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A collection of trapped atomic ions represents one of the most attractive plat-

forms for the quantum simulation of interacting spin networks and quantum mag-

netism. Spin-dependent optical dipole forces applied to an ion crystal create long-

range effective spin-spin interactions and allow the simulation of spin Hamiltonians

that possess nontrivial phases and dynamics.

We trap linear chains of 171Yb+ ions [1] in a Paul trap [2], and constrain the

occupation of energy levels to the ground hyperfine clock-states, creating a qubit

or pseudo-spin 1/2 system. We proceed to implement spin-spin couplings between

two ions using the far detuned Mølmer-Sørenson scheme[3] and perform adiabatic

quantum simulations of Ising Hamiltonians with long-range couplings. We then



demonstrate our ability to control the sign and relative strength of the interaction

between three ions. Using this control, we simulate a frustrated triangular lattice,

and for the first time establish an experimental connection between frustration and

quantum entanglement. We then scale up our simulation to show phase transitions

from paramagnetism to ferromagnetism for nine ions, and to anti-ferromagnetism

for sixteen ions.

The experimental work culminates with our most complicated Hamiltonian - a

long range anti-ferromagnetic Ising interaction between 10 ions with a biasing axial

field, which I have led.

Theoretical work presented in this thesis shows how the approach to quan-

tum simulation utilized in this thesis can be further extended and improved. It is

shown how appropriate design of laser fields can provide for arbitrary multidimen-

sional spin-spin interaction graphs even for the case of a linear spatial array of ions.

This scheme uses currently existing trap technology and is scalable to levels where

classical methods of simulation are intractable.
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Chapter 1

Introduction

The work presented in this thesis is complex, and covers many subject areas,

which cannot be given a full, bottom up presentation in this work. Furthermore, I do

not posses this knowledge. Six years pursuing an experimental result does not allow

for such a pursuit. Instead, I will present mostly information needed to understand

the motivation for this work and the minimal amount of information needed to

follow it as it is exposed. A deeper understanding can be pursued by the interested

reader by reading the cited works. Many of the results presented here have already

been presented in previously published works to which I have contributed in work

and writing, but all the results presented are the fruits of a team effort.

Quantum systems are notoriously difficult to model efficiently using classical

computers, owing to the exponential complexity in describing a general quantum

state as the system grows in size. In the 1980s, Richard Feynman proposed to

circumvent this problem by employing a control quantum system with tailored in-

teractions and logic gates between quantum bits (qubits) in order to simulate the

quantum system under investigation [4, 5].

Quantum spin models such as the Ising model have become a proving ground

for Feynman’s proposal, with systems of qubits behaving as effective spins and

interactions engineered with external electromagnetic fields. The quantum Ising

1



model is the simplest spin Hamiltonian that exhibits nontrivial aspects of quantum

magnetism such as spin frustration, phase transitions [6], and poorly understood spin

glass and spin liquid phases [7, 8]. Indeed, solving for the ground state configuration

of spins subject to a general fully-connected Ising interaction is known to be an

NP-complete problem [9]. At the conclusion of this thesis I will show how a fully-

connected Ising or more general Heisenberg spin model with arbitrary couplings

across the spin network can be generated in a scalable system of trapped atomic

ions, even for a one-dimensional chain in space. This may allow quantum simulations

with hundreds of spins, where the physics cannot generally be predicted otherwise.

1.0.1 Classical Computation

Over the last century computers and electronics have made enormous advances

and transformed our world our and lives. The theoretical foundations of modern

computers are rooted in the work of Charles Babbage in the mid 19th century.

It was in the late 19th century, when the need to handle large amounts of data,

and the emergence of the vacuum tube, spurred the creation of real world, albeit

primitive computers.

The conception of solid state transistors in the 1920’s and their technological

application in the 1950’s enabled a breakneck acceleration in the development of

computers. The constant rate of transistor miniaturization led to the observation

that the number of transistors on a processor doubles every two years (“Moore’s

Law”)and processor performance doubles every 18 months. The average smartphone
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that a consumer carries in their back pocket today is more powerful than a 1990’s

Cray-2 supercomputer!

Although the available computational power is increasing, this growth cannot

continue forever, as technological hurdles such as thermal management and impu-

rities become more severe as the density of transistors and processors continues to

increase, and physical obstacles such as unwanted quantum effects due to shrinking

component size threaten reliability. Currently, the smallest transistors fabricated in

mass are 22 nm in length [10].

Furthermore, there are more fundamental limits to computation speed. A

computational algorithm can be analyzed abstractly, and a relationship between

the number of steps or other resources needed to solve a problem and the size of the

problem can be established.

An important problem in computer science is factoring a large number into

two prime numbers, as this can be used to decipher encrypted communications

(using the RSA method). With known methods, the number of steps to find the

prime factors grows exponentially with a linear growth in the number of digits of

the problem number. This makes this problem practically unsolvable and hence the

encryption is secure.

1.0.2 Quantum Information Processing

However, it is known that a computer with components that remain in a pure

quantum state (undisturbed by uncontrolled external influences) only requires a
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polynomial increase in steps [11]. This surprising result shows that quantum com-

puters likely posses computational powers far beyond those of classical computers

[4] (this is only a hypothesis though as the fundamental theories of computation are

still in their infancy).

The other motivation for the development of quantum information processing

machines is the problem of simulating quantum systems. As Feynman proposed in

1982 [4, 5], a well-controlled quantum system could efficiently simulate the behavior

of a complex quantum model that is classically intractable. For example, a quantum

simulator could be used to determine properties and dynamics derived of poorly un-

derstood models in condensed matter such as quantum magnetism [12], spin glasses

[7], spin liquids [13] and high temperature superconductors [14, 15].

As the resources required to simulate quantum systems on a classical computer

grow exponentially with linear growth of the quantum system, a machine that is

itself in a quantum state analogous to a system we wish to investigate will naturally

benefit from this growth in its computational space as its number of components

grows linearly. This is likely the more important application of quantum informa-

tion processing, as the number of digital quantum computing algorithms known is

limited, but the number of quantum systems whose understanding can benefit are

unlimited [16].

Furthermore, it has been shown that a universal quantum simulator is equiv-

alent in computational power to a universal quantum computer up to a polynomial

factor in the time needed for computation [17], and as such cannot simply be dis-

counted as a more limited form of quantum computing.
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1.1 The DiVincenzo Criteria

In order to implement the ideas discussed above, one needs a practical quantum

system. DiVicenzo presented the grocery list of characteristics of such a system :

• Identification of well-defined qubits

• Reliable state preparation

• Low decoherence

• Accurate quantum gate operations and

• Strong quantum measurements

Although originally specified for a circuit quantum computer, the requirements

for a quantum simulator are identical. The 171Yb+ system has all of these charac-

teristics. The qubits are well defined in the sense that each 171Yb+ ion is exactly the

same. The only variation between these qubits is due to local gradients in electric

and magnetic fields. The technical details of the 171Yb+ qubit will be discussed in

detail in chapter 2. For now, it will be simply stated that in comparison to compet-

ing implementations (mainly solid state Josephson junction based systems [18, 19])

of qubits, the ion systems are superior in all of these criteria except one that is

not listed - scalability. The storage of ions for long periods of time is difficult as it

requires strong electric fields and very low pressures. In this work, we were limited

to working with 16 ions. Although we faced multiple sources of errors that would

prevent us from controlling more than 16 ions, the main limiter is our inability to
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store in a stable crystal the ions for more than ∼ 10 minutes. This is likely due to

background atoms colliding with the chain, even at our working pressure of 10−12

Torr.

1.2 Quantum Mechanics

The development of quantum mechanics was spurred by false predictions and

contradictions encountered by physicists in the late 19th and early 20th century.

These problems spanned several different aspects of physics.

First, there was the famous ultraviolet catastrophe, which predicted the radi-

ation of infinite energy from a blackbody at the limit of short wavelengths. Second

there was the photoelectric effect, where light shining on a metal would cause a

current that would inexplicably cease when the light frequency was reduced. Third,

the double-slit experiment demonstrated wave-like behavior for light, except when a

detector was placed at one of the slits leading to the baffling appearance of particle-

like behavior. The fourth and most problematic discovery was that atoms were most

likely composed of electrons in orbit around a small, positive nucleus. A classical

description of this would seem to make matter itself impossible due to the electrons

completely radiating away their energy, unless they were limited to discrete orbitals

for an (at the time) inexplicable reason. These problems were resolved by the intro-

duction of the photon, the de Broglie wave equation, and finally the development of

quantum mechanics.

In the quantum mechanical description of physical systems the state is de-
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scribed by a vector in a Hilbert space. This vector and its associated conserved

quantities (“quantum numbers”) describe all that can be known about the system.

The dynamics of such a system is described by the Schrödinger equation

H |ψ〉 = ih̄ ˙|ψ〉 (1.1)

Where H is the Hamiltonian, an operator in Hilbert space that is the sum of the

energy terms in the system, |ψ〉 is the wavefunction, a vector in Hilbert space,

and h̄ is Planck’s constant, defined as the ratio between photon energy and angular

frequency.

The most revolutionary aspect of this new theory is the wave-function descrip-

tion of nature: although particles are discrete (they are always observed as particles),

some of their properties can only be described probabilistically. This probability is

given by the probability amplitude 〈ψ|ψ〉 =
∫
ψ∗ψdx integrated over the region of

interest (this is the inner product of the vector in Hilbert space). The other ob-

servables of the system are extracted from the wavefunction using an operator, such

that the expectation value for quantum mechanical observable A is

〈A〉 = 〈ψ| A |ψ〉 (1.2)

where A is a Hermitian matrix (so as to always have real expectation values).
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If we assume the Hamiltonian is time independent, we can rewrite Eq. 1.1

E |ψ〉 = H |ψ〉 (1.3)

by assuming that |ψ〉 has an oscillatory form

|ψ(t)〉 = e−iEt/h̄ |ψ(0)〉 (1.4)

and E is the energy of the eigenvector |ψ(t)〉 .

In general, we define |ψ(t)〉 = U(t) |ψ(0)〉 where

U(t) = Te−i
∫
Hdt/h̄ (1.5)

is the evolution operator, which simplifies to U(t) = e−iHt/h̄ for time independent

Hamiltonians.1

1.3 Adiabatic quantum simulation

One method of quantum information processing is adiabatic quantum simula-

tion. This approach is motivated by the adiabatic quantum computation algorithm

first proposed as a method to solve NP-complete satisfiability problems [20]. The

process of quantum adiabatic computation works as follows: a quantum system is

initialized to the ground state of a trivial Hamiltonian. Next, the Hamiltonian is

1T is Dyson’s time ordering operator. This operator handles the non-commutation of H(t) for
different t.
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adiabatically deformed into the Hamiltonian of interest, whose ground state encodes

the solution of a problem that has been mapped to the final Hamiltonian. If success-

ful, the system will remain in the ground state and can be directly probed once the

system arrives at the desired Hamiltonian. For quantum simulation of magnetically

interacting spins, this approach allows the determination of ground states where

the Hamiltonian can easily be written, yet the spin ground state cannot always be

predicted, even with just a few dozen spins [21].

A precondition for the use of this state is satisfying the adiabaticity criterion[22]

2:

T >>
ε

g2
min

(1.6)

where T is total simulation time, gmin = min(E1(t)−E0(t)) is the minimum energy

gap between the ground state (or any other state we can trivially initialize) and clos-

est coupled state, where ε = max(|〈1, t| dH
dt
|0, t〉 |) is the change in the Hamiltonian

at time t for the coupling between those energy levels.

1.3.1 Hydrogen-Like Atom

In this work we be using 171Yb+ ions as qubits. To understand their behavior,

we will model them using a quantum mechanical model, first developed to describe

the simplest atom - Hydrogen. In order to model the Hydrogen atom and other

atoms that have only one valence electron, we assume a simple model of a negative

electron orbiting a stationary positive nucleus in a spherically symmetric electric

2This is the criterion usually encountered in the literature. However, this criterion is not in
true in general [23]
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potential. Then we write our Hamiltonian

H = V + T = − 1

4πε0

Ze2

r
+

p2

2m0

(1.7)

where Z is the number of positive nuclear charges, e is the charge of the electron, r is

the distance of the electron from the nucleus, ε0 is the electric permittivity constant,

and p2

2m0
is the kinetic energy of the electron (m0 is its mass):− h̄2

2m0
∇2.

We find the eigenfunctions that satisfy the Schrödinger equation:

ψ(r, θ, φ) = R(r)Y (θ, φ) (1.8)

Y m
l (θ, φ) ≡ ε

√
(2l + 1)(l − |m|)!

4π(l + |m|)!
eimφPm

l (cosθ) (1.9)

R(r)nl ≡

√(
2Z

na

)3
(n− l − 1)!

2n[(n+ l)!]3
e−rZ/na

(
2Zr

na

)l
[2L2l+1

n−l−1(2Zr/na)] (1.10)

a ≡ 4πε0h̄
2

mRe2
(1.11)

Where Pm
l are the associated Legendre functions, 2L2l+1

n−l−1 are the associated La-

guerre polynomials, and mR is the reduced mass of the nucleus and electron.

n, l and m are quantized numbers that label orthogonal eigenfunctions. These

numbers are described as “good” quantum numbers. Their goodness is a result of

the simplifying assumptions of the model. In the 171Yb+ ion we will see that these

assumptions are only roughly true, leading to metastable states defined by other

quantum numbers. For Hydrogen-like atoms, n determines the energy of the sta-
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tionary state, l (the azimuthal quantum number) orbital angular momentum., and

m (the magnetic quantum number) the direction of angular momentum vector.

The definition of the Legendre polynomials restricts the values of l and m:

l = 0, 1, 2...;m = −l,−l + 1, ..., 0, 1, ..l (1.12)

The Laguerre polynomial solution is found when one restricts the radial solution

R(r) to a non-diverging series. The same restriction truncates l at n−1. Intuitively,

we can understand that a finite kinetic energy implies finite angular momentum.

Using the standard definition of angular momentum, L = r × p and our pre-

vious implicit definition of the momentum operator, we can show the commutation

relations for the Cartesian components of L to be

[Li, Lj] = ih̄εijkLk (1.13)

and if we define the raising and lowering operators as

L+ = Lx + iLy L− = Lx − iLy (1.14)
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then we find that these are ladder operators for the atomic eigenstates

L+ |l,m〉 = h̄
√

(l −m)(l +m+ 1) |l,m+ 1〉 (1.15)

L− |l,m〉 = h̄
√

(l +m)(l −m+ 1) |l,m− 1〉 (1.16)

There are additional complications to this simple model we must address before

we can discuss the 171Yb+ ion and its energy structure. First, the electron posses an

innate angular momentum, “Spin”, which is described by exactly the same math as

angular momentum, however l for the electron is fixed at 1/2 and so m only spans

−1/2, 1/2. We label the operators for spin ~S ≡ h̄
2
~σ where ~σ is the Pauli spin vector

- a vector of operators with components

σx ≡

 0 1

1 0

 , σy ≡

 0 −i

i 0

 , σz ≡

 1 0

0 −1

 (1.17)

Complicating thins further, the proton(s) in the nucleus of the atom also have

spin. These spins give the proton and electron a magnetic moment, and these

experience a magnetic dipole force due to the magnetic field created by the orbiting

electron. These add additional terms to the the total atom Hamiltonian, of the form

Hd = −µ · B. We define two new quantities, the total orbital angular momentum

J ≡ L + S and F ≡ I + J , where S is the total electronic spin and I is the total

nuclear spin.

For most stable atomic states, where we ignore coupling between the outer

electron and the inner electrons (LS coupling), we will label the atomic states using
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the ’Russel-Saunders’ convention

2S+1LJ (1.18)

The interaction of the electron with the magnetic field created by the rotating

nucleus (in the electron’s rest frame) gives rise to the fine structure splitting of the

energy levels, and the interaction of the nucleus’ dipole moment with the magnetic

field created by the electron leads to a smaller perturbation of the energy levels,

called the hyperfine splitting.

In atoms such as 171Yb+ , where the nuclear spin magnetic moment is non-zero

(due to the odd number of nucleons), the hyperfine coupling will be strong, and so it

will be necessary to add an energy term to the Hamiltonian for the dipole coupling

between the nucleus’ magnetic moment µ and the magnetic field from the electron,

HHF = −µI · (Bl +Bs).

However, the dominant coupling term will be that of the total angular momen-

tum, so we will write the eigenstates of the atom as superpositions of our previously

uncoupled basis:

|J,M〉 =
∑

ml+ms=mj

CL,S,L+S
ml,ms,mj

|l,ml〉 |s,ms〉 (1.19)

where the coefficients CL,S,L+S
ml,ms,mj

are the Clebsch-Gordan coefficients. These will be

necessary to calculate transition strengths.
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1.3.2 Transition Rules

What is the significance of all this? Well, from here we arrive at the rules

which tell us what atomic transitions are allowed and which are forbidden. The

restriction of atomic transitions will allow us to construct a useful qubit.

When the atom absorbs a photon, angular momentum is conserved. We con-

sider a perturbation H1 to the atom from an external electromagnetic field. The

probability for a transition from a stationary state ψ1 to ψ2 will depend on the

matrix element 〈ψ1|H1 |ψ2〉 . Considering only the dipole component of the multi-

pole expansion of the field, the perturbation to the potential of the electron will be

∝ e~r · ~E which requires ∆l = ±1 and ∆m = ±1, 0 for a non-zero transition prob-

ability. We will see how these rules come in to play when we examine the allowed

transitions of 171Yb+ in chapter 2.

1.3.3 Interaction Hamiltonian

For many systems, the Hamiltonian is a sum of a static term HS and an

interaction term HI . If this is the case we may simplify our analysis by rotating into

the static frame, so that the time evolution is only a function of HI . So our total

Hamiltonian in the Schrödinger picture (where all operators are static in time) is

HT = HS +HI (1.20)
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And in the interaction ’picture’

∣∣ψI(t)〉 = eiHSt/h̄
∣∣ψT (t)

〉
(1.21)

HI
S = eiHSt/h̄HSe

−iHSt/h̄ = HS (1.22)

HI
I = eiHSt/h̄HIe

−iHSt/h̄ (1.23)

where the superscript I (T ) indicates interaction (Schrödinger ) picture. We see that

the static term remains unaffected, but now the interaction term in the interaction

picture is time dependent. Rewriting the Schrödinger equation 1.1 in terms of the

interaction picture, the static component of the Hamiltonian drops out and we are

left with

HI
I

∣∣ψI(t)〉 = ih̄ ˙|ψI(t)〉 (1.24)

and now the dynamics only depend on the interacting component of the Hamil-

tonian.

1.3.4 Effective Hamiltonian

For highly complex systems the interaction picture is still too complex to allow

for analytical analysis. For many of these systems, including the spins in the ion

trap, simplifying assumptions can be made to rewrite an even simpler Hamiltonian.

The following treatment, succinctly presenting the formalism developed by D.F.V.
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James[24], can be applied to interaction Hamiltonians of the form

HI(t) =
N∑
n=1

Hne
−iωnt +H†ne

iωnt (1.25)

where we are summing over N oscillatory terms, and 0 < ω1 < ω2..ωN Then we can

derive the effective Hamiltonian given by

Heff (t) =
N∑

n,m=1

1

h̄ω̄mn

[
Hm, H

†
n

]
ei(ωm−ωn)t (1.26)

and 1
ω̄mn

= 1
2
( 1
ωm

+ 1
ωn

).

This Hamiltonian is the result of several approximations. First the interaction

evolution operator 1.5 is time averaged, so that all fast changes are neglected (general

case of rotating wave approximation). The second approximation is neglecting the

higher order terms of the averaged evolution operator’s time ordered expansion.

Applying a second rotating wave approximation leads to 1.26. We will utilize this

powerful tool when we treat light-ion interactions in 3.

1.4 Conclusion

This brief introduction to quantum information processing with ions and quan-

tum mechanics has laid down the ground work for understanding the quantum as-

pects of manipulating a 171Yb+ ion, that will be introduced in the following chapter.
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Chapter 2

The 171Yb+ ion

Now that we have discussed the basic physics necessary to understand atomic

transitions and energy states, we will introduce our atomic system of choice: the

171Yb+ ion[1]. We will discuss in 4.2 how we actually trap and create these ions

from a Yb metal.

The discussion of how we generate and direct the light on the ion will have to

wait until chapter 4.

Many ions are used throughout the world in quantum information experi-

ments, mostly from the alkaline earth metals. These are chosen so that once singly

ionized the ion will have a hydrogen-like electronic structure, which is more easily

understood and controlled.

The second important feature is that the energy structure is such that the ion

can be forced through optical pumping and cycling transitions to be constrained to

two energy levels, so that it behaves as an effective spin (a qubit). Our ion has a

nuclear spin of 1/2, giving it the simplest hyperfine structure possible in its ground

state.

For our qubit, we will be using the ground state 2S1/2 energy manifold, and

the clock states |F = 0,mf = 0〉 as our “down” (|↓〉 ) state and |F = 1,mf = 0〉

as our “up” (|↑〉 ) state. These states are the eigenstates of the σz operator with
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Figure 2.1: The 171Yb+ ion states with transition wavelengths.

eigenvalues 1 and -1 respectively. The clock states are so named as they are used

in atomic clocks due to only having a second order Zeeman energy shift, making

them robust to magnetic noise. Correspondingly, this ensures the qubits a long T2

coherence time - 2.5 s [1] without magnetic shielding, orders of magnitude longer

than non-clock state qubits with magnetic shielding or magnetic-field feedback.

We use the resonant 2S1/2 to 2P1/2 transition for cooling, state initialization

and detection. As we scatter on this transition, there is a 0.5% chance of decaying

out of this cycle to the 2D3/2 state. In order to correct for this we irradiate the ion

with 935.1879 nm light modulated at 3.07 GHz in order to remove the population

from 2D3/2 |F = 1〉 and 2D3/2 |F = 2〉 to the 3D[3/2]1/2 state. This is a metastable

state (‘Bracket State‘) where the usual ‘good‘ quantum numebrs are no longer valid
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1. The ion has a 98.5% chance of decaying back to 2S1/2 |F = 1〉 from this state, so

it is quickly restored to the correct qubit state (this will however create an error in

the phase of one qubit relative to other qubits in the chain).

A much less likely event is the ion transitioning to the 2F7/2 state. This

happens once in about an hour per ion. It is likely caused by a collision with a

background atom in the Ultra High Vacuum Chamber (UHV), as this is a forbidden

octopole transition [26]. Previously, we have used 638.61 nm light that is scanned

between the two resonance frequencies. We have found that our intense 355 nm

Raman beams are actually better at retrieving the ion from this long lived (∼ 6

years) dark state, but it is possible that this is due to YbH+ formation rather than

transition to the 2F7/2 state [27]. The 355 nm radiation would then disassociate this

ionic molecule and return the ion to a coolable state.

2.1 Ionization

The source of our ions is a nearly pure source of neutral 171Yb+ . This source

is a solid metal, sliced into small shards that are then forced into a narrow stainless

steel tube, which is clamped off at one end. A wire is spot welded to the tube, and

the tube is fed into a titanium holder, designed to have a high electric resistance

and low thermal conductivity so as to isolate the Ohmic heating to the 171Yb+ oven.

A current of roughly 2.3 Amps is run through this circuit (the holder is grounded

1In this state the outer electron couples to the core electrons, and the state is written as
2s0+1[K]J , Where s0 is the spin of the outer electron, K is the total angular momnetum of the core
and the angular momentum of the outer electron, and J is K and the spin of the outer electron.
The letter preceding the bracket is not part of the notation but is L for the core in the usual LS
notation. [25]

19



to the chamber). The oven is oriented towards the trapping region, where a 399 nm

beam will excite the neutral Yb from 1S0 to 1P1. A powerful 355 nm beam or 369 nm

beam will then excite an electron to the continuum. Some of these 171Yb+ ions will

be sufficiently cooled by Doppler cooling to be trapped.

2.2 Dopppler Cooling

Doppler cooling is achieved by scattering red detuned light from the resonant

transitions [28] for the 2S1/2 to 2P1/2 transitions, as illustrated in Fig. 2.2. The light

is tuned to a wavelength of 369.521525 nm , and detuned 25 MHz from resonance,

while the transition has a 20 MHz linewidth. To ensure that the ion is cooled for

both F=0 and F=1 states of the 2S1/2 manifold, the light is modulated by an Electro

Magnetic Modulator (EOM) at half the combined hyperfine splitting of the 2S1/2

and 2P1/2 states. The second order sideband allows the off resonant cooling of

the |↓〉 state. Doppler cooling utilizes the Doppler shift of the resonant frequency

in the frame of the moving ion, such that when the ion is moving towards the

oncoming light it is blue shifted towards resonance. The ion will then spontaneously

emit a photon into a random direction, so on average losing momentum in the

direction of the oncoming beam. The temperature limit of this random process

is the ’Doppler cooling limit’, hγ/2KB, where γ is the linewidth of the transition

and KB Boltzmann’s constant. For the S-P transition linewidth of 19.7MHz, this

corresponds to 5 ∗ 10−3 K. The relation KBT = n̄h̄ω [29] implies for our transverse

direction of motion an average of ∼ 12 phonons after Doppler cooling.
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Figure 2.2: Doppler cooling the 171Yb+ ion. Note that the 935 nm
repump transition is not shown here. The wide lines represent the
lasers driving transitions. The narrow lines represent the allowed
decays.
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2.3 Optical Pumping

Once the ion chain is sufficiently cooled (after Doppler cooling and sideband

cooling), we must prepare the ions in a pure and known quantum state. This can

be done with high fidelity. We apply light resonant with a transition from the |↑〉

state to the 2P1/2 F=1 state (as shown in 2.3), leading to a cycle that with our

beam power of ≈ 10µW pumps the ion to the |↓〉 state within 1.5µs with over 99%

fidelity.

2.4 Detection

The detection scheme of the 171Yb+ ion relies on the large separation of |↑〉

and |↓〉 states versus the linewidth of the detection transition. We use light reso-

nant with the |↑〉 to the 2P1/2 |F = 0〉 transition, and polarize the light so as to be

resonant with all the mf states (i.e. both linear and circularly polarized light). The

linewidth of this transition is 19.7 MHz , while the laser light linewidth is ≈ 100

KHz wide, and the separation between the |↑〉 and |↓〉 states is 12.6 GHz , so off-

resonant scattering is small (but not negligible). Also, note that transitions from

2P1/2 |F = 0〉 to |↓〉 are forbidden by transition laws.

This allows us to create a closed cycle of absorption and emission - a cycling tran-

sition. There is a small complication here - without a magnetic field to break the

degeneracy, a coherent dark state may occur [30]. In this situation, the bright states

interfere destructively, and detection fails. However, we apply a magnetic field via

an electromagnet under the UHV chamber. This magnet serves multiple purposes -
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Figure 2.3: Optical pumping of the 171Yb+ ion.
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it defines the quantization axis (the Z-spin axis corresponding to the σz operator),

and it breaks the degeneracy of the 2S1/2 manifold, thus preventing this coherent

dark state. We estimate the field to be roughly 5 Gauss, providing a Zeeman shift

of ∼ 7 MHz (310 ∗ 52 Hz ). This can be measured by taking a Raman spectrum of

the excitable sidebands.

As the ion fluoresces, the distribution of detected scattered light should ide-

ally follow a Poissonian. However, the possibility of off resonant excitation of the

dark state forces us to convolute this distribution with an exponential function[31].

A similar analysis is appropriate for the dark state. The atomic physics derived

distributions are deformed by complicating factors. First, there is unwanted scatter

off the electrodes of the trap. Second, there is the device physics of the imaging

device, which will lead to spurious counts from false photon detections and noise

during electrical readout. I will discuss this more in depth in 4.4.8. When detecting

the state of a single ion, we can expect a histogram of counts as in figure 2.5. As

is seen in the figure, there are two distributions, one centered around the average

dark count, and one around the average bright state count of roughly 10 counts.

