϕ

2

)
= Re

(
|A|ei(πδ+ωhfT/2)

)
(4.101)

= |A| cos

[
π

(
δ +

ωhf

ωrep

)]
(4.102)

From the unitarity of the evolution operator U , we know that |A|2 + |B|2 = 1.

Therefore, the resonance condition in equation 4.95 is equivalent to the condition:

|A|2 = cos2
(ϕ

2

)
(4.103)

Equations 4.102 and 4.103 require that cos [π (δ + ωhf/ωrep)] = ±1, which implies

the new resonance condition:

ωhf + δωrep = nωrep, n ∈ Z (4.104)

The non-zero pulse duration therefore results in an effective shift in the hyperfine

frequency, by an amount δωrep. This shift can be thought of as a higher order light

shift, and will be discussed more in section 4.7. From equation 4.100 and unitarity,

δ =
1

iπ
log

[
A√

1−B2

]
(4.105)

δ can be expanded as a series in ωhfτ and θ:

δ =
2

π

∞∑
m=0

∞∑
n=0

(−1)m+1ψ(2n+2m+2)
(

1
2

)
(2m+ 1)!(2n+ 2)!

(ωhfτ

2π

)2m+1
(
θ

2π

)2n+2

(4.106)

where ψ(j) is the polygamma function of order j. To lowest order, the resonance

shift is given by:

δωrep ≈ −

(
ψ(2)(1

2
)

8π4

)
θ2ωhfτωrep ≈ 0.0216 θ2ωhfτωrep (4.107)
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This shows that for small θ, the shift is quadratic in the pulse area, and hence in the

laser intensity. This is very different from the ordinary light shift, which is linear

in the laser intensity. This also shows that the shift is positive, resulting in a larger

effective hyperfine frequency.

4.6 Two Pulse Experimental Results

An experimental schematic for the two pulse experiments4 is shown in figure

4.8. A single pulse was split, with a variable delay Td between the two halves. The

pulse energy of each half was set to transfer 50% of the population to |1〉 when σ+

polarized. The final state was then measured as a function of delay Td between

the two pulse halves. In the time domain, this can be thought of as a fast Ramsey

experiment.

Using removable waveplates in the two counterpropagating arms, this exper-

iment was performed for three different polarization configurations: both beams

circularly polarized in the same direction (σ+/σ+), circularly polarized in opposite

directions (σ+/σ−), and orthogonal linear (lin⊥lin). To derive expressions for the

Rabi frequency in each case, I will use equation 4.52. Allow each beam to have ar-

bitrary polarization. Since the beams are both propagating along the quantization

axis, they cannot contain π light. Their polarizations ε̂1 and ε̂2 can therefore be

4These experiments were all done with the Paladin laser.
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Figure 4.8: Experimental schematic for counterpropagating pulses. A fast pulse picker
(Pockels cell + PBS) is used to select a single pulse from the pulse train. That pulse
is split, and each half is sent onto the ion from opposite directions. A variable delay Td
allows control over the relative arrival time of each pulse, and removable waveplates in
each arm allow control over the two polarizations. The pulse energy is set such that each
half separately transfers 50% of the population to |1〉 when the polarization is pure σ+.

described as a superposition of σ+ and σ−:

ε̂1 = cos (β1)σ+ + sin (β1)σ− (4.108)

ε̂2 = cos (β2)σ+ + sin (β2)σ−, (4.109)

where βi then determines the polarization of beam i. Expanding equation 4.52

using equation 4.58 then gives a general expression for the Rabi frequency from two

counter-propagating pulse trains:

Ω =Ω1(t) cos (2β1) + Ω2(t− Td) cos (2β2) +

2 cos (β1 + β2)
√

Ω1(t)Ω2(t− Td) cos (∆kx+ ∆φ) (4.110)

where Ωi(t) is the Rabi frequency for beam i alone (arriving at t = 0), Td is the delay

time between the two pulses, x is the ion position, ∆k and ∆φ are the differences

between the pulses in wave vector and phase, respectively. Note that one immediate
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consequence of equation 4.110 is that if the pulses overlap in time, the Rabi frequency

may acquire a dependence on the ion position. This in turn will lead to a spin-motion

coupling. The three polarization configurations now correspond to different values

of β1 and β2:

β1 = 0, β2 = 0: σ+/σ+

β1 = 0, β2 =
π

2
: σ+/σ−

β1 =
π

4
, β2 = −π

4
: lin ⊥ lin

From equation 4.110, the Rabi frequencies in each case are:

Ωσ+/σ+ = Ω1(t) + Ω2(t− Td) + 2
√

Ω1(t)Ω2(t− Td) cos (∆kx+ ∆φ) (4.111)

Ωσ+/σ− = Ω1(t)− Ω2(t− Td) (4.112)

Ωlin⊥lin = 2
√

Ω1(t)Ω2(t− Td) cos (∆kx+ ∆φ) (4.113)

I will address each of these cases separately.

4.6.1 σ+/σ+ case

If the pulses do not overlap in time (Td & 2τ), equation 4.111 becomes

Ωσ+/σ+ = Ω1(t) + Ω2(t − Td). As the two pulses are of equal area, the multiple

pulse solution in section 4.5 applies. The results of scanning the delay Td are shown

in figure 4.9(a). Away from the overlap region, the population transfer oscillates

between 0 and 1 with a period given by 2π/ωhf. The first maximum is not at exactly

2π/ωhf because of the shift δ in equation 4.104 – the maxima occur at delays given

by Td = 2π(n− δ)/ωhf, for n an integer.
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Figure 4.9: Transition probability as a function of delay for the three polarization con-
figurations of the two arms in figure 4.8. The light pink lines in (a) and (c) correspond
to equations 4.111-4.113, with no free fit parameters. The oscillations are so fast that
the curves appears as continuous shaded pink regions in the figure. The dark red line in
(a) and (c) correspond to taking a thermal average, which washes out the optical fringes.
Points B and C correspond to fast π rotations (∼40 and 80 ps, respectively). Points A
and D correspond to pure σ̂z rotations. In the interference region in (c), all transitions
include momentum transfer. The zero delay point, marked E, is the operating point for
the spin-motion entanglement experiments discussed in chapter 5.
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0

Figure 4.10: Effective Bloch sphere path for two pulse spin flip. A single pulse rotates to
the equator, and a second pulse with an appropriate delay rotates to the north pole.

The point labeled C corresponds to a π pulse in just 72 ps. It is difficult

to quantify the fidelity of this π pulse, as the π-pulse fidelity is higher than the

detection fidelity. By comparing to histograms obtained from resonant microwaves,

the π-pulse fidelity can be bounded at > 99%. For delay times away from the

maximum, any other value of |c1|2 can be obtained, in a time on the order of tens

of picoseconds.

As previously mentioned, the first maximum should occur at Td = 2π(1 −

δ)/ωhf. Substituting τ = 14.8 ps and θ = 1.968 (obtained from the single pulse data

in figure 4.7) into equation 4.106 yields δ = 0.099, corresponding to a predicted

maximum at Td = 71.24 ps. This agrees with the measured value of Td = 73± 2 ps

in figure 4.9(a).

The effective Bloch sphere path for two pulses with 73 ps delay is shown in

figure 4.10. A single pulse drives effective rotations about a tilted circle. By rotating
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up to the equator, a second pulse can transfer the population to |1〉. This picture

also makes clear that two pulses can fully transfer the population only if one pulse

can reach the equator. This corresponds to a constraint on the pulse duration of

τ < 22 ps. Above that, at least three pulses would be required.

When the pulses begin to overlap in time, equation 4.111 predicts interfer-

ence fringes in the Rabi frequency. The thin pink line shows a numerical solution.

However, because the ion is in a hot thermal state, what is actually observed is a

thermal average over those fringes, shown in the thick red line. This agrees well

with the observed data. Significantly, the red line is not a fit to the data. Rather,

it uses the pulse duration obtained from the single pulse result in figure 4.7, and

the pulse chirp obtained from the autocorrelation measurement in section 4.2. The

good agreement with the data therefore lends credence to the validity of the model.

4.6.2 σ+/σ− Case

In the σ+/σ− case, there is no interference term. This is because the overlap

produces linear polarized light, which cannot drive transitions. At zero delay, the

transition probability therefore goes to zero. Away from zero, the behavior is very

similar to the σ+/σ+ case. However, the Rabi angle for the second pulse has the

opposite sign from that of the first pulse. The oscillations are therefore exactly out of

phase with the σ+/σ+ case. This produces a slightly faster π-pulse, in approximately

40 ps.

The non-sinusoidal nature of this curve is evident in the figure, and is once

again caused by the shift δ. The maxima occur at Td = 2π(n + 1/2 − δ)/ωhf. The
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distance between the two maxima closest to zero is therefore 4π(1/2− δ)/ωhf = 63.4

ps, while the distance from either to the next maximum is 2π/ωhf = 79.1 ps.

4.6.3 lin ⊥ lin Case

In the lin ⊥ lin case, each beam separately cannot drive transitions, because

their σ+ and σ− contributions destructively interfere. However, when the pulses

overlap, they produce a polarization gradient, which oscillates between circularly

polarized and linearly polarized [91]. This gradient can drive transitions. In this

case, all transitions are accompanied with momentum transfer, as the ion can only

execute transitions by absorbing from one beam and emitting into the other. This

feature will be used in chapter 5.

4.6.4 σ̂z Rotations

The results in figures 4.9(a) and (b) demonstrate arbitrary x rotations. How-

ever, the same experimental setup can be used to execute arbitrary z rotations, using

the four photon light shift. For the strong pulses described here, the light shift is

considerable. Consider the point labeled A in figure 4.9(a). At this point, the tran-

sition probability is zero, meaning that there is no rotation of the qubit around the

x-axis. This is because the σ̂x contribution from each pulse exactly cancel. The σ̂z

contributions, however, do not cancel. These two pulses therefore correspond to a

pure σ̂z operator on the ion.

This was demonstrated using a microwave Ramsey experiment. Two mi-

crowave π/2 pulses were applied to the ion. The frequency of the microwaves was

101



then scanned, resulting in the pattern of fringes shown in the blue curve in figure

4.11(a). When the two pulse σ̂z operator is then inserted, those fringes shift, as

shown in the red curve in figure 4.11(a). The net σz rotation caused by the two

pulses can then be determined from the fringe shift. Controlling the strength of the

two laser pulses allows control over the rotation angle. The achieved rotation angle

as a function of pulse energy is shown in figure 4.11(c). The fit curve is derived from

equation 4.106. The only free parameter is the scale factor between the measured

pulse height using a photodiode and the actual pulse area. Note the approximately

quadratic behavior for small θ.

Taken together, these results show that a single ultrafast pulse from a mode-

locked laser allows complete control over both of the qubit’s spin degrees of freedom

in ∼50 ps. This is 5 orders of magnitude faster than what is normally done with

trapped ions. By way of comparison, the best coherence time measured for the

171Yb+ qubit was > 1000 s [67]. This operation is 13 orders of magnitude faster

than that coherence time.

4.7 Weak Pulses and Frequency Combs

The time domain analysis in section 4.5 can be thought of as a “bottom up”

approach, in which the response to a pulse train is understood by examining the

response pulse by pulse. By contrast, a frequency domain analysis is a “top down

approach,” in which the behavior is understood by examining aggregate properties

of the spectrum of the pulse train. Both pictures are valuable.
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Figure 4.11: (a) Experiment to demonstrate ultrafast σ̂z rotations. The ion brightness is
measured as the frequency of two microwave pulses is scanned. In between, the two σ+

pulses with a 32 ps delay are inserted, which causes z rotations without x rotations. (b)
Two example curves from this experiment. The blue circle data is the microwave scan
without the pulses. The red square data is the scan with pulses. The shift in the fringes
yields the degree of rotation. (c) Plot of the z rotation angle as a function of pulse area
per pulse. The fit curve is derived from equation 4.106.
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Figure 4.12: (a) One frequency comb can drive Raman transitions if pairs of comb lines
are separated by the qubit frequency, leading to the condition in equation 4.114. (b) Two
frequency combs can drive Raman transitions together if a frequency offset ωA between the
combs causes lines from the separate beams to be spaced by the qubit frequency, leading
to the condition in equation 4.115.

If individual pulses are very weak (θ � 1), then many pulses will be required

to drive a π-pulse. In that case, examining the Fourier spectrum of the pulses will

be instructive. The Fourier transform of a train of equally spaced pulses with a

fixed phase relationship is a frequency comb, with teeth spaced by the repetition

frequency ωrep. The width of an individual tooth in an N pulse train scales like

ωrep/N . If the width of a tooth is small compared to the tooth spacing (N � 1),

then the comb can be thought of as an ensemble of CW lasers. Transitions can then

be driven if the frequency comb contains teeth which are separated by ωhf. This is

shown in figure 4.12(a). This immediately leads to the resonance condition:

ωhf = nωrep, n ∈ Z (4.114)

which is identical to the condition in equation 4.99, derived above.

The frequency space picture also provides an insight which is perhaps not clear

104



from the time domain analysis. A frequency comb with a non-resonant repetition

rate can also drive transitions if it is split in two halves, and a frequency offset ωA is

introduced between the two halves. By tuning the offset frequency, transitions can

be driven by the beat notes between the combs. The resonance condition is then

given by:

ωhf = nωrep ± ωA, n ∈ Z (4.115)

Indeed, this is in general the more useful configuration, as it allows for the spin-

motion interaction discussed in chapter 5. Note that because the transition is driven

by both pulse trains, the individual pulses must arrive at the ion simultaneously. If

the trains are counterpropagating, this will necessarily be accompanied by motional

transitions. However, if the trains are co-propagating, no motion will be driven.

4.7.1 RF Comb

To calculate the Rabi frequency and resonance condition from the comb pic-

ture, it will be useful to introduce the concept of the RF Comb, which refers to the

spectrum of beat notes rather than the optical spectrum. All pairs of comb teeth

which are separated by kωrep (k ∈ Z) will act as an RF frequency at that splitting.

The single photon Rabi frequency from the comb line at frequency kωrep is given by

gk = g0 sech(kωrepτ). The net two photon Rabi frequency caused by the beat note

at ωhf = nωrep is [56]:

Ω =
∞∑

k=−∞

gkgk+n

2∆
(4.116)

≈ Ω0 sech
(ωhfτ

2

)
(4.117)
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Figure 4.13: The RF comb corresponds to the spectrum of beat notes present in the
optical comb. Each RF comb tooth is the sum over all pairs of optical comb teeth separated
by that RF frequency.

