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A large-scale quantum computer will have the ability to solve many com-

putational problems beyond the capabilities of today’s most powerful computers.

Significant efforts to build such a computer are underway, many of which are small

prototypes that are believed to be extensible to larger systems. Such systems, like

the one in this thesis built off of 171Yb+ions, are enticing scientific endeavors for their

potential to inform the production of large-scale systems, as well as the interesting

experiments they can perform. In this work, experimental research is presented on

both topics: scalability as well as compelling computations.

The first half of this thesis discusses building and optimizing a quantum com-

puter to have high-fidelity qubit operations. An experimental architecture that al-

lows for individual addressing and individual detection of qubits is presented along-

side a discussion of errors and error-reduction. We derive the coherent manipulation

of qubits using Raman lasers for rotational gates and the criteria necessary for multi-

qubit entangling gates. Methods for efficiently fulfilling these criteria are presented



with experimental data. Lastly, we consider coherence-related properties of the

system necessary to perform these operations and how they can be experimentally

improved.

The second half of the thesis features three experimental applications of the

quantum computer: quantifying quantum scrambling, applying a quantum error

correction code, and measuring Rényi entropy. Quantum scrambling is the coherent

delocalization of information through a quantum system and is notably difficult to

quantify experimentally. We present an efficient scheme to measure it using quan-

tum teleportation. Quantum error correction is a set of techniques for mitigating the

effect of imperfect operations performed on a quantum computer, and we demon-

strate some of these techniques in order to fault-tolerantly prepare a logical qubit.

Lastly, Rényi entropy is an information theoretic quantity that can be used to di-

rectly quantify the amount of entanglement in a system. We present a method for

measuring it efficiently using a quantum gate known as a Fredkin gate.
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Chapter 1: Introduction

1.1 Quantum Computers

Quantum computers (QC's) leverage the laws of quantum mechanics to solve

computational problems. While regular bits of information can be either 0 or 1,

quantum bits (qubits) can be in a superposition of 0 and 1. Therefore, we can

de�ne a piece of information as having the state amplitudes:

j i = � j0i + � j1i

At �rst glance, one might reduce this phenomenon to discrete values versus contin-

uous values of 0's and 1's, as depicted inFigure 1.1a and b, but the reality is far

deeper. � and � are complex numbers, and the likelihood of measuring the qubit

in either state is not � or � , rather it is j� j2 or j� j2. Therefore, we cab de�ne them

2



Figure 1.1: Comparison of information stored discretely (a), continuously using
1 variable (b), and continuously using two variables (c). Classical information is
represented by (a) and two-level quantum information is represented in (c).

using trigonometry as:

� = cos(
�
2

)

� = ei� sin(
�
2

)

This formalism shows thattwo cyclic variables (� and � ) are required to depict the

qubit state, which is most naturally represented on a sphere (Figure 1.1c), which

is commonly referred to as a Bloch sphere [1]. The distinction between classical and

quantum information is very clear: two possible points on a line versus any possible

point on a sphere. By re-imagining digital information in this way, exponentially

more data can be stored on a register of qubits than on a similarly sized register of

classical bits.

3



The other major distinction between classical and quantum computing is en-

tanglement, a quantum mechanical correlation between two qubits that appears:

j i ent = cos(
�
2

) j00i + sin(
�
2

)ei� j11i

If two qubits are entangled, the amplitude and phase of their shared, correlated state

cannot be discovered by measuring either qubit: both must be measured. In some

sense, the two disparate qubits behave like a single qubit, which is why their state

amplitudes are written here in a similar fashion as the single-qubit states. These

entangled states were described in a seminal paper by Albert Einstein, Boris Podol-

sky, and Nathan Rosen where they explore the unique, \spooky" characteristics of

entangled states [2]. An example of the spookiness of these states is demonstrated

by considering how rotating the phase of the �rst qubit in the entangled state is

completely equivalent to rotating the phase of the second qubit. This rotation is a

local operation that is only experienced by qubit one, and yet its e�ect is shared by

both qubits equally.

Quantum entanglement is a central topic in this thesis. In section 1, results

from performing di�erent methods for generating entanglement are presented. Then,

in section 2, we present data from three quantum algorithms that require high-

�delity entangling gates. In one case, entanglement is used to mitigate inherent

errors in the qubits. In the other two cases, entangling gates generate interesting

information theoretic quantities we measured. Though both superposition and en-

tanglement are the backbone of quantum computing, generating entanglement is

4



universally more di�cult to do with high �delity on large systems.

