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Quantum computing promises solutions to some of the world’s most important

problems that classical computers have failed to address. The trapped-ion-based

quantum computing platform has a lot of advantages for doing so: ions are per-

fectly identical and near-perfectly isolated, feature long coherent times, and allow

high-fidelity individual laser-controlled operations. One of the greatest remaining

obstacles in trapped-ion-based quantum computing is the issue of scalability. The

approach that we take to address this issue is a modular architecture: separate

ion traps, each with a manageable number of ions, are interconnected via photonic

links. To avoid photon-generated crosstalk between qubits and utilize advantages of

different kinds of ions for each role, we use two distinct species – 171Yb+ as memory

qubits and 138Ba+ as communication qubits. The qubits based on 171Yb+ are de-

fined within the hyperfine “clock” states characterized by a very long coherence time

while 138Ba+ ions feature visible-range wavelength emission lines. Current optical

and fiber technologies are more efficient in this range than at shorter wavelengths.



We present a theoretical description and experimental demonstration of the

key elements of a quantum network based on the mixed-species paradigm. The

first one is entanglement between an atomic qubit and the polarization degree of

freedom of a pure single photon. We observe a value of the second-order correlation

function g(2)(0) = (8.1 ± 2.3) × 10−5 without background subtraction, which is

consistent with the lowest reported value in any system. Next, we show mixed-

species entangling gates with two ions using the Mølmer-Sørensen and Cirac-Zoller

protocols. Finally, we theoretically generalize mixed-species entangling gates to

long ion chains and characterize the roles of normal modes there. In addition,

we explore sympathetic cooling efficiency in such mixed-species crystals. Besides

these developments, we demonstrate new techniques for manipulating states within

the D3/2-manifold of zero-nuclear-spin ions – a part of a protected qubit scheme

promising seconds-long coherence times proposed by Aharon et al. in 2013. As a

next step, we provide a detailed description of the protocols for three- and four-

node networks with mixed species, along with a novel design for the third trap with

in-vacuum optics to optimize light collection.
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I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I –
I took the one less traveled by,
And that has made all the difference.

Robert Frost. The Road not Taken
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Chapter 1: Introduction

1.1 Classical and Quantum Computing

The impact of digital computing on practically all areas of our lives is enor-

mous. However, despite the immense success of classical computing, some problems

remain very difficult or impossible to solve this way, despite the steady Moore’s law

exponential growth of computing power. Some important problems in cryptogra-

phy, optimization, quantum chemistry, biochemistry, and many other areas scale

too quickly for any classical computer to tackle in a reasonable time.

With the enormous complexity that even tiny quantum systems of a few hun-

dred constituents possess, it quickly becomes impossible to describe them with the

help of classical computers [1]. However, one could instead leverage this complexity

in a controlled way to solve some very hard problems starting with quantum simula-

tions and going forward to more general kinds of complex problems [2, 3]. This was

the revolutionary idea that Yuri Manin [4], and then Paul Benioff [5], Richard Feyn-

man [6], and others suggested in the early 1980s. Shortly after, David Deutsch [7]

described a universal quantum computer. A few years later, David Deutsch and

Richard Jozsa [8] proposed the first example of a problem that could be solved ef-

ficiently with a deterministic quantum algorithm, but for which no deterministic
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classical algorithm existed. Then, Peter Shor [9] developed one of the most famous

algorithms that directly employ the advantage of quantum computers – quantum

superpositions and entanglement – to solve the large integer factorization problem

in polynomial time. Very soon after, a method for experimental realization of a

controlled-NOT quantum gate in trapped ions was suggested by Ignacio Cirac and

Peter Zoller [10] and implemented by Christopher Monroe and David Wineland [11].

The same year Peter Shor [12] and Andrew Steane [13] simultaneously proposed

quantum error correction, and Lov Grover developed the most efficient database

search algorithm [14].

These early developments paved the way for the modern quantum-computing

boom that is growing by the day and is promising to revolutionize the world again,

just as its classical predecessor have. Some of the most important problems that

that may be solved with the help of quantum computers are novel drug development,

control and general optimization (starting with transportation and logistics), secure

communications and finance, and, of course, further fundamental research in many

scientific disciplines. But as much as quantum computers can be powerful, they are

also difficult to build and operate, and a multitude of discoveries and engineering

solutions have already contributed and will need to be developed before a full-scale

universal quantum computer becomes available. Many different physical platforms

are being explored, but they all have their strengths and weaknesses.
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1.2 Quantum Computing with Ions

Tremendous progress has been made towards building a quantum computer

based both on atomic systems (such as ions [15] and neutral atoms [16]) and on

solid-state systems (such as NV centers [17], superconductors [18], and quantum

dots [19]).

There are set requirements for a system to be a quantum computer. In 2000,

DiVincenzo listed five key criteria for a quantum information processor [20] which

are:

1. A scalable physical system with well characterized qubits;

2. The ability to initialize the state of the qubits to a simple fiducial state, such

as |000 . . . 〉;

3. Long relevant decoherence times, much longer than the gate operation time;

4. A “universal” set of quantum gates;

5. A qubit-specific measurement capability.

Trapped ions are an extremely promising system that fulfills all of the DiVincenzo’s

original criteria with high fidelity. In the case of trapped ions, internal electronic

states of the ion can be used to encode the qubit states |0〉 and |1〉. Since all ions

of a given species and isotope are fundamentally identical and well isolated from

the environment, the microwave or laser frequency used to manipulate each ion

will be the same, and each ion will have the same coherence time given the same
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electromagnetic conditions. That is not the case for many other candidates, such

as NV centers, quantum dots, or superconducting qubits, due to the presence of a

solid-state medium [21, 22, 23].

One way to hold ions is to trap them in RF Paul traps [24] inside a vacuum

chamber, and thus they are well isolated from the environment, which leads to very

long coherence times [25, 26]. Typically, the limitation on the coherence time comes

from magnetic field fluctuations. With the help of dynamical decoupling, coherence

times in trapped ions have been extended up to 10 minutes [27]. Since a typical two-

qubit gate takes 1 µs [28] to 200 µs, the ratio of the coherence time to gate time is

about ∼ 106. This is a much higher ratio than the one achieved in superconducting

qubits [29], NV centers [30, 31], or Rydberg atom qubits [32].

Also, ions can be trapped in an ion trap for many hours, or even days and

months (in the case of heavy ions in deep traps). The achieved lifetimes are much

longer than other candidates have, including Rydberg atoms in optical lattices.

Moreover, trapped ions feature near perfect state initialization and detec-

tion [33, 34]. A readout fidelity higher than 99.99% was achieved [35] in trapped

ions in less than 150 µs detection time. With a shorter detection time of 11 µs, a

readout fidelity of 99.93% was recorded [36]. The achieved initialization and readout

fidelities in trapped ions are higher than in any other quantum platform [37, 38, 39].

Finally, one of the most important features of trapped-ion systems is the ability

to achieve high-fidelity gates. Single-qubit gate fidelities of 99.9999% [33] were

demonstrated with microwave-based operations, which exceeds fidelities in any other

platform [40, 41, 42]. Two-qubit gates with fidelities as high as 99.9% have been
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performed [43, 44].

Currently, the most challenging task in trapped-ion-based quantum computing

is to satisfy the first of DiVincenzo’s criteria – the scalability of the system. As

the number of ions in an ion chain increases, spectral crowding of the motional-

mode structure leads to an increase in stray excitations and the decrease of the

fidelity of entangling operations. In addition, with the increasing number of ions in a

chain, the resulting decrease in inter-ion spacing leads to crosstalk during individual

addressing [45]. Additionally, with a large number of ions N , the motional coupling

parameter (Lamb-Dicke parameter) η ∝ 1√
N

decreases, leading to longer gate times.

Two approaches are mainly used to address this scalability problem with

trapped ions. One possible solution is to design a system in a quantum charge-

coupled device (QCCD) architecture [46], using ion traps which consist of many

trapping regions, and groups of ions can be shuttled to different interaction zones

using dynamic control voltages [47, 48, 49]. In this approach, the main difficulty

comes from heating – or motional excitations – of the ions while they are being

transported, which leads to decreased fidelities of coherent operations. A different

way to scale the system up is via a modular architecture [50, 51], where single traps

can be considered as elementary logical units (ELU) or modules. These modules are

connected by photonic links, which are routed by an N × N optical cross-connect

switch [52] as shown in Fig. 1.1. Information is stored and manipulated using co-

herent interactions within each module, each of which has a manageable number of

qubits.
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Figure 1.1: Modular architecture of large-scale quantum information processing
systems. Each module represented as a red block has a manageable number of
trapped ions in it. In this architecture, within one module ions interact locally via
phonons, while different ion-trap modules are connected via photonic buses shown
in yellow. The N ×N optical cross-connect switch supports a pairwise connectivity
between arbitrary modules. Single photons emitted from communication qubits in
different modules are sent into a photonic Bell state analyzer, which consists of
beamsplitters and photon detectors.

1.3 Quantum Networks with Mixed Species

In the previous section, we discussed approaches to scaling up ion-based quan-

tum information processing systems. In our work, we focus on the modular ar-

chitecture approach, where ion-trap modules are connected via photonic buses.

Such systems can also be used for quantum networks [53, 54, 55], quantum re-

peaters [56, 57, 58, 59], secure quantum key distribution [60, 61, 62], quantum ran-

dom number generation [63, 64, 65], cluster state computation [66, 67], and other

applications of quantum information processing and communication. All of these

applications require high fidelity ion-photon entanglement operations and high pu-
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rity of single photons.

Optical photons are chosen as natural carriers of quantum information, since

they can traverse large distances in room-temperature optical fibers [68, 69, 70] and

through the atmosphere [71, 72]. A parent qubit can be entangled with various de-

grees of freedom of an emitted photon, such as photon number, frequency, or polar-

ization [73]. Moreover, polarization qubits can be converted to time-bin qubits [74]

that can be advantageous for long distance networks. Entanglement between parent

qubits and the corresponding emitted photons has been demonstrated in quan-

tum computing systems based on trapped ions [75], neutral atoms [76], quantum

dots [77], and NV centers [78]. This crucial feature of modular quantum computers

led to the demonstration of teleportation of quantum information between qubits

at a distance in various platforms such as trapped ions [55, 79], neutral atoms [80],

NV centers [30], and superconducting qubits [81].

Note that for a successful implementation of a modular quantum computer,

remote entanglement generation time has to be much shorter than the qubit coher-

ence time. Trapped ions then become an especially attractive candidate for quantum

networks, since they satisfy this requirement much better than any other platform

does [82, 83]. Moreover, identical atomic qubits guarantee indistinguishability of

emitted photons – a critical requirement for quantum computing applications.

To create remote entanglement between separate quantum nodes, we excite

ions in both traps simultaneously, collect the emitted photons into single-mode

fibers, and send them into a photonic Bell state analyzer. The details of the re-

mote entanglement process are given in Appendix A. Since all the processes that
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are relevant to the remote entanglement (photon emission into the correct mode,

photon collection, photon detection) are probabilistic, the success rate of this whole

procedure is low, and we have to initiate excitation events at a high rate. Resonant

light from a photonic entanglement process can destroy the information stored in

the nearby memory qubits. We resolve this crosstalk issue by using two distinct

atomic species.

It is advantageous to use specific properties of each species for certain corre-

sponding tasks. In our experiments, we use 171Yb+ as quantum memory and pro-

cessing qubits because they are insensitive to magnetic field and have long coherence

times [26, 27], while 138Ba+ ions are used as communication qubits since their visi-

ble photon-emission lines at 493 nm are more efficient with current fiber-optics and

detector technologies [84, 85, 86, 87].

In addition to network interconnections, a multi-species setup has another

advantage – the communication ions can also serve for sympathetic cooling of the

memory qubits in the long ion chains [88, 89, 90, 91, 92]. Usually, ions experience

heating caused by fluctuations in the electric potential at the ion positions [93, 94],

or by the shuttling, separation, and recombination of ion strings [95, 96]. The ability

to cool down memory qubits efficiently allows for longer computational times and for

operations with higher fidelity, leading to a wider range of applications for quantum

information processing.

Moreover, a combination of two different ion species can be necessary for

quantum logic spectroscopy [97]. Some atomic and molecular ions lack suitable

transitions for efficient laser cooling, internal state preparation, and detection. An
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auxiliary “logic” ion can allow not just sympathetic laser cooling, but also state

initialization and detection for a simultaneously trapped “spectroscopy” ion.

1.4 Thesis outline

In this thesis, we present a theoretical description and experimental demon-

stration of the key elements of a quantum network based on mixed-species ion-trap

nodes: (i) entanglement between an atomic qubit and a polarization degree of free-

dom of a pure single photon; (ii) mixed-species entangling gates with two ions; and

(iii) generalization of mixed-species entangling gates to long ion chains.

• Chapter 2 gives a description of the atomic ions that we use in the experiments:

171Yb+ memory/processing ions and 138Ba+ communication ions. We start this

discussion with solving the optical Bloch equations for both systems of interest

and then describe the basic operations with 171Yb+ ions. Next, we show the

basic S1/2-manifold qubit manipulation in 138Ba+ and its generalization to the

D3/2 manifold. We provide a scheme to create a protected qubit defined in

the D3/2 manifold with long coherence times and present our experimental

progress in this direction.

• Chapter 3 discusses mixed-species entangling gates – gates between 171Yb+ and

138Ba+ ions. We start with entangling gates in two-ion chains and show the

experimental results for Mølmer-Sørensen and Cirac-Zoller operations. Next,

we characterize the role of normal modes in long ion chains and carry out

simulations of the entangling gates in long ion crystals. We finish this chapter
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with discussion of sympathetic cooling and re-ordering techniques.

• Chapter 4 gives an overview of network experiments with 138Ba+ ions. We

begin with pure single photon generation and the corresponding experimental

results on the second-order correlation function g(2)(0). Then we demonstrate

entanglement between the state of a 138Ba+ ion and a polarization of its emit-

ted photon.

• Chapter 5 concludes this thesis with outlook and future directions. We provide

a detailed description of the protocols for three- and four-node networks with

mixed species, along with a novel design for the third trap. In addition, we

discuss a possibility of using 133Ba+ as memory ions and potential crosstalk

channels.
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Chapter 2: Ytterbium and Barium Atomic Ions

Trapped ions are a leading platform for quantum computing and quantum

communication networks, featuring long coherence times and high-fidelity opera-

tions [98, 99, 100, 101]. To address the challenges of scaling up such systems, we

utilize a modular architecture consisting of separate traps with memory/processing

qubits and communication qubits that support photonic links for remote entangle-

ment [51, 102]. In our experiments, 171Yb+ ions are used for quantum memory and

processing, while 138Ba+ ions are used as communication qubits.

2.1 Optical Bloch Equations

In this section, we discuss, model and characterize the laser-matter interaction

for the systems of our interest – 171Yb+ and 138Ba+ ions. The evolution of these

systems under laser excitation is described by optical Bloch equations. We show

how to construct the optical Bloch equations and solve them for time evolution of

the system subject to arbitrary interaction, as well as for excitation spectrum with

the corresponding dark resonances.

First, in this subsection, we write optical Bloch equations for an atomic system

described by Hamiltonian H = Hatom +Hint, where Hatom is the atomic Hamiltonian
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and Hint is the laser-matter interaction Hamiltonian. We also take into account

damping terms Ldamp due to spontaneous emission and the finite laser linewidth.

As a result, the system is no longer in a pure state and is described by a density

operator ρ̂.

In the basis {|i〉} of the eigenstates |i〉 of Hatom, the density operator ρ̂ is

conventionally written down as:

ρ̂ =
∑
i,j

ρij|i〉〈j|. (2.1)

The time evolution of the density operator is described by the optical Bloch equa-

tions:

dρ̂

dt
= − ı̇

~

[
Ĥ, ρ̂

]
+ Ldamp(ρ̂), (2.2)

where Ĥ is the Hamiltonian of the system including interaction, and Ldamp describes

the damping terms:

Ldamp(ρ̂) = −1

2

∑
k

(
Ĉ†kĈkρ̂+ ρ̂Ĉ†kĈk − 2Ĉkρ̂Ĉ

†
k

)
. (2.3)

Here, the operators Ĉk govern various dissipative processes, and k enumerates them.

The processes of decay from a level i to a level j with the corresponding decay rate

Γij are described as:

Ĉk =
√

Γij|j〉〈i|. (2.4)

The dissipataion due to the finite laser linewidths Γlas is accounted for via the
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operators in the form:

Ĉk =
√

2Γlas|i〉〈i|. (2.5)

We can rewrite Eq. (2.2) as:

dρ̂

dt
= − ı̇

~

[(
Ĥ − ı̇~

2

∑
k

Ĉ†kĈk

)
ρ̂− ρ̂

(
Ĥ +

ı̇~
2

∑
k

Ĉ†kĈk

)]
+
∑
k

Ĉkρ̂Ĉ
†
k

= − ı̇
~

[
H̃ρ̂− ρ̂H̃†

]
+
∑
k

Ĉkρ̂Ĉ
†
k, (2.6)

where

H̃ = Ĥ − ı̇~
2

∑
k

Ĉ†kĈk. (2.7)

Also we take into account the normalization condition:

∑
i

ρii = 1. (2.8)

The Bloch equation in components has the following form:

dρrs
dt

= − ı̇
~

〈
r
∣∣∣[H̃ρ− ρH̃†]∣∣∣ s〉+

〈
r

∣∣∣∣∣∑
k

ĈkρĈ
†
k

∣∣∣∣∣ s
〉

=
∑
mj

Lrs,mjρmj, (2.9)

where

Lrs,mj = − ı̇
~

[
H̃rmδjs − H̃†jsδrm

]
+
∑
k

ĈkrmĈ
†
kjs
. (2.10)

Now we apply the optical Bloch equations for various atomic systems such as 171Yb+

(a memory ion) and 138Ba+ (a communication ion), to find excitation spectra with
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the corresponding dark resonances. Also we consider 174Yb+ system, since 174Yb+

isotope was explored in our group before [103, 104], and it might turn out to be

useful in the future experiments. For example, in Section 3.2.4, we will discuss a

possibility of using 174Yb+ ions to sympathetically cool 171Yb+ ones.

2.1.1 Four-level system. 171Yb+

a. Atomic Hamiltonian

171Yb+ has non-zero nuclear spin
(
Sn = 1

2

)
, and in a magnetic field, the splitting of

the energy levels is given by:

∆E = mFgFµB

∣∣∣ ~B∣∣∣ = mFgFu, (2.11)

where u = µB

∣∣∣ ~B∣∣∣, µB is the Bohr magneton, ~B is the magnetic field, and mF is

the projection of the full angular momentum ~F = ~J + ~Sn. In the case of non-zero

nuclear spin, the Lande factors [105] are given by the following formula:

gF = gJ
F (F + 1) + J(J + 1)− Sn(Sn + 1)

2F (F + 1)
, (2.12)

where

gJ = 1 +
J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)
, (2.13)

with the total angular momentum ~J = ~L+ ~S.

In Fig. 2.1, the diagram of 171Yb+ energy levels is shown. The main transition

at 369 nm, between the S1/2 and P1/2 states, is utilized to perform Doppler cooling,

14



12.6 GHz
2S1/2

2.1 GHz
2P1/2

δZeeman = 1.4 MHz/G

36
9.

5 
nm

 (8
11

 T
H

z)

F=1

F=1

F=0

F=0

2D3/2
F=2

F=1
0.9 GHz

3[3/2]1/2 F=0

F=1
2.2 GHz

93
5 

nm

2F7/2

F=4

F=3

F=3

F=2
1[5/2]5/2

63
8 

nm

0

1

2.438 µm

29
7 

nm

τ = 8.12 ns

τ = 37.7 ns

τ = 52.7 ms

τ = 5.4 yrs

2P3/2

10
0 

TH
z

(9
9.

5%
)

(0.5%)

(1
.8

%
)

(9
8.

2%
)

Figure 3.3: Relevant energy levels of 171Yb+. The 2S1/2 and 2P1/2 levels at 369 nm
(811 THz) nearly form a cycling transition, allowing for efficient Doppler cooling. 0.5%
of scattering events place the ion in the 2D3/2 state, from which it must be repumped
by a 935 nm (321 THz) laser. To repump out of both hyperfine states of the D level,
sidebands at 3.07 GHz are added to the repump laser. To prevent population trapping in
the F = 0, mF = 0 level of the 2S1/2 manifold, sidebands at 14.7 GHz are added to the
369 nm cooling laser. A final repump laser at 638 nm (469 THz) is used to pump out of
the 2F7/2 state, which is populated via collisions with background gas atoms a few times
per hour.

50

Figure 2.1: Energy level diagram for 171Yb+. The qubit is defined in the S1/2

ground state hyperfine “clock” levels denoted |0〉 and |1〉. The main transition at
369 nm shown in purple, between S1/2 and P1/2, is nearly a cycling transition. When
the ion decays to D3/2 manifold (0.5% of the time), it is repumped by 935 nm laser
to the 3[3/2]1/2 state, which quickly decays back to the S1/2 manifold.

state initialization, and state readout using state-dependent fluorescence technique

that we will discuss in Section 2.2.

The scheme of the 171Yb+ levels relevant for these calculations – these levels

nearly form a cycling transition – is presented in Fig. 2.2. According to this scheme,

gF = 1.

Then gF ·mF (|1〉) = −1, gF ·mF (|2〉) = 0, and gF ·mF (|3〉) = 1.
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mF = −1

mF = 0

mF = 1

2S1/2

2P1/2

F = 1

F = 0

|1〉
|2〉

|3〉

|4〉

Figure 2.2: Hyperfine structure level scheme of 171Yb+ with Zeeman splitting rele-
vant for calculations.

The atomic Hamiltonian is given by:

Ĥatom =
4∑

a=1

~ωa|a〉〈a|

= ~(ωs − ωp − u)|1〉〈1|+ ~(ωs − ωp)|2〉〈2|+ ~(ωs − ωp + u)|3〉〈3|, (2.14)

where ~ωs and ~ωp represent energy levels of the S1/2 and P1/2 states. Here we

assign zero energy to the state |4〉.

b. Interaction Hamiltonian

Let us choose the z-axis to be along the magnetic field, and the y-axis to be along

the light propagation direction. Then the polarization vector lies in the (x-z)-plane:

~ε =


sin(α)

0

cos(α)

 . (2.15)
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The dipole moment operator is written as:

~̂D = ~D14|1〉〈4|+ ~D24|2〉〈4|+ ~D34|3〉〈4|+ H.c., (2.16)

~Dab = 〈a|e~r|b〉.

We express the position operator in terms of the spherical harmonics:

~r =


x

y

z

 =



1√
2

(
Q−1

1 −Q1
1

)
ı̇√
2

(
Q−1

1 +Q1
1

)
Q0

1


, (2.17)

where

Qm
l =

√
4π

2l + 1
rl Y m

l (θ, φ). (2.18)

The corresponding matrix element is given by:

〈a|Qm
1 |b〉 = 〈naLaSaSnaFamFa

| Qm
1 | nbLbSbSnbFbmFb

〉. (2.19)

First, we consider the coupling between the orbital momentum ~L and electron spin

~S that is described by a Clebsch-Gordan coefficient C
jmj
lmlsms

, and after that the

coupling between the total momentum ~J and the nuclear spin ~Sn described by

17



CFmF
jmjsnmsn

[106].

〈a|Qm
1 |b〉 =

∑
mlamsamsna

∑
mlbmsbmsnb

C
FamFa
jamjasnamsna

C
jamja
lamlasamsa

C
FbmFb
jbmjbsnbmsnb

C
jbmjb
lbmlbsbmsb

× 〈Lamla |Qm
1 |Lbmlb〉δmsamsbδmsnamsnb . (2.20)

According to the Eckart-Wigner theorem,

〈Lamla | Qm
1 | Lbmlb〉 =

1√
2La + 1

C
lamla
lbmlb1m〈naLa || Q1 || nbLb〉, (2.21)

where 〈naLa || Q1 || nbLb〉 = d is the reduced matrix element that does not depend

on mF . Calculating the matrix elements using the Clebsch-Gordan coefficients, we

get:

~D41 = d



− 1√
6

1√
6

0


, ~D42 = d



0

0

− 1√
3


, ~D43 = d



1√
6

1√
6

0


. (2.22)

Since the interaction Hamiltonian

Ĥint ∼ − ~̂D · ~ε, (2.23)
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then

(Hint)14 = −Ω
1√
6

sinα eı̇ωt,

(Hint)24 = −Ω
1√
3

cosα eı̇ωt, (2.24)

(Hint)34 = Ω
1√
6

sinα eı̇ωt,

where Ω is a Rabi frequency, and ω is a frequency of the laser field.

The total Hamiltonian has the following form:

H =



ωs − ωp − u 0 0 −Ω
1√
6

sinα eı̇ωt

0 ωs − ωp 0 −Ω
1√
3

cosα eı̇ωt

0 0 ωs − ωp + u Ω
1√
6

sinα eı̇ωt

−Ω
1√
6

sinα e−ı̇ωt −Ω
1√
3

cosα e−ı̇ωt Ω
1√
6

sinα e−ı̇ωt 0


.

(2.25)

Going to the rotating frame and applying the rotating wave approximation (RWA),

we get

H =



∆− u 0 0 −Ω
1√
6

sinα

0 ∆ 0 −Ω
1√
3

cosα

0 0 ∆ + u Ω
1√
6

sinα

−Ω
1√
6

sinα −Ω
1√
3

cosα Ω
1√
6

sinα 0


, (2.26)
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where ∆ = ω − ωs + ωp is the laser detuning.

c. Damping terms

Now, let us consider the dissipative processes.

If the total decay rate from the state |4〉 is equal to Γ, then using Eq. (2.22), we

find

Γ14 = Γ24 = Γ34 =
1

3
Γ. (2.27)

Consequently, the corresponding operators have the following form:

C1 =

√
Γ

3
|1〉〈4|,

C2 =

√
Γ

3
|2〉〈4|,

C3 =

√
Γ

3
|3〉〈4|, (2.28)

C4 =
√

2Γlas (|1〉〈1|+ |2〉〈2|+ |3〉〈3|) .

d. Results

In order to verify the calculation results, we compare the excited-state population

ρ44 with the analytic steady-state solution (assuming the laser linewidth is equal to

zero) from Ref. [107]:

ρ44 =
3

4

Ω2 cos2 α sin2 α

1 + 3 cos2 α

1

(γ′/2)2 + ∆2
, (2.29)
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where

(
γ′

2

)2

=

(
Γ

2

)2

+ Ω2 cos2 α
1− 3 cos2 α

1 + 3 cos2 α
+

cos2 α

1 + 3 cos2 α

(
Ω4

4u2
+ 4u2

)
. (2.30)
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Figure 2.3: Excitation spectrum of a four-level 171Yb+. Parameters: Γlas = 0,
u = 11.35 MHz, α = arccos(1/

√
3), saturation parameter s = Ω/Γ = 1. Red

dots represent our solutions of the optical Bloch equations for a four-level model of
171Yb+; black solid curve is obtained from Eq. (2.29).

In Fig. 2.3, we demonstrate a comparison between our solutions of the optical

Bloch equations for a four-level model of 171Yb+ – shown by red dots – and the

analytic steady-state solution given by Eq. (2.29) – shown by black curve. We find

a perfect agreement between the two. The parameters of the magnetic field u and
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the laser-polarization angle α are chosen to maximize the excited-state population

ρe = ρ44, or in other words, the scattering rate S, since S = γρe. To maximize ρ44,

we need to minimize (γ′/2)2 from Eqs. (2.29) and (2.30), and that means that for a

given Rabi frequency Ω the magnetic-field strength u is chosen to be u = Ω/2 and

the angle is α = arccos(1/
√

3). This particular laser-polarization angle makes the

three transition Rabi frequencies equal.

Moreover, when we choose α = 0, in our calculations we achieve zero scattering

rate, which matches with Eq. (2.29) and ρ44 = 0. In this case, the laser light has

only π polarization, and the ion quickly decays to a dark state – a combination of

the edge states |1〉 and |3〉 from Fig. 2.2. Similarly, when α = π/2, our calculations

and Eq. (2.29) give us ρ44 = 0. Here, the laser light has only σ polarization, and

the ion quickly decays to a dark state |2〉.

Furthermore, when the magnetic field B = 0, in 171Yb+ level configuration,

there are always two dark states for any laser polarization according to Ref. [107],

and the ion does not fluoresce at all. In our calculations, zero excited-state popula-

tion was obtained in accordance with this analytic finding.

2.1.2 Four-level system. 174Yb+

a. Atomic Hamiltonian

174Yb+ has zero nuclear spin, and in a magnetic field, the splitting of the energy

levels is given by:

∆E = mJgJµB

∣∣∣ ~B∣∣∣ = mJgJu. (2.31)
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Fine structure level scheme of 174Yb+ is presented in Fig. 2.4.

mJ = −1/2

mJ = 1/2

mJ = −1/2

mJ = 1/2

2S1/2

2P1/2

|1〉
|2〉

|3〉
|4〉

Figure 2.4: Fine structure level scheme of 174Yb+ with Zeeman splitting.

According to this scheme, gJ(2S1/2) = 2 and gJ(2P1/2) = 2/3, thus we get

gJ ·mJ(|1〉) = −1, gJ ·mJ(|2〉) = 1, gJ ·mJ(|3〉) = −1/3, and gJ ·mJ(|4〉) = 1/3.

The atomic Hamiltonian is given by:

Ĥatom =
4∑

a=1

~ωa|a〉〈a| (2.32)

= ~(ωs − ωp − u)|1〉〈1|+ ~(ωs − ωp + u)|2〉〈2| − 1

3
~u|3〉〈3|+ 1

3
~u|4〉〈4|,

here we assign zero energy to the middle between the states |3〉 and |4〉.

b. Interaction Hamiltonian

Similar to the case of 171Yb+, we choose z-axis along the magnetic field, and y-

axis along the light propagation direction, so that the polarization vector lies in the
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x-z-plane:

~ε =


sin(α)

0

cos(α)

 , (2.33)

The dipole moment operator is:

~̂D = ~D13|1〉〈3|+ ~D14|1〉〈4|+ ~D23|2〉〈3|+ ~D24|2〉〈4|+ H.c., (2.34)

~Dab = 〈a|e~r|b〉.