Here I am making the approximation that all of the comb lines have the same optical

detuning ∆ from resonance: ∆− kωrep ≈ ∆.

Equation 4.117 can be connected to the time domain analysis in section 4.5 in

a straightforward manner. In equation 4.94, the number of pulses N can be replaced

by time t using the relation N = ωrept/2π. If the effect of a single pulse is small,

then t is effectively continuous rather than discretized. This shows that the Rabi

frequency is related to the rotation angle ϕ by:

Ω = ωrepϕ/2π (4.118)
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If θ � 1, equation 4.95 becomes:

sin2
(ϕ

2

)
= sin2

(
θ

2

)
sech2

(ωhfτ

2

)
(4.119)

⇒ ϕ ≈ θ sech
(ωhfτ

2

)
(4.120)

⇒ Ω = Ω0 sech
(ωhfτ

2

)
(4.121)

The second line follows from the small angle approximation, and the third line is

the second multiplied by ωrep/2π. This shows that the constant Ω0 = ωrepθ/2π.

This also makes clear that the approximation made in treating the pulse train as

an ensemble of CW lasers is exactly equivalent to the time-domain assumption that

the effect of an individual pulse is small.

In addition to the resonant beat note at the qubit frequency, there will also

be many beat notes at integer multiples of ωrep away from the qubit frequency.

These other beat notes will shift the resonance frequency, just as an off-resonant

CW laser shifts an optical resonance. However, the ordinary light shift discussed in

section 4.1.2 is a two photon process – it can be understood as absorbing a photon

and re-emitting a photon at the same frequency, returning to the same state. The

process discussed here is caused by a nearby beat note, rather than a nearby optical

frequency. As such, it can be thought of as a higher order four photon light shift.

As in equation 4.117, the RF beat note at frequency kωrep has strength given by

Ωk ≈ Ω0 sech(kωrepτ/2). The shift in frequency caused by an off-resonant frequency
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Ωk is well-known to be [91]:

δLk
= − Ω2

k

2∆k

(4.122)

= − Ω2
k

2 (kωrep − ωhf)
(4.123)

= −Ω2
0 sech2(kωrepτ/2)

2ωrep(k − n)
(4.124)

where ∆k is the detuning of the kth comb line from resonance, and ωhf = nωrep. The

net four photon shift is then found by summing over all non-resonant beat notes:

δL = − Ω2
0

2ωrep

∞∑
k=−∞
k 6=n

sech2[kωrepτ/2]

k − n

= − Ω2
0

2ωrep

∞∑
j=−∞
j 6=0

sech2[(j + n)ωrepτ/2]

j
(4.125)

Because the comb lines are very closely spaced relative to the bandwidth (ωrepτ � 1),

this sum can be approximated as an integral:

δL ≈ −
Ω2

0

2ωrep

∫ ∞
ωrepτ/2

sech2(x+ ωhfτ/2)− sech2(x− ωhfτ/2)

x
dx (4.126)

≈ Ω2
0ωhfτ

ωrep

∫ ∞
0

tanh(x) sech2(x)

x
dx (4.127)

=

(
7ζ(3)

π2

)
Ω2

0ωhfτ

ωrep

(4.128)

≈ 0.853
Ω2

0ωhfτ

ωrep

(4.129)

= 0.0216 θ2ωhfτωrep (4.130)

Equation 4.127 is an approximation to first order in ωhfτ . Remarkably, equation

4.130 matches exactly with the first order shift found in the time domain in equation

4.107. These two shifts were calculated using radically different mathematical tools,
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and their exact agreement is impressive. Note that while the time domain analysis

gave the result to all orders, the analysis above only produces an answer to lowest

order in the pulse area θ. This is because we made the small angle approximation

in treating the comb lines as having zero width. Higher orders in θ would need to

take into account the non-zero width. The same techniques can be used to extract

the light shift for the two comb case, this is done in appendix B.

4.7.2 Beat Note Lock

In order to coherently drive Rabi flopping, it is important that the beat note

at the qubit splitting be stable. In general, the repetition rate drifts by tens of Hz

over the course of several seconds, as in figure 4.14. The hyperfine frequency beat

note is driven by the 157th harmonic, and therefore drifts by kHz in several seconds.

This drift can be eliminated by actively stabilizing the repetition rate, using a PZT

mounted end mirror [56]. This was the method used for the PicoTrain. A schematic

of the lock is shown in figure 4.15. The signal from a photodiode monitoring the

pulse train was mixed with a local oscillator at 80.16 MHz. The DC component of

the mixed signal was then sent into a PID, which was fed back onto the PZT.

As an added complication, the range of travel of the PZT was often not suffi-

cient to compensate for the drift in the repetition rate. The PZT mounted mirror

was therefore also mounted on a motorized stage, which allowed far greater move-

ments. A Labview program monitored the voltage being applied to the PZT. If the

voltage went outside of preset bounds (less than 20 V or more than 30 V), Labview

would send a signal to an FPGA which would then shift the motorized stage until
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Figure 4.14: Drifts in the repetition rate over the course of three hours. The 20-30 Hz
“fuzz” is caused by small thermal and mechanical fluctuations. The inset shows these
effectively random fluctuations over five minutes. The long timescale drifts are due to
fluctuations in the room temperature.
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V
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FPGALabview

Figure 4.15: Schematic for repetition rate lock. A signal at the repetition rate of the
pulse train is mixed with a local oscillator to produce an approximately DC signal. That
signal is locked to zero via a PID feedback loop to a PZT-mounted end mirror. When the
PZT control voltage goes out of bounds, a motorized mount is triggered which moves the
end mirror until the PZT voltage is at the center of its range.
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the PZT voltage was back in the center of its range. This would be necessary every

few minutes. However, because the bandwidth of the PZT was so much higher than

that of the motorized mount, the PZT was able to continuously lock the repetition

rate even while the motorized mount was moving. Therefore, this did not interrupt

the experiment.

4.7.2.1 AOM lock The Paladin laser did not feature a PZT-mounted mirror. It

was therefore impossible to directly stabilize the repetition rate. As an alternative,

the noise on the repetition rate can be inverted and written onto the AOM, thereby

stabilizing the beat note at the qubit frequency in equation 4.115. Because the ion

responds only to the beat note, it does not matter that the repetition rate and AOM

frequency are independently noisy.

A schematic for the AOM beat note lock is shown in figure 4.16. The positive

sign in equation 4.115 was chosen, and the two AOMs have frequency shifts in

opposite directions. The resonance condition for driving transitions is therefore:

ωhf = nωrep + ωA1 + ωA2 (4.131)

The 103rd harmonic of the pulse train at 12.185 GHz is picked out of the signal from

a fast photodiode5, using a bandpass filter. It is then mixed with a stable oscillator6

at frequency ωosc/2π = 12.414 GHz to produce a beat note at 229 MHz. A second

oscillator7 at 229 MHz is then mixed with that beat note, and the resultant DC signal

is sent to a PID. The output of the PID goes to the FM input of the second oscillator,

5Alphalas UPD-30-VSG-P
6HP 8672A
7HP 8640B
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Figure 4.16: Experimental layout for stabilizing the beat note at the qubit frequency.
A portion of the pulse train is sent onto a fast photodiode, and the relevant comb
line is picked out using a microwave filter. That comb line is then mixed with a
microwave oscillator to create a beat note at the appropriate AOM frequency. The
oscillator driving the AOM is then locked to that frequency.
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thereby locking that oscillator to the beat note. That oscillator is then used to drive

one of the AOMs. The result is that the combination 103ωrep +ωA1 = ωosc is stable.

The second AOM is driven by a different oscillator, at around the same frequency.

It is also important to note that these transitions are being driven by a fre-

quency difference between comb lines, rather than by an absolute optical frequency.

The carrier-envelope phase (CEP) is therefore irrelevant and does not need to be

stabilized. Indeed, the carrier-envelope phase could be randomized pulse to pulse,

and the process would be unchanged. This may be somewhat surprising, as with a

random CEP the Fourier transform of the optical pulse train is no longer a frequency

comb. However, the RF comb is unaffected. The RF comb is created by the beat

note formed when each pulse is split, frequency shifted and recombined on the ion.

The beat note phase is determined by the optical phase difference between the two

arms when they reach the ion. Because the absolute optical phase is common to

both arms, it does not affect the experiment.

4.7.3 Air Currents

One significant source of error is air currents passing through the Raman

beams. In general it is necessary to completely enclose the beam path. We found

that even a very small opening could significantly reduce the stability of the Raman

transitions. There are three separate sources of error caused by air currents, all

due to the change in index of refraction of air as a function of air temperature and
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pressure. The change in the index of air ∆n at 355 nm is given by [123,124]:

∆n = −0.9× 10−7/◦C (4.132)

∆n = +2.7× 10−6/kPa (4.133)

As a first source of error, changes in the index of air can deflect the beam, which

in turn leads to pointing instability at the ion. This causes the effective intensity

seen by the ion to fluctuate. This is mainly a problem for fluctuations far from the

ion, where small angular deflections can lead to large position displacements.

As a second source of error, in the counterpropagating geometry the phase

difference between the two beams must remain stable over the course of one experi-

ment. Small changes in the temperature over the beam line can change the effective

optical path length for one or both sides, resulting in optical phase noise at the

ion. If this happens during a Rabi flopping experiment, the phase noise will lead

to decoherence. A change in index by ∆n over a distance d will change the optical

phase by ∆φ = ∆d/λ = d∆n/λ, where λ is the wavelength.

Finally, air currents across the beam can result in different refractive indices

in different parts of the beam. When the beam is small, this effect is negligible.

However, in order to allow focusing to a tight spot at the ion, the beam waist right

before the final focusing lens is typically quite large, with around a 5-7 mm waist.

When different parts of the beam experience different optical path lengths to the

focus, the intensity distribution at the focus changes. This in turn leads to intensity

noise at the ion.

In order to mitigate all of these effects, the entire 355 beam path is enclosed.
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Figure 4.17: Rabi oscillations driven by a pair of copropagating combs with an AOM
shift between them. In this data the repetition frequency is directly stabilized. (a)
With the beam path completely covered. (b) With the final ∼1% of the beam path
(5 cm) uncovered. In both (a) and (b) the fit curve is a best fit to a sinusoid with
decaying amplitude.

This isolates it from any air currents. Figure 4.17 shows how important this is.

Shown is Rabi flopping from co-propagating combs with an AOM shift between

them. Here the repetition rate is directly stabilized. In (a), stable Rabi flopping

is seen, with little degradation of signal over the course of 8 oscillations. Here the

entirety of the 4 m beam path is enclosed. In (b), the last 5 cm is uncovered. The

oscillations now decay in just 1.5 cycles. The dominant source of error here is that

caused by fluctuating indices in different parts of the transverse beam profile.
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Chapter 5

Spin-Motion Entanglement

The previous chapter dealt with ultrafast spin control. We now turn to pro-

cesses which couple to both spin and motion. This occurs when a Raman transition

is driven by absorbing a photon from one beam and emitting a photon into a different

beam, which causes a momentum change of ~∆k, where ∆k is the difference in wave

vector between the two beams. As mentioned in chapter 4, if the Raman beams are

counterpropagating and their polarizations are in the lin ⊥ lin configuration, then

the spin flips are always accompanied by momentum transfer. This is therefore

the most useful configuration for efficiently creating spin-motion entanglement. In

addition, an AOM will be present in each beam, allowing for relative frequency

shifts between the beams. I will show how a single pulse causes the wave function

to diffract, while a sequence of pulses allows the creation of a spin-dependent kick

(SDK).
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5.1 Coherent States

The response of the ion to ultrafast momentum transfer is best understood in

the basis of coherent states. Coherent states were first introduced by Schrödinger

but fully developed and understood by Glauber [125]. They can be thought of as

the “most classical” quantum mechanical state of an oscillator, as they correspond

to the minimum uncertainty states of position and momentum. Here I will outline

their main properties that are relevant for the analysis that follows. Derivations of

these results, together with much more detail, can be found in [125,126].

The eigenstates of the harmonic oscillator with frequency ω are the number

states indexed by a non-negative integer n, denoted |n〉, with energy En = ω(n+1/2).

As eigenstates, these states evolve as stationary states, acquiring a phase due to

free evolution: |n〉 → e−iEnt |n〉. However, they are highly non-classical, as they are

delocalized in both position and momentum. Indeed, this is clear from the fact that

they are stationary under free evolution, while a classical harmonic oscillator not at

rest is plainly not stationary.

By contrast, coherent states are denoted |α〉, where α is a complex number.

Coherent states are eigenstates of the annihilation operator:

a |α〉 = α |α〉 (5.1)

Because a is not Hermitian, α is not an observable. Let Re(α) = αR and Im(α) = αI .

Equation 5.1 shows that the real and imaginary parts of α are proportional to the
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expectation values of position and momentum:

1

2x0

〈α |x̂|α〉 = αR (5.2)

1

2p0

〈α |p̂|α〉 = αI (5.3)

where x0 =
√
~/2mω and p0 =

√
mω~/2 are the natural length and momentum

units. Equation 5.1 also allows |α〉 to be expressed in terms of number states as:

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 (5.4)

The prefactor e−|α|
2/2 normalizes the coherent states. Note that the coherent state

|0〉 is the same as the number state |0〉. The free evolution of |α〉 can be quickly

derived from equation 5.4:

|α〉 →
∣∣αe−iωt〉 (5.5)

From this it is clear that |α〉 is not stationary, but evolves to a different state

with free evolution. Indeed, this evolution is the quantum mechanical analog of the

classical harmonic oscillator with definite position x and momentum p, characterized

by complex parameter α = x+ ip. It is also clear that |α〉 does not acquire a phase

(outside the ket) due to free evolution.

A coherent state |α〉 can be moved to a new coherent state |α + β〉 via the

displacement operator, defined as:

D[β] = eβa
†−β∗a (5.6)

The action of this operator on a coherent state is given by:

D[β] |α〉 = eβα
∗−β∗α |α + β〉 (5.7)

118



This equation shows that in addition to the displacement action, the displacement

operator imparts a phase to a coherent state.