In this case we can use a discriminator value that leads to an equal probability of

mistaking |↑〉 for |↓〉 and vice versa. i.e the overlap of the distributions determines

our single spin detection error.

However, when we must detect multiple ions, we encounter two problems when

simply collecting the light into a Photo Multiplying Tube (PMT). First, we do not

have the ability to detect the true eigenstate of the chain, only how many ions are

bright. This is acceptable in some experiments, where total number of bright ions
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Figure 2.4: The 171Yb+ ion detection scheme. The additional 3D F=2
to F=1 resonant light is needed for the optical pumping, since the
ion may occupy either 3D3/2 hyperfine states. Only pertinent states
and transitions are shown.

is the quantity of interest. Second, as the number of spins increases, the average

number of bright counts per ions bright should naively increase as Nions x average

count for one ion, assuming a uniform detection beam intensity across the chain (we

will see this is not exactly the case). But this leads to increasing overlap between the

different distributions, so even for the task of just detecting the total number of ions

bright the PMT will under-perform compared to a device with spatial information,

such as a Charge Coupled Device (CCD) camera.
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Figure 2.5: Measured count histogram after Doppler cooling with
typical experimental conditions. The ion is Doppler cooled for 3ms,
during which the ion scatters 10 photons on average into the light
collecting Photo Multiplying Tube (PMT). Here, we are not detect-
ing the scattered Doppler cooling light. Rather, we are following the
cooling by a 800µs resonant detection pulse and light collection. This
is repeated 100 times and then a histogram is constructed from the
number of counts collected by the PMT via the imaging optics for
each detection. As can be seen from the graph, the ion is not com-
pletely bright following cooling. This screen shot from the control
program also shows the Poissonian fits for the dark and bright states.
The mean value of the fits are entered as parameters. The fitted am-
plitudes are interpreted as probabilities for the number of ions bright.
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Figure 2.6: Poissonians for the dark state and up to five ions bright.
These are idealized bright states as there is no leakage to the dark
state. The leftmost distribution is the dark state, and the distribution
peaking at 10 counts is a single bright ion. The other distributions
are centered at multiples of 10 (N × 10), corresponding to N ions
bright. Realistic distributions would have worse overlap due to this
effect, including a broadening of the dark histogram as well.
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Chapter 3

Quantum Control of The Ion

3.1 Light-Ion Interaction

The last ingredient necessary to make the ion a useful qubit or simulated

spin is the ability to control its internal state. For the purpose of this exposition

I will utilize the effective Hamiltonian theory introduced in 1.3.41. The simplest

application of this theory is to the analysis of the AC Stark shift [24]. Applying an

off-resonant field, detuned by ∆ from the hyperfine splitting of the qubit states ωhf

with coupling coefficient Ω, we derive the interaction Hamiltonian

HI =
h̄Ω

2
(|↑〉〈↓| e−ih̄∆t + |↓〉〈↑| eih̄∆t) (3.1)

Applying equation 1.26 to the single harmonic term H1 to get

HStark =
h̄2Ω2

4

1

2h̄
(−|↑〉〈↓| |↓〉〈↑| 2

∆
− |↓〉〈↑| |↑〉〈↓| 2

∆
) (3.2)

resulting in

HStark = − h̄Ω2

4∆
(|↑〉〈↑| − |↓〉〈↓| ) (3.3)

1I am still following here the compact approach presented by James, which simplifies the treat-
ment but somewhat obscures the physical justifications. For a different and lengthier presentation,
see [32].

28



We see that the laser is dressing the qubit states and shifting their effective

energy in opposite directions and by equal amounts. This is equivalent to a phase

gate on a single spin - as the spin is precessing while shifted by the field, it will

become out of phase with other spins not under the influence of the field. Alternately,

it may become out of phase with an oscillator that was supposed to be locked to the

spin’s natural precession frequency - a persistent concern for the experiment. We

will see in 4 how we can mitigate this. It is important to note that this is only the

simplest A.C. Stark shift possible, as a Stark shift can be a multi-photon process,

rather than the two photon process presented here.

3.2 Raman Transitions

We now add a third, higher energy level to the system, |e〉 , as depicted in

Fig 3.1. Applying two light frequencies ω1 and ω2 detuned by ∆ from |e〉 , the beat

frequency ωhf will drive this transition, while only negligibly populating |e〉 .

We write the interaction Hamiltonian

HI =
h̄Ω1

2∆
|e〉〈↑| e−i∆t +

h̄Ω2

2∆
|e〉〈↓| e−i∆t + h.c. (3.4)

And apply 1.26:

Heff = − h̄Ω2
1

4∆
(|e〉〈e| −|↑〉〈↑| )− h̄Ω2

2

4∆
(|e〉〈e| −|↓〉〈↓| )+

h̄Ω1Ω2

4∆
(|↓〉〈↑| −|↑〉〈↓| ) (3.5)

where Ωi = γ
√

Ii
ISat

is the coupling coefficient for beam i, Ii is the intensity of beam i,
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Figure 3.1: Off resonant coupling of the spins. |e〉 is negligibly pop-
ulated for ∆ >> γΩi
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ISat is the saturation intensity of the transition for that beam, and γ is the radiative

linewidth for that transition.

We see the effect is an AC Stark shift on all levels (a symmetric effect for

both qubit levels for equal fields) and a coupling between the qubit levels. This is

equivalent to a spin under the influence of a transverse field, as (|↓〉〈↑| − |↑〉〈↓| ) =

iσy. We will refer to the beatnote that drives this transition from hereon as “carrier”.

3.3 Coupling Spin to Motion

So far we have neglected the fact that the ion is confined in a harmonic well.

This will be treated more in depth in 4.2. Using the standard quantum mechanical

treatment of the harmonic oscillator, we use the ladder operators to lower and raise

the number of motional quanta (“phonons”) of the ion with mass m and harmonic

vibration frequency ω with the Hamiltonian H = p̂2

2m
+ 1

2
mω2x̂2

a =

√
mω

2h̄
(x̂+

i

mω
p̂) (3.6)

a† =

√
mω

2h̄
(x̂− i

mω
p̂) (3.7)
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where the state representing the number of phonons is designated |n〉 , and the

ladder operators give

a |n〉 =
√
n |n− 1〉 (3.8)

a† |n〉 =
√
n+ 1 |n+ 1〉 (3.9)

a†a |n〉 = n |n〉 (3.10)

and the commutator [a, a†] = 1.

Applying two fields with a beat frequency δ detuned to the red (blue) by

the energy of the phonon, we can couple the spin to the ions motion and remove

(add) a phonon while flipping the spin, as in figure 3.2. This scheme transfers

momentum from the fields to the ion. The mode excited is selected spatially by the

beat frequency wavevector δk, and spectrally by the beat frequency δ = ω2 − ω1 =

ωhf + ωmode

This treatment assumes that we are in the resolved sideband limit, i.e. the

exposure of the ion is long enough and low power enough that the driven transition

is not broadened to overlap with the carrier or other modes. We can illuminate this

effect by writing the interaction Hamiltonian for this situation

HI =
h̄Ω

2
(e−i(δk·~r−(δω)t−∆φ)σ+ + e+i(δk·~r−(δω)t−∆φ)σ−) (3.11)

where Ω is the coupling strength of the qubit states, δk is the wavevector

difference of the two beams, δφ is the phase difference of the beams, ~r is the location

32



|↑, 𝑛  

𝜔1 

∆ 

𝜔2 

|↓, 𝑛 − 1  

|𝑒  
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Figure 3.2: Driving a Red Side Band (RSB). The beat frequency
δω = ω2 − ω1 = ωhf − ωCOM imparts a spin-dependent momentum
kick that takes the ion from |↑, n〉 to |↓, n− 1〉 by absorbing a photon
from ω1 and emitting a photon into ω2.
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of the ion, and δω = ω2 − ω1 −∆, i.e. the beat frequency. Simplifying this general

description to account for only motion along the transverse-x direction, and writing

the coordinate as x̂ = x0 + q√
2
(a+ a†), and q =

√
h̄
Mω

we rewrite 3.11 as

HI =
h̄Ω

2
(e
−i(δk(x0+ q√

2
(a+a†))−(δω)t−δφ)

σ+ + (e
i(δk(x0+ q√

2
(a+a†))−(δω)t−δφ)

σ−) (3.12)

where δk now only refers to the wavevector difference in the x direction. Assuming

the spatial spread of the ion relative to the beat wavelength is small, we make the

Lamb-Dicke approximation η = δkq/
√

2 << 1, and keep leading order terms in the

phonon operators

HI =
h̄Ω

2
(e−i(δkx0−(δω)t−δφ)(1− iη(ae−iωt + a†eiωt))σ+

+(ei(δkx0−(δω)t−δφ)(1 + iη(ae−iωt + a†eiωt))σ−)

(3.13)

where we have rotated into the frame of the vibrational modes ω [32].

If we set δω = ±ω,

HBSB =
h̄Ωη

2
e−i(δkx0−δφ)a†σ+ + h.c. (3.14)

HRSB =
h̄Ωη

2
e−i(δkx0−δφ)aσ+ + h.c. (3.15)

The RSBs will allow us to cool our ion chain beyond the Doppler cooling limit

by coherently removing phonons.

34



3.4 Multi-Ion Gates

Now that we have introduced a way to couple the ion spin to its motion, we can

show a way to create gates between ions, using their motion as a bus to transport

information between disparate spins [3, 33, 34, 35]. By applying beatnotes symmet-

rically detuned from carrier we will virtually excite normal modes, and induce sign

dependent Stark shifts on ions, where the phase accrued on each spin will depend

on the mode coupled and the ion location in the chain.

Generalizing equation 3.13 to multiple ions, while still only coupling to x

direction phonons, we rewrite equation 3.13

HI =
N∑
i

h̄Ωi

2
[(e−i(δkx

i
0−(δω)t−δφi)(1−

N∑
m=1

iηi,m(ame
−iωmt + a†me

iωmt))σi+

+(ei(δkx
i
0−(δω)t−δφi)(1 +

N∑
m=1

iηi,m(ame
−iωmt + a†me

iωmt))σi−)]

(3.16)

where i is an index summed over N ions, and m is an index summed over N modes

(for a linear chain of ions confined in an harmonic trap, there are N modes per axis

[36], as we shall see in 4.2.1. ωm is the frequency of the mth x direction mode, and

now ηi,m = δkqi,m/
√

2, where qi,m = bi,m

√
h̄

Mωm
and bi,m is the normalized matrix of

ion displacements for ion i due to mode m, as described in 4.2.1.

We will be applying two global, symmetrically detuned from carrier beats, so
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we now sum equation 3.16 over two beatnotes ±δω:

HI =
h̄

2

N∑
i

(1−
N∑
m

iηi,m(ame
−iωmt + a†me

iωmt))Ωi

[e−i(δk
Rxi0−δωt−δφRi ) + e−i(δk

Bxi0−δωt−δφBi )]σi+ + h.c.

(3.17)

Where δkR(B), δφR(B) refer to the wavevector and phase difference for the two beams

tuned to the red (blue) of carrier. Distributing the evolving coordinate and tem-

porarily dropping the terms that go as ei(ωm+δω)t to simplify the equations we are

left with

HI =
h̄

2

N∑
i

∑
m

ηi,m(ame
−i(ωm−δω)te−i(δk

Rxi0−δφRi )+a†me
−i(ωm−δω)te−i(δk

Bxi0−δφBi ))Ωiσ
i
++h.c.

(3.18)

which can be more concisely written as 2

HI =
h̄

2

N∑
i

∑
m

Ωiηi,m(ame
i(ωm−δω)t−iφim + a†me

−i(ωm−δω)t+iφim)Ωiσφis + h.c. (3.19)

where φim = (δkRxi0 −∆φRi − δkBx0,i + ∆φBi )/2 is the phase of the force on the ith

spin, φis = −(δkRxi0−∆φRi + δkBx0,i−∆φBi )/2 is the spin phase of the ith spin and

σφiS = σi+e
−iφiS + σi−e

−iφiS

In our experimental setup the wavevectors of the BSB and RSB are counter

oriented, i.e. ~δk
R
≈ − ~δk

B
, causing the spin phase to be insensitive to beam path

length fluctuations. As both follow the same path, any fluctuation will cause equal

and opposite phase change in both, i.e. δφiS = −(δkR + δkB)xi0/2 = 0

2The interested reader is welcome to compare this to the special case of 2 ions presented in [32]
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Although the Hamiltonian above can create displacements in phase space while

coupling to the ion spins, we are only interested in driving transitions where motion

is only weakly excited and can be ignored. This happens when the beatnotes are

sufficiently far from the side-bands so to not drive them off-resonantly, i.e. ηΩ <<

ωm − δω. This is known as the “slow” Mølmer-Sørenson gate [3, 33].

Applying 1.26 to 3.19, we will get many terms, however, we can observe that

there are three types of commutators that could possibly contribute to the effective

Hamiltonian:

1. Same mode, same ion

2. Same mode, different ions

3. Different modes, different ions

Assuming we set the spin phase so that we only have spin operators in the x-basis,

only the second option contributes to the effective Hamiltonian.

1. [anσ
i, a†nσ

i] = anσ
ia†nσ

i−a†nσianσi = (σi)2(ana
†
n−a†nan) = I So this term does

not effect the effective Hamiltonian.

2. [anσ
i, a†nσ

j] = anσ
ia†nσ

j − a†nσjanσi = σiσj(ana
†
n − a†nan) = σiσj

3. [anσ
i, a†mσ

j] = anσ
ia†mσ

j − a†mσjanσi = 0

Thus, the resulting effective Hamiltonian is (here I am including the terms

evolving at δω + ωm previously omitted)

HMS =
h̄

4

∑
i,j,m

(
ΩiΩjηi,mηi,m
δω + ωm

+
ΩiΩjηi,mηi,m
δω − ωm

)e−iφm,ie−iφm,jσiσj = (3.20)
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HMS =
h̄

2

∑
i,j,m

ΩiΩjηi,mηi,mωm
δω2 − ω2

m

e−iφm,ie−iφm,jσiσj (3.21)

which we can write succinctly as HMS =
∑

i,j Ji,jσ
iσj where

Ji,j =
h̄

2

∑
m

ΩiΩjηi,mηi,mωm
δω2 − ω2

m

e−iφm,ie−iφm,j (3.22)

is the coupling strength between spin i and spin j. For the duration of this work, the

relative modulation phase will be assumed to be equal for all ions, and will only be

meaningful when compared to other force generating lasers. This is due to the ions

being addressed with global beams, and the modulation frequencies in the MHz

regime have phase fronts that do not significantly change over the length of the ion

chain, that is no longer than ∼ 30µm .

This assumption will change in chapter 8, where individual phase control for

each ion will allow us to control the relative sign of spin-spin couplings.

3.5 Conclusion

In this chapter all the necessary components for creating the simulated or

effective components of the Hamiltonians we will investigate numerically and exper-

imentally in 6 have been introduced and succinctly explained. When we simulate

these Hamiltonians we will be adding in several frequencies to create both spin-spin

interactions as in 3.21 and single spin simulated magnetic fields as in 3.5. The hid-

den assumption there is that combining the needed modulations of the light will
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create an effective Hamiltonian that is a sum of the desired effective Hamiltonians.

This is a valid assumption only if the beatnotes do not create cross terms with a low

or stationary frequency in the effective Hamiltonian. For a more in depth treatment

of the possible unwanted effects of this approach, see [37].
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Chapter 4

Experimental Setup

4.1 Introduction

The experimental setup for the quantum simulation experiments reported in

this thesis is highly complex. In fact, it is so complex that a single grad student

starting from an empty lab would likely need more time just to set up part of the

experiment, let alone perform any experiment, than an entire PhD program should

reasonably require. The setup described here was luckily not started from scratch.

The linear ion trap [2] was refurbished from its previous role as a Cadmium ion

trap. We also also greatly benefited from previous experience in the group [1, 38, 39]

regarding how to use 171Yb+ . Control circuits for lasers and optical cavities, and

the FPGA pulser were designed by authors mentioned in the citations above.

4.2 Ion trap

The type of ion trap we use for our experiment is the Paul ion trap [40]. As

ions are electrically charged particles, we wish to create an electric potential with

a stable minimum to which the ion will relax. Unfortunately, Earnshaw’s theorem

[41] informs us that a static electric potential cannot have a stable minimum. Paul’s

trap circumvents this problem by combining a static electric field and an oscillating
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Figure 4.1: Paul trap with ions. the distance between hyperbolic
electrodes is 2r0.

field to create a time-averaged pseudo-potential that has a stable minimum. The

simplest example of such a setup is the four rod Paul trap, where the rods have a

hyperbolic cross-section, as shown in figure 4.1.

In order to create a confining potential, we apply the voltage to the electrodes

− φ0 = U + V cos(ωt) (4.1)

where U is a DC voltage and V is the amplitude of an RF voltage oscillating at

frequency ω. r0 is the distance from the electrode to the center of the trap, as shown
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in figure 4.1. The resultant potential is

φ =
φ0

2r2
0

(x2 − y2) (4.2)

After taking the gradient to find the electric field, we can write the equations of

motion (known as the Matheiu equations):

dx2

dτ 2
+ (a+ 2qcos(2τ))x = 0 (4.3)

dy2

dτ 2
− (a+ 2qcos(2τ))x = 0 (4.4)

where

a =
4eU

Mr2
0ω

2
, q =

2eV

Mr2
0ω

2
, τ =

ωt

2
(4.5)

When the a and q parameters are chosen so that neither coordinate grows exponen-

tially rather than oscillate, the ions are stably confined. The missing element of the

confinement is in the z-direction, the trap axis (I will use this convention from here

on out). That can be corrected for by simply adding a repulsive DC electrode to

each end of the trap axis.
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4.2.1 Normal Modes

A linear chain of N ions, trapped in a harmonic trap, experience a pseudo-

potential due to an AC field, a static field and their electric charge[36]

V =
M

2

N∑
n=1

3∑
i=1

ω2
i x

2
ni +

e2

8πε0

N∑
n,m=1

m6=n

[
3∑
i=1

(xni − xmi)2

]−1/2

(4.6)

from which we can find their equilibrium positions in terms of a rescaled co-

ordinate um = x0
m/l, where x0

m is the small displacement from equilibrium defined

by xni (t) = xni + x0
mi, and

l =

(
e2

4πε0Mω2
3

)1/3

(4.7)

where e is the charge of the ion, M is the mass of a single ion, and ω3 is the

longitudinal collective center of mass frequency - the lowest normal mode frequency.

We can now consider the Lagrangian of the system,

L = T − V =
M

2

N∑
n=1

3∑
i=1

(
ẋ0
ni

)2 − M

2

N∑
n=1

3∑
i=1

ω2
i

[
xni + x0

mi

]2
− e2

8πε0

N∑
n,m=1

m6=n

{
3∑
i=1

[
xni + x0

ni − xmi − x0
mi

]2}−1/2

(4.8)

And expanding to lowest order, neglecting couplings between different spatial
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directions1

L ≈ M

2

{
N∑
n=1

(
ẋ0
ni

)2 − ω2
3

N∑
m,n=1

Amnxm3xn3 +
2∑
i=1

[
N∑
n=1

(
ẋ0
ni

)2 − ω2
3

N∑
m,n=1

Bmnxm3xn3

]}
(4.9)

and

Amn =



1 + 2
∑

p=1
p 6=m

1
|um−up|3

if m = n

−2
|um−un|3

if m 6= n

(4.10)

Bmn =

(
1

ε2
+

1

2

)
δmn −

1

2
Amn (4.11)

where A and B are the matrices for the longitudinal and transverse eigenvalue

equations. We define the normal modes bm that describe the oscillatory displace-

ment of ion i from its equilibrium with longitudinal (transverse) frequency ωz
√
µm

(ωz
√
γm)

N∑
n=1

Amnbi,n = µmbi,m (i = 1, . . . , N) (4.12)

N∑
n=1

Bmnbi,n = γmbi,m (i = 1, . . . , N) (4.13)

and assumed the collective transverse mode frequencies are equal. We define ε, the

trap anisotropy

ωx =
ωz
ε

(4.14)

1This is a valid assumption as long as the trap anisotropy parameter is small enough, i.e. the
chain is not close to buckling from a linear chain into a zig-zag configuration.
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where ωx is the COM frequency for the x-direction transverse mode and ωz is the

COM frequency along the ion chain axis. The relationship between the axial and

transverse normal-mode eigenvalues is

γp = 1/ε2 + 1/2− µp/2 (4.15)

Transcribing this analysis into a Wolfram Mathematica script generates the

ion equilibrium positions:

∆k =
√

2 2π
369.5 10−9 ;∆k =

√
2 2π

369.5 10−9 ;∆k =
√

2 2π
369.5 10−9 ;

NumofIons = 10;NumofIons = 10;NumofIons = 10;

ωcm = 2π4.863232 ∗ 106;ωcm = 2π4.863232 ∗ 106;ωcm = 2π4.863232 ∗ 106;

ωtilt = 2π4.81294 ∗ 106;ωtilt = 2π4.81294 ∗ 106;ωtilt = 2π4.81294 ∗ 106;

ε =
√

1− ωtilt
2

ωcm
2 ;ε =

√
1− ωtilt

2

ωcm
2 ;ε =

√
1− ωtilt

2

ωcm
2 ;

ωz = ε ∗ ωcm;ωz = ε ∗ ωcm;ωz = ε ∗ ωcm;

l =
(

qe2

4πε0MYb171ωz
2

)
1/3;l =

(
qe2

4πε0MYb171ωz
2

)
1/3;l =

(
qe2

4πε0MYb171ωz
2

)
1/3;

Table[uH[m], {m,NumofIons}]; (* create position variables *)Table[uH[m], {m,NumofIons}]; (* create position variables *)Table[uH[m], {m,NumofIons}]; (* create position variables *)

Table
[
fH[m] = uH[m]−

∑m−1
n=1

1
(uH[m]−uH[n])∧2

+
∑NumofIons

n=m+1
1

(uH[m]−uH[n])∧2
,Table

[
fH[m] = uH[m]−

∑m−1
n=1

1
(uH[m]−uH[n])∧2

+
∑NumofIons

n=m+1
1

(uH[m]−uH[n])∧2
,Table

[
fH[m] = uH[m]−

∑m−1
n=1

1
(uH[m]−uH[n])∧2

+
∑NumofIons

n=m+1
1

(uH[m]−uH[n])∧2
,

{m,NumofIons}];{m,NumofIons}];{m,NumofIons}];

EqH = Table[fH[m] == 0, {m,NumofIons}]; (* generate coupled equations *)EqH = Table[fH[m] == 0, {m,NumofIons}]; (* generate coupled equations *)EqH = Table[fH[m] == 0, {m,NumofIons}]; (* generate coupled equations *)

IniH = Table[{uH[m],m/10}, {m,NumofIons}]; (* generate initial conditions *)IniH = Table[{uH[m],m/10}, {m,NumofIons}]; (* generate initial conditions *)IniH = Table[{uH[m],m/10}, {m,NumofIons}]; (* generate initial conditions *)

solH = FindRoot[EqH, IniH];solH = FindRoot[EqH, IniH];solH = FindRoot[EqH, IniH];

uHa = Table[uH[m]/.solH[[m]], {m,NumofIons}];uHa = Table[uH[m]/.solH[[m]], {m,NumofIons}];uHa = Table[uH[m]/.solH[[m]], {m,NumofIons}];

Print[uHa ∗ l ∗ 10∧6, “ position in microns of ions”]Print[uHa ∗ l ∗ 10∧6, “ position in microns of ions”]Print[uHa ∗ l ∗ 10∧6, “ position in microns of ions”]

And we get the ion distance on the z-axis from the center of the trap in µm

for the trap parameters used in chapter 7:

{-10.0021,-7.31662,-5.05321,-2.97461,-0.982864,0.982864,2.97461,5.05321,7.31662,10.0021}
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With these distances we can calculate the transverse frequencies for the x-

direction, which we will be using to create our spin-spin interactions:

TMatrix =TMatrix =TMatrix =

Table
[
If
[
i 6= j,TransMat[i, j] = 1

Abs[uHa[[i]]−uHa[[j]]]3
,Table

[
If
[
i 6= j,TransMat[i, j] = 1

Abs[uHa[[i]]−uHa[[j]]]3
,Table

[
If
[
i 6= j,TransMat[i, j] = 1

Abs[uHa[[i]]−uHa[[j]]]3
,

TransMat[i, j] = (1/ε)2 −
∑i−1

j=1
1

Abs[uHa[[i]]−uHa[[j]]]3
−
∑NumofIons

j=i+1
1

Abs[uHa[[i]]−uHa[[j]]]3

]
TransMat[i, j] = (1/ε)2 −

∑i−1
j=1

1
Abs[uHa[[i]]−uHa[[j]]]3

−
∑NumofIons

j=i+1
1

Abs[uHa[[i]]−uHa[[j]]]3

]
TransMat[i, j] = (1/ε)2 −

∑i−1
j=1

1
Abs[uHa[[i]]−uHa[[j]]]3

−
∑NumofIons

j=i+1
1

Abs[uHa[[i]]−uHa[[j]]]3

]
, {i, 1,NumofIons}, {j, 1,NumofIons}];, {i, 1,NumofIons}, {j, 1,NumofIons}];, {i, 1,NumofIons}, {j, 1,NumofIons}];

TransEigVal = Eigenvalues[TMatrix];TransEigVal = Eigenvalues[TMatrix];TransEigVal = Eigenvalues[TMatrix];

TransNormalFreq = Sqrt[TransEigVal];TransNormalFreq = Sqrt[TransEigVal];TransNormalFreq = Sqrt[TransEigVal];

Print [TransNormalFreq ∗ ωz/ 2/π/106, “ Trap frequencies in MHz”]Print [TransNormalFreq ∗ ωz/ 2/π/106, “ Trap frequencies in MHz”]Print [TransNormalFreq ∗ ωz/ 2/π/106, “ Trap frequencies in MHz”]

{4.86323,4.81294,4.74058,4.64815,4.53638,4.40509,4.25343,4.07989,3.88217,3.65694}

Trap frequencies in MHz

The transverse frequencies displayed here run from the highest, the COM

mode, to the lowest - the “zig-zag” mode, as shown in figure 4.2. The second

highest mode is the “tilt” mode, and the spacing between COM and tilt, unlike

any other two modes, is fixed at ω2 = ω1

√
1− ε2 (from here on the normal mode

frequencies are referred to as ωn, running from high to low). When generating the

spin-spin coupling matrix J we will have flexibility in control of the form of the J

by setting our detuning close to the mode that has the form similar to our desired

couplings, as can be seen in figure 4.3. Using a single detuning will not give us

complete control, however the modes form a complete basis, and we will use this in

8 to gain complete control over J.
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Figure 4.2: Transverse mode components for 10 ions. The arrows
represent the maximum displacement of the ions from equilibrium
while oscillating at mode frequency. The modes are ordered from
highest frequency (COM) to lowest (zig-zag).
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Figure 4.3: The mess of couplings for 10 ions. The x-axis is detuning
in KHz from the COM. As can be seen in the plot, near the COM
all the couplings are nearly equal, as can be expected from the form
of b1. Near each mode the couplings diverge to infinity, however this
behavior is non-physical as we must maintain the weak excitation of
phonons condition.
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4.3 Micromotion

In an actual trap, the alignment of the DC saddle point and the RF node

will be imperfect. This will alter the form of the equations of motion adding an

extra term of excess micromotion - oscillatory motion around the psuedopotential

minimum, in addition to the inherent micromotion seen in 4.4.