174Yb+ has zero nuclear spin. Therefore, in contrast to Eq. (2.20), the corresponding

matrix elements are given by:

〈a|Qm
1 |b〉 =

∑
mlamsa

∑
mlbmsb

C
jamja
lamlasamsa

C
jbmjb
lbmlbsbmsb

〈Lamla | Qm
1 | Lbmlb〉δmsamsb . (2.35)

According to the Eckhart-Wigner theorem,

〈Lamla | Qm
1 | Lbmlb〉 =

1√
2La + 1

C
lamla
lbmlb1m〈naLa || Q1 || nbLb〉, (2.36)

where 〈naLa || Q1 || nbLb〉 = d is the reduced matrix element that does not depend

on mJ .
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Performing the calculations with the Clebsch-Gordan coefficients, we get:

~D31 = d



0

0

1√
3


, ~D41 = d



− 1√
3

ı̇√
3

0


, ~D32 = d



− 1√
3

− ı̇√
3

0


, ~D42 = d


0

0

− 1√
3

 .

(2.37)

And the total Hamiltonian in the rotating wave approximation is:

H =



∆− u 0 Ω
1√
3

cosα −Ω
1√
3

sinα

0 ∆ + u −Ω
1√
3

sinα −Ω
1√
3

cosα

Ω
1√
3

cosα −Ω
1√
3

sinα −1

3
u 0

−Ω
1√
3

sinα −Ω
1√
3

cosα 0
1

3
u


, (2.38)

where ∆ = ω − ωs + ωp is the laser detuning.

c. Damping terms

Now, let us consider the dissipative processes.

If the total decay rate from the state |3〉 is equal to Γ, and similarly the total decay

rate from the state |4〉 is equal to Γ, then, using Eq. (2.37), we find

Γ13 = Γ24 =
1

3
Γ, Γ23 = Γ14 =

2

3
Γ. (2.39)
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Consequently, the corresponding operators are:

C1 =

√
2Γ

3
|1〉〈4|,

C2 =

√
2Γ

3
|2〉〈3|,

C3 =

√
Γ

3
(|1〉〈3| − |2〉〈4|) , (2.40)

C4 =
√

2Γlas (|1〉〈1|+ |2〉〈2|) .

d. Results

The results of this calculation are given in Fig. 2.5. In order to verify them, we

compare the excited-state population as a solution to the optical Bloch equations

with the analytic steady-state solution (assuming the laser linewidth is equal to zero)

in a zero magnetic field. In this case, the ion is described as a two-level system:

ρexc =

1

2
· I
Isat

1 +
I

Isat

+ 4

(
∆

Γ

)2 . (2.41)

The calculations that we perform and the analytical solution are again in a

perfect agreement with each other.

The maximum possible scattering rate can be achieved with the laser inten-

sities much higher than the saturation intensity Isat. Thus, with
I

Isat

� 1, we get

S =
Γ

2
, and our calculations match this result. Additionally, for I = Isat, and

S = Γ/4, our calculations again agree with the analytical result.

At this point we have only discussed the case of zero magnetic field B = 0 for a

four-level model of 174Yb+. When the magnetic field is non-zero, B 6= 0, the highest
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Figure 2.5: Excitation spectrum of 174Yb+. Parameters: Γlas = 0, u = 0, α = 0,
saturation parameter s = Ω/Γ = 1. Red dots represent our calculations of the Bloch
equations for a four-level model of 174Yb+; black solid curve describes a two-level
model solution, which is identical to the four-level one at zero magnetic field.

scattering rate can be achieved with the laser-polarization angle α = 0 according to

our calculations. This angle α corresponds to the π polarization of the laser light.

According to Ref. [107], when circularly polarized light is applied, there is always

a dark state in the case of 174Yb+ system. Therefore, this dark state decreases the

brightness of the ion when the light is not perfectly π polarized.
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2.1.3 Eight-level system. 138Ba+

The following calculations are based in part on Refs. [108, 109].

a. Atomic Hamiltonian

138Ba+ also has zero nuclear spin, as well as 174Yb+, and in a magnetic field, the

splitting of the energy levels is given by:

∆E = mJgJµB

∣∣∣ ~B∣∣∣ = mJgJu. (2.42)

Fine structure level scheme of 138Ba+ is presented in Fig. 2.6.

Figure 2.6: Fine structure level scheme of 138Ba+ with Zeeman splitting.
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The atomic Hamiltonian has the following form:

Ĥatom =
8∑

a=1

~ωa|a〉〈a| = ~(ωs − ωp − u)|1〉〈1|+ ~(ωs − ωp + u)|2〉〈2| (2.43)

− 1

3
~u|3〉〈3|+ 1

3
~u|4〉〈4|+ ~(ωD − ωp −

6

5
u)|5〉〈5|+ ~(ωD − ωp −

2

5
u)|6〉〈6|

+ ~(ωD − ωp +
2

5
u)|7〉〈7|+ ~(ωD − ωp +

6

5
u)|8〉〈8|,

where we assign zero energy to the middle between the energies of the states |3〉 and

|4〉.

b. Interaction Hamiltonian

Similar to the previous cases, the dipole moment operator is given by:

~̂D = ~D13|1〉〈3|+ ~D14|1〉〈4|+ ~D23|2〉〈3|+ ~D24|2〉〈4|+ ~D53|5〉〈3|+ ~D54|5〉〈4| (2.44)

+ ~D63|6〉〈3|+ ~D64|6〉〈4|+ ~D73|7〉〈3|+ ~D74|7〉〈4|+ ~D83|8〉〈3|+ ~D84|8〉〈4|+ H.c.,

~Dij = 〈a|e~r|b〉.
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Performing the calculations with the Clebsch-Gordan coefficients, we get:

~D31 = dg



0

0

1√
3


, ~D41 = dg



− 1√
3

ı̇√
3

0


, ~D32 = dg



− 1√
3

− ı̇√
3

0


, ~D31 = dg



0

0

− 1√
3


,

~D35 = dr



−1

2

− ı̇
2

0


, ~D45 = dr



0

0

0


, ~D36 = dr



0

0

− 1√
3


, ~D46 = dr



− 1

2
√

3

ı̇

2
√

3

0


,

(2.45)

~D37 = dr



1

2
√

3

ı̇

2
√

3

0


, ~D47 = dr



0

0

− 1√
3


, ~D38 = dr



0

0

0


, ~D48 = dr



−1

2

ı̇

2

0


.

And the total Hamiltonian in the rotating wave approximation (RWA) is pre-
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sented in the matrix form:

H =



∆g − u 0
Ωg√

3
cosα −Ωg√

3
sinα 0 0 0 0

0 ∆g + u −Ωg√
3

sinα −Ωg√
3

cosα 0 0 0 0

Ωg√
3

cosα −Ωg√
3

sinα −1

3
u 0 −Ωr

2
sinα − Ωr√

3
cosα

Ωr

2
√

3
sinα 0

−Ωg√
3

sinα −Ωg√
3

cosα 0
1

3
u 0 − Ωr

2
√

3
sinα − Ωr√

3
cosα

Ωr

2
sinα

0 0 −Ωr

2
sinα 0 ∆r −

6

5
u 0 0 0

0 0 − Ωr√
3

cosα − Ωr

2
√

3
sinα 0 ∆r −

2

5
u 0 0

0 0
Ωr

2
√

3
sinα − Ωr√

3
cosα 0 0 ∆r +

2

5
u 0

0 0 0
Ωr

2
sinα 0 0 0 ∆r +

6

5
u



,

(2.46)

where the corresponding detunings ∆g = ωg − ωs + ωp and ∆r = ωr − ωs + ωp .

c. Damping terms

Now, let us consider the dissipative processes such as spontaneous emission and the

finite laser linewidth.
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In this case, there are two decay rates Γg and Γr. Using Eq. (2.45), we find

Γ13 = Γ24 =
1

3
Γg, Γ23 = Γ14 =

2

3
Γg,

Γ35 = Γ48 =
1

2
Γr, Γ36 = Γ47 =

1

3
Γr, (2.47)

Γ37 = Γ46 =
1

6
Γr, Γ38 = Γ45 = 0.

Consequently, the corresponding operators are:

C1 =

√
2Γg
3
|1〉〈4|,

C2 =

√
2Γg
3
|2〉〈3|,

C3 =

√
Γg
3

(|1〉〈3| − |2〉〈4|) ,

C4 =

√
Γr
2
|5〉〈3|+

√
Γr
6
|6〉〈4|,

C5 =

√
Γr
2
|8〉〈4|+

√
Γr
6
|7〉〈3|, (2.48)

C6 =

√
Γr
3

(|6〉〈3|+ |7〉〈4|) ,

C7 =
√

2Γlasg (|1〉〈1|+ |2〉〈2|) ,

C8 =
√

2Γlasr (|5〉〈5|+ |6〉〈6|+ |7〉〈7|+ |8〉〈8|) ,

d. Results

In Figs. 2.7 – 2.8, we show the excitation spectrum of an eight-level model of 138Ba+

as a function of 493 nm and 650 nm laser frequencies (see Fig. 2.6), respectively. The

experimental data shown in solid black dots is obtained by counting a photon number

on a detector – on an APD in our case. The solid line is a fit to the experimental
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data calculated with the eight-level Bloch equations. The disagreement between the

fit and the experimental data can be caused by a frequency drift in the lock or larger

laser linewidth than assumed.
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Figure 2.7: Excitation spectrum of an eight-level model of 138Ba+ as a function of
493 nm laser frequency. Parameters: ωr = 461.311845 THz, u = 11.35 MHz, α =
15◦, saturation parameters sg = Ωg/Γ = 1 and sr = Ωr/Γ = 3.8. The experimental
data is presented in black dots; the solid black curve represents our solution of the
optical Bloch equations fitted to the data over the saturation parameters sg and sr
and the angle α.
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Figure 2.8: Excitation spectrum of an eight-level model of 138Ba+ as a function of
650 nm laser frequency. Parameters: ωg = 607.42614THz, u = 11.35 MHz, α = 80◦,
saturation parameters sg = Ωg/Γ = 1.6 and sr = Ωr/Γ = 1.4. The experimental
data is presented in solid black dots; the solid black curve represents our solution
of the optical Bloch equations fitted to the data over the saturation parameters sg
and sr and the angle α.
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2.2 Ytterbium operations

In the network experiments, 171Yb+ ions are used for quantum memory and

processing. The qubits are based on the hyperfine “clock” sublevels of the S1/2

ground manifold:

|F = 0,mF = 0〉 ≡ |0〉 and |F = 1,mF = 0〉 ≡ |1〉,

and they are insensitive to magnetic field fluctuations and hence have long coherence

times [26, 27]. In reality, the qubit splitting is magnetically insensitive only to the

second order and is given by: 12642812118.5 Hz + ∆, where ∆ = 310.8 B2 Hz with

the magnetic field B in Gauss. In our experiments, B ∼ 5 G making this sensitivity

negligible.

In Fig. 2.1, the diagram of the most relevant 171Yb+ energy levels is shown.

The main transition at 369 nm, between the S1/2 and P1/2 states, is utilized to per-

form Doppler cooling, state initialization, and state readout using state-dependent

fluorescence technique. 0.5% of the time the ion decays to D3/2 manifold, and – by

sending 935 nm light with 3.07 GHz sidebands produced by an electro-optic mod-

ulator (EOM) – we can repump the ion to the 3[3/2]1/2 state, which then quickly

decays back to the S1/2 manifold [110, 111].

2.2.1 State initialization and readout

To perform Doppler cooling on 171Yb+ ions, we apply a 369 nm laser light

which is red-detuned [111, 112] from the S1/2 |F = 1〉 ↔ P1/2 |F = 0〉 transition.
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The most efficient cooling can be achieved when the laser is detuned by half of the 20

MHz transition linewidth away from the resonance. In order to cool motional modes

in all three dimensions, the 369 nm laser beam should form an acute angle with the

principal axes of the trap [113]. Due to off-resonant coupling to the P1/2 |F = 1〉

manifold, the ion might be trapped in the state |0〉. To avoid this issue, we add

14.7 GHz = (12.6 + 2.1) GHz sidebands that return the ion to the main cooling

cycle via the S1/2 |F = 0〉 ↔ P1/2 |F = 1〉 transition as shown in Fig. 2.9(a).

Optical pumping to the |0〉 state is an important step at the beginning of each

experiment. In Fig. 2.9(b), the scheme of the qubit initialization is presented. By

adding 2.1 GHz sidebands to the resonant 369 nm beam, we can excite the ion from

the state S1/2 |F = 1〉 to P1/2 |F = 1〉. Then, with a probability 1/3 the ion decays

to the |0〉 state, where it is trapped within a few µs. Since the P1/2 states also

decay to the D3/2 manifold, we keep the 935 nm repump laser beam on during the

initialization step.

In the case of 171Yb+, the qubit state detection is performed with the help of

the standard ion fluorescence techniques [114, 115] as illustrated in Fig. 2.9(c). Dur-

ing the detection, we send 369 nm laser beam resonant with S1/2 |F = 1〉 ↔ P1/2 |F = 0〉

transition. If the ion is prepared in the |0〉 state, then it will not scatter any light,

since the laser is detuned by 14.7 GHz from the closest allowed transition. On the

other hand, if the ion is prepared in the |1〉 state, then many scattered photons are

observed, since the laser is nearly on resonance. High fidelity above 99.9% [36, 116]

can be achieved with this detection scheme. Additionally, in contrast to the 138Ba+

detection scheme discussed in Section 2.3.1.1, this detection is deterministic. We
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Figure 2.9: 171Yb+ processes when 369 nm laser light is applied. (a) Doppler
cooling with 369 nm laser beam detuned from the resonance by 10 MHz. Since due
to off-resonant coupling to the P1/2 |F = 1〉 manifold, the ion can decay to the state
|0〉, 14.7 GHz sidebands are applied to return the ion in the main cooling cycle.
(b) Optical pumping. We add 2.1 GHz sidebands to the resonant beam to excite
the ion from the state S1/2 |F = 1〉 to P1/2 |F = 1〉. Then, with a probability 1/3
the ion decays to the |0〉 state, where it is trapped. (c) Qubit state detection. The
369 nm light resonant to S1/2 |F = 1〉 ↔ P1/2 |F = 0〉 transition is applied. The ion
prepared in the state |1〉 emits a lot of photons, while in the state |0〉, it does not,
because the laser is detuned by 14.7 GHz from the closest allowed transition.

determine the state of the ion by the number of photons detected by the PMT or

APD during the detection interval. The ion is defined to be in the state |1〉, if we

observe more than one photon during detection, and in the state |0〉, if we observe

one or zero photons. The main error source is due to off-resonant excitation to the

P1/2 |F = 1〉 state if the ion being detected is in the state |1〉 [26, 117], because from

the excited P1/2 |F = 1〉 state, the electron can decay to the ground S1/2 |F = 0〉

state and remains there.
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2.2.2 Single qubit rotations

One simple way to drive rotations between 171Yb+ qubit states is by applying

microwaves resonant with the 12.6 GHz hyperfine splitting. In the experiment, we

use a microwave horn directed towards the center of the trap with about 1 W of

microwave power. To make rotations faster, we can change the direction of the horn

and the polarizarions by physically moving or rotating the horn. The derivation of

the coupling between the microwaves and qubit is given in Ref. [118] in detail. A

typical Rabi flopping driven by microwaves is presented in Fig. 2.10.
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Figure 2.3: Microwave Rotations on a single 171Yb+ ion. Probability of finding the

ion in the |⇑〉 is plotted as a function of applied microwave time.

19

Figure 2.10: Microwave rotations between the states |0〉 and |1〉 in 171Yb+. In
the beginning of the experiment, the system is initialized in the |0〉 state, then the
microwave radiation is applied for a varied time.

Although microwaves are useful as a tool for detection characterization, diag-

nostics, and Ramsey-type experiments, they do not resolve the collective motion of

the ions. As a result, microwaves cannot be used for two-qubit entanglement opera-

tions. Instead, for this purpose, we apply a pair of Raman beams which couple the
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ground manifold substates through a virtual excited state.

Coherent qubit operations in 171Yb+ are performed by a pair of Raman beams

coming from the Spectra Physics Vanguard pulsed laser at 355 nm wavelength which

is the third harmonic of its 1064 nm Nd:YVO4 source. In frequency space, each beam

can be represented by a pulse train [119] with comb teeth separated by the repetition

rate of the laser, νr ≈ 80 MHz. A pair of comb teeth separated in frequency space

can be chosen such that nνr = νHF−δ, where νHF = 12.6 GHz is the qubit splitting.

n = 158 in our experiment, and the difference δ ∼ 10 MHz can be compensated for

using an AOM. We observe that the laser repetition rate is unstable, therefore the

beatnote stabilization of mode-locked laser is necessary. It can be accomplished via

an AOM beatnote lock [120, 121].

Even though 355 nm laser used in the experiments is pulsed, it can be demon-

strated that these optical fields can be treated as continuous waves (CW) [122]

without loss of generality. Raman beams off-resonantly couple the ground states,

|0〉 and |1〉, to an excited state |e〉 forming a Λ-system. Then, the two-photon Rabi

frequency can be derived [103]:

Ω =
g∗0,eg1,e

2∆e

, (2.49)

where g0,e and g1,e are single-photon Rabi frequencies, and ∆e is the detuning from

the excited state |e〉. In the case of multiple excited states |i〉 involved in the

stimulated Raman transitions, the two-photon Rabi frequency has the following

39



form:

Ω =
∑
i

g∗0,ig1,i

2∆i

. (2.50)

In the case of 171Yb+, the ground states are coupled to both P1/2 and P3/2 manifolds.

The corresponding calculations are discussed in Appendix C in detail, where we

compare 171Yb+ and 138Ba+ ions together.

2.3 Barium operations

In Section 2.1.3, we considered the relevant level structure of 138Ba+ ion. The

conventional 138Ba+ qubit is defined in the S1/2 manifold. In this section, we show

the basic S1/2-manifold qubit manipulation in 138Ba+ and its generalization to the

D3/2 manifold, including a novel detection technique for all four states in the D3/2

manifold and relevant coherent operations. In addition, we provide a scheme to

create a protected qubit defined in the D3/2 manifold with seconds-long coherence

times and present our experimental progress in this direction.

2.3.1 S-manifold operations

In this section, we discuss the implementation of the state preparation, state

detection, and qubit manipulations in the S1/2 manifold of 138Ba+. In the mixed-

species network architecture, 138Ba+ ions are used as communication qubits, and

they provide a link between 171Yb+ memory qubits. In the future network exper-

iments, the 138Ba+ state detection is not required, since the information stored in

138Ba+ qubit can be swapped to 171Yb+ qubit through Coulomb-based gates, but
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the rotations of the 138Ba+ qubit will always be needed in the experiments. How-

ever, 138Ba+ qubit state operations, such as detection and rotations, are useful for

calibration and diagnostics of the system.

2.3.1.1 State initialization and readout

Usually in 138Ba+, the qubit is defined in the 6S1/2 ground-state manifold with

the “spin states” |↓〉 = |mj = −1/2〉 and |↑〉 = |mj = 1/2〉. Since there is no closed

cycling transition in 138Ba+ ion, we introduced a probabilistic detection scheme for

the states in the S1/2-manifold [123].

As shown in Fig. 2.11(a), 138Ba+ ion can be initialized in |↑〉 state by applying

493 nm σ+ beam and 650 nm light with all the polarizations to repump population

from D3/2 manifold, and similarly, we can initialize the ion in |↓〉 state by applying

493 nm σ− beam and 650 nm light with all the polarizations.

Within the probabilistic detection approach, we apply 493 nm σ+ and σ−

pulses (see Fig. 2.11(a)) and record the average number of 493 nm photons collected

before the ion gets optically pumped into a dark state. For example, if the ion is

in the | ↓〉 state, and we apply 493 nm σ+ light only, on average the ion scatters

2.8 493 nm photons before getting optically pumped into the | ↑〉 state. On the

contrary, the ion in the | ↑〉 state does not scatter any photons when the σ+ light

is applied. Generally speaking, we can extract some information about the qubit

state by applying only one of the 493 nm σ beams, however, to reduce statistical

effects on state detection accuracy, we alternate between 493 nm σ+ and σ− pulses.
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Additionally, this method does not strongly depend on the intensity and frequency

noise of the 493 nm laser.

The conventional detection method [124, 125] requires two additional lasers

– one with a narrow line-width for shelving and another one for depopulating the

long-lived state. Our technique does not require additional lasers.

From now on, we use the notations |s1/2+mi〉 ≡ |S1/2;mi〉, where si, i = 0, 1,

are the S1/2 sub-level populations. These populations can be found by:

s0 =
n−

n+ + n−
, s1 =

n+

n+ + n−
, (2.51)

where n± represents the average number of photons collected in a σ± trial. In a

matrix form, it would look the following way:

n+

n−

 = EsM
s

s0

s1

 = Es

2.8 0

0 2.8


s0

s1

 , (2.52)

where Es is the detection efficiency and the matrix element M s
εi gives the average

number of 493 nm photons scattered from an ion in the state |i〉 and a trial with

polarization ε.

The solution of this matrix equation is trivial and is given in Eq. (2.51). How-

ever, the matrix approach will be useful for the detection method for the states in

the D3/2 manifold discussed in the next section.

To perform detection, we apply alternating 493 nm σ+ or σ− pulses for ∼ 1 µs

after each experiment, and repeat this sequence many times. We use 0.6 NA micro-
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scope objective for the ion light collection. APD1 with a quantum efficiency of 71%

at 493 nm and a dark-count rate of 10 s−1 is used as a detector. In Fig. 2.11(b), we

demonstrate the coherent rotations in the S1/2 manifold, and the detection fidelity

of 98% is limited by a polarization purity of the 493 nm σ beams and background

dark counts.

2.3.1.2 Single qubit rotations

The coherent operations in the S1/2 manifold can be implemented by applying

RF directly to the trap electrodes [126], or by using an inductive coil near the trap

[127]. But in our experiment, we utilize a pair of copropagating Raman beams

with both σ and π polarizations, and the frequency difference equal to the splitting

between S1/2 - manifold Zeeman levels, 2δZB, where δZ ≈ 1.4 MHz/G, and B is the

magnetic field in Gauss. Conveniently, the second harmonic of the same 1064 nm

Nd:YVO4 source as we use for 171Yb+ – 532 nm – can be used to drive rotations in

the S1/2 manifold in 138Ba+. By applying a pair of copropagating 532 nm Raman

beams, we perform Rabi flopping in the S1/2 manifold shown in Fig. 2.11(b).

2.3.2 D-manifold operations

As we discussed in the previous section, the conventional 138Ba+ qubit is a

Zeeman qubit and defined in the S1/2 manifold, thus the magnetic field sensitivity

of that qubit leads to a significant decrease in coherence time. One way around

this is to transfer any information from the communication qubits immediately to

1Laser Components, COUNT BLUE Series
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Figure 2.11: (a) Initialization and detection scheme for S1/2-manifold states in
138Ba+. (b) Population of the |↑〉 state during coherent rotations in the S1/2 manifold
which were performed via a pair of 532 nm Raman beams with all polarizations.

the neighboring memory qubits [128]. However, having a 138Ba+qubit with longer

coherence times allows for implementation of more complex protocols. Magnetic-

field stabilization alleviates this decoherence to a limited extent [129]. In the present

work, we explore an alternative approach that has a much further-reaching potential

using states in the D3/2 manifold and the corresponding quantum operations. In

138Ba+, the lifetime of the D3/2 states is about 80 s [130], which is longer than any

conceivable quantum operation could take. In addition, the branching ratio from

the P1/2 manifold to the S1/2 and D3/2 manifolds is moderate – 3:1, respectively, –

ensuring fast rates of pumping into and exciting out of the D3/2 states. Moreover,

the 650 nm P1/2 −D3/2 transition is spectrally distant from the 493 nm S1/2 − P1/2

transition (see Fig. 2.12a), and the former is compatible with the efficient fiber

technologies.

Detection of the D3/2-manifold states has not yet been widely used in quantum
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computing. On the other hand, novel approaches [131, 132, 133] to create and

operate protected atomic qubits rely on the ability to detect these states efficiently.

To the best of our knowledge, no such detection schemes have been implemented to

date.

138Ba+

ȁ ۧ↑ȁ ۧ↓
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6P1/2

5D3/2

493 nm

650 nm

6P1/2

5D3/2
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𝜎−

𝜎−

(a) (b)

Figure 2.12: Barium level structure: (a) in the absence of magnetic field; (b) in
presence of magnetic field. A few representative transitions are shown for clarity.

In this work, we introduce a novel detection technique for all four states in the

D3/2 manifold. We demonstrate this technique in 138Ba+ ion, which is preferential

due to the properties explained above, but our general scheme can also be applied to

other ions with nuclear spin I = 0, such as 40Ca+ [134, 135], and 88Sr+ [136, 137]. We

also demonstrate various coherent operations in theD3/2 manifold including coherent

∆mj = ±1 and ∆mj = ±2 rotations within the manifold, using our detection scheme

to verify the results. We obtain experimental data that agrees with theoretical

simulations performed in Quantum Toolbox in Python (QuTiP). Using a pair of

Raman beams or, alternatively, a STIRAP procedure using 650 nm light, we create

a synthetic qubit insensitive to the magnetic field, and show improvement in the
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coherence time T ∗2 by the factor of 3 in comparison to a magnetically sensitive qubit.

We discuss future steps in improving the coherence time by creating a protected

subspace and applying a driving Hamiltonian that constantly reprojects the ion

state into this subspace [131, 132, 133].

2.3.2.1 Sate initialization and readout

a. Problem Formulation

In this work, we generalize the probabilistic detection method to detect all four

Zeeman states in the D3/2 manifold. As before, we send pulses with varying po-

larizations – this time at 650 nm wavelength, which corresponds to the P1/2–D3/2

transition, – while still collecting 493 nm-wavelength photons. During the detection

procedure, the 493 nm light is turned on all the time to re-pump population out of

the S manifold. However, as opposed to the case of the S-manifold state detection,

we now require five different polarization combinations: σ+, σ−, π, (σ+ and π), and

(σ− and π).

We would like to emphasize that (σ± and π) readout operations give equa-

tions linearly independent from the ones obtained by the readout operations with

individual polarizations, σ± and π. This can be shown by considering the number

of stationary dark states in these cases. For D3/2 −→ P1/2 (J = 3/2 −→ J = 1/2)

transition, there are two dark states for any polarization of the applied light [107].

For an individual σ+, σ−, or π polarization of the 650 nm light, both dark states are

stationary even when a magnetic field is applied. But for combinations (σ+ and π)
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or (σ− and π), only one dark state is stationary, while another one quickly evolves

to a bright state, when π and σ± beams have different detunings.

In addition to the five different polarization readouts, we have two further

constraints: the unitarity condition
∑3

i=0 di = 1, and di ∈ [0; 1], ∀i = 0, . . . , 3,

where di represent populations of the D-manifold levels.

We generalize Eq. (2.52) for the populations to the case of the |di〉 states in

the D3/2 manifold (i = 0, . . . , 3):



n+

n−

nπ

n+π

n−π


= EdM

d



d0

d1

d2

d3


, (2.53)

where Ed is a detection efficiency. nε represents the average number of 493 nm

photons detected from a trial with the detection polarization:

ε ∈ {σ+, σ−, π, (σ+ and π), (σ− and π)}.

We perform each experiment many times and apply one of the polarization

configurations ε to build sufficient statistics for the values of nε. Similarly, a matrix

element Md
εi gives the average number of 493 nm photons scattered from an ion in

the particular state |i〉 in a trial with polarization ε.

To find matrix elements Md
εi, we use the stochastic Markov chain approach.

In particular, we perform simulation of the 8-level 138Ba+ system and introduce the
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9th state to keep track of the average number of scattered 493 nm photons [138].

Here, we assume that the intensities are the same for all the polarizations of 493 nm

beams, and that 650 nm beams for each polarization also have the same intensities.

Under these assumptions, the resulting matrix Md acquires the following form:

Md =



6.6 5.4 0 0

0 0 5.4 6.6

0 6 6 0

13.3 12.6 11.4 0

0 11.4 12.6 13.3


. (2.54)

Additionally, we impose two constraints: (i) the unitarity condition:
∑3

i=0 di = 1

and (ii) populations di ∈ [0; 1], i = 0, . . . , 3. As a result, we construct an over-

constrained problem with four unknown populations di, five equations, four bounds,

and one constraint.

b. Problem Solution

Two different ways of solving this problem are discussed below, with the first one

treating the efficiency Ed as an additional unknown, while the second one taking it

as an independently determined constant.

In the first method of solution, in addition to {di} and Ed, we introduce

another unknown variable Cb – a static background count rate. That results in the

total of six unknown variables and six equations: five ones from different polarization
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configurations as in Eq. (2.53) and the unitarity condition. This method, however,

does not account for the bounds di ∈ [0; 1]. The matrix form of the equation

becomes: 

n+

n−

nπ

n+π

n−π


= Ed



6.6 5.4 0 0 1

0 0 5.4 6.6 1

0 6 6 0 1

13.3 12.6 11.4 0 1

0 11.4 12.6 13.3 1





d0

d1

d2

d3

Cb


. (2.55)

We solved this system directly in Ref. [138]. Since we did not impose the require-

ments di ∈ [0; 1], i = 0, . . . , 3, some of the populations that we obtained that way

fluctuated outside of this physical region due to the background noise and polariza-

tion imperfections.

The second method takes all the necessary conditions, including the bounds,

into account, making the system over-constrained. We solve it using a constrained

linear least-squares solver. The data shown in Section 2.3.2.2 is obtained with this

method of analysis, but the two methods give very closely matching results. The

corresponding error bars are obtained via the Hessian calculated at the solution

point.

In order to illustrate how this D3/2 state detection works, we present an ex-

ample of the solution for all four state populations when the ion is pumped to the

edge state
∣∣D3/2,mj = 3/2

〉
. In Table 2.1, the left hand side presents the raw data

– the average number of the detected 493 nm photons from the D3/2 state detection

with five different laser polarization combinations. We performed 10000 repetitions
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of each measurement with the detection window of 5 µs to get these numbers. After

the comparison with the last column from Eq. (2.54), we can see the background

noise and polarization imperfections. They are especially noticeable in the number

of photons collected with the σ+ and π polarization configuration, which should

yield 0 collected photons in the ideal scenario. Then, we demonstrate a solution of

the corresponding over-constrained problem in Eq. (2.53) in the right hand side of

Table 2.1. The populations of all four states in the D3/2 manifold indicate that the

ion was prepared in the
∣∣D3/2,mj = 3/2

〉
state.