The coherent states are an overcomplete basis, by a factor of π:

1

π

∫
d2α |α〉 〈α| = 1 (5.8)

Here the notation d2α refers to integrating over both αR and αI (i.e. the whole

complex plane). As an overcomplete basis, they are necessarily not orthogonal to

one another:

〈α|β〉 = e−
1
2(|α|2+|β|2−2α∗β) 6= δαβ (5.9)

Equation 5.9 shows that the coherent states are “approximately orthogonal,” in the

sense that if |α− β| � 1, then | 〈α|β〉 | � 1.

Because the coherent states are complete, an arbitrary mixed state density

matrix can be written as a superposition of coherent states:

ρ =

∫
d2αP (α) |α〉 〈α| (5.10)

where P (α) is known as the Glauber-Sudarshan P function [125,127]. For a thermal

state with average phonon number n̄, it is given by:

P (α) =
1

πn̄
e−|α|

2/n̄ (5.11)

Finally, it will be important to determine the measured spin of an ion in a

pure spin state and a mixed motional state. Let the initial spin state of the ion be

given by |ψi〉, and the initial motional state be determined by P (α) as in equation

5.10. The combined spin-motion initial density matrix is therefore:

ρi =

∫
d2αP (α) |ψi, α〉 〈ψi, α| (5.12)
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Now suppose an operator U is applied, potentially entangling spin and motion. The

final density matrix is then given by:

ρf = UρiU
† (5.13)

=

∫
d2αP (α)U |ψi, α〉 〈ψi, α|U † (5.14)

After the application of U , the spin is measured. Because the motion is not mea-

sured, the act of measuring will trace over the {1, 1} spin quarter of the density

matrix, 〈1, β |ρf | 1, β〉. The final measured brightness is therefore [128]:

B =
1

π

∫
d2β 〈1, β |ρf | 1, β〉 (5.15)

=
1

π

∫
d2β

〈
1, β

∣∣∣∣∫ d2αP (α)U |ψi, α〉 〈ψi, α|U †
∣∣∣∣ 1, β〉 (5.16)

=
1

π

∫
d2αP (α)

∫
d2β 〈1, β |U |ψi, α〉 〈ψi, α|U † |1, β〉 (5.17)

=

∫
d2αP (α)

〈
ψi, α

∣∣∣∣U † [ 1

π

∫
d2β |1, β〉 〈1, β|

]
U

∣∣∣∣ψi, α〉 (5.18)

=

∫
d2αP (α)

〈
ψi, α

∣∣U †[ |1〉 〈1| ⊗ 1
]
U
∣∣ψi, α〉 (5.19)

=

∫
d2αP (α)B(α) (5.20)

Above, equation 5.18 follows from reversing the order of the pair of inner products

in equation 5.17, and equation 5.19 follows from the normalization condition in

equation 5.8. In equation 5.20 I have defined B(α) as the measured brightness for

an ion initialized to a pure coherent state |α〉, after application of U :

B(α) =
〈
ψi, α

∣∣U † |1〉 〈1|U ∣∣ψi, α〉 (5.21)

Equation 5.20 shows an important result, which is that the brightness for a mixed

state can be determined by taking a thermal average over the brightness for a pure

120



state. This result applies for any evolution operator U . Therefore, in the analysis

below I will assume the ion is in a pure coherent state |α〉, and results for thermal

states will be obtained from equation 5.20.

5.2 Wave Packet Diffraction

Consider the Rabi frequency in equation 4.113 when the pulses arrive at the

ion simultaneously (Td = 0). This corresponds to point E in figure 4.9. Let t0 be the

arrival time of the pulses. From equation 4.67, the effective Hamiltonian is given

by:

Heff(t) = −1

2

(
2
√

Ω1(t− t0)Ω2(t− t0) cos [∆kx̂+ ∆φ(t− t0)] σ̂x + ωhfσ̂z

)
(5.22)

where x̂ is the position operator for the ion. I have also allowed a time dependence

in the phase difference between the two beams, caused by the presence of the AOMs:

∆φ(t) = ωAt+ φ0 (5.23)

where ωA is the AOM frequency difference and φ0 is an optical phase offset, which

is assumed to be constant over the course of one experiment.

Now suppose the two beams are of equal strength and the pulse is well ap-

proximated by a δ-function (τ = 0):

Ω1(t) = Ω2(t) = θδ(t) (5.24)

(The δ-function approximation will prove sufficient for all of the results shown here;

corrections for non-zero pulse duration are given in appendix C. Note that if the
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two beams are of unequal strength, the results here apply by replacing the pulse

area θ with an effective pulse area θ̃, given by the geometric mean of the two pulse

areas: θ̃ =
√
θ1θ2.) Under this approximation, hyperfine evolution during the pulse

can be ignored, and the effective Hamiltonian for the pulse pair becomes:

Heff(t) = −θδ(t− t0) cos [∆kx̂+ ∆φ(t)] σ̂x (5.25)

= −θδ(t− t0) cos
[
η
(
a+ a†

)
+ ∆φ(t)

]
σ̂x (5.26)

where in equation 5.26 I have replaced x̂ with x0(a+a†), and defined the Lamb-Dicke

parameter :

η = ∆kx0 = ∆k

√
~

2mω
(5.27)

Equation 5.26 commutes with itself at different times t (in contrast to the non-zero

pulse duration Hamiltonian in equation 5.22). It can therefore be directly integrated

to obtain the evolution operator for a single pulse pair arriving at time t0:

Ut0 = exp

(
−i
∫
Heff(t)dt

)
(5.28)

= exp

(
iθ

∫
dt δ(t− t0) cos

[
η
(
a+ a†

)
+ ∆φ(t)

]
σ̂x

)
(5.29)

= exp
(
iθ cos

[
η
(
a+ a†

)
+ ∆φ(t0)

]
σ̂x
)

(5.30)

=
∞∑

n=−∞

inJn (θσ̂x) e
in[η(a+a†)+∆φ(t0)] (5.31)

where Jn is the Bessel function of order n. Equation 5.31 follows from the Jacobi-

Anger expansion of equation 5.30 [129]. From the series expansion of Jn, it can be

seen that Jn(θσ̂x) = Jn(θ)σ̂nx . From the definition of the displacement operator in

equation 5.6, we have a final expression for the spin-motion evolution operator for
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a counterpropagating lin ⊥ lin pulse pair:

Ut0 =
∞∑

n=−∞

inJn(θ)ein∆φ(t0)D[inη]σ̂nx (5.32)

Equation 5.32 consists of operators of the form D[inη]σ̂nx , which impart n

momentum kicks of normalized size η together with n spin flips. Physically, this

corresponds to the process of absorbing a photon from one beam, emitting a photon

into the other beam, repeated n times. Each process of absorption followed by

emission changes the momentum by η. The amplitude for the nth such process is

given by the Bessel function Jn(θ), together with a phase factor. The net action

of this operator on a spin state |0〉 and coherent motional state |α〉 is therefore to

create a superposition of states of different size kicks, with alternating spin states.

This is shown graphically in figure 5.1. Note that the requirement that a spin flip

be accompanied by momentum transfer is enforced by the lin ⊥ lin polarization

configuration. If one of the arms contains circular polarization, then spin flips can

be driven without momentum transfer.

This behavior can be understood as the scattering of the atomic wave packet

off of the standing wave of light, known as Kapitza-Dirac scattering [130–133]. The

two counter-propagating pulses form an instantaneous standing wave at the ion. The

ion wave packet then diffracts off of that standing wave into different momentum

orders, just as a beam of light diffracts off a thin grating. This has been directly

observed in atomic beams [131,132,134] and in Bose-Einstein condensates [135]. It is

also similar to the behavior observed in δ-kicked rotor experiments [136]. However,

all of the work cited above dealt only with atomic motion, the interaction described
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Figure 5.1: Phase space diagram of pulse action. Red closed circles indicate |0〉; blue
open circles indicate |1〉. The size of the circle indicates the population in that state.
Upon the arrival of a pulse pair, the ion is diffracted into a superposition of states as in
equation 5.32.

here is complicated by the presence of the spin operator.

It is clear that the state created by the operator in equation 5.32 is an entangled

state of spin and motion. However, the motional state created is not spin-dependent,

in the sense that the pulse drives |0, α〉 and |1, α〉 to the same motional state (the

final states are equivalent up to a spin flip). To execute a phase gate, we will

need an operator which produces a different motional state for each spin state.

This will be done by a sequence of such diffraction events. By setting the delays

between the pulses appropriately, population can coherently accumulate in only the

momentum orders of interest, and destructively interfere everywhere else. This is

reminiscent of the temporal Talbot effect seen in matter waves [137], but with the

various momentum states entangled with the spin.
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5.3 Sequence of Diffracting Pulses

5.3.1 Frequency Domain

As in chapter 4, the frequency spectrum is a pair of frequency combs with

an offset between them due to the AOMs, shown in figure 5.2(a). If the duration

of the entire pulse train is much faster than the trap period, then the trap can

be ignored during the pulse train. Because absorption and emission happen from

opposite beams for |0〉 and |1〉, the two spin states get momentum kicks in opposite

directions. This is shown graphically in figure 5.2(c). Kicks in the “wrong” directions

are off-resonant by 2ωA. In order for the kick to be high fidelity, the comb lines

must be sufficiently narrow that these “wrong way” kicks are strongly suppressed,

i.e. 2ωA � ωrep/N , where N is the number of pulses in the train.

Note that this behavior is qualitatively different from that seen when the pulse

train is much longer than the trap period. In that case, the same experimental setup

will drive spin flips without driving motion, so long as the ion is confined to the

Lamb-Dicke regime. This will be discussed further later.

5.3.2 Time Domain

The evolution operator ON for a train of N pulses will consist of a sequence

of operators of the form 5.32, separated by free evolution:

ON = UtN . . . UFE(t3 − t2)Ut2UFE(t2)Ut1 (5.33)
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e

1

Figure 5.2: (a): Sketch of the optical spectrum seen by the ion for generating a spin-
dependent momentum kick when equation 4.115 is satisfied. (b): Depiction of the wave
vectors associated with the spectra in (a). An atom starting in |0〉 may be driven to |1〉
only by absorbing a photon from the blue beam and emitting a photon into the red beam,
resulting in a momentum transfer of ∆k in the upward direction. Similarly, an atom
starting in the |1〉 state may only make a transition such that it receives ∆k momentum
in the downward direction. The “wrong-direction” kick is off-resonant; it is maximally
suppressed when it corresponds to a zero in the sinc pattern in between the comb teeth.
(c) Phase space diagram of this behavior. Red closed circles indicate |0〉; blue open circles
indicate |1〉. An ion initially in a superposition of |0〉 and |1〉 is split into two motional
wave packets with different momenta.
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where tn is the arrival time of the nth pulse, and UFE(T ) is the free evolution operator

for time T for both spin and motion, given by:

UFE(T ) = e−iωtrapTa†ae−iωhfT σ̂z/2 (5.34)

Let the total pulse train area be given by Θ, so that a single pulse area is θ = Θ/N .

Assume that N is sufficiently large such that the single pulse evolution operator in

equation 5.32 can be approximated to first order in 1/N :

Utk ≈ 1 +
iΘ

2N

(
ei(φ0+ωAtk)D [iη] + e−i(φ0+ωAtk)D [−iη]

)
σ̂x (5.35)

where I have used equation 5.23 for φ(tk).

The free evolution can be absorbed into the pulse operator by transforming to

the interaction picture. Define:

q± = ωhf ± ωA (5.36)

In the interaction picture, Utk becomes:

Vtk = U †FE(tk)UtkUFE(tk) (5.37)

= 1 +
iΘ

2N

{
eiφ0D

[
iηeiωtraptk

] (
eiq+tk σ̂+ + eiq−tk σ̂−

)
+

e−iφ0D
[
−iηeiωtraptk

] (
e−iq+tk σ̂− + e−iq−tk σ̂+

)}
(5.38)

The pulse train operator in the interaction picture becomes:

ÕN =
1∏

k=N

Vtk (5.39)

If the entire pulse train duration is much shorter than the trap period, the

trap evolution can be approximated as frozen during the pulses, so that ωtraptk ≈ 0.
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In that case, Vtk becomes:

Vtk = 1 +
iΘ

2N

{
eiφ0D [iη]

(
eiq+tk σ̂+ + eiq−tk σ̂−

)
+

e−iφ0D [−iη]
(
e−iq+tk σ̂− + e−iq−tk σ̂+

)}
(5.40)

In general, the product in equation 5.39 will be extremely complicated. When

expanded, the coefficients of each spin/motion operator will consist of terms of the

form
∑
eiq±tk . In general, the norm of such sums is . 1. For large N , the 1/N

suppression will result in ÕN ≈ 1, i.e. the pulses do nothing. However, suppose

q+tk/2π ∈ Z for all pulses, while q−tk/2π /∈ Z (in frequency space, this is equivalent

to satisfying the bottom sign resonance conditions in equation 4.115, but not the top

sign). The q+ terms in the product in equation 5.39 will then coherently add, while

the q− terms will not. As the number of pulses grows, the non-resonant terms are

strongly suppressed and can be discarded. In frequency space, this is equivalent to

the statement that the comb lines narrow with increasing N , resulting in decreased

amplitude for non-resonant processes. Equation 5.40 therefore becomes:

Vtk = 1 +
iΘ

2N

(
eiφ0D [iη] σ̂+ + e−iφ0D [−iη] σ̂−

)
(5.41)

The pulse train operator is now a product of identical operators:

ÕN =

[
1 +

iΘ

2N

(
eiφ0D [iη] σ̂+ + e−iφ0D [−iη] σ̂−

)]N
N→∞−−−→ exp

[
iΘ

2

(
eiφ0D [iη] σ̂+ + e−iφ0D [−iη] σ̂−

)]
(5.42)

= cos
Θ

2
+ i sin

Θ

2

(
eiφ0D [iη] σ̂+ + e−iφ0D [−iη] σ̂−

)
(5.43)

For a total pulse area of Θ = π, Equation 5.43 becomes:

Õ = ieiφ0D [iη] σ̂+ + ie−iφ0D [−iη] σ̂− (5.44)
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This is the desired spin-dependent kick operator. In summary, if the following

conditions are satisfied:

q+tk
2π
∈ Z (5.45)

q−tk
2π

/∈ Z (5.46)

then in the limit N →∞, a pulse train will create a spin-dependent kick in which |0〉

is kicked up and |1〉 is kicked down. Alternatively, we could have chosen q−tk/2π ∈ Z

and q+tk/2π /∈ Z, in which case the final kick directions would be reversed. In

essence, equation 5.45 says that for every pulse, the phase accumulated due to

hyperfine precession (ωhftk) plus that accumulated due to the RF modulation on

the AOM (ωAtk) should be a multiple of 2π. If the pulses are equally spaced, then

tk = 2πk/ωrep, and equation 5.45 is equivalent to equation 4.115. It is also important

to note that this spin-dependent kick does not depend on being in the Lamb-Dicke

regime.