This unwanted motion creates an oscillating Doppler shift on the ion’s reso-

nance frequencies, reducing scatter rates for cooling and detection and broadening

the transitions. We have found that ions are less stable in the trap when this condi-

tion exists. To correct this condition, the DC voltages must be altered as changing

the RF node is difficult (or impossible, as in our setup). There are several indica-

tors useful for reducing the excess micromotion[42]. One is measuring the Doppler

cooling scattering linewidth. The second is measuring a correlation between the

trap frequency phase and the scatter rate using a Time to Digital Converter. For

micromotion along an axis parallel to an imaging device, one can also reduce V to

see a displacement of the ion from DC saddle-point. In our trap we have found

that it was very difficult to reduce micromotion, especially in the transverse direc-

tion not coupled to our gates (y), as reducing micromotion would rotate the trap

axis, creating unwanted components of the Raman beams along the y axis. This

would require us to change the incident angle of our Raman beams on the ion chain,

which is quite difficult. Instead, we would reduce micromotion by maximizing the

Rabi rate. It is likely that reducing the micromotion along the x-axis leads to more

efficient Doppler cooling on that axis, leading to a higher Rabi frequency.
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4.3.1 The Linear Trap

The trap used in the work in this thesis is of a different design than the one

discussed above. It is constructed of three layers of thin alumina, with electrodes

segmented by laser machining of the alumina and formed by gold coating, as shown

in 4.4.

(a) (b)

250 μm 
dc 

dc 

dc 

dc 

rf rf 

375 μm 

200 μm 

Figure 4.4: (a)Linear trap schematic with ions in trapping region.
The RF electrode is a single electrode with a slit of equal dimensions
to the DC electrodes central slit. The top and bottom DC layers
are identical. (b) Linear trap photograph. Here the capacitors and
resistors in a pi-filter configuration on the DC electrodes can be seen.
These prevent capacitive RF signal coupling to the DC electrodes.

Although this configuration is quite different from that of the four rod config-

uration, the analysis is quite similar. As there is no easily found analytical solution

for the potential generated by these boundary conditions, the approach we take is

modeling the potential numerically with a commercial electromagnetic modeler -
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Charged Particle Optics. For each electrode, we set all other electrodes to ground,

and set said electrode to some voltage. Thus the linear combination of scaled po-

tential maps gives us the total potential for the trap. Using this numerical solution,

a ponderomotive psuedo-potential can be calculated

ψ =
e2

4mω2
∇V (x, y, z)2 (4.16)

and treating the linear trap as we would treat the hyperbolic Paul trap - a field

exerting a harmonic restoring force on the ion, we find the secular frequency (the

axial COM frequency) [43, 44, 45]

ω2
z =

e2

4m2ω2

∂2

∂2z
(|∇V (x, y, z)|)2 (4.17)

Then the secular frequency of the trap is

ωz =
e2V 2η

4
√

2mω2r4

∂2

∂2z
∇(|V (x, y, z)|)2 (4.18)

which is the identical to the secular frequency of the hyperbolic trap, but with a

redefined effective distance from the electrode to the ion r and a geometric factor

η. This factor is the ratio between the quadrapole portion of the linear trap (or any

other trap) to the oscillating term of the hyperbolic trap.
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4.3.2 Trap Voltages and Control

As shown in 4.4(a), the trap has six electrodes on both of the DC layers. Wiring

all electrodes would give more control than necessary to control the trap axis and

minimize micromotion, and would increase significantly the difficulty of assembly

and wiring. Therefore, only 3 DC electrodes in each layer are wired to external

leads. The remaining three are wired to trap ground. These electrodes are wired to

spot welded on board pi-filters. The leads running from these filters then connect

to an external breakout box, which itself has additional pi-filters for each electrode,

as discussed in 8.6. The trap voltages are supplied by an Iseg EHS-80-05XK3 high

voltage module. This module is powered and controlled by an Iseg MPOD mini-

crate. The crate provides a network based control of the voltages. The module has

eight channels, all with SHV connectors. These are not to be confused with BNC

connectors, which are very similar in appearance. We constructed custom cables to

connect between the SHV connectors on the ISEG box to the BNC connectors on

the breakout box.

It is important to note that the channels have a single polarity (dual polarity

requires a floating ground that reduces stability)

• Channels 0-5: up to +500V /15mA

• Channels 6-7: down to -500V

The control program will automatically switch the driven channels from 4 and/or 5

to 6 and/or 7 if the set voltage on electrodes DC 3 and/or DC 4 is negative.
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Figure 4.5: Trap control program. The upper right corner provided
settings for a timed relaxation and tightening of the trap RF, via
the LabJack controlled VCA. Upper right side controls the DC trap
voltages. Lower half indicates sensed DC voltages and currents for
tab displayed, as well as controls power to individual channels and
the Iseg chasis (Main Power).
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It is assumed the user has switched the cables on the breakout box

if this is the case.

4.3.3 Oscillating Trap Voltage

The RF voltage V is provided via a helical RF resonator [46]. This resonator

has a quality factor Q of ≈ 300 and is resonant at 38.86 MHz . As the power deliv-

ered through the resonator is changed, the ohmic losses change and the equilibrium

temperature of the resonator and perhaps the trap itself changes. This leads to

geometric changes that change the resonant frequency of the resonator and the RF

voltage of the trap. As this leads to a change in the secular frequency of the ion, we

have implemented a stabilization scheme. The first stage of this stabilization scheme

is thermal stabilization of the RF resonator. This is accomplished by a Thorlabs

TC200 Heater controller. This heater senses the temperature of the resonator using

a thermistor, and stabilizes with a resistive coil. The stabilization is improved by in-

sulating the resonator and the thermal feedback system with an adhesive foam with

a reflective aluminum layer. We find that this temperature is stable to less than a

degree when the set point temperature is 250C, slightly above room temperature.

The second stage of this stabilization scheme is active frequency stabilization

of the HP-8640B driving the trap RF to resonance. This helps stabilize the delivered

power. It is helpful, but not sufficient, to stabilize the trap transverse modes.

We pass the driving RF through a Minicircuits BDC ZFBDC-62HPS bidirec-

tional coupler, and mix the reflected signal with a phase shifted reference signal
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Figure 4.6: Trap control program electrodes tab. Here the sensed
voltages on each electrode are displayed. The electrodes are dis-
played without the RF layer, facing towards the imaging optics. The
electrodes labeled ’GND’ are grounded.

from the HP-8640B (this signal is impedance matched by passing through a 50 MHz

low-pass filter) frequency generator providing the driving signal (which is amplified

to ≈ 26dBm). The phase is adjusted using a potentiometer providing a set-point

voltage to a Minicircuits JSPHS-51+ narrow band phase shifter (this component

must be selected carefully for the resonant driving frequency of the trap). This

mixed signal is low pass filtered so only the DC component remains, and is fed back

as a DC frequency shift to the driving 8640B (typical modulation peak of 320KHz).
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4.4 Optical Setup

4.4.1 Ionization

There are three lasers used for excitation of the neutral Yb, ionization, cooling,

optical pumping, and detecting. These are all DL-100 Toptica lasers - temperature

and current controlled laser diodes. Aligning the diode with a reflection from an

external optical grating allows for mostly single mode selectivity for the modes

selected by the diode cavity. In general, once the grating is aligned to generate

a frequency in the neighborhood of the desired frequency (for the minimal lasing

threshold current) frequency adjustment should be done by adjusting the grating

angle and diode current. If mode hopping occurs, then one may try a sensitive

adjustment of the diode temperature.

As discussed in 2.1, it is necessary to excite the neutral 171Yb before it may

be ionized by a 369 nm or 355 nm beam. As the beam exiting the laser has an

elliptical profile, we first circularize the beam with a prism pair. Next we protect

the laser from back reflections from any of the downstream optical elements, as these

create unwanted optical cavities with the laser and unnecessary mode hopping (this

is true for all the lasers in this experiment except the Vanguard). A mechanical

shutter controlled by the trap control program exposes or conceals the trap to the

beam, which after passing through the final lens is roughly 50µm vertically and

100µm horizontally, at roughly 2mW . When the 171Yb+ oven is driven at 2.3A

after warming up for about a minute, the light intensity is powerful enough to load

an ion roughly every 10s when using the Raman beams for ionization of the excited
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Yb. This is achieved with good isotopic selectivity: the 171Yb oven is roughly 90%

pure, but loading unwanted isotopes occurs less frequently than 10%. As the oven is

perpendicular to the excitation beam, the atoms do not experience a doppler shift

with a thermal distribution.

The desired frequency of the excitation beam is 751.527640 MHz , however we

do not lock this laser, rather we tune it to the desired frequency and load before it

drifts too far off resonance. The rate of frequency drift depends on the temperature

of the room and how long the laser has been operating at given temperature and

current settings. The laser takes roughly an hour to equilibrate.

4.4.2 935 nm Repump

The 935 nm laser providing the repump light discussed in 2 is provided by a

DL-100 as well. As this light is needed to repump both the F=1 and F=2 manifolds

of the 3D3/2 state, the 320.56922THz carrier is modulated by an EOSpace fiber

EOM at 3.07 GHz .

This laser is only stabilized for long timescales, by a feedback signal to its

grating angle provided by a software PID. This PID generates a feedback signal

based on the frequency difference between the laser wavelength, measured by a

HighFinesse wavemeter via optical fiber and a software controlled set point. The

wavemeter accuracy may drift by up to 20 MHz , depending on room temperature,

and is calibrated to our iodine spectroscopy setup, discussed below. Its precision is

roughly a MHz .
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4.4.3 638 nm Repump

As discussed in 2, repumping the ion from the long lived but unlikely 2F7/2

state requires two close frequencies of 638.61 nm light. As this light is not often

required, and when it is required the ion chain has likely decrystalized (from a

collision) and data taking cannot immediately continue, the laser is only stabilized

by the HighFinesse wavemeter (∼ 5 MHz short time scale stability). To provide both

wavelengths of 638.6103 nm and 638.6151 nm , the PID feedback to the laser grating

setpoint is alternated between the two desired wavelengths, once every minute. DL-

100 laser is first passed through a prism pair to circularize the beam profile, and

then coupled into a fiber optic. The output of the fiber is directed at the ion chain

with several mW and a large waist at the ion chain, so careful alignment is not

required.

4.4.4 Cooling, Pumping, and Detecting with 369 nm

To generate the 369 nm light we require, we use a MBR-110 from Coherent.

This is a tunable Continuous Wave (CW) Ti:Sapphire laser, pumped by a Coher-

ent 18W 532 nm Verdi-V18. It outputs roughly 1.5W at our desired wavelength of

739.052526 nm . The MBR-110 is a made of a single block of aluminum, and is thus

passively stable. The bow tie configuration passes through an optical diode that

prevents backward reflections. The wavelength of the laser is selected by controlling

the gain profile for multiple laser mode selecting elements. These include the laser

cavity length, an etalon (that oscillates around a rotation angle at 80 KHz to gener-
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Figure 4.7: The MBR-110 laser.
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ate an error signal used to lock its angle to the laser cavity length), and a birefringent

filter (with a wavelength dependent response). The Free Spectral Range (FSR) of a

bow-tie cavity is FSR = C
L

where L is the length of the cavity. As the largest cavity

is the laser itself, the mode-hop free frequency range tuning and locking is controlled

by laser cavity length ( C
1M

= 300 MHz ). The laser has a linewidth of ∼ 75 KHz .

The 739 nm output power of the MBR-110 is fiber coupled into a high power

fiber, except ∼ 100mW that is fiber coupled to the wavemeter, and ∼ 40mW to an

EOSpace fiber EOM, used for the iodine lock, described in section 4.4.5. The high

power fiber delivers 800mW to a WaveTrain frequency doubler, as shown in figure

4.8.

After exiting the doubler the beam is 430MHz red detuned from resonance.

It is divided in three, by a piece of glass. The front surface reflection is modulated

by an New Focus EOM driven at 2.105GHz to provide the optical pumping, and is

shuttered by an AOM that up shifts the beam by 424 MHz , into resonance with the

transitions discussed in 2.2. This beam is then combined with the detection beam

before being fiber coupled. The back surface reflection is modulated by an EOM

driven at 7.374GHz. It is then passed through a Brimrose AOM. The first order

diffracted beam is up shifted by 400MHz and used for cooling (30 MHz detuned

from resonance). The zeroth order is used as a “protection beam”. This powerful

beam is used to recrystallize the ion chain when a decrystallization is detected by

the cooling light scatter PMT. As it is modulated for cooling, it is resonant with

both the 2S1/2 |F = 1〉 and 2S1/2 |F = 0〉 to 2P1/2 transition, and we have found this

to improve the speed and probability of recovering all the ions. The transmission
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through the glass is used as the “protection” beam, which is shuttered by an Intra-

Action AOM and further red detuned by 200 MHz . This beam is more powerful

than the three other beams, but does not cool both transitions as the previous beam.

All three beams are coupled into optical fibers to reduce unwanted scatter light in

the direction of the first order beam. This scatter was found to limit coherence time

in long experiments. The added benefit is clean laser modes and ease of aligning

and overlapping the beams.

A small portion of the transmission is siphoned off by a beam splitter, to be

shuttered and shifted into resonance by a Brimrose AOM. The “protection+” beam

was combined with the 399 nm beam in order to simplify alignment. Unfortunately,

we have found that overlap is difficult and the 399 nm beam alignment drifts wildly

from day to day due the need to change the laser grating angle and the long beam

path to the chamber. Therefore, alignment with the cooling or protection beam

at the ion position does not allow perfect overlap along the entire beam path. Be-

fore entering the chamber window, the detection, cooling and protection beams are

horizontally stretched by cylindrical lenses, and then focused at the ion chain to a

horizontal beam waist of ∼ 100µm . However, as shown in figure 4.9, the beams

enter the chamber at 450 to the ion chain, giving an effective beam width at the

chain of ∼ 150µm . This gives a roughly equal detection beam profile across our

ion chain, that for 16 ions is 26µm for our current operating parameters for the ion

trap.

As our beam profiles are roughly Gaussian, the beam dimensions and power are

limiting factors on the detection homogeneity. As the power in the beam is limited,
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handling longer ion chains with optimal exposure and detection beam powers for

all ions requires a larger horizontal beam profiles. In order to achieve this with a

fixed laser power, we are required to squeeze the vertical beam waist. This leads to

more stringent requirements on beam alignment, and more noise on the effective laser

power at ions, due to beam steering by air turbulence. Currently, with our detection

beam vertical waist of ∼ 10µm this is not a limiting factor on our detection error,

rather we suffer from power fluctuations of ∼ 5%. In order to remedy this issue we

are currently investigating the use of a feedback stabilization system (“noise eater”).

In fact, it is questionable if we can widen the beam much more without increasing

background scatter from the trap off the imaging window into the imaging optics.

A possible remedy is to create a beam with a “top hat” profile using diffractive

optics, and thus avoid wasted beam power in the wings of the beam and ensure

equal detection conditions for all the ions.

Note: for some of the earlier results reported in 6, we used the MBR-110 to

drive the Raman transition, and a Toptica TA-100 amplified diode laser to drive all

resonant transitions. In that setup, we only generated ∼ 200 mW of 739 nm light

and suffered as a result for larger numbers of ions. The TA-100 was locked using

the iodine spectroscopy setup described in 4.4.5. The major difference is the use of

a home built confocal cavity, that was locked by length to the transition, and the

use of a Pound-Drever-Hall feedback signal to lock the laser frequency to the cavity

length. This feedback signal was separated into a low (< 100KHz) component that

controls the laser grating angle, and a high frequency component (> 10MHz) for

the laser diode current, controlled via a Bias-T [47].
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Figure 4.8: A schematic diagram of our 369 nm and (399 nm excita-
tion for neutral Yb) optical setup. The final cylindrical lens, mounted
on a micrometer positioning stage, is a vertical lens with focus 150
mm. The micrometer is used for aligning the vertical direction of the
detection beam, which is the most sensitive. Chamber is shown in fig
4.9
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Figure 4.9: A schematic diagram of chamber and final stage of res-
onant beams. The cylindrical lens the beam pass through focuses
the vertical direction of the beams, with an 80 mm focal length. It
demagnifies the intermediate focus by 5. The dashed line represents
the rough trajectory of the high purity ∼ 90%171Yb oven. As it is
perpendicular to the excitaiton beam, our ability to selectivly load
the desired isotope (rather than the impurities) is higher than the
purity of the oven. Although the beams exit through the front view
port, from which the ions’ state detection flourescence is collected,
the 638 nm , 935 nm and roomlight do not create unwanted signals on
the ICCD or PMT as they are filtered. As the waists of these beams
is large at the ions, alignment requirements are lax.
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4.4.5 Iodine Spectroscopy Lock

As the linewidth of the S-P transition is 20 MHz , we must stabilize the laser

on long time scales to a much narrower center frequency to have consistent detection

and cooling. This is accomplished using a spectroscopic feature of iodine narrower

than our linewidth, to which an external cavity (part of the MBR-110 laser) is

stabilized. An optical fiber carrying 40 mW of the MBR-110 output is coupled into

a fiber EOM, modulated at 13.315 GHz , so that the first order sideband of this

modulation (∼ 4mW) excites the iodine transition of interest[47, 1].

Three beams are derived from the fiber - a reference beam directed at the

Nirvana Auto-Balanced Photoreceiver, a probe beam which is sent through the

iodine cell and out into the signal photodiode of the Nirvana, and a pump beam

transmitted through an 80 MHz Neos AOM into the iodine cell, overlapping with the

probe. The iodine cell is insulated with fiberglass and aluminum foil, and heated

to 5000c. This excites the higher energy rovibrational states of the iodine molecules

and strengthen the absorption signal. A cold finger maintains the pressure in the

cell and prevents pressure broadening of the transitions [48]. The Nirvana detector

is designed to subtract the reference from the signal, thus making it a sensitive

detector able to remove 50dB of noise. We have encountered two major problems

with this setup:

• Background light from the pump beam can leak onto the signal photodiode.

As this background light level can drift, the detector fails to subtract the noise.

• The Nirvana detector is designed to balance the attenuation of the photodi-
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odes. However, we have witnessed that it is limited in this ability. As the

reference beam is much more intense than the probe beam, it must be atten-

uated for the detector to work properly.

The 80 MHz modulation of the pump beam is itself modulated at 10 KHz , enabling

the use of a lock-in-amplifier to demodulate and amplify the Nirvana error-signal

(the derivative of the Doppler free hyperfine transitions in iodine). As there are

two strong transitions for the above EOM frequency near to the resonant laser

frequency (for the 739 nm , non-doubled light), there will be three erro-signal peaks.

We stabilize the MBR-110 to the peak corresponding to the highest frequency of

the three at 405.644321 THz , which is ∼ 20 MHz above the nearest feature. This

can lead to confusion, as the wavemeter displaying the laser frequency drifts in the

same range. However, the incorect frequency is close enough to the desired one that

ions will in fact be visible on the ICCD if this occurs - but they will appear dim.

We route the error-signal from the lock-in-amplifier to a home built PID. The

PID output is then routed to the MBR-110 External Lock Input. I have connected an

attenuator to this input, as it cannot take an input larger than 10V. This signal

is fed to the piezo controlling the length of the MBR-110 external reference cavity

(an internal component of the laser, as shown in figure 4.7). The peizo mounted

tweeter mirror of the laser locks the length of the laser cavity to the external cavity

length. This lock can be stable on long time scales to ∼ 2 MHz , which is sufficient

for the linewidths at hand.
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Figure 4.10: Schematic of iodine setup. The angle between the beams
in the cell is exaggerated.
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4.4.6 Vanguard 355 nm Laser

The Vanguard Diode Pumped Solid State Laser is intended to be a turn key

laser. The lasing medium is a Nd:YVO4 crystal (Neodymium Doped Yttrium Or-

thovanadate) pumped by a solid state diode lasing 12W of 808 nm through a 19 core

fiber bundle. The crystal (“oscillator”) should then lase roughly 5W at 1064 nm .

Unfortunately, we are currently overdriving the oscillator to 6W, for reasons to be

explained below. The output of the oscillator is then amplified by another Nd:YVO4

crystal, pumped by two 20W 808 nm diodes, to roughly 20W of 1064 nm laser light.

This light impinges on a Second Harmonic Generator (SHG) that produces an 8W

beam of 532 nm . A semiconductor saturable absorber reflector mode-locks the laser

at 80 MHz , where the pulses have a 10 ps duration [49]. This mirror has a reflection

that decreases with increasing light intensity, thereby allowing the creation of laser

pulses at high gain.

The 1064 nm and 532 nm beams are mixed on a Third Harmonic Generator

(THG) to produce the desired 355 nm light. Although Spectra-Physics is not willing

to disclose this information, the SHG and THG are likely type 2 Lithium triborate

crystals [50, 49]. The output of the laser according to its specifications should

be 4W, as in figure 4.11. Unfortunately, the power we observe is lower and it is

dropping, as the laser is old and bought second-hand. The laser is controlled by

a desktop computer via serial connection, using the control program MLUV. After

initial warm-up (∼ 30 min), the power of the laser and its stability may be optimized.

As the components of the laser are old, the built in optimization function of MLUV
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Figure 4.11: MLUV main control window. The laser has two operat-
ing modes: one where the laser power is stabilizaed and one where the
diode currents are stabilized. In order to run in power stabilization
mode there must be some disposable power. As our power is low,
we typically run in current stabilization mode. Although we have
not found the power to be less stable in this mode on the short time
scale, the overall power is slowly dropping.

does not work.

The initial optimization should focus on the diode currents and temperatures.

Lowering diode currents can surprisingly increase power. Usually the most sensitive

parameter is the current to “Diode 1”, the oscillator pump, as shown in 4.12. These

settings can only be changed when the laser is operating in Current Mode. If

this procedure fails to raise the power back to its expected level, the next set of

parameters to tweak are the amplifier pump diodes currents and temperatures, as
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Figure 4.12: MLUV oscillator pump current control.

shown in 4.13. If these parameters yet again fail to raise the laser power, then it may

be attempted to change the oven temperatures of the SHG and THG, as shown in

figure 4.14. This is a slow process, as each change must be given time to equilibrate.

Each change on the fine knob (roughly in steps of five units) should be given at least

2 minutes to asses the effect. If this attempt fails as well, then there is a possibility

that the THG and/or the SHG have degraded at the current laser path. It may be

necessary to move the THG or SHG. This may be done via MLUV for the SHG and

only for the x-direction for the THG, as shown in 4.15. If all the X positions on the

THG for a Y position have been degraded, then the Y position may be manually

changed via two screws that lock into 6 different orientations, via a side panel on the

Vanguard. Both screws must be set to the same position, otherwise vertical beam
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Figure 4.13: MLUV amplifier pump current control. In this figure
the individual current controls are grayed out as the mode has not
been set to individual diode control.

Figure 4.14: Control window for THG and SHG oven temperatures.
The fine tunning settings should be used first.
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Figure 4.15: MLUV position controls for the SHG and THG. The
THG Y-position is only for record keeping - MLUV does not control
it.

steering will result.

Although the methods above have worked in the past to raise the laser power,

the power has been dropping constantly and can not be recovered (the experiments

in chapters 6 and 7 have been performed with powers ranging from 3.7W to 3.4W).

This is likely due to the degrading of the amplifier pump diodes.

4.4.7 Driving Raman and Mølmer-Sørenson Transitions with the Van-

guard

In 3 we discussed how spin-spin couplings can be created using global beams

modulated to drive virtual transitions in the phonon subspace while driving real spin

transitions. In the work reported here, this theoretical treatment is realized with the

Vanguard DPSS. Although this is a pulsed laser, we will be operating in the weak
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pulse regime - each pulse pair radiating the ion will contribute a small change to the

ion state (also referred to as the weak pulse regime). Thus we will be able to treat

the pulse trains as CW lasers [51]. In order to generate the desired beat frequencies,

we will interfere the pulses on the ions, absorbing a photon from one frequency

component of the pulse train and emitting into another. The beam exiting the laser

will be split into two arms, and both arms will be modulated by AOMS. This will

give us control of the beat frequency difference, as schematically represented in figure

4.16. For this scheme, the absolute frequency offset and the absolute phase of the

pulse train of each pulse train will have no effect[51]. We can choose to subtract or

add the frequency difference between AOMs. The beat frequency of interest between

teeth in the two offset combs is (80.6(n + 157) + AOM2) − (80.6n + AOM1) =

80.6× 157 + ∆AOM = 12654 MHz − 12 = 12642 MHz , which drives the carrier.

A prerequisite for this scheme is an acceptable and stable laser pulse repetition

frequency. Our qubit splitting is fixed at 12.6428 GHz . As shown in figure 4.17, the

532 nm output of the Vanguard (attenuators not shown) is measured by a Electro-

Optics ET-4000 fast photodiode. The output of this photodiode is band pass filtered

by a tunable mechanical microwave filter so that only the frequency component

close to the qubit splitting is transmitted. This signal is amplified and mixed with a

microwave frequency source, allowing us to feed forward a frequency offset to AOM1,

thus stabilizing the frequency difference between the Raman arms.

An acceptable frequency must satisfy two conditions:

1. It may not drive the carrier transition with just one arm, nor the Zeeman
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Figure 4.16: Two pulse trains interfering at the ions represented in
frequency space. The two AOMs shift the frequency combs, and allow
us to control the beat frequency. AOM1 modulates at ∼ 225 MHz +δ,
where δ is a fed forward frequency offset to stabilize the beat fre-
quency. AOM2 modulates at ∼ 213 MHz when we drive the carrier
transition (and a more complex waveform with multiple frequencies
for the simulation). The frequency of difference of ∼ 13 MHz is sub-
tracted from the beat of of the teeth. The pulse width in frequency
space is 1

Nfrep
, where N is the number of pulses involved in a interac-

tion.
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Figure 4.17: Vanguard with lock and Raman beam setup. Raman
arm 1 is modulated by AOM 1, which is driven by an HP8640B with
a frequency offset controlled by an error signal from the frequency dif-
ference of the microwave reference and the measured repetition rate.
Raman 2 is the 0th order beam of AOM 1, and is modulated by AOM
2, with an RF signal created by the AWG. Lenses c(200mm) and d
(91mm) image and demagnify the intermediate focus (X) of the verti-
cal(lens v,50mm) and horizontal lenses h1(500mm) and h2(150mm).
Lens a(200mm) is intended to slowly focus the beam at AOM1 so
that is still mostly focused at AOM2. Both Brimrose AOMs func-
tion best when the beam is focused in the crystal. Lens b(300mm)
recollimates the beam.
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carrier transition (mf = 0 → mf = ±1) at roughly 7 MHz from carrier (de-

pending on magnetic field strength).

2. It may not drive the Mølmer-Sørenson gate with both Raman beams on (but

without the requisite modulations) due to a beat note between the arms that

is equally detuned to the blue and red from the carrier.

As the pulse width is ∼ 10 ps , the bandwidth of the laser is ∼ 100 GHz .