Polarization Collected photons
𝜎𝜎+ 165
𝜎𝜎− 2054
𝜋𝜋 99

𝜎𝜎+ and 𝜋𝜋 311
𝜎𝜎− and 𝜋𝜋 4360

State in D3/2 manifold State population
𝑚𝑚𝑗𝑗 = −3/2 0.00 ± 0.09
𝑚𝑚𝑗𝑗 = −1/2 0.04 ± 0.08
𝑚𝑚𝑗𝑗 = 1/2 0.02 ± 0.09
𝑚𝑚𝑗𝑗 = 3/2 0.94 ± 0.09

Table 2.1: Detection of the
∣∣D3/2,mj = 3/2

〉
state. The left hand side shows the

raw data from the D3/2 state detection when five different polarization combinations
are applied. The right hand side presents the corresponding solution of the over-
constrained problem (2.53) – the populations of all four states in the D3/2 manifold.

2.3.2.2 Coherent operations with 532 nm light

In the D3/2 manifold, we can perform two types of qubit rotations: (i) with the

angular-momentum projection change ∆mj = ±1, and (ii) with that of ∆mj = ±2,

as shown in Fig. 2.13.

The necessary splitting for the ∆mj = ±1 rotations is equal to the splitting

between adjacent Zeeman levels,
4

5
δZB, where δZ ≈ 1.4 MHz/G, and B is the

magnetic field in Gauss. Similarly, the frequency for ∆mj = ±2 operations has
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5D3/2

6P3/2

532 nm

102 THz

Δ𝑚 = ±1
Δ𝑚 = ±2

6P1/2

51 THz

Figure 2.13: Off-resonant coupling of 532 nm laser beams – represented by the
green arrows – to P1/2 and P3/2 manifolds in 138Ba+. Short black arrows represent
∆mj = ±1 rotations between all four D3/2 states; for these, 532 nm Raman beams
have to have σ± and π polarizations. Long black arrows represent ∆mj = ±2
rotations between the two possible pairs of states; for these, 532 nm Raman beams
only need to have σ+ and σ− polarizations. However, in order to minimize the
two-photon AC Stark shifts, we keep the π polarization component on for these
operations, too.

to be tuned to
8

5
δZB. For all the experiments discussed in this section, we used

the magnetic field B = 2.2 G, which makes the frequency between the adjacent

levels equal 2.5 MHz. In order to perform not only ∆mj = ±1 rotations, but also

∆mj = ±2 ones, we utilize a pair of 532 nm Raman co-propagating beams which

are off-resonantly coupled to the 6P1/2 and 6P3/2 states. From this point on, we will

use the notations |d3/2+mi〉 ≡ |D3/2; mi〉 and |p1/2+mi〉 ≡ |P1/2;mi〉.

a. Rotations with ∆m = ±1

We start with ∆mj = ±1 rotations in the D3/2 manifold shown in Fig. 2.14. In order

to minimize differential two-photon AC Stark shifts, we adjust the polarizations of
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our 532 nm Raman beams so that the intensities of each polarization (σ+, σ−,

and π) are all equal. The corresponding Rabi frequencies and the differential two-

photon AC Stark shifts are discussed in Appendix C in detail. We initialize the

qubit in the |d3〉 state, and by applying two 532 nm Raman beams, we drive the

populations between all Zeeman D3/2 states. The experimental data agrees with the

QuTiP evolution simulations within the uncertainty. The QuTiP simulations are

Figure 2.14: State populations during coherent rotations with ∆mj = ±1 in
the D3/2 manifold. In the presence of the pair of 532 nm Raman beams with all
polarizations, all four states are involved in the time evolution. The markers show
the experimental data. Yellow circles: |d0〉 state (mj = −3/2); green diamonds: |d1〉
state (mj = −1/2); red squares: |d2〉 state (mj = 1/2); and blue crosses: |d3〉 state
(mj = 3/2). Solid lines of the corresponding colors show the QuTiP simulations for
a four-level system initialized with all the population in the |d3〉 state (mj = 3/2)
with the effective microwave rotations between the D3/2 states. We fit the QuTiP
simulations to the experimental data over the Rabi frequency Ω and the decay time
τ .

performed for a four-level system with the effective ∆mj = ±1 microwave rotations
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that are described by the following interaction Hamiltonian:

H∆m=±1 =



0

√
3

18

Ω

2
0 0√

3

18

Ω

2
0

√
4

18

Ω

2
0

0

√
4

18

Ω

2
0

√
3

18

Ω

2

0 0

√
3

18

Ω

2
0


. (2.56)

We take into account the Clebsch-Gordan coefficients and all possible pairs of Raman

beam polarizations (see Fig. 2.13) when calculating the effective Rabi frequency. In

our setup, it takes 12 µs to transfer all the population from one of the edge states,

|d3〉, to the other one, |d0〉, through the middle states.

b. Rotations with ∆m = ±2

Next, in Fig. 2.15, we demonstrate ∆mj = ±2 rotations in the D3/2 manifold.

532 nm Raman beams with σ+ and σ− polarizations are applied. As in the previous

case, we initialize the qubit in the |d3〉 state. Now, however, we tune the frequency

difference between two Raman beams to
8

5
δZB, and perform rotations only between

two states, |d3〉 and |d1〉, while other two states are unpopulated. We additionally

check the rotations between the second pair of states: |d0〉 and |d2〉. The experi-

mental data agrees with the QuTiP simulations within the uncertainty in this case,

as well.

The QuTiP simulations are performed for a four-level system with the effective

∆mj = ±2 microwave rotations that are described by the following interaction
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Figure 2.15: State populations during coherent rotations with ∆mj = ±2 in the
D3/2 manifold. In the presence of a pair of 532 nm Raman beams with σ+ and
σ− polarizations, only two states are evolving while the other two are unaffected.
The markers show the experimental data. Yellow circles: |d0〉 state (mj = −3/2);
green diamonds: |d1〉 state (mj = −1/2); red squares: |d2〉 state (mj = 1/2); and
blue crosses: |d3〉 state (mj = 3/2). Solid lines of the corresponding colors show the
QuTiP simulations for a four-level system initialized with all the population in the
|d3〉 state (mj = 3/2) with the effective microwave rotations between the D3/2 states.
We fit the QuTiP simulations to the experimental data over the Rabi frequency Ω
and the decay time τ .

Hamiltonian:

H∆m=±2 =



0 0
Ω

2
0

0 0 0
Ω

2
Ω

2
0 0 0

0
Ω

2
0 0


. (2.57)

The peak amplitude of the oscillations exhibited by the data is lower than that in

the simulations due to the background noise and polarization imperfections. This

causes state preparation error. As shown in Fig. 2.15, we can perform a π/2 rotation

in T = 30 µs, and as a result, end up in the |d1〉 state. Therefore, at t =
2

3
T = 20 µs,

the electron will be in the state:
1

2
|d3〉+ eiφ

√
3

2
|d1〉, where the phase φ is defined by
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the phase shift between the two Raman beams. Let |D1〉 denote such a state with

φ = π. Using the same phase shift and the other submanifold of D3/2, we create an

orthogonal state |D2〉, such that:

|D1〉 =
1

2
|d3〉 −

√
3

2
|d1〉 , (2.58)

|D2〉 =
1

2
|d0〉 −

√
3

2
|d2〉 .

The above description applies to creating |D1〉 and |D2〉 states using a pair of

Raman beams. We also implemented an alternative technique to create those states

via a STIRAP procedure. In this case, we initialize the ion in the |d3〉 state, and

use the resonant 650 nm σ+ and σ− beams in the STIRAP configuration to transfer

population to |d1〉 with the state |p1〉 being an excited state with the STIRAP

preparation time equal 10µs.

2.3.2.3 Protected qubit subspace

a. Magnetically insensitive qubit

In contrast to a qubit defined in the S1/2 manifold, the qubit consisting of the |D1〉

and |D2〉 states is insensitive by construction to the magnetic field fluctuations [131,

132]:

〈Dj|Jz|Di〉 = 0, ∀i, j ∈ {1, 2}, (2.59)

where J is the angular momentum operator.

To detect the state of the new qubit with |0〉 ≡ |D1〉 and |1〉 ≡ |D2〉, we
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perform detection of all four states in the D3/2 manifold as discussed in Sec. 2.3.2.1,

and then we project them to the {|D1〉, |D2〉} subspace.

As discussed in the previous section, when applying a pair of Raman beams

to create, for example, |D1〉 state, we have a control over the phase shift φ. Only

when φ = π, we can get good coherent rotations between the magnetically insensi-

tive states (discussed below), and that is not the case for any other phase φ. When

making the π/2 rotation between two synthetic states, we perform a phase shift

scan, and pick the phase that gives us the highest contrast. This was matched first

in the QuTiP simulations and then in the experiment.

b. Rotations between the |D1〉 and |D2〉 states

The coherent ∆mj = ±1 rotations between |D1〉 and |D2〉 states can be performed

by applying microwaves or by sending two off-resonantly coupled Raman beams,

as discussed in the beginning of Sec. 2.3.2.2. Fig. 2.16 shows ∆mj = ±1 rotations

between |D1〉 and |D2〉 states. The experimental data agrees with the QuTiP sim-

ulations within the uncertainty.

Since the new synthetic qubit is magnetically insensitive, we expect a consider-

able improvement in the coherence time T ∗2 in comparison to a conventional qubit in

the S1/2 manifold. The major limitation to the coherence time of the S1/2-manifold

qubit is magnetic noise, which mainly comes from the lab equipment and the power

lines at 60 Hz and higher harmonics. There are several ways to address this issue,

such as using µ-metal shielding [129], setting up a feed-forward [139] or feedback
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Figure 2.16: Coherent ∆mj = ±1 rotations between the |D1〉 and |D2〉 states.
In the presence of a pair of 532 nm Raman beams, all four D3/2-manifold states
are involved in the time evolution. (a) The markers show the experimental data.
Yellow circles: |d0〉 state (mj = −3/2); green diamonds: |d1〉 state (mj = −1/2);
red squares: |d2〉 state (mj = 1/2); and blue crosses: |d3〉 state (mj = 3/2). Solid
lines of the corresponding colors show the QuTiP simulations for a four-level system
starting with the |D1〉 state and performing the effective microwave rotations be-
tween the D3/2-manifold states. We fit the QuTiP simulations to the experimental
data over the Rabi frequency Ω and the decay time τ . (b) The synthetic qubit
state populations. The markers show the experimental data. Magenta up-pointing
triangles: |D1〉 state; black down-ponting triangles: |D2〉 state. Solid lines of the
corresponding colors represent the corresponding QuTiP simulations.

magnetic field stabilization [140], or using an alternative isotope with a magneti-

cally insensitive hyperfine qubit, e.g. 133Ba+ [141]. In our experiment, we do not

perform any magnetic field stabilization or shielding. As a first benchmark, we per-

form a Ramsey experiment on a qubit defined in the S1/2 manifold. In this case,

T ∗2 = (96± 15)µs is obtained, which is a result of high magnetic sensitivity of about

2.8kHz/mG. As a second benchmark, we perform the same Ramsey experiment for

a qubit defined in the |d3〉 and |d1〉 states from the D3/2 manifold (the corresponding
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qubit rotations are shown in Fig. 2.15). The magnetic sensitivity for this qubit is

about 2.2kHz/mG, which result in a slightly longer T ∗2 = (117 ± 11)µs. Next, we

perform the Ramsey experiment on the synthetic magnetically insensitive qubit con-

sisting of the |D1〉 and |D2〉 states. Of the three 138Ba+qubits we tested, this qubit

has the longest coherence time: T ∗2 = (350 ± 37)µs, which is about 3 times longer

than the coherence time of a magnetically sensitive qubit. The synthetic qubit shows

an improvement, but these results are still far from “seconds-long” coherence times

observed in hyperfine or optical qubits [25, 26, 27, 33]. However, as a next step, our

results can be further improved by introducing a protected qubit subspace [131, 132].

c. Protected qubit subspace

The protected qubit subspace {|D1〉, |D2〉} is defined by:

〈Dj|Jz|Di〉 = 0, ∀i, j ∈ {1, 2} (2.60)

Hd|Di〉 = 0, ∀i ∈ {1, 2}

where Hd is the (continuous) driving Hamiltonian.

Hd =

(
Ω1

2
|p1〉〈d1|+

√
3Ω1

2
|p1〉〈d3|+

Ω1

2
|p0〉〈d2|+

√
3Ω1

2
|p0〉〈d0|

)
+ H.c. (2.61)

The Hamiltonian Hd can be decomposed into two uncoupled Λ systems: (i)

the |d1〉 and |d3〉 states simultaneously resonantly coupled to the |p1〉 state, resulting

in the dark state |D1〉, and (ii) the |d0〉 and |d2〉 states simultaneously resonantly

58



coupled to the |p0〉 state resulting in the dark state |D2〉.

6P1/2

5D3/2

|𝑑𝑑0〉 |𝑑𝑑1〉
|𝑑𝑑2〉

|𝑑𝑑3〉

|𝑝𝑝0〉
|𝑝𝑝1〉

650 nm

Figure 2.17: Construction of the protected qubit subspace. Two Λ configurations
of resonant σ+ and σ− 650 nm beams with equal intensities are applied, so that the
system is constantly reprojected into the protected subspace HD.

In our case, Hd can be implemented by sending resonant σ+ and σ− 650 nm

beams with equal intensities as shown in Fig. 2.17.

We have already satisfied the first condition in Eq. (2.60) – zero coupling to

Jz, which makes the qubit insensitive to magnetic field fluctuations. It ensures that

the magnetic noise can cause transitions only between a protected state and a state

in the complementary subspace H⊥ (so that H = HD ⊕ H⊥), for example, the

orthogonal bright states |B1〉 and |B2〉:

|B1〉 =
1

2
|d1〉+

√
3

2
|d3〉 (2.62)

|B2〉 =

√
3

2
|d0〉+

1

2
|d2〉 .

These transitions, however, can reduce the coherence time. By applying the driv-

ing Hamiltonian Hd, we would satisfy the second part of Eq. (2.60). This way, the

protected subspace becomes the kernel of Hd. Subject to the Hamiltonian Hd, the
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system is continuously reprojected into the protected Hilbert subspace HD. There-

fore, the protected states do not accrue any dynamical phase and are unaffected by

the noise related to Hd.

6P1/2

5D3/2

|𝑑𝑑0〉 |𝑑𝑑1〉
|𝑑𝑑2〉

|𝑑𝑑3〉

|𝑝𝑝0〉
|𝑝𝑝1〉

650 nm

|𝑑𝑑1〉 |𝑑𝑑3〉

|𝑝𝑝1〉

|𝐷𝐷1〉 |𝐵𝐵1〉

|𝑝𝑝1〉
Ω
2

Ω3Ω
2

Figure 2.18: Decoupling of a protected qubit state. Effectively, only the state |B1〉
is coupled to the excited state |p1〉, and the state |D1〉 is dark.

The decoupling mechanism is shown in Fig. 2.18, where each one of the Λ

systems that comprise Hd is equivalent to a system with only a bright state |Bi〉

coupled to the excited state |pi〉. In other words, in the basis {D1, D2, B1, B2, p0, p1},

the driving Hamiltonian has the following form:

Hd = Ω (|p1〉〈B1|+ |p0〉〈B2|) + H.c. (2.63)

And now it is obvious that Hd|Di〉 = 0. The theoretical prediction for the coherence

time of the qubit in the protected subspace {|D1〉, |D2〉} is T2 ∼ T1 ∼ 10 s.

In the experiment, by applying only σ+ and σ− 650 nm beams with equal laser

intensities, we are able to create the protected subspace and pump the 138Ba+ ion

dark. In Fig. 2.19, we show the 138Ba+ ion brightness as a function of the frequency

difference δ between σ+ and σ− 650 nm beams. When δ matches the frequency

difference between the states |d1〉 and |d3〉 in the D3/2 manifold

(
δ =

8

5
δZB

)
, the
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138Ba+ ion stops fluorescing and goes completely dark with respect to the driving

Hamiltonian Hd.

 (MHz)

B
a

 i
o
n
 b

ri
g
h
tn

e
s
s

Figure 2.19: Creation of the dark state by applying only σ+ and σ− 650 nm beams
with the frequency difference δ equal to the frequency difference between the states
|d1〉 and |d3〉 in the D3/2 manifold.

Note that this method is very useful when one needs to determine a magnetic

field at the ion position without performing qubit state detection and without doing

frequency scans of the Raman beams.

d. 532 nm/650 nm phase stability issues

As discussed in the previous section, we attempt to create a protected qubit with

long coherence times. For that, we follow the proposal by Aharon, Drewsen, and

Retzker [131] and implement the driving Hamiltonian Hd as shown in Fig. 2.20.

In Fig. 2.21, we demonstrate the coherent ∆mj = ±1 rotations between the

|D1〉 and |D2〉 states in the presence of σ+ and σ− 650 nm driving laser fields. These

results are similar to the ones in Fig. 2.16, where reprojecting fields were not applied.

In fact, in the case of the continuous reprojection into the protected qubit subspace,
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5D3/2

6P1/2

6P3/2

532 nm

650 nm

Figure 2.20: System reprojection to the protected qubit subspace by having the
driving 650 nm laser fields on during all the Raman operations with 532 nm light.

the coherence time and contrast of the rotations between the |D1〉 and |D2〉 states

appear to be worse. Additionally, the coherence time, obtained in the corresponding

Ramsey experiment, T ∗2 = (202 ± 29)µs is lower than T ∗2 = (350 ± 37)µs from the

experiment with no reprojecting 650 nm light. And of course, this result is far from

being of the order of seconds as was expected. We attribute this problem to the

532 nm/650 nm phase stability issues.

In order to understand the phase stability problem between 650 nm σ+ and

σ− laser fields and 532 nm Raman beams, we show schematics of RF circuitry in

Fig. 2.22. In the experiment, we need to drive three AOMs – 650 nm σ+ AOM,

650 nm σ− AOM, and 532 nm Raman AOM with two tones – with different RF

fields simultaneously. We had access only to a two-channel AWG2. So, we used

frequency filtering to send two signals from one AWG channel. In particular, the

2LeCroy ArbStudio 1102
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Figure 2.21: Coherent ∆mj = ±1 rotations between the |D1〉 and |D2〉 states
performed by a pair of Raman 532 nm beams in the presence of σ+ and σ− 650 nm
driving (reprojecting) laser fields.

first channel, AWG1, sends out two RF signals – for the 532 nm AOM at 110 MHz

and for the 650 nm σ− AOM at 80 MHz. These signals are then frequency filtered

to select an appropriate one for each of the branches. The second channel, AWG2,

serves the 650 nm σ+ AOM at 80 MHz separately. With the current setup, we

expect only a fixed offset between the optical phases of 650 nm σ+ and σ− beams

over the entire duration of the experiment.

Since we noticed rapid decoherence and low contrast during ∆mj = ±1 Rabi

flopping as shown in Fig. 2.21, first, we investigated the phase stability between

the 650 nm σ+ and σ− beams. For that, we looked at the beatnote between two

laser beams on the fast photo diode3. Naturally, we “rotate” the polarization of

one of the σ beams (so that both beams have the same polarization) to observe

this interference. In this case, we can see the interference signal in Fig. 2.23. The

3EOTech ET-2030A
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110MHz filter

80MHz filter

532 AOM

𝐴𝐴′532 sin 2𝜋𝜋𝜋𝜋 𝑓𝑓110 −
𝛿𝛿′

2
+ 𝐴𝐴′′532 sin 2𝜋𝜋𝜋𝜋 𝑓𝑓110 + 𝛿𝛿′

2
+ 𝜙𝜙532′′ +

𝐵𝐵′650 sin 2𝜋𝜋𝜋𝜋 𝑓𝑓80 −
𝛿𝛿′′

2
+ 𝜙𝜙650′

𝐵𝐵′′650 sin 2𝜋𝜋𝜋𝜋 𝑓𝑓80 +
𝛿𝛿′′

2
+ 𝜙𝜙650′′

Figure 2.22: Schematic of RF circuitry used for driving coherent operations with
532 nm light in theD3/2 manifold and for creating a driving HamiltonianHd based on
σ+ and σ− 650 nm laser fields. Only two AWG channels are used in the experiment
to produce three RF signals.

frequency of the oscillations is equal to 5 MHz, which is the frequency difference

between the 650 nm σ+ AOM and 650 nm σ− AOM. (If polarizations of two 650 nm σ

beams are orthogonal, then there are no fringes, but a straight line, just as expected.)

When triggered by the experimental repetition rate, the interference signal is not

stationary, but is shifting to the left as the time goes. This phase shift happens on

the time scales of minutes. That can be explained by the phase instability between

two 650 nm σ+ and σ− beams due to the phase noise introduced by RF filters

and other RF electronics. Additionally, thermal drifts inside AOM crystals might

contribute to the phase instability.
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Figure 2.23: Beatnote signal between 650 nm σ+ and σ− laser beams on the fast
photo diode.

Since the issue of phase stability between two 650 nm σ+ and σ− beams origi-

nates from RF components of the setup and from the optical pathlength instabilities

inside AOMs, we add a phase shifter for an RF signal sent to one of the 650 nm σ

AOMs as shown in Fig. 2.24.

By performing a beatnote lock as shown in Fig. 2.24, we are able to improve

the phase stability by more than one and a half orders of magnitude. As a metric

of phase stability, we use the following experiment. First, we prepare 138Ba+ ion in

the state |D2〉, and then, while having the driving Hamiltonian Hd turned on, we

perform π/2 rotation to the |D1〉 state. We have this experiment in a “step-in-place”

mode, where we just repeat it over and over again. If there were no phase stability

issues, then in Fig. 2.25 we would expect the system to be in the state |D1〉 (red

curve) all the time, and the probability to find the system in the state |D2〉 (blue

curve) would be 0 all the time. We performed the “step-in-place” experiment for

2000 s.
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𝐴𝐴′650 sin 2𝜋𝜋𝜋𝜋 𝑓𝑓80 −
𝛿𝛿
2

+ 𝜙𝜙650′

𝐴𝐴′′650 sin 2𝜋𝜋𝜋𝜋 𝑓𝑓80 +
𝛿𝛿
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+ 𝜙𝜙650′′
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5 MHz; 
165 MHz

𝛿𝛿=5Mhz

Photo
diode

low-pass filter

Optical signal 
(5MHz)

PI lockbox

Phase 
shifter

scope

Figure 2.24: Schematic of RF circuitry used for the phase control between σ+

and σ− 650 nm laser fields that create a driving Hamiltonian Hd. By implementing
beatnote lock, we improve the phase stability. The red line represents the optical
650 nm signal going to the photo diode.

The left panel of Fig. 2.25 shows the “step-in-place” experiment results before

the implementation of the phase lock. We see a strong dip in the probability to

find our system in the state |D1〉 (red curve) at t = 50 arb. units that starts around

5 arb. units, which translates to t = 10 s. But after the implementation of the phase

lock, we are able to push this time to t = 200 arb. units or t = 400 s, which gives us

the improvement by a factor of 40. With this technique, we achieve the coherence

time, obtained in the corresponding Ramsey experiment, T ∗2 = (202 ± 29) µs. In

comparison, the non-phase-stabilized coherence time was T ∗2 = (86± 11) µs.

There are still some phase-related issues left that we could not address and

resolve with the current experimental setup. We believe that all the additional RF

components, such as mixers and filters, that we use introduce the phase stability
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Figure 2.25: Improvement of the phase stability. In the “step-in-place” experiment
where the rotation to |D1〉 is performed with the driving Hd turned on, (a) before
the implementation of the phase lock, the state flip starts around t = 5 arb. units
and completes at t = 50 arb. units; (b) after the implementation of the phase
lock, the state flip does not start until t = 200 arb. units and only completes at
t = 500 arb. units.

issues. And a three-channel AWG might give us good enough RF signals that would

help us achieve much longer coherence times for the protected qubit {|D1〉, |D2〉}.
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Chapter 3: Mixed-Species Gates

Trapped-ion-based quantum computers are among the best to date, with char-

acteristic long coherence times and high gate fidelities [98, 99, 100, 101]. One of the

most promising directions in scaling up such systems is a modular architecture con-

sisting of separate traps with memory/processing qubits and communication qubits

that provide photonic links between the traps for remote entanglement [51, 102].

To eliminate cross-talk between photonic-link qubits and memory qubits, one of the

solutions is to co-trap different atomic species. Once the remote entanglement be-

tween the communication ions is established via the photonic links, the information

is swapped between a communication ion and one of the memory ions within the

same module. The same procedure is performed in the other module, which results in

entanglement between two memory qubits in separate modules. The entanglement

swapping scheme can utilize a direct Cirac-Zoller mapping – also known as Quantum

Logic Spectroscopy [10, 97] – or two Mølmer-Sørensen gates [142, 143, 144] with ap-

propriate relative phase control of the two gates [82]. A high-fidelity mixed-species

entangling gate is an essential ingredient for future quantum networks. Entangling

quantum gates have been performed in various mixed-species ion systems, including

9Be+–25Mg+ [128], 9Be+–40Ca+ [145], 40Ca+–88Sr+ [146], 171Yb+–138Ba+ [123], and
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40Ca+–43Ca+ [147].

Quantum entangling gates are mediated by Coulomb collective phonon modes

of motion via qubit-state-dependent forces. In order to decouple the internal qubit

states from the motional states at the end of a gate, it is necessary to know the

frequencies and normal modes of motion, and satisfy all the spin-motion decoupling

conditions discussed below [after Eq. (3.40)]. For that, the suitable amplitude [148,

149, 150, 151, 152], frequency [153, 154, 155], or phase [156, 157, 158] modulation of

the driving laser fields, as well as multitone gates [159, 160, 161] have been proposed

and implemented in long single-species ion chains.

In addition to network interconnections, a multi-species setup has another

advantage – the communication ions can also serve for sympathetic cooling of the

processing qubits in the long ion chains [88, 89, 90, 91, 92]. Usually, ions experience

heating caused by fluctuations in the electric potential at the ion positions [93, 94],

or the shuttling, separation, and recombination of ion strings [95, 96]. The ability

to cool the memory qubits efficiently allows for longer computational times and for

operations with higher fidelity, leading to a wider range of applications for quantum

information processing.

Since in our experiments, 171Yb+ ions are used for quantum memory, while

138Ba+ ions are used as communication qubits, all the calculations and experiments

are performed for this pair of species.
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3.1 Two-Species Entangling Gates

3.1.1 Normal mode participation

We start with motional normal modes in mixed-species ion chains and their

role in mixed-species entangling gates. Consider a chain of N ions with charge e

and different masses mj, j = 1, . . . , N , in a linear Paul trap [89, 162, 163]. Then

the dynamics of the system are described by the Lagrangian

L =
N∑
j=1

mj ṙ
2
j

2
− U, (3.1)

where U is the potential energy:

U =
N∑
j=1

Φ(rj,mj) +
1

2

N∑
i,j=1
i 6=j

e2

4πε0|ri − rj|
. (3.2)

Here Φ(rj,mj) is the potential energy of an ion j with the mass mj at a position rj

in the harmonic potential of the trap electrodes.

The equilibrium position of an ion j along the trap axis, z
(0)
j , is determined by

∂U/∂zj = 0. By symmetry, x
(0)
j = 0 and y

(0)
j = 0. The standard Taylor expansion

of the Lagrangian around the equilibrium positions yields:

L ≈ 1

2

(
N∑
j=1

mj q̇j
2 −

N∑
i,j=1

Vijqiqj

)
, (3.3)

Vij =
∂2U

∂qi∂qj

∣∣∣∣
0

,
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where in the axial case: qi = zi − z(0)
i , and in the radial case: qi = xi or yi. The

Lagrange equations for the normal modes of motion are then given by:

N∑
j=1

Vijb
k
j = λkmib

k
i , (3.4)

where λk = ω2
k is an eigenvalue and ωk is a frequency of the normal mode bkj . Each

normal mode represents an individual harmonic oscillator that can be quantized.

We introduce the creation and annihilation operators, â†k and âk, for the mode k,

and the original set of coordinates assumes the following standard quantized form:

x̂j =
N∑
k=1

bkj

√
~

2mjωk

(
âk + â†k

)
. (3.5)

3.1.2 Mølmer-Sørensen interaction

In Eq. (3.4), we found the normal motional modes, and in the case of two ions,

there are two normal modes in each dimension. The unperturbed Hamiltonian for

the collective system of electronic and vibrational states of both ions is:

Ĥ0 =
∑
i=1,2

~ω(0)
i

2
σzi +

∑
k=1,2

~ωka†kak. (3.6)

The interaction Hamiltonian is constructed using stimulated Raman transitions:

Ĥ1 =
~Ω1

2

[
σ+

1 exp ı̇ (k1 · r1 − µ1t+ φ1) + H.c.
]

(3.7)

+
~Ω2

2

[
σ+

2 exp ı̇ (k2 · r2 − µ2t+ φ2) + H.c.
]
,
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where Ωi is a Rabi frequency, and σ+
i and σ−i are the spin raising and lowering op-

erators. We use two pairs of laser beams with wave-vector difference ki, frequency

difference µi, and phase difference φi. We introduce the standard Lamb-Dicke pa-

rameters ηkj :

ηkj = |kj|bkj

√
~

2mjωk
. (3.8)

In the interaction picture, the interaction Hamiltonian is given by:

ĤI = exp

(
ı̇Ĥ0t

~

)
Ĥ1 exp

(
− ı̇Ĥ0t

~

)
. (3.9)

To simplify the interaction Hamiltonian in the interaction picture, we use the fol-

lowing identities obtained using the Baker-Campbell-Hausdorff (BCH) formula:

exp

(
ı̇ω(0)t

2
σz
)
σ+ exp

(−ı̇ω(0)t

2
σz
)

= exp
(
ı̇ω(0)t

)
σ+; (3.10)

exp

(
ı̇ω(0)t

2
σz
)
σ− exp

(−ı̇ω(0)t

2
σz
)

= exp
(
−ı̇ω(0)t

)
σ−; (3.11)

e(ı̇ω1ta
†
1a1) exp

[
ı̇η1A

(
â1 + â1

†)]e(−ı̇ω1ta
†
1a1) (3.12)

= exp
[
ı̇η1A

(
â1e
−ı̇ω1t + â1

†eı̇ω1t
)]

;

e(ı̇ω2ta
†
2a2) exp

[
ı̇η2A

(
â2 + â2

†)]e(−ı̇ω2ta
†
2a2) (3.13)

= exp
[
ı̇η2A

(
â2e
−ı̇ω2t + â2

†eı̇ω2t
)]
.
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From Eqs. (3.10) – (3.13), we get:

ĤI =
∑
i

Ωi exp

[
i
∑
k

ηik
(
âke
−ı̇ωkt + âk

†eı̇ωkt
)]
σ+
i e
−ı̇(δit+φi) + H.c., (3.14)

where δi = µi − ω(0)
i are the laser detunings.

