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Quantum computing represents an exciting frontier in the realm of informa-

tion processing; it is a promising technology that may provide future advances in

a wide range of fields, from quantum chemistry to optimization problems. This

thesis discusses experimental results for several quantum algorithms performed on

a programmable quantum computer consisting of a linear chain of five or seven

trapped 171Yb+ atomic clock ions with long coherence times and high gate fideli-

ties. We execute modular one- and two-qubit computation gates through Raman

transitions driven by a beat note between counter-propagating beams from a pulsed

laser. The system’s individual addressing capability provides arbitrary single-qubit

rotations as well as all possible two-qubit entangling gates, which are implemented

using a pulse-segmentation scheme. The quantum computer can be programmed

from a high-level interface to execute arbitrary quantum circuits, and comes with a

toolbox of many important composite gates and quantum subroutines.

We present experimental results for a complete three-qubit Grover quantum

search algorithm, a hallmark application of a quantum computer with a well-known



speedup over classical searches of an unsorted database, and report better-than-

classical performance. The algorithm is performed for all 8 possible single-result

oracles and all 28 possible two-result oracles. All quantum solutions are shown to

outperform their classical counterparts.

Performing parallel operations will be a powerful capability as deeper circuits

on larger, more complex quantum computers present new challenges. Here, we

perform a pair of 2-qubit gates simultaneously in a single chain of trapped ions.

We employ a pre-calculated pulse shaping scheme that modulates the phase and

amplitude of the Raman transitions to drive programmable high-fidelity 2-qubit

entangling gates in parallel by coupling to the collective modes of motion of the

ion chain. Ensuring the operation yields only spin-spin interactions between the

desired pairs, with neither residual spin-motion entanglement nor crosstalk spin-

spin entanglement, is a nonlinear constraint problem, and pulse solutions are found

using optimization techniques. As an application, we demonstrate the quantum full

adder using a depth-4 circuit requiring the use of parallel 2-qubit operations.
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Chapter 1: Introduction

The potential applications for quantum computers have been of great interest

since Manin and Feynman first proposed them in the early 1980s [1, 2]. By taking

advantage of properties unique to quantum systems like multi-state superposition

and multi-qubit entanglement, a large-scale quantum computer promises advances in

humanity’s ability to tackle complex chemistry problems that could revolutionize the

energy sector, solve optimization problems with uses across almost every industry,

accelerate breakthroughs in biology and medicine, and - depending on your point of

view - either wreak havoc on or revolutionize the security and data industries.

To simulate a two-level quantum mechanical system on a classical computer

(like the one you’re probably reading this thesis on), a system with N particles re-

quires keeping track of 2N amplitudes, an exponential growth in problem size that

prevents simulating large quantum systems; even the world’s biggest supercomput-

ers have not been able to simulate all amplitudes in a quantum system larger than

49 particles [3]. Future advances in computing will likely push past that, but most

predictions anticipate only getting to 60-70 particles. Simulating 300 quantum par-

ticles would require a classical computer the size of the known universe, which is

not practical. However, a quantum computer can simulate an N -particle quantum

1



system with much less than exponential growth, simply because it is a quantum sys-

tem as well; in principle, the problem size can be O(N) particles, with perhaps some

additional resources required for error correction. This power of “quantum paral-

lelism” [4] can be used to directly simulate quantum systems of interest, such as

for quantum chemistry applications, but can also be harnessed to solve other kinds

of problems, such as optimization problems. One particularly interesting potential

application in the field of quantum chemistry is to better understand biological ni-

trogen fixation [5], a process that is central to the creation of fertilizer. Our best

fertilizer creation methods require a substantial proportion of the human energy

budget, but bacteria can create the same chemicals far more efficiently. A quantum

computer could help us discover these efficient methods for producing fertilizer, mak-

ing it easier to feed humanity while reducing our energy usage, our carbon footprint,

and our effects on global climate change. The exact scope of quantum computing

technology’s effect on humanity remains tantalizingly unclear, but even pessimistic

outlooks envision significant benefits from large quantum computers. Consequently,

increasing numbers of government and industry players are investing in this tech-

nology - from U.S. government agencies like IARPA, the NSF, the Departments of

Defense and Energy, and the NSA, to companies like Google, Intel, Microsoft, and

startups like Rigetti and IonQ.

Of course, all of this being of any use at all hinges on an important question:

how do we build a quantum computer big enough to do something interesting? In

this thesis, I leave aside some important abstract issues that arise from this central

question (how do we define “big”? What is “interesting” in this context? What
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constitutes a quantum computer, exactly?) to focus on the pragmatic and practical

aspects of the question: “building” and “doing”.