With a repetition rate of 80 MHz , that indicates 1180 comb lines in the frequency

domain. Enforcing these parameters and above conditions, with the more strin-

gent requirement that the rate not lie between carrier and Zeeman transition, the

following Mathematica code reports allowed repetition frequencies :

ranges = Table [frep, {n, 1, 1180}] ;ranges = Table [frep, {n, 1, 1180}] ;ranges = Table [frep, {n, 1, 1180}] ;

For[n = 1, n ≤ 1180, n++,For[n = 1, n ≤ 1180, n++,For[n = 1, n ≤ 1180, n++,

ranges[[n]] = Reduce [{frep ∗ n/2 < (12642.8199 + 7)&&frep ∗ n/2ranges[[n]] = Reduce [{frep ∗ n/2 < (12642.8199 + 7)&&frep ∗ n/2ranges[[n]] = Reduce [{frep ∗ n/2 < (12642.8199 + 7)&&frep ∗ n/2

> 12642.8199− 7&&frep < 81&&frep > 79}]]> 12642.8199− 7&&frep < 81&&frep > 79}]]> 12642.8199− 7&&frep < 81&&frep > 79}]]

ranges = DeleteCases[ranges,False]ranges = DeleteCases[ranges,False]ranges = DeleteCases[ranges,False]

And the the frequency ranges of the repetition rate frep that satisfy the con-

ditions for the possible values between 79 and 81 MHz are reduced to: {80.9988 <

frep < 81., 80.7401 < frep < 80.8295, 80.4829 < frep < 80.5721, 80.2274 < frep

< 80.3163, 79.9735 < frep < 80.0622, 79.7213 < frep < 79.8096, 79.4706 < frep <

79.5586, 79.2214 < frep < 79.3092, 79. < frep < 79.0614}

Our Vanguard has a measured rep rate of 80.6 MHz , which seems to be just

outside one of the permissible ranges (there is no way to control this for this laser,

as it depends on laser cavity length that cannot be adjusted). The beat frequency
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between two comb teeth separated by 157 teeth is closest to the qubit frequency:

frep × 157 = 80.6× 157 = 12654.2 MHz . Our fastest Rabi transitions driven by the

Vanguard have been measured to be ∼ 1 MHz , which implies the number of pulses

needed per Rabi cycle is at least 80. Therefore the width of a comb tooth is no more

than 1 MHz when we drive Rabi transitions at full power, and ∼ 1 KHz for Mølmer-

Sørenson transitions at our typical transition strength. Another consequence of the

10 ps pulse width is that pulse is 3mm long in space. As the pulses must overlap at

the ion at the same time, we adjust the Raman2 arm using a beam cube, named in

4.17 as Mach-Zender (the setup is similar to a Mach-Zender interferometer as the

ion measures the phase difference between the arms).

As we are utilizing long chains of ions, aligned along the z-axis of the trap (as

illustrated in figure 4.18). We are also using global beams to address the entire ion

chain at once. Therefore, the most power efficient beam shape is a sheet of light. To

approximate this, we use two sets of cylindrical lenses, one vertical and one horizon-

tal for each Raman arm. This allows us to compress the vertical beam waist down

to ∼ 7µm and the horizontal beam waist down to 70µm (Raman2) and 200µm

(Raman1) at the ion. In order to measure these beam profiles, we position a mirror

in the beam path before the ion, and image the beam at the estimated distance

to the ion with a Guppy CCD, as in figure 4.19. Alternatively, one may place the

Guppy at the intermediate focus (marked with an X in figure4.17), and estimate

the beam waists at the ion based on the demagnification of the telescope (roughly

1/4). It is important to note that the telescope for Raman2 images AOM2. As

AOM2 is modulated by multiple frequencies, the deflection point in the AOM must
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be imaged so as to refocus all frequencies at the ion chain (the AOM deflects with

an angle sin−1(mλ
2Ξ

), where m is the order of the deflected beam, λ the wavelength

of light, and Ξ the sound wave wavelength).

This optical setup is far from ideal. The 0th order beam of a driven AOM1 has

a poor beam profile, and the power in the beam depends on how strongly AOM1

is driven, thus coupling the beam strengths of both arms. Also, the beam profile

seems to be coupled to the imaging plane, and we were unsuccessful at changing

the beam profile while maintaining the imaging plane at AOM2. This imaging has

also been diagnosed by us to be imperfect, possibly leading to a Stark shift across

the chain, that appears as a weak biasing axial field in quantum simulations. An

additional issue in this setup is that Raman2 just barely grazes the objective, and

has a reflection off the imaging view port that also passes very close to the objective,

as seen in 4.17. This limits our possible numerical aperture (NA) to its current value,

as discussed in 4.4.8.

4.4.8 Florescence Collection

The state detection via florescence, as discussed in 2.4 is achieved by collecting

the spontaneous emission light at 369 nm from the ions using a microscope objective

from CVI (UVO-20.0-10.0-355-532). This objective of NA 0.23 is situated roughly

3mm from the imaging port, and 13mm from the ion chain in effective optical dis-

tance, as illustrated in 4.20. This setup is very similar to that described in [52]. With

an apex angle of 2θ, the solid angle Ω = 2π(1 − cosθ) = 2π(1 − cos(sin−1NA)) =
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Figure 4.18: Schematic of ion trap apparatus and the geometry of
Raman laser beams for the spin-dependent force. Two Raman beams
uniformly address the ions, with δk along the transverse x-direction.
The spin states are defined with respect to a magnetic field of ∼ 5 G
along the y-axis. A photomultiplier tube (PMT) and CCD camera
are used to measure the spin state of each ion through standard spin-
dependent fluorescence.
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Figure 4.19: Profile of beam as taken with CCD at estimated ion
distance. Our home built Labview program fits for the horizontal
(wide) and vertical beam waists

0.168, i.e. only ∼ 1.3% of the scattered light. The collected light then passes

through a home built ∼ 400µm pinhole (a washer thinned by a mill and drilled

through) at the image plane to reduce off axis background scatter. The image is

further magnified by a doublet pair to ×130 and filtered by a pair of Semrock fil-

ters (FF01-370/36-25 and Hg01-365-25) that transmit ∼ 95% of the light at 369 nm

, and block the other lasers and roomlight completly (unfortuantely, they do not

block 355 nm ). The light is split into two paths - one for imaging, and one for cool-

ing scatter collection. The latter is part of an automatic decrsytalization detection

scheme. The imaging path has two possible configurations - one where a flipper

mirror diverts the light to the imaging PMT (Hamamatsu H10682-210), and one

where the mirror is folded back and the image proceeds directly to the ICCD. The

PMT beam path has a lens to demagnify the image, as long ion chain images are too
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objective 

PMT 

PMT 

Figure 4.20: Objective collects ∼ 1.3% of spontaneous emission from
florescing ions. Then collected light passes through pinhole, dou-
ble and filters(not shown) that are all mounted in lenstube atop a
micrometer positioning stage for alignment. First PMT is for decrys-
talization detection. PMT or ICCD imaging is selected via remote-
controled flipper mirror, in box(dashed lines).
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Figure 4.21: The averaged image of 1000 exposures of 10 bright ions.
The pixels are binned in 4× 64 super-pixels (hence the vertical com-
pression). This image was produced by the script in appendix D for
the data taken in 7.

large to fit the PMT aperture otherwise. In retrospect, we have overly magnified

the image. The only advantage to magnification is ease of diagnosing the focus.

As long as magnification is enough that adjacent ions do not overlap on the same

ICCD pixels the magnification is sufficient. Magnifying beyond that point leads to

using more pixels than necessary, slowing down readout, adding readout noise and

limiting field of view. The binned image of 1000 3 ms exposures (produced by the

script in appendix D) bright can be seen in figure 4.21.

As discussed in the 2.4, the PMT Quantum Efficiency (QE) is ∼ 30% at

369 nm , and only 20% for the PiMax3:1024i “Super Blue”. When we detect the

ion state with the PMT for 0.8µs , we collect on average 10 photons for a single

bright ion, and this is sufficient for detection with 97% fidelity. Due to the lower

QE and readout noise of the ICCD, we must use alonger exposure time of 3 ms for

the same detection light power. In addition, we bin the 1024× 1024 pixel CCD into

4 × 64 superpixels to reduce readout time and noise[53]. With our parameters the

detection fidelity for a single ion on the ICCD is 95%. For our magnification and

diffraction limit, the ion occupies a Gaussian circle of 250µm on the ICCD (found

from an unbinned 12.8× 12.8µm pixel size) as seen in figure 4.22.

When collecting data via PMT during experiments we fit the histograms to

simple Poissonians, with an average set by hand. When analyzing such data, we
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Figure 4.22: High resolution video still of single ion, taken from our
control program. Airy ring is somewhat visible. Most of collected
light is from cooling. The pinhole is barely visible, outlined by light
scattered from the trap and view port.
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refit the histograms with more realistic distributions[31]. When collecting data with

the camera the treatment is more complex. For real time data taking, we collect

1000 images of the ions when they are pumped dark, followed by 1000 images of

the ions rotated to bright by a Raman pulse. The bright images are then averaged,

and the image discriminated into dark and bright pixels according to a preselected

brightness cutoff. The bright pixels are used to find the Regions of Interest (ROI)

for each ion. The brightness of the entire region of each shot is then analyzed to

derive histograms for the dark and bright state for each ion. A discriminator that

gives equal state detection error for both histograms is then determined. The ROIs

and discriminators are then returned to the Labview control program to be used in

real time state discrimination. The script is presented in appendix D.

Due to the spot size of the ions and their typical seperation of 2-5µm , we

suffer from cross talk. This can be seen in the results returned from the ROI script

in table 4.1. Here we see that the detection error ε is lower at the center of the chain.

This is due to the ions higher proximity at the center the chain. The spillover light

from neighboring ions causes the bright histogram to be brighter and hence the

lower overlap with the dark histogram seemingly reduces ε. To compensate for this

cross talk and bias we post process our data. Using the same 1000 × 2 exposures

used previously, we derive new histograms, this time by fitting Gaussians centered

at each ion to vertically summed data, as in figure 4.23. By counting frequency of

the Gaussian fitted amplitudes, we construct a histogram that accounts for ion cross

talk as the fit is found for the entire ICCD width with fixed Gaussian waists and

centers. Although this process discards one spatial dimension of the images, it does
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Y1 Y2 X1 X2 ε Discriminator

1 5 45 48 7. 10650
1 5 56 59 5. 10650
1 5 65 69 4.9 14450
1 5 74 78 4.7 14350
1 5 82 86 4.3 14600
1 5 90 93 4.9 11100
1 5 98 102 4.8 14850
1 5 107 110 4.7 11300
1 5 116 120 4.6 14800
1 5 127 131 6. 14600

Table 4.1: ROIs and detection error % ε for 10 ions, as returned by
the script in appendix D for the 10 ion data in 7.

.

not have much of an affect on the discrimination between signal and background, as

there is severe vertical image smearing at our ICCD clock speed setting (16 MHz ).

We further enhance our data by correcting for state bias due to the detection

error [54]. We construct the matrix M that describes the distortion of the probabil-

ities for N ions of each real spin state gi into the detected probability for spin state

fj =
∑2N

i=1Mjigi

Mji = (1− p0)n0−α(1− p0)n1−βpα0p
β
1 (4.19)

Where p0 the error probability for one dark ion is equal (or should be) to the error

probability p1 for one bright ion, n0 (n1 = N−n0) is number of down (up) spins,and

α (β) is number of down (up) spin flips to up (down) to misidentify state gi as state

fj. We then simply invert this matrix to find state probabilities closer to the real

ones

gj =
2N∑
i=1

M−1
ji fi (4.20)
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Figure 4.23: The background subtracted Gaussian fitted histograms
for 10 ions, for the data in chapter 7. The units are arbitrary. The
red line is the found discriminator between down and up states, and
is somewhat different between ions.
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The algorithm above assumes that we have correctly diagnosed the state detection

error, that the error is the same for all ions in the chain, and that the error is

independent between ions. All of these assumptions are likely only approximately

true, so we can expect improvement but not complete correction of detected state

probabilities.

4.5 Arbitrary Waveform Generator (AWG)

In order to generate the complex waveforms that drive the simultaneous Mølmer-

Sørenson and Raman gates, we drive AOM 2 with a a DA12000-16 from Chase Sci-

entific. This is a standard PCI expansion card that outputs waveform at up 2 GHz

and has 16MB of on-board waveform memory. We have setup the AWG to operate

at 1 GHz , and it is phase locked to a PTS3200 Direct Digital Synthesizer (DDS).

This oscillator itself is phase locked to the same 10 MHz Rubidium clock as AOM

1, thus locking the phase between the modulations on both beams. Unlike all other

oscillators used in the experiment, the AWG does not run continuously - it outputs

the stored waveform when it receives a TTL trigger, and then stops. This makes

the phase jitter on this trigger critical, as the jitter is transformed into noise on

the phase relationship between the Raman AOMs. When a trigger is received, the

AWG reads each byte in sequence from memory, and converts each byte with a 12

bit Digital to Analog Converter (DAC), such that 2047 is equivalent to 0V, 4096

is the max voltage, and 0 is the minimum voltage. This limitation on the vertical

resolution does not create noticeable effects in the frequency domain as the AWG is
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bandpassed. However it limits the resolution when dealing with waves of different

magnitudes with physical effects of the same order of magnitude, i.e when we drive

the Mølmer-Sørenson gate we drive sidebands > 10 times stronger than the wave

that drives the Raman coupling. Thus, our resolution for the Raman coupling will

be limited to much less than 212.

As the resonant frequency of the AOMs is 210MHz, the AWG will typically

have only 4-5 points per wave cycle. This is sufficient to generate a frequency that

can be bandpass filtered of its alias at fclock − fsignal ≈ 800 MHz . Therefore, we

chose to run the AWG at half its possible clock frequency and double the duration

of the waves we can generate. At a clock rate of 1 GHz , a byte is converted to an

analog voltage every 1ns, allowing us a total waveform time of 16 ms . This is more

than sufficient for our experiments. Unfortunately, it is not sufficient for all of our

diagnostic procedures, such as measuring the spin coherence time.

Besides the waveform duration limitation, there is also a limitation on wave-

form upload speed. For longer experiments (3-4 ms ), the upload time becomes

significant. The DA12000 has a standard PCI type connector. Naively, this should

imply a waveform upload speed of 133MB/s at least, so 120 ms upload time for the

entire wave. Unfortunately, we have characterized the upload time to be approx-

imately one hundred times slower. As a result, we are currently in the process of

replacing this AWG with a more advanced model.

The AWG is controlled by functions provided in a DLL by Chase. As we in-

terface the AWG via Labview, it was necessary to construct a DLL to interface the

function library (da12000 dll.dll) and the card. The chief function of this library
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is the translation of data structure from Labview into the data structure expected

(“SegmentStruct”, as defined in appendix C) by the chapter loading function. Cur-

rently, the chapters run consecutively, and only the first chapter is triggered. A pre-

vious attempt to have multiple triggered waveforms results in the occasional missing

of a trigger (likely due to a trigger being sent before a chapter was completely gen-

erated). This error affects all following experiments as the AWG chapter execution

becomes mismatched with the other triggers/oscillators from the first AWG chapter

being generated.

There is also an option for a chapter to loop for a fixed number of times. This

may be useful for increasing the AWG effective time (for instance, for experiments

where the AWG should generate a short pulse, a long duration of no output, and

then another short pulse - i.e. Ramsey experiment).
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Chapter 5

Experimental Procedure

5.1 Introduction

Before each experiment with our apparatus, we tend to perform the same

preparatory tests and calibrations. In this chapter I will go through these proce-

dures and some of the trouble shooting options when the system is more severely

miscalibrated than usual.

5.2 Temperature

Before preparing to trap ions, all lasers must be correctly set and stable.

Therefore, the first action of the day is turning on the lasers and allowing them to

cool-down (or warm up) and equilibrate. For the DL-100 and Vanguard lasers this

takes approximately half an hour. For the Verdi and MBR-110 this may take two

hours, so generally we do not turn these lasers off when taking data. The Verdi and

MBR require chillers for their operation, so these must be activated before the lasers.

For the Vanguard, this is done automatically by MLUV. The MLUV program will

also display the percent warm up of the THG 4.11.

The Pi:Max ICCD must be cooled down to its operating temperature as well

(−250C). The ICCD is cooled by a water circulating CPU cooler, operating at room
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temperature. This is due to the crowding on the table preventing proper cooling by

the ICCD fan. The ICCD is ready for operation in minutes.

RF power to the trap should be set to the operating power used for the ex-

periment (typically around 26dBm), as the delivered power changes the resonant

frequency of the trap. The set point of the TC200 heater for the resonator should

be checked.

5.3 Frequencies

Now that the lasers are hopefully stable, their frequencies should be set. As-

suming the lasers are well aligned, we set the laser frequencies for 171Yb+ trapping,

as indicated in table 5.1. These frequencies are measured by a HighFinesse solid

state wavemeter, via optical fibers, and displayed by a homebuilt web client 1. If

loading fails, it might be necessary to attempt to load 174Yb+, as it does not have

hyperfine structure and hence scatters more light, and does not require all the laser

modulation needed by 171Yb+ nor can it have a coherent dark state [1]. The wave-

lengths for 174Yb+ are listed in table 5.1 as well. When alternating to 174Yb+, the

loading rate may be highly increased by switching over to the natural isotope dis-

tribution Yb oven, although it is possible to load from our usual high purity 171Yb

oven.

After setting the laser frequencies, the lasers must be stabilized, as discussed

in chapter 4, as well as the wavetrain frequency doubler for the MBR. This often

requires slight adjustments of the input coupling lens.

1Created by Peter Maunz.
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Laser 171Yb+ 174Yb+

MBR-110 405.644318 THz 405.645530 THz
935 nm DL-100 320.56922 THz 320.57190 THz
399 nm DL-100 751.52764 THz 751.52680 THz
638 nm DL-100 469.445-469.442 THz 469.439 THz

Table 5.1: Laser frequencies for trapping. The 638 nm can be locked
anywhere in above range as long as it is mode-hope free for the entire
range.

The Vanguard shutter should be opened and emission engaged (via MLUV).

The Vanguard frequency cannot be set, rather the feed forward lock on AOM2 is

engaged. For the RF resonator, the reference signal is adjusted to close to 0 by

slightly adjusting the RF oscillator, and then engaging the RF frequency lock. A

moderate gain must be set here (by tuning the HP8640B modulation strength knob)

as recrystallization will severely change the resonance frequency. Also, the Labview

voltage control program should be checked to see that there is no attenuation of the

trap RF power. Once all lasers are locked one may turn on the Yb oven, and after

a minute of oven warm up (at ∼ 2.4A) one way drop the trapping voltages and RF

power using the recrystallization settings, while radiating the trap with the 399 nm

light and alternating pulses of 355 nm light, while waiting for an ion or ion cloud to

appear in the Pi:Max3 viewing program (figure 4.22).

5.4 Loading and Alignment

If an ion is successfully loaded, then beam alignments must only be slightly

adjusted to maximize cooling and detection counts. If loading is slow one may

attempt to adjust the 399 nm beam, as that is the most likely to be misaligned. If
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the detection or cooling seem to be unstable, one may try adjusting the 935 nm

beam alignment and polarization.

In general, as all 369 beams share the same final path, it is reasonable to

assume that if they are all overlapping then the beams are close to the correct

alignment.

Another sanity check is the scatter patterns of the trap electrodes. By diverting

the beams slightly up or down from the center of the trap, one may find the gaps

between the trap electrodes by viewing the profile of the beam on exit through the

view port. If all beams seem reasonably aligned and loading is not seen on ICCD,

then the PMT counts should be viewed instead. If this fails as well, then Yb oven

temp should be increased. If loading still fails, then the trap may have shifted

relative to the imaging system. In order to realign the imaging system, one must

detect a trap corner (as shown in figure 5.1), and thus reorient the imaging system

micrometer settings relative to the trap. Vertical alignment of the beams based on

the clipping profile of the beams is trivial. It is important to remember that the

beams are entering the trap at a 450 angle, and the horizontal lens alignment of the

beams is measuring the displacement of the beams at that angle rather than parallel

to the trap. When viewing the corners of the trap, it is most likely the corners of

the electrode furthest from the camera that are being viewed. When attempting to

load over long periods, it is important to occasionally shut off the trap RF so as to

release possible trapped ion clouds. These do not crystallize nor cool efficiently and

are thus less visible than single ions.

Once the ions are loaded it is important to verify that the cooling and detecting

93



Figure 5.1: (a) Lower left trap corner. (b) Upper right corner. Pin-
hole is clearly visible due to high scatter off trap. Burs are due to
imperfect drilling.

beams are centered on the ion chain. This can be done by moving the ions across the

camera (using the trap voltages to push them in the z-direction), but PMT detection

counts are more exact. If one intends to take data using the ICCD, it is important

to verify that all ions fall on the active PMT surface as the camera and PMT are

independently aligned. There seem to be certain regions on the PMT surface that

are not active. If it is suspected that the protection beams require alignment, then

the iodine lock must be disengaged and the MBR tuned 400 MHz blue so as to bring

those beam frequencies closer to transition resonance.

5.5 Raman Beams

Rough alignment of Raman beams may be done using an independent Ramsey

experiment for each beam using a qubit frequency microwave pulse, or an AC Stark

shift measurement. For the Ramsey stark shift measurement, the Vanguard feed
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forward is unlocked, and an RF switch diverts the microwave reference to via an

amplifier to microwave horn (the microwave source frequency is slightly adjusted so

as to be exactly on carrier). First, the Rabi oscillation π/2 time is measured, i.e. the

time it takes for the qubit to reach half of maximum brightness (the qubit is then

in the x-y plane of spin space). Second, using the Experimental control program

we schedule three experimental pulse sequences (“chapters”): a π/2 pulse, a 355 nm

pulse, and another π/2 pulse. By scanning the duration of the 355 nm pulse, we can

see “Ramsey fringes” - oscillations of the qubit due to the Stark shift of the qubit

frequency. This method is very sensitive as the pulses can be 10’s of milliseconds

long.

Once both beams are roughly aligned we can drive Raman transitions with

both beams. At that stage maximizing the Rabi frequency is the fastest way to

improve alignment. Finally, we return to Stark shift Ramsey measurements on the

beams. We can then perform a long Ramsey experiment with no 355 nm light to

measure accurately the carrier frequency, as any mismatch between the π/2 pulses

and the qubit frequency will lead to oscillations where there should be none.

Now we use the Ramsey experiment to validate that the beams are truly cen-

tered. We shift the ion a distance on the order of the length of long ion chain, and

validate that the Ramsey frequency is symmetric, adjusting the horizontal microm-

eter to achieve this. Barring suppression by micromotion, coupling to the y-mode,

or incorrect polarization our Rabi carrier frequency is now maximized. Both beams

should be linearly polarized, with electric fields parallel to table so as to drive the

Raman transition with σ+, σ+ polarization in the ion’s frame of reference.
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Figure 5.2: 10 ion Raman spectrum. The x-axis is in MHz detuning
from carrier, that is centered at 0 MHz . The dominant motional
modes are the x-transverse modes. As can be seen here, their width
is only on the order of ∼ 100 KHz , vs the carrier which is on the
order of MHz . The highest frequency mode is the COM, and second
is tilt. The lowest is the zig-zag mode, only a MHz away from carrier
for these trap settings. Some of the weaker features are axial and
y-modes, which have a weak coupling to our beam geometry.

5.6 Calibration

As we have identified our qubit frequency exactly, we are now interested in

mapping out the motional modes, as can be seen in figure 5.2. If we do not know

the general location of the motional modes (due to changes in trapping voltages,

for instance), we may load two ions and measure the COM and tilt modes. That is

sufficient to calculate all other modes. This can be done by scanning the modulation

frequency of Raman beam 2 with a fixed pulse time. If the pulse duration is long

enough and the intensity high enough to drive several oscillation periods for the

weakest transition of interest then we can expect to see all resonances.
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Figure 5.3: Results for two different intensities of the automatic side-
band finder. The program finds increasingly accurate RSB and BSB
frequencies by finding upper and lower limits for decreasing inten-
sity and lengthier pulse times. Before finding the RSB, a π pulse is
applied.

Once we identify the modes, we may preemptively apply two sidebands, roughly

100 KHz red detuned from the COM, with the intensity we expect to use for our

Mølmer-Sørenson coupling gate. This will ensure that the following measurements

will be immune to higher order Stark shifts. However we must shift all frequencies up

by the measured Raman 2 Stark shift (∼ 200 KHz , vs ∼ 600 KHz for Raman 1), as

they were performed at the lowest power possible. After applying side-band cooling

to the COM mode, we may activate the automatic sideband finding functionality of

the control program, as shown in figure 5.3.

After measuring Rabi oscillations frequencies for the BSB and RSB, we set

them equal (equal AWG amplitudes for both frequencies do not necessarily drive

equal strength sidebands), and detune them equally from resonance. We then add

a carrier frequency, and measure its frequency for three different powers, for AWG

amplitudes ∼ 80 times lower than the sideband amplitudes. Thus, we have cali-

brated the AWG amplitudes to real frequencies. The relationship is linear for these

low values.

We now add a second ion, and remove the carrier. We optimize the spin-spin
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coupling by alternately scanning the amplitude of one the sidebands or a sideband

frequency. This should lead to decent (0.1-1.7 ions bright) contrast, and roughly

five coherent oscillations at our typical operating parameters. If the coherence is

bad it is likely due to the vertical alignment of the Raman beams.

5.7 Imaging Calibration

We may now load all the ions needed for the experiment. After allowing

the RF resonator to settle from the power drop needed for loading, we prepare

an experiment sequence where the ions will cooled, then pumped dark, and then

detected. The number of experiments per point is set to 1000. Then the camera

calibration scan is activated, and we select the “Ions Dark’‘ option. We add a π

pulse to rotate all ions to bright after the optical pumping, and repeat the calibration

procedure, this time selecting “Ions Bright’‘. The Mathematica script of appendix D

will then automatically start. The control program will display the averaged bright

ion images, with ROI boxes and detection parameters.

We are now ready to select our experimental chapters and parameters, and to

begin experimenting.
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Chapter 6

Summary of Experiments

6.1 Introduction

In this chapter I will summarize the experimental results we have achieved in

our group leading up to the work reported in chapter 71. The first work I will report

was our demonstration and control of spin-spin couplings between the pseudo-spins

for two and three ions using global Raman beams. Once that ability was mastered,

we were able to proceed with the adiabatic quantum simulation experiments: Mea-

suring the phase diagram of the ground state Hamiltonian for three spins; Creating

a frustrated triangle of AFM coupled spins; Creating a phase transition from the

paramagnetic state to FM and AFM states with 16 spin. For most of this work,

our Raman beams were driven by an the MBR, detuned only 2.7 THz from the

2S1/2 −2 P1/2 transition, and with only 200 mW of UV light. These gates were en-

abled by microwave frequency combs of the EOM modulated laser beams, at roughly

half the qubit frequency. These beams were then replaced by the 33 THz detuned

355 nm laser beams, with 4W of UV. This scheme offers the same coupling strengths

with much lower unwanted scatter rates.

Using the simulated gates I introduced in chapter 3, we will simulate the

1This chapter follows closely parts of [55]
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Hamiltonian

H =
∑
i<j

Ji,jσ
i
xσ

j
x +By

∑
i

σiy (6.1)

The axis of the interactions will be selected by controlling the relative phase of

beatnotes generating the interactions.

6.2 Experimental Demonstration of the Ising interaction

We trap 171Yb+ ions in a linear chain along the trap Z−axis, and the axial

COM trap frequency is controlled in the range νz = 0.6 − 1.7 MHz. The COM

mode is set to around ∼ 4 MHz. The other transverse Y modes are sufficiently far

away from the X modes and do not overlap. Moreover the coupling to these modes

is suppressed by a factor of > 10 by rotating the principal Y -axis of motion to be

nearly perpendicular to the laser beams, as described in chapter 4.4.6.

We direct two Raman laser beams onto the ions to drive spin-dependent forces,

with their wavevector difference aligned along the transverse x-axis of ion motion

(∆k = k
√

2, where k = 2π/λ). The Raman beams are detuned 0.5 ∼ 2.7 THz to

the red of the transition at a wavelength of λ = 369.76 nm . The Raman beams are

phase modulated at a frequency nearly half of the 171Yb+ hyperfine splitting with a

6.32 GHz resonant EOM, and each of the two Raman beams have independent AOM

shifters in order to select appropriate optical beatnotes to drive Raman transitions

[56]. The Raman beams are focused to a waist of approximately 30 ∼ 100µm with

a power of up to 10 ∼ 20 mW in each beam. When their beatnote is adjusted to

drive the carrier transition at the hyperfine transition νHF , we observe a carrier Rabi
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frequency of Ωi/2π ≈ 1 MHz. For the spin-dependent force, we set Ωi/2π ≈ 0.4

MHz for each pair of Raman beam and for the transverse field, Ωi/2π is less than 0.1

MHz. The resonant transition generates the effective transverse field by adjusting

the phase with respect to the spin-dependent force. For up to nine ions in a chain,

we observe that the outer two ions experience ∼ 2% lower Rabi frequency, and the

variation in the differential AC-Stark shift in each qubit of < 1%.