Since we operate in the Lamb-Dicke regime, where the Lamb-Dicke parameters

are small, we can use the Taylor expansion up to the first order to obtain:

ĤI =
∑
k

η1
k Ω1

(
âke
−ı̇ωkt + âk

†eı̇ωkt
)
σ+

1 e
−ı̇(δ1t+φ1)

+
∑
k

η2
k Ω2

(
âke
−ı̇ωkt + âk

†eı̇ωkt
)
σ+

2 e
−ı̇(δ2t+φ2) + H.c., (3.15)

The Mølmer-Sørensen Hamiltonian can be expressed in the form of the sum of a

Jaynes-Cumming Hamiltonian (produced by the red sideband) and an “anti-Jaynes-

Cumming Hamiltonian” (produced by the blue sideband):

ĤI =
∑
k

[
η1
kΩ1

2
σ+

1 âke
−ı̇

(
δ
(1)
r t−φ(1)r

)
+
η1
kΩ1

2
σ+

1 âk
†e
−ı̇

(
δ
(1)
b t−φ(1)b

)
(3.16)

+
η2
kΩ2

2
σ+

2 âke
−ı̇

(
δ
(2)
r t−φ(2)r

)
+
η2
kΩ2

2
σ+

2 âk
†e
−ı̇

(
δ
(2)
b t−φ(2)b

)]
+ H.c.

By choosing symmetric detunings: δ
(i)
r = −δ(i)

b = δ(i), we can express this interaction

Hamiltonian in the following form:

ĤI =
∑
k

[
η1
kΩ1

2

(
âke
−ı̇

(
δ(1)t−φ(1)m

)
+ â†ke

ı̇
(
δ(1)t−φ(1)m

))
· σ̂φS1+ (3.17)

η2
kΩ2

2

(
âke
−ı̇

(
δ(2)t−φ(2)m

)
+ â†ke

ı̇
(
δ(2)t−φ(2)m

))
· σ̂φS2

]
,
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where

σ̂φS1 = σ+
1 e

ı̇φ
(1)
s − σ−1 e−ı̇φ

(1)
s , (3.18)

σ̂φS2 = σ+
2 e

ı̇φ
(2)
s − σ−2 e−ı̇φ

(2)
s ,

φ(i)
s =

φ
(i)
r + φ

(i)
b

2
, and φ(i)

m =
φ

(i)
r − φ(i)

b

2
. (3.19)

We decide to implement the MS gate based only on one of the normal modes, say

â2 and â†2, and in this case, the electronic states do not couple to the other mode.

In particular, the axial out-of-phase mode is used in the experiment due to its lower

heating rate and a higher mode frequency compared to the in-phase mode.

We can set δ(1) = δ(2) = δ, in which case the Hamiltonian reduces to:

ĤI = F∗eı̇δtâ†2 + Fe−ı̇δtâ2, (3.20)

where

F = F1σ̂φS1 + F2σ̂φS2 , and Fi =
ηi2Ωi

2
eiφ

(i)
m . (3.21)

Following Refs. [164, 165], we interpret Eq. (3.20) as a Hamiltonian of a forced

harmonic oscillator and use our knowledge of its time evolution. In one period of
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evolution under this force, the acquired phase is:

Φ0 =
π

2(~δ)2

∣∣F1σ̂φS1 + F2σ̂φS2

∣∣2
=

π

2(~δ)2

[
|F1|2σ̂2

φS1
+ |F2|2σ̂2

φS2
+ σ̂φS1 σ̂φS2 (F1F

∗
2 + F2F

∗
1 )
]
. (3.22)

The operator σ̂φSi has eigenstates:

| ↑φ〉i =
1√
2

(
|↑〉i + eı̇φ

(i)
s |↓〉i

)
with eigenvalue εi = 1, (3.23)

| ↓φ〉i =
1√
2

(
|↓〉i − e−ı̇φ

(i)
s |↑〉i

)
with eigenvalue εi = −1.

The eigenstates of σ̂z can be expressed via these states as:

|↑〉i =
1√
2

(
| ↑φ〉i − eı̇φ

(i)
s | ↓φ〉i

)
, (3.24)

|↓〉i =
1√
2

(
| ↓φ〉i + e−ı̇φ

(i)
s | ↑φ〉i

)
.

It is easy to show that σ̂2
φSi
|↑〉i = |↑〉i, and σ̂2

φSi
|↓〉i = |↓〉i, or in other words,

σ̂2
φSi

= 1.

We can set the phases of the forces acting on the two ions to be opposite

F1 = −F2, then the phase Φ0 is given by:

Φ0 =
π

2(~δ)2
|F |2

(
2− σ̂φS1 σ̂φS2

)
. (3.25)
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Therefore,

eı̇Φ0 = exp

{
ı̇π

(~δ)2
|F |2

}
exp

{
− ı̇π|F |

2

2(~δ)2
σ̂φS1 σ̂φS2

}
. (3.26)

Let us consider exp
(
−ı̇ξσ̂φS1 σ̂φS2

)
, where ξ =

π|F |2
2(~δ)2

. Starting with the initial state

|↑↑〉 = |↑〉1 |↑〉2, we obtain the following evolution:

e
−ı̇ξσ̂φS1 σ̂φS2 |↑↑〉 = e

−ı̇ξσ̂φS1 σ̂φS2
1

2

(
| ↑φ〉1 − eı̇φ

(1)
s | ↓φ〉1

)(
| ↑φ〉2 − eı̇φ

(2)
s | ↓φ〉2

)
=

1

2

(
e−ı̇ξ| ↑φ〉1| ↑φ〉2 + e−ı̇ξe

ı̇
(
φ
(1)
s +φ

(2)
s

)
| ↓φ〉1| ↓φ〉2

− eı̇ξeı̇φ
(1)
s | ↓φ〉1| ↑φ〉2 − eı̇ξeı̇φ

(2)
s | ↑φ〉1| ↓φ〉2

)
(3.27)

=
1

2

[(
eı̇ξ + e−ı̇ξ

)
|↑↑〉+ e

ı̇
(
φ
(1)
s +φ

(2)
s

) (
−eı̇ξ + e−ı̇ξ

)
|↓↓〉

]
= cos ξ |↑↑〉 − ı̇eı̇

(
φ
(1)
s +φ

(2)
s

)
sin ξ |↓↓〉 .

When ξ =
π|F |2
2(~δ)2

=
π

4
, we get the desired entangled state:

|↑↑〉 → 1√
2

[
|↑↑〉 − ı̇eı̇

(
φ
(1)
s +φ

(2)
s

)
|↓↓〉

]
. (3.28)
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Starting with the initial state |↑↓〉 = |↑〉1 |↓〉2, we obtain the following evolution:

e
−ı̇ξσ̂φS1 σ̂φS2 |↑↓〉 = e

−ı̇ξσ̂φS1 σ̂φS2
1

2

(
| ↑φ〉1 − eı̇φ

(1)
s | ↓φ〉1

)(
| ↓φ〉2 + e−ı̇φ

(2)
s | ↑φ〉2

)
=

1

2

(
eı̇ξ| ↑φ〉1| ↓φ〉2 + e−ı̇ξe−ı̇φ

(2)
s | ↑φ〉1| ↑φ〉2

− e−ı̇ξeı̇φ
(1)
s | ↓φ〉1| ↓φ〉2 − eı̇ξeı̇

(
φ
(1)
s −φ

(2)
s

)
| ↓φ〉1| ↑φ〉2

)
=

1

2

[
eı̇ξ
(
|↑〉1 + eı̇φ

(1)
s |↓〉1

)(
|↓〉2 − e−ı̇φ

(2)
s |↑〉2

)
+ e−ı̇ξe−ı̇φ

(2)
s

(
|↑〉1 + eı̇φ

(1)
s |↓〉1

)(
|↑〉2 + eı̇φ

(2)
s |↓〉2

)
(3.29)

− e−ı̇ξeı̇φ
(1)
s

(
|↓〉1 − e−ı̇φ

(1)
s |↑〉1

)(
|↓〉2 − e−ı̇φ

(2)
s |↑〉2

)
− eı̇ξe

ı̇
(
φ
(1)
s −φ

(2)
s

) (
|↓〉1 − e−ı̇φ

(1)
s |↑〉1

)(
|↑〉2 + eı̇φ

(2)
s |↓〉2

)]
=

1

2

[(
eı̇ξ + e−ı̇ξ

)
|↑↓〉+ e

ı̇
(
φ
(1)
s −φ

(2)
s

) (
−eı̇ξ + e−ı̇ξ

)
|↓↑〉

]
= cos ξ |↑↓〉 − ı̇eı̇

(
φ
(1)
s −φ

(2)
s

)
sin ξ |↓↑〉 .

And when ξ =
π|F |2
2(~δ)2

=
π

4
, we get the desired entangled state:

|↑↓〉 → 1√
2

[
|↑↓〉 − ı̇e−ı̇

(
φ
(2)
s −φ

(1)
s

)
|↓↑〉

]
. (3.30)

Following the same derivations as those in Eqs. (3.27) and (3.29) for the two re-

maining states – |↓↓〉 and |↓↑〉, – we arrive to the complete truth table for MS
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gate:

|↓↓〉 → 1√
2

[
|↓↓〉 − ı̇e−ı̇

(
φ
(1)
s +φ

(2)
s

)
|↑↑〉

]
;

|↓↑〉 → 1√
2

[
|↓↑〉 − ı̇eı̇

(
φ
(2)
s −φ

(1)
s

)
|↑↓〉

]
; (3.31)

|↑↓〉 → 1√
2

[
|↑↓〉 − ı̇e−ı̇

(
φ
(2)
s −φ

(1)
s

)
|↓↑〉

]
;

|↑↑〉 → 1√
2

[
|↑↑〉 − ı̇eı̇

(
φ
(1)
s +φ

(2)
s

)
|↓↓〉

]
.

3.1.3 Experimental demonstration of entangling gates

In this section, we discuss our experimental realization of two alternative ap-

proaches to reach entanglement in such a way: (i) a direct Cirac-Zoller (CZ) mapping

process by resonantly coupling to the collective motion of trapped ions [10, 97] and

(ii) a dispersive Mølmer-Sørensen (MS) quantum gate [142, 143, 144] between the

qubits.

3.1.3.1 Cirac-Zoller SWAP operations

First, we demonstrate a Cirac-Zoller SWAP operation [10] in which phonons

are used as a bus to transfer information between communication (Ba+) and memory

(Yb+) qubits. We initialize the system in the following state:

|Ψ0〉 = |↓〉Ba+ |↓〉Yb+ |0〉n, (3.32)
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where 138Ba+ and 171Yb+ qubits are in the |↓〉 state, and the ions are in the col-

lective motional ground state, |0〉n, i.e. there are no phonons. We follow the ex-

perimental procedure described in Ref. [97] where the quantum logic spectroscopy

was performed between 9Be+ and 27Al+. Since we want to show the mapping of

an arbitrary state from a 138Ba+ ion to a nearby 171Yb+ ion, we perform a variable

rotation on the 138Ba+ qubit:

|Ψ1〉 = (α |↓〉+ β |↑〉)Ba+ |↓〉Yb+ |0〉n, (3.33)

that is transferred afterwards to the 171Yb+ qubit as shown in Fig. 3.1(a). Then,

we apply a red sideband (RSB) π rotation to the 138Ba+ ion using 532 nm Raman

beams. Since only the |↑〉Ba+ |0〉n → |↓〉Ba+ |1〉n transition can be driven by the RSB

light, we obtain the joint state:

|Ψ2〉 = |↓〉Ba+ |↓〉Yb+ (α|0〉n + β|1〉n) . (3.34)

Now the quantum information is stored in the motional degree of freedom, and

to transfer it to the 171Yb+ qubit, we we apply a red sideband (RSB) π rotation

to the 171Yb+ ion using 355 nm Raman beams. Similarly, we can drive only the

|↓〉Yb+ |1〉n → |↑〉Yb+ |0〉n transition, which leads us to:

|Ψ3〉 = |↓〉Ba+ (α |↓〉+ β |↑〉)Yb+ |0〉n. (3.35)
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We see that the state of the 138Ba+ ion from Eq. (3.33) can be perfectly mapped

to the state of the 171Yb+ ion in Eq. (3.35) only under one condition – we must

start in the motional ground state, |0〉n. This can be achieved by implementing

sub-Doppler cooling procedures, such as Electromagnetically Induced Transparency

(EIT) cooling [166, 167, 168], or Raman sideband cooling [169].

variable 
rotation

RSB
π

RSB
π readout

T(𝜇𝜇𝜇𝜇)

P(
|
⟩ ↑
𝑌𝑌𝑌𝑌

)

(a) (b)

Ba+

Yb+

motion

Figure 3.1: (a) Experimental sequence of Cirac-Zoller (CZ) entangling gate. (b)
Rabi flopping performed on the 138Ba+ ion and then read from the 171Ya+ ion after
the state mapping. The low mapping efficiency of 0.75 is due to imperfect cooling
with the average number of quanta equal n ≈ 0.1.

In Fig. 3.1(b), we demonstrate the experimental results of the successful 138Ba+

qubit state mapping to the 171Yb+ ion. We achieve the mapping efficiency of 0.75.

The limitation on this number is coming from the imperfect cooling – the average

number of quanta is n ≈ 0.1. The requirement of the cooling to the motional ground

state is a disadvantage since it is hard to achieve in the experiment and it requires

the additional sub-Doppler cooling time that will eventually lead to extremely low

remote entanglement generation rate in the future quantum network experiments.

Therefore, the Mølmer-Sørensen (MS) interaction provides a better alternative to

CZ SWAP operations between communication and memory qubits.
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3.1.3.2 Mølmer-Sørensen gates

In the case of Mølmer-Sørensen entangling gate, we do not require cooling

down to the ground state [143]. This makes MS a preferred quantum-state mapping

operation. The MS interaction [142, 143, 144] is induced by simultaneous excitation

of the off-resonant red and blue sideband transitions as shown in Fig. 3.2. The

detailed explanation and derivation of the MS gate was given in Section 3.1.2.

Yb Ba

Figure 3.2: The Raman beam configuration for MS interaction between 171Yb+

and 138Ba+ ions. MS interaction is induced by simultaneous excitation of the off-
resonant red and blue sideband transitions. The resulting ∆k is along the trap axis,
so that we address axial modes of motion.

As we discussed in Section 2.3.1.2, we use 355 nm light and 532 nm light to

perform quantum operations on 171Yb+ and 138Ba+ ions, respectively. Conveniently,

both colors come from the same laser, the Spectra Physics Vanguard pulsed laser.

355 nm is the third harmonic of the 1064 nm Nd:YVO4 source, while the second

harmonic is at 532 nm. Note that 355 nm and 532 nm laser pulses do not follow

the same path, and this leads to a shift in time when the spin dependent forces

are applied to 171Yb+ and 138Ba+ ions. This time shift can be of the order of
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1

νr
, where νr ≈ 80 MHz is the repetition rate of the pulsed laser. We can zero

this time shift by delaying one beam with respect to the other, but it would be

translated to the pathlength difference of the order of 1 m introducing additional

pathlength fluctuations. According to our calculations presented in Appendix B,

this shift in time does not affect the MS gate significantly, but only introduces an

additional phase, φ
(2)
s → φ

(2)
s + ξ, which leads to the following modified truth table

[as compared to Eq. (3.31)]:

|↑↑〉 → |↑↑〉 − ı̇eı̇
(
φ
(1)
s +φ

(2)
s +ξ

)
|↓↓〉 ,

|↑↓〉 → |↑↓〉 − ı̇e−ı̇
(
φ
(2)
s −φ

(1)
s +ξ

)
|↓↑〉 , (3.36)

|↓↑〉 → |↓↑〉 − ı̇eı̇
(
φ
(2)
s −φ

(1)
s +ξ

)
|↑↓〉 .

|↓↓〉 → |↓↓〉 − ı̇e−ı̇
(
φ
(1)
s +φ

(2)
s +ξ

)
|↑↑〉 .

The additional phase ξ can be compensated by adjusting the other phases. And

after this phase tuning, the proper Mølmer-Sørensen gate is restored independently

of the time shift between the optical-frequency combs acting on different ions.

We perform MS entangling operation based on the out-of-phase axial motional

mode [123]. We choose the axial modes, because the radial modes are plagued by

a strong mismatch between the amplitudes of motion of different species (see the

detailed discussion of this point in Section 3.2). More experimental details can be

found in Ref. [83].

In Fig. 3.3, we demonstrate the experimental results for MS entangling gate
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between 171Yb+ and 138Ba+ ions. We show correlations between 171Yb+ and 138Ba+

spin states measured in the z-basis and in the x-basis. We measured the MS fidelity

of F = 0.6, and its low value is related to an excessive heating rate of the axial

out-of-phase mode: ṅ ≈ 5 ms−1, .

Unfortunately, the fidelity of MS gate is too low to perform a SWAP opera-

tion which includes two Mølmer-Sørensen gates with an appropriate relative phase

control of the two gates [82].

𝜙𝜙 = 0
𝜙𝜙 = 𝜋𝜋

| ⟩↓↓ 𝑌𝑌𝑌𝑌,𝐵𝐵𝐵𝐵 | ⟩↓↑ 𝑌𝑌𝑌𝑌,𝐵𝐵𝐵𝐵 | ⟩↑↓ 𝑌𝑌𝑌𝑌,𝐵𝐵𝐵𝐵 | ⟩↑↑ 𝑌𝑌𝑌𝑌,𝐵𝐵𝐵𝐵 | ⟩↓↓ 𝑌𝑌𝑌𝑌,𝐵𝐵𝐵𝐵 | ⟩↓↑ 𝑌𝑌𝑌𝑌,𝐵𝐵𝐵𝐵 | ⟩↑↓ 𝑌𝑌𝑌𝑌,𝐵𝐵𝐵𝐵 | ⟩↑↑ 𝑌𝑌𝑌𝑌,𝐵𝐵𝐵𝐵

Pr
ob

ab
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ty

(a) (b)

Figure 3.3: The experimental data for the MS entangling gate between 171Yb+ and
138Ba+ ions. (a) The correlations between 171Yb+ and 138Ba+ spin states measured
in the z-basis. (b) The correlations between 171Yb+ and 138Ba+ spin states measured

in the x-basis. After the MS interaction, we apply
π

2
pulses on both qubits. 171Yb+

π

2
rotation phase is scanned to achieve maximum contrast points, while 138Ba+ π

2
rotation phase is fixed.

3.2 Long ion chains

In this section, we discuss long mixed-species ion chains, and investigate the

role of axial and radial normal modes in entangling gates and in sympathetic cooling

of the mixed-species ion chains. First, we perform calculations on the amplitude

modulation (AM) and frequency modulation (FM) of the driving laser fields. With
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these techniques, we optimize laser amplitude and frequency profiles, respectively, to

achieve high fidelity of Mølmer-Sørensen entangling gates between different species

within a long mixed-species ion chain. We compare the suitability of axial and radial

modes for AM and FM pulse-shaping schemes. In the case of radial modes, the

amount of laser power required to satisfy all the spin-motion decoupling conditions

is very difficult to achieve in a real experiment, because there is a strong radial

mode mismatch between different species. The required laser power in the case

of axial modes is at least one order of magnitude lower and is routinely available

in experiments. So, the axial modes are preferential for mixed-species gates. The

calculations presented in this paper are performed for 171Yb+ – 138Ba+ five-ion

chains. However, the results of our calculations apply to both shorter and longer

mixed-species ion chains with ions of masses that differ by over 10% [128, 145, 146].

Next, we study sympathetic cooling in the mixed-species chains and how this

cooling process depends on normal modes. With the high mass ratio between the

species, radial modes are much harder to cool than axial modes regardless of the

configuration of the ions. It is crucial, however, to be able to cool the modes which

are used for entangling gates in a given quantum computing procedure. We find that

in the case of 171Yb+ – 138Ba+ chains, the mass ratio is significant, and it makes

the sympathetic cooling of the radial modes inefficient. For the processing 171Yb+

qubits, 172Yb+ or 174Yb+ ions would instead be preferred for sympathetic cooling.

Note, however, that this choice is not suitable for quantum-network communication

due to crosstalk and fast attenuation of UV light in fibers.
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3.2.1 Role of normal modes in MS gates

In Section 3.1.1, we discussed the construction and the solution of the problem

of finding normal motional modes for long mixed-species ion chains. We start our

discussion of multi-ion entangling quantum gates by introducing a generic laser-ion

interaction Hamiltonian:

HI =
∑
j

(
Ωje

iµtei(∆kxj+∆φj)σ̂+
j + H.c.

)
, (3.37)

where Ωj is a Rabi frequency. We use two laser beams with wave-vector difference

∆k, frequency difference µ, and phase difference ∆φj. After substituting Eq. (3.5)

into Eq. (3.37), one can separate out the standard Lamb-Dicke parameters ηkj in the

exponents:

ηkj = |∆k|bkj

√
~

2mjωk
. (3.38)

We create the Mølmer-Sørensen interaction [142, 143, 144] by simultaneously driving

off-resonant red and blue sideband transitions on each of the qubits. Similarly to

the derivation from Section 3.1.1, we get the corresponding evolution operator in

the following form [170]:

U(τ) = exp

[∑
i,k

(
αik(τ)â†k − α∗ik(τ)âk

)
σ̂xi + i

∑
i,j

χijσ̂
x
i σ̂

x
j

]
, (3.39)
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where

αik(τ) = −
∫ τ

0

ηki Ωi(t)exp(iωkt)dt, (3.40)

χij(τ) =
1

~2

∑
k

ηki η
k
j

∫ τ

o

dt1

∫ t1

0

dt2 sin [ωk(t1 − t2)]

× [Ωi(t1)Ωj(t2) + Ωj(t1)Ωi(t2)] .

To be able to drive the entangling gate between ions i and j in time τ , we require

χij(τ) = π/4. In order to decouple the motional and the spin degrees of freedom by

the end of the gate evolution, we also require αik(τ) = 0. So, there are 2N + 1

conditions in total that need to be satisfied: one π/4 phase condition and 2N

spin-motion decoupling conditions (counting independently the real and imaginary

components that correspond to coordinates and momenta, respectively). In this

case, the evolution operator U(τ) reduces to Uij = exp(iπσ̂xi σ̂
x
j /4). A number of

methods have been introduced to fulfill these requirements. Among them are the

pulse-shaping techniques – using amplitude [148, 149, 150, 151, 152], frequency

[153, 154, 155], or phase [156, 157, 158] modulation of the driving laser fields, – as

well as multitone gates [159, 160, 161].

The normal modes following from Eq. (3.4) enter both αik(τ) and χij(τ) ex-

pressions. In the present work, we consider multi-species ion chains with 5 and 13

ions for visualization clarity, but we tested all our findings and conclusions in longer

ion chains of up to 50 ions.

In Fig. 3.4, we show the frequencies and the normal modes for a five-ion chain

with four 171Yb+ ions and one 138Ba+ ion located at the edge of the chain. We find
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Figure 3.4: (a) Axial normal modes and their frequencies for a five-ion chain – four
171Yb+ ions (blue) and one 138Ba+ ion (red) located at the edge of the ion chain.
(b) The same for the radial normal modes.

this configuration the most experimentally convenient for individual addressing and

re-ordering purposes. Moreover, we have to avoid configurations with 138Ba+ ion in

the center of the chain, since due to the associated reflection symmetry, there are

modes in which 138Ba+ ion does not move at all. The trapping parameters used

in the calculations are the radial trapping frequency ωx = 3.06 MHz and the axial

trapping frequency ωz = 0.16 MHz. The axial frequency is chosen to be relatively

low in order to keep long ion chains (up to 50 ions) linear.

The axial normal modes and frequencies for a chain of four 171Yb+ ions and

one 138Ba+ ion [see Fig. 3.4(a)] do not differ much from those in a pure five 171Yb+

chain. This indicates that entangling gates will work as efficiently as in a chain

of five 171Yb+ ions. On the other hand, the radial normal modes and frequencies

differ significantly from those in the pure 5 171Yb+ chain. The drastic mismatch
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can be seen, e.g., in the center-of-mass (CM) mode – the mode with the highest

frequency in the bottom panel in Fig. 3.4(b). Given a moderate mass difference, we

expect the amplitudes of motion for all ions in the CM mode to be close to each

other, as in the axial case. For the radial modes, however, the 138Ba+ ion motion

decouples from that of the 171Yb+ ions. Furthermore, the greater the ion mass

difference is, the larger the mismatch we expect. The difference between the ways

in which the axial and radial modes are affected by the ion mass difference can be

explained as follows. The effective radial potential is primarily determined by the

mass-dependent pseudopotential, while the effective axial potential is dominated

by static terms. Also in the case of radial normal modes, note that the highest

frequency is distant and isolated from the rest of the frequencies with a gap of

340 kHz, while the average frequency difference is about 8 kHz. This fact is relevant

for the discussion of sympathetic cooling below.

The radial modes present difficulties associated with the mode mismatch.

However, they are preferable for quantum entangling gate operations because they

allow to maximize the value of ∆k in Eq. (3.37) leading to faster gates – by setting

it to ∆k = 2k in the counter-propagating beam geometry – and simultaneously

support individual addressing [171]. So, in the current work, we focus on various

techniques that might allow us to perform fast radial entangling mixed-species gates.
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3.2.2 AM gates

First, we consider amplitude modulation (AM) of the driving field [148, 149,

150, 151, 152] to satisfy the 2N + 1 conditions discussed in Sec. 3.2.1. In particular,

the Rabi frequency Ω(t) is modulated in time as a piecewise-constant segmented

pulse defined as:

Ω(t) =



Ω1, 0 ≤ t ≤ τ/P

Ω2, τ/P ≤ t ≤ 2τ/P

...

ΩP , (P − 1)τ/P ≤ t ≤ τ

, (3.41)

where τ is the gate time.

Using Eq. (3.41), we can rewrite Eq. (3.40) in the following form [172, 173]:

αik(τ) =
P∑
p=1

ΩpA
k
i (p), (3.42)

χij(τ) =
P∑
p=1

P∑
p′=1

ΩpΩp′γ
′
pq,

where

Aki (p) = −ηki
∫ pτ/P

(p−1)τ/P

sin (µt) eiωktdt, (3.43)

γ′pq =
N∑
k=1

∫ pτ/P

(p−1)τ/P

dt2

∫ qτ/P

(q−1)τ/P

dt1 η
k
i η

k
j sinωk(t2 − t1) sinµt2 sinµt1.

89



Therefore, in the matrix form, the gate criteria can be written as:

AΩ = 0, ΩTγ′Ω =
π

4
. (3.44)

As a quality metric for the MS gate, we use the fidelity F of the MS operation

represented by a density matrix ρf :

F = 〈Ψideal|ρf |Ψideal〉, (3.45)

where the ideal final state |Ψideal〉 is defined as a right-hand side of Eq. (3.31) cor-

responding to the respective initial state. Note that ρf is a reduced density matrix,

in which the motional states are traced over. We assume that the initial motional

state is thermal with a distribution given by:

ρk =
∞∑
n=0

(
nk

1− n̄k

)nk
e−nk~ωk/kBT |nk〉〈nk|, (3.46)

where mode k has the average energy of kBT = n̄k~ωk.

Following Refs. [172, 173], we simplify the fidelity expression to:

F ≈ 1− 4

5

∑
k

(
|αik|2 + |αjk|2

)
cosh

~ωk
2kBT

= 1− 4

5
ΩT

[∑
k

(
Aki
†
Aki + Akj

†
Akj

)
cosh

~ωk
2kBT

]
Ω (3.47)

≡ 1−ΩTMΩ.
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During the optimization, we need to minimize the infidelity of the MS gate,

1−F , subject to a constraint that ΩTγ′Ω =
π

4
. For this purpose, we use the method

of Lagrange multipliers and consider the minimization problem for Λ(Ω, λ):

Λ(Ω, λ) = ΩTMΩ− λ
(
ΩTγ′Ω− π

4

)
. (3.48)

Then we obtain the following set of Euler-Lagrange equations:

∂Λ

∂Ω
=

(
M + MT

)
Ω− λ

(
γ′ + γ′

T
)

Ω = 0, (3.49)

∂Λ

∂λ
= ΩTγ′Ω− π

4
= 0.

By solving Eq. (3.49), we find the optimal expression for the Rabi frequency Ω with

the vector components representing the pulse segments.

If Ω(t) has 2N+1 segments, the existence of the solution for 2N+1 constrains

is guaranteed, and the problem is reduced to a system of linear equations. However,

for long single-species chains, one can use less than N segments to achieve high

fidelities of entangling gates, since most of the motional modes have relatively low

populations [155]. As we discussed in Sec. 3.1.1, the axial normal modes in the

4 171Yb+−138Ba+ chain are similar to those in the pure 5 171Yb+ chain, and all the

findings and techniques used in single-species chains apply.

In Table 3.1, we show the results of our calculations for a five-segment AM

pulse applied to a five-ion (4 171Yb+−138Ba+) chain with a pulse duration τ = 200µs.

The 138Ba+ ion is located at the edge of the chain – see Fig. 3.4. As shown in the
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Axial gates Radial gates

Ion pair Ωpeak, kHz F , % Ωpeak, kHz F , %

(1− 5) 11 99.86 400 81.03
(2− 5) 11 99.86 310 85.86
(3− 5) 12 99.82 175 95.65
(4− 5) 9 99.81 70 99.22

Table 3.1: Peak Rabi frequencies Ωpeak and average fidelities F of five-segment AM
entangling gates between different 171Yb+−138Ba+ pairs in a five-ion chain based on
axial and radial modes. The 138Ba+ ion is located at the position 5.

table, for axial gates, we need low Rabi frequencies – of the order of 10 kHz – to

achieve high-fidelity entangling gates between any pair of qubits. On the contrary,

for radial gates, the required Rabi frequencies are much higher, while the fidelities

are way lower. This drastic difference comes from the large mismatch between

138Ba+ and 171Yb+ radial modes, as shown in Fig. 3.4. The ion pair (1 − 5) has

the worst amplitude mismatch, which leads to the highest Ωpeak and the lowest

fidelity F , as shown in Table 3.1 and Fig. 3.5(a). Obviously, five segments of the

AM pulse are not enough to perform a high-fidelity radial gate in the pair (1− 5).