Ion trap quantum computers [6, 7] and superconducting quantum comput-

ers [8,9] represent the two proposed quantum computing platforms that so far have

made the most progress toward a practical and usable technology, and have opti-

mistic outlooks for scaling up. Recent advances in both of these platforms portend

optimism that a large-scale quantum computer will eventually be built, though chal-

lenges certainly remain. Additionally, it is not yet clear which platform will prove

itself to be the best candidate for a burgeoning technology, or whether the most

successful quantum computers will be some other hardware [10] that is currently

still being explored (such as neutral atoms [11, 12], quantum dots [13, 14], nitrogen

vacancy centers in diamond [15], or large photonic systems [16,17]), a hybrid of two

or more quantum systems [18], or even one that has yet to be proposed at all.

In this thesis, I will discuss an ion trap quantum computing machine we have

built [19, 20] and describe some results obtained with it. To demonstrate that our

machine is indeed a quantum computer, I use the DiVincenzo criteria [21] as a

practical measure for a highly programmable and usable device that is similar enough

to modern digital computers to be a familiar and user-friendly concept, but still takes

advantage of all available resources of quantum computing. The criteria, and our

adherence to them, are summarized below.

• Qubits: We use well-characterized 171Yb+ ions as qubits (see Section 2.1) in a

scalable trapped-ion quantum computing architecture [7].
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• Qubit initialization: 171Yb+ qubits can be initialized to a known state with

high fidelity (see Section 2.1.3).

• Long coherence times: These qubits have typical coherence times longer than

1 s, which is many orders of magnitude greater than gate times of 20-200 µs

and hence allows for long coherent gate sequences (see Section 2.1.1).

• A universal gate set: The native gate set available, single-qubit R rotations and

two-qubit entangling XX gates, constitute a universal gate set (see Section

3.3).

• Qubit readout: State-dependent fluorescence of 171Yb+ qubits allows for high-

fidelity qubit measurement (see Section 2.1.4).

Two additional optional DiVincenzo criteria exist that address a system’s capabil-

ities for quantum communication; these are not addressed here, as the system is

not designed to communicate with other quantum systems and hence does not meet

these criteria at present. Other efforts exist to implement robust quantum communi-

cation and networking [22] and provide long-distance quantum communication [23]

using ion traps and other hardwares.

To be most useful, a quantum computer should be easily programmable and

flexible to be able to tackle many kinds of problems, as a classical computer can.

To this end, we have built an ion trap quantum computer with controls organized

into separate levels of abstraction, called a computing stack. Each level of the stack

represents a different level of control in the system, and is designed to be a black

box to the others; this architecture allows users to implement quantum algorithms
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without needing to know much, if anything, about what qubits the system uses or

the physics and engineering details behind the hardware. This framework is very

similar to classical computers; I don’t need to know anything about NAND gates

or silicon microprocessors to read the news on the Internet or run data analysis

calculations for this thesis. Most previous quantum computing experiments have

been built to perform a single algorithm, with the hardware designed and tailored for

that purpose, and without flexibility to perform many other experiments; the stack

framework of this machine represents a step forward from a systems perspective, as

well as the previously-undemonstrated results we have generated on it.

The first half of this thesis, Chapters 2-5, will describe the functioning of

the ion trap quantum computer by going through the stack, from the low-level

hardware up to the high-level user interface. The second half, Chapters 6-7, will

describe several new results generated from the system over the course of this thesis

work, and can additionally be found in [24, 25]. Additional work performed on this

machine over the course of this thesis work but not discussed here in detail can be

found in [19,26–32].

In Chapter 2, I present the hardware level of the stack: trapped 171Yb+ ions

as qubits, with various lasers of initialization, readout, and coherent control.

In Chapter 3, I discuss the quantum control level of the stack, consisting of

pulse shaping schemes that effect high-quality quantum gates.

In Chapter 4, I explain the compiler level of the stack, which consists of a

computer control program that compiles quantum gate commands from the user into

the low-level operations necessary to execute the gate sequence on the experiment.
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In Chapter 5, I enumerate the library of quantum gates we have assembled for

use in the compiler to execute various algorithms.

In Chapter 6, I report results for a complete 3-qubit Grover search algorithm.

In Chapter 7, I introduce a promising new tool for quantum control: parallel

2-qubit operations on pairs of ions in the same ion chain.