The condition that only one of q+ or q− is resonant is equivalent to the con-

dition that the hyperfine frequency not be an integer or half-integer multiple of the

repetition rate:

ωhf 6=
nωrep

2
, n ∈ Z (5.47)

If ωhf/ωrep is a half-integer or integer, then it is impossible to be resonant with a kick

in one direction without also being resonant with a kick in the opposite direction.

The net result will be that the kicks will cancel, and the pulse train will not drive

any transitions at all.

It is clear from the time domain analysis that these pulse do not have to be
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equally spaced. Indeed, numerical optimization shows that the best SDK fidelity

is achieved for unequally spaced pulses. To understand this result, consider the

product in equation 5.39 to lowest order in Θ/N :

ÕN =1+

iΘ

2N

{[
eiφ0D[iη]

(
N∑
k=1

eiq+tk

)
σ̂+ + e−iφ0D[−iη]

(
N∑
k=1

e−iq+tk

)
σ̂−

]
+

[
eiφ0D[iη]

(
N∑
k=1

eiq−tk

)
σ̂− + e−iφ0D[−iη]

(
N∑
k=1

e−iq−tk

)
σ̂+

]}
+

O
(
(Θ/N)2) (5.48)

When the resonance condition in equation 5.45 is satisfied, then the coefficents∑N
k=1 e

±iq+tk = N , and the top term in brackets generates the spin-dependent kick.

The bottom term, corresponding to the “wrong way” kick, will lead to infidelity in

the SDK. Above I said that the coefficient
∑N

k=1 e
±iq−tk is O(1) away from resonance,

leading to strong suppression for large N . However, maximal suppression occurs

when this term is zero. This leads to the condition:

N∑
k=1

eiq−tk = 0 (5.49)

Note that this is a second condition on the arrival times tk (the first condition being

the ordinary resonance condition in equation 5.45). Finding tk which satisfy both of

these conditions will result in a significantly improved SDK fidelity, as compared to

satisfying resonance only. However, in general an equally spaced pulse train will not

satisfy equation 5.49. This is why using an unequally spaced pulse train can allow

higher SDK fidelity – it allows satisfying both equation 5.45 and equation 5.49.
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Figure 5.3: Numerically optimized fidelity of the spin-dependent kick as a function of
number of pulses, for the experimental system described here.

Note that even with satisfying equation both the conditions mentioned, the

SDK fidelity will still not be 1, as equation 5.48 is only to first order in Θ/N . Higher

order terms will lead to infidelity. These terms will also have conditions under which

they are zero. By numerically optimizing the arrival times tk, the SDK infidelity can

be suppressed to a very high order with only a small number of pulses. Ultimately,

the degree to which the unwanted terms can be suppressed is limited by the number

of degrees of freedom available in choosing the pulse arrival times.

Figure 5.3 shows the numerically optimized fidelity for different numbers of

pulses, allowing unequal spacings. Because the pulse train is generated with delay

lines (see section 5.4.1), the 8 pulse train has only 3 free parameters. Nevertheless,

the simulations show that a fidelity better than 99.9% is achievable after only 8

pulses. With 16 pulses, the fidelity can be better than 99.99%. Here the AOM

difference frequency is fixed at ∼500 MHz (see details of the experimental system

below). Higher AOM frequencies could potentially allow even higher fidelities.
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5.3.3 Weak Pulses: Resolved Sidebands

As a tangentially related result, I will show here that if the pulse train is

much longer than the trap cycle time (tN � 1/ωtrap), the same operator produces

markedly different effects. In this “slow regime,” I will assume that the ion is in the

Lamb-Dicke regime1: η
√
n̄+ 1 � 1. In this regime, the displacement operators in

equation 5.38 can be approximated to first order in η:

D
[
iηeiωtraptk

]
≈ 1 + iη

(
eiωtraptka† + e−iωtraptka

)
(5.50)

Substituting this approximation into equation 5.38 yields:

Vtk = 1 +
iΘ

2N

{
eiφ0

[
1 + iη

(
eiωtraptka† + e−iωtraptka

)] [
eiq+tk σ̂+ + eiq−tk σ̂−

]
+ H.c.

}
(5.51)

There are now six phases to consider, associated with six different operators: eiq±tk ,

ei(q±+ωtrap)tk , and ei(q±−ωtrap)tk . The situation is then similar to the strong pulse

regime: If one of these phases satisfies resonance (i.e. equal to 1 for all tk) while the

others do not, then the other terms will be negligible in the limit of large numbers

of pulses. For example, suppose that (q+ + ωtrap)/2π ∈ Z, while none of the other

phase terms satisfy this condition. In that case, equation 5.51 becomes:

Vtk = 1 +
iΘη

2N

(
ieiφ0a†σ̂+ − ie−iφ0aσ̂−

)
(5.52)

As in the fast regime, the pulse train operator in equation 5.39 is now the product

of identical operators, and converges to:

Õ = cos
Θη

2
+ i sin

Θη

2

(
ieiφ0a†σ̂+ − ie−iφ0aσ̂−

)
(5.53)

1If this is not satisfied, then higher orders in η must be considered, and the pulse train will
drive second (or higher) order sidebands.
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This is Rabi flopping on the blue sideband, in which a spin flip comes together with

the addition of a single phonon. Similarly, the other resonance conditions correspond

to red sideband and carrier operations.

Figure 5.4 is experimental data showing the crossover between the slow and

fast regimes. In this data, the transition probability was measured as a function of

AOM detuning. In (a), sideband features are clearly resolved. The peaks correspond

to the carrier and sidebands at each of the three trap frequencies (1.0, 0.9, 0.1) MHz.

These transitions follow from equation 5.51. As the power is increased and the pulse

train duration decreased, the sidebands become less resolved, as the behavior crosses

over from the slow regime to the fast regime. In (e), all of this structure has been

washed out, and only a single broad peak remains when the resonance condition is

satisfied. The motional transition is now described better by impulsive kicks. From

a sideband perspective, all sidebands are being driven simultaneously.

5.4 Spin-Dependent Kicks

5.4.1 Creating a Spin-Dependent Kick

As discussed above, creating a spin-dependent kick requires several pulses.

However, because the repetition rate of the Paladin laser is 118.306 MHz while

the trap frequency is 0.743 MHz, significant trap evolution would occur over the

duration of even a few pulses from the laser. Ideally the entire pulse train will be at

least 2-3 orders of magnitude faster than the trap period. To accomplish this, it is

necessary to create a pulse train of shorter duration, by reshaping a single pulse into
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Figure 5.4: Data showing the crossover between the slow, resolved sideband regime and
the fast, impulsive regime. Each plot corresponds to scanning the frequency of an AOM
in one of the arms of counterpropagating pulse trains. In (a), Ω � ωtrap, and sidebands
transitions are clearly resolved. As the pulse train power is turned up (and the length
is shortened, keeping the total area constant), the Rabi frequency increases and the lines
begin to blur together. In (e), no features are resolved at all, meaning all sidebands are
being driven.
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Figure 5.5: Experimental schematic for creating a spin-dependent kick. A single pulse is
picked by the pulse picker, and is then divided into two sets of eight pulses by a sequence
of delay lines. The two trains are sent counterpropagating onto the ion, with a frequency
shift between them imparted by AOMs.

a train of pulses. This is done using concatenated delay lines. The delay lines split

each pulse from the laser into a train of eight pulses with tunable relative delays, as

shown in Fig. 5.5.

Because the optical phase at the ion only causes a global phase shift, it need

only be stable for the duration of a single experiment. Therefore, no active stabi-

lization of the interferometers is necessary. The AOMs2 are each driven at 251.712

MHz in opposite directions, generating a frequency offset between the two beams of

ωA/2π = 503.424 MHz. Using Eq. 5.45, this sets the allowable delays between each

of the eight pulses to:

T =
2πn

ωhf + ωa
(5.54)

This equation would seem to imply that the shortest delay could be as short as

76 ps (n=1 in equation 5.54). However, making the delays that short leads to a

2IntraAction ASM-240 series
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significant reduction in fidelity for 8 pulses. This is due to poor suppression of off-

resonant processes, as the comb teeth width scale as 1/T . The shortest delay which

produces high fidelity is n = 5. If the AOMs were higher frequency, this would be

reduced. A higher AOM frequency shift could be achieved by double passing the

AOMs or by using higher frequency AOMs, however both these options reduce the

AOM diffraction efficiency. Unfortunately the pulse energy produced by the Paladin

was already just barely sufficient to produce a full π pulse spin-dependent kick in a

single pulse. We therefore could not tolerate any further losses in beam power. The

IntraAction 240 MHz AOMs were able to achieve 75 − 80% diffraction efficiency.

Even with that relatively high efficiency, considerable effort was necessary to focus

the beam down to a small enough spot on the ion, such that the intensity would be

sufficient to drive a π-pulse.

As a slight complication, we must also account for the reflective phase shift

introduced by the beam splitters: pulse pairs that travel through the final delay line

will have a π phase shift relative to those that do not. To compensate for this, the

final delay is set such that n is a half-integer, specifically n = 5.5 (corresponding

to a delay of T1 = 419 ps). Delays T2 and T3 are unaffected by this phase shift

and are set to n = 10 and n = 20, respectively. In this way, an eight-pulse train

with a nearly uniform 2.5 GHz repetition rate is created; it is 2.7 ns in duration.

Numerical simulations show that these delays generate a spin-dependent kick with

98.9% fidelity (Mathematica code appears in appendix E). The simulations also

show that this fidelity could be improved slightly to 99.85% by changing the n

values of the delays to 6.5, 9, 16 (as was explained in the theoretical analysis in
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section 5.3.2). This will likely be done on future iterations of this experiment. Of

course, creating 16 pulses with 4 delay lines could increase the fidelity even further,

as in figure 5.3. This process is ultimately limited by trap evolution between the

pulses interfering with the spin-dependent kick process.

In order to accurately set these delays, the delay lengths were set in three

stages. Each delay line was mounted on a manual translation stage3. First, the

delay line lengths were carefully measured using a piece of string and a ruler. This

was sufficient to set the delay lengths to within a few mm. Next, a high resolution

time-to-digital converter (TDC)4 was used to measure the delay lengths to within 8

ps (= 1.2 mm on the translation stage). To do this, a photodiode before the delay

line and a photodiode after were used as the start and stop pulses of the TDC. The

TDC measured the delay between the two photodiode signals with the delay path

blocked, and then again with the straight through path blocked. The difference

between those two signal was then the duration of the delay. Finally, the achievable

spin flip of the ion was measured as a function of delay. The correct delay was then

at the peak. This procedure enabled setting the delays to within 1 ps. This process

was repeated for each delay line.

The pulse from each side was focused to approximate a 6 µm waist at the

ion. At this focus, a single pulse produced a π-pulse. The fidelity of that pulse,

determined by measuring the final spin state, was 94%. (This is reduced from the

theoretical maximum for reasons discussed below.) It now remains to demonstrate

3New Focus 423 series stage
4PicoQuant PicoHarp 300
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that the pairs of 8 pulses is indeed also changing the ion’s momentum in a known,

reversible way.

5.4.2 Detecting a Spin-Dependent Kick

Direct observation of the motional state of a trapped ion is extremely difficult,

and motional information is typically determined by mapping to the spin [138].

Therefore, to detect that we created the operator in equation 5.44, it is necessary to

infer the motional entanglement from its impact on the coherence of the measured

spin state. To do this, we performed a Ramsey experiment using near-resonant

microwaves. The experimental sequence was:

1. Initialize the spin state to |0〉

2. Perform a π/2 rotation using near resonant microwaves

3. Perform a spin-dependent kick using a single pulse through the interferometers

4. Wait a time Tdelay

5. Perform a second spin-dependent kick (with a potentially different optical

phase)

6. Perform a second π/2 microwave rotation

7. Measure the state of the ion

For a fixed Tdelay, the microwave detuning δ was scanned. If the motion is disentan-

gled from the spin, the result should be full contrast of the Ramsey fringe. On the
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other hand, if the spin and motion are entangled, then the trace over the motion

will destroy the phase coherence. The result will be no Ramsey fringes. If the pulses

are truly creating a spin-dependent kick, then the contrast as a function of Tdelay

should exhibit revivals at integer multiples of the trap period. At those delays, the

ion wave packet is acting as an interferometer. The SDK plays the role of a beam

splitter, dividing the wave packet into two pieces which take different paths. The

second SDK acts as a second beam splitter, rejoining the wave packet. A similar

effect was discussed theoretically in [139]. It is also similar to the experiments done

in [140], although those were done in the “slow” regime.

It should be noted that the degree to which contrast will vanish is a function

of the size of the SDK, together with the initial motional state. For a thermal state,

the Ramsey fringes will vanish if the kick size is larger than the thermal coherence

length of the motional state. This is true even if the kick is much smaller than

the phase space size of the state, meaning the |0〉 and |1〉 wave packets still have

significant phase space overlap after the kicks. In short, what is relevant is the

coherence length, not the phase space size.

For an ion initialized to |0〉 |α〉, the final state after the sequence described

above is given by:

|ψfinal〉 =
1

2

[
ei(γ+c)

(
|0〉+ ie−iφ |1〉

) ∣∣(α + iη) e−iϑ − iη
〉

+ (5.55)

ie−i(γ+c)
(
|0〉+ ieiφ |1〉

) ∣∣(α− iη) e−iϑ + iη
〉 ]

(5.56)
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where φ is the phase lag between the hyperfine frequency and the microwave fre-

quency, ϑ is the phase space evolution angle ωtrapTdelay, and γ and c are given by:

c = φ1 − φ2 −
ωhfTdelay

2
(5.57)

γ = η [αR(1− cosϑ)− αI sinϑ] (5.58)

We can determine the final measured brightness as a function of α from equation

5.21, using equation 5.9 for the cross terms:

B(α) =
1

2

(
1 + e4η2(cos(ϑ)−1) cos [4γ + 2c− φ]

)
(5.59)

We can now use equation 5.20 to determine the brightness for an initial thermal

state:

B =
1

2

(
1 + e4η2(2n̄+1)(cos(ϑ)−1) cos [2c− φ]

)
(5.60)

Scanning the microwave detuning is equivalent to scanning the phase lag φ, holding

everything else constant. The contrast of the Ramsey experiment is therefore given

by:

C(Tdelay) = exp
[
4η2(2n̄+ 1)(cos(ωtrapTdelay)− 1)

]
(5.61)

This equation shows the behavior predicted above. When Tdelay matches an integral

multiple of 2π/ωtrap, the contrast is one. Close to the peak, the curve is approxi-

mately Gaussian, with width given by ηωtrap

√
2n̄+ 1.