By increasing the segment number to 2N = 10, we obtain an average gate fidelity

F = 99.996%. However, in this case, an even higher Rabi frequency is required [see

Fig. 3.5(b)], which is definitely a disadvantage . To be able to perform high-fidelity

entangling radial gates between 171Yb+ and 138Ba+ , we require a Rabi frequency

about 80 times higher than for axial gates between the same pair of ions, and the

corresponding intensities are not feasible in real experiments. From now on, we will

focus on the most difficult case – on the entangling gates in the ion pair (1− 5) due

to the largest radial mode mismatch.
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(b)

(a)

Figure 3.5: Amplitude-modulated pulses of the driving field for a radial AM en-
tangling gate between 171Yb+ and 138Ba+ ions in a five-ion chain for the ion pair
(1− 5). (a) Five-segment pulse with the peak Rabi frequency Ωpeak = 400 kHz; (b)
ten-segment pulse with the peak Rabi frequency Ωpeak = 900 kHz. In both cases,
the pulse duration τ = 200 µs.

Previously, we assumed equal intensities for each driving field, and arrived at

extremely high laser intensities required to drive the entangling radial gates between

171Yb+ and 138Ba+ ions. However, we can instead apply 355 nm and 532 nm beams

with different powers on 171Yb+ and 138Ba+ ions, respectively, and thereby generalize

the conventional AM pulse-shaping technique. We will refer to this approach as

dual AM pulse shaping. Now, in Eq. (3.41), we allow different values Ω355
j and Ω532

j ,

j = 1, . . . , P and perform optimization of these 2P independent parameters to find

Ω355(t) and Ω532(t).

In this case, we construct the Lagrangian similarly to the way we obtained
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Figure 3.6: Dual five-segment amplitude modulation of the driving fields for an
entangling radial gate between 171Yb+ and 138Ba+ ions in a five-ion chain, ion pair
(1− 5). 355 nm AM pulse shape and the corresponding vertical axis on the left side
are shown in blue; 532 nm pulse and the corresponding vertical axis on the right
side are in red. The pulse duration τ = 200 µs.

Eq. (3.48) using the method of Lagrange multipliers:

Λ(Ω355,Ω532, λ) = ΩT
355M355Ω355+ΩT

532M532Ω532−λ
(
ΩT

355γ
′Ω532 −

π

4

)
, (3.50)

and the corresponding equations have the following form similar to those in Eq. (3.49):

∂Λ

∂Ω355

=
(
M355 + M355

T
)
Ω355 − λγ′Ω532 = 0,

∂Λ

∂Ω532

=
(
M532 + M532

T
)
Ω532 − λγ′TΩ355 = 0, (3.51)

∂Λ

∂λ
= ΩT

355γ
′Ω532 −

π

4
= 0.

Then, we can present this optimization problem for Ω̌ =

Ω355

Ω532

 in the matrix
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form:

MΩ̌ = λΓΩ̌, (3.52)

Ω̌TΓΩ̌ =
π

4
,

where

M =

M355 + M355
T 0

0 M532 + M532
T

 , Γ =

 0 γ

γT 0

 . (3.53)

This way, we generalized the conventional AM pulse-shaping technique to the dual

AM pulse shaping, in which the Rabi frequencies of the two beams are optimised

independently.

We simulate the five-segment entangling radial gate between 171Yb+ and 138Ba+

ions in the five-ion chain, but due to independent intensities, still have 2N param-

eters to vary. The optimization results are presented in Fig. 3.6. In the case of

independent Rabi frequencies, since we have twice as many degrees of freedom,

the fidelity of the quantum operation F = 95.22% is significantly higher than in

the conventional five-segment AM pulse-shaping technique (81.03%, see Table 3.1).

The optimization procedure finds the gate frequency µ ≈ ω4 + 8 kHz, which is close

to the lower four frequencies and distant from the highest, isolated one [see the

frequencies in Fig. 3.4(b)]. Also, since the radial modes have a strong amplitude

mismatch for the pair (1−5) that we focus on in the calculations, the Rabi frequen-

cies of the 355 nm and the 532 nm pulses differ by a factor of ∼ 32: Ω355
peak = 13 kHz
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and Ω532
peak = 420 kHz. The latter one would be hard to achieve in the experiment

due to the laser power limitations. Currently available laser power would make the

MS gates forbiddingly long. For comparison, we also performed calculations for

the seven-segment dual AM pulse. We improved the gate fidelity to F = 99.53%

with similar Rabi frequencies, Ω355
peak = 20 kHz and Ω532

peak = 440 kHz, while the

conventional seven-segment AM model gives us F = 96.5% with Ωpeak = 540 kHz.

3.2.3 AM-FM gates

As we discussed in Sec. 3.2.2, the AM radial gates require high Rabi frequencies

of the driving fields. In this section, we first consider a different way of satisfying the

2N + 1 conditions (π/4 phase condition and conditions on decoupling motion from

spin) – frequency modulation (FM) of the driving fields [153, 154, 155]. In this case,

we allow the frequency of the driving field to vary in time, but the Rabi frequencies Ω

stay constant in time. With that, αik(τ) and χij(τ) acquire the following form [153]:

αik(τ) = −ηki Ω

∫ τ

0

eiθk(t)dt, (3.54)

χij(τ) =
Ω2

~2

N∑
k=1

ηki η
k
j

∫ τ

o

dt1

∫ t1

0

dt2 sin [θk(t1)− θk(t2)] ,

θk(t) =

∫ t

0

δk(t
′)dt′,

where δk(t) is the detuning of the driving field relative to the mode k. Here, we

assume equal Rabi frequencies for 355 nm and 532 nm light. First, we try to satisfy
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2N conditions αik(τ) = 0 by performing the optimization of the cost function [153].

Once the frequency profile is found, we choose the Rabi frequency Ωpeak to satisfy

the remaining entanglement condition for a given pair of qubits (the π/4 phase

condition).

Following Ref. [154], we choose FM pulse shape to be symmetric in time and

combine this frequency modulation optimization with a fixed amplitude modulation

Ω(t) of the shape presented in Fig. 3.7(a) (three plateaus connected by smooth

cosine ramps). The resulting scheme is referred to as the AM-FM gate.

Not surprisingly, similarly to the case in Sec. 3.2.2, high-fidelity axial gates

between any pair of ions in the mixed-species chain require low Rabi frequencies of

the order of 10 kHz. The radial entangling gates, however, still require much higher

Rabi frequencies of the driving fields due to the strong amplitude mismatch between

171Yb+ and 138Ba+ ions, despite the more sophisticated driving.

In Fig. 3.7, we show the frequency and amplitude modulation of the driving

laser fields for the AM-FM entangling operation between 171Yb+ and 138Ba+ ions

for the ion pair (1−5). As shown in panel (b), we first try a pulse with four distinct

turning points in the frequency domain [the intensity-domain shape is fixed to that

shown in panel (a)]. For this example, as an initial guess, we choose the reference

frequency µ = ω4 + 2.5 kHz that represents the 0 level in panel (b). The fidelity

of this entangling gate F = 99.76%, and the peak Rabi frequency Ωpeak = 125 kHz

[see Fig. 3.7(a)]. By increasing the number of the turning points in the frequency

domain, we achieved a much higher gate fidelity, but it did not allow us to lower the

required Rabi frequencies. Although the required Rabi frequency in the AM-FM
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Figure 3.7: Amplitude and frequency modulation of the driving fields for an AM-
FM entangling gate between 171Yb+ and 138Ba+ ions in a five-ion chain – ion pair
(1− 5). (a) Fixed amplitude modulation consists of three plateaus connected with
cosine ramps. (b) Optimized frequency modulation has a set of turning points (blue
dots) connected via cosine curves. Note that the pulse is set to be symmetric in
time. The gate duration τ = 200 µs.

gate is much lower than that for the AM gate, it is still over one order of magnitude

higher than the Rabi frequency necessary for the axial entangling gates. However,

while it remains difficult to achieve the required powers in experiment, this approach

to radial gates is much more promising than pure AM or FM techniques.

The calculations presented in this thesis are performed for 171Yb+−138Ba+

five-ion chains. However, our findings are readily generalized to shorter and longer

mixed-species ion chains (we checked the lengths between 2 and 50 ions) with rel-

atively high mass ratio. This includes 9Be+−25Mg+ [128], 9Be+−40Ca+ [145], and

40Ca+−88Sr+ [146]. In fact, in Refs. [123, 128, 145, 146], only axial entangling gates
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were performed between mixed species in a two-ion crystals due to the strong radial

mode mismatch. Even in the case of 40Ca+−43Ca+ chain [147], where the masses

did not differ much, the axial gates were chosen.

3.2.4 Sympathetic cooling

In Secs. 3.2.2–3.2.3, we discussed the role of the normal modes in the mixed-

species entangling operations in long ion chains. These operations are a necessary

element of modular quantum networks. Another important application of the mixed-

species ion chains is sympathetic cooling [88, 89, 90, 91, 92]. The idea is that we

can constantly cool certain ions in the chain (“coolant” ions) – 138Ba+ in our case –

while continuously doing quantum computations with the processing ions – 171Yb+

in our case – with no disruptions [27].

3.2.4.1 Cooling rate calculations

Following Ref. [89], we define the cooling rate Wk as:

Wk =
∑
{j}

∣∣ηkj ∣∣2 , (3.55)

where the cooling ions are represented by {j}, and ηkj is the Lamb-Dicke parameter

for the mode k and ion j from Eq. (3.38). Naturally, we can achieve the largest

cooling rate when all the ions are subject to the cooling laser. Since the Lamb-

Dicke parameters enter Eq. (3.55) directly, we expect the cooling rates for the radial

and axial mixed-species modes to differ dramatically from each other.
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An alternative way to characterize cooling is to look at the average position

fluctuation δqi =
√
〈q2
i 〉 of the ions [174] with qi = xi for the radial modes and

qi = zi − z(0)
i for the axial modes. Then from Eq. (3.5), we obtain:

〈q2
i 〉 =

∑
k

~
2miωk

[bki ]
2

[
nBk (T ) +

1

2

]
, (3.56)

where bki is the normal mode, and nBk (T ) is the phonon number in the k mode at

temperature T .

A few “coolant-ion” configurations were proposed for long ion chains [174],

including edge cooling (the “coolant” ions are located at the edges of the chain),

and periodic-node cooling (the “coolant” ions are positioned periodically in the

chain). We explored these approaches via the metrics in Eqs. (3.55) and (3.56)

and, as expected, found that the axial modes are easy to cool even with a small

number of the “coolant” ions, while it is hard to cool the radial modes, especially

the higher-frequency ones, due to the strong amplitude mismatch between different

species.

To get an intuitive understanding of the difficulties in cooling the radial modes,

we show all the radial modes for a 13-ion chain in Fig. 3.8. In this example, we follow

Ref. [174], and place four “coolant” 138Ba+ ions periodically in the chain (see Fig. 3.8,

top-left panel). The mode with the highest frequency (bottom-right panel) is the

CM mode. Only two edge 138Ba+ ions are moving in this case, while the motion of

all 171Yb+ ions is virtually absent and is thus completely decoupled from the motion

of the 138Ba+ ions. The next three modes have similar character. At the same time,
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Figure 3.8: Frequencies and radial normal modes for a 13-ion-long chain - nine
171Yb+ ions (blue) and four 138Ba+ ion (red) placed periodically in the ion chain.
The mode with the highest frequency is the center-of-mass (CM) mode.

the rest of the modes have virtually no 138Ba+ motion. Note that there are four

higher frequencies distant from the other nine frequencies with the gap of 350 kHz,

while the average frequency difference is about 15 kHz. We have already discussed

a similar feature in Sec. 3.1.1, where in the ion chain there was only one 138Ba+ ion,

and the highest frequency was isolated from the rest of the spectrum. The number

of the isolated spectral lines here is equal to number of the 138Ba+ ions in the chain

as well, and these frequencies correspond to the modes with the most pronounced

138Ba+ motion.

In Fig. 3.9, we show the cooling rate of the axial modes as a function of the

total number of ions in the ion chain, while the number of the “coolant” 138Ba+

ions is fixed to four, and they are always positioned periodically in the chain. We
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𝜔𝜔𝑧𝑧 = 0.2 MHz
𝜔𝜔𝑥𝑥 = 5.1 MHz

Figure 3.9: Cooling rates for the axial modes in a mixed-species chain with four
periodically set “coolant” 138Ba+ ions. The cooling rates are plotted as functions of
the total number of ions in the chain. 138Ba+ ions are represented as red circles, the
rest of the ions – black circles – are 171Yb+.

present the calculated cooling rate for the CM, tilt, and zig-zag axial modes, as well

as the cooling rate averaged over all axial modes (there are as many of them as

there are ions in the chain). In agreement with intuition, the longer the ion chain

is, the lower the cooling rate becomes. We also verify that the respective cooling

rates are at least on par or better than the cooling rates obtained in a pure 171Yb+

ion chain, in which we also only cool four periodically-positioned 171Yb+ ions as

shown in Fig. 3.10. This is related to two factors. First, the structure of the axial

normal modes in this mixed-species chain is close to that in the pure one. Second,

the 138Ba+ ions are lighter, and the cooling rate scales as 1/m – see Eqs. (3.38) and

(3.55).

In Fig. 3.11, we show the cooling rate of the radial modes as a function of the

total number of ions in the ion chain, while the number of the “coolant” 138Ba+ ions

is fixed to four, and they are always positioned periodically in the chain. Similarly
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Figure 3.10: Cooling rates for the axial modes. Solid lines represent cooling rates
in a mixed-species chain with four periodically set “coolant” 138Ba+ ions (as in
Fig. 3.9); dashed lines represent cooling rates in a pure 171Yb+ ion chain with four
of the 171Yb+ ions in the respective positions used as “coolant” ions. The cooling
rates are plotted as functions of the total number of ions in the chain.

to Fig. 3.9, we present the calculations for the CM, tilt, and zig-zag modes, as well

as the cooling rate averaged over all radial modes.

The biggest difference between these two cases is that the cooling rates for

the radial modes in mixed-species chains are about one order of magnitude lower

that the cooling rates for the axial modes. Consequently, sympathetic cooling of the

radial modes in these chains is inefficient. Also, the average radial-mode cooling rate

dependence on the number of ions has a shape similar to the one for the axial modes,

but some radial modes (e.g. the CM or zig-zag ones) are virtually not susceptible

to cooling at all. From Figs. 3.9 and 3.11, we can see that the cooling rates of the

radial modes are one order of magnitude lower than the cooling rates of the axial

modes.

Due to the high mass ratio between 171Yb+ and 138Ba+ , we observe a strong
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Figure 3.11: Cooling rates for the radial modes in a mixed-species chain with four
periodically set “coolant” 138Ba+ ions. The cooling rates are plotted as functions of
the total number of ions in the chain.

amplitude mismatch in the radial modes, leading to inefficient sympathetic cooling of

the radial modes. These results can be easily generalized to any long ion chain with

mixed species. In our case, for the memory 171Yb+ qubits, the suitable cooling ions

would be 172Yb+ or 174Yb+. In this scenario, however, we will face an addressability

problem, since 172Yb+ or 174Yb+ cooling light can affect the memory 171Yb+ qubits,

because this light’s frequency is only a few GHz away from the 171Yb+ resonant

S1/2 ↔ P1/2 transition. In Section 5.2.2, we discuss crosstalk probability between

different isotopes of Ba. We find that the beams have to be focused tightly to achieve

low crosstalk probabilities, and this can be applied to Yb case, as well. Moreover, we

believe that the crosstalk will be completely dominated by the non-Gaussian part of

the beam leading to much higher intensities on neighboring ions than those expected

for the Gaussian profile (this issue only worsens with tighter focusing). One of the

promising solutions is to implement integrated photonics for light delivery [175], for
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example, based on an optical waveguide [176, 177], which is essentially an optical

fiber fabricated into the chip substrate.

3.2.4.2 Re-ordering ions of different masses

As we discussed in Section 3.2.1, the frequencies and amplitudes of the nor-

mal modes of the mixed-species ion chains strongly depend on the ion masses, and

also on the ion order in the chain. Therefore, the implementation of the entan-

gling gates, for example MS gate, relies on the ion chain configuration, and it is

desirable to keep it stable. Due to collisions with high-energy background gas par-

ticles, ion chain can get decrystallized, and when cooled again, ions are rearranged

randomly. Usually, background collisions happen once every few minutes in a room-

temperature ultra-high-vacuum (UHV) setup. This can definitely be improved by

introducing a cryogenic setup. To check the correctness of the ion configuration,

one can perform a fluorescence detection of the ion positions on camera or measure

the sideband spectrum of the ion chain.

Ion re-ordering techniques based on the mass dependence of the potential are

widely used in experiments with mixed-species ions [92, 145, 178]. These techniques

have probabilistic nature. Other techniques, which are based on the control of the

trapping potentials, are deterministic and have been used in experiments to re-order

ions of the same species [47, 95, 179].

We developed a new re-ordering method for long symmetric mixed-species ion

chains based on the technique described in Ref. [163]. In Fig. 3.12, we show the
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following step-by-step sequence for this novel procedure.

(a) First, we perform symmetric re-ordering of the ions [92, 163]. We start this step

by increasing the axial potential, and since the heavier ions are less strongly

confined by the pseudopotential, they are the first to move off-axis. Then,

we decrease the axial potential and bring the trap voltages back, so that the

ions relax back to a configuration with heavier ions in the center, as shown in

Fig. 3.12(a).

(b) Second, we split the ion chain in half, as shown in Fig. 3.12(b), which can be

done by varying the potentials on the trapping electrodes.

(c) Then, we perform symmetric re-ordering on each half of the ion chain as

discussed in the first step. The resulting ion configuration is presented in

Fig. 3.12(c).

(d) In the final step, we recombine two separate ion chains into one, as shown in

Fig. 3.12(d). As a result, we end up with two lighter ions next to each other

in the middle of the chain.

The steps (a)-(c) can be repeated many times to obtain finer positioning of

the lighter ions throughout the chain. Note that the lighter ions will always come

in pairs (except those at the very edges of the total chain). The final configuration

is close to the one with the “coolant” ions placed periodically in the ion chain [174],

however we have to “pair” the “coolant” ions for efficient re-ordering. We performed

calculations similar to the ones described in Section 3.2.4.1 with 171Yb+ and 138Ba+
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Figure 3.12: (a)-(d) Successive stages of re-ordering within the novel technique
discussed in the text. Black circles represent heavier ions, and red circles represent
lighter ions.

ions, and found that our proposed configuration with paired “coolant” ions shows

the results that are on par with those obtained in the periodic configuration. We

still observe a strong amplitude mismatch in the radial modes due to the high mass

ratio between 171Yb+ and 138Ba+ ions leading to inefficiency of sympathetic cooling

on radial modes.

3.2.5 Summary

In conclusion, we investigated the role of normal modes in entangling oper-

ations and sympathetic cooling in mixed-species ion chains. First, we performed

calculations on AM pulse shaping to create Mølmer-Sørensen entangling gates be-

tween different species based on both axial and radial modes. Due to the strong

mismatch in radial modes between the amplitudes of motion of different species, the

amount of laser power required to satisfy all the spin-motion decoupling conditions is

difficult to achieve in a real experiment. Then we performed calculations for a more

advanced, combined AM-FM pulse shaping approach that allowed a considerable
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Rabi frequency improvement towards potentially achievable levels in experiments.

However, the laser power required for high-fidelity radial entangling gates is still at

least one order of magnitude higher than that for the axial gates.

High-fidelity entangling gates between different species – the communication

and processing qubits – in mixed-species ion chains are essential ingredients in the

future quantum networks. The communication qubits will then be efficiently entan-

gled with the corresponding photonic states and can thus become the foundation for

a large-scale distributed quantum-computing network [51], in which multiple nodes

will be connected by photonic Bell-state analyzers [80, 180].

Moreover, the ability to cool ions down near the motional ground state while

preserving the stored quantum information in the processing qubits is crucial for

quantum computing. The communication ions can be used for sympathetic cooling

of the quantum memory qubits in order to facilitate longer computations. We

discussed the sympathetic cooling in the mixed-species chains and how this process

depends on normal modes. With the high mass ratio between the species, radial

modes are much harder to cool than axial ones regardless of the configuration of the

ions.
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Chapter 4: Barium ions as communication qubits

4.1 Pure single photon generation

Trapped atomic ions are a promising platform for quantum information net-

works, with long-lived identical qubit memories that interact locally via phonons

within ion-trap modules, and the ability to connect separate modules via photonic

buses [51]. The single-photon purity is of crucial importance for such quantum in-

formation networks [53, 54, 55], as well as for quantum repeaters [56, 57, 58, 59],

secure quantum key distribution [60, 61, 62], quantum random number genera-

tion [63, 64, 65], cluster state computation [66, 67], and other applications of quan-

tum information processing and communication. Single atoms are natural can-

didates for pure single photon sources, since they are incapable of multi-photon

emission in a spontaneous decay event, and thus generate perfect single photons.

Apart from that, identical atomic qubits guarantee indistinguishability of emitted

photons – a critical requirement for quantum network applications. By contrast,

other candidates, such as NV centers and semiconductor quantum dots, are not

perfectly identical due to their presence in a solid state medium [21, 22].
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4.1.1 Autocorrelation function g(2)

We implement a single-photon source based on 138Ba+ ions. To investigate

the purity of single photons emitted by our source, we build the Hanbury Brown –

Twiss setup [181] shown in Fig. 4.1. The 493 nm photons coming from the 138Ba+

ion are collected by the objective with NA 0.6, and then sent into the beamsplitter.

We have detectors on each side of the beamsplitter: a trigger detector and a signal

one, and we look at the correlations in photon arrival time.

6P1/2

6S1/2

5D3/2

𝜎𝜎−

|𝜎𝜎+〉 → |𝐻𝐻〉 𝜋𝜋 → |𝑉𝑉〉

↓ ↑

493 nm
650 nm

𝑩𝑩
NA=0.6 𝜆𝜆/2 PBS

APD 2

APD 1

Hanbury Brown–Twiss setup

Trigger APD

Signal APD

Beamsplitter

NA=0.6

Figure 4.1: Experimental Hanbury Brown – Twiss setup to investigate the purity
of single 493 nm photons emitted by 138Ba+ ion.

The appropriate measure to characterize the purity of single photons is the

second-order correlation function g(2)(τ):

g(2)(τ) =
〈E∗(t)E∗(t+ τ)E(t)E(t+ τ)〉
〈|E(t)|2〉〈|E(t+ τ)|2〉 , (4.1)

where E(t) is an electric field operator, and 〈. . . 〉 represents the ensemble (statistical)

average. g(2)(τ) is proportional to the probability of detecting a photon at time t+τ

given that a photon was detected at time t. In the experiment (see Fig. 4.1), the

trigger detector fires at time t, and the signal detector records a click at some time
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t+ τ .

We can express g(2)(τ) in terms of intensities:

g(2)(τ) =
〈I(t)I(t+ τ)〉
〈I(t)〉2

, (4.2)

where I(t) is the intensity of the electric field. The expression remains the same

if I(t) is replaced with the number of photons collected 〈n(t)〉. Note that this

expression is even: g(2)(−τ) = g(2)(τ).

It can be shown [182] that the photon counting rate
〈n〉
T

in the steady state

regime is proportional to the probability of finding the ion in its excited states |3〉

and |4〉 defined in Section 2.1.3 (where 138Ba+ ion is modeled as an 8-level system):

〈n〉
T
∝ ρ33(∞) + ρ44(∞). (4.3)

Therefore, for g(2)(τ) we obtain:

g(2)(τ) =
ρ33(τ) + ρ44(τ)

ρ33(∞) + ρ44(∞)
. (4.4)

Before we turn to the discussion of the experimental results of the second-

order correlation function, let us consider various examples of the light sources

to understand what g(2)(τ) represents. For instance, classical light sources always

satisfy g(2)(0) ≥ 1. Other important examples are the following:

• bunched light: g(2)(0) > 1;
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• coherent light: g(2)(0) = 1;

• antibunched light: g(2)(0) < 1;

• pure single photons: g(2)(0) = 0.

We will focus on the last case – pure single photons with g(2)(0) = 0 – since single

atoms are natural emitters of pure single photons.

Using the Hanbury Brown – Twiss setup (see Fig. 4.1), we performed mea-

surements of the second-order correlation function g(2)(τ) with various powers of

the 493 nm laser light, while 650 nm laser power, the magnetic field B, and the

detunings ∆g and ∆r of 493 nm and 650 nm beams, respectively, were fixed.

In Fig. 4.2, we present the measurement of the second-order correlation func-

tion g(2)(τ) with a 493 nm laser power of 32 µW. The experimental data is shown

in blue, while the result of plugging the theoretical solutions of the optical Bloch

equations (for an 8-level model of 138Ba+) into Eq. (4.4) is shown in red. We can see

a strong dip at τ = 0 (5 ns delay is present because of the difference in optical path

lengths and in the cable lengths). This demonstrates photon antibunching. Back-

ground noise and dark counts prevent the dip from reaching zero. According to our

simulations, the 493 nm laser intensity in our experiment was much higher than the

saturation intensity for the S1/2 ↔ P1/2 transition, and the saturation parameter

was Sg ∼ 4. The peaks at τ = ±6 ns are due to Rabi flopping between the S1/2

and P1/2 levels after the single-photon detection. At longer times, g(2)(τ) reaches

saturation: g(2)(τ →∞)→ 1, as we expect.
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Figure 4.2: The second-order correlation function g(2)(τ) that demonstrates photon
antibunching at τ = 0. Photons are generated with 493 nm excitation line shown in
Fig. 4.4(a). Experimental data is shown in blue with 493 nm laser power of 32 µW.
Theoretical calculations based on the solutions of the optical Bloch equations for an
8-level model of 138Ba+ are shown in red. The inset shows the same data as the main
plot, but zoomed in at short times. A 5 ns delay is present due to the difference in
optical path lengths and in the cable lengths, so the horizontal axes show τ + 5 ns.
Fitting parameters are: intensities of 493 nm and 650 nm laser beams, Ig and Ir;
detunings ∆g and ∆r; and magnetic field B.

Next, in Fig. 4.3, we present the measurement of the second-order correlation

function g(2)(τ) with the 493 nm laser power of 85 µW, while the rest of the param-

eters – 650 nm laser power, the magnetic field B, and the detunings ∆g and ∆r of

493 nm and 650 nm beams, respectively – are the same as in Fig. 4.2. Similarly, the

experimental data is shown in blue, while the theoretical calculations are shown in

red. We can see a strong dip at τ = 0 (taking into account the 5 ns delay). Since

the 493 nm laser power is higher this time, we can see the Rabi flops with higher

amplitude. Again, at longer times, g(2)(τ) reaches saturation.
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Figure 4.3: The second-order correlation function g(2)(τ) that demonstrates photon
antibunching at τ = 0. Photons are generated with 493 nm excitation line shown in
Fig. 4.4(a). Experimental data is shown in blue with 493 nm laser power of 85 µW.
Theoretical calculations based on the solutions of the optical Bloch equations for an
8-level model of 138Ba+ are shown in red. The inset shows the same data as the main
plot, but zoomed in at short times. A 5 ns delay is present due to the difference in
optical path lengths and in the cable lengths, so the horizontal axes show τ + 5 ns.
Fitting parameters are: intensities of 493 nm and 650 nm laser beams, Ig and Ir;
detunings ∆g and ∆r; and magnetic field B.

In Fig. 4.2, one can notice a weak modulation with a period of about 50 ns,

which corresponds to a frequency of 18 MHz which is the trap RF frequency. This

modulation is almost undetectable in Fig. 4.3, because the micromotion had been

compensated following the procedure in Ref. [183]. When the micromotion is not

compensated, the details of the internal atomic dynamics are usually hidden by this

micromotion modulation.
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Figure 4.4: Excitation schemes for a 138Ba+ ion. (a) Fast excitation using 493 nm
line with σ+ polarization. (b) Fast excitation using 650 nm line with σ− polarization.
As a result of each of these schemes, all the population is transferred to the excited
state 6P1/2 |mJ = +1/2〉, from where it spontaneously decays, and 493 nm photons
are collected.

4.1.2 650 nm excitation

In order to obtain dramatically lower g(2)(0) results, we introduce a new exci-

tation technique shown in Fig. 4.4(b) and based on the 138Ba+ ion preparation in a

low-lying 5D3/2 manifold [87, 184, 185]. There are several advantages of using 138Ba+

5D3/2 state as a “ground” state. The lifetime of the 5D3/2 state is about 80 s [130],

which is much longer than the time required for any experimental operation. Addi-

tionally, the fairly low branching ratio from the 6P1/2 state to the 6S1/2 and 5D3/2

states of 3 : 1 allows for short pumping times, and therefore high experimental rep-

etition rates. Thus, any disadvantages of operating based out of the 5D3/2 manifold

are minimal, and there are several advantages to doing so. Moreover, the 650 nm

P1/2 ↔ D3/2 transition is spectrally distant from the 493 nm S1/2 ↔ P1/2 transition

[see Fig. 4.4(b)], which allows simple filtering of the desired 493 nm photons emitted
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from the ion from any 650 nm excitation laser light scattered from the trap into the

imaging system. Additionally, 650 nm light is compatible with highly efficient fiber

technologies, such as in-fiber fast AOMs and EOMs, in-fiber switches. With the

help of the 650 nm excitation method demonstrated in Fig. 4.4(b), we also obtain

extremely low double excitation errors (less than 0.4% with 10 ns 650 nm excitation

pulse). It is discussed in detail in Section 4.1.4.

Let us now describe the 650 nm excitation scheme shown in Fig. 4.4(b). First,

we pump a 138Ba+ ion into the edge state 52D3/2|mJ = +3/2〉 by applying an

unpolarized cooling 493 nm beam, and only π and σ+ polarizations of a repump beam

at 650 nm. After that, we apply a 10 ns 650 nm pulse with σ− polarization to excite

all the population to the 62P1/2 manifold. The emitted 493 nm photons are collected

with a high-numerical-aperture lens (NA = 0.6) in the direction perpendicular to

the quantization axis.