Thanks to both quantum superposition and quantum entanglement quantum

computers can famously solve several extremely di�culty computational problems

e�ciently [3{5]. Since those early, seminar discoveries, many theoretical applications

of quantum computers have developed in the �elds of quantum physics [6], chemistry

[7,8], biology [9], materials science [10], and many more.

1.2 Quantum Circuits

The horizontal lines in a quantum circuit depict the operations performed on

a speci�c qubit and the operations are indicated by symbols or text. These circuits

are similar to digital logic circuits where lines represent wires that direct pieces of

classical information into some logical operation. Examples of classical and quantum

exclusive-or (XOR) gates are respectively depicted inFigure 1.2a-b alongside truth

tables, which map out the relationship between input states to output states. There

are several important distinctions between the classical and quantum versions of

this gate that will help elucidate quantum computing generally.

In the classical version of the gate, the wires before the double curved lines

carry the classical input information. The wires carry discrete voltages (either 3.3

V or 0 V) to denote the 1 state or the 0 state. The symbol denotes the XOR gate,

which can be constructed by properly connecting transistors together and the single

output would be contained by the wire to the right of the XOR. The XOR's output

(Out1) is 1 if and only if one of the two input states (In1 or In2) are 1. If both or

5



neither are 1, then the output is 0. By looking at the output of the classical XOR, it

is impossible to know the input states as it could always be one of two such states.

Since information about the input states is lost at the end of the gate, it is simply

dissipated as heat.

In the quantum version of the XOR, known more colloquially as a controlled-

not (CNOT) gate, the \wires" are non-physical and only serve to denote the distinct

qubits and the time-ordering of the qubit operations (time ows left to right). Here,

the CNOT gate does not resemble a collection of transistors. Instead, the gate is a

set of either laser or microwave pulses that manipulate the qubits in a controlled and

coherent manner. This is the �rst major distinction between quantum and classical

circuits: digital quantum logic is performed by coupling oscillating electromagnetic

�elds to the qubits instead of sending the classical bits through physical objects.

For the experimental approach discussed in this thesis, the qubits are not connected

by any physical object whatsoever and they only interact due to laser beams and

Coulomb forces between them.

Another distinction between the classical and quantum circuits is the location

of the information. As mentioned, classical circuits store information in wires that

connect the logical components. In contrast, quantum information remains local

to the physical qubit instead of owing on a wire. Sometimes, as multi-qubit op-

erations are performed on the quantum register, the information might be shared

between qubits via entangled states. This non-locality is very nuanced because the

information is physically stored in invisible correlations between qubits and can only

be extracted by disentangling the qubits or measuring the qubits' projections onto

6



Figure 1.2: Two similar circuits are displayed. a) A classical XOR gate and its
truth table. b) The quantum XOR gate more commonly known as a CNOT gate is
presented with its truth table.

di�erent axes of their entangled Bloch spheres. In many cases, the entanglement is

undone at the end of a quantum circuit, and the information is returned to a local

environment: a single qubit.

Despite these di�erences, the classical and quantum XOR have identical truth

tables. In the quantum version, the classical output is repeated onto the second

qubit's output state (Out2), while the �rst qubit (Out1) is unperturbed by the

gate. This e�ects 4 distinct output states corresponding to 4 distinct input states.

1.3 Thesis layout

The experiments in this thesis were performed on a QC that was designed and

assembled by myself and colleagues under the purview of our advisor, Christopher

Monroe. Please see the thesis of Shantanu Debnath ( [11]) for a more complete

description of the physical hardware, and Caroline Figgatt's thesis ( [12]) for an in-

depth discussion of the experimental control software and its architectural structure.
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In this thesis, I will �rst write about the disparate elements of the experiment that

I was most involved with and their background. In chapter 2, I will introduce the

devices and physics we use to create a qubit out of171Yb+ ions. In chapter 3, I

will discuss how we coherently manipulate the qubits using a pulsed laser. In the

remaining chapters, I focus on di�erent computational problems that we studied

using our quantum computer: quantum scrambling, quantum error correction, and

measuring R�enyi entropy in respective chapters 4, 5, and 6.
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Chapter 2: Trapping Ytterbium Ions

2.1 Ytterbium Qubits

Ion trap quantum computing is the overarching theme of this thesis, yet it

was only in the realm of imagination when ion trapping was invented. The early

experiments using trapped ions focused on atomic physics phenomena [13{15]. Many

of the techniques developed then are harnessed today to build QCs [16]. With the

advent of commercially available lasers, these techniques have been nearly perfected

and the typical criteria for quantum computing, known as the DiVincenzo criteria

[17], are achieved on trapped ions. The DiVincenzo criteria and their realization on

trapped ions are:

I: initializing the qubits to a known state at the beginning of each experiment [18]

II: relative coherence times are long compared with the time it takes to perform

operations [18,19]

III: high-�delity readout of the qubit register [20,21]

IV: high-�delity control of the qubits [22]

V: ability to extend the quantum computer to a large-scale system [23,24]

9



Since every cooled, trapped ion features identical spectral properties, we can

argue that ions are perfectly reproducible. This is a crucial observation for the

scalability of QC's. Though it does not completely solve the scalability problem,

it simpli�es the requirements greatly. Other experimental candidates for quantum

computing require engineered repeatability for success. Superconducting properties

can change from qubit to qubit and between temperature cycling. To engineer

systems of nitrogen-vacancy qubits, positioning of the nitrogen atom on the order

of the diamond lattice spacing is required. In contrast, all trapped ion qubits will

feature identical electronic transitions every time an ion is loaded into the trap. For

the purposes of quantum computing, the most important atomic transition is the

qubit transition, and there are many impressive, commonly-trapped candidates.

Some of the best trapped-ion qubits have hyper�ne-split ground states that

have microwave splittings and make wonderful qubits.43Ca+ ions can be truly

insensitive to magnetic �eld uctuations in the presence of 146 G magnetic �elds [19].

133Ba+ has a microwave splitting; optical transitions for cooling and detection [25];

and emits photons that are entangled to the qubit which have been converted to

wavelengths favorable for transmission through optical �bers [26]. In this work,

the qubit we use is the hyper�ne-split ground states of171Yb+ . We de�ne j0i as

jF = 0; mF = 0i and j1i as jF = 1; mF = 0i in the 2S1=2 manifold. A qubit can be

expressed in the lab frame as:

j i = cos(�=2) j0i + sin(�=2)ei (! hf + � )t j1i (2.1)
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where! hf = 2� � 12:6428 GHz and� = 2� 310:8B 2; B is in units of Gauss and� is in

units of Hertz. These frequencies de�ne the resonance condition of the qubit. The

dependence on the magnetic �eld is quadratic and the shift can be very small, which

means that the qubit resonance is incredibly stable and can be driven coherently by

electromagnetic �elds of a similar frequency. In contrast, if the frequency of a qubit

splitting is too noisy, the electromagnetic drive will dephase from the qubit. In this

regard, the 171Yb+ qubit has a naturally long coherence time of� 1 second [18].

Using spin-echo pulses, researchers have been able to extend this coherence time to

� 10 minutes [27]. This is comparable to true \atomic clock" transitions that are

insensitive to magnetic �eld uctuations [28], despite having a weak dependence on

magnetic �eld. Since our experiments are typically only a few milliseconds long, the

coherence time of the qubit does not limit us.

Furthermore, the radiative decay lifetime ofj1i to j0i is � 16 minutes, e�ec-

tively zero for the experimental timescales we consider [29]. For this reason, a qubit

prepared in any arbitrary state will remain in that state as long as no light is applied

to it.

2.2 rf Paul Traps in Theory

Trapping ions using electromagnetic �elds dates back to the mid 21th century.

Hans Dehmelt and Wolfgang Paul shared a Nobel prize for their work on two types

of ion traps [30,31]. Hans Dehmelt is accredited with developing the Penning trap,

which uses static electric and magnetic �elds to trap charged particles. These devices
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have been used to make world-class instruments for precision measurements [32{34]

as well as quantum simulators [35, 36]. Wolfgang Paul, on the other hand, worked

on traps which use static and oscillating electric �elds to trap ions. These Paul traps

will be a focus of this chapter and form a bedrock of the research presented in this

thesis. We can begin our discussion of Paul traps by considering con�ning charged

particles in Cartesian coordinates:

V(x; y; z) =
V0

2r 2
0
(�x 2 + �y 2 + z 2) (2.2)

wherer0 is the distance of the particle from central trapping region and� , � , and 

are coe�cients of the quadratic potentials. Applying Gauss' Law, we arrive at the

under-constraining equality:

r 2V(~r) = � + � +  = 0 (2.3)

In a single dimension, it is simple enough to set� to 0 and � = � 1 = �  :

V(x; y; z) =
V0

2r 2
0
(�y 2 � z 2) (2.4)

and

Ex = 0; Ey = �
V0

r 2
0

y; Ez =
V0

r 2
0

z; (2.5)

Due to the symmetries of the trapping �elds, a charged particle injected into

the trap will experience a saddle potential, which only con�nes in one direction.
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Instead, rf Paul traps work by time-varying � and  together as� (t) = �  (t) =

cos(
 rf t), causing the signs ofEy and Ez to oscillate around 0 periodically. These

�elds can be thought of as a rotating saddle pseudo-potential, causing the particle

to experience a harmonic potential.