In the experiment, we first Doppler laser cool 171Yb+ ions for 3 ms using a laser

tuned red of the 2S1/2 −2 P1/2 transition at a wavelength of 369.53 nm. We then

Raman sideband cool all m modes of transverse motion along x to mean vibrational

indices of n̄m < 1 in about 0.5 ms, well within the Lamb-Dicke limit. Next, the ions

are each initialized to the |↓〉 state through standard optical pumping techniques

[1]. We then apply the optical spin-dependent force on the ions for a duration τ

by impressing the bichromatic beatnotes at νHF ± µ. Afterward, the spin states

are measured by directing resonant laser radiation having all polarizations on the

2S1/2(F = 1)−2 P1/2(F ′ = 0) transition following standard state-dependent fluores-

cence techniques [1]. We use a charge-coupled-device (CCD) imager (the detection

efficiency is, 95 % per spin). We determine the probability of each spin configuration

(for example P↑↑↓ ) by repeating the above procedure more than 1,000 times. We

also measure the probability Pn of having n spins in state |↑〉 by using the PMT,

which is useful for higher-efficiency measurements of certain symmetric observables

such as entanglement fidelities and witness operators.
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Figure 6.1: (a) Measured coupling J for two ions as a function of
detuning µ overlaid with theory (lines) from Eq.(3.22) with no free
fit parameters. The detuning is scaled to the axial (νz) and transverse
(ν1) COM normal-mode frequencies of motion such that COM, and
tilt modes of transverse motion occur at µS ≡ (µ2 − ν2

1)/ν2
z = 0 and

−1, respectively. (b) Time evolution of the average number of ions
in the |↑〉 state under the influence of the bichromatic force in the
far-detuned limit, showing the secular oscillation of the Ising spin-
spin coupling, where the detuning µ/2π is 80 KHz from the COM
motional sideband. (c) Measurements with µ − ν1 = 2

√
3η1Ω/2π ≈

56 KHz . Here the small oscillations from the motional excitation
and the coupling to spin states are noticeable on top of the sinusoidal
oscillations of the Ising interactions. (d) Measurements at µ − ν1 =
2
√

2η1Ω/2π ≈ 45 KHz . (e) Measurements at µ − ν1 = 2η1Ω/2π ≈
32 KHz . The insets of (b)-(e) show the respective wavepackets in
phase space and the areas enclosed are shaded.

6.2.1 Two spin case

Figure 6.1(a) shows the theoretical values of J = J1,2 from Eq.(3.22) and

measurements at various detunings µ for two spins with J = −Ω1Ω2(
η21ν1
µ2−ν22

− η22ν2
µ2−ν22

),

where η1 = ∆k/
√

4mν1 and η2 = ∆k/
√

4mν2 are the Lamb-Dicke parameters for

COM and tilt modes. The solid theoretical curve is plotted with no adjustable

parameters, as the motional mode frequencies and the sideband Rabi frequencies

are independently measured.

We measure the strength of J by observing the time evolution between |↓↓〉 z

and |↑↑〉 z after applying the spin-dependent forces on |↓↓〉 z states. The evolution
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for the two spins is simply described by U(t) |↓↓〉 z = exp(−iJσ(1)
x σ

(2)
x t) |↓↓〉 z =

cos(Jt) |↓↓〉 z+i sin(Jt) |↑↑〉 z when we neglect the couplings between internal states

and the motion. As shown in figure 6.1(b), the oscillations of the populations are

sinusoidal, with frequency 2J . To detect the sign of the Ising coupling, we applied

the same force on the initial state |↑↑〉 and observe the phase of the oscillations.

When the beatnote detuning µ is close to a vibrational mode, or |µ − ν1,2| is

within a few sideband linewidths η1,2Ω, the coupling between motion and spin states

modulates the spin state evolution. Figure 6.1(e) shows the spin state evolution at

a detuning δ = µ − ν1 = 2η1Ω [3]. In this case, the motional state is displaced in

phase space by no more than |α| = 1, and at particular times during the evolution

τ = n/δ(n = 1, 2...) the motional degree of freedom is decoupled from the internal

state, enabling the generation of pure spin-spin entanglement. As the detuning δ

increases as shown in figure 6.1(b)-(d), the maximum displacement decreases and

the evolution approaches a pure sinusoid indicative of pure spin-spin interactions.

Typical experiments are performed with δ ≥ 4ηΩ, where the largest displacements

in a ∼ 2% modulation in the spin evolution.

6.2.2 Three spin case

For three spins addressed uniformly with the Raman laser beams, we have

J1 = J1,2 = J2,3 as the nearest-neighbor (NN) interaction and J2 = J1,3 as the next-

nearest-neighbor (NNN) interaction as shown in figure 6.2(a). Since the bandwidth

of the transverse mode spectrum is relatively small, all modes can be addressed from
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Figure 6.2: (a) Measured couplings J1 = J1,2 = J2,3, J2 = J1,3 for
three ions as a function of detuning µ overlaid with theory (lines)
from Eq.(3.22) with no adjustable parameters. At the scaled detuning
µS, COM, tilt and zig-zag modes of transverse motion occur at µS ≡
(µ2 − ν2

1)/ν2
z = 0,−1 and −2.4, respectively. (b) Time evolution

of the probability P0 of all spins |↓〉 under the bichromatic force in
the far-detuned limit. Here, the two couplings J1 and J2 are clearly
visible. The solid line is a fit to the time evolutions of Eq.(6.1) with
an empirical exponential decay. The measurements are performed
at the indicated detuning in (a), or -50 kHz from tilt mode. (c)
The Fourier transform of the experimental curve shown in (b), where
three peaks originate from the frequency components of 4J1, 2J1−2J2

and 2J1 + 2J2. The orange bars represent the calculated values from
Eq.(3.22). The peak near the origin comes from the overall decay of
the oscillation due to decoherence with ∼100 Hz.
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a single laser beatnote and the signs and the strengths of J1 and J2 are under great

control as shown in figure 6.2(a) and Eq.(3.22) [57]. In the region µ > ν1, both have

anti-ferromagnetic (AFM) interactions (J1,2 > 0), and in the region of ν2 < µ < ν1,

both have ferromagnetic (FM) couplings (J1,2 < 0). In the region ν3 < µ < ν2, the

NN interaction is FM (J1 < 0) and the NNN is AFM (J2 > 0). When µ is near the

tilt mode, J2 overpowers J1 and when µ is closer to the zig-zag mode, J1 is stronger

than J2. Finally, for µ < ν3, all interactions are FM again.

We measure the J1 and J2 couplings by observing the oscillations in the pop-

ulation of state |↓↓↓〉 z after applying spin-dependent force on the three spins. This

population oscillates as cos2 J1t cos J2t− i sin2 J1t sin J2t, as shown in figure 6.2(b).

We use Fourier analysis on the oscillations and find certain frequency combinations

of the couplings 4J1, 2(J1 − J2), and 2(J1 + J2), as shown in figure 6.2(c). In this

figure, we use theoretical values for the signs of J1 and J2.

6.3 Adiabatic quantum simulation

In this section, we describe the adiabatic quantum simulation of the transverse

Ising model with three spins, where the exact solution is known, and discuss the

criteria for adiabaticity. We then present experimental results for two example Ising

interactions strengths and signs.

We experimentally investigate this adiabaticity criterion for the two different

types of NNN coupling that were introduced above. We initialize the spins along

the By-direction through optical pumping (∼ 1 µs) and a π/2 rotation about the

105



−x-axis of the Bloch sphere. Figure 1.3 shows the adiabatic simulation protocol.

The simulation begins with a simultaneous and sudden application of both By and

J1, J2 where By overpowers J1 (By/|J1| ≈ 10). As the spins are aligned along the

y-axis, the sudden turn on will not cause diabatic effects. A typical experimental

ramp of By decays as By(t) = ae−t/τ + b with a time constant of τ ∼ 30 µs, varying

from a ∼ 10 kHz to a final offset of b ∼ 500 Hz after t = 300 µs. By varying the

power in only one of the Raman beams, this procedure introduces a change in the

differential AC Stark shift of less than 2 Hz. We turn off the Ising interactions and

transverse field at different By/|J1| endpoints along the ramp. We then measure the

magnetic order along the x-axis of the Bloch sphere by first rotating the spins by

π/2 about the y-axis, and detecting the z-component of the spins.

In figure 6.4(a) all interactions are FM and J2/|J1| ∼ −2 4(as in figure. 6.3(a)).

The dashed lines in the top panel are the adiabaticity parameter from Eq.(1.6) cal-

culated over the trajectory for the two coupled excited states (recall figure 6.3).

Due to the 500 Hz final offset of By, the simulation stops at By/|J1| ∼ 0.5. To

examine the behavior extended below this value, we calculate the criteria for an

exponential ramp with a 100 µs time constant. This profile was chosen to overlap

with experimental parameters for large By/|J1| and also reach By = 0 in a typical

simulation time (∼ 300µs). The results indicate that Eq.(1.6) is satisfied over the

trajectory; Ḃy(t)ε/∆
2
ge remains much less than one even with a maximum occurring

at By/|J1| ∼ 1. To demonstrate the simulation is indeed adiabatic for these parame-

ters, we plot the measured probability of occupying a FM state P(FM) = P↑↑↑+P↓↓↓

(solid dots) in figure 6.4(a). The black line represents the adiabatic ground state
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Figure 6.3: Energy level diagrams for Eq.(6.1) with two different
types of spin-spin interactions. For both panels, the NN interactions
are FM (J1 < 0). (a) The NNN interaction is FM with J2/|J1| ∼
-2 and (b) AFM with J2/|J1| ∼0.9. The arrow in both diagrams in-
dicates the trajectory in the simulation, initialized at By/|J1| ∼10.
Under this condition, the initial ground state is an eigenstate of sec-
ond term in Eq.(6.1), a polarized state along By. In both examples,
at B ≈ J1 some high energy states cross, but the ground state (black
solid line) has no level crossings with any excited state. Likewise, the
highest energy state does not cross any other levels, allowing one to
also adiabatically follow this state. The dotted lines represent excited
states which are most strongly coupled to the ground state along the
path. In the large field limit, the energy difference between ground

and excited states ∆ge (here, scaled by
√
B2
y + J2

1 ) is proportional to

By, but as By/|J1| decreases the spin-spin couplings determine the
energy difference and the form of the ground state. In both (a) and
(b), the final ground state is FM (defined along the x-axis of the
Bloch sphere), however in the case of (a), the minimum ∆ge is ∼20
times larger.
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Figure 6.4: (a) The theoretical order from the exact experimental
ramp with a 35 µs time constant and final offset value given in the
text (gray solid line) is in reasonable agreement with the order in the
true ground state (black solid line) for By/J1 > 0.5. The dotted line is
the expected state evolution for a pure exponential decay ramp with
a 100 µs time constant, allowing By → 0. (b) The data also matches
well to theory, as we avoided the regions where diabatic transitions
are expected for By/J1 � 1. According to the calculations, the
duration of three-spin experiments near the special point should be
on the order of milliseconds.

and the grey line is the theoretical expected probability including the experimental

ramp. The dotted line in this figure is the theoretical state evolution using a By-

field ramp that reaches zero. The predicted evolution does not significantly deviate

from the ideal ground state and the data is in good agreement with all three theory

curves.

Figure 6.4(b) presents the case when theNNN interaction is AFM and J2/|J1| ∼ 0.9

(as in figure 6.3(b)). When By/|J1| � 1, Ḃy(t)ε/∆
2
ge reaches a maximum value of

∼ 0.6, indicating that the probability for excitations will likely increase. This differ-

ence is because in this case the gap ∆ge at the ’critical’ point is ∼ 15 times smaller

than that in figure 6.3(a). In contrast to the FM J2 case, the theoretical probability

curves shown in the lower panel of figure 6.4(b) predict significant diabatic effects
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when using this By-field profile for simulations near the critical point. In fact, to

successfully evolve to the true ground state near By = 0, the simulation time (as-

suming same initial conditions and an exponential ramp of By) should be at least a

factor of ten longer.

Because all the data lies outside of the region where the energy gaps are small,

the diabatic excitations are minimal, but further experimental study is needed to

precisely quantify this effect. One method to probe excitations, which may also be

useful as N � 1, is to perform and then reverse the experimental ramp and measure

the probability of returning to the initial state [58].

6.4 Phase diagram

Assuming adiabaticity as described above, we can generate an experimental

phase diagram for the transverse Ising model. We will first describe this for the

three spin case, and then discuss specific features and scalability in sections 6.6 and

6.7. For the three spin Hamiltonian in Eq. (6.1), the competition between the two

spin-spin couplings and the transverse field gives rise to a rich phase diagram. Here

we label the 23 possible spin configurations as the two FM states, |↑↑↑〉 and |↓↓↓〉 ,

two symmetric AFM states, |↓↑↓〉 and |↑↓↑〉 , and four asymmetric AFM states,

|↑↑↓〉 , |↑↓↓〉 , |↓↑↑〉 and |↓↓↑〉 , all defined along the x-axis of the Bloch sphere.

In figure 6.5(a), we plot a part of the theoretical phase diagram where the

nearest-neighbor interactions are always FM (J1 < 0). The order parameter is

the probability of occupying a FM state, P(FM) = P↑↑↑ + P↓↓↓. For regions where
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Figure 6.5: (a) Theoretical phase diagram for Eq.(6.1). The color
scale indicates the amplitude of the FM order parameter, P (FM) =
P|↑↑↑〉 +P|↓↓↓〉 . Here, J1 is always negative, yielding FM order in that
coupling. In the region where J2/|J1| <0, there is a crossover to FM
order as By/|J1| is lowered. When J2/|J1| >0, the AFM and FM
interactions compete. When J2/|J1| =1 and By =0 the ground state
is comprised of 6 states: four asymmetric AFM and two FM states.
This creates a special sharpened point where all lines of equiprobable
FM order converge. (b) Experimental measurements of the phase
diagram for Eq. 6.1 (solid bars) compared to the theoretical pre-
diction from Fig. 6.5 (surface) . The vertical amplitude is the FM
order parameter P(FM)= P|↑↑↑〉 + P|↓↓↓〉 . The ratio of By/|J1| was
varied from ∼10 to ∼0.1 for J2/|J1| values of -1.3,-2.0, -3.6, 4.2, 2.0,
1.3, 0.92, 0.74, and 0.62. J1 < 0 for all traces. (c) As By/|J1| → 0
in the region where J2/|J1| < −1 , we observe a smooth crossover to
FM order. The filled circles and solid line are the data and theory for
J2/|J1| = −1.3, respectively. (d) When changing J2 for a fixed and
small value of By/|J1| the system undergoes a sharp transition. The
data (filled circles) shown is for a scan of By/Jy = 0.57. The average
deviation per scan of By/|J1| from the exact ground state is ∼ 0.09.
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By/|J1| �1, the ground state is polarized along By with P(FM)= 2/2N = 1/4, as

all states in the x-basis are equally populated and there are two FM states. As

By/|J1| decreases, different magnetic phases arise. When the NNN interaction is

also FM (J2 < 0), and By/|J1| � 1 the ground states are the two degenerate FM

states. In the region where the NNN interaction is AFM and J2 overpowers J1

(J2/|J1| > 1), the asymmetric AFM states are lowest in energy. A special point

appears at J2/|J1| = 1 and By = 0, where all the contours of constant FM order

meet. Here, the ground state will be a superposition of the FM and asymmetric

AFM states. This effect arises because the pairwise interaction energy cannot be

minimized individually, leading to a highly degenerate, or frustrated, ground state

[59].

To be clear, when J1 = J2, both the FM and AFM ground states are degener-

ate. As can be seen in figure 6.3(b), as the transverse field is reduced the energy gap

will go to zero, and adiabaticity will be impossible. For the FM case, there is a two

fold degeneracy. For the AFM case, there is a six fold degeneracy. However, for our

experiments we always have a slight transverse field remaining and the degeneracy

is lifted, creating the non-degenerate, superposed ground states we discuss in this

paper.

This procedure is performed for nine different combinations of J1 and J2 de-

termined by the beatnote detuning µ from Eq.(3.22). In figure 6.5(b) we present the

results as a 3D plot of the FM order parameter, with the theoretical phase diagram

(surface) from figure 6.5(a) superimposed on the data. The data is in good agree-

ment with the theory (average deviation per trace is ∼ 0.09) and shows many of the
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essential features of the phase diagram. As By/|J1| decreases, a smooth crossover

from a non-ordered state to FM order occurs in the region where J2/|J1| < 1 (Fig.

6.5(c)). The data (e.g. figure 6.5(c) show small amplitude oscillations in the initial

evolution due to the sudden application of the spin-spin interaction, which is held

constant during the simulation to minimize variation in the differential AC stark

shifts. As the number of spins increases, this is an example of a quantum phase

transition. A first order transition due to an energy level crossing is apparent (fig-

ure 6.5(d) when changing J2 for a fixed and small value of By/|J1| = 0.57. This

transition is sharp, even in the case of three spins [60].

6.5 Spin frustration and entanglement

We also study the properties of the ground states in the case of a frustrated

Ising Hamiltonian. Frustration in spin systems occurs when spins cannot find a

ground state that minimizes the energy of each pairwise interaction [61, 12]. As

shown in figure 6.6(a), this can be simply illustrated by three spins with AFM inter-

actions on a triangular lattice [62]. The situation gives rise to a large ground state

degeneracy, leading to magnetic analogues of liquids and the crystal arrangement

of ice [63, 64]. For quantum spins, the frustrated ground states are expected to be

directly related to entanglement [65, 66].

We realize the textbook example of spin frustration in a unit triangular cell

with AFM interactions by setting the Raman beatnotes µ to the blue side of COM

mode. For comparison, we also study the ground state property of all FM interac-
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Figure 6.6: (a) Simplest case of spin frustration in a triangular ge-
ometry with AFM interactions. (b) Image of three trapped atomic
171Yb+ ions in the experiment, taken with an intensified CCD cam-
era. The spins in the linear ion string have nearest-neighbor (J1) and
next-nearest-neighbor (J2) interactions mediated through the collec-
tive vibrational modes. (c),(d) Evolution of each of the eight spin
states, measured with a CCD camera, plotted as By/Jrms is ramped
down in time, with each plot corresponding to a different form of the
Ising couplings. The dotted lines correspond to the populations in
the exact ground state and the solid lines represent the theoretical
evolution expected from the actual ramp, including nonadiabaticity
from the initial sudden switch-on of the Ising Hamiltonian. (c) All in-
teractions are AFM. The FM-ordered states vanish and the six AFM
states are all populated as By → 0. Because J2 ≈ 0.8J1, a population
imbalance also develops between symmetric and asymmetric AFM.
(d) All interactions are FM, with evolution to the two ferromagnetic
states as By → 0.
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tions by setting µ to the red side of COM mode. A linear chain of three ions can

have NN and NNN interactions through the collective normal modes discussed in

section 3.4 (figure 6.6(b)). The experimental procedure to prepare the ground states

of the Hamiltonian with all AFM interactions and all FM interactions is the same

as the description in the section 4. Figure 6.6(c) shows the time evolution for the

Hamiltonian frustrated with nearly uniform AFM couplings and gives almost equal

probabilities for the six AFM states (three-quarters of all possible spin states) at

By ≈ 0. Because J2 < 0.8J1 for this data, a population imbalance also develops

between symmetric and asymmetric AFM states. Figure 6.6(d) shows the evolution

to the two ferromagnetic states as By → 0, where all interactions are FM.

The adiabatic evolution of the ground state of Hamiltonian (6.1) from By �

Jrms to By � Jrms should result in an equal superposition of all classical ground

states and therefore carry entanglement. For instance, for the FM case, we ex-

pect a GHZ ground state |↓↓↓〉 - |↑↑↑〉 . For the isotropic AFM case, we expect

the ground state to be |↓↓↑〉 + |↑↓↓〉 + |↓↑↑〉 - |↑↑↓〉 - |↓↑↓〉 - |↑↓↑〉 . We char-

acterize the entanglement in the system at each point in the adiabatic evolution

by measuring particular entanglement witness operators [67]. This is accomplished

by performing various global rotations to the three spins before measurement, and

combining the results of many identical experiments. When the expectation value

of such an operator is negative, this indicates entanglement of a particular type

defined by the witness operator. For the FM case, we measure the expectation of

the symmetric GHZ witness operator WGHZ = 9Î/4 − Ĵ 2
x − σ

(1)
y σ

(2)
y σ

(3)
y [68, 67],

where Î is the identity operator and Ĵi ≡ 1
2
(σ

(1)
l + σ

(2)
l + σ

(3)
l ) is proportional to
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Figure 6.7: (a) Entanglement generation through the quantum simu-
lation for the all FM interactions. We measure the entanglement by
observing the expectation of a particular operator that indicates the
presence of entanglement, called the entanglement witness [67]. For
the case of all FM interactions we use the GHZ witness [67], sensitive
to the state (|↓↓↓〉 − |↑↑↑〉 )/

√
2. We find that entanglement occurs

when |By|/Jrms < 1. (b) Entanglement generation for the case of all
AFM interactions. Here, we use the symmetric W-state witness, sen-
sitive to the state (|↓↓↑〉 +|↓↑↓〉 +|↑↓↓〉 −|↓↑↑〉 −|↑↓↑〉 −|↑↑↓〉 )/

√
6

and we find that entanglement emerges for By/Jrms <1.1. In both (a)
and (b) the error bars represent the spread of the measured expec-
tation values for the witness, likely originating from the fluctuations
of experimental conditions. The black solid lines are theoretical wit-
ness values for the exact expected ground states, and the black dashed
lines describe theoretically expected values at the actual ramps of the
transverse field By. The blue lines reveal the oscillation and suppres-
sion of the entanglement due to the remaining spin-motion couplings,
showing better agreement to the experimental results. Note that the
residual spin-motion couplings do not appear to impact on the FM
order of each state, as shown in Fig. 6.6. In the theoretical curves
we do not include other possible errors such as state detection in-
efficiency or errors due to spontaneous scattering or fluctuations in
control parameters.

115



the lth projection of the total effective angular momentum of the three spins. For

the AFM (frustrated) case, we measure the expectation of the symmetric W state

witness, WW = (4 +
√

5)Î − 2(Ĵ 2
x + Ĵ 2

y ) [67]. In both cases, as shown in figure 6.7,

we find that entanglement of the corresponding form develops during the adiabatic

evolution.

In macroscopic systems, the global symmetry in the Ising Hamiltonian (6.1) is

spontaneously broken, and ground-state entanglement originating from this symme-

try is expected to vanish for the non-frustrated FM case [6]. However, for the

frustrated AFM case, the resultant ground state after symmetry-breaking (e.g.,

|↑↑↓〉 + |↑↓↑〉 + |↓↑↑〉 ) is still entangled. While spontaneous symmetry-breaking

does not occur in a small system of three spins, we can mimic its effect by adding a

weak effective magnetic field −Bx

∑
i σ

(i)
x to the Hamiltonian during the adiabatic

evolution[69, 70]. We experimentally observed that the frustrated ground state car-

ries entanglement even after global symmetry is broken by using appropriate witness

in the Ising model, and thereby establishes a link between frustration and an extra

degree of entanglement [59].

In the presence of transverse field, however, the disentanglement between mo-

tional states and spin states becomes imperfect and is accumulated during the adi-

abatic evolution. Fortunately, the residual entanglement does not have an influence

on the probabilities of spin product states measured in the direction of the Ising

model axis [37]. Therefore we do not see the effects on the experiments generat-

ing the phase diagram shown in section 6.4. The influence of spin-motion coupling

becomes noticeable in the witness measurements, since the motional degrees of free-
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dom are traced out during the spin state detections. As shown in the blue curves of

figure 6.7, the entanglement of the spin states is suppressed because of the remaining

spin coupling to motions.

6.6 Scalability of the quantum simulation

As the number of spins N grows, the technical demands on the apparatus are

not forbidding [59, 57]. In particular, the expected adiabatic simulation time for the

spin models is inversely proportional to the ’critical’ gap in the energy spectrum;

for instance, in a fully-connected uniform ferromagnetic transverse Ising model in a

finite-size system, this gap decreases as N−1/3 [71]. Scaling this system to accom-

modate long ion chains will allow the investigation of critical behavior depending

on the the system size, which is intractable in classical numerical simulation.

We perform a benchmarking experiment where all interactions Ji,j are ferro-

magnetic regardless of number of spins in the system by tuning the Raman beatnote

detuning close to the COM mode. We carefully investigate deviations of experimen-

tal simulations from theoretical predictions as the system size increases and discuss

possible solutions overcoming the limitations. We observe a crossover from para-

magnetic to ferromagnetic spin order, and the crossover sharpens as the number

of spins is increased, prefacing the expected quantum phase transition [6] in the

thermodynamic limit. We find that particular order parameters of the system can

be quite insensitive to the imperfections of the quantum simulations, and the ex-

traction of intensive variables such as the magnetization are much less susceptible
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to decoherence compared with full tomographic characterizations of the resulting

quantum state.

In the experiment, we produce the strength of Ji,j close to 1 kHz by setting

the Raman beatnote detuning µ ≈ ν1 + 4η1Ω, where ν1 are the Lamb-Dicke param-

eter and the frequency of COM motional mode, respectively. The strength of the

couplings are pretty uniform among the pairs, since the COM mode dominates the

interactions. The non-uniformity in the Ising couplings arises from other vibrational

modes, which produce around 30% differences in the strength at the most. We note

that for larger detunings, the range of the interaction falls off even further with

distance, approaching the limit Ji,j ∼ 1/|i− j|3 for µ� ν1 [81, 72].

The experiment is performed according to the adiabatic quantum simulation

protocol, as described in section 1.3. We initially start with strong effective trans-

verse field By ≈ 5NJrms (N = 2, 3, ..., 9) after preparing the ground state of the

By Hamiltonian. We transfer it to the Ising Hamiltonian with weak transverse field

by exponentially ramping down By with time constant τ = 80 µs. We observe the

evolution of state step by step as we proceed the experiment. For the measurements,

we use the PMT and obtain the probability Ps of having s spins in state |↑〉 from a

histogram of fluorescence counts, constructed by the more than ∼ 1000 × N times

repetition of the experiments [73]. The final states of the adiabatic evolution are

the superposition of two perfect FM states |↑↑ · · · ↑〉 and |↓↓ · · · ↓〉 , called GHZ

state, since we implement FM couplings for all the pairs of spins and begin with

the ground state of the transverse field. Therefore we measure the density matrix

of the GHZ state as the simulation evolves. We also use other observables such as
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Figure 6.8: Experimental results of adiabatic quantum simulation
depending on the system size. Here all pairs of spins have FM in-
teractions. (a) The FM order P (FM) evolutions as the system size
increases. Initially P (FM) starts 2/2N , since P (FM) is the prob-
abilities of two states P|↑↑···↑〉 and P|↓↓···↓〉 over equally distributed
2N states. As the spin-spin interactions J overpowers By (By → 0),
P (FM) are developed. Here J is the average strength of all inter-
actions. The red, orange, yellow, green and blue dots represent the
experiments for the total number of spins N=2, 3, 4, 5, and 6, re-
spectively. Ideally P (FM) should be close to 1 at the end. However,
P (FM) clearly reduces as the number of spins increases in the sys-
tem from 2 to 6. The sources and amounts of errors are discussed in
the text. (b) The parity oscillations for the final states of the simula-
tion depending on the number of spins, obtained from the population
difference between the even number of |↑〉 state and the odd num-
ber of |↑〉 state after applying analysis π/2 pulse and swipping its
phase φ. The contrast of the oscillations provide the lower bound of
the coherence, the off-diagonal element of the density matrix for the
GHZ state (|↑↑ · · · ↑〉 ± |↓↓ · · · ↓〉 )/

√
2. The coherences decrease to

0.8, 0.47, 0.35, 0.27 much faster than P (FM) as the number of spins
increase from 2 to 5, because of spin-motional couplings during the
simulation as discussed in the text.
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magnetization to characterize the time evolutions and the phase transitions.