In Chapter 8, I conclude with a positive outlook on ion traps as quantum

computers, and discuss future challenges and suggest areas to improve.
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Chapter 2: Quantum Computer Hardware

In this chapter, I will present an overview of the hardware of the ion trap

quantum computer used to perform the work in this thesis. The overview will be

brief, as much of this material has already been presented in [20], which concerns

the same system. I will also include some upgrades that have since been made to the

system, including to the individual addressing system allowing for better individual

ion controls crucial to work presented in Chapter 7, and expanding from 5 to 7 ions

for use in the work presented in [31] and future work.

2.1 The 171Yb+ Qubit

In this system, we have chosen as our qubit the first-order magnetic-field-

insensitive pair of clock states in the hyperfine-split 2S1/2 ground level manifold

of 171Yb+, with |0〉 ≡ |F = 0;mF = 0〉 and |1〉 ≡ |F = 1;mF = 0〉 (see Figure

2.1) [33]. The two qubit states have a 12.642821 GHz frequency difference, which

can be addressed with microwaves or Raman transitions via the 2P levels.
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Figure 2.1: Energy levels of interest for the 171Yb+ qubit. The qubit is defined as
|0〉 ≡ |F = 0;mF = 0〉 and |1〉 ≡ |F = 1;mF = 0〉.

2.1.1 Coherence Times

The |F = 0;mF = 0〉 and |F = 1;mF = 0〉 states in 171Yb+ ions are so-called

“clock” qubits because they are insensitive to magnetic fields to first order. On our

experiment, our measured coherence time is 1.5(5) s, which is more than 3 orders

of magnitude greater than typical single-qubit gate times of 20 µs or two-qubit gate

times of 200 µs; for short algorithms with at most a few tens of two-qubit gates, this

coherence time is therefore sufficient. On this experiment, performance is primarily

limited not by qubit coherence, but by pointing noise on the Raman control beams

driving coherent transitions; this is further discussed in Chapter 8.

8



2.1.2 Cooling

The qubits are cooled to near their motional ground state in a two-step process.

First, the ion is cooled using Doppler cooling [34,35]. Light beams detuned from the

{2S1/2, F = 1} to {2P1/2, F = 0} and {2S1/2, F = 0} to {2P1/2, F = 1} transitions

is applied to the ions, with both π and σ polarizations added to address all of

the Zeeman states in the ground state manifold. The two transitions are applied by

supplying 369 nm light resonant with the {2S1/2, F = 1} to {2P1/2, F = 0} transition,

and adding a 14.7 GHz sideband to access the {2S1/2, F = 0} to {2P1/2, F = 1}

transition using the second-order sideband of an EOM at 7 GHz. The 369 nm light

is generated by doubling the output of a 739 nm laser that is locked to an iodine

vapor cell [36]. The output of the doubler is 300 MHz detuned from the transition, so

frequency shifts and TTL control are provided by one IntraAction AOM at 290 MHz

to give the optimal Doppler cooling frequency for a Γ/2π = 19.7 MHz linewidth.

A light beam red-detuned from resonance by 300 MHz (the “protection beam”)

acts on the ions during trapping only, and two more beams red-detuned by 10 MHz

with an AOM cool the ions further during setup before experimental procedures.

Red-detuned photons are absorbed by hot ions moving toward the beam source,

and then scattered in a random direction, reducing their net momentum (and con-

sequently, their kinetic energy) in the direction of the cooling beams. The three

beams are therefore at angles to each other to ensure cooling along all axes; the

main 10 MHz beam travels at a very slight angle from the ion chain axis in the

horizontal plane, the 300 MHz protection beam is applied in the horizontal plane at
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an angle near perpendicular to the chain axis, and the low-power 10 MHz “oblique”

beam is applied with a vertical component at an oblique angle to the other two

(see Figure 2.5). On our experiment, we define the z axis as the horizontal direc-

tion along the trap axis, the x axis as the horizontal axis perpendicular to the trap

axis, and the y axis as the vertical direction, perpendicular to the trap axis and

the optical table. Consequently, the beams have components along the x, y, and z

directions, and while we don’t reach the Doppler limit, the ions are cooled enough

in all directions (n̄ = 10 to 15) that resolved sideband cooling can finish cooling the

ions to near their motional ground states.

Second, resolved sideband cooling [37] is necessary to further cool the ions

to the Lamb-Dicke regime, which is necessary to execute high-fidelity gates. The

Lamb-Dicke parameter η can be described as a measure of the coupling strength

between the ion’s internal or spin state (so called because we are only using the

two qubit states) and its motional state. In the Lamb-Dicke regime, this parameter

is small enough that transitions changing the motional quantum number by more

than 1 phonon are strongly suppressed. Specifically,

η2(2n+ 1)� 1 (2.1)

where n is the motional quantum number of the ion. Resolved sideband cooling

is a process that couples to the motional modes of the ion to progressively remove

phonons while cycling between the |0〉 and |1〉 spin states [38]. This cools the ions

below the Doppler cooling limit, and on our experiment ends with a typical n̄ = 0.1
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Figure 2.2: Qubits are initialized to the |0〉 state via optical pumping. The straight
blue arrows indicate photon absorption, and the squiggly purple arrows indicate
photon emission.

quanta.