5.4.3 Coupling to a Single Mode of Motion

All of the analysis above assumes that the SDK is occurring along a single

mode of motion. Ideally this would be done by aligning the ∆k vector of the Raman
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beams to be parallel to one of the principal axes of the trap. This is unfortunately

impossible in the four rod trap, as the principle transverse axes are along the lines

joining the rods, and the four rod trap does not have enough degrees of freedom

to allow rotating the axes. ∆k could be along the axial direction, by sending the

Raman beams in at 90◦ to one another, rather than counterpropagating. However,

this would complicate the ultimate goal of using these kicks to execute a gate, as

explained in chapter 6.

As an alternative, we made the two transverse trap frequencies degenerate.

This was done by adjusting the bias voltages on the four rods until spectroscopy

showed only a single transverse sideband peak. By making the frequencies degen-

erate, there are no longer unique “principal” axes in the transverse directions. All

transverse directions are equivalent. It is then only necessary to make the ∆k vector

orthogonal to the axial direction. However, making the transverse trap degenerate

means that one cooling beam is no longer sufficient to cool all degrees of freedom [79].

For this reason, we added a second Doppler cooling beam, sent vertically at a 45◦

angle through the trap. This was then sufficient to cool all three degrees of freedom.

5.4.4 Experimental Results

Experimental results of the experiment described above are shown in figure

5.6. The time between the two microwave π/2 pulses was kept fixed at 200 µs,

so that the fringe frequency would not change. The time between the two pulses

picked by the pulse picker5 was varied. The detuning was scanned from −3.5 to 3.5

5ConOptics 350-105
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kHz. For this experiment, ωtrap/2π = 743 kHz. At integer multiples of that period,

a clear revival of contrast appears. However, the shape of that contrast revival is

different from that predicted in equation 5.61. Superimposed is a modulation at the

RF drive frequency of 17.9 MHz. This is due to uncompensated micromotion. The

source of this micromotion was never fully established – every attempt was made to

eliminate it using offset electric fields. To model the effect of this micromotion on

the contrast revival, it is necessary to modify the free evolution operator in step 4

of the analysis above. Instead of |α〉 → |αe−iωtrapt〉, equation 2.29 derived in chapter

2 describes the evolution with micromotion. Here I am making the approximation

that the coherent state evolution can be well described by the classical micromotion

solution. In principle, a full quantum mechanical treatment such as that in [141] is

necessary, as the micromotion will also lead to a “warping” of the coherent state.

However, this is a very small effect. The theory curve shown in figures 5.6(b)-

(c) is derived from this classical treatment of micromotion, and is a best fit to n̄

and the amount of excess micromotion B. The best fit mean phonon number is

n̄ = 10.1, which is consistent with the Doppler cooling limit discussed in chapter 2.

The micromotion also causes the revival peak to be narrower than what would be

predicted by the theory described above. This is because the micromotion increases

the effective temperature of the ion.

It should be noted that the kick size is significantly smaller than the size of the

wave packet. From equation 5.11, the wave packet size in natural units is given by

√
2n̄ = 4.5. By comparison, the separation created by a single spin-dependent kick

is 2η = 0.44. There is therefore significant overlap between |0〉 and |1〉 even after
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Figure 5.6: (a): Experimental sequence to measure effect of spin-dependent kicks. The
ion is driven by two near resonant microwave π/2 pulses, with two spin-dependent kicks
in between. For each delay Tdelay between the kicks, the microwave detuning δ is scanned
and a Ramsey fringe contrast obtained. (b) Plot of the results of the experiment in (a).
At integer multiples of the trap period, contrast revives. (c) Close-up of the first revival
peak in (b). The peak shape is a function of temperature and micromotion amplitude.
The modulation of the peak is due to the better overlap of the |0〉 and |1〉 wave packets at
integer multiples of the micromotion period. The best fit curve shown is a fit to theory.
Free parameters are the micromotion amplitude, average phonon number n̄, and maximum
contrast revival (∼80%). The fit shown corresponds to n̄ = 10.1. (d)-(f): Some example
frequency scan data (with fits). (e) and (f) each correspond to single points in (b), as
indicated. (d) No momentum kicks; microwave pulses only. Contrast is 97%. (e) Two
kicks separated by half a trap period. Contrast is 0%. (f) Two kicks separated by full
trap period. Contrast is 80%.
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Figure 5.7: Contrast revival for many trap periods. Each point corresponds to an exact
integer multiple of the trap period.

a spin-dependent kick, meaning the spin and motion are not maximally entangled.

There is nevertheless some entanglement, as is evidenced by the disappearance and

reappearance of fringes.

Fig. 5.7 is similar to Fig. 5.6(b), with data points only at multiples of the trap

period, showing revivals even after the ion has gone through 120 oscillations in the

trap. The slow decay here is due mainly to laser repetition rate instability, leading

to timing jitter in the arrival time of the second kick relative to the first kick. This

experiment was done with the Paladin laser, the repetition rate of which cannot be

stabilized. If the time between the two SDKs changes, the optical phase difference

imparted by each SDK changes. This corresponds to noise in c in equation 5.61,

which causes the Ramsey fringe to have a noisy phase. This noisy phase causes a

reduction in contrast. If this experiment were redone with the PicoTrain laser, it is

likely that contrast could be seen for many hundreds of trap periods.

The maximum contrast revival seen is approximately 80%, as compared to
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97% contrast seen in the control case without laser pulses (figure 5.6(d)). An SDK

with fidelity F will produce a peak contrast of approximately F 2. Therefore, the

80% contrast corresponds to a single pulse SDK fidelity of approximately 91%, which

falls far short of the theoretical maximum of 99%. While it is not certain of the

reason for this drop, the most likely cause is micromotion during the SDK. The

pulse train that creates the SDK is 2.7 ns long, while the RF drive period is 56 ns.

The micromotion therefore executes 5% of an oscillation during a kick (as compared

to 0.2% of an oscillation for the secular motion). This evolution may be sufficient to

interfere with the SDK creation on the level seen. Fully simulating the eight pulse

sequence while including the effects of micromotion is extremely computationally

slow, and has not been attempted.

The ultrafast gate described in chapter 6 will require a significant number

of SDKs (at least 24, see table 6.1). If errors simply compound, achieving a 90%

fidelity gate would require 99.5% fidelity for a single SDK. It is therefore critical

that the fidelity be improved. While the micromotion issue in the four rod trap was

never satisfactorily resolved, the experiment has switched over to the blade trap.

We have been able to compensate fully for micromotion in the blade trap. We have

also switched over to the PicoTrain laser, whose energy per pulse is at least three

times that of the Paladin. This allows enough power for active stabilization of the

laser power, which should also improve the fidelity.
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Chapter 6

Ultrafast Two-Ion Entanglement

In this chapter I will discuss using the spin-motion entangling interaction in

chapter 5 to execute a two ion entangling gate. Unfortunately, as of this writing,

the experiment has yet to successfully demonstrate ultrafast two ion entanglement.

There will therefore be no experimental results in this section. However, I will go

over the theoretical analysis of how such a gate would operate.

As mentioned previously, ultrafast gates are fundamentally different from pre-

viously implemented two ion Coulombic gates, as they do not address specific trap

normal modes. Rather these gates excite all normal modes, and then carefully de-

excite them. Such a gate was theoretically proposed by Garcia-Ripoll in [46], and

later extended by Duan in [47]. Both schemes rely on using a sequence of fast spin-

dependent momentum kicks of the sort described above. By carefully controlling

the timing of the kicks, the motion returns to its original state at the end of the

process, while a spin-dependent phase remains. Such an interaction generates two

ion entanglement, as shown in appendix D.
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6.1 Two-Ion Spin-Dependent Kick

Consider the action of the spin-dependent kick operator in equation 5.44 ap-

plied to two ions. If the ions are both in |0〉 or |1〉, then the ions are kicked in the

same direction. In that case, the center of mass mode receives a kick. On the other

hand, if the ions are in different states, the relative motion mode receives a kick.

The four different spin states will therefore have four different motional excitations

in response to an SDK, as shown in figure 6.2(a). The single ion SDK evolution

operator is:

U = σ̂+e
iφ(t0)ei∆kx + σ̂−e

−iφ(t0)e−i∆kx (6.1)

This is just equation 5.44 again, but with displacement operators rewritten according

to their definition in equation 5.6. For two ions, the evolution operator becomes a

tensor product of 6.1 over each ion:

USDK(t0) =
(
σ̂+1e

iφ(t0)ei∆kx1 + σ̂−1e
−iφ(t0)e−i∆kx1

)
⊗(

σ̂+2e
iφ(t0)ei∆kx2 + σ̂−2e

−iφ(t0)e−i∆kx2
)

(6.2)

= σ̂+1σ̂+2e
2iφ(t0)ei∆k(x1+x2) + σ̂+1σ̂−2e

i∆k(x1−x2)+

σ̂−1σ̂+2e
i∆k(−x1+x2) + σ̂−1σ̂−2e

−2iφ(t0)ei∆k(−x1−x2) (6.3)
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where subscripts on the operators refer to the different ions. We can now recast this

in terms of the normal modes defined in section 2.2, equations 2.52 and 2.53:

USDK(t0) =e2iφ(t0)σ̂+1σ̂+2e
2i∆kxC + σ̂+1σ̂−2e

2i∆kxR+

e−2iφ(t0)σ̂−1σ̂−2e
−2i∆kxC + σ̂−1σ̂+2e

−2i∆kxR (6.4)

=e2iφ(t0)σ̂+1σ̂+2DC [iηC ] + σ̂+1σ̂−2DR[iηR]+

e−2iφ(t0)σ̂−1σ̂−2DC [−iηC ] + σ̂−1σ̂+2DR[−iηR] (6.5)

where DC and DR are the coherent state displacement operators for the two normal

modes. Here I have defined the center of mass and relative motion kick sizes ηC and

ηR, which are given by:

ηC = 2∆k

√
1

2MωC
=
√

2∆k

√
1

2mω
=
√

2η (6.6)

ηR = 2∆k

√
1

2MωR
=
√

2

√
ω

ωR
∆k

√
1

2mω
=
√

2

√
ω

ωR
η (6.7)

where ω is the single ion trap frequency, ωC = ω is the center of mass mode fre-

quency of two ions, and ωR is the relative motion mode frequency of two ions. The

relationship between ωR and ω is discussed in section 2.2.

Equations 6.6-6.7 follow from the discussion in section 2.2, where it is shown

that the effective mass M of the normal modes is twice that of a single ion.

6.2 Reversing Kick Direction

Because the SDK also flips the ions’ spins, two pulses from the laser will cancel

each other (up to a small correction owing to trap evolution between the kicks). In

order to execute a gate, it will be necessary to control the direction of a kick, such
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Figure 6.1: Method for controlling kick directions. The first Pockels cell and PBS act as
a pulse picker, and controls which pulses are let through. The beam then goes through the
delay lines and AOMs, after which the beams are combined on a PBS and sent through
a second Pockels cell. This Pockels cell controls which beam is S-polarized and which is
P-polarized. This then controls which gets reflected off the final beam cube and which
gets transmitted, which controls the direction from which the ion sees each comb.

that a second pulse from the laser can continue kicking in the same direction as the

first. Ideally, for each pulse from the laser, we will be able to choose whether it kicks

in one direction, the other direction, or is rejected by the pulse picker.

The method we have chosen to control the direction is shown in figure 6.1.

Up to the AOMs, the layout is the same as in figure 5.5. However, the beams are

then recombined on a PBS, and sent through a second Pockels cell. If the Pockels

cell rotates the polarization, then it changes which beam is transmitted and which

is reflected at the second PBS, which controls the direction from which the ion sees

each comb.

6.3 Focusing onto Two Ions

In order to kick both ions, the laser intensity must be sufficient on both ions.

However, as mentioned in chapter 5, this experiment is already fairly close to the

edge on available power. If the beam center is simply moved to halfway in between
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the two ions, the ions would then be on the edge of the beam rather than in the

center, resulting in greater sensitivity to pointing instability. Moreover, the intensity

at each ion would likely be less than half what is achievable with a single ion, as

increasing the beam waist to encompass two ions will cause the intensity to fall as

the square of the waist. One way to mitigate the situation is to use a cylindrical

lens to focus the beam to an oblong shape. This would increase the intensity at

each ion to closer to 1/2 what could be achieved with a single ion, although the ions

would still sit on the beam slope.

One novel idea for focusing onto two ions is to use the AOMs to create two

spots, one for each ion. By driving the AOMs at two frequencies a few MHz apart,

two beams will be created. The focusing system can be made such that those two

beams will focus down onto the two separate ions. For small frequency separations,

the diffraction efficiency for the two frequencies should be equal, meaning the power

will be evenly split between the beams. Each ion would then sit at a local maximum

in beam intensity, rather than on a slope. The optical phase at each ion would then

be slightly different, but this would not affect the performance of the gate.

6.4 Example: Duan Scheme

To gain a better understanding of how such a gate works, I will begin by going

through a straightforward version of the scheme proposed by Duan in [47]. Consider

a sequence of three spin-dependent kicks applied to two ions:

1. t = 0: momentum kick of size +N~∆k
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Figure 6.2: (a) A spin-dependent kick applied to two ions excites the motion into four
different possible configurations depending on the two ion spin state. The dashed circles
shows the original, equilibrium position of the ions. The arrow and solid circles show the
path followed after a kick. (b) Displacement δ versus time for the simple kick sequence
described in the text. The kicks are much faster than the trap period, so the trap evolution
during the kicking sequence is negligible. The ions therefore behave nearly as free particles.