We analyze the reliability of the simulation depending on the system size by

using the fidelity of GHZ state, |〈ψSIM |GHZ〉 |2 = 1
2
(P↓↓···↓ + P↑↑···↑) + |C↓↓···↓,↑↑···↑|.

Here P (FM) = P↓↓···↓ + P↑↑···↑ and the GHZ coherence |C↓↓···↓,↑↑···↑| is the coefficient

of the |↓↓ · · · ↓〉 〈↑↑ · · · ↑| in the density matrix [68]. We measure coherence of

GHZ state by observing the contrast of the oscilating parity signals [Figure 6.8(b)],

obtained by applying analysis π/2 pulse with different phase φ and taking the dif-

ferences in populations of the even number bright states and odd number bright

states (P (0) + P (2) + ...− P (1)− P (3)− ...).

Figure 6.8 shows the experimental results of the quantum simulation as the

number of spins increases in the system. Initially P (FM) starts 2/2N , since P (FM)

is the total probabilities of two states (|↑↑ · · · ↑〉 , |↓↓ · · · ↓〉 ) and the ground state

of By

∑
σ

(j)
y , |↓↓ · · · ↓〉 y are equally distributed in a total 2N states in the x-basis.

Ideally P (FM) should be close to 1 at the end of the simulation. However, we

observe that the final states are increasingly deviated from the ideal situation as

the number of spins grows as shown in figure 6.8(a). We also observe that the GHZ

coherence decreases much more rapidly than P (FM) shown in figure 6.8(b). After

6 spins, we did not measure any significant GHZ entanglement for the final state

due to the large suppression of the coherence compared to the populations. In the

following subsections, we discuss the reason of these deviations and we summarize

the expected experimental imperfections in quantum simulations as the system size

grows.
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6.7 Scaling of imperfections

6.7.1 Spin-motion coupling

As discussed in section 3.4, the effective spin-spin coupling Hamiltonian that

we assume to describe the system is only valid when the detuning of the beatnote

is much larger than the sideband strength. As our detuning is limited by the coher-

ence time of the system, i.e. the need for strong coupling strengths, the spin-motion

entanglement does not completely vanish during the simulation. In fact, the spin-

motion coupling increases in the presence of the transverse field. The transverse

field mixes the spin states along the axis where the spin-dependent force is applied,

therefore this coupling induces phonon excitations, modifying the final state from

the ideal GHZ state to (|↑↑ · · · ↑〉 |α〉 ± |↓↓ · · · ↓〉 |−α〉 )/
√

2. Here |α〉 is a mo-

tional coherent state and 〈n〉 = |α|2 increases as the amount of state mixing grows.

According to numerical calculations corresponding to the experiment, 〈n〉 increases

to ≈ 0.5 for the five spin experiment. The effective phonon excitation occurs pri-

marily in the early stages of the simulation evolution, where the strength of the

transverse field is much larger than the frequency of spin rotations. In the exper-

imental conditions, the Raman beatnote is detuned ∼ 4η1Ω from the COM mode,

which results in an increment of |α|, because of the required large initial transverse

field. However, the population P (FM) and the evolution is not sensitive to these

spin-motion couplings.
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6.7.2 Diabaticity

The finite ramping speed of parameters in the Hamiltonian leads to excitations

out of the ground state and can lead to oscillations in the observed order parameter.

This diabaticity in the evolution, along with errors in the initialization to the original

ground state is estimated to suppress the final value of P (FM) by ∼ 4% for N = 5

shown in the orange line of figure 6.9(a). As discussed in section 6.7.2, the diabaticity

is related to the minimum gap over the trajectory of the Hamiltonian as well as the

ramping time. We note that the gap between the ground and first-excited state of

the fully-connected uniform FM model scales as N−1/3, implying that the simulation

time by a factor of ten when the number of spins grows by a factor of one thousand.

6.7.3 Spontaneous Emission

One of major error sources is the spontaneous emission from Raman beams

which amounts to a ∼ 10% spontaneous emission probability per spin in 1 ms for a

detuning of ∆ ≈ 2.7 THz [74]. Spontaneous emission dephases and randomizes the

spin state, and thus introduces entropy into the system. In addition, each sponta-

neous emission event populates other states outside of the Hilbert space of each spin

with a probability of 1/3. Spontaneous emission errors grow with increasing system

size, which also suppresses P (FM) order with increasing N , as seen in figure 6.9.

We theoretically estimate the suppression of P (FM) due to spontaneous emission

by averaging over quantum trajectories and solving density matrix equations to be

∼ 5% for N = 2 spins and ∼ 13% for N = 5 spins. The error contributions are the
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same for both populations and coherences.

6.7.4 Intensity fluctuations

Intensity fluctuations on the Raman beams during the simulation induce an

fluctuating AC Stark shift on the spins. The AC stark shifts produce an imbal-

ance on the blue and red sideband detuning, which give rise to imperfections in the

spin-spin interactions. According to our numerical calculations, the imbalance fluc-

tuations of ∼ 150 Hz (∼ 1.5% intensity fluctuations in our experimental conditions)

can explain the suppressions of P (FM) at the end of the experimental simulations

shown in figure 6.9. We investigate the non-uniformity of the laser beams that in-

duces different AC shifts on the spins by measuring the AC shift on each location,

which is introducing position dependent Bz-field with at most ∼ 200 Hz difference.

According to the numerical calculation, the additional small Bz-field does not no-

ticeably suppress P (FM) .

6.7.5 Detection Errors

Imperfect spin detection efficiency contributes 5−10 % uncertainties in P (FM).

Fluorescence histograms for P (0) and P (1) have a ∼ 1% overlap (in detection time

of 0.8 ms) due to off-resonant coupling of the spin states to the 2P1/2 level. This

prevents us from increasing detection beam power or photon collection time to sep-

arate the histograms. In the experiment, the average photon number from a single

bright spin is 12. The uncertainty in fitting the observed fluorescence histograms to
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Figure 6.9: (a) The comparison of experimental results of P (FM)
to the theoretical expectations including various imperfections of ex-
periments for the 5 spins. The black line represents the evolution of
the perfect adiabatic evolution, and the dashed line shows the actual
time evolution including the actual ramping of the transverse field
with the imperfections of initial state preparations. The red line is
obtained from the theory with spontaneous emissions and the green
line is calculated by adding intensity fluctuations of 1.5 %. The over-
all populations of P (FM) are in agreement with the green theoretical
curve including all the above mentioned imperfections. The horizon-
tal shift By/J comes from the inaccuracy of the calibration that is
not fully understood yet. (b) The amount of errors in P (FM) (the
diagonal parts of the density matrix) from the ideal ground states for
the case of N=2,3,4 and 5. (c) The amount of errors in coherence (the
off-diagonal parts). In both (b) and (c), the green squares represent
the total errors measured in the experiment and the bars illustrate
the numerically estimated errors from the various sources of experi-
mental imperfections. The black, red and green bars show the error
amounts from non-perfect adiabatic evolutions, spontaneous emis-
sions and intensity fluctuations. The blue bars stand for deviations
from the spin-motion couplings. The spin-motion coupling reduces
the coherence significantly as the system size grows, while it dose not
have any influence on the P (FM).

determine P (s) increases. The histograms are also affected by the intensity fluctua-

tions of detection laser beams and the finite widths. This problem can be eliminated

by detecting each spin individually with an imaging detector.

Figure 6.9 (a) shows the experimental results and the theoretical calculations

including a few steps of imperfections discussed above for N=5 spin case as an exam-

ple. In the population P (FM) also shown in figure 6.9 (b), the main deviations come
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from the spontaneous emissions and the intensity fluctuations. As discussed, small

amounts of intensity fluctuations degrade the performance of the experimental sim-

ulations. One of the solutions for those imperfections is to implement a high power

laser with a detuning far from the 2P energy levels, which would minimize sponta-

neous emission while maintaining the same level of Ising couplings. This would also

allow versatility in varying the Ising interaction (together with the effective external

field) during the simulation, as the differential AC stark shift between spin states

is negligible for a sufficiently large detuning. The coherence time increases in the

absence of spontaneous emission, allowing for a longer simulation time necessary to

preserve adiabaticity as the system grows in size. Recently Raman transitions have

been driven using a mode-locked high power pulsed laser at a wavelength of 355

nm, which is optimum for 171Yb+ wherein the ratio of differential AC Stark shift to

Rabi frequency is minimized and spontaneous emission probabilities per Rabi cycle

are < 10−5 per spin [51, 75].

Figure 6.9(c) shows the measured and numerically estimated errors in the mag-

nitude of coherence, |C↓↓···↓,↑↑···↑|, at the final state of the quantum simulation. We

can clearly see that the errors of the coherence much more rapidly increase than

those of P (FM). According to the numerical study, the dominant source for the

errors of |C↓↓···↓,↑↑···↑| is the non-vanishing spin-motion couplings in the experimental

simulation, shown as the blue area of the figure 6.9(c). In principle, we can elim-

inate the effect of the spin-motion coupling by alternating the transverse field and

Ising interactions [76]. The adiabatic evolution can be discretized by the Trotter
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expansion written by

UTIM(τ) = T exp

(
−i
∫ τ

0

dt′ [HI(t
′) +HB(t′)]

)
≈ [exp (−iHI(τ/N)) exp (−iHB(τ/N))]N , (6.2)

where HI and HB are the Ising Hamiltonian and the transverse field Hamiltonian,

respectively. In the experiment, we can choose τ/N as the special duration (1/δ),

where the spin-motion couplings vanish. We can also reduce the errors of the Trotter

expansion by increasing the Raman beatnote detuning δ from the motional mode.

In condensed matter, phase transitions are typically described in terms of

order parameters or correlations instead of the density matrices of particular states.

We use a absolute magnetization 〈|m|〉 =
∑

m |m/N |P (m) per site along the Ising

direction. Actually we rescale the magnetization 〈|m|〉 from 0 to 1 regardless of the

number of spins to make a fair comparison even for small size systems. We find

that the deviation between experiment and theory for this order parameter does

not grow substantially as the system is scaled up in size. Figure 6.10 shows the

scaled magnetization, 〈|mS|〉 for N = 2 to N = 9 spins, showing a final value of

∼ 80% (figure 6.10) regardless of number of spins. Moreover as shown in figure

6.10(a) we observe the sharpening of the crossover curves from paramagnetic to

ferromagnetic spin order with increasing system size. The continued sharpening of

this transition is of great interest to the understanding of finite size effects in phase

transitions and can be used to compare various numerical techniques in studying

critical phenomena.
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Figure 6.10: (a) Scaled average absolute magnetization per site,
< |mS| > vs B/NJrms is plotted for N = 2 to N = 9 spins. As
B/NJrms is lowered, the spin ordering undergoes a crossover from a
paramagnetic to ferromagnetic phase. The crossover curves sharpen
as the system size is increased from N = 2 to N = 9, anticipating a
QPT in the limit of infinite system size. The oscillations in the data
arise due to imperfect initial state preparation and non-adiabaticity
due to finite ramping time. (b) Magnetization data for N = 2 spins
(circles) is contrasted with N = 9 spins (squares). The data deviate
from unity at B/NJrms by ∼ 20%, predominantly due to spontaneous
emissions in Raman transitions and intensity fluctuations of Raman
laser beams, as discussed in the text. Here, the theoretical time evo-
lution curves (red line for N = 2 and black line for N = 9 spins) are
calculated by averaging over 10,000 quantum trajectories.
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6.8 Conclusion and Outlook

Trapped atomic ions represent a promising platform for the quantum sim-

ulation of intractable Hamiltonian systems. There have been several theoretical

proposals in this direction, largely following schemes in the realm of quantum com-

puting, and recent experiments have shown that the system can be scaled to a

degree where all classical simulations become impossible [59, 70, 77]. This paper

has shown both theoretically and experimentally that the quantum simulation of

quantum magnetism and the emergence of spin order can be controlled through

external laser beams up to 9 spins and can further be scaled to much larger num-

bers of spins. The stable confinement of larger numbers of ions may require novel

ion trap architectures such as anharmonic axial potentials [78] for a linear chain

or two-dimensional trap geometries [79, 80], but there are no known fundamental

limitations in this scaling. As discussed here, for a fixed level of total laser power,

the errors associated with decoherence from spontaneous Raman scattering from

the lasers is expected to grow only as N1/3 for the linear chain, holding errors from

phonon creation and diabatic transitions to excited states at fixed levels. Alterna-

tively, all of these errors can be held at a fixed value independent of N so long as the

laser power increases by N1/3. In either case the required time for adiabatic ramping

grows as N1/3, so slowly drifting errors such as (real) magnetic fields and motional

heating of the ions must be kept under control for very large N as discussed in the

supplementary information of Ref. [59]

This system can also be extended to Heisenberg or XYZ spin models [81] or
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spin-1 systems by adding a few more laser beams. As the system grows, the trans-

verse motional modes that mediate the Ising couplings can give rise to higher levels

of frustration and complex phases of magnetic ordering. For instance, by preparing

a ground state of a highly frustrated collection of trapped ion spins, it should be

possible to create localized topological excitations and guide their transport through

the system [82]. This example of topological matter is of great interest for the ro-

bust representation and manipulation of quantum information [83, 84]. But more

generally, the trapped ion system is poised to be the first to determine ground state

features of Hamiltonians where no solution can be obtained otherwise.
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Chapter 7

Quantum Simulation of the Devil’s Staircase

7.1 Introduction

Recent efforts in quantum simulation, motivated by its promise as a tool for

advancing understanding of condensed matter systems, solving difficult optimization

problems, and simulating other physical systems while providing an in-situ insight

previously unattainable have seen significant advances. These include simulation

of the nearest -neighbor anti-ferromagnetic Ising model [85], and the long-range

anti-ferromagnetic Ising model. Recent theoretical interest in the simulation of the

complete Devil’s Staircase [86] using cold, trapped ion quantum simulators [87] have

motived us to simulate this system for six and ten spins.

In this chapter I report a quantum simulation experiment1, similar to those in

chapter 6. In this experiment a linear chain of trapped, cold ions are irradiated by

lasers far detuned from resonant transitions to simulate and control an Hamiltonian

of AFM coupled Ising spins with long range, frustrated interactions. We add to

this effective interaction a combined axial and transverse simulated fields, and by

scanning the strength of the axial field we explore N/2 phase transitions in the

ground state of the zero transverse field spin chain of N spins. Site resolved imaging,

as described in section 4.4.8 allows us to extract ground state order parameters and

1Manuscript in preparation.
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state probabilities, amplified over the background by the post-processing techniques

of section 4.4.8. We compare the experimental results to theoretical predictions.

7.2 Overview

We perform a quantum simulation of the AFM Ising model with a tunable

axial biasing field Ba:

H =
N∑
i,j

Jijσ
i
xσ

j
x +Bx

N∑
i

σix +By

N∑
i

σiy (7.1)

Where H is the simulated Hamiltonian of the system, σix the Pauli spin operator

on spin i, and Ji,j is the spin-spin coupling between spin i and spin j as defined in

3.22. The |↑〉 and |↓〉 states are defined as presented in 2.4, and the ions are radially

confined with a transverse collective COM mode frequency ω1 = 2π4.863 MHz ,

and a tilt frequency ω2 = 2π4.813 MHz . This Hamiltonian has been Identified

as a physical model for several real world systems, such as graphite intercalation

compounds, and exhibits the much investigated complete Devil’s staircase behavior

for a macroscopic number of spins [88].

Just as in the experiments described in chapter 6, we will initialize the spin

system in the ground state of a trivial Hamiltonian, where the magnetic fields over-

whelm the J component of the Hamiltonian. Unlike the simulations of chapter 6, we

cannot simply rotate the spins to align with transverse field By, rather we will have

to apply a Raman pulse that rotates the spins into the superposition of Bx + By.

Thus, for each value of Bx the phase of the initialization pulse relative to the simu-
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lation frequency phases will be different. For our selected simulation pulse phases,

the phase of the initialization pulse will be

θ = 1800 − tan−1(Bx/By) (7.2)

As all components of J are positive for our red beatnote detuning from the transverse

COM, initializing in the ground state (along the total B field) will simulate AFM

coupling.

After initializing, we will apply all components of the Hamiltonian simultane-

ously, and proceed to ramp down By with an exponential envelope (with no offset).

The duration of the time constant of the envelope is a compromise - the ideal time

constant would satisfy the adiabatic condition [89] with a large safety margin. How-

ever, we are constrained by the coherence time of the ions, which for us was found

to be roughly 3 ms . Therefore, we chose our time constant so as to achieve as low

a B-fieled as possible in the available time without causing severe oscillations or

excitations towards the end of the simulation.

Finally, we apply a Raman rotation to measure the spin state in the mea-

surement basis (the z-axis of the Bloch sphere). Repeating this experiment with

different Bx values allows us to map the phase diagram of this Hamiltonian.

7.3 Experiment

As described in section 3.4, we control the dynamics [57] by applying far

detuned global Raman beams with a wavenumber difference δk along the transverse
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Coupling Strength

J1,2 660 Hz
J1,3 368 Hz
J1,4 235 Hz
J1,5 158 Hz
J1,6 106 Hz
J2,3 621 Hz
J2,4 373 Hz
J2,5 242 Hz
J2,6 158 Hz
J3,4 609 Hz
J3,5 373 Hz
J3,6 235 Hz
J4,5 621 Hz
J4,6 368 Hz
J5,6 660 Hz

Table 7.1: Calculated spin-spin couplings for 6 ions with our trap,
detuning, and laser intensity parameters

(perpendicular to chain alignment - “x” direction) direction of the ion chain.

To create the the spin-spin coupling matrix J, we detune two Raman beams

80 KHz to the blue and red of the COM mode, so that the beatnote µ is red of

the COM mode. This is done while verifying that the strengths of the beams drive

sideband transitions on a single ion with equal strength, are symmetrically detuned

from the carrier transition, and the beams are centered on the center of the spin

chain (the position of a single ion in the trap).

To diagnose the intensity of our 355 nm center wavelength 80 MHz pulsed laser

Raman beams, we measure a two ion spin-spin coupling strength of 66.5 KHz . As-

suming equal intensity across our ion chain, the spin-spin coupling matrix J is

calculated and presented in table 7.1. The single ion RSB or BSB strength for this

intensity on resonance is calculated to be 23 KHz , so our detuning δ ≈ 3ηΩ.
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Figure 7.1: Power law fit for the for the first ion. The curve was
fitted with only the exponent as a parameter.

As in our other experiments where we tuned to the red of the COM, the

couplings are decaying according to a power law with exponent α

Ji,j ≈
Ji,i+1

|i− j|α
(7.3)

This exponent α depends only on trap conditions - it is a feature of the motional

mode bandwidth. For our current trap conditions and six ions, α = 0.976, as

shown in figure 7.1. In previous work, we have explored the effect of changing this

parameter on the correlations of the final AFM state for Bx = 0.2 α characterizes

the range of the spin-spin coupling, and for longer range AFM interactions we can

expect to see more frustration in the ground state with smaller energy gaps.

2Accepted for publication in “Science”, R. Islam et al Emergence and Frustration of Magnetism
with Variable-Range Interactions in a Quantum Simulator
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The characteristic power law decay arises due to the non-negligible contribu-

tion of the tilt mode as well as smaller contributions from the remaining trans-

verse x-modes. y-modes are suppressed by beam alignment and control of the trap

principal-axes, so that the y-mode sidebands are at least 10 times suppressed com-

pared to the x-modes. We further suppress the y COM mode by lowering its fre-

quency relative to the x COM mode, by adjusting trap anisotropy.

As described in 4.4.6, to generate the Raman beams we use two lasers, mod-

ulated by two AOMs. The first AOM is driven by an oscillator stabilized by an

error signal from the beating of a Microwave source and the frequency component

of the pulsed laser near the qubit frequency. The second AOM is driven by an AWG.

During the simulation, the AWG drives the AOM with three different frequencies:

one to drive the qubit Rabi oscillations, and two symmetrically detuned from this

central frequency to drive the Mølmer-Sørenson spin-spin coupling gate. It is only

when these frequencies interfere on the ion with the light modulated by the first

AOM that transitions are driven.

The AWG and the driver of the stabilized AOM are phase locked to a Rubidium

clock, outputting a reference signal at 10 MHz . We select and define the Pauli vector

component via the relative phase of the different beatnotes. We set the phases as

elucidated in table 7.2

As demonstrated in section 3.4 it is only the phase difference of the BSB

and RSB φim that affects the Mølmer-Sørenson spin-spin coupling. Therefore, we

arbitrarily set the phase of the RSB to 0, and set only the phase of the BSB to

control the axis of the interaction. As φim is equal to half the difference of BSB and
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Pulse Phase Result

Initialization θ Bxσ
x
i +Byσ

y
i

Bx 900 σxi
By 00 σyi

RSB 00 Combined with BSB we get
BSB 1800 Jijσ

x
i σ

x
j

Final 900 σyi

Table 7.2: Pulses for axial simulation experiment. Initial pulse θ is
defined in 7.2. For example, with no axial field θ = 1800. The final
rotation of the spins into the measurement basis can alternatively be
set to 900, as this will only result in flipping the spins in the final
state and does not change the physics.

RSB phases, setting θ to 1800 sets the interaction axis to be the x-axis. The control

panel for the AWG chapter phases, frequencies and amplitudses is shown in figure

7.2.

All the lasers used in the experiment are global - we do not use individual

addressing. This simplifies optical setup and reduces sensitivity to beam steering,

however this prevents us from measuring the elements of the density matrix that

require operations that are not a global rotation.

The experiment proceeds as follows. The ions are Doppler cooled for ∼

3 ms , and optically pumped to the |↓〉 state by a 8µs laser pulse resonant with

the 2S1/2 |F = 1〉 → 2P1/2 |F = 1〉 transition, as shown in figure 2.3.

30 cycles of alternating red-sidebands resonant with the x COM mode and 3µs

long optical pumping pulses reduce the occupation number of this phonon mode to

∼ 0.1 phonons, so that state is initialized in the spin as well as motion sub-spaces.

We then rotate our spins to the trivial ground state of a Hamiltonian domi-

nated by a transverse magnetic field, where our initial transverse field By is 5 times
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Figure 7.2: Control panel for quantum simulation AWG waveform
in the Labview control program. The phase of J is the phase of the
BSB.
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larger than the largest spin-spin coupling JMAX .

We ramp down the transverse field By with an exponential time constant of

600µs . This value was found by numerically evolving the Schrödinger equation

(SE) for our experimental parameters and maximizing the resemblance of the mag-

netization order parameter of the evolving state to that of the adiabatic perfect

ground state of Hamiltonian 7.1 at time t of the simulation. The magnetization

order parameter is defined here as M = 1/2 +
n|↑〉 −n|↓〉

2N
.

When the ramping is complete, we rotate our spins back to the measurement

basis, and measure each spin using a resonant beam with a Princeton PI-MAX 3

ICCD with a 3ms exposure time, as described in 4.4.8. Thus, we are able to measure

the distribution of spin eigenstates for this process, with a ∼ 93% readout fidelity

per ion. This fidelity is reduced from the theoretically attainable fidelity of ∼ 99.5%

by electronic readout noise and the 0.23 numerical aperture of the imaging system.

In order to correct the biasing of the state probabilities, we redistribute them as

described in 4.4.8.

For 6 ions, we map out a phase diagram by stopping the simulation at three

different final times of 306µs , 960µs and 3 ms corresponding to By/JMAX values of

∼ 3.00, 1.01 and 0.034. We measure the final state 4000 times for 61 equally spaced

values of Bx/JMAX between 0 and 4. Figure 7.3 displays the phase diagram of

the magnetization order parameter. The surface plot is the perfect adiabatic order

parameter for the ground state, whereas the points are experimental results. The

theoretical plot shows three first-order [88] phase transitions at By/JMAX = 0. We

have also attempted to repeat the experiment for points close to the phase transition
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once our measurements indicated their location. However, our control of the system

parameters did not seem to be stable enough over the duration of the data taking.

Our dominant measured states at By/JMAX ≈ 0 are displayed in figure 7.4 and

further investigated. Comparing only the dominant states to theoretical evolution

of Schrödinger equation (solid lines) we see the data for the dominant states closely

follows. However, the simulation is not sufficiently adiabatic and the data is too

noisy to clearly show the sharpness of the phase transitions.

This is accentuated when we compare the magnetization parameter for the

adiabatic solution, the evolved solution and the data, as in figure 7.5.

The lack of adiabaticity at the phase transition can be investigated theoreti-

cally from multiple aspects. One aspect is that of the adaibaticity parameter, which

for our system roughly corresponds to the inverse of the minimum energy gap be-

tween the ground state and the first coupled excited state for the trajectory of the

simulation [22]. For the Hamiltonian 7.1, there are eigen-energy crossings zero at

the phase transitions, as can be seen in figure 7.6 and 7.7.

Another interesting feature of the phase transitions is its relation to an in-

verse pseudo-temperature. Currently, there is ongoing theoretical and experimental

investigation of thermalization in closed, coherent quantum systems [90]. Accord-

ing to the currently developing Eigenstate Thermalization Hypothesis (ETH)3 [91],

some classes of closed quantum systems display steady-state observables that corre-

spond to the micro-canonical expected observables for analogous classical systems.

For the Hamiltonian at hand, we will see that in the low axial field limit the state

3I would like to thank Chao Shen for introducing me to this work.
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Figure 7.4: Results and simulation of dominant states. The phase
transitions in the adiabatic limit are marked with dashed lines. The
non-adiabaticity causes the states to bleed out of their phase in the
adiabatic case. Some excited states are populated significantly. The
red and green curves and data are noticebaly excited states for their
respective regimes. The first excited state for each stair is a kink in
the ground state - the spins are all flipped relative to the ground state
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Figure 7.7: (a) Low lying energy levels and and crossing points. The
dashed lines mark the energy crossings. (b) Energy difference between
the two lowest lying states. These lead to the first-order transitions
seen in 7.5
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probabilities will be occupied with a probability that is roughly proportional to an

exponential function of the energy of the eigenstate:

Pi = e−(Ei−E0)T (7.4)

Where E is the energy of the state, E0 is a normalizing factor, and T is the inverse

pseudo-temperature. By fitting to the simulated histograms, we can extract T for

the final states at all Bx values and By = 0, as shown in figure 7.8. For six ions,

this treatment is not very convincing, as only the first peak aligns itself with the

first phase transition. Nevertheless, I will use this treatment to define a pseudo-

temperature lowering filter. The filter will succeed to amplify the dominant ground

state in the regime where the pseudo-temperature picture is not valid as well, as

long as the most dominant state is the true ground state - a reasonable assumption

when By = 0.

We define an amplifying parameter A, which for A=1 leaves the probabilities

unchanged, and for increasing A will suppress the weaker states compared to the

most dominant states. For each state probability for a given Bx and By, we define

a new probability P ′i = PA
i . Then

∑N
i=1 P

′
i is renormalized to 1. The effect can be

compared to removing excess energy from the system, as can be seen in figure 7.10.