2.1.3 Qubit Initialization

The qubits are initialized to their |0〉 state via optical pumping [33]. The ions

are illuminated with light resonant with the transition between the {2S1/2, F = 1}

and {2P1/2, F = 1}manifolds, as shown in Figure 2.2. An AOM provides a frequency

shift of 300 MHz to make the 369 nm beam on-resonant with the {2S1/2, F = 1} and

{2P1/2, F = 0} transition, and an EOM adds 2.1 GHz sidebands to then reach the

{2P1/2, F = 1} manifold to clear out the {2S1/2, F = 1,mF = 0} state. The beam

contains both π and σ polarization components to ensure successful pumping for ions
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in any of the Zeeman states in the {2S1/2, F = 1} manifold. (π alone is sufficient,

but the beam path is shared with the detection beam discussed in Section 2.1.4,

which requires both components.) Once pumped to the {2P1/2, F = 1} manifold,

the ions then decay either back to the {2S1/2, F = 1} manifold, where they will

be pumped again, or to the {2S1/2, F = 0} target state. Once there, ions in the

{2S1/2, F = 0} state stay there, as the applied beam is now 14.7 GHz off-resonant

from a transition back to the {2P1/2, F = 1} manifold, so running the pump beam

for a short amount of time (5 µs) is sufficient to initialize all qubits to the |0〉 state

with high fidelity.

2.1.4 Qubit Readout

At the end of a quantum procedure, the qubits are measured and their states

read out using state-dependent fluorescence, as shown in Figure 2.3(a). Light res-

onant with the transition from {2S1/2, F = 1} to {2P1/2, F = 0} is applied to the

ions, using a 300 MHz AOM to shift a beam of 369 nm light to resonance. Qubits

in the |1〉 state are then excited to the {2P1/2, F = 0} state, which has a lifetime of

8.12 ns, and then decays back to the {2S1/2, F = 1} manifold, emitting a photon in

the process and hence termed “bright.” Polarization elements in π and σ are added

to ensure continued cycling from all of the Zeeman levels in the {2S1/2, F = 1}

manifold, allowing many photons to be scattered over the course of the detection

period. If the qubit is instead in the |0〉 state, the applied light is 2.1 GHz away

from the nearest dipole-allowed transition to the {2P1/2, F = 1} manifold, and so
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(c)

Figure 2.3: (a) Qubits are measured using state-dependent fluorescence. Ions in
the |1〉 state fluoresce in response to an applied detection beam; ions in the |0〉
state do not. The straight blue arrows indicate photon absorption, and the squiggly
purple arrows indicate photon emission. (b) A typical detection histogram showing
photon counts for bright (orange) and dark (purple) ions. The measurement fidelity
for a qubit in |0〉 is 99.74(3)% and for a qubit in |1〉 is 99.09(5)%. From [20]. (c)
Individual ions are detected on separate channels of a linear array of 32 PMTs. This
shows photon counts for 5 bright ions; the X-axis is the PMT channel number.
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the qubit scatters no photons and remains dark. The detection process is run for

150µs to ensure sufficient photons are collected to discriminate between bright and

dark qubits. The entire experiment is repeated several hundred or thousand times

to build up statistics, and photons are collected with an imaging objective with a

numerical aperture (NA) of 0.37. Figure 2.3(b) shows a typical histogram showing

the number of photon counts for bright and dark states. The distributions are well-

distinguished, and we can discriminate between |0〉 and |1〉 by determining that any

qubit with 0 or 1 counts is dark, and any qubit with 2 or more counts is bright.

Measurement errors arise when a bright qubit is measured as dark or a dark

qubit is measured as bright during the measurement process. The former can occur

during the measurement due to off-resonant coupling between the F = 1 states of

2S1/2 and 2P1/2, as the {2P1/2, F = 1} manifold is only 2.1 GHz away from the

{2P1/2, F = 0} state. Once pumped to the {2P1/2, F = 1} manifold, the ion can

decay to {2S1/2, F = 0}, where it ceases scattering photons. Off-resonant coupling

between |0〉 and the {2P1/2, F = 1} manifold is also possible, which would scatter

a photon upon decay, but with a detuning of 14.7 GHz, this is much less likely.