Now, we can introduce a static component alongside the oscillating potential

of the form:

V(x; y; z) =
Vdc

2
+

Vrf (y2 � z2)
2r 2

0
cos(
 rf t) (2.6)

Where 
 rf is the rf oscillation frequency supplied to the electrodes andVrf is the

voltage of that rf signal. Inside this potential, a charged particle will move according

to the following di�erential equations:

•y +
e

mr 2
0
(Vdc + Vrf cos(
 rf t))y = 0 (2.7)

•z +
e

mr 2
0
(Vdc + Vrf cos(
 rf t))z = 0 (2.8)

Here,e is the electron charge andm is the mass of the charged particle. This set of

equations takes the form of Mathieu di�erential equations which are solved using the

Floquet theorem. See ref. [37] for a thorough derivation of the particle's equations

of motion. The results can be summed up:

y(t) � Y0cos(! yt)(1 +
eVrf

mr 2
0
 2

rf

cos(
 rf t)) (2.9)

z(t) � Z0cos(! zt)(1 +
eVrf

mr 2
0
 2

rf

cos(
 rf t)) (2.10)
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Where Y0 and Z0 are the amplitudes of the ion's slowly oscillating secular motion,

and ! y and ! z are the radial secular frequencies. Additionally, we can see another

term which is typically an order of magnitude smaller than the trapping potentials

that oscillates at the rf drive frequency. This term crucially depends on the distance

of the particle from the null of the potential. If Z0eVrf

mr 2
0 
 2

rf
<< 1, Y0eVrf

mr 2
0 
 2

rf
<< 1, then

the equations of motion inEquation 2.9 are dominated by the terms oscillating

at the secular frequencies. Outside of this region, the particle will experience small

excursions from its nominal position, known as micromotion. It is useful to think

of a rotating saddle potential to imagine micromotion [31]. The particle, no longer

at the center of the saddle, will be repeatably perturbed by the potential barrier.

Although this dislocation is highly coherent and can be considered a feature of an

ion trap, it can also heat ions, causing them to be ejected from the trap, or alter

the laser-atom interactions we use to manipulate the ions. Therefore, minimizing

micromotion is often a crucial step in setting up an ion trap experiment [38]. By

changing the static con�nement, the ions can be moved into the region of the trap

where micromotion is minimized.

Typically, the static axial con�ning term is quadratic, though it can also in-

clude a quartic term. Such con�nement would feature an electric potential of the

form:

V(x; y; z) =
V0

2
+

Vrf (y2 � z2)
2r 2

0
cos(
 rf t) + � 2

0x +
1
3

� 1x3 (2.11)

With a purely quadratic term in the Hamiltonian, the axial con�nement is

harmonic, which causes the ions to bunch together in the middle of the trap and the
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ion positions can be solved for numerically [39]. The additional anharmonic term

allows for more evenly-spaced ions, and also has numerical approaches for solving

for ion position [40].

2.2.1 Ultra-High Vacuum Systems

Aside from being trapped by appropriate trapping potentials, ions need to be

isolated from the outside world using ultra-high vacuum chambers with pressures of

10� 11 Torr. These vacuum chambers are built with fused silica windows, allowing

physicists to either shine laser beams onto the ions and change their internal states

or collect photons that they emit.

Though the ions are insulated from interacting with matter outside their cham-

ber, there are still collisions between trapped ions and background gases insde the

chamber. Stainless steel is generally the material of choice for making ultra-high

vacuum systems, which is infused withH2 molecules during production [41, 42].

These molecules di�use out of the steel over time and into the vacuum chamber.

Methods to rid the steel ofH2 are being researched, including baking the systems

at high temperatures and treating their surfaces [43]. Nevertheless, in ours and

many other experimental systems,H2 remains the dominant background gas after

other gases have been thoroughly removed. It can collide with a trapped ion and

create hydride molecules, induce signi�cant heating and melt the ionic crystal, or

simply make a glancing collision and require more laser cooling before the experi-

ment returns to a useful state. Since the likelihood of background collisions scales
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linearly with ion number, current systems of< 100 qubits will not be limited by

their collision rates [30].