2. t = T : momentum kick of size −2N~∆k

3. t = 2T : momentum kick of size +N~∆k

The kick of size N~∆k is formed from a fast sequence of N laser pulses. I will show

how this creates a phase gate, and derive the phase accumulated from two different

perspectives.

6.4.1 Coulomb Picture

Suppose that the total length of the kicking sequence is much faster than

the trap period: ωtrapT � 1. In that case, trap evolution during the kicks can

be ignored, and the ions behave as free particles. Also suppose that the ions are

initially at rest1. The first kick imparts a momentum to each ion of N~∆k. The

ions then move at a constant velocity away from equilibrium, until the second kick

reverses the direction. The third kick then stops the motion of the ions at (nearly)

the original position. If the ion spin state is |0〉 |0〉 or |1〉 |1〉, the two ion energy

1This assumption is not necessary for the analysis, but it makes the discussion easier.
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from the Coulomb interaction does not change during the sequence. However, for

|0〉 |1〉 and |1〉 |0〉, the energy changes as the ions get further apart and then closer

together. The time-dependent energy difference between these two configuration is:

∆E(t) =
e2

4πε0

(
1

d
− 1√

d2 + 4δ(t)2

)

≈ e2

4πε0

(
2δ(t)2

d3

)
(6.8)

where d is the distance between the ions in equilibrium and δ(t) is the time-

dependent displacement of each ion from equilibrium (see figure 6.2). The acquired

phase difference from this process is given by:

∆φ =

∫ 2T

0

∆E(t)dt (6.9)

=

(
e2

4πε0

)
2

d3

∫ 2T

0

δ(t)2dt (6.10)

=
4(e2/4πε0)N2∆k2T 3

3d3m2
(6.11)

=
2ω2

zN
2∆k2T 3

3m
(6.12)

In equation 6.12, I have used equation 2.35 to replace the ion-ion distance with the

axial trapping frequency. We see then that the motional state (nearly) returns to

its original state at the end of the process, while |0〉 |1〉 and |1〉 |0〉 acquire a phase

relative to |0〉 |0〉 and |1〉 |1〉. This is thus a phase gate. Note that the motion is

entirely driven – equation 6.9 is valid only because the ions are effectively free parti-

cles. The natural harmonic motion in the trap does not lead to phase accumulation.

The fidelity of the phase gate described above is limited by free evolution in the

trap. Because the gate is not truly instantaneous, there will be a small amount of
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residual entanglement with the motion at the end of the process. This infidelity can

be eliminated by more complex kicking sequences, described below.

6.4.2 Normal Mode Picture

Alternatively, this process can be viewed as exciting the center of mass versus

the relative mode of motion. Phase space diagrams of the kick sequence are shown

in figure 6.3 for the two different modes, both in the non-rotating frame and in the

rotating frame.

We can determine the evolution of a coherent state |α〉 in a harmonic oscillator

of frequency ω subjected to the kicks described above using equations 5.7 and 5.5.

For simplicity in this example, I will treat the ground state α = 0. This will later

be generalized. The ground state evolution is as follows:

Initial state: |ψ0〉 = |0〉 (6.13)

Kick up, Nη: |ψ1〉 = |iNη〉 (6.14)

Free evolution: |ψ2〉 =
∣∣iNηe−iωT〉 (6.15)

Kick down, −2Nη: |ψ3〉 = e−2iN2η2 sin(ωT )
∣∣−2iNη + iNηe−iωT

〉
(6.16)

Free evolution: |ψ4〉 = e−2iN2η2 sin(ωT )
∣∣iNη(−2 + e−iωT )e−iωT

〉
(6.17)

Kick up, Nη: |ψ5〉 = eiN
2η2(−4 sin(ωT )+sin(2ωT ))×∣∣iNη (1 + (−2 + e−iωT )e−iωT

)〉
(6.18)

Approximate result: |ψ5〉 ≈ e−2iN2η2ωT (1+ω2T 2/3)
∣∣−iNηω2T 2

〉
(6.19)

The phases φC and φR acquired by the center of mass and relative motion

modes can then be determined from equation 6.19, using equations 6.6 and 6.7 for
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Figure 6.3: Phase space pictures of the kick sequence described above. (a) and (b) are in
the non-rotating lab frame, in which the kicks are vertical displacements in phase space,
and free evolution is along circles. (c) and (d) are in the rotating frame, in which the kick
direction rotates while the ion does not. Twice the difference in area between the shaded
regions in (c) and (d) is the phase difference accumulated.
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the kick sizes:

φC = −2N2∆k2T

m

(
1 +

ω2
CT

2

3

)
(6.20)

φR = −2N2∆k2T

m

(
1 +

ω2
RT

2

3

)
(6.21)

∆φ = φR − φC =
2N2∆k2T 3

3m

(
ω2
R − ω2

C

)
(6.22)

=
2N2∆k2T 3ω2

z

3m
(6.23)

In equation 6.23 I used equation 2.49 to express the phase in terms of the axial trap

frequency. Equation 6.23 is identical to the expression found in equation 6.12 using

the Coulomb energy picture. It is therefore legitimate to think of this process using

either picture.

Equation 6.22 applies equally for axial modes or transverse modes. For trans-

verse modes, the term in parentheses is ω2
z , while for axial modes it is 2ω2

z . The

gate therefore produces a factor of two more phase difference when applied to axial

modes as compared to transverse modes. However, there is an added flexibility in

using transverse modes, as will be discussed in section 6.5.

Phase Space Area As yet another way to extract the phase difference in equation

6.22, consider the phase space trajectories in figure 6.3. (a) and (b) show the paths

in the non-rotating frame, in which the free evolution trajectories are circles. (c)

and (d) show the trajectories in the frame which is rotating at the mode frequency.

In that frame, the state does not evolve due to free evolution. Instead, the direction

of the momentum kick rotates as the frame rotates. Crucially, in the rotating frame

all paths are driven, which leads to phase accumulation.
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If a coherent state is driven through a trajectory which encloses an area A in

the rotating frame phase space, that coherent state acquires a phase 2A [142, 143].

This fact allows us to determine the phase acquired simply by calculating the area

enclosed in figures 6.3(c) and (d). Because the phase space does not close perfectly,

the shape enclosed is a quadrilateral. Calculating the area of the quadrilateral yields:

A =
1

2
N2η2 (4 sin(ωT )− sin(2ωT )) (6.24)

The phase accumulated should equal 2A, and indeed this expression matches that

in equation 6.18.

6.4.3 Fidelity of Phase Gate

Setting equation 6.11 equal to π/2 allows us to relate the number of kicks N

necessary for a maximally entangling controlled phase gate to the gate timing and

ion spacing:

∆φ =
4(e2/4πε0)N2∆k2T 3

3d3m2
=
π

2
(6.25)

⇒ N = 0.056

(
d

T

)3/2

(6.26)

where d is in µm and T is in µs. This shows that the number of pulses necessary is

reduced for ions which are closer (larger Coulomb force) or longer time (more time

for Coulomb interaction).

The fidelity of the phase gate can be estimated by calculating the overlap of

the final state in equation 6.19 with the initial state. I will do this for the higher
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frequency mode, which evolves more:

∣∣〈0| − iNηRω2
RT

2
〉∣∣2 = exp

[
−N2η2

Rω
4
RT

4
]

(6.27)

= exp
[
−N2∆k2ω3

RT
4/m

]
(6.28)

= exp

[
−
(

3πω3
R

8ω2
z

)
T

]
(6.29)

Here I have used equations 6.23 and 6.25. Equation 6.29 shows that the fidelity of

the maximally entangling phase gate decays exponentially with gate time T (This

is the same result arrived at by Duan [47], albeit through different arguments).

Therefore, a sufficiently fast gate can be made arbitrarily high fidelity. However,

the number of kicks necessary will also increase as T is reduced.

Note that for a sufficiently fast time T , this gate can also work to entangle two

ions in an arbitrarily long chain, without affecting the rest of the ions. All the other

ions are effectively frozen during the gate, and so do not participate. That makes

this interaction scalable. This sort of local gate is shown graphically in figure 6.4.

The purpose of this exercise was to show how and why such a gate works.

However, the gate as described is unfortunately experimentally unrealistic. The

reason is because of the limited repetition rate of the laser used to create the kicks.

We are using an 80 MHz laser, with a trap frequency of about 1 MHz. Therefore,

even between 2 kicks there is already non-negligible trap evolution. We can see what

would be required from equation 6.29. For 99% fidelity and typical trap frequencies,

equation 6.29 says that T should be 2.8 ns. At that speed, equation 6.26 shows that

N = 4200 kicks are required. This would require a laser with a repetition rate in

the THz range, with power per pulse equal to our current laser. Unfortunately that
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Figure 6.4: Two ions in a chain can be rapidly entangled and then disentangled with this
sort of gate, without affecting the other ions.

is currently technologically infeasible, and would in any event create other problems

with our choice of qubit.

Fortunately, more complex kicking sequences can solve this problem. The kick

sequence {one kick up, two kicks down, one kick up} described above is part of a class

of functions called Walsh functions [144]. Such sequences have been used to suppress

errors in traditional two ion Mølmer-Sørensen gates [145]. Duan shows that using

higher order Walsh functions can suppress the errors further [47]. Unfortunately,

even with these higher order corrections, a higher repetition rate would be necessary

to execute the Duan scheme. However, Garcia-Ripoll et. al. showed in [46] that

there exist kick sequence which eliminate the error completely. This is shown in the

next section.
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6.5 Garćıa-Ripoll/Cirac/Zoller Gate

I will now describe the more general kick sequence, following the procedure

laid out in [46]. Consider a coherent state |α0〉 subject to a sequence of n momentum

kicks. The kth kick arrives at time tk and is of size zk. Between each of these kicks,

there is free evolution. Let the state immediately after the kth kick be given by

eiξk |αk〉. We can work out a recursive relationship for ξk and αk:

initial: ξ0 = 0 α0 = α0 (6.30)

t = t1 : ξ1 = z1Re(α0) α1 = α0 + iz1 (6.31)

t = t2 : ξ2 = ξ1 + z2Re(α1e
−iω(t2−t1)) α2 = α1e

−iω(t2−t1) + iz2 (6.32)

. . .

t = tk : ξk = ξk−1 + zkRe(αk−1e
−iω(tk−tk−1)) αk = αk−1e

−iω(tk−tk−1) + izk (6.33)

Without loss of generality, let t1 = 0. After a bit of algebra, the recursive relations

in equation 6.33 can be solved to yield expressions for the final state and phase:

αn = e−iωtn

(
α0 + i

n∑
k=1

zke
iωtk

)
(6.34)

ξn = Re

[
α0

n∑
k=1

zke
−iωtk

]
−

n∑
k=2

k−1∑
j=1

zkzj sin [ω(tj − tk)] (6.35)

These equations are a dramatic generalization of the specific example discussed

in the previous section. Indeed, those results can immediately be recovered from

equations 6.34 and 6.35 by setting z1 = Nη, z2 = −2Nη, z3 = Nη, t1 = 0, t2 = T ,

and t3 = 2T .

Examining equations 6.34 and 6.35, we see that if the following condition is
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satisfied:
n∑
k=1

zke
iωtk = 0 (6.36)

then the coherent state ends where it would have been without any kicks, and the

phase becomes independent of α0:

αn = e−iωtnα0 (6.37)

ξn =
n∑
k=2

k−1∑
j=1

zkzj sin [ω(tk − tj)] (6.38)

This result is fairly remarkable: it means that if equation 6.36 is satisfied, then

a phase is accrued which is completely independent of the motional state. Any

motional state, no matter the temperature, will have the same phase at the end of

the process. Moreover, the state itself will be unchanged.

This result can be understood intuitively, by turning to a geometric picture in

phase space. In the rotating reference frame, a kick of size zk at time tk corresponds

to displacement along a vector of length zk at an angle ωtk. Such a vector can be

represented in the complex plane as zke
iωtk . In order for the path traversed in phase

space to return to the original position, the sum of those vectors must be zero. This

is exactly the condition specified in equation 6.36. Moreover, the phase acquired by

traversing such a path is given simply by twice the area enclosed. That phase is then

clearly independent of initial position, just as the area of a polygon is independent of

its location on the plane. The area of a polygon with side lengths zk and angles ωtk

is given by equation 6.38 times one-half, as expected. This is depicted graphically

in figure 6.5.

With this result in hand, we can now understand the response of a state to

160



Re(α)

Im(α)

z1

z2
z3

z4

z5z6

ωt1

ωt2

ωt3

α0

ωt4
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ωt6

Figure 6.5: General path in (rotating) phase space of the sort described in the text. If
the vectors zke

iωtk add to zero as in equation 6.36, then the motion disentangles from the
spin and the phase is determined by the shaded area.

repeated applications of the operator in equation 6.5. In the theoretical analysis

above I assumed an arbitrary zk; the kicks here are of course of a fixed size ηC,R

for each mode. I will assume that the kicking direction is reversible: zk = bkηC,R,

where bk = ±1. There will now be two conditions, namely that both the center of

mass and relative motion separately close. From equation 6.38, the phase difference

acquired between the two modes is:

Φ =
n∑
k=2

k−1∑
j=1

bkbj
(
η2
R sin [ωR(tj − tk)]− η2

C sin [ωC(tj − tk)]
)

(6.39)

= 2η2

n∑
k=2

k−1∑
j=1

bkbj

(
ω

ωR
sin [ωR(tj − tk)]− sin [ωC(tj − tk)]

)
(6.40)

As a final condition, we require the net phase difference to be equal to π/2. Putting
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these pieces together, we are left with the following three equations:

n∑
k=1

bke
iωCtk = 0 (6.41)

n∑
k=1

bke
iωRtk = 0 (6.42)

Φ = π/2 (6.43)

Choosing bk and tk to satisfy these conditions will produce a maximally entangling

gate.

As an added complication, equation 6.5 shows that there will be another phase

imparted to the center of mass mode from the phase of the light at the time of each

kick. The sign alternates, because the spins flip at each kick:

γ = φ(t0)− φ(t1) + φ(t2)− · · · (6.44)

= ωA (t0 − t1 + t2 − · · · ) +

{
0 n even
−φ0 n odd

(6.45)

One immediate consequence of this phase is that it is important that the number of

kicks used be even. Otherwise, the absolute optical phase φ0 does not vanish, and

the experiment becomes sensitive to the absolute optical phase (which may not be

stable). By making the number of kicks even, the optical phase sensitivity disappears

(also, the spins return to their original value). There does remain a relative phase

determined by the RF on the AOMs, which may not be zero. However, it should

be stable, and does not affect the entanglement operation (see appendix D). From

equation 6.5, the states |00〉 and |11〉 acquire this phase with opposite sign.