High Purity Single Photons Entangled with an Atomic Qubit
Ksenia Sosnova, Martin Lichtman, Clayton Crocker, 

Allison Carter, Sophia Scarano, Leeza Moldavchuk, Chris Monroe 

Joint Quantum Institute at the University of Maryland, 
Department of Physics and the National Institute of Standards and Technology

A modular trapped ion system for: 
• Scalable quantum computing 
• Quantum repeaters 
• Secure quantum key distribution

Required connections: 
• Intramodular (phononic)
• Intermodular (photonic)

D. Hucul et al., Nature Physics 11, 37 (2015).

A multi-species quantum network 
• Frequency selectivity:
→ Individual adressing and reduced 
crosstalk 
• Entanglement swapping after photonic 
link for storage and processing 
• Longer wavelengths with Ba+ have less 
attenuation in fibers
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138Ba+
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Why D state?
• 40 s lifetime sufficient for all current experiments
• 10 ns 650 nm pulse has < 0.4% double excitation error
• 650 nm transition favorable for fiber-based technologies
• Use of different color lines allows for easy filtering of desired light

Collect 493 nm photons
• Optical pumping to � �𝐷𝐷3/2, +3/2 with 𝜎𝜎+ and 𝜋𝜋 650 nm light
• Strong 10 ns 650 nm excitation pulse with 𝜎𝜎− polarization

Double excitation errors 

• Demonstrate higher fidelity ion-photon 

entanglement

• Demonstrate higher fidelity interspecies gates

• Achieve higher rates of remote Ba-Ba entanglement 

• Show Yb-Ba – Ba-Yb multi-species quantum 

network

• Expand concepts and technologies to three-modules 

network

• In collaboration with ARL, build a long-distance 

network based on entangling 780 nm photons via 

efficient quantum frequency conversion*

* J. D. Siverns et al., Phys. Rev. Applied 11, 014044 (2018).

Modular Quantum Network Architecture

C. Crocker et al., arxiv: 1812.01749 (2018).

• Optical pumping to barium D state with 650 nm light
• Fast excitation with 650 nm light
• Emitted 493 nm photons collected with NA 0.6 PhotonGear lens

o In the collection direction, |𝜎𝜎+〉 → |𝐻𝐻⟩ and |𝜋𝜋〉 → |𝑉𝑉⟩
o APD 1 detects |𝑉𝑉⟩ , APD 2 detects |𝐻𝐻⟩

After spontaneous emission: Ψ = 0 𝐻𝐻 + 1 |𝑉𝑉⟩

Ion-Photon entanglement fidelity = 0.884(4)
Fidelity limited by: • Polarization mixing due to large solid angle

• Initialization/detection errors
• polarization mixing in the collection optics

Low double excitation errors: < 0.4% with 10ns pulse 

C. Monroe et al., Phys. Rev. A, 89, 022317 (2014).

I. V. Inlek et al., Phys. Rev. Lett, 118, 250502 (2017).

Polarizations are orthogonal when the light is 
coupled into SM fiber

T. Kim, P. Maunz, and J. Kim, Phys. Rev. A 84, 063423 (2011). 
D. Nadlinger and D. Lucas, (private communication).
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Full 0.6 NA: F = 0.884(4)
Solid angle reduced by half, circular aperture: F=0.912(5)
Solid angle reduced by half, rectangular aperture: F=0.930(4)
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• The window includes more than 
97% of the collected photons

𝑔𝑔 2 0 = 8.1 ± 2.3 × 10−5

without any background 
subtraction

• Within 30ns integration window, 
we got: 

Inconsistency is due to observed transient AOM light leakage.

• APD quantum efficiency of 71%

• dark-count rate of 10 s-1

• 18 hours of integration

• 200 ns detection window

Hanbury Brown–Twiss setup

APD 1

APD 2

Beamsplitter

NA=0.6

𝑔𝑔 2 𝜏𝜏 =
〈𝐼𝐼 𝑡𝑡 𝐼𝐼(𝑡𝑡 + 𝜏𝜏)〉

𝐼𝐼 𝑡𝑡 2

Second-order correlation function:

D. B. Higginbottom et al., New J. Phys. 18, 093038 (2016).
L. Schweickert et al., Appl. Phys. Lett. 112, 093106 (2018).

• Add newly designed trap system to two current Ba/Yb traps
• Enhanced light collection (two 0.8 NA lenses vs. one 0.6 NA lens)
• Trap redesigned to increase optical access

Four rod trap design

Square aspect ratio
trap design

High optical access
trap design

S1/2

P1/2

D3/2

138Ba+

| ⟩1
| ⟩0

|𝜎𝜎+〉 → |𝐻𝐻⟩

|𝜋𝜋〉 → |𝑉𝑉⟩

g(2) Autocorrelation Measurement

Ba+ D State for Ion-Photon Entanglement

Ba Ion-Photon Entanglement

Design of a Three Trap Network Future Directions

Figure 4.5: 650 nm optical pulse with pulse time of 10 ns. The optical 650 nm pulse
is created by a fast AOM and measured on a fast photodiode. The experimental
data is fitted to a Gaussian.
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The fast 650 nm pulse is created by a free-space AOM1 with a 5.1 ns rise time.

In Fig. 4.5, we demonstrate a fast 650 nm optical pulse that is fitted to a Gaussian

with FWHM of 10 ns. Then we apply the excitation pulse to the ion and adjust the

intensity of the 650 nm laser pulse in order to drive a π rotation such that all the

population is excited into the 62P1/2 manifold.

In Figs. 4.6 and 4.7, we demonstrate temporal profiles of single 493 nm photons

emitted by a 138Ba+ ion subject to short 650 nm pulses. The profile shapes are

defined by the convolution of the Gaussian shapes of the excitation pulses and an

exponential decay due to spontaneous emission.

Figure 4.6: Single 493 nm photon temporal profiles. First, we drive the π rotation
with a 10 ns 650 nm pulse, so that all the population is excited to the 62P1/2

manifold. The resulting single-photon temporal profile is shown by the blue curve.
Next, we apply longer 650 nm pulses with 20 ns and 30 ns lengths, and the resulting
temporal profiles are shown by the red and green curves, respectively.

In Fig. 4.6, we show the temporal profile of single 493 nm photons obtained

1Brimrose GPM-400-100
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via a π pulse of 650 nm light with the length of 10 ns (blue curve). In this case,

FWHM of the profile is about 10 ns. When the pulse time is increased to 20 ns

(red curve), we obtain the second peak in the photon temporal profile. In this case,

we overdrive the rotation from the D3/2 to the P1/2 state, which results in Rabi

flopping between these states. Similarly, when the 650 nm pulse duration is 30 ns

(green curve), three pronounced peaks can be distinguished.

Figure 4.7: Single 493 nm photon temporal profiles. The intensity of 650 nm pulse
is reduced by half in comparison to Fig. 4.6. In this case, the π rotation corresponds
to a 15 ns 650 nm pulse. We show single-photon temporal profiles at the same pulse
lengths as in Fig. 4.6.

In Fig. 4.7, single 493 nm photon temporal profiles are shown at half the

intensity of the 650 nm pulse as compared to the previous case. When the 650 nm

pulse time is 30 ns, we see two tall peaks. We can infer from it that the π time in

this case is ∼ 15 ns, as we expect. Indeed, since the Rabi frequency g relates to the
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intensity of the laser field I as:

g = Cγ

√
I

2Isat
, (4.5)

the intensity of the 650 nm pulse reduced by half leads to the increase of the π time

by factor of
√

2.

4.1.3 Pure single photons

In our work [87, 186], in order to investigate the single-photon purity, we

perform the same g(2) measurement using the setup displayed in Fig. 4.1. Fig. 4.8(a)

shows the histogram of the normalized second-order autocorrelation function after

integrating for 18 hours with a detection window of 200 ns in hardware to filter

out 493 nm photons coming from the cooling and pumping parts of the experiment.

Note that 200 ns detection window is excessively large since the atomic decay time

is only about 10 ns. We do not perform any background subtraction. Note that the

data is presented on a logarithmic scale. The peak at τ = 0 is strongly suppressed,

which indicates the purity of the single-photon source. The other (“side”) peaks are

26.8 µs apart, which corresponds to the repetition rate of the experiment.

In Fig. 4.8(b) , we present the second-order coherence of g(2)(0) as a function

of the fraction of light collected if we consider shorter times for integration around

the center of the peak. We choose a 30 ns integration window that contains only

12 ± 3 coincidence events around τ = 0, while there are 149145 ± 386 coincidence

events in a side peak within 30 ns of the peak center. With this 30 ns window,
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Figure 4.8: (a) Normalized second-order autocorrelation function in a semi-log
scale. Side peaks are located 26.8 µs apart, which corresponds to the repetition
rate of the experiment. The strong dip at τ = 0 demonstrates the high purity of
single photon source. (b) Autocorrelation g(2)(0) as a function of the fraction of light
collected if we consider shorter times for integration around the center of the peak.
The experimental data is shown in blue; 1σ error bars for this data are shown in
yellow. The detector dark-count limited g(2)(0) is shown in green; the fitted effective
dark-count limited g(2)(0) is shown in red.

we ensure that we collect more than 97% of the generated photons, while keeping

excessive dark counts from contaminating the signal. As a result, we arrive at

g(2)(0) = (8.1 ± 2.3) × 10−5 − more than an order of magnitude improvement

over the previous best single-photon measurement for an atomic source [185], and

consistent with the overall best single-photon measurement obtained in quantum

dots [187]. Our choice of the detection window represents an favorable trade-off

between light collection and the photon purity. The discontinuous jumps in the blue

data plot correspond to coincidence detection events. A detector dark-count limited

measurement in our experiment would yield g(2)(0) = 3.0 × 10−5, as shown by the

green curve in Fig. 4.8(b). The fitted effective dark-count limited g(2)(0) is shown by

the red curve, with the constant background count rate of 22 s−1. This remaining

inconsistency between our measurement and the background-free measurement is
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due to the observed transient AOM light leakage. We tried to address this issue by

adding a delay after the initialization step, decreasing the overall repetition rate of

the experiment. We verified experimentally that it takes more than 1 ms delay time

to eliminate that transient AOM light leakage completely, and that would make the

experiment too slow.

4.1.4 Double excitations

In our previous work [123], we performed fast excitation using 493 nm light

with σ+ polarization. To reduce the frequency of double scattering events, the

weak CW excitation was implemented with only 10% excitation probability. As

we mentioned in Section 4.1.2, the 650 nm excitation method delivers very low

double excitation errors. Indeed, we calculate them and find that they are below

0.4% when a 10 ns 650 nm excitation pulse is applied. In this section, we give a

detailed description of how these calculations are performed and investigate how the

parameters of the fast 650 nm pulses affect these errors.

As shown in Fig. 4.4(b), we send a 650 nm excitation pulse, so that all the pop-

ulation is transferred to the P1/2 |mJ = +1/2〉 state. However, the second excitation

can happen if the ion decays back to the D3/2 manifold. If after the second excita-

tion, the ion ends up in the P1/2 |mJ = −1/2〉 state, such a process will introduce

an infidelity of the ion-photon entanglement.

To track down such a “bad” double decay, we solve the optical Bloch equations

(as in Section 2.1.3) and investigate the time evolution of all the 138Ba+ states. We
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introduce two auxiliary levels into the S1/2 manifold where the P1/2 |mJ = −1/2〉

state can decay only when emitting 493 nm photons with σ and π polarization,

respectively. We solve the equations for the time evolution of the resulting 10-level

system. The sum of the populations of these two auxiliary states normalized by the

total S1/2 state population represents the ion-photon entanglement infidelity.

We begin investigating the fidelity loss in the case when the 650 nm excitation

pulse is square-shaped. Since we want to achieve the transfer of all the populations

to the P1/2 manifold, the Rabi frequency Ω has to satisfy the following condition:

ΩTp = π, (4.6)

where Tp is the 650 nm pulse duration. Eq. (4.6) is valid only for short pulses –

below or about the lifetime of the P1/2 manifold. In Fig. 4.9, we plot the fidelity
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Figure 4.9: 138Ba+ subject to square-shaped 650nm excitation pulse. Fidelity loss
as a function of pulse time.

loss as a function of the pulse duration. In our experiments, we implement 10 ns
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650 nm pulses, so the double excitation error that we expect in this case is less

than 0.4%. Currently, there is no significant advantage in making the 650 nm pulses

shorter, since this fidelity loss is not the bottleneck, and other sources of errors –

the detection and initialization fidelity, polarization mixing, etc. – dominate in the

ion-photon entanglement experiment. If, however, in the future, we need a shorter

pulse, we can achieve this by adding an in-fiber EOM switch2, which can create 1 ns

pulses.

Next, we proceed to consider the fidelity loss with different – not square,

but more physically inspired – 650 nm pulse shapes. We perform all the same

calculations for two physical 650 nm pulse shapes:

1) a Gaussian shape:

Ω(t) = Ω0exp

(
− t2

w2

)
(4.7)

with the peak intensity Ω0 and the width w; the corresponding phase θ is

θ =

∫ ∞
−∞

Ω(t)dt =
Ω0w√
π

(4.8)

(naturally for a π rotation, we need θ = π) and

2) a sech-shape pulse [188]:

Ω(t) = Ω0 sech

(
1.76 t

τ
FWHM

)
(4.9)

with the peak intensity Ω0 and the full width half max (FWHM) τFWHM.

2Jenoptik, amplitude modulator LiNbO3 AM660b
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Similarly, we write the phase θ as:

θ =

∫ ∞
−∞

Ω(t)dt =
πΩ0τFWHM

1.76
(4.10)

All the considered pulse shapes yield very similar results shown in Table 4.1, so that

we get a fidelity loss < 0.4% for all 10 ns pulses, and the difference between them is

negligible.

Pulse shape Tp = 1 ns, % Tp = 5 ns, % Tp = 10 ns, % Tp =∞, %

square 0.0505 0.220 0.360 8.040
sech 0.0494 0.212 0.355 8.038

gaussian 0.0494 0.211 0.355 8.038

Table 4.1: Fidelity loss in % calculated for various pulse shapes with different pulse
durations ranging between 1 ns and ∞.

Note that, as shown in Table 4.1, in the limit of Tp � τe, when the decay

time τe ' 10 ns, the double excitations only introduce an error of 8%, not 11% as

estimated in Ref. [184].

As discussed above, Eq. (4.6) is not valid if the pulse duration is much longer

than the 10 ns decay time from the P1/2 state to the D3/2 state. In order to perform

a π rotation with a pulse that is much longer than the decay time, we have to use a

large Rabi frequency Ω and solve the optical Bloch equations to find the appropriate

Rabi frequencies. In Figs. 4.10 – 4.13, we show the results of the analysis of the S1/2

manifold populations and the fidelity loss as a function of Rabi frequency at four

fixed values of the pulse duration.

For short 650 nm pulses (1 ns – 10 ns), we are able to perform π rotations so
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that all the population is transferred to the P1/2 manifold with Ω = Ω0, where Ω0

is defined in Eq. (4.6). This conclusion is obtained from the S1/2 state population

behaviour shown in Figs. 4.10 – 4.12. With higher Rabi frequencies, Ω > Ω0, we

overdrive the rotations, as can be seen from the subsequent oscillations. On the

other hand, in the case of the 50 ns 650 nm excitation pulse, we need Ω ≈ 3Ω0 to

reach the maximum of the S1/2 manifold population – see Fig. 4.13. However, for

such a long pulse, the fidelity loss is about 7%, which is very close to the maximum

possible loss of 8%.

Figure 4.10: Population transfer in 138Ba+ subject to a 1 ns-long 650 nm excitation
pulse. Black curve and left vertical axis: S1/2 manifold population. Red curve and
right vertical axis: fidelity loss. Both are plotted as functions of the normalized
Rabi frequency Ω/Ω0.
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Figure 4.11: Population transfer in 138Ba+ subject to a 5 ns-long 650 nm excitation
pulse. Black curve and left vertical axis: S1/2 manifold population. Red curve and
right vertical axis: fidelity loss. Both are plotted as functions of the normalized
Rabi frequency Ω/Ω0.

Figure 4.12: Population transfer in 138Ba+ subject to a 10 ns-long 650 nm excitation
pulse. Black curve and left vertical axis: S1/2 manifold population. Red curve and
right vertical axis: fidelity loss. Both are plotted as functions of the normalized
Rabi frequency Ω/Ω0.
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Figure 4.13: Population transfer in 138Ba+ subject to a 50 ns-long 650 nm excitation
pulse. Black curve and left vertical axis: S1/2 manifold population. Red curve and
right vertical axis: fidelity loss. Both are plotted as functions of the normalized
Rabi frequency Ω/Ω0.

4.2 Ion-photon entanglement

In Section 4.1, we discussed generation of pure single photons. There is an-

other key element necessary for these applications – entanglement between atoms

and emitted photons. We proceed now to discuss this matter and demonstrate

experimental results for ion-photon entanglement. Our ion-photon entanglement

verification procedure [87] is similar to that in Refs. [75, 84].

4.2.1 Experimental demonstration of ion-photon entanglement

We excite 138Ba+ ion with a fast 650 nm pulse as shown in Fig. 4.4(b) to the

excited state P1/2 |mJ = +1/2〉 and let it decay. σ+ photons are emitted when the

ion decays back to the |↓〉 state, and π photons – when the ion decays to the |↑〉
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state. As a result, we obtain the following entangled state:

|Ψ〉 =

√
2

3
|↓〉 |σ+〉+

√
1

3
|↑〉 |π〉. (4.11)

As demonstrated in Fig. 4.14, we collect the photons with a high-NA objective

installed perpendicular to the quantization axis which is defined by the direction

of the magnetic field. Then we project σ+ and π polarizations onto the horizontal

(H) and vertical (V) axes, respectively, and taking into account the spatial emission

patterns of each polarization given in Eqs. (4.14) - (4.15), we arrive to the final

entangled state:

|Ψ〉 =
1√
2

(|↓〉 |H〉+ |↑〉 |V 〉) . (4.12)

6P1/2

6S1/2

5D3/2

𝜎𝜎−

|𝜎𝜎+〉 → |𝐻𝐻〉 𝜋𝜋 → |𝑉𝑉〉

↓ ↑

493 nm
650 nm

𝑩𝑩
NA=0.6 𝜆𝜆/2 PBS

APD 2

APD 1

Hanbury Brown–Twiss setup

Trigger APD

Signal APD

Beamsplitter

NA=0.6

Figure 4.14: Experimental setup for showing entanglement between the state of a
138Ba+ ion and the polarization of the emitted 493 nm photon.

First, we show the correlations between the state of the ion and polarization

of the photon in the z-basis. After a photon detection event on APD1 or APD2,

which are located at both output ports of a polarizing beamsplitter (PBS), the qubit

state is measured. In Fig. 4.15(a), we demonstrate the ion-photon correlation as a

function of the half-wave plate (HWP) rotation angle that is responsible for the
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photon polarization rotation.

It is important to show ion-photon correlation in a rotated basis, because this

way we can verify that after a spontaneous photon emission, the atom still preserves

phase coherence of the resulting qubit state. We show the ion-photon correlation in

the x-basis. For that, first, we rotate the photon polarization by
π

2
:

Rp

(π
2

)
|Ψ〉 =

1

2
[|↓〉 (|V 〉+ |H〉) + |↑〉 (|V 〉 − |H〉)] (4.13)

=
1

2
[(|↑〉+ |↓〉)|V 〉+ (|↓〉 − |↑〉)|H〉] .

Then, following a photon detection event, the atomic qubit is rotated by
π

2
with a

variable phase.

In Fig. 4.15(b), we plot the corresponding coherences (correlations measured

in the x-basis). The experimental data in both figures is fitted to a sine function,

and its amplitude represents the corresponding fidelity. The final entanglement

fidelity, F = 0.884(4), is calculated as an average fidelity from both measurements.

As we discussed in Section 4.1.4, the double-excitation errors are below 0.4% for

10 ns-long 650 nm pulses, meaning that we have to investigate other sources of

errors. As a result of the corresponding analysis, we attribute the remaining errors

to imperfect state initialization/detection (1.5%), polarization mixing due to the

large solid angle (5% for the 0.6-NA objective), and polarization mixing in the

collection optics (5%) [79].
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z-basis correlations x-basis correlations

(a) (b)

Figure 4.15: (a) Ion-photon correlations as a function of the wave-plate rotation
angle. The red (blue) curve shows the probability of finding the ion in the |↑〉 state
when the photon is detected on APD1 (APD2). No stops are implemented for this
experiment (see Section 4.2.2). (b) Ion-photon coherences (correlations measured
in the x-basis) as a function of the phase of the π/2 rotation performed on the ion
qubit. No stops are implemented for this experiment, as well. Amplitudes represent
the corresponding entanglement fidelity F = 0.884(4).

4.2.2 Polarization mixing

In this section, we investigate polarization mixing errors due to the large solid

angle and we try to find the ways to reduce these errors. For this purpose, let

us look at the radiation patterns of σ+ and π photons that 138Ba+ ion emits. The

magnetic field direction (the quantization axis) is along the z-direction. After taking

into account the Clebsch-Gordan coefficients and our excitation scheme that does

not allow for σ−-photon emission, we obtain 493 nm emission patterns plotted in
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Fig. 4.16 and written down in the following form [73, 118]:

π = i

√
3

16
sinθ θ̂, (4.14)

σ+ = ieiφ
√

3

16

(
cosθ θ̂ + iφ̂

)
, (4.15)

σ− = 0, (4.16)

where θ and φ are the spherical coordinates.

𝑩𝑩

𝜋𝜋 polarized light (yellow);
𝜎𝜎 polarized light (blue)

(a) (b) (c)

Figure 4.16: (a) Radiation pattern of a σ-polarized (blue surface) and π-polarized
(yellow surface) light emitted along the z quantization axis; (b) Radiation patterns
for the decomposition of the σ-polarized light [the blue surface in the panel (a)] into
the H (blue surface) and V (yellow surface) linear polarization components; (c) Two
types of apertures used in the experiment to reduce the V-polarized light collection
angle thereby improving the ion-photon entanglement fidelity.

In Fig. 4.16(a), we plot the radiation patterns of both σ+ and π photons.

The π-polarized photons are shown in yellow, and in the V-H basis, they only

have a V component, i.e. the π polarization coincides with the V polarization.

On the other hand, the σ-polarized photons [shown in blue in Fig 4.16(a)] have

to be decomposed into the H and V polarization components, as demonstrated in
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Fig. 4.16(b). Note that at θ =
π

2
, there is no V component in the σ+ light, and hence

there is no polarization mixing. However, as the angle changes from θ =
π

2
, there

is an increasingly large V component. After projecting the σ+ and π polarizations

onto the horizontal (H) and vertical (V) axes, we obtain the resulting ion-photon

entangled state:

|Ψr〉 =
1√
2

(
−eiφ |↓〉 |H〉+ ieiφcosθ |↓〉 |V 〉+ 0 · |↑〉 |H〉+ isinθ |↑〉 |V 〉

)
. (4.17)

The desired final entangled state is |Ψd〉 defined in Eq. (4.12). Therefore, the

ion-photon entanglement fidelity is given by F = |〈Ψd|Ψr〉|2 =
1

4
(1+sinθ)2. In order

to reduce the vertical light collection angle, we manufactured two types of apertures

(stops) using 3D printers. They allow us to improve the ion-photon entanglement fi-

delity, but they also reduce the photon collection rate, leading to a trade-off between

the photonic generation rate and the ion-photon entanglement fidelity. These stops

shown in Fig. 4.16(c) are inserted immediately after the last lens of the microscope

objective. We repeat the ion-photon correlation experiment with these apertures

installed. The circular and rectangular apertures are both designed to block half

of the light. The corresponding improvements to the fidelities are presented in Ta-

ble 4.2.
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Aperture type Solid angle/4π Calculated F Measured F

None 0.10 0.887 0.884(4)
Circular 0.05 0.912 0.912(5)

Rectangular 0.05 0.927 0.930(3)

Table 4.2: Ion-photon entanglement fidelities obtained by spatial filtering of ion
light: simulation and experimental results for various apertures.

Since the rectangular aperture blocks the ion light only in the V direction

and preserves the entire H component, it results in higher ion-photon entanglement

fidelity than the symmetrical circular stop does. If the ion light is collected in

free space, then there is a trade-off between the collection rate and the ion-photon

entanglement fidelity, and the width of the aperture has to be optimized with respect

to these two factors.

4.2.3 Photon collection into a single-mode fiber

As we discussed in Sections 4.1.3 and 4.2.1, trapped atomic ions are ideal sin-

gle photon emitters with long-lived internal states which can be efficiently entangled

with emitted photons. However, transmitting these photons over long distances in

a large-scale distributed quantum network [189] is still a challenge. Several exper-

iments have demonstrated long-distance (> 10 km) photon transmission in single-

mode fibers [69, 70] via frequency conversion [190, 191]. We stress that apart from

the very important role that single-mode fibers play in such long-distance photon

transmission, the key advantages of these fibers are that they allow perfect matching

of spatial modes and filtering out photons with unwanted polarizations [73, 192].

As is commonly known, when photons are collected along the quantization
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axis (defined by the direction of the magnetic field), π-polarized photons cannot

be coupled into a single-mode fiber due to the cylindrical symmetry [73, 192]. It

turns out that when photons are collected in the direction perpendicular to the

quantization axis, and the light is being coupled into a single-mode fiber, there is

no polarization mixing, or in other words, the polarizations are orthogonal [193].

The amount of light from the mode ~Eε that will couple into a single-mode

fiber is given by the mode overlap:

Tε ∝
∣∣∣∣∫ 2π

0

dφ

∫ π

0

dθ sinθ ~Eε · ~G
∣∣∣∣2 , (4.18)

~G = exp

(
− r

2

w2

)
[αx̂+ βẑ] ,

where ~G is the Gaussian mode of a single-mode fiber oriented along the y-axis with

|α|2 + |β|2 = 1. As we discussed, π-polarized photons described in Eq. (4.14) have

projection only on the V polarization – along the z-axis, but not on the H polar-

ization, which is along the x-axis. Once the vector θ̂ is expressed in the Cartesian

coordinates,

θ̂ = cosθ(cosφ x̂+ sinφ ŷ)− sinθ ẑ, (4.19)

we can determine whether the mode ~Eπ can be coupled into a single-mode fiber

along the x-axis or along the z-axis:

• along the x-axis (H polarization):

THπ ∝
∫ π

0
dθ sin2θ (θ̂ · x̂) ∝

∫ π
0
dθ sin2θcosθ = 0;

• along the z-axis (V polarization):
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T Vπ ∝
∫ π

0
dθ sin2θ (θ̂ · ẑ) ∝

∫ π
0
dθ sin3θ 6= 0.

Similarly, we can analyse σ+-polarized photons described in Eq. (4.15) and investi-

gate whether the mode ~Eσ can be coupled into a single-mode fiber along the x-axis

or along the z-axis. ~Eσ consists of two terms, and only the first one, ∝ cosθ θ̂, is

relevant for this discussion:

• along the x-axis (H polarization):

THσ ∝
∫ π

0
dθ sinθcosθ (θ̂ · x̂) ∝

∫ π
0
dθ sinθcos2θ 6= 0

• along the z-axis (V polarization):

T Vσ ∝
∫ π

0
dθ sinθcosθ (θ̂ · ẑ) ∝

∫ π
0
dθ sin2cosθ = 0.

Thus, once the σ-polarized photons are coupled into a single-mode fiber, the po-

larizations are orthogonal, and there is none of the polarization mixing that we

discussed in Section 4.2.2.
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Chapter 5: Outlook

In this thesis, we have demonstrated the key elements of the quantum network

(based on the memory 171Yb+ qubits and communication 138Ba+ qubits) such as

ion-photon entanglement, generation of pure single photons, and entangling gates

between 171Yb+ and 138Ba+ ions together with the theoretical analysis of entangling

gates for long mixed-species ion chains.

5.1 Quantum network with several nodes

Since we have two fully operational ion traps on the optical table, the next

step of our experiment is to show 2× 2 quantum network based on two nodes with

one 171Yb+ ion and one 138Ba+ ion in each trap.

Following the quantum network protocol, first, we create remote entanglement

between 138Ba+ ions in different traps. With the achieved fiber coupling efficiency

of 30% 1 for 0.6 NA objectives, we expect to get the remote entanglement rate of

80-100 s−1. The best result to date that has recently been reported by the Oxford

ion trap group is 182 s−1 [193].

1We achieved coupling of a 138Ba+ ion light into a single-mode (SM) fiber with the coupling
efficiency of 30%. We take into account the fact that 80% of the light emitted to 0.6 NA has
non-zero overlap with the Gaussian mode of the SM fiber. If we ignore this fact then the observed
fiber coupling efficiency would be about 25% with respect to the free-space light collection.
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Next, after performing two MS gates between 171Yb+ and 138Ba+ ions in each

trap, we end up with two entangled 171Yb+ ions.

Following the modular approach, a natural next step for our experiment is

to expand the network to three nodes [194, 195] and then further to the larger

number of ion-trap nodes. In this outlook, we discuss these network protocols and

our experimental attempts in this direction.

5.1.1 Three-node network

In this section, we present a protocol for a three-node network with one mem-

ory 171Yb+ ion and one communication 138Ba+ ion in each ion trap. The goal is

to construct an entangled state of three Yb qubits with Ba ions being disentangled

from the system of interest. In addition, we have requirements of minimizing the

number of the MS gates (since the MS gate fidelity is not high) and minimizing the

number of the 138Ba+ qubit state detection operations (since the 138Ba+ qubit state

detection is probabilistic, as discussed in Section 2.3.1.1; this limitation can be lifted

once the 138Ba+ detection scheme is replaced with a deterministic one).

In Fig. 5.1, we show a schematics for a three-node network. For this network,

we provide the following protocol:

1. Ba1-Ba2 remote entanglement.

Note that we can do either Ba1-Ba2 or Ba2-Ba3 entanglement first so we try

to generate entanglement with either pair and whichever succeeds is the one

we treat as Ba1-Ba2 in the following protocol.
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Yb2   Ba2

Yb1   Ba1 Yb3   Ba3

Node 1 Node 3

Node 2

Figure 5.1: Three-node network. Red circles represent separate ion traps with
one 171Yb+ ion and one 138Ba+ ion; blue lines represent photonic interconnections
between ion traps.

As a result, the joint state is |Ba1〉 |Ba2〉 = |00〉+ |11〉.

2. Initialization of |Yb1〉 = |0〉, and then Ba1-Yb1 SWAP operation.

3. Initialization of |Yb2〉 = |0〉, and then Ba2-Yb2 SWAP operation.

As a result, the joint state is |Yb1〉 |Yb2〉 = |00〉+ |11〉.