This results in the not-quite-Poissonian histograms in Figure 2.3(b); in particular,

the off-resonant coupling of |1〉 to {2P1/2, F = 1} is the largest effect, resulting in

visible histogram points at 0 and 1 counts for an ion prepared in the bright state.

Background scatter from the trap blades can also result in photon counts for dark

ions, but has a small effect. Consequently, the measurement fidelity for a single ion

in |0〉 is slightly higher than for |1〉: 99.74(3)% and 99.09(5)%, respectively.

To distinguish between the fluorescence of different ions, the ions are imaged
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onto separate channels of a 32-channel linear PMT array1. Figure 2.3(c) shows typ-

ical data for N = 5 bright ions on the PMT array, where the X-axis is the channel

number. The ions are imaged onto every other channel to reduce electronic crosstalk

errors - neighboring channels have about 4% crosstalk error, and next-nearest neigh-

bors about 1%. The crosstalk is also asymmetric, as channels to the right see more

spillover from channels to their left than the other way around. Dark counts are 1-2

per channel per second and therefore negligible. When data is collected, each chan-

nel is analyzed separately, using the discriminator mentioned above to determine

which ions are in |0〉 or |1〉 after each experiment. After the experiment is repeated

many times, the data can then be assembled into a vector of output populations,

which gives the population in each of the N2 N -qubit states; for 5 ions, the state

vector gives the populations in each of {00000, 00001, 00010, 00011, . . .}.

Bright-to-dark pumping and crosstalk are the two main sources of error for

our multi-qubit readout process. We account for this and state preparation errors

by measuring our SPAM errors and then renormalizing our data appropriately. To

measure our SPAM errors, we trap a single ion, then use the DC voltage controls

to move that ion to each of the locations in the trap where an ion would be for

an N -ion chain. Two measurements are taken at each location: one where the ion

is initialized to the dark state, and another where the ion is initialized and then

coherently rotated to the bright state using a microwave pulse resonant with the

12.6 GHz qubit frequency. The measurements are repeated 80,000 times to build

robust statistics. The measured data is then assembled into a N2 × N2 matrix of

1Hamamatsu H7260-200
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each of the possible states. Once data is taken for an algorithm of interest, this

SPAM matrix can then be inverted and multiplied with the corresponding N2×N2

state matrix for the data to remove SPAM errors [20, 39]. Additional methods of

measuring SPAM errors on our experiment are presented in [40].

2.2 The Ion Trap

The ions are held in an ion trap in a chamber held at room temperature

[41]. Our physical qubits are well-isolated from the environment in a stainless steel

chamber that has been evacuated to ultra-high vacuum (UHV) with pressure about

10−11 Torr, meaning a given ion will only experience a collision with a background

gas particle once every hour or so on average. This is therefore negligible on the

order of the coherence time, and primarily limits the lifetime of the ion in the trap.

Consequently, we can hold chains of 5 or 7 ions for about an hour at a time.

The trap used here is a blade trap, a variant of a linear Paul trap [42]. Four

gold-coated electrode substrates shaped like razor blades provide the confining po-

tential (see Figure 2.4 for several views of the blade trap). Two blades, diagonally

across from each other, provide an oscillating pseudopotential that confines the ions

along the radial directions of the trap. The RF signal supplying the pseudopo-

tential is generated by a DDS and amplified to ∼300V using a stabilized helical

resonator [43,44] at a driving frequency of 23.8167 MHz.

The other two blades are divided into 5 electrodes each that then have static

voltages applied. These DC electrodes provide an axial confinement of 296 kHz
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(c)

Figure 2.4: Several views of the ion trap blades. (a) A view along the blade, which
can be seen here to be divided into 5 electrodes for enhanced ion position control on
the DC blades. (b) A view of the 4 blades, looking directly down the trap axis. (c)
Another view of the 4 blades, shown at an angle from the trap axis. Image credit
S. Debnath.
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for 5 ions and also allow for finer control of the spacing between the ions. Axial

confinement requires, at minimum, 3 electrodes on each blade, where the center

electrode on each blade is set to a negative voltage (lower potential for the positively-

charged ion), and the outer electrodes are set to a positive voltage (higher potential

for the ion). This creates a quadratic potential well confining the ion. Multiple

ions in such a trap will not be equally spaced; the inner ions will be pushed closer

together than the outer ions, and the spacing disparities increase with increasing ion

number [45]. Since our indvidual addressing beams are equally spaced, equal spacing

of ions would be ideal. Very nearly equal spacing can be achieved by adding at least

2 more electrodes to each blade, which allow for the addition of a quartic term to

the trap potential; appropriately selected trap voltages will create a potential with

a “flat” area in the center that will hold ions at approximately equal distances from

each other. In practice, however, simulations of our blade trap showed that such

a potential would require kilovolts on the outer electrodes.Equal spacing for large

numbers of ions will likely require a microfabricated surface electrode trap with

many DC electrodes to control the positioning of many ions. However, for 5 ions in

our blade trap, the spacing differential is small enough that the individual beams

are still fairly well aligned on the ions; the Rabi frequencies seen by the ions are

comparable (see Section 3.1.1.)