From all of the above, we conclude that the effect of applying a sequence of
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spin-dependent kicks, timed to satisfy equations 6.41 and 6.42, is the following:

|00〉 ⇒ eiγi |00〉 (6.46)

|01〉 ⇒ |01〉 (6.47)

|10〉 ⇒ |10〉 (6.48)

|11〉 ⇒ e−iγi |11〉 (6.49)

6.6 Realistic Gate

It now remains to find solutions to equations 6.41, 6.42, and 6.43. As a first

constraint, the arrival time of each pulse tk is restricted to be a multiple of the laser

repetition rate. Within that constraint, the number of possible kick sequences is

enormous. If we only search for sequences that are shorter than 2 µs there are 160

pulses that can be used. Each of those pulses could be a kick in one of two possible

directions, or omitted entirely. There are therefore 3160 ≈ 1077 kick sequences that

could be created in that 2 µs span. We therefore restrict our search, at least initially,

to relatively simple sequences with a high degree of symmetry.

The first sequence which one might investigate is the simplest: N consecutive

kicks, all in the same direction. This sequence could, in principle, close both phase

spaces. However, the lack of free parameters allows no control over the phase accrued

or the duration of the gate, and highly constrains the possible trap frequencies and

their ratio. To allow sufficient control, more free parameters are necessary.
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6.6.1 First Pattern

The simplest symmetric kick pattern with three free parameters is:

1. N1 kicks

2. wait for N2 pulses

3. N1 kicks (possibly in a different direction)

4. wait for N3 pulses

5. repeat steps 1-3, possibly inverted

An example of this sequence is shown graphically in figure 6.6. This is similar to

the first scheme introduced in [46], although there evolution during the pulses was

neglected. I will denote a set of kicks as {z,N}, where N indicates the number of

kicks in the set, and z = ±1 or 0 indicates whether the set of kicks is in one direction,

the other direction, or omitted. So, for example, the sequence described above could

be written in the shorthand: {{1, N1}, {0, N2}, {1, N1}, {0, N3}, {−1, N1}, {0, N2},

{−1, N1}}. (Here I assumed the second set of N1 kicks was in the same direction as

the first, while the repetition of 1-3 was in the reverse direction.)

Intuitively, the logic of this sequence is as follows: The initial number of kicks

N1 is chosen to set the phase accumulated. The first wait time N2 is chosen such

that the second set of kicks N1 will undo the action of the first set of kicks for one

of the two phase spaces. At this point, one of the phase spaces is closed, while the

other is not. The second wait time N3 is then chosen so that the second two sets

164
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N1 N1

N1 N1

N2 N2N3 time

Figure 6.6: General kicking sequence that allows closing both phase spaces. (a) and (b)
show the trajectories in each phase space (center of mass and relative motion). Here what
is shown is the rotating frame phase space, rather than the lab frame phase space. In the
rotating frame, it is the kick direction which rotates, rather than the ion state. The curve
segments are composed of N1 straight lines, with the curve arising due to the free trap
evolution between the kicks. (c) General sequence. The number of pulses determines the
phase. N2 is chosen to close the first phase space, while N3 is chosen to close the second.
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of pulses will undo the effect of the first two sets of pulses for the second phase

space. As the first phase space has already been closed, it is not affected by this

wait. Finally, the second sets of pulses close the second phase space. Because this

set of pulses is a mirror image of the first set, the first phase space is again opened

and closed.

Because the number of pulses is discretized, the phase difference cannot be

made exactly π/2 by adjusting N1 only. The ratio of the two mode frequencies must

also be adjusted. This is why it is important to execute this gate on transverse

motional modes. With axial modes, the mode frequency ratio at
√

3 is fixed and

cannot be changed. It is therefore not necessarily possible to achieve a maximally

entangling gate using axial modes. For a discussion of performing this gate using

axial modes, see [146].

6.6.1.1 Solution For the scheme described above, we can use equation 6.41,

6.42, and 6.43 to solve for N1, N2, and N3. Let θ = 2πω/ωrep, where ω can refer to

either ωC or ωR. Equation 6.36 reduces to a sum of four geometric series, which can

be summed to yield:(
1

1− eiθ

)(
1− eiN1θ

) (
1± ei(N1+N2)θ

) (
1± ei(2N1+N2+N3)θ

)
= 0 (6.50)

This equation can be satisfied under three possible scenarios:

1− eiN1θ = 0 or (6.51)

1± ei(N1+N2)θ = 0 or (6.52)

1± ei(2N1+N2+N3)θ = 0 (6.53)
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These conditions admit a straightforward physical explanation. Equation 6.51, 6.52

and 6.53 correspond to closing the phase space after the first set, second set, and

fourth set of pulses, respectively. As mentioned before, equation 6.51 is overly

restrictive. Equations 6.52 and 6.53 allow us to use each one to close one of the

phase spaces, while still allowing one free parameter to set the phase. For the phase

space that closes first, we have:

(N1 +N2) θ1 = nπ n ∈ Z (6.54)

⇒N2 =
nωrep

2ω1

−N1 (6.55)

The fastest solution will be the smallest n for which N2 is positive. Odd n corre-

sponds to the first and second sets of kicks being in the same direction, while even

n corresponds to a direction reversal between the first two sets. For the phase space

that closes second,

(2N1 +N2 +N3) θ2 = mπ m ∈ Z (6.56)

⇒N3 =
mωrep

2ω2

− 2N1 −N2 (6.57)

These results show that for this kick pattern, the ratio ωrep/ω must be an integer for

both phase spaces. The triple of integers {N1, ωrep/ωC , ωrep/ωR} will then determine

the accumulated phase, following equation 6.40. All that remains is to search for

solutions in which Φ = π/2. The results of such a search are shown in table 6.1, for

ωrep/2π = 80.16 MHz. The table shows all solutions with this algorithm for which

0.5 MHz < ωC,R/2π < 2.5 MHz, ωz < 0.8 MHz, N1 ≤ 7 and the phase difference is

within 1% of π/2. All of these solutions include no reversal between the first two

sets, and a reversal between the second and third sets, as shown in figure 6.6.
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N1 N2 N3 ωz/2π ωR/2π ωC/2π Gate Duration (µs) Error
6 30 22 0.574 1.113 1.253 1.32 0.009
6 21 29 0.729 1.294 1.484 1.19 0.007
6 26 18 0.693 1.253 1.431 1.17 -0.006
6 29 21 0.600 1.145 1.293 1.29 0.006
6 20 28 0.769 1.336 1.542 1.15 0.003
6 28 20 0.629 1.179 1.336 1.25 0.002
6 27 19 0.660 1.215 1.382 1.21 -0.002
7 22 16 0.683 1.382 1.542 1.10 0.007
7 20 14 0.765 1.484 1.670 1.02 -0.006
7 21 15 0.723 1.431 1.603 1.06 0.001

Table 6.1: Valid solutions to fast gate scheme {{1, N1}, {0, N2}, {1, N1}, {0, N3},
{−1, N1}, {0, N2}, {−1, N1}}. Here ωrep/2π = 80.16 MHz. This table shows all
solutions for which 0.5 MHz < ωC,R/2π < 2.5 MHz, ωz < 0.8 MHz, N1 ≤ 7, and the
phase difference is within 1% of π/2. Frequencies are in MHz. The time shown is
the total time for the entire gate. The error shown is Φ/(π/2) − 1. The solutions
all include a reversal between the second and third sets of kicks, as in figure 6.6.

Examining table 6.1, the gate durations for all of the solutions is approximately

1 µs. This is because the scheme presented here cannot be much faster than 2π/ωC,R,

as it relies on significant amounts of trap evolution to evolve the kicking direction.

Indeed, most of the time is spent waiting. In the first solution in table 6.1, 24 pulses

from the laser are used, but the gate duration is equivalent to 106 pulses. Increasing

the speed of the gate requires either higher trap frequencies, or a different kick

pattern.

6.6.2 Second Solution

The above algorithm can be made faster by introducing another degree of free-

dom. In between the first and second sets of pulses, another set is introduced in the

opposite direction. The net sequence is then: {{1, N1}, {0, N2}, {−1, N3}, {0, N2},

{1, N1}, {0, N4}, {±1, N1}, {0, N2}, {∓1, N3}, {0, N2}, {±1, N1}}. This sequence
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Figure 6.7: Kick sequence for the second fast gate pattern. This introduces a new degree
of freedom, which allows for slightly faster gates. (a) and (b) show the trajectories in each
phase space (in the rotating frame), which are now each composed of six segments. (c)
General sequence.
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N1 N2 N3 N4 ωz/2π ωR/2π ωC/2π Gate Duration (µs) Error
8 5 5 2 0.661 1.215 1.383 0.80 0.004
8 4 6 4 0.697 1.179 1.370 0.80 0.004
9 2 7 2 0.729 1.293 1.484 0.75 0.011
10 0 9 2 0.711 1.293 1.475 0.75 -0.018
7 4 9 2 0.776 0.934 1.215 0.80 -0.034
7 7 3 1 0.701 1.253 1.435 0.79 -0.035
7 5 5 6 0.793 1.145 1.393 0.80 0.036
9 0 12 1 0.767 1.041 1.293 0.76 -0.043
8 3 7 6 0.723 1.145 1.354 0.80 -0.047

Table 6.2: Valid solutions to fast gate pattern {{1, N1}, {0, N2}, {−1, N3}, {0, N2},
{1, N1}, {0, N4}, {±1, N1}, {0, N2}, {∓1, N3}, {0, N2}, {±1, N1}}. All of the so-
lutions shown here use the upper sign in the sequence described above, i.e. no
reversal between the two sets as in figure 6.7. This table shows all solutions for
which 0.5 MHz < ωC,R/2π < 2.5 MHz, ωz < 0.8 MHz, ωrep/2π = 80.16 MHz, the
total gate duration is < 800 ns, and the phase difference is within 5% of π/2. Fre-
quencies are in MHz. The time shown is the total time for the entire gate. The
error shown is Φ/(π/2)− 1.

and the corresponding phase space diagrams is shown in figure 6.7. Following a

similar analysis to that done above, the conditions on N1, N2, N3 and N4 for the

two phase spaces are:

2 cos

[
(N1 + 2N2 +N3)θ1

2

]
sin

[
N1θ1

2

]
= sin

[
N3θ1

2

]
(6.58)

(2N1 + 2N2 +N3 +N4) θ2 = nπ n ∈ Z (6.59)

As before, the first condition closes the first phase space, while the second condition

uses N4 to wait a sufficient amount of time to close the second phase space. Solutions

to these equations can be found numerically, and are shown in table 6.2. The extra

degree of freedom results in a slightly faster gate time of 750 − 800 ns. Also note

that more pulses are required now. The minimum required in table 6.2 is 34 pulses

as opposed to 24 in table 6.1.
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6.7 Conclusions and Outlook

The solutions presented here are not necessarily optimized. There may exist

faster solutions involving more reversals; these are only the simplest solutions. A

larger search may reveal unknown, faster solutions. However, it is unlikely that there

exist solutions much faster than a few hundred nanoseconds, as the algorithms are

ultimately limited by the repetition rate of the laser. The solutions above show that

such a gate is possible, and achievable with the existing experimental apparatus.

Presently, the main obstacle to implementing this gate is the fidelity of a single

spin-dependent kick. In order for the gate to work well, a single kick must be high

fidelity, as the gate consists of many kicks. At present, it has not yet been determined

how gate fidelity scales with individual SDK fidelity. The naive assumption would

be that if a single kick has fidelity F , then a gate composed of N kicks would have

fidelity FN . However, this may not be true. The gate fidelity may depend on the

exact nature of the errors in the SDK. If we assume that the gate fidelity is no worse

than FN , then in order to pass the 50% fidelity threshold for demonstrating two-ion

entanglement, a single SDK will need to have a fidelity of at least 0.51/24 = 97%.

There is no doubt that the entangling gate described in this section is exper-

imentally challenging. However, a successful implementation of this gate would be

a significant step forward towards the ultimate goal of a large scale trapped ion

quantum computer. The gate described above is sensitive to 1) the arrival time of

each pulse, and 2) the intensity of each pulse. Both of these can be stabilized to a

high degree using conventional feedback loops. Significantly, the gate is highly in-
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sensitive to the ions’ temperature. It is also highly insensitive to small fluctuations

in the trap frequency. In a sense, this gate represents a shift in complexity. Slower

gates imposed many requirements on the ion, and relatively modest requirements

on the laser. This gate imposes many requirements on the laser, but few or none

on the ion. Laser stabilization is well understood and in many ways easier than ion

stabilization.

It is always advantageous to go fast. It reduces noise, and enables more opera-

tions within the coherence time of the qubits. Indeed, the push for speed has driven

the revolution in classical computing from its inception. Quantum computers of the

future will need to be able to rapidly execute many gates, and techniques such as

those presented here may ultimately enable ultrafast operation.
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Appendix A

Derivation of Rosen-Zener Solution

Here I will go over the Rosen-Zener analytic solution [120] to the evolution due

to equation 4.76. This derivation is largely based on that in [116]. From equations

4.40, 4.41 and 4.70, the coupled differential equations for c̃0 and c̃1 are:

˙̃c0 =
iθ

2τ
sech

(
πt

τ

)
e−iωhftc̃1 (A.1)

˙̃c1 =
iθ

2τ
sech

(
πt

τ

)
eiωhftc̃0 (A.2)

To solve this, Rosen and Zener made the substitution:

z(t) =
1

2

(
1 + tanh

(
πt

τ

))
(A.3)

In terms of z, we have:

sech

(
πt

τ

)
= 2
√
z(1− z) (A.4)

e−iωhft =

(
z

1− z

)−iωhfτ/2π

(A.5)

˙̃ci =
dc̃i
dz
ż (A.6)

=
π

2τ
sech2

(
πt

τ

)
dc̃i
dz

(A.7)

=
2π

τ
z(1− z)

dc̃i
dz

(A.8)
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Define:

ξ =
1

2
+ i

ωhfτ

2π
(A.9)

ϑ =
θ

2π
(A.10)

With these substitutions, equations A.1 and A.2 become:

dc̃0

dz
= iϑz−ξ(1− z)−ξ

∗
c̃1 (A.11)

dc̃1

dz
= iϑz−ξ

∗
(1− z)−ξ c̃0 (A.12)

Decoupling equations A.11 and A.12 yields two second-order differential equations

for c̃0 and c̃1:

z(1− z)
d2c̃0

dz2
+ (ξ − z)

dc̃0

dz
+ ϑ2c̃0 = 0 (A.13)

z(1− z)
d2c̃1

dz2
+ (ξ∗ − z)

dc̃1

dz
+ ϑ2c̃1 = 0 (A.14)

The solutions to these equations are well-known special functions called Gaussian

hypergeometric functions, denoted 2F1(a, b; c; z). For a pulse centered at t = 0, the

boundary conditions are that the ion is in |0〉 at t = −∞: c̃0(−∞) = 1, c̃1(−∞) = 0.