4. Ba2-Ba3 remote entanglement.

As a result, the joint state is |Ba2〉 |Ba3〉 = |00〉+ |11〉.

5. Initialization of |Yb3〉 = |0〉, and then Ba3-Yb3 SWAP operation.

As a result, the the joint state of Yb1, Yb2, Ba2, and Yb3 is given by

|Yb1〉 |Yb2〉 |Ba2〉 |Yb3〉 = (|00〉+ |11〉)(|00〉+ |11〉) = |0000〉+ |1100〉+ |0011〉+

|1111〉.

6. CNOT Yb2-Ba2, where |Yb2〉 is a control qubit.

Then, |Yb1〉 |Yb2〉 |Ba2〉 |Yb3〉 = |0000〉+ |1110〉+ |0011〉+ |1101〉

7. Measurement of |Ba2〉 and a conditional rotation on |Yb3〉.

If |Ba2〉 = |0〉, then |Yb1〉 |Yb2〉 |Yb3〉 = |000〉+ |111〉.
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If |Ba2〉 = |1〉, then |Yb1〉 |Yb2〉 |Yb3〉 = |110〉+ |001〉. After the π rotation on

|Yb3〉, we get the final GHZ state: |Yb1〉 |Yb2〉 |Yb3〉 = |000〉+ |111〉.

8. Measurement of |Yb1〉, |Yb2〉, and |Yb3〉 states.

Note that each SWAP operation requires two MS gates, and each CNOT requires

only one MS gate. As a result, we have to perform seven MS gates and one detec-

tion of a Ba qubit. Since two photons are required to establish remote entanglement

between two Ba ions, the success probability of this operation scales as p2. Since

currently the Ba state detection is probabilistic, it adds a power of p leading to the

total success probability of p3. This results in a much lower fraction of experimen-

tal trials that produce a desired entangled state in comparison with p2 protocols

achievable when deterministic detection is utilized. Also, if we want to achieve 70%

of the final fidelity of this protocol, the MS gate fidelity has to be 95% or higher.

We can modify this protocol to avoid measuring the state of the Ba ion, and

keep the success probability of the order of p2. For that, we change all the protocol

steps starting with step 6:

6. CNOT Yb2-Ba2, where |Ba2〉 is a control qubit.

Then, |Yb1〉 |Yb2〉 |Ba2〉 |Yb3〉 = |0000〉+ |1100〉+ |0111〉+ |1011〉

7. Measurement of |Yb2〉 and a conditional rotation on |Yb1〉.

If |Yb2〉 = |0〉, then |Yb1〉 |Ba2〉 |Yb3〉 = |000〉+ |111〉.

If |Yb2〉 = |1〉, then |Yb1〉 |Ba2〉 |Yb3〉 = |100〉+ |011〉. After the π rotation on

|Yb1〉, we get the GHZ state: |Yb1〉 |Ba2〉 |Yb3〉 = |000〉+ |111〉.
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8. Initialization of |Yb2〉 = |0〉, and then Ba2-Yb2 SWAP operation.

Then, we get the final GHZ state: |Yb1〉 |Yb2〉 |Yb3〉 = |000〉+ |111〉.

In this case, we perform a total of nine MS gates and no Ba state detection. As a

result, if we want to achieve 70% total fidelity of this protocol, the MS gate fidelity

has to be 96% or higher.

5.1.2 Four-node network

In this section, we present a protocol for a four-node network with one memory

171Yb+ ion and one communication 138Ba+ ion in each ion trap. The goal is to

construct a distributed entanglement between four traps. Similarly to the previous

Section 5.1.1, we have requirements of minimizing the number of the MS gates and

the number of the Ba qubit state detection operations.

In Fig. 5.2, we show a schematics of a four-node network. For this network,

we provide the following protocol:

Yb2   Ba2

Yb1   Ba1 Yb4   Ba4

Node 1 Node 4

Node 2

Yb3   Ba3

Node 3

Figure 5.2: Four-node network. Red circles represent separate ion traps with
one 171Yb+ ion and one 138Ba+ ion; blue lines represent photonic interconnections
between the ion traps.
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1. Ba1-Ba2 remote entanglement.

As a result, the joint state is |Ba1〉 |Ba2〉 = |00〉+ |11〉.

2. Initialization of |Yb1〉 = |0〉, and then Ba1-Yb1 SWAP operation.

3. Initialization of |Yb2〉 = |0〉, and then Ba2-Yb2 SWAP operation.

As a result, the joint state is |Yb1〉 |Yb2〉 = |00〉+ |11〉.

4. Ba3-Ba4 remote entanglement.

As a result, the joint state is |Ba3〉 |Ba4〉 = |00〉+ |11〉.

5. Initialization of |Yb3〉 = |0〉, and then Ba3-Yb3 SWAP operation.

6. Initialization of |Yb4〉 = |0〉, and then Ba4-Yb4 SWAP operation.

As a result, the joint state is |Yb3〉 |Yb4〉 = |00〉+ |11〉.

7. Ba2-Ba3 remote entanglement.

As a result, the joint state is |Ba2〉 |Ba3〉 = |00〉+ |11〉.

8. Ba4-Ba1 remote entanglement.

As a result, the joint state is |Ba4〉 |Ba1〉 = |00〉+ |11〉.

9. CNOT Yb2-Ba2, where |Yb2〉 is a control qubit.

Then, |Yb1〉 |Yb2〉 |Ba2〉 |Ba3〉 = |0000〉 + |1110〉 + |0011〉 + |1101〉, where the

order of the qubits has to be preserved.

10. Then we add |Yb3〉 |Yb4〉 = |00〉+ |11〉 to the right side, and at this point we

are working with six qubits: |Yb1〉 |Yb2〉 |Ba2〉 |Ba3〉 |Yb3〉 |Yb4〉.

CNOT Ba3-Yb3, where |Ba3〉 is a control qubit.
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Then, |Yb1〉 |Yb2〉 |Ba2〉 |Ba3〉 |Yb3〉 |Yb4〉 = |000000〉+ |000011〉+ |111000〉+

|111011〉+ |001110〉+ |001101〉+ |110110〉+ |110101〉.

11. Then we add |Ba4〉 |Ba1〉 = |00〉+|11〉 to the right side, and at this point we are

working with all the eight qubits: |Yb1〉 |Yb2〉 |Ba2〉 |Ba3〉 |Yb3〉 |Yb4〉 |Ba4〉 |Ba1〉.

CNOT Yb4-Ba4, where |Yb4〉 is a control qubit.

Then, |Yb1〉 |Yb2〉 |Ba2〉 |Ba3〉 |Yb3〉 |Yb4〉 |Ba4〉 |Ba1〉 = |00000000〉+|00000011〉+

|00001110〉+ |00001101〉+ |11100000〉+ |11100011〉+ |11101110〉+ |11101101〉+

|00111000〉+ |00111011〉+ |00110110〉+ |00110101〉+ |11011000〉+ |11011011〉+

|11010110〉+ |11010101〉.

12. CNOT Ba1-Yb1, where |Ba1〉 is a control qubit.

Then, |Yb1〉 |Yb2〉 |Ba2〉 |Ba3〉 |Yb3〉 |Yb4〉 |Ba4〉 |Ba1〉 = |00000000〉+|10000011〉+

|00001110〉+ |10001101〉+ |11100000〉+ |01100011〉+ |11101110〉+ |01101101〉+

|00111000〉+ |10111011〉+ |00110110〉+ |10110101〉+ |11011000〉+ |01011011〉+

|11010110〉+ |01010101〉.

13. Measurement of |Yb1〉 |Ba2〉 |Yb3〉 |Ba4〉 and conditional rotations.

For simplicity, we discuss only some of the measurement results.

If |Yb1〉 |Ba2〉 |Yb3〉 |Ba4〉 = |0000〉, then only the states highlighted in red re-

main in the superposition, and |Yb2〉 |Ba3〉 |Yb4〉 |Ba1〉 = |0000〉+ |1111〉.

If |Yb1〉 |Ba2〉 |Yb3〉 |Ba4〉 = |0110〉, then only the states highlighted in green

remain in the superposition, and |Yb2〉 |Ba3〉 |Yb4〉 |Ba1〉 = |0100〉 + |1011〉.

Next, we perform a π rotation on |Ba3〉 and obtain the final GHZ state:

|Yb2〉 |Ba3〉 |Yb4〉 |Ba1〉 = |0000〉+ |1111〉.
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If |Yb1〉 |Ba2〉 |Yb3〉 |Ba4〉 = |1111〉, then only the states highlighted in blue

remain in the superposition, and |Yb2〉 |Ba3〉 |Yb4〉 |Ba1〉 = |1010〉 + |0101〉.

Next, we perform π rotations on |Yb2〉 and |Yb4〉 and obtain the final GHZ

state: |Yb2〉 |Ba3〉 |Yb4〉 |Ba1〉 = |0000〉+ |1111〉.

As a result, for this protocol, we have to perform twelve MS gates and four detec-

tions of Ba ions. Since currently the Ba state detection is probabilistic, it leads to

the final success probability of p6, which is not acceptable. However, if the con-

ventional deterministic Ba state detection scheme is used instead, then the total

success probability becomes p2 [124, 125], and this issue is resolved. Also, some of

the steps of this protocol can be done in parallel – for example SWAP or CNOT

operations in different traps. We estimate the total time required for the execution

of this protocol to be around 500 µs - 1 ms, leading to the necessity to stabilize the

magnetic field to improve the Ba coherence time.

Similarly to the three-trap case, we can modify this protocol to avoid measur-

ing the state of the Ba ion, and keep the success probability of the order of p2. After

the step 7, we perform CNOT gates for the pairs Yb2-Ba2 and Yb3-Ba3, and after

measuring the states of Yb2 and Yb3, we swap the information stored in Ba2 and

Ba3 to Yb2 and Yb3, respectively. As a result, this protocol requires 14 MS gates

and no Ba detection. If we want to achieve 70% total fidelity for this protocol, the

MS gate fidelity has to be 97.5% or higher.

We can generalize these protocols to a larger number of quantum nodes, and
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the number of entangling operations required scales linearly with the number of

nodes. However, since some operations in different nodes can be performed at the

same time, we expect to get sublinear dependence on time.

5.1.3 New trap design

As we discussed in Section 5.1.1 and in the corresponding network protocol, we

want to have a middle node # 2 connected to two other nodes – # 1 and # 3 – via

a photonic link. A fiber switch can be implemented in order to create the photonic

connections with nodes # 1 and # 3. Unfortunately, attenuation of a fiber switch at

493 nm wavelength is relatively high, and it would result in a significant light loss.

Moreover, fiber switches are quite slow for our remote entanglement experiments

resulting in a low experimental rate (the switching speed is of the order of 1 ms).

Figure 5.3: Three-trap network. Alice and Bob are currently on the optical table,
and have free-space 0.6 NA objectives for 493 nm light collection and its coupling
into an SM fiber. A new node will support 493 nm light collection from both sides
with the help of 0.8 NA in-vacuum optics.

Therefore, to connect both nodes # 1 and # 3 with the node # 2, we design

a new vacuum chamber with 493 nm light collection from two sides as shown in
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Fig. 5.3. To increase the amount of the 493 nm light that we collect, we are planning

to utilize two 0.8 NA objectives. These lenses are placed inside the vacuum chamber

to achieve this high NA. The two working systems that we have on the optical table

now will correspond to Alice and Bob in Fig. 5.3. Free-space 0.6 NA objectives 2

for 493 nm light collection are used in the Alice and Bob setups.

In Fig. 5.4, we demonstrate a design of a new vacuum chamber. 171Yb+ and

138Ba+ ions are trapped in a four-rod trap. To achieve 0.8 NA 493 nm light collection,

collection optics is placed inside the vacuum chamber, 6 mm away from the ion

position. Two custom single-element aspheres 3 collimate 493 nm light and can

be linearly adjusted by two three-axis piezo stages 4. Since the 493 nm light is

collimated, any tip or tilt of the in-vacuum asphere results in a displacement of the

beam that can be addressed by the second pair of custom 0.1 NA aspheres which

are located outside of the vacuum chamber. Since the in-vacuum aspheres are made

from a dielectric material and are located very close to the ions, we are planning

to coat these lenses with Indium Tin Oxide (ITO) coating which is a transparent

conductor and would be grounded to the vacuum chamber.

In Alice and Bob, we collect 493 nm light with 0.6 NA objectives, and we

noticed that the rods of the four-rod trap, used in the experiments and shown in

Fig. 5.5(a), block about 20% of the light. In the new trap, we solve this light-clipping

problem by introducing a high optical access trap design which is demonstrated in

Fig. 5.5(b). The square aspect ratio trap design used in Alice and Bob is modified

2Photon Gear Inc.
3Asphericon
4SmarAct, UHV compatible
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(a) (b)

Figure 5.4: Design of a new vacuum chamber. (a) 171Yb+ and 138Ba+ ions are
trapped in a four-rod trap with an enhanced 493 nm light collection with the help of
two 0.8 NA in-vacuum custom aspheres that collimate 138Ba+ light. Two three-axis
piezo stages are used for fine linear adjustment of the in-vacuum aspheres. Outside of
the vacuum chamber, two 0.1 NA custom aspheres are utilized for the fiber coupling.
(b) The four-rod trap and in-vacuum aspheres are shown in a zoomed-in view.

by stretching it in one direction and squeezing it in the other one. We verify that

the trap frequencies – both axial and radial – do not change dramatically with this

trap modification. Namely, Alice (the old four-rod trap) has the radial frequencies

ωx = 2.44 MHz and ωy = 2.38 MHz and the axial frequency ωz = 0.29 MHz. The

new high optical access four-rod trap has lower radial frequencies – ωx = 1.6 MHz

and ωy = 1.4 MHz – and a higher axial frequency, ωz = 0.4 MHz, assuming a 1000 V

RF signal is applied to the trap electrodes, and 200 V are applied to the needles.
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(a) (b)

Figure 5.5: Designs of a four-rod trap. (a) Square aspect-ratio trap design used in
Alice and Bob. When collecting 493 nm light with free-space 0.6 NA objective, rods
are clipping about 20% of the light. (b) High optical access trap design intended to
collect 493 nm light with 0.8 NA in-vacuum aspheres on two sides.

5.2 133Ba+ as a memory qubit

We use 171Yb+ ions as memory qubits since they are insensitive to magnetic

field and have long coherence times [26, 27]. But the major drawback associated

with the use of 171Yb+ ions is that the main cooling transition at 369 nm is in the UV

range, and currently, the development of the corresponding photonics infrastructure

is limited. As a solution to this problem, a synthetic A = 133 isotope of barium

is under development for quantum information applications [34, 141]. 133Ba+ has

a non-zero nuclear spin I = 1/2 which means it has an atomic level structure

similar to 171Yb+. This guarantees robust state preparation and readout of the

hyperfine qubit, magnetic field insensitivity, and long coherence times. In addition,

its metastable D3/2 state (τ ≈ 80 s) allows high-fidelity readout [34], and long-

wavelength transitions facilitate the use of photonic technologies developed for the
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visible and near-infrared spectrum.

133Ba+ isotope is radioactive with a halflife of 10.5 years and an average emitted

gamma energy of 0.266 MeV. Hence, additional safety procedures are required during

oven loading and trapping (such as a few-cm-thick lead screen to provide adequate

radiation shielding).

At the current stage of our experiment, we use different species for memory

qubits and communication qubits to eliminate crosstalk between them and preserve

the information stored in the memory qubit during single photon generation and

optical pumping steps. Now, we consider a possibility of switching to still a mixed-

species, but an all-Barium network with 133Ba+ as a memory qubit and 138Ba+ as a

communication qubit. For this purpose, we need to investigate crosstalk probabil-

ities. Crosstalk can occur if 133Ba+ (which is storing information in the hyperfine

states in the S1/2 manifold) absorbs a 493 nm photon emitted from 138Ba+ during

remote entanglement generation or from a 493 nm laser beam that performs optical

pumping of 138Ba+.

5.2.1 Crosstalk during single photon generation

First, we investigate the crosstalk between 133Ba+ and 138Ba+ qubits during

single photon generation process [196]. To create remote entanglement between

separate quantum nodes, we excite 138Ba+ ions in both traps simultaneously and

collect the emitted 493 nm photons into single-mode fibers. Since the success rate of

this whole procedure is low, we initiate 105 excitation events per second, and many
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493 nm photons are emitted in all directions (4π solid angle). Since we perform

excitation with 650 nm pulses, 493 nm laser light is off and does not cause any

additional crosstalk.
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Figure 1.4: A trapped atomic ion module; the unit cell of network architecture.
Photons emitted from communication qubits are collected into a single-mode fiber
to be used in heralded entanglement of qubits in different modules. However, these
photons get emitted towards the memory qubits as well, and might be absorbed,
resulting in loss of information. Addressing only the photonic atoms with excitation
and optical pumping beams for heralded entanglement operation while not affecting
the memory qubits might be challenging as well. These crosstalk processes between
memory and communication qubits might compromise the quantum information
processing if they are close to each other.

14

Figure 5.6: Representation of crosstalk between a memory qubit and a photonic
communication qubit located a distance r away from its neighbor in an ion-trap
node. The resonant absorption cross section σ is described by the angle 2θ(r).

We assume the ions are equally spaced, as shown in Fig. 5.6, with the inter-

ionic distance of r = 5 µm, and the resonant absorption cross section σ is described

by the angle 2θ(r). The ratio of the solid angle in which scattered photons can be

absorbed by the memory ion to the total solid angle of 4π is given as:

Ω

4π
=

2π
∫ θ

0
sin θ′ dθ′

4π
=

1− cos θ(r)

2
, (5.1)

where

2θ(r) = 2 arctan

(√
3λ2/2π2

r

)
. (5.2)

The crosstalk probability is determined by a few factors. One of them, the solid angle

factor [Eq. (5.1)], is about 10−3 in our case. Another factor that contributes to the
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crosstalk probability is given by

(
γ/2π

∆

)2

, where γ/2π = 15.2 MHz is the natural

linewidth of the P1/2 level and ∆ is the detuning between the relevant transitions in

133Ba+ and 138Ba+ ions.

delivered to the experiment via single-mode optical fibers.
The EOMs are used to provide frequency sidebands on the
laser spectrum, which allow cooling and/or heating of
multiple isotopes simultaneously, as well as for addressing
the necessary transitions due to hyperfine structure in I ≠ 0
isotopes (see Fig. 1). An applied magnetic field of a few
Gauss along a radial direction of the ion trap, with laser
beams linearly polarized ≈ 45° from the magnetic field
direction, is used to destabilize dark states that result from
coherent population trapping [29].
A source of 133Ba atoms is produced by drying a

commercially available solution of neutron activated
BaCl2 dissolved in 0.1 M HCl on a platinum ribbon
substrate. The vendor reports that approximately 2% of
the total barium atoms are 133Ba [34]. Atomic ion fluores-
cence and a LAMS spectrum indicate a highly enriched
source of 132Ba atoms (≈ 50%) due to the manufacturing
process. The platinum ribbon substrate is ≈ 4 mm from the
edge of the trap in the radial direction, and near the center of
the trap axially.
With the trap rf switched off, atomic barium ions are

produced by laser ablating the barium on the platinum
ribbon substrate using a 532 nm, 0.4 mJ, 5–7 ns laser pulse
focused down to 40 μm. After a delay period of 10 μs,
optimized for maximum capture efficiency, the trap rf
voltage turns on and ions are confined. Since typical
kinetic energies produced by laser ablation range from
5–50 eV [35], a 10 μs delay indicates loading of the low
energy portion (≈.1 eV) of the ion kinetic energy distri-
bution. In this work, 10–100 barium atomic ions are
trapped after each laser pulse. Theoretical models indicate
that each laser pulse produces ∼1011 Ba atoms [36],
resulting in a loading efficiency of order 10−9–10−10,

comparable to loading using an oven and photoionization
[37–39]. Overlapped cooling and repumping beams enter
the trap at an angle of 45° and 0° with respect to the axial
direction of the ion trap.
For the remainder of this paper, the total angular momen-

tum of each hyperfine manifold in the 62S1=2, 62P1=2, 52D3=2
electronic states is denoted FS, FP, and FD, respectively.
To Doppler cool 133Baþ, a laser near 493 nm is slightly red
detuned (≈30 MHz) from theFS ¼ 1 ↔ FP ¼ 0 transition,
denoted νb0 in Fig. 1(a). Transitions between the FS ¼ 0 ↔
FP ¼ 0 are forbidden, but off-resonant scattering via the
FP ¼ 1 states leads to population trapping in the FS ¼ 0

state. To depopulate this state, the 493 nm fiber EOM is
driven at ν0 ¼ 5.872 GHz resulting in a second-order side-
band resonant with the FS ¼ 0 ↔ FP ¼ 1 transition. A
repumping laser near 650 nm is slightly red detuned of the
FP ¼ 0 ↔ FD ¼ 1 transition, denoted νr0 [see Fig. 1(a)].
Transitions between the FP ¼ 0 ↔ FD ¼ 2 states are
dipole forbidden, but decay from the FP ¼ 1 states pop-
ulates the FD ¼ 2 states. The off-resonant scatter rate out of
the FD ¼ 2 states, from the applied laser frequency νr0, is
greater than the decay rate into the state due to off-resonant
scatter from the application of laser frequency νb0. Therefore,
only the three frequencies νb0 , ν

b
1 , and ν

r
0 are required to cool

and crystallize 133Baþ. However, to improve cooling the
650 nm fiber EOM is driven at 904 MHz resulting in a first-
order sideband red detuned from the FP ¼ 1 ↔ FD ¼ 2

transition, denoted νr1 in Fig. 1(a).
During laser ablation, other ions (here, mainly 132Baþ

due to its high abundance in our source) tend to be
cotrapped with 133Baþ. Because the 62S1=2 hyperfine qubit
splitting of 133Baþ is much larger than the isotope shift of the

(a) (b)

(c)

FIG. 1. (a) Laser cooling transitions for the A ¼ 133 isotope of barium II with hyperfine structure of the underlying states. (b) A single
133Baþ ion and an isotopically pure 132Baþ ion chain loaded from an enriched microgram source of barium atoms. (c) Laser loading
scheme of 133Baþ for the 62S1=2 ↔ 62P1=2 transition. To Doppler cool 133Baþ, the laser carrier νb0 is stabilized 4.218(10) GHz above the
138Baþ resonance. The frequency νb1, resulting from a second-order sideband at νb0 − 11.744 GHz, depopulates the 62S1=2, F ¼ 0 state.
The frequency νbh, resulting from a first-order sideband at νb0 − 4.300 GHz, Doppler cools any co-trapped barium II even isotopes and
sympathetically cools 133Baþ. This first-order sideband is scanned across the blue shaded region (to νb0 − 3.800 GHz) using a high
bandwidth fiber EOM to Doppler heat any other barium II isotopes out of the ion trap.
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Figure 5.7: Energy level diagram for 133Ba+. The qubit is defined within the
hyperfine sublevels of the S1/2 manifold, with the qubit splitting ∆q = 9.93 GHz.
The hyperfine splittings in the P1/2 and D3/2 manifolds are ∆1 = 1.84 GHz and ∆2 =
0.94 GHz, respectively. The other relevant frequencies are νb0 = νb138 + 4.22 GHz,
and νb1 = νb138 − 7.53 GHz, where νb138 = 607.4263 THz is the resonant frequency of
the S1/2 ↔ P1/2 transition in 138Ba+.

In Fig. 5.7, which is based on Ref. [141], we demonstrate a diagram of the rele-

vant energy levels in 133Ba+ for our crosstalk calculations. We find several crosstalk

channels:

• If the 133Ba+ qubit has population in the S1/2 |F = 0,mF = 0〉 state, then the

transitions to the P1/2, F = 1 manifold are possible, and they are detuned rel-

evant to the 493 nm photons from 138Ba+ by ∆0 = −7.53 GHz. The resulting
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factor that contributes to the crosstalk probability equals

(
γ/2π

∆0

)2

≈ 4×10−6.

• If the 133Ba+ qubit has population in the S1/2 |F = 1,mF = 0〉 state, then:

– One of the possible transitions is to the P1/2, |F = 0,mF = 0〉 state, and

the relevant detuning is ∆′1 = 4.22 GHz. The corresponding factor

contributing to the crosstalk probability is calculated as:

(
γ/2π

∆′1

)2

≈

1.3 × 10−5. Since this transition can only be driven by photons with

π polarization, an additional factor should be introduced and the final

crosstalk probability turns out to be ≈ 6× 10−6.

– The other possible transitions are to the P1/2, |F = 1,mF = ±1〉 states,

and the relevant detuning is ∆′′1 = 2.38 GHz. The corresponding factor

contributing to the crosstalk probability is found to be:

(
γ/2π

∆′′1

)2

≈

4 × 10−5. Since this transition can only be driven by photons with σ±

polarizations, an additional factor should be introduced, and the final

crosstalk probability is ≈ 2× 10−5.

Moreover, there is an additional factor (. 1) [197] that accounts for the mismatch

in the temporal profiles of the emitted and absorbed 493 nm photons. Taking into

account all the channels together, we arrive to the total probability of excitation of

the memory qubit of ≈ 2×10−8. If we assume that the remote entanglement success

probability is about 10−4, then we still expect to achieve the fidelity of ≈ 99.98%

which is far greater than a value that would be a limiting factor at this point.
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5.2.2 Crosstalk during optical pumping

Another source where crosstalk errors come from is CW 493 nm beams required

for the communication qubit addressing [196]. We assume that information is stored

in a 133Ba+ memory qubit, while we perform optical pumping to the edge state in

the D3/2 manifold in the 138Ba+ communication qubit using all the polarizations of

493 nm laser light. We assume Gaussian beam profile, so that the intensity of the

light I at a distance r from the beam center is given by:

I(r) = I0 exp

(
−2r2

w2
0

)
, (5.3)

where I0 is a peak intensity and w0 is a beam waist.

The crosstalk probability can be calculated as the ratio of the photon scattering

rate at the origin (the position of the communication qubit) and at a distance r (the

position of the memory qubit):

Pcross =
Γsc(r)

Γsc(r = 0)
, (5.4)

where the scattering rate Γsc(r) is described by:

Γsc(r) =
γ

2


I

Isat

1 +
I

Isat

+ 4
∆2

γ2

 , (5.5)

with the natural linewidth γ, detuning ∆, and the saturation intensity Isat defined
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in Appendix C, Eq. (C.2). Taking into account that the laser beam is in resonance

with the S1/2 ↔ P1/2 transition in 138Ba+ and has a detuning ∆ with respect to the

one in 133Ba+, we obtain the probability of crosstalk as:

Pcross =

2 exp

(
−2r2

w2
0

)
1 + exp

(
−2r2

w2
0

)
+ 4

∆2

γ2

, (5.6)

where we assume that I0 = Isat. In this case, we also find several crosstalk channels:

• If the 133Ba+ qubit has population in the S1/2 |F = 0,mF = 0〉 state, then the

possible transitions are to the P1/2, F = 1 manifold, and the relevant detuning

is ∆0 = −7.53 GHz.

• If the 133Ba+ qubit has population in the S1/2 |F = 1,mF = 0〉 state, then

– one of the possible transitions is to the P1/2, |F = 0,mF = 0〉 state, and

the relevant detuning is ∆′1 = 4.22 GHz.

– the other possible transitions are to the P1/2, |F = 1,mF = ±1〉 states,

and the relevant detuning is ∆′′1 = 2.38 GHz.

In Fig. 5.8, we plot the probability of crosstalk for both |F = 0〉 and |F = 1〉

states as a function of the 493 nm beam waist and assume the inter-ionic distance

of r = 5 µm. In order to reach an achievable remote entanglement probability of

10−4 and infidelity from the optical pumping of 10−4, we would need a crosstalk

probability of pumping to be around 10−8, which leads to the requirement for the

493 nm pumping beam waist to be about 2.1 µm. This is challenging, but definitely

153



not impossible to achieve in the experiment.

Figure 5.8: Crosstalk probability as a function of beam waist. The red solid
curve represents the crosstalk probability in the case where the 133Ba+ qubit has
population in the S1/2 |F = 0〉 state; the blue dashed line represents the crosstalk
probability in the case where the 133Ba+ qubit has population in the S1/2 |F = 1〉
state.

We need to address one more crosstalk channel that is active during the optical

pumping. When 138Ba+ is being initialized in the D3/2 manifold, it emits a number

of 493 nm photons of the order of 10. Similarly to the crosstalk mechanism discussed

in Chapter 5.2.1, a photon scattered by a communication ion can be absorbed by a

memory ion. Since for a single photon generation we obtained the crosstalk proba-

bility of 2× 10−8, then in the case of 10 scattered photons the crosstalk probability

is about 2 × 10−7. As a result, remote entanglement probability of 10−4 that we

assumed would give us the infidelity of the order of & 10−3.
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5.2.3 Sympathetic cooling

Another important application of the mixed-species ion chains is sympathetic

cooling. In this case, communication ions act as “coolant” ions and can perform

sympathetic cooling on memory ions. As we discussed in Section 3.2.4, due to the

high mass ratio between a 171Yb+ memory ion and a 138Ba+ communication ion,

we observe a strong amplitude mismatch in the radial modes, leading to inefficient

sympathetic cooling via the radial modes.

In the case where 133Ba+ ions act as memory qubits, 138Ba+ ions would be well

suited to act as “coolant” ions. The mass difference between 133Ba+ and 138Ba+ is

almost negligible, which results in an efficient cooling of both axial and radial modes.

In fact, 136Ba+ can be unitlized as “coolant” ions instead, resulting in an even more

efficient sympathetic cooling due to the mass ratio closer to 1.

Due to background collisions, the ion chain might get decrystallized, and when

cooled down again, the ions are rearranged randomly. In order to perform MS gates,

we need to know the ion chain configuration and the frequencies of the normal modes.

According to our calculations performed for a 13-ion 133Ba+/138Ba+ chain with 4

138Ba+ ions acting as “coolant” ions, the largest frequency shift of the radial modes

is about 5 kHz, which is too large – the maximally tolerable frequency shift necessary

to preserve an acceptable MS gate fidelity is of the order of 0.5 kHz. As a result,

we might still need to perform re-ordering of the ion chain.
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Appendix A: Remote entanglement

A.1 Hong-Ou-Mandel effect

In 1987, Hong, Ou, and Mandel demonstrated interference between two iden-

tical photons on a beamsplitter [198]. In this experiment, two identical photons are

coming to two different input ports of the 50/50 beamsplitter, and both photons

exit the same output port, indicating photon “bunching”. This effect in quantum

optics is called Hong-Ou-Mandel (HOM) effect.