In this figure, we compare the effect of increasing A for a simulated final evolved

state to increasing the total simulation time while keeping the ratio of simulation

time to exponential decay time constant fixed. Starting with a simulated state from

the evolved Schrödinger equation with 0.8µs time constant and our experimental
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Figure 7.8: (a) Exponential fit of probability of state as a function
of state energy, for Bx = 0. The fit slope is the inverse pseudo-
temperature. (b) Exponential fit for Bx/JMAX = 4. (c) The temper-
ature coefficient for all fits. The fit fails rather quickly after showing
a correspondence to the first phase transition. Phase transitions are
marked with dashed lines.

J, we gradually increase A, and then compare the individual states for increasing

Alpha and decay time. Scaling the A axis for all states and values of Bx equally, we

see that for most values of Bx the amplified and the slowed evolution states match

well.

Applying the filter to our data with increasing amplification (or “cooling”),

we can retroactively slow down the simulation. Figure 7.9 demonstrates this effect.

We repeat the same experiment, this time for 10 ions, and only for a final

simulation time of 3 ms . Our initial value of By is set to 3Jmax, and we perform the
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Figure 7.9: Power filter with increasing strength on 6 ion magnetiza-
tion for Bx = 0. When filter strength is A=1, the state probabilities
are unchanged. When A=4, the adiabatic magnetization staircase
emerges from the data.

adiabatic simulation procedure for Bx/JMAX = 0→ 5.5, in step of 0.05, and repeat

each simulation 4000 times. As J is of the same order of magnitude and range as

before, as shown in figure 7.11, we can expect to see smaller energy gaps. As we

cannot extend simulation time, the expected effect will be much worse diabaticity,

i.e. stronger excitation of low lying energy states. We can also expect a lower ratio

of signal to noise, as decoherence and detection error for overall state will increase

for a larger number of spins. This can be seen in a comparison of our detected states

to simulated states in figure 7.12. Here we must rescale the y-axis for the data to

compensate for different scales for data and theory.

Interestingly, for 10 ions the pseudo-temperature treatment works far better.

As seen in figure 7.13, the exponential fit lies next to many more points, improving
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Figure 7.10: Figure above demonstrates effect of power filter versus
improved adiabaticity, for two states for two values of Bx. Red line
is power filter on 0.8µs evolved state. Blue line is evolved state with
increasing exponential decay constant τ , with fixed ratio of τ

Tfinal
.

For some values of Bx this procedure will fail, as close to a phase
transition there may be population oscillations.
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Figure 7.11: (a) Power law decay for 10 ions, shown for spin 1. (b)
The J coupling matrix. Note that it is symmetric across the chain
and across the diagonal. The diagonal elements are meaningless.

the validity of the fit. When we extract all the pseudo-temperature coefficients for

the Bx domain of the simulation, we see more temperature cusps corresponding to

the adiabatic regime phase transitions.

Applying the same filtering method to our 10 ion magnetization data, we see

how the staircase emerges again. However, for this data the filtering is much more

aggressive, as could be expected for a more diabatic simulation. It is less successful

as well, which is likely due to increased overall noise and decoherence [92].

7.4 Conclusion

Despite the technical challenges faced by this experiment, the sharp phase

transitions at near zero transverse field can be observed. Here we rely on the fact

that when our transverse field is extinguished, the dominant state will be the ground

state. As can be seen in figure 7.14, the staircase signal can be extracted from the
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Figure 7.13: (a) Exponential fit of probability of state as a function
of state energy, for Bx = 0. The fit slope is the inverse pseudo-
temperature. (b) Exponential fit for Bx/JMAX = 2.2. The higher
energy states are beginning to separate into energy bands. (c) Ex-
ponential fit for Bx/JMAX = 4.95. The higher energy states are now
strongly separated into gaps, corresponding to the number of spins
aligned with the axial field. This causes the psuedo-temperature pic-
ture to fail.(d) The temperature coefficient for all fits. This time the
fit shows reliably the phase transition points, and only followng the
second to last transition. Phase transitions are marked with dashed
lines.
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Figure 7.14: 10 ion data power filtered with power A, increasing from
no filtering to A=16. A=16 plot has a solid black curve that is the
adiabatic ground state solution. Dashed lines are phase transition
location for adiabatic ground state.
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data. However, this filter will fail to amplify the correct states close to a phase

transition, as the exact ground state will not dominate for all simulation times and

diabatic parameters.

As quantum simulators are scaled to higher numbers of spins and more complex

Hamiltonians, extraction of the desired signal[93] will be challenged by increased de-

coherence [92], readout error for the total state, and diabatic effects. However, these

issues may be overcome by data processing methods catered to the Hamiltonian sim-

ulated and guided by theoretical understanding of certain classes of Hamiltonians.

This work was supported by the US Army Research Office through funds from
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the NSF Physics at the Information Frontier Program, and the NSF Physics Frontier
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Chapter 8

Simulating the Ising Model with Arbitrary Control of the Couplings

8.1 Introduction

In previous chapters I have discussed work were we applied global spin-

dependent optical dipole forces to generate trivial forms of the spin couplings, such

as a uniformly decaying ferromagnet or anti-ferromagnet. Now I will present my pro-

posal1 for how to tailor optical forces to generate arbitrary fully-connected networks

of N spins that uniquely specify each of the N(N − 1)/2 pairwise interactions.

The scheme is independent of the spatial geometry of the ion crystal and is

compatible with one-dimensional arrays of trapped ions used in current experiments.

We start with the arbitrary fully-connected Ising Hamiltonian on N spins,

H =
∑
i<j

Ji,jσ
(i)
x σ

(j)
x , (8.1)

with the same conventions we have used in previous chapters.

As in the previous work in this thesis, the spins are coherently manipulated

through a pair of counter-propagating laser beams that drive stimulated Raman

transitions in the far detuned limit between the spin states while also coupling

off-resonantly to the collective motion of the atomic chain [95, 96]. The atoms

1The discussion in this chapter closely follows [94]
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are arranged in a linear array, as is typical in a linear radiofrequency ion trap,

although this scheme can also apply to other spatial geometries [97, 98, 99]. When

the difference frequency between the Raman fields is bichromatic, with two spectral

components tuned symmetrically at ωs ± µ with µ � ωs, the effective spin-spin

interaction of Eq. 8.1 emerges, mediated by the Coulomb-coupled motion of the

atomic ions crystal [3, 33, 100, 32]. Just as we drove transverse modes previously,

we will assume the Raman lasers have wave vector difference δk along the principal

X−axis of transverse motion of the ion crystal [101], and that we are cool the ions

sufficiently for us to operate in the Lamb-Dicke limit [95, 102], and the symmetric

detuning µ is set sufficiently far from all motional sidebands (|ωm − µ| >> ηi,mΩi),

so that the phonon states can be adiabatically eliminated, leaving the pure spin-spin

coupling above [3, 33, 57].

8.2 Control of an Arbitrary Lattice Hamiltonian

The above expression has N +1 control parameters in the set of Rabi frequen-

cies {Ωi} and the global beatnote detuning µ. In order to generate an arbitrary Ising

coupling matrix Ji,j however, it is necessary to have at least N(N−1)/2 independent

controls [103]. Additional control parameters can be introduced by adding multiple

spectral beatnote detunings to the Raman beams, one near each motional mode

(see Fig. 8.1), with a unique pattern of spectral components on each ion. There are

several ways to achieve this, all involving some form of individual ion addressing.

For simplicity, we retain the same set of N Raman beatnote detunings µm on each
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Figure 8.1: Spectrum of transverse mode frequencies ωm for N = 10
ions in an anisotropic harmonic linear trap (solid lines), with the
highest mode frequency ω1 corresponding to center-of-mass motion.
Raman beatnote detunings µm from the qubit frequency ωs are de-
noted by the N = 10 dashed lines, with each spectral feature near a
given motional sideband. The height of the dashed lines represents
the intensity of each beatnote for ion i. In general each ion will be
illuminated with a different set of intensities.

ion and allow the spectral amplitude pattern to vary between ions, all characterized

by the N × N Rabi frequency matrix Ωi,n of spectral component n at ion i. Note

that the relative signs of the Rabi frequency matrix elements can be controlled by

adjusting the phase of each spectral component. This individual spectral amplitude

addressing provides N2 control parameters, and the general Ising coupling matrix

becomes

Ji,j =
N∑
n=1

Ωi,nΩj,n

N∑
m=1

ηi,mηj,mωm
µ2
n − ω2

m

(8.2)

≡
N∑
n=1

Ωi,nΩj,nFi,j,n, (8.3)

where Fi,j,n characterizes the response of Ising coupling Ji,j to spectral component n.

An exact derivation of the effective Hamiltonian given a spectrum of spin-dependent

forces gives rise to new off resonant cross terms, which can be shown to be negligible
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in the rotating wave approximation, as long as the bandwidth is fixed and the

transverse center of mass mode is set to a frequency smaller than twice the transverse

zig-zag mode frequency. Thus sums and differences of beatnotes do not directly

encroach any sideband features in the motional spectrum of the crystal [101].

We tune each beat note frequency near a unique normal mode so that Fi,j,n

has independent contributions for each n. Given a desired Ising coupling matrix Ji,j,

we use standard constrained nonlinear optimization to find the corresponding Rabi

frequency matrix Ωi,n, while minimizing the total beam intensity. The deviation

between the desired and the attained coupling was less than typical round-off errors.

However, Eq. 8.3 depends nonlinearly on the Rabi frequencies, and it is not

clear that a solution exists or how the resulting total optical power scales with N .

We first describe a formal method to invert Eq. 8.3, showing the existence

of a solution. For simplicity we force the control matrix to be lower triangular, or

set Ωi,n = 0 for i < n, with Ωi,i ≡ ωs (this still leaves N(N − 1)/2 independent

parameters). Isolating the n = i term in the sum of Eq. 8.3, we find

Ωj,i =
Ji,j −

∑
n<i Ωi,nΩj,nFi,j,n

ωsFi,j,i
(i < j). (8.4)

The left hand side defines column i of the Rabi frequency matrix, while the right

hand side depends only on matrix elements in columns to the left of column i

(n < i), resulting in a recursive definition for successive columns of Ωi,n. If the re-

sponse functions Fi,j,n are small however, the resulting Rabi frequencies will become

unreasonably large and we find that the required total optical power in this simple
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procedure generally grows exponentially with N .

We now show how to obtain a solution to inverting Eq. 8.3 that scales effi-

ciently with N . If we neglect the effect of each beatnode µn on modes with n 6= m,

Fi,j,n is separable in i and j and we can write Ji,j =
∑

nRi,nRj,n, or in matrix form,

J = RRT where the matrix Ri,n = Ωi,nηi,n
√

ωn

µ2n−ω2
n
. This quadratic equation can

be inverted by diagonalizing the symmetric matrix J with some orthogonal matrix

U so that Jdiag = UTJU, then we simply write R = UT
√

Jdiag. As long as the

eigenvalues of J are not too large, the matrix elements Ri,n will be bounded2. In

practice we can impose an upper bound on the total optical power (proportional to∑
i,n |Ωi,n|) and implement numerical optimization techniques. These produce very

accurately the desired coupling matrix, much more than the approximation above,

as the the non-close modes for each detuning have a non-negligilble effect on the

solution. However, the above approximation can be used to quickly calculate an

initial guess for R.

8.3 Examples

We now present two example solutions for Ωi,n that produce interesting inter-

action graph topologies. First we calculate a Rabi frequency matrix that results in

a 2D square lattice of nearest-neighbor antiferromagnetic couplings with N = 25

ions (5 × 5 grid with periodic boundary conditions), shown in Figs. 8.2a-b. Next

we produce a 2D Kagome lattice of antiferromagnetic interactions, a geometry that

can support high levels of geometrical frustration [104], shown in Figs. 8.2d-e. In

2To avoid negative values in Jdiag we may redefine J′ = J + E1 with no effect on the physics
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both cases we assume the center-of-mass (COM) mode to be ω1/2π = 5 MHz , and

a fixed total optical intensity corresponding to
∑

i,n |Ωi,n| = 1 MHz . The beatnote

frequencies µm are each tuned blue of the mode m sideband by a fraction fs of the

spacing ω1−ω2 between the most closely-spaced modes (the COM and “tilt” modes,

see Fig. 8.1), which itself scales as logN/N2. In these examples, the sparse nearest-

neighbor nature of the interaction graphs require that most of the Ising interactions

vanish, indicating a high level of coherent control over all of the Ising couplings.

8.4 Implementation

In order to generate a unique spectrum of Raman beams for each of N ions,

some type of individual addressing is necessary. For simplicity, we assume one

of the two Raman beams is uniform and monochromatic, and the high frequency

beatnote near the qubit frequency ωs or other global offset frequencies can be set

by tuning this monochromatic beam. We focus attention on providing the requisite

frequencies of the second beam, spread over a range given by the bandwidth of the

transverse motional mode frequencies of the ion chain, typically in the range 1− 5

MHz . We suggest three possible methods for providing spatial dependent frequency

modulation to one of the Raman beams. The first method (Fig. 8.3 and Fig.8.4)

splits a single beam with a linear chain of N individual optical modulators (e.g.,

acoustooptic or electrooptic devices), driven by N independent arbitrary waveform

generators.

The second method splits a single monochromatic beam into a N ×N square
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Figure 8.2: (a) Calculated Rabi frequency matrix Ωi,n to generate
2D square lattice shown in (b), using the linear chain of N = 25
ions shown in (c). The ion index refers to the order in the linear
chain. The attained Ji,j nearest-neighbor is 27.6 Hz for fs = 0.1.
(d) Calculated Rabi frequency matrix Ωi,n to generate 2D Kagome
lattice shown in (e) using a linear chain of N = 36 ions. The attained
Ji,j nearest-neighbor is 93.4 Hz for fs = 0.03. In both cases the total
optical intensity corresponds to a Rabi frequency of 1 MHz if focused
on a single ion, the nearest-neighbor couplings are antiferromagnetic
and we impose periodic boundary conditions.
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Figure 8.3: Schematic for individual spectral addressing a linear chain
of N ions. A laser beam is split into a linear array of spots that each
traverse N independent AOMs or EOMs, driven by N independent
AWGs. Alternatively, as discussed in the text, the beam can be
broken into an array of N2 beams that strike a N × N array of
micromirrors[105] each independently modulated, or a spatial light
modulator.

grid and directs them onto a 2D array of N2 micromirrors [105] that are each indi-

vidually phase modulated at a single frequency (and phase) [106] and finally focused

on the ion chain. The third method again splits the beam into an N × N grid of

beams, this time with the vertical direction split by a single AOM, correlating beam

position to frequency. This beam is then directed into a spatial light modulator that

acts to mask (or phase shift) each of the N × N beams independently, and again

focused onto the ion chain, as shown in figure 8.5. In these implementations, it may

be desirable to work with a uniformly spaced array of ions in the linear trap, so that

the modulating elements are also uniformly spaced. This can be accomplished by

using a quartic or higher order linear trap [78, 107].
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Figure 8.4: A phase mask splits a single beam into N beams, which
are then modulated by N idependent AOMs, each one driven with
N independent amplitudes and phases (but the same frequencies,
to imprint the same detunings for each mode for each ion). The
modulated and deflected beams are then imaged onto the ions.
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Figure 8.5: Schematic for individual spectral addressing a linear chain
of N ions. The beam is again split into a N×N array, this time with
a single acoustooptic modulator providing the vertical fanout, cor-
relating spatial row with optical frequency. The grid of beams then
enters a spatial light modulator, which can be a static or reconfig-
urable liquid crystal mask, that attenuate and/or phase shift each
pixel appropriately before the columns are imaged onto the ions.
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8.5 Scalability

As the number of spins N grows, the optical modulation scheme becomes more

complex, with either N or N2 elements required. However, our schemes restrict most

of the resources’ overhead to the design and fabrication of the micro-mirrors or phase

modulator. As the ions are equally spaced, the modulator can simply be imaged

onto the ion chain without changing imaging optics.

We now estimate how the Ising couplings are expected to scale with the num-

ber of spins along with errors due to experimental fluctuations, phonon creation and

spontaneous emission scattering, assuming a fixed transverse mode bandwidth. The

probability of phonon creation scales as pph =
∑

i,m

(
ηi,mΩi,m

ωm−µm

)2

. The off-resonant

optical dipole forces are accompanied by a finite rate of spontaneous emission scat-

tering, given by Γ = ε
∑

i,m |Ωi,m|, where ε� 1 is the ratio of excited state linewidth

to Raman detuning. The scaling of these potential errors depends upon the par-

ticular graph, so we consider two extremes. A uniform fully-connected interaction

graph can be trivially generated with a single spectral component tuned close to the

COM mode with a detuning |ω1 − µ|/ω1 � logN/N2. For a fixed level of phonon

error, the total optical intensity should be reduced as logN/N , taking into account

the intensity reduction per ion as the beam is expanded to accommodate the lin-

early expanding chain in space. In this case the uniform Ising coupling is expected

to scale as N |Ji,j| ∝ logN/N2, and the spontaneous emission rate per spin actually

decreases with N . For a sparse interaction graph, such as a 1D (nearest-neighbor)

Ising model, all modes are involved, and this time for a fixed phonon error the total
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Figure 8.6: Scaling of the nearest-neighbor coupling for the case of the
production of a 1D Ising chain for N = 3 to N = 33 ions. The total
optical intensity is fixed with

∑
i,n |Ωi,n| = 1 MHz , and each spec-

tral component is detuned from its motional sideband by a fraction
fs = 0.03 of smallest mode splitting, with a center-of-mass (COM)
frequency ω1/2π = 5 MHz . We find that the resulting Ising coupling
scales roughly as 1/N .

optical intensity can remain fixed, since the typical mode splitting falls only as 1/N ,

while spontaneous emission per ion is fixed. The calculation in Fig. 8.6 shows that

the resulting nearest-neighbor interaction scales as Ji,i+1 ∝ 1/N . In either case of

fully-connected or local Ising model, we thus expect to be able to support significant

Ising interaction strengths with up to a few hundred spins.

For a general Ising graph, from Eq. 8.3 we find that each pairwise interaction

Ji,j depends upon a balance of N terms, and errors will accumulate with N from
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fluctuations of relative optical intensities of the various spectral components of the

beam (which should be stable if the spectral components are generated with high

quality RF sources and modulators as shown in Fig. 8.3) or their detunings from

the motional sidebands. The most important source will likely be fluctuations in the

motional trap frequencies, where we expect the fractional error in the Ising coupling

to grow as
√
N(δωm/ωm), so that a typical fractional fluctuation in the motional

trapping frequencies of ∼ 10−3 might be expected to cause Ising coupling errors at

a level of about 1% for N ∼ 100 ions.

The final limitation on simulation time is effective spin coherence. Assuming

the qubits experience Markovian noise, the coherence time of the ensemble will go

as 1/N, so that a qubit coherence time of ∼ 10 s (as is typical for hyperfine qubits)

will allow for a simulation time on order ∼ 100 ms for ∼ 100 ions.

8.6 Conclusion

The scheme presented here can also be applied to more general Heisenberg

spin models involving other noncommuting spin-spin interactions, such as the XY

model or the 2D hexagonal Kitaev model relevant to topological quantum degrees

of freedom [108]. Here, additional Raman beams that couple to the other axes of

motion can be exploited This scheme may also be used to study phase transitions

in a quantum transverse magnetic field [109]. Alternatively, a single direction of

motion can be used as discussed above, with a stroboscopic alternation between

Raman laser beams with different beat note phases as the various Ising interactions
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in the Hamiltonian are applied sequentially. Here, we employ the Trotter expansion

of the evolution operator [5, 110] and switch the various Ising terms rapidly enough

so that higher order terms in the expansion can safely be neglected. Although this

discussion concentrated on a linear array of ions in space, these ideas apply in general

to any stable ion crystal where the motional sidebands are resolved and prepared in

the Lamb-Dicke limit, and should be useful for higher-dimensional trap geometries

such as trap arrays [98, 99] or Penning traps [97, 111].
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Appendix A

Linear Trap External Pi Filter

DC output pads 

DC input pads RF coupling DIP 
Switch 

C1 Inductor 

C2 

Figure A.1: PCB mask, pads and traces for linear trap pi-filter. C1
and C2 are high voltage ceramic capacitors of 0.1µF each; the induc-
tors are 100µH each.

In A.1 the Printed Circuit Board (PCB) mask is presented. There are several

things to take note of in this design:

1. This filter is based upon a Pi filter design, where the RF rejecting component

is an inductor (an alternate design uses a resistor instead). However numerical

simulations indicated that the addition of a resistor in series with the inductor
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gave a sharper frequency response. Therefore a resistor was added to the

actual circuit, however the mask in A.1 was the one ordered and therefore the

resistor is not indicated in the silkscreeen.

2. The circuit includes a DIP switch near the output end. This switch selects

between coupling the RF pickup on a DC channel to an output, through a

capacitor to ground, or to an output. This is useful for measuring the RF

pickup on the DC electrodes through capacitive coupling to the RF electrode.
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Appendix B

Optical Diagram Legend

Optical fiber 

Cylindrical lens lens 

mirror 
Micrometer 

Oscillator Beam splitter 

Prism Pair Diode 
Mixer Pinhole 

Diagram Symbol Legend 

Laser 

Waveplate 

Cylindrical 
 mirror 

AOM 

EOM 

Figure B.1: This is the legend of all symbols used in optical diagrams
in this work.
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Appendix C

AWG Function Library

1 // AWG dll . cpp : Def ines the expor ted f unc t i on s f o r the DLL app l i c a t i o n

.

2 #include ” s tda fx . h”

3 #include <windows . h>

4 #include <math . h>

5 #include <s t d l i b . h>

6 #include ”AWG dll . h”

7 #include ” da11000 d l l impor t . h”

8

9 const double num=2∗3.14159265358979323846/1000; /∗ f o r speed , f requnecy

in MHz ∗/

10

11 struct SegmentStruct //need to b u i l d an array o f t h e s e

12 {

13 DWORD SegmentNum ; // Current Segment Number

14 unsigned short ∗SegmentPtr ; // Pointer to curren t user segment

15 DWORD NumPoints ; // Number o f po in t s in segment

16 DWORD NumLoops ; // Number o f t imes to repea t segment ( a p p l i e s to next

segment )

17 DWORD BeginPadVal ; // Pad va lue f o r beg inn ing o f t r i g g e r e d segment

18 DWORD EndingPadVal ; // Pad va lue f o r ending o f t r i g g e r e d segment

19 DWORD TrigEn ; // I f > 0 then wai t f o r t r i g g e r b e f o r e going to next
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segment .

20 DWORD NextSegNum ; // Next segment to jump to a f t e r complet ion

21 // o f curren t segment a c t i v i t i e s

22 } ;

23

24 struct wave

25 {

26 double f ;

27 double phase ;

28 double amp ;

29 } ;

30

31 struct l inear param

32 {

33

34 double f1 , p1 , f2 , p2 , f3 , p3 ;

35 f loat a1 , a2 , a3 ;

36 double s l ope ;

37 } ;

38

39 struct sb param

40 {

41 unsigned long modes ;

42 double ∗ f ;

43 double ∗ durat ion ;

44 unsigned long OPtime ;

45 unsigned short p u l s e s ;
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46 } ;

47

48 int make64x (unsigned long s i z e )

49 {

50 d i v t r e s u l t=div ( s i z e , 6 4 ) ;

51 i f ( r e s u l t . rem>0)

52 return(64− r e s u l t . rem) ;

53 else

54 return (0 ) ;

55 }

56

57 d e c l s p e c ( d l l e x p o r t ) long s i d e b a n d c o o l i n g s e q u e n t i a l (unsigned

short ∗a , unsigned long modes , double ∗ f ,

58 unsigned long ∗duration , unsigned long OPtime ,

unsigned short p u l s e s )

59 {

60 unsigned long i , j ,m, t =0;

61

62 for ( i =0; i<p u l s e s ; i++)

63 for (m=0;m<modes ; m++)

64 {

65 for ( j =0; j<round ( s q r t ( (double ) ( (double ) p u l s e s /(double ) ( pu l ses−i )

) ) ∗(double ) durat ion [m] ) ; j++) /∗ t ime i s in NANOSECONDS ∗/

66 {

67 a [ t ] = (unsigned short ) round (2048−2048∗ s i n (num∗ f [m]∗ t ) ) ;

68 t++;

69 }
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70 for ( j =0; j<OPtime ; j++)

71 {

72 a [ t ]=2048;

73 t++;

74 }

75 }

76 //Dirty hack to de lay wave to match Raman 1

77

78 for ( i =0; i <150; i++)

79 {

80 a [ t ]=(unsigned short ) (2048) ;

81 t++;

82 }

83

84 unsigned long pad=make64x ( t ) ;

85 for ( j =0; j<pad ; j++)

86 {

87 a [ t ]=2048;

88 t++;

89 }

90 return ( t ) ;

91 }

92

93 d e c l s p e c ( d l l e x p o r t ) unsigned long c a l c u l a t e s b c a r r a y s i z e (unsigned

long modes , double ∗ f , unsigned long ∗duration , unsigned long

OPtime , unsigned short p u l s e s )

94 {
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95 unsigned long i , j ,m, t =0;

96

97 for ( i =0; i<p u l s e s ; i++)

98 for (m=0;m<modes ; m++)

99 {

100 for ( j =0; j<round ( s q r t ( (double ) ( (double ) p u l s e s /(double ) ( pu l ses−i )

) ) ∗(double ) durat ion [m] ) ; j++) /∗ t ime i s in NANOSECONDS ∗/

101 t++;

102 t+=OPtime ;

103 }

104 t +=150;

105 t+=make64x ( t ) ;

106 return ( t ) ;

107 }

108

109 d e c l s p e c ( d l l e x p o r t ) long f l a t (unsigned short ∗a , unsigned long &t ,

unsigned long durat ion )

110 {

111 for (unsigned long i =0; i<durat ion ; i++)

112 {

113 a [ t ]=2048;

114 t++;

115 }

116 return ( t ) ;

117 }

118

119 d e c l s p e c ( d l l e x p o r t ) unsigned long exp s imu la t i on (unsigned short ∗a ,
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double ∗ f , double ∗p , double ∗amp,

120 unsigned long ∗ durat ion )

121 //amp has 6 va l u e s

122 // | −| |−−−−−−\ | −|

123 // 0 Ci : 1 , Cf :2 ,3 ,4 5

124 // durat ion has 5 : | − | |−−−−−−\ | −|

125 // 0 1 2 3 4

126 //CAREFUL! Labview c a l l s a func t i on to f i nd the l en g t h o f t h i s waveform

. Update t h i s f unc t i on in the con t r o l program i f

127 //you change t h i s f unc t i on

128 {

129 unsigned long i ;

130 int pad ;

131 double s l ope=−abs (amp [ 2 ] ) ;

132

133 unsigned long t =0;

134

135 for ( i =0; i<durat ion [ 0 ] ; i++)

136 {

137 a [ t ]=(unsigned short ) (2048.5+amp [ 0 ] ∗ s i n (num∗ f [ 0 ] ∗ t+p [ 0 ] ) ) ;

138 t++;

139 }

140 for ( i =0; i<durat ion [ 1 ] ; i++)

141 {

142 a [ t ]=2048;

143 t++;

144 }
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145 for ( i =0; i<durat ion [ 2 ] ; i++)

146 {

147 a [ t ]=(unsigned short ) (2048.5+amp [ 7 ] ∗ s i n (num∗ f [ 4 ] ∗ t )+//comp2

148 amp[6]∗(1− exp ( i / s l ope ) ) ∗ s i n (num∗ f [ 3 ] ∗ t )+//comp1 fo r c a r r i e r

149 exp ( i / s l ope ) ∗amp [ 1 ] ∗ s i n (num∗ f [ 0 ] ∗ t+p [ 1 ] )+// c a r r i e r

150 amp [ 3 ] ∗ s i n (num∗ f [ 1 ] ∗ t )+// rsb

151 amp [ 4 ] ∗ s i n (num∗ f [ 2 ] ∗ t+p [ 2 ] ) ) ; // bsb

152 t++;

153 }

154 for ( i =0; i<durat ion [ 3 ] ; i++)

155 {

156 a [ t ]=2048;

157 t++;

158 }

159 for ( i =0; i<durat ion [ 4 ] ; i++)

160 {

161 a [ t ]=(unsigned short ) (2048.5+amp [ 5 ] ∗ s i n (num∗ f [ 0 ] ∗ t+p [ 3 ] ) ) ;

162 t++;

163 }

164

165 for ( i =0; i <150; i++)

166 {

167 a [ t ]=(unsigned short ) (2048) ;

168 t++;

169 }

170

171 pad=make64x ( t ) ;
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172 for ( i =0; i <(unsigned long ) pad ; i++)

173 {

174 a [ t ]=2048;

175 t++;

176 }

177

178 return ( t ) ;

179 }

180

181 d e c l s p e c ( d l l e x p o r t ) unsigned short ∗ f i n d a d d r e s s (unsigned short ∗a

)

182 {

183 return ( a ) ;

184 }

185

186 d e c l s p e c ( d l l e x p o r t ) unsigned long BuildArray ( SegmentHdl ∗S , unsigned

short ∗a )

187 {

188 unsigned long i , j , t =0;

189 /∗

190 s t r u c t SegmentStruct //need to b u i l d an array o f t h e s e

191 {

192 DWORD SegmentNum ; // Current Segment Number

193 unsigned shor t ∗SegmentPtr ; // Pointer to curren t user segment

194 DWORD NumPoints ; // Number o f po in t s in segment

195 DWORD NumLoops ; // Number o f t imes to repea t segment ( a p p l i e s to next

segment )
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196 DWORD BeginPadVal ; // Pad va lue f o r beg inn ing o f t r i g g e r e d segment

197 DWORD EndingPadVal ; // Pad va lue f o r ending o f t r i g g e r e d segment

198 DWORD TrigEn ; // I f > 0 then wai t f o r t r i g g e r b e f o r e going to next

segment .