At −∞, z is given by: z(−∞) = 0. Using these conditions, the solutions for c̃0 and

c̃1 are:

c̃0 = 2F1 (ϑ,−ϑ; ξ; z) (A.15)

c̃1 = −
(
iϑzξ

ξ

)
2F1 (ξ + ϑ, ξ − ϑ; 1 + ξ; z) (A.16)

We are only interested in the final state at t = ∞, and not in the intermediate

behavior. At ∞, z is given by z(∞) = 1. At z = 1, 2F1 can be written in terms of
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the Γ function as [129]:

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

(A.17)

The final state is therefore given by:

c̃0 =
Γ(ξ)2

Γ(ξ − ϑ)Γ(ξ + ϑ)
(A.18)

c̃1 = −
(
iϑ

ξ

)(
Γ(1 + ξ)Γ(1− ξ)
Γ(1− ϑ)Γ(1 + ϑ)

)
(A.19)

The expression for c̃1 can be simplified using Euler’s reflection formula, which states

[129]:

Γ(z)Γ(1− z) =
π

sin(πz)
(A.20)

This relationship allows reduction of both the numerator and denominator of equa-

tion A.19 into trigonometric functions:

c̃1 = −i
(

sin (πϑ)

sin (πξ)

)
(A.21)

= −i sech
(ωhfτ

2

)
sin

(
θ

2

)
(A.22)

Equations A.18 and A.22 prove the results stated in equations 4.78 and 4.79.
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Appendix B

Derivation of Four Photon Light Shift from Two

Combs

The light shift derived in section 4.7.1 was for a single, resonant comb. For

two combs with an AOM offset between them, the total four photon shift from

the RF comb picture must include all beat notes between both combs. However,

because in the lin ⊥ lin geometry a single comb cannot drive transitions, the beat

notes of a single comb with itself do not contribute. Let the resonance condition be

nωrep + ωA = ωhf. The net shift is given by:

δL = −Ω2
0

2

 ∞∑
m=−∞
m6=n

sech2[(mωrep + ωA)τ/2]

mωrep + ωA − ωhf

+
∞∑

m=−∞

sech2[(mωrep − ωA)τ/2]

mωrep − ωA − ωhf


= −Ω2

0

2

 ∞∑
m=−∞
m6=n

sech2[(mωrep + ωA)τ/2]

(m− n)ωrep

+
∞∑

m=−∞

sech2[(mωrep − ωA)τ/2]

(m− n)ωrep − 2ωA


= − Ω2

0

2ωrep

(
∞∑

j=−∞
j 6=0

sech2[((j + n)ωrep + ωA)τ/2]

j
+

∞∑
j=−∞

sech2[((j + n)ωrep − ωA)τ/2]

j − 2ωA/ωrep

)
(B.1)
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Experimentally, the AOM shift is typically larger than the repetition rate. For

example, for the values given in chapter 5, ωA/2π = 503 MHz, while ωrep/2π = 80

MHz. Define the integer and fractional part of ωA/ωrep as:

ωA

ωrep

= k + σ (B.2)

where k ∈ Z and 0 ≤ σ < 1, σ 6= 0.5. σ represents the fractional distance between

the two offset combs. Let ε = ωrepτ/2, β = ωhfτ/2. In terms of these variables,

equation B.1 becomes:

δL = − Ω2
0

2ωrep

 ∞∑
j=−∞
j 6=0

sech2[jε+ β]

j
+

∞∑
j=−∞

sech2[(j − 2k − 2σ)ε+ β]

j − 2σ

 (B.3)

The first term is the same as in equation 4.125. The second term is similar. However,

it contains three terms which could be arbitrarily large: j = −1, 0, and 1. These

correspond to the three closest RF comb teeth. It is not valid to approximate the

sum as an integral for these three points. We therefore extract these points and

approximate the remainder as an integral:

δL = − Ω2
0

2ωrep

[
∞∑

j=−∞
j 6=0

sech2[jε+ β]

j
+

∞∑
j=−∞
j 6=−1,0,1

sech2[(j − 2k − 2σ)ε+ β]

j − 2σ
+

sech2 (β)

(
1

−2σ
+

1

−1− 2σ
+

1

1− 2σ

)]
(B.4)

≈ − Ω2
0

2ωrep

[
2

∫ ∞
ε

sech2(x+ β)− sech2(x− β)

x
dx+

sech2 (β)

(
1

−2σ
+

1

−1− 2σ
+

1

1− 2σ

)]
(B.5)

≈ − Ω2
0

2ωrep

[
− 4ωhfτ

∫ ∞
0

tanh(x) sech2(x)

x
dx+

sech2
(ωhfτ

2

)( 1

−2σ
+

1

−1− 2σ
+

1

1− 2σ

)]
(B.6)
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Figure B.1: Four photon light shift for two combs as a function of repetition rate for
Ω0/2π = 1 MHz, τ = 10 ps, and ωhf/2π = 12.6 GHz.

≈ − Ω2
0

2ωrep

[
− 4ωhfτ

(
7ζ(3)

π2

)
+ sech2

(ωhfτ

2

)( 1

−2σ
+

1

−1− 2σ
+

1

1− 2σ

)]

≈ Ω2
0ωhfτ

ωrep

[
1.705 +

sech2 (ωhfτ/2)

2ωhfτ

(
1

2σ
+

1

1 + 2σ
+

1

−1 + 2σ

)]
(B.7)

Equation B.7 is then the two comb four photon light shift, to first order in ωhfτ .

This expression passes through zero for certain values of σ. For τ = 0, the zero shift

point is given by:

1

2σ
+

1

1 + 2σ
+

1

−1 + 2σ
= 0 (B.8)

⇒σ =
1√
12
≈ 0.289 (B.9)

For a 10 ps pulse, zero shift occurs for σ = 0.399.

Figure B.1 shows the shift in kHz predicted by equation B.7 for Ω0/2π = 1

MHz and τ = 10 ps, around 80 MHz repetition rates. The curve passes through
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zero at 80.323 MHz, which corresponds to σ = 0.399.
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Appendix C

Diffraction with Hyperbolic Secant Pulse

In chapter 5, equation 5.32 was derived by approximating the pulse as a δ-

function. This section examines the validity of that approximation. The pulse

duration is of order 10 ps, meaning it is several orders of magnitude faster than the

trap frequency or the AOM frequency. Therefore, the trap and AOMs can be taken

as frozen during the pulse, and the Rosen-Zener solution in chapter 4 can be used,

with θ → θ cos (∆kx̂+ ∆φ) in equations 4.78 and 4.79:

A =
Γ2 (ξ)

Γ
(
ξ − θ

2π
cos (∆kx̂+ ∆φ)

)
Γ
(
ξ + θ

2π
cos (∆kx̂+ ∆φ)

) (C.1)

B = − sin

(
θ

2
cos (∆kx̂+ ∆φ)

)
sech

(ωhfτ

2

)
(C.2)

The σ̂x term in part of equation 4.77 is given by iB, which can be expanded using

the Jacobi-Anger expansion as:

iB = sech
(ωhfτ

2

) ∞∑
n=−∞
n odd

inein∆φJn(θ)D [inη] (C.3)

This is nearly identical to the σ̂x term in equation 5.32, but with an overall sech(ωhfτ/2)

term modifying the populations. This is the same result found in [132]. The even or-

der diffraction terms are considerably more complicated. However, they are of order
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θ2 or higher, which were assumed to be negligible for the results derived in chapter 5.

Non-zero pulse duration can thus be accounted for by replacing θ → θ sech (ωhfτ/2).

This will correspond to a slight reduction in the effective pulse area as compared to

a δ-function pulse.
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Appendix D

Equivalence of Phase Gate to Entangling Gate

Here I show that the state produced by the gate discussed above is maximally

entangled. Assume the ions are initialized by a global π/2 rotation to the state:

|ψi〉 =
1

2
(|00〉+ |01〉+ |10〉+ |11〉) (D.1)

After the π/4 phase gate discussed in chapter 6, the two ions state becomes:

|ψf〉 =
1

2

(
eiγi |00〉+ |01〉+ |10〉+ ie−iγ |11〉

)
(D.2)

Define the following basis [147,148]:

|e1〉 =
1√
2

(|11〉+ |00〉) (D.3)

|e2〉 =
1√
2
i (|11〉 − |00〉) (D.4)

|e3〉 =
1√
2
i (|10〉+ |01〉) (D.5)

|e4〉 =
1√
2

(|10〉 − |01〉) (D.6)
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Note that this is the Bell basis {Ψ±,Φ±} with a phase of i on Φ− and Ψ+ [148]. In

terms of this basis, equations D.1 and D.2 can be written as:

|ψi〉 =
1√
2

(
|e1〉 − i |e3〉

)
(D.7)

|ψf〉 =
1√
2

(
i cos(γ) |e1〉 − i sin(γ) |e2〉 − i |e3〉

)
(D.8)

In [147, 148] it is shown how to quantify the amount of entanglement in terms

of the coefficients in the basis |ei〉. Here I’ll follow their procedure. For a state

|ψ〉 =
∑

i αi |ei〉, define the following function:

C(ψ) =

∣∣∣∣∣∑
i

α2
i

∣∣∣∣∣ (D.9)

where it is the complex value of αi which is squared, not its norm. This function is

known as the concurrence of |ψ〉. Using this function, we have:

C(ψi) = 0 (D.10)

C(ψf ) = −1 (D.11)

Now define the following functions:

f(x) =
1

2

(
1 +
√

1− x2
)

(D.12)

H(x) = − [x log2(x) + (1− x) log2(1− x)] (D.13)

The entanglement of a state |ψ〉 is then given by:

E(ψ) = H(f(C(ψ))) (D.14)

E = 0 means that |ψ〉 has no entanglement (can be written as a product state),

while E = 1 means that |ψ〉 is maximally entangled. Applying equation D.14 to
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|ψi〉 and |ψf〉, we find:

E(ψi) = 0 (D.15)

E(ψf ) = 1 (D.16)

This shows that the gate operation takes a product state and produces a maximally

entangled state.
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Appendix E

Mathematica Simulation

Here included, for reference, is the code I wrote to simulate the creation of a

spin-dependent kick from a sequence of eight fast pulses.

This program uses the following terminology: A ket is an ordered triple of the

form {c, s, α}. It corresponds to the ket with spin state s = |0〉 or |1〉, coherent state

|α〉, and coefficient c. A state is an unordered list of kets in the form {{c1, s1, α1},

{{c2, s2, α2}, . . .}. It corresponds to a superposition of kets.

When a pulse arrives, each ket is diffracted into several diffraction orders.

The function UPulseState computes the new state. It does the following: 1) Make

a table of amplitudes, spin states, and motional states. Each term has a Bessel

function coefficient, together with a phase, which consists of a geometric component

and an arrival time component. The spin is conditionally flipped, with every odd

diffraction order getting a spin flip. There is also a free evolution component. 2)

Turn this table into a sequence, so that the new set of kets resulting from each ket

will be merged into a single state. 3) Apply this sequence to each ket in the target

state. 4) Combine kets which have coefficient sufficiently close to zero. The final
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Figure E.1: Constant declarations

result is the resultant state after a pulse arrives. The arguments are the initial state,

the pulse arrival time, and the pulse area. The zero threshold, AOM frequency, AOM

phase, Lamb-Dicke parameter and number of diffraction orders to use can also be

optionally set.

The function UNPulses executes UPulseState for a list of pulses. For each

pulse, the arrival time, area, and phase are specified.

The function OverlapState computes the overlap between two arbitrary states.

Finally, shown is the code that uses these functions to compute the kick fidelity

for kicking the ground state for the two specific sets of delay lengths mentioned in

chapter 5.
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Figure E.2: Code for Mathematica simulations. Resulting overlap with the target state
is shown for the delay sets {5.5, 10, 20} and {6.5, 9, 16}.
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[93] W. Demtröder. Laser Spectroscopy: Basic Concepts and Instrumentation
(Third Edition). Springer-Verlag, 2003.

[94] B. B. Blinov, D. Leibfried, C. Monroe, and D. J. Wineland. Quantum com-
puting with trapped ion hyperfine qubits. Quant. Inf. Proc., 3:45, 2004.

[95] M. Acton, K.-A. Brickman, P.C. Haljan, P. J. Lee, L. Deslauriers, and C. Mon-
roe. Near-perfect simultaneous measurement of a qubit register. Quant. Inf.
and Comp., 6:465–482, 2006.

[96] R. Noek, G. Vrijsen, D. Gaultney, E. Mount, T. Kim, P. Maunz, and J. Kim.
High speed, high fidelity detection of an atomic hyperfine qubit. arXiv,
1304.3511, 2013.

[97] E. D. Black. An introduction to Pound-Drever-Hall laser frequency stabiliza-
tion. Am. J. Phys., 69(1):79–87, April 2000.

[98] D. W. Preston. Doppler-free saturated absorption: Laser spectroscopy. Am.
J. Phys., 64:1432, 1996.

[99] S. Gerstenkorn, J. Verges, and J. Chevillard. Atlas du spectre d’asorption de
la molecule d’iode, 11000-14000 cm−1. Laboratoire Aime-Cotton, CNRS II,
91405 Orsay, France, 1982.

[100] S. Gerstenkorn and P. Luc. Atlas du spectre d’asorption de la molecule
d’iode, 14800-20000 cm−1. Centre National de la Recherche Scientifique, Paris,
France, 1978.
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