We can present the operation of a 50/50 beamsplitter in terms of creation

operators a†k, where index k indicates k-th beamsplitter port. Creation of a single

photon can be expressed as: |1k〉 = a†k |0〉. We use the following notations: two

inputs get a†1 and a†2, and two outputs produce a†3 and a†4. The operation of a 50/50

beamsplitter can be expressed via a matrix U :

a†3
a†4

 = U

a†1
a†2

 , (A.1)

where U is an unitary matrix that describes the physical process in the beamsplit-

ter [199]. Additionally, we set the constraint that the beamsplitter is indeed a 50/50
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one, which leads to the absolute value of each one of the four matrix elements being

equal to
1√
2

. With these conditions, the matrix depends on just two real parameters

– the phases Φ and Ψ (given that we ignore the global phase):

U =
1√
2

e−iΦ eiΨ

e−iΨ − eiΦ

 . (A.2)

This form is general for any kind of 50/50 beamsplitter, including free-space and

in-fiber ones. Then for the operators a†1 and a†2, Eq. (A.1) results in the following

expressions:

a†1 =
1√
2

(
eiΦa†3 + eiΨa†4

)
, (A.3)

a†2 =
1√
2

(
e−iΨa†3 − e−iΦa†4

)
.

Let two identical particles enter both ports 1 and 2 of a 50/50 beamsplitter in the

following way:

|1112〉 = a†1a
†
2 |0〉 (A.4)

=
1

2

(
ei(Φ−Ψ)a†3a

†
3 − e−i(Φ−Ψ)a†4a

†
4 − a†3a†4 + a†4a

†
3

)
|0〉 .

For bosons,
[
a†i , a

†
j

]
= 0, ∀i, j. Then, this can be applied to photons where the

cross terms cancel out, and we obtain

|1112〉 = ei(Φ−Ψ) |2304〉 − e−i(Φ−Ψ) |0324〉 . (A.5)
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We can see that photons exit the same output port, and they never can be detected

on the opposite sides of a 50/50 beamsplitter.

For fermionic particles,
{
a†i , a

†
j

}
= 0, ∀i, j. That leads to a†ja

†
j |0〉 = 0, and

|1112〉 = a†4a
†
3 |0〉 = |1314〉 , (A.6)

indicating that fermionic particles antibunch and always exit different output ports

of a 50/50 beansplitter.

For simplicity in the following calculations, the phases Φ and Ψ can be chosen

in such a way that

a†1 =
1√
2

(
a†3 + a†4

)
, (A.7)

a†2 =
1√
2

(
a†3 − a†4

)
.

This form is used below in the discussion of entanglement of remote qubits.

A.2 Entanglement of remote qubits

Now let the two photons sent to a 50/50 beamsplitter be previously entangled

with their atomic emitters, and the joint atom-photon state is given by:

|ψ〉 = |↓ H〉+ |↑ V 〉 , (A.8)
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where {↑, ↓} are the atomic qubit states and {H, V } are the photonic polarization

states. We discuss the process of generating this ion-photon entanglement and

the corresponding experimental results in Section 4.2.1 in detail. Let us introduce

creation operators a† and b† for horizontal and vertical polarization photonic states,

respectively: |H〉 = a† |0〉 and |V 〉 = b† |0〉.

The joint state of a pair of ion-photon entangled states is demonstrated by the

following expression:

|ψ1〉 ⊗ |ψ1〉 = (|↓ H〉+ |↑ V 〉)1 ⊗ (|↓ H〉+ |↑ V 〉)2 . (A.9)

We can rewrite Eq. (A.9) in terms of the Bell states of photons and atoms:

|ψ1〉 ⊗ |ψ1〉 =
∣∣ψ+

〉
a

∣∣ψ+
〉
p

+
∣∣ψ−〉

a

∣∣ψ−〉
p

+
∣∣φ+
〉
a

∣∣φ+
〉
p

+
∣∣φ−〉

a

∣∣φ−〉
p
, (A.10)

where the atomic Bell states are:

∣∣ψ+
〉
a

= |↓↑〉+ |↑↓〉 ,∣∣ψ−〉
a

= |↓↑〉 − |↑↓〉 , (A.11)∣∣φ+
〉
a

= |↓↓〉+ |↑↑〉 ,∣∣φ−〉
a

= |↓↓〉 − |↑↑〉 ,
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and the photonic Bell states have the same form:

∣∣ψ+
〉
p

= |HV 〉+ |V H〉 ,∣∣ψ−〉
p

= |HV 〉 − |V H〉 , (A.12)∣∣φ+
〉
p

= |HH〉+ |V V 〉 ,∣∣φ−〉
p

= |HH〉 − |V V 〉 .

Using Eqs. (A.7), we can express the photonic Bell states in terms of the output

modes of the 50/50 beamsplitter. We start with the |φ+〉p and |φ−〉p states:

∣∣φ±〉
p

=
(
a†1a

†
2 ± b†1b†2

)
|0〉

=
(
a†4a

†
4 − a†3a†3 ± b†4b†4 ∓ b†3b†3

)
|0〉 (A.13)

= |03(HH)4〉 − |(HH)304〉 ± |03(V V )4〉 ∓ |(V V )304〉 .

Since the |φ+〉p and |φ−〉p states differ only by a phase factor, we cannot distinguish

them from each other in experiment, and therefore we ignore the corresponding

events.

If we consider the |ψ+〉p state, we see photon bunching:

∣∣ψ+
〉
p

=
(
a†1b
†
2 + b†1a

†
2

)
|0〉 (A.14)

=
(
a†4b
†
4 − a†3b†3

)
|0〉 = |03(HV )4〉 − |(HV )304〉 ,
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while the |ψ−〉p state results in photon antibunching:

∣∣ψ−〉
p

=
(
a†1b
†
2 − b†1a†2

)
|0〉 (A.15)

=
(
a†3b
†
4 − b†3a†4

)
|0〉 = |H3V4〉 − |V3H4〉 .

It is easy to detect the |ψ+〉p and |ψ−〉p photonic Bell states by having polariz-

ing beamsplitters after both output ports of the 50/50 beamsplitter. By getting

coincident clicks on the corresponding pair of detectors [83], we determine the ini-

tial photonic Bell state at the input of the 50/50 beamsplitter, thus projecting the

remote atoms into the corresponding Bell state, as well.
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Appendix B: 355nm/532nm Optical-Frequency Combs Shifted in Time

B.1 Infinite-pulse trains

Direct realization of the Raman transitions is not always feasible due to a

limited range of control over the laser frequency. We utilize the large-bandwidth

ultrafast laser-pulse combs [120] to implement the Mølmer-Sørensen gate.

Consider two trains of N pulses, each acting on one of two species – indices a

and b correspond to different species:

Ea(t) =
N−1∑
n=0

Fa(t− nT ) eiω
c
at, (B.1)

Eb(t) =
N−1∑
n=0

Fb(t− (n+ f)T ) eiω
c
bt, (B.2)

where Fa,b are envelopes and ωca,b are carrier frequencies of combs a and b, respec-

tively. T is a common period of the both combs, and fT is the shift in time between

the combs.

Performing the Fourier transform and going to the limit of the infinite number
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of pulses within the frequency domain (N →∞), we get:

Ẽ(0)
a (ω) = F̃a(ω − ωca) ωR

∞∑
k=−∞

δ(ω − ωca − kωR), (B.3)

Ẽ
(0)
b (ω) = F̃b(ω − ωcb) ωRe−i(ω−ω

c
b)fT

∞∑
k=−∞

δ(ω − ωcb − kωR), (B.4)

where ω
R

= 2π/T is the repetition frequency of the lasers and F̃a,b(ω) are the Fourier

transforms of Fa,b(t). After the inverse Fourier transformation, both of the infinite

pulse trains acquire a form of Fourier series:

E(∞)
a (t) =

∞∑
k=−∞

Ea
ke

iωakt, (B.5)

E
(∞)
b (t) =

∞∑
k=−∞

Eb
ke
iωbkte−ikωRfT , (B.6)

where

Ei
k =

ω
R

2π
F̃i(ωik − ωci ),

ωik = ωci + kω
R
, i = a, b. (B.7)

Now, starting with a Λ-type 3-level system subject to the comb of form

Eq. (B.5), we apply rotating wave approximation and adiabatic elimination of the

upper level to get the following equations of motion for the wave-function basis-

expansion coefficients (for the details of the derivation, see Ref. [122], Appendix
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B):

ċ1 = −~|µeg|2
2∆

(∑
k

|Ek|2c1 +
∑
k

Ek(Ek−q)
∗c2

)
,

ċ2 = −~|µeg|2
2∆

(∑
k

Ek(Ek−q)
∗c1 +

∑
k

|Ek|2c2

)
, (B.8)

where q = ω(0)/ω
R

, ∆ = ω(3) − ωc. ~ω(3) is the energy of the upper level of the

3-level ion.

The comb of form Eq. (B.6) generates an additional phase in the off-diagonal

terms:

∑
k

Ek(Ek−q)
∗ →

∑
k

Eke
−ikω

R
fT (Ek−q)

∗ei(k−q)ωRfT =
∑
k

Ek(Ek−q)
∗e−iω

(0)fT .

(B.9)

Therefore, we obtain the following effective Hamiltonians for each 3-level sys-

tem subject to the combs described in Eqs. (B.5) and (B.6):

Ĥa
eff = −~|µaeg|2

2∆a


∑
k

|Ea
k |2

∑
k

Ea
k(Ea

k−qa)
∗

∑
k

Ea
k(Ea

k+qa
)∗

∑
k

|Ea
k |2

 , (B.10)

Ĥb
eff = −~|µbeg|2

2∆b


∑
k

|Eb
k|2

∑
k

Eb
k(E

b
k−qb)

∗e−iξ

∑
k

Eb
k(E

b
k+qb

)∗eiξ
∑
k

|Eb
k|2

 , (B.11)

where the additional phase ξ = ω
(0)
b fT is only acquired by the interaction part of

the Hamiltonian of one of the ions.
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In the Mølmer-Sørensen scheme, this additional phase ξ enters as φ
(2)
s → φ

(2)
s +

ξ, which leads to the following modified truth table:

| ↑↑〉 → | ↑↑〉 − ı̇eı̇
(
φ
(1)
s +φ

(2)
s +ξ

)
| ↓↓〉,

| ↓↓〉 → | ↓↓〉 − ı̇e−ı̇
(
φ
(1)
s +φ

(2)
s +ξ

)
| ↑↑〉, (B.12)

| ↑↓〉 → | ↑↓〉 − ı̇e−ı̇
(
φ
(2)
s −φ

(1)
s +ξ

)
| ↓↑〉,

| ↓↑〉 → | ↓↑〉 − ı̇eı̇
(
φ
(2)
s −φ

(1)
s +ξ

)
| ↑↓〉.

The obtained additional phase ξ can be compensated by the adjustment of other

phases. Consequently, after phase tuning, the Mølmer-Sørensen gate works the same

way independent on the time shift between the combs acting on different ions.

B.2 Finite N-pulse trains

In section B.1, we considered a formalism that only works for infinite number

of pulses in a train. Here, we use a different technique to discuss finite N -pulse

trains.

We start with the following Hamiltonian for two ions within a single mode of

harmonic motion subject to two Raman pulse trains:

Ĥeff = ωta
†a +

ωa
2
σaz +

ωb
2
σbz +

θa
2

N−1∑
n=0

δ(t− nT )
(
σa+e

i(kx̂+∆ωat) + σa−e
−i(kx̂+∆ωat)

)
+

θb
2

N−1∑
n=0

δ(t− (n+ f)T )
(
σb+e

i(kx̂+∆ωbt) + σb−e
−i(kx̂+∆ωbt)

)
, (B.13)
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where θi = ΩiT , ∆ωi/2π is a net offset frequency between the combs, and pulse

train b is shifted by fT in time relative to pulse train a.

In the rotating wave approximation, the single-period evolution operator is

given by:

U = exp (−iH0(1− f)T ) exp

[−iθb
2

(
σb+e

ikx̂ + σb−e
−ikx̂)]

× exp (−iH0fT ) exp

[−iθa
2

(
σa+e

ikx̂ + σa−e
−ikx̂)], (B.14)

where H0 = ωta
†a+

(ωa + ∆ωa)

2
σz +

(ωb + ∆ωb)

2
σz.

Using Taylor expansion and expressing the coordinate operator in terms of creation

and annihilation operators, we get:

U = exp (−iH0(1− f)T )

[
1− iθb

2

(
σb+e

iη(a+a†) + σb−e
−iη(a+a†)

)]
× exp (−iH0fT )

[
1− iθa

2

(
σa+e

iη(a+a†) + σa−e
−iη(a+a†)

)]
, (B.15)

where η = k

√
~

2mωt
is the Lamb-Dicke parameter, and we keep track only of terms

linear in θ:

U ≈ exp (−iH0T )− exp (−iH0(1− f)T ) exp (−iH0fT )
iθa
2

(
σa+e

iη(a+a†) + σa−e
−iη(a+a†)

)
− exp (−iH0(1− f)T )

iθb
2

(
σb+e

iη(a+a†) + σb−e
−iη(a+a†)

)
exp (−iH0fT ). (B.16)
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The following expressions are useful for further calculations:

exp

(
iωt

2
σz

)
σ± exp

(
−iωt

2
σz

)
= exp (−iωt)σ±, (B.17)

exp (iωta†a) exp
[
iη(a+ a†)

]
exp (iωta†a) = exp

[
iη
(
ae−iωt + a†eiωt

)]
. (B.18)

We will only keep linear in θ terms in the N -period evolution operator UN . There-

fore, we will have up to one non-trivial operator in each term. First, let us start with

working with part (a) – second term in the RHS of Eq. (B.16) – as the non-trivial

evolution operator:

Ua = exp (−iH0T )

(
−iθa

2

)(
σa+e

iη(a+a†) + σa−e
−iη(a+a†)

)
, (B.19)

while other evolution operators in that product are just exp (−iH0T ).

Then the corresponding partial N -period evolution due to this term is given

by:

UaN =

(
−iθa

2

)N−1∑
m=0

e−iH0(N−m)T
(
σa+e

iη(a+a†) + h.c.
)
e−iH0mT (B.20)

= e−iH0NT

(
−iθa

2

)[N−1∑
m=0

σa+ exp (i(ωa + ∆ωa)mT ) D
(
iηeiωtmT

)
+ h.c.

]
,

here we use expressions from Eqs. (B.17) and (B.18), and D(α) = exp (αa† − α∗a)

is the harmonic-oscillator displacement operator in phase space.
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The term containing a non-trivial contribution from part (b) is:

Ub = exp (−iH0(1− f)T )

(
−iθb

2

)(
σb+e

iη(a+a†) + σb−e
−iη(a+a†)

)
exp (−iH0fT ),

(B.21)

while other evolution operators in this term are just exp (−iH0T ).

Then the corresponding partial N -period evolution due to this term is given

by:

UbN =

(
−iθb

2

)N−1∑
m=0

e−iH0mT e−iH0(1−f)T
(
σb+e

iη(a+a†) + h.c.
)
e−iH0fT e−iH0(N−m−1)T

= e−iH0NT

(
−iθb

2

)[N−1∑
m=0

σb+ exp (i(ωb + ∆ωb)(m+ f)T ) D
(
iηeiωt(m+f)T

)
+ h.c.

]
, (B.22)

where expressions from Eqs. (B.17) and (B.18) are used again.

Combining all together, we get the full time evolution operator UN in the

following form:

UN = e−iH0NT

(
I− iθa

2

N−1∑
m=0

Qa
m −

iθb
2

N−1∑
m=0

Qb
m · eiξ + h.c.

)
, (B.23)

with

Qa
m = σa+ exp [i(ωa + ∆ωa)mT ] D

(
iηeiωtmT

)
,

Qb
m = σb+ exp [i(ωb + ∆ωb)mT ] D

(
iηeiωt(m+f)T

)
,

ξ = (ωb + ∆ωb)fT.
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Comparing this result to the result from Section B.1, we see that in both approaches

system (a) stays unchanged, while system (b) accumulates the additional phase ξ

that can be compensated.
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Appendix C: Coherent operations with 532 nm light

Here we investigate stimulated Raman transitions in the D3/2 manifold in

138Ba+. First, we focus on the calculations of the two-photon Rabi frequency in

both of the effective ∆mj = ±1 and ∆mj = ±2 microwave rotations discussed in

Section 2.3.2.2 to estimate the stimulated Raman transition rate. Then, we look

at the two-photon AC Stark shifts, and try to minimize them by choosing the

appropriate polarization of 532 nm laser beams.

C.1 The Rabi Frequencies

In this section, in D3/2 manifold, we investigate how good the coupling is when

using the 532 nm laser beams, or in other words, how high the Rabi frequencies are.

There are multiple excited states i involved in the stimulated Raman transi-

tions. Therefore, the two-photon Rabi frequency can be easily derived [103] and has

the following form:

Ω =
∑
i

g∗0,ig1,i

2∆i

, (C.1)

where ∆i is the detuning from the excited state i, and the expression for the single-
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photon Rabi frequency is given by

gi,j = Cγ

√
I

2Isat
, Isat =

~γω3
e

12πc2
. (C.2)

Here, C is the Clebsch-Gordan coefficient, γ/2π is a natural linewidth, I is the

intensity of the laser, and ωe is the resonant transition frequency from the ground

state.

|1⟩
|2⟩

|3⟩

|5⟩
|4⟩

π

𝜎𝜎+

5D3/2

6P3/2

6P1/2

Figure C.1: Off-resonant coupling of 532 nm laser beams – represented by the
green arrows – to P1/2 and P3/2 manifolds in 138Ba+ in the case of the ∆mj = ±2
rotations between the states |1〉 and |2〉.

We perform calculations of the two-photon Rabi frequency in both of the

effective ∆mj = ±1 and ∆mj = ±2 microwave rotations discussed in Section 2.3.2.2.

For example, in Fig. C.1, we show the ∆mj = ±2 coherent rotations between the

states |1〉 and |2〉 in the presence of the pair of 532 nm Raman beams off-resonantly

coupled to both P1/2 and P3/2 states. In this case, the two-photon Rabi frequency

is given by:

Ω12 =
g∗13g23

2∆P1/2

+
g∗15g25

2∆P3/2

. (C.3)
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When plugging in all the necessary parameters, we get: Ω12 = I×
(

0.003
Hz

mW/cm2

)
,

where I is the laser intensity. Below we present Table C.1 with the corresponding

atomic parameters and the final calculated values of the two-photon Rabi frequen-

cies. We compare them for different manifolds: for 138Ba+ S1/2 manifold, for the

∆mj = ±1 rotations in the D3/2 manifold in Ba, for the ∆mj = ±2 rotations in the

D3/2 manifold, and for 171Yb+ .

Ba S1/2

manifold
Ba D3/2

∆mj = ±1
rotations

Ba D3/2

∆mj = ±2
rotations

Yb

∆P1/2
(THz) -44 102 102 34

∆P3/2
(THz) -94 51.5 51.5 -66

γP1/2
(MHz) 15.2 5.1 5.1 19.7

γP3/2
(MHz) 19 0.7 0.7 25.8

Rabi frequency
(Hz)

0.026 I -0.008 I 0.003 I -0.028 I

Table C.1: Atomic parameters such as the natural linewidth and detuning from
the excited states P1/2 and P3/2 as well as the calculated Rabi frequency for different
manifolds.

As mentioned in Ref. [83] and presented in Table C.1, the stimulated Raman

transition rate for 171Yb+ and S1/2 manifold in 138Ba+ are similar assuming equal

355 nm and 532 nm optical intensities are applied. However, the Rabi frequency

calculated forD3/2 manifold and ∆mj = ±2 rotations is about an order of magnitude

smaller that leads to lower rates. Much higher 532 nm power is required to be able

to drive the 532 nm rotations in the D3/2 manifold in 138Ba+ than in the the S1/2

one.
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C.2 Differential Stark Shifts

When the driving Raman fields are applied, they introduce two-photon AC

Stark shifts to the energy levels. We can account for it by changing the frequencies of

the corresponding Raman AOMs. However, if there are uncompensated fluctuations

of the laser intensity, then we end up with detuning errors, so to prevent these types

of errors AC Stark shift have to be canceled if possible.

Including multiple excited states j involved in the stimulated Raman transi-

tions, we write the two-photon AC Stark shift as:

χi =
∑
j

|gij|2
4∆ij

. (C.4)

Similarly to the previous section, for simplicity, we characterize the case of the

∆mj = ±2 coherent rotations between the states |1〉 and |2〉 in the presence of the

pair of 532 nm Raman beams off-resonantly coupled to both P1/2 and P3/2 states –

see Fig. C.1. We present the expression for the second-order Stark shift of the state

|1〉 which is coupled to three other states – |3〉, |4〉, and |5〉 – since we have all the

polarizations of the 532 nm laser fields:

χ1 =
|g13|2

4∆P1/2

+
|g14|2

4∆P3/2

+
|g15|2

4∆P3/2

. (C.5)

We perform the calculation of all four second-order AC Stark shift of the

levels in the D3/2 manifold. As discussed in Section 2.3.2.2, in order to minimize

differential two-photon AC Stark shifts, we adjust the polarizations of our 532 nm
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Raman beams so that the intensities of each polarization (σ+, σ−, and π) are all

equal.

174



Bibliography

[1] Rodney Van Meter and Mark Oskin. Architectural implications of quantum
computing technologies. J. Emerg. Technol. Comput. Syst., 2(1):31–63, Jan-
uary 2006.

[2] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Infor-
mation. Cambridge Univ. Press, 2000.

[3] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L.
O’Brien. Quantum computers. Nature, 464(7285):45–53, 2010.

[4] Yuri Manin. Vychislimoe i nevychislimoe (Computable and Noncomputable)
[in Russian]. Sov. Radio, 1980.

[5] Paul Benioff. Quantum mechanical hamiltonian models of turing machines.
Journal of Statistical Physics, 29(3):515–546, 1982.

[6] Richard P. Feynman. Simulating physics with computers. International Jour-
nal of Theoretical Physics, 21(6):467–488, 1982.

[7] David Deutsch and Roger Penrose. Quantum theory, the church-turing prin-
ciple and the universal quantum computer. Proceedings of the Royal Society
of London. A. Mathematical and Physical Sciences, 400(1818):97–117, 1985.

[8] David Deutsch and Richard Jozsa. Rapid solution of problems by quantum
computation. Proceedings of the Royal Society of London. Series A: Mathe-
matical and Physical Sciences, 439(1907):553–558, 1992.

[9] P. W. Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In Proceedings 35th Annual Symposium on Foundations of Computer
Science, pages 124–134, Nov 1994.

[10] J. I. Cirac and P. Zoller. Quantum computations with cold trapped ions. Phys.
Rev. Lett., 74:4091–4094, May 1995.

[11] C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland.
Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett.,
75:4714–4717, Dec 1995.

175



[12] Peter W. Shor. Scheme for reducing decoherence in quantum computer mem-
ory. Phys. Rev. A, 52:R2493–R2496, Oct 1995.

[13] A. M. Steane. Error correcting codes in quantum theory. Phys. Rev. Lett.,
77:793–797, Jul 1996.

[14] Lov K. Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of
Computing, STOC ’96, pages 212–219, New York, NY, USA, 1996. ACM.

[15] Colin D. Bruzewicz, John Chiaverini, Robert McConnell, and Jeremy M. Sage.
Trapped-ion quantum computing: Progress and challenges. Applied Physics
Reviews, 6(2):021314, 2019.

[16] David S. Weiss and Mark Saffman. Quantum computing with neutral atoms.
Physics Today, 70(7):44–50, 2017.

[17] Lilian Childress and Ronald Hanson. Diamond nv centers for quantum com-
puting and quantum networks. MRS Bulletin, 38(2):134138, 2013.

[18] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D.
Oliver. A quantum engineer’s guide to superconducting qubits. Applied
Physics Reviews, 6(2):021318, 2019.

[19] Christoph Kloeffel and Daniel Loss. Prospects for spin-based quantum com-
puting in quantum dots. Annual Review of Condensed Matter Physics,
4(1):51–81, 2013.

[20] David P. DiVincenzo. The physical implementation of quantum computation.
Fortschritte der Physik, 48(911):771–783, 2000.

[21] Andreas V. Kuhlmann, Julien Houel, Arne Ludwig, Lukas Greuter, Dirk
Reuter, Andreas D. Wieck, Martino Poggio, and Richard J. Warburton.
Charge noise and spin noise in a semiconductor quantum device. Nature
Physics, 9(9):570–575, 2013.

[22] N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hor-
necker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes,
N. D. Lanzillotti-Kimura, A. Lemáıtre, A. Auffeves, A. G. White, L. Lanco,
and P. Senellart. Near-optimal single-photon sources in the solid state. Nature
Photonics, 10(5):340–345, 2016.

[23] P. V. Klimov, J. Kelly, Z. Chen, M. Neeley, A. Megrant, B. Burkett,
R. Barends, K. Arya, B. Chiaro, Yu Chen, A. Dunsworth, A. Fowler,
B. Foxen, C. Gidney, M. Giustina, R. Graff, T. Huang, E. Jeffrey, Erik Lucero,
J. Y. Mutus, O. Naaman, C. Neill, C. Quintana, P. Roushan, Daniel Sank,
A. Vainsencher, J. Wenner, T. C. White, S. Boixo, R. Babbush, V. N. Smelyan-
skiy, H. Neven, and John M. Martinis. Fluctuations of energy-relaxation times
in superconducting qubits. Phys. Rev. Lett., 121:090502, Aug 2018.

176



[24] Wolfgang Paul. Electromagnetic traps for charged and neutral particles. Rev.
Mod. Phys., 62:531–540, Jul 1990.

[25] C. Langer, R. Ozeri, J. D. Jost, J. Chiaverini, B. DeMarco, A. Ben-Kish, R. B.
Blakestad, J. Britton, D. B. Hume, W. M. Itano, D. Leibfried, R. Reichle,
T. Rosenband, T. Schaetz, P. O. Schmidt, and D. J. Wineland. Long-lived
qubit memory using atomic ions. Phys. Rev. Lett., 95:060502, Aug 2005.

[26] S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz,
and C. Monroe. Manipulation and detection of a trapped Yb+ hyperfine qubit.
Phys. Rev. A, 76:052314, Nov 2007.

[27] Ye Wang, Mark Um, Junhua Zhang, Shuoming An, Ming Lyu, Jing-Ning
Zhang, L.-M. Duan, Dahyun Yum, and Kihwan Kim. Single-qubit quantum
memory exceeding ten-minute coherence time. Nat. Photonics, 11(10):646–
650, 2017.
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B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. We-
infurter, and A. Zeilinger. Entanglement-based quantum communication over
144 km. Nature Physics, 3(7):481–486, 2007.

[72] Juan Yin, Yuan Cao, Yu-Huai Li, Sheng-Kai Liao, Liang Zhang, Ji-Gang
Ren, Wen-Qi Cai, Wei-Yue Liu, Bo Li, Hui Dai, Guang-Bing Li, Qi-Ming Lu,
Yun-Hong Gong, Yu Xu, Shuang-Lin Li, Feng-Zhi Li, Ya-Yun Yin, Zi-Qing
Jiang, Ming Li, Jian-Jun Jia, Ge Ren, Dong He, Yi-Lin Zhou, Xiao-Xiang
Zhang, Na Wang, Xiang Chang, Zhen-Cai Zhu, Nai-Le Liu, Yu-Ao Chen,
Chao-Yang Lu, Rong Shu, Cheng-Zhi Peng, Jian-Yu Wang, and Jian-Wei
Pan. Satellite-based entanglement distribution over 1200 kilometers. Science,
356(6343):1140–1144, 2017.

[73] L. Luo, D. Hayes, T.A. Manning, D.N. Matsukevich, P. Maunz, S. Olmschenk,
J.D. Sterk, and C. Monroe. Protocols and techniques for a scalable atom-
photon quantum network. Fortschritte der Physik, 57(11-12):1133–1152, 2009.

[74] Connor Kupchak, Philip J. Bustard, Khabat Heshami, Jennifer Erskine,
Michael Spanner, Duncan G. England, and Benjamin J. Sussman. Time-
bin-to-polarization conversion of ultrafast photonic qubits. Phys. Rev. A,
96:053812, Nov 2017.

[75] B. B. Blinov, D. L. Moehring, L.-M. Duan, and C. Monroe. Observation of
entanglement between a single trapped atom and a single photon. Nature,
428(6979):153–157, 2004.

[76] Immanuel Bloch. Quantum coherence and entanglement with ultracold atoms
in optical lattices. Nature, 453(7198):1016–1022, 2008.

181



[77] W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, and A. Imamoglu. Ob-
servation of entanglement between a quantum dot spin and a single photon.
Nature, 491(7424):426–430, 2012.

[78] E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G.
Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin. Quantum
entanglement between an optical photon and a solid-state spin qubit. Nature,
466(7307):730–734, 2010.

[79] D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark,
and C. Monroe. Modular entanglement of atomic qubits using photons and
phonons. Nature Physics, 11(1):37–42, 2015.

[80] Christian Nölleke, Andreas Neuzner, Andreas Reiserer, Carolin Hahn, Gerhard
Rempe, and Stephan Ritter. Efficient teleportation between remote single-
atom quantum memories. Phys. Rev. Lett., 110:140403, Apr 2013.

[81] A. Narla, S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, E. Zalys-Geller,
S. O. Mundhada, W. Pfaff, L. Frunzio, R. J. Schoelkopf, and M. H. Devoret.
Robust concurrent remote entanglement between two superconducting qubits.
Phys. Rev. X, 6:031036, Sep 2016.

[82] David A. Hucul. A modular quantum system of trapped atomic ions. PhD
Thesis, 2015.

[83] Ismail Volkan Inlek. Multi-species trapped atomic ion modules for quantum
networks. PhD Thesis, 2016.

[84] Carolyn Auchter, Chen-Kuan Chou, Thomas W. Noel, and Boris B. Blinov.
Ion-photon entanglement and bell inequality violation with 138Ba+. J. Opt.
Soc. Am. B, 31(7):1568–1572, Jul 2014.

[85] Dahyun Yum, Debashis De Munshi, Tarun Dutta, and Manas Mukherjee.
Optical barium ion qubit. J. Opt. Soc. Am. B, 34(8):1632–1636, Aug 2017.

[86] G. Araneda, D. B. Higginbottom, L. Slodička, Y. Colombe, and R. Blatt.
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