Below the trap, two small stainless steel tubes, or ovens, contain small amounts

of solid ytterbium metal that has been isotopically purified to be 95% 171Yb (natural

abundance 14%). Niobium wires wrapped around the ovens heat up when current

is applied, allowing a small amount of heated ytterbium to sublimate into a vapor
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355nm Raman + 399nm 
   + 369nm cool
369nm cool, pump, detect 
   + 935nm

Microwave

Detection Collection

369 cool

Figure 2.5: A visualization of the vacuum chamber containing the ion trap, and the
optical access for the various necessary control components. The Raman control
beams (red) and one of the cooling beams are applied radially, orthogonal to the ion
chain, while another cooling beam, the detection and pump beams, and the loading
beam (blue) are applied along the chain axis. A third cooling beam is applied
through a small window at angles to both of the other cooling beams (turquoise.)
Microwaves are applied through a horn from below (purple.) Finally, detection
light is collected from above the trap (green.) Chamber CAD modified from S.
Debnath [19].
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of neutral ytterbium atoms, some of which will spread into the trapping area. A

laser at 399nm, tuned to the 1S0 →1 P1 atomic transition in neutral 171Yb, is

directed through the trap area, so some atoms will absorb a photon and be excited

to the 1P1 state. An additional photon at ≤369 nm is required to achieve the first

photoionization energy and strip off one electron to create 171Yb+ [46]; the various

369nm laser beams already passing through the trap that will next be used for

cooling purposes serve to complete this ionization process. Once ionized, the atom

is now subject to the trap potential, and can be cooled to the motional ground

state by the cooling beams. The ions then form a linear Coulomb crystal along the

weakly-confined axial direction in the trap. On this experiment, once the ovens heat

up (a 3 minute process), 5-9 ions can typically be trapped within a minute or two.

As shown in Figure 2.1, states in the 2P1/2 manifold will decay to the metastable

2D3/2 level with a branching ratio of 200:1. To repump the ion, a 935 nm laser beam

is applied constantly to the ions. This repumper induces a transition to the 3[3/2]3/2

level, which then decays to the ground level. The repumper beam has 3.07 GHz

sidebands added by an EOM and has both π and σ polarization components to

address all states in the 2D3/2 manifold.

All of the optical controls discussed so far, as well as the Raman beams de-

scribed in the next section, present a challenge in delivering all of these controls to

the ions in the trap. Figure 2.5 shows a mockup of the vacuum chamber, which

has 8 windows around the trap providing ample optical access for cooling beams

(369nm) at 3 different angles, a pump/detection beam (369nm) transported through

a shared fiber at different times during the experimental sequence, the loading beam
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(399nm), the repumper beam (935nm), counterpropagating 355nm Raman beams

applied from opposing sides (see Section 2.3), microwaves (12.6 GHz), and detection

light collection.

2.3 Coherent Individual Addressing System

Coherent transitions between the |0〉 and |1〉 states of the qubit can be driven

using direct microwave transitions at 12.642821 GHz, or via the P -levels using Ra-

man transitions driven by two beams with a beatnote of 12.642821 GHz. Microwaves

have two major drawbacks. First, they are not straightforward to focus in free space

to individually address an ion in a trap [47]. Second, microwaves provide very little

net momentum transfer to couple to the motional modes of the chain, which is what

we use to entangle multiple ions; doing so is possible, but again not straightfor-

ward, as it requires a surface trap with waveguides [48]. Individual addressing and

implementation of two-qubit gates on non-clock-state qubits can alternatively be

accomplished with microwaves by generating a very large magnetic field gradient,

which induces different Zeeman splittings in the qubits that can then be individu-

ally addressed by changing the microwave frequency and used to couple to motional

modes [49]. However, the magnetic field gradient required is not scalable to large

numbers of ions in the trap, as the gradient required for more than a handful of ions

quickly becomes infeasible. On our experiment, we do provide a microwave horn

that emits a 12.642821 GHz signal and globally addresses all ions, as a useful tool for

troubleshooting and performing diagnostics. Coherent operations during algorith-
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mic processes are provided by individually-addressed Raman beams, as described in

this section.