2.3 Trapping Ions in Practice

To create the above-mentioned trapping potentials, we use segmented, gold-

covered alumina blades [11], as depicted inFigure 2.1. The dc electrodes, labeled

E1-E5, carry a static potential between� 10 and 10 V. The rf electrodes have a

structure that mirrors the dc electrodes but the entire electrode carries the same

potential. The two sets of electrodes are matched by another set of dc and rf

electrodes such that we have access to 10 individual dc electrodes and 2 connected rf

electrodes. The four electrodes are positioned to create a 450� m by 325� m rectangle,

as shown inFigure 2.2. These sets of electrodes combine to create the quadrupole

trapping potential that is described byEquation 2.11. The rf potentials are driven

by a signal oscillating at 2� � 23:83 MHz, which cause the ions to experience a

secular frequency of 2� � 3:05 MHz. Based onEquation 2.9, we can infer that the

peak voltage on the rf drive is� 400 V.

The trap is held inside a stainless steal vacuum chamber with high optical

access. A helical quarter-wave rf resonator ( [44, 45]) and several digital to analog

voltage converters are connected to the trap using rf feedthroughs. The resonator is

used to deliver a high-voltage rf �eld to the trap with a narrowly de�ned frequency.

As we will see later, the stability of this �eld has great implications for our ion trap

quantum computer. No substantive changes have been made to the trap or anything
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inside the vacuum chamber since Ref. [11] was published.

In an ideal scenario, electrodes would be con�gured to a�ect a somewhat

at-bottomed axial potential at the center of the trap where the micromotion null

is found. This at-bottomed potential takes the form of a quartic term in the

axial potential (� 1 >> � 0 from Equation 2.11). In practice, we found that the

micromotion null of the trap was actually over electrodes E2 and E9, likely due

to imperfections of the trap assembly. We chose to ground electrodes E4, E5, E6,

and E7 and only use electrodes E1, E2, E3, E8, E9, and E10 for trapping. This

signi�cantly impeded our ability to create the at-bottomed potential [46], so it is

quadratic instead. Without a quartic potential, we cannot create equally spaced ions

that are well-imaged onto the equally spaced optical elements that will be described

later on in Chapter 3.

2.4 Loading the Ion Trap with Ytterbium Ions

To trap 171Yb+ ions, we use a two-photon process that allows for isotope se-

lectivity [47]. We start with � 25 mg of isotopically enriched neutral171Yb stored

in a stainless steel tube pointed towards the ion trap [11]. 95% of the Yb in this

sample is171Y band 5% is174Y b. Then we use a dc current to heat the tube, which

propels neutral Yb atoms through the ion trap. We then focus 398:8 nm laser light

resonant with the 1S0 �! 1 P1 transition of neutral 171Yb perpendicular to the atomic

beam, which decreases the broadening of the transition due to Doppler shifts. The

equivalent transition in 174Yb is more than a GHz detuned, creating isotopic selec-

17




	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	List of Abbreviations
	I Building an Ion Trap Quantum Computer
	Introduction
	Quantum Computers
	Quantum Circuits
	Thesis layout

	Trapping Ytterbium Ions
	Ytterbium Qubits
	rf Paul Traps in Theory
	Ultra-High Vacuum Systems

	Trapping Ions in Practice
	Loading the Ion Trap with Ytterbium Ions
	Ytterbium Energy Levels
	Doppler Cooling
	Initialize
	Detection
	Experimental Setup for Detection
	Other Methods for State Classification

	Coulomb Crystals
	Ion Positions
	Phonon Modes


	Coherent Ion-Laser Interactions
	Coherent Qubit Operations
	Raman Transitions
	Exciting Motion Raman Transitions
	Exciting Motion
	Generating Entanglement
	Digital Quantum Gates
	Experimental Apparatus
	Raman Frequency Comb
	Coherent RF Control

	Coherence
	Laser Coherence
	Phononic Coherence

	Experimental Entangling Gates
	Two-Qubit Entanglement
	Amplitude Modulation (AM) Gates
	Frequency Modulation (FM) Gates

	Gates on Longer Chains


	II Applications
	Quantum Scrambling
	Background
	Measuring Scrambling
	Two Simultaneous Measurements
	Experimental Setup
	Results

	Quantum Error Correction
	Introduction
	Experimental Effort

	Measuring Rényi Entropy
	Measuring Entanglement
	Hamiltonian Mapping
	Trotterization
	Experimental Results

	Bibliography