199 DWORD NextSegNum ; // Next segment to jump to a f t e r comple t ion

200 // o f curren t segment a c t i v i t i e s

201 } ; ∗/

202

203

204 for ( i =0; i <(unsigned long ) (∗∗S)−>NumOfSegments ; i++)

205 {

206 for ( j =0; j <(unsigned long ) (∗ (∗∗S)−>segment [ i ] . SegmentPtr )−>

WaveSize ; j++)

207 {

208 a [ t ]=(∗(∗∗S)−>segment [ i ] . SegmentPtr )−>wave [ j ] ;

209 t++;

210 }

211 }

212 return ( (unsigned long ) (∗∗S)−>NumOfSegments ) ;

213 }

214

215 d e c l s p e c ( d l l e x p o r t ) unsigned long BuildDA11000Array ( SegmentHdl ∗S ,

SegmentStruct ∗a )

216 {

217 unsigned long i ;

218 /∗

219 s t r u c t SegmentStruct //need to b u i l d an array o f t h e s e
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220 {

221 DWORD SegmentNum ; // Current Segment Number

222 unsigned shor t ∗SegmentPtr ; // Pointer to curren t user segment

223 DWORD NumPoints ; // Number o f po in t s in segment

224 DWORD NumLoops ; // Number o f t imes to repea t segment ( a p p l i e s to next

segment )

225 DWORD BeginPadVal ; // Pad va lue f o r beg inn ing o f t r i g g e r e d segment

226 DWORD EndingPadVal ; // Pad va lue f o r ending o f t r i g g e r e d segment

227 DWORD TrigEn ; // I f > 0 then wai t f o r t r i g g e r b e f o r e going to next

segment .

228 DWORD NextSegNum ; // Next segment to jump to a f t e r comple t ion

229 // o f curren t segment a c t i v i t i e s

230 } ; ∗/

231 for ( i =0; i <(unsigned long ) (∗∗S)−>NumOfSegments ; i++)

232 {

233 a [ i ] . BeginPadVal=(∗∗S)−>segment [ i ] . BeginPadVal ;

234 a [ i ] . EndingPadVal=(∗∗S)−>segment [ i ] . EndingPadVal ;

235 a [ i ] . NextSegNum=(∗∗S)−>segment [ i ] . NextSegNum ;

236 a [ i ] . NumLoops=(∗∗S)−>segment [ i ] . NumLoops ;

237 a [ i ] . SegmentNum=(∗∗S)−>segment [ i ] . SegmentNum ;

238 a [ i ] . TrigEn=(∗∗S)−>segment [ i ] . TrigEn ;

239 a [ i ] . NumPoints=(∗(∗∗S)−>segment [ i ] . SegmentPtr )−>WaveSize ;

240 a [ i ] . SegmentPtr =(∗(∗∗S)−>segment [ i ] . SegmentPtr )−>wave ;

241 }

242 return ( (unsigned long ) (∗∗S)−>NumOfSegments ) ;

243 }

244
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245 d e c l s p e c ( d l l e x p o r t ) bool LoadSegmentHdl ( SegmentHdl ∗S)

246 {

247 bool e r r o r=fa l se ;

248 SegmentStruct ∗a= new SegmentStruct [ (∗∗ S)−>NumOfSegments ] ; // don ’ t

f o r g e t d e l e t e [ (∗∗S)−>NumOfSegments ]

249 BuildDA11000Array (S , a ) ;

250 // INITIALIZE BOARD

251 da11000 SetTriggerMode (1 , 0 , 0 ) ;

252 da11000 CreateSegments (1 , 1 , (∗∗S)−>NumOfSegments , a ) ;

253

254 delete [ (∗∗ S)−>NumOfSegments ] a ;

255 return ( e r r o r ) ;

256 }
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Appendix D

Mathematica ROI and Discriminator Selection Script

The following script is called after taking 1000 shots of the ions pumped dark

and then 1000 shots of the ions rotated to bright.

It is called from the Labview control program automatically after the shots

have been taken, run as a command line script with the following parameters -

“dark.csv” - “bright.csv” - Nions - Nimages - cutoff (0 - 1)

The script (“ROI auto selection.m”)is created and run from the directory of the

data files. example :

math - script “ROI auto selection.m” “dark Shots.csv” “bright Shots.csv” 4 1000

0.5

DarkDataT = Transpose[Import[$CommandLine[[4]]]];DarkDataT = Transpose[Import[$CommandLine[[4]]]];DarkDataT = Transpose[Import[$CommandLine[[4]]]];

dataT = Transpose[Import[$CommandLine[[5]]]];dataT = Transpose[Import[$CommandLine[[5]]]];dataT = Transpose[Import[$CommandLine[[5]]]];

Nions = ToExpression[$CommandLine[[6]]];Nions = ToExpression[$CommandLine[[6]]];Nions = ToExpression[$CommandLine[[6]]];

MaxDataT = Max[dataT];MaxDataT = Max[dataT];MaxDataT = Max[dataT];

Nimages = ToExpression[$CommandLine[[7]]];Nimages = ToExpression[$CommandLine[[7]]];Nimages = ToExpression[$CommandLine[[7]]];

width = Dimensions[dataT][[2]]/Nimages;width = Dimensions[dataT][[2]]/Nimages;width = Dimensions[dataT][[2]]/Nimages;

height = Dimensions[dataT][[1]];height = Dimensions[dataT][[1]];height = Dimensions[dataT][[1]];

This section sums all the frames and then normalizes the image. It also cal-

culates the average value of both the dark and bright pixels.

NormImageDark = Sum[DarkDataT[[All,widthx+ 1;;(x+ 1)width]], {x, 0,Nimages− 1}];NormImageDark = Sum[DarkDataT[[All,widthx+ 1;;(x+ 1)width]], {x, 0,Nimages− 1}];NormImageDark = Sum[DarkDataT[[All,widthx+ 1;;(x+ 1)width]], {x, 0,Nimages− 1}];

NormImage = Sum[dataT[[All,widthx+ 1;;(x+ 1)width]], {x, 0,Nimages− 1}];NormImage = Sum[dataT[[All,widthx+ 1;;(x+ 1)width]], {x, 0,Nimages− 1}];NormImage = Sum[dataT[[All,widthx+ 1;;(x+ 1)width]], {x, 0,Nimages− 1}];
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NormImageSubtracted = NormImage− NormImageDark;NormImageSubtracted = NormImage− NormImageDark;NormImageSubtracted = NormImage− NormImageDark;

NormImageSubtracted/=Max[NormImageSubtracted];NormImageSubtracted/=Max[NormImageSubtracted];NormImageSubtracted/=Max[NormImageSubtracted];

IonImage = NormImageSubtracted/.x /;x < ToExpression[$CommandLine[[8]]]->0;IonImage = NormImageSubtracted/.x /;x < ToExpression[$CommandLine[[8]]]->0;IonImage = NormImageSubtracted/.x /;x < ToExpression[$CommandLine[[8]]]->0;

Here we find the vertical Region for ion1, VertStart and VertEnd that define

the vertical edges. We find VertStart by starting at 0, and then scan the horizontal

pixels, looking for brightness > threshold. If no non-zero pixels are found, VertStart

is shifted by 1 and we scan again ....VertEnd starts from the height, and we scan

along the horizontals, if no bright pixel is found we shift to height - 1 and scan again

and so on ...

VertStart = 0;VertStart = 0;VertStart = 0;

VertEnd = height;VertEnd = height;VertEnd = height;

For[n = 1, n < height + 1, n++,For[n = 1, n < height + 1, n++,For[n = 1, n < height + 1, n++,

For[i = 1, i < width + 1, i++,For[i = 1, i < width + 1, i++,For[i = 1, i < width + 1, i++,

If[IonImage[[n, i]] > 0,VertStart = n; i = width + 1;n = height + 1]]]If[IonImage[[n, i]] > 0,VertStart = n; i = width + 1;n = height + 1]]]If[IonImage[[n, i]] > 0,VertStart = n; i = width + 1;n = height + 1]]]

For[n = height, n > VertStart, n–,For[n = height, n > VertStart, n–,For[n = height, n > VertStart, n–,

For[i = 1, i < width + 1, i++,For[i = 1, i < width + 1, i++,For[i = 1, i < width + 1, i++,

If[IonImage[[n, i]] > 0,VertEnd = n; i = width + 1;n = 1]]]If[IonImage[[n, i]] > 0,VertEnd = n; i = width + 1;n = 1]]]If[IonImage[[n, i]] > 0,VertEnd = n; i = width + 1;n = 1]]]

If[VertEnd > height,VertEnd = height];If[VertEnd > height,VertEnd = height];If[VertEnd > height,VertEnd = height];

VertStart = If[VertStart > 0,VertStart, 1];VertStart = If[VertStart > 0,VertStart, 1];VertStart = If[VertStart > 0,VertStart, 1];

Export[“uncutoff image ” <> DateString[{“Year”, “Month”, “Day”}] <> “.jpg”,Export[“uncutoff image ” <> DateString[{“Year”, “Month”, “Day”}] <> “.jpg”,Export[“uncutoff image ” <> DateString[{“Year”, “Month”, “Day”}] <> “.jpg”,

Image[IonImage[[All,All]]]]Image[IonImage[[All,All]]]]Image[IonImage[[All,All]]]]

HEdge = Join[{{1, 0}},Table[{1, 1}, {i, 1,Nions}]]HEdge = Join[{{1, 0}},Table[{1, 1}, {i, 1,Nions}]]HEdge = Join[{{1, 0}},Table[{1, 1}, {i, 1,Nions}]]

center = VertStart + Floor[(VertEnd− VertStart)/2];center = VertStart + Floor[(VertEnd− VertStart)/2];center = VertStart + Floor[(VertEnd− VertStart)/2];
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For[i = 1, i<=Nions, i++,For[i = 1, i<=Nions, i++,For[i = 1, i<=Nions, i++,

For[j = HEdge[[i, 2]] + 1, j < width, j++,For[j = HEdge[[i, 2]] + 1, j < width, j++,For[j = HEdge[[i, 2]] + 1, j < width, j++,

If[Count[Table[N [IonImage[[v, j]]], {v,VertStart,VertEnd, 1}], 0.]If[Count[Table[N [IonImage[[v, j]]], {v,VertStart,VertEnd, 1}], 0.]If[Count[Table[N [IonImage[[v, j]]], {v,VertStart,VertEnd, 1}], 0.]

< (3(VertEnd− VertStart))/4,HEdge[[i+ 1, 1]] = j;< (3(VertEnd− VertStart))/4,HEdge[[i+ 1, 1]] = j;< (3(VertEnd− VertStart))/4,HEdge[[i+ 1, 1]] = j;

For[k = j, k < width, k++,For[k = j, k < width, k++,For[k = j, k < width, k++,

If[Count[Table[N [IonImage[[v, k]]], {v,VertStart,VertEnd, 1}], 0.] >If[Count[Table[N [IonImage[[v, k]]], {v,VertStart,VertEnd, 1}], 0.] >If[Count[Table[N [IonImage[[v, k]]], {v,VertStart,VertEnd, 1}], 0.] >

(3(VertEnd− VertStart))/4,HEdge[[i+ 1, 2]] = k − 1; k = width; j = width](3(VertEnd− VertStart))/4,HEdge[[i+ 1, 2]] = k − 1; k = width; j = width](3(VertEnd− VertStart))/4,HEdge[[i+ 1, 2]] = k − 1; k = width; j = width]

]]; ]]]]; ]]]]; ]]

HEdge = Delete[HEdge, 1]HEdge = Delete[HEdge, 1]HEdge = Delete[HEdge, 1]

dataFrames = Table[dataT[[VertStart;;VertEnd,widthx+ 1;;(x+ 1)width]],dataFrames = Table[dataT[[VertStart;;VertEnd,widthx+ 1;;(x+ 1)width]],dataFrames = Table[dataT[[VertStart;;VertEnd,widthx+ 1;;(x+ 1)width]],

{x, 0,Nimages− 1, 1}];{x, 0,Nimages− 1, 1}];{x, 0,Nimages− 1, 1}];

darkFrames = Table[DarkDataT[[VertStart;;VertEnd,widthx+ 1;;(x+ 1)width]],darkFrames = Table[DarkDataT[[VertStart;;VertEnd,widthx+ 1;;(x+ 1)width]],darkFrames = Table[DarkDataT[[VertStart;;VertEnd,widthx+ 1;;(x+ 1)width]],

{x, 0,Nimages− 1, 1}];{x, 0,Nimages− 1, 1}];{x, 0,Nimages− 1, 1}];

HistogramDataBright = Table[Total[Flatten[dataFrames[[j,All,HEdge[[i, 1]];;HistogramDataBright = Table[Total[Flatten[dataFrames[[j,All,HEdge[[i, 1]];;HistogramDataBright = Table[Total[Flatten[dataFrames[[j,All,HEdge[[i, 1]];;

HEdge[[i, 2]]]]]], {i,Nions}, {j, 1,Nimages}];HEdge[[i, 2]]]]]], {i,Nions}, {j, 1,Nimages}];HEdge[[i, 2]]]]]], {i,Nions}, {j, 1,Nimages}];

HistogramDataDark = Table[Total[Flatten[darkFrames[[j,All,HEdge[[i, 1]];;HistogramDataDark = Table[Total[Flatten[darkFrames[[j,All,HEdge[[i, 1]];;HistogramDataDark = Table[Total[Flatten[darkFrames[[j,All,HEdge[[i, 1]];;

HEdge[[i, 2]]]]]], {i,Nions}, {j, 1,Nimages}];HEdge[[i, 2]]]]]], {i,Nions}, {j, 1,Nimages}];HEdge[[i, 2]]]]]], {i,Nions}, {j, 1,Nimages}];

Export[“Histograms ” <> DateString[{“Year”, “Month”, “Day”}] <> “.pdf”,Export[“Histograms ” <> DateString[{“Year”, “Month”, “Day”}] <> “.pdf”,Export[“Histograms ” <> DateString[{“Year”, “Month”, “Day”}] <> “.pdf”,

Table[Histogram[{HistogramDataDark[[i]],HistogramDataBright[[i]]},Table[Histogram[{HistogramDataDark[[i]],HistogramDataBright[[i]]},Table[Histogram[{HistogramDataDark[[i]],HistogramDataBright[[i]]},

{500}, ImageSize->300], {i,Nions}]//TableForm]{500}, ImageSize->300], {i,Nions}]//TableForm]{500}, ImageSize->300], {i,Nions}]//TableForm]

Export[“Histogram tables dark” <> DateString[{“Year”, “Month”, “Day”}] <> “.xls”,Export[“Histogram tables dark” <> DateString[{“Year”, “Month”, “Day”}] <> “.xls”,Export[“Histogram tables dark” <> DateString[{“Year”, “Month”, “Day”}] <> “.xls”,

Table[Table[{#[[1, i]],#[[2, i]]}, {i,Length[#[[2]]]}]&Table[Table[{#[[1, i]],#[[2, i]]}, {i,Length[#[[2]]]}]&Table[Table[{#[[1, i]],#[[2, i]]}, {i,Length[#[[2]]]}]&

[HistogramList[HistogramDataDark[[j]]]], {j,Nions}]][HistogramList[HistogramDataDark[[j]]]], {j,Nions}]][HistogramList[HistogramDataDark[[j]]]], {j,Nions}]]

Export[“Histogram tables bright” <> DateString[{“Year”, “Month”, “Day”}]Export[“Histogram tables bright” <> DateString[{“Year”, “Month”, “Day”}]Export[“Histogram tables bright” <> DateString[{“Year”, “Month”, “Day”}]

<> “.xls”,Table[Table[{#[[1, i]],<> “.xls”,Table[Table[{#[[1, i]],<> “.xls”,Table[Table[{#[[1, i]],
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#[[2, i]]}, {i,Length[#[[2]]]}]&[HistogramList[HistogramDataBright[[j]]]], {j,Nions}]]#[[2, i]]}, {i,Length[#[[2]]]}]&[HistogramList[HistogramDataBright[[j]]]], {j,Nions}]]#[[2, i]]}, {i,Length[#[[2]]]}]&[HistogramList[HistogramDataBright[[j]]]], {j,Nions}]]

ErrorThreshold = Table[{0, 0}, {i,Nions}];ErrorThreshold = Table[{0, 0}, {i,Nions}];ErrorThreshold = Table[{0, 0}, {i,Nions}];

Steps = 50;Steps = 50;Steps = 50;

For[i = 1, i < Nions + 1, i++,For[i = 1, i < Nions + 1, i++,For[i = 1, i < Nions + 1, i++,

DL = HistogramList[HistogramDataDark[[i]], {Steps}];DL = HistogramList[HistogramDataDark[[i]], {Steps}];DL = HistogramList[HistogramDataDark[[i]], {Steps}];

BL = HistogramList[HistogramDataBright[[i]], {Steps}];BL = HistogramList[HistogramDataBright[[i]], {Steps}];BL = HistogramList[HistogramDataBright[[i]], {Steps}];
We match the histogram dimensions

DiffL = Min[BL[[1]]]−Min[DL[[1]]];DiffL = Min[BL[[1]]]−Min[DL[[1]]];DiffL = Min[BL[[1]]]−Min[DL[[1]]];

DiffU = Max[BL[[1]]]−Max[DL[[1]]];DiffU = Max[BL[[1]]]−Max[DL[[1]]];DiffU = Max[BL[[1]]]−Max[DL[[1]]];

If[DiffL>=0,If[DiffL>=0,If[DiffL>=0,

{BLNew1 = Join[Table[Min[BL[[1]]]− Abs[DiffL] + (n− 1) ∗ Steps,{BLNew1 = Join[Table[Min[BL[[1]]]− Abs[DiffL] + (n− 1) ∗ Steps,{BLNew1 = Join[Table[Min[BL[[1]]]− Abs[DiffL] + (n− 1) ∗ Steps,

{n, 1, Floor[Abs[DiffL]/Steps]}],BL[[1]]];{n, 1, Floor[Abs[DiffL]/Steps]}],BL[[1]]];{n, 1, Floor[Abs[DiffL]/Steps]}],BL[[1]]];

BLNew2 = Join[Table[0, {n, 1,Floor[DiffL/Steps]}],BL[[2]]];BLNew2 = Join[Table[0, {n, 1,Floor[DiffL/Steps]}],BL[[2]]];BLNew2 = Join[Table[0, {n, 1,Floor[DiffL/Steps]}],BL[[2]]];

BLNewInt = Join[{BLNew1}, {BLNew2}];BLNewInt = Join[{BLNew1}, {BLNew2}];BLNewInt = Join[{BLNew1}, {BLNew2}];

DLNewInt = DL; },DLNewInt = DL; },DLNewInt = DL; },

{DLNew1 = Join[Table[Min[DL[[1]]]− Abs[DiffL] + (n− 1) ∗ Steps,{DLNew1 = Join[Table[Min[DL[[1]]]− Abs[DiffL] + (n− 1) ∗ Steps,{DLNew1 = Join[Table[Min[DL[[1]]]− Abs[DiffL] + (n− 1) ∗ Steps,

{n, 1,Floor[Abs[DiffL]/Steps]}],DL[[1]]];{n, 1,Floor[Abs[DiffL]/Steps]}],DL[[1]]];{n, 1,Floor[Abs[DiffL]/Steps]}],DL[[1]]];

DLNew2 = Join[Table[0, {n, 1,Floor[Abs[DiffL]/Steps]}],DL[[2]]];DLNew2 = Join[Table[0, {n, 1,Floor[Abs[DiffL]/Steps]}],DL[[2]]];DLNew2 = Join[Table[0, {n, 1,Floor[Abs[DiffL]/Steps]}],DL[[2]]];

DLNewInt = Join[{DLNew1}, {DLNew2}];DLNewInt = Join[{DLNew1}, {DLNew2}];DLNewInt = Join[{DLNew1}, {DLNew2}];

BLNewInt = BL; }];BLNewInt = BL; }];BLNewInt = BL; }];

If[DiffU>=0,If[DiffU>=0,If[DiffU>=0,

{DLNew3 = Join[DLNewInt[[1]],Table[Max[DLNewInt[[1]]] + n ∗ Steps,{DLNew3 = Join[DLNewInt[[1]],Table[Max[DLNewInt[[1]]] + n ∗ Steps,{DLNew3 = Join[DLNewInt[[1]],Table[Max[DLNewInt[[1]]] + n ∗ Steps,

{n, 1,Floor[DiffU/Steps]}]];{n, 1,Floor[DiffU/Steps]}]];{n, 1,Floor[DiffU/Steps]}]];

DLNew4 = Join[DLNewInt[[2]],Table[0, {n, 1,Floor[DiffU/Steps]}]];DLNew4 = Join[DLNewInt[[2]],Table[0, {n, 1,Floor[DiffU/Steps]}]];DLNew4 = Join[DLNewInt[[2]],Table[0, {n, 1,Floor[DiffU/Steps]}]];

DLNew = Join[{DLNew3}, {DLNew4}];DLNew = Join[{DLNew3}, {DLNew4}];DLNew = Join[{DLNew3}, {DLNew4}];

BLNew = BLNewInt; },BLNew = BLNewInt; },BLNew = BLNewInt; },
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{BLNew3 = Join[BLNewInt[[1]],Table[Max[BLNewInt[[1]]] + n ∗ Steps,{BLNew3 = Join[BLNewInt[[1]],Table[Max[BLNewInt[[1]]] + n ∗ Steps,{BLNew3 = Join[BLNewInt[[1]],Table[Max[BLNewInt[[1]]] + n ∗ Steps,

{n, 1,Floor[Abs[DiffU]/Steps]}]];{n, 1,Floor[Abs[DiffU]/Steps]}]];{n, 1,Floor[Abs[DiffU]/Steps]}]];

BLNew4 = Join[BLNewInt[[2]],Table[0, {n, 1,Floor[Abs[DiffU]/Steps]}]];BLNew4 = Join[BLNewInt[[2]],Table[0, {n, 1,Floor[Abs[DiffU]/Steps]}]];BLNew4 = Join[BLNewInt[[2]],Table[0, {n, 1,Floor[Abs[DiffU]/Steps]}]];

BLNew = Join[{BLNew3}, {BLNew4}];BLNew = Join[{BLNew3}, {BLNew4}];BLNew = Join[{BLNew3}, {BLNew4}];

DLNew = DLNewInt}; ];DLNew = DLNewInt}; ];DLNew = DLNewInt}; ];

TDL = Table[Total[DLNew[[2, 1;;j]]], {j, 1,Dimensions[DLNew[[2]]][[1]]}];TDL = Table[Total[DLNew[[2, 1;;j]]], {j, 1,Dimensions[DLNew[[2]]][[1]]}];TDL = Table[Total[DLNew[[2, 1;;j]]], {j, 1,Dimensions[DLNew[[2]]][[1]]}];

TBL = Table[Nimages− Total[BLNew[[2, 1;;j]]],TBL = Table[Nimages− Total[BLNew[[2, 1;;j]]],TBL = Table[Nimages− Total[BLNew[[2, 1;;j]]],

{j, 1,Dimensions[BLNew[[2]]][[1]]}];{j, 1,Dimensions[BLNew[[2]]][[1]]}];{j, 1,Dimensions[BLNew[[2]]][[1]]}];

Diff = TDL− TBL;Diff = TDL− TBL;Diff = TDL− TBL;

Now we find the unbiased thresholds and export our findings for the control

program to use

x = Position[Abs[Diff],Min[Abs[Diff]]][[1, 1]];x = Position[Abs[Diff],Min[Abs[Diff]]][[1, 1]];x = Position[Abs[Diff],Min[Abs[Diff]]][[1, 1]];

Error = N [(Sum[BLNew[[2, n]], {n, 1, x}]/Nimages) ∗ 100];Error = N [(Sum[BLNew[[2, n]], {n, 1, x}]/Nimages) ∗ 100];Error = N [(Sum[BLNew[[2, n]], {n, 1, x}]/Nimages) ∗ 100];

ErrorThreshold[[i]] = {VertStart− 1,VertEnd,HEdge[[i, 1]]− 1,ErrorThreshold[[i]] = {VertStart− 1,VertEnd,HEdge[[i, 1]]− 1,ErrorThreshold[[i]] = {VertStart− 1,VertEnd,HEdge[[i, 1]]− 1,

HEdge[[i, 2]],Error,BLNew[[1, x]]}; ]HEdge[[i, 2]],Error,BLNew[[1, x]]}; ]HEdge[[i, 2]],Error,BLNew[[1, x]]}; ]

Export[“ROI Error and Thresholds.csv”,ErrorThreshold]Export[“ROI Error and Thresholds.csv”,ErrorThreshold]Export[“ROI Error and Thresholds.csv”,ErrorThreshold]

ErrorThreshold = Prepend[ErrorThreshold, {“Lower Vertical Edge”, “Upper Vertical Edge”,ErrorThreshold = Prepend[ErrorThreshold, {“Lower Vertical Edge”, “Upper Vertical Edge”,ErrorThreshold = Prepend[ErrorThreshold, {“Lower Vertical Edge”, “Upper Vertical Edge”,

“Left Edge”, “Right Edge”, “State detection error”, “Threshold”}]“Left Edge”, “Right Edge”, “State detection error”, “Threshold”}]“Left Edge”, “Right Edge”, “State detection error”, “Threshold”}]

Export[“ROI Error and Thresholds ” <> DateString[{“Year”, “Month”, “Day”}]Export[“ROI Error and Thresholds ” <> DateString[{“Year”, “Month”, “Day”}]Export[“ROI Error and Thresholds ” <> DateString[{“Year”, “Month”, “Day”}]

<> “.xls”,ErrorThreshold]<> “.xls”,ErrorThreshold]<> “.xls”,ErrorThreshold]
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