2.3.1 Raman Beam Geometry

Coherent qubit operations are performed by a pair of counterpropagating Ra-

man beams on the ions in our trap (see Figure 2.6(a)). The Raman transition is

performed by a mode locked 355nm pulsed laser. The two Raman beams there-

fore each consist of a frequency comb [50], with components separated by the laser

repetition rate, about 118 MHz. To address the 12.6 GHz qubit splitting, the coun-

terpropagating Raman beams must be lined up in frequency space so that there is a

12.6 GHz beat note between each corresponding tooth in the two frequency combs.

To account for noise on the laser repetition rate, an AOM beat note lock (similar to

that described in [51]) is constructed, in which the repetition rate noise is inverted

and added to an AOM on one Raman beam. Consequently, one Raman beam can

coherently stimulate a transition from the |0〉 or |1〉 state to a virtual state partway

between the 2P1/2 and 2P3/2 manifolds in 171Yb+, then the other beam induces a

transition to the other qubit state, as shown in Figure 2.6(b). The commercially-

available 355 nm laser wavelength is close to minimum spontaneous emission from

the 2P1/2 and 2P3/2 manifolds, which is 1/3 of the way between the two manifolds

since 2P3/2 has more states in the manifold and therefore twice the coupling of the

2P1/2 manifold. Due to the counterpropagating geometry and the large amount of

energy carried by 355 nm photons (844 THz), stimulated Raman transitions impart
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(b)

Figure 2.6: (a) An overview of the experimental setup, showing the counterpropagat-
ing Raman beams, the ion chain, and the multi-channel PMT detection apparatus.
The use of spin-motion couplings to enact 2-qubit entangling gates results in all
possible interaction pairs being available for entangling gates. Image from [19]. (b)
Raman transitions at 355 nm in 171Yb+.
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(a) (b)

Figure 2.7: (a) Counterpropagating beams overlapping 5 example ions. The wide
beam is the global beam that interacts with all ions, while the narrow beam is one
individual beam aligned to interact with a single ion. (b) The two arms of the
Raman beam setup.

a large momentum kick to the ions (see Figure 2.7(a)); this will allow us to couple

strongly to the motional modes to implement 2-qubit gates (see Section 3.2.)

The beam path is split to provide the two arms of the counterpropagating

geometry, as shown in Figure 2.7(b). Each arm is then modulated by an AOM, one

of which is controlled by the beat note lock, and the other of which is is controlled by

the output of an AWG that modulates the frequency as needed, such as to address

the red and blue sidebands necessary to implement a Mølmer-Sørensen gate [52,53];

see Section 2.4 for discussion of AWG control of the AOMs, which was changed

partway through this thesis work.

The global beam is modulated with an IntraAction AOM at 130 MHz. After

the AOM, cylindrical lenses shape the beam to be wide along the trap axis and

narrow in the transverse direction, so that light from the beam falls on all of the

ions in the chain, while maintaining a narrower focus of ∼20 µm perpendicular to
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the chain. The individual beam arm of the Raman setup is split horizontally into

10 beams; each individually couples to one of 10 neighboring channels of the 32-

channel AOM. The beams are deflected vertically, which is orthogonal to the ion

chain axis. Since the zeroth-order beams are not needed, a D-mirror is used after the

AOM to redirect them to a beam dump. The first-order beams continue to the ions,

where the AOM-provided modulation allows Raman transitions to occur. Since only

deflected beams reach the ions, shutting off the RF signal to a given channel will

shut off the beam that reaches the corresponding ion; hence, control over the RF

signal to each channel provides control over which ions perform operations.

2.3.2 32-Channel AOM Characteristics

AOMs are a tool used frequently in atomic physics experiments. Laser light of

frequency f and wavelength λ is passed through a transparent crystal, such as fused

silica. A piezoelectric transducer, controlled by an applied RF signal of frequency

F , transmits sound waves of wavelength Λ into the crystal, which varies the index of

refraction in the crystal. In the Bragg regime, the incoming light is then diffracted

into symmetric orders m (see Figure 2.8(a)), each of which is also modulated by its

order number times the applied RF frequency,

f → f +mF, (2.2)

25



and displaced by an angle mθ, where

sin θ =
mλ

2Λ
(2.3)

Most of the light can be directed into the first diffraction order by adjusting the

incoming light’s angle of incidence in the plane of the acoustic waves.

The 32-channel AOM varies from the typical single-channel model in that it

consists of a single crystal with 32 evenly spaced transducers, as shown in Figure

2.8(b). The transducers are spaced about 450 µm apart, with a channel width of

100 µm. Each transducer is controlled by its own RF input channel; all of the

channels are designed for a drive frequency at 200 MHz frequency and 700 mW

in power. The channels are arranged horizontally, and activated channels deflect

beams vertically. The crystal and transducers are watercooled to accommodate

that much RF power while suppressing temperature-based signal fluctuations. We

characterized the efficiency of the AOM, and found that all channels had > 65%

efficiency into the first order, and a comfortable 20 MHz range over which the

efficiency was constant (for a typical channel, see Figure 2.9.) Crosstalk was also

found to be minimal, with < 1% optical and RF crosstalk.

2.3.3 32-Channel AOM Control

Providing RF power to the AOM channels has some important considerations

in order to work with the Raman beam setup, and so the circuit design and com-

ponent selection must be performed carefully. The circuit design is shown in Figure
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(a)

(b)

Figure 2.8: (a) Diagram showing how a single channel AOM works, with two positive
and negative orders shown. (b) The 32-channel AOM differs from its more common
single-channel counterparts in that it has 32 piezoelectric transducers on a single
crystal, hence creating 32 channels that can independently modulate an input laser
beam.
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Figure 2.9: Efficiency for channel A15 of the 32-channel AOM. The 20 MHz range
over which the efficiency is maximized is sufficient for experimental use, as the RF
control frequency signal does not vary more than 10%.

2.10. First, to control 10 beams, we need 10 independent channels. A two-way

power splitter (Minicircuit ZSCJ-2-1+) is used, and each output is then sent to a

five-channel control box with a five-way splitter (Minicircuits ZFSC-5-1-SB+) for a

total of 10 channels.

Second, we must provide a means of control over when a beam is deflected.

A TTL switch (Miniciruits ZASWA-2-50DR+) is used on the RF input for each

channel, which is in turn operated by the experimental control computer. Since the

switch time is at most 20ns, this allows a given ion’s Raman beam to be shut off

or turned on quickly relative to qubit rotations that take tens of microseconds, or

two-qubit gate times of hundreds of microseconds. We also provide a manual switch

option.

Third, the 32-channel AOM is rated by the manufacturer to take up to 700mW
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Figure 2.10: Component layout for RF control of 32-channel AOM.

(+28.45dBm) of RF power per channel. Hence, the signal control on each channel

should be designed to produce no more than 700mW. To adhere to this limit, the

beat note power output was measured, insertion loss from the TTL and splitters were

calculated, and then amplifiers were chosen that would produce at least +29dBm

(Minicircuits ZX60-P103LN+, gain +18dB; Minicircuits ZHL-2-12, gain +26dB).

The channels were then individually calibrated by measuring the power output of

each channel with a spectrum analyzer, and then adding passive attenuators before

the pre-amplifier until the measured power output was less than +28.45dBm.

To ensure steady Rabi frequencies on each ion, there should be no power

fluctuations over time on any given channel. Such fluctuations can be caused by

fluctuations in the DC voltage provided to power the channel amplifier, so we used

low-ripple Acopian power supplies. For the large amplifier, we used a Gold Box

A24H850, which has a 0.25 mV ripple and provides +24VDC; for the pre-amplifier,

we used 5EB150, which has a 1 mV ripple and provides +5VDC. For additional

protection, bypass capacitors were installed on each power supply, the DC bulkhead
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connection on the control box, and the DC power connection to the amplifier. These

bypass capacitors of 10 µF eliminate fluctuations by acting as a resistor to ground

for any AC components that may be in the signal, while the DC component sees

the capacitor as an open circuit and instead continues to the amplifier. It should

be noted that small power differences (< 1dB) from one channel to the next are

acceptable, as these differences can be measured and accounted for.

Another important consideration is that there cannot be phase variations be-

tween channels when individual phase control is not available. This requires that

the path length of the RF signal be the same for all channels. Hence, we must

be certain to use identical components for every channel, and same-length coaxial

cables to connect corresponding components. Additionally, RF components were

chosen that had very small phase imbalances.

2.3.4 Optics for Individual Addressing

In order to the use the 32-channel AOM for individual optical addressing,

an optical system must be designed and constructed to split 355nm light from the

pulse laser into 10 beams, focus those beams into the AOM with 450 µm beam

spacing between adjacent acoustic modes and < 50 µm waist on each beam, and

then focus those beams onto the ions in the trap, which requies 5 µm beam spacing

and < 2 µm beam waists. The problem is additionally complicated by the practical

constraints of a lab: the limited real estate on an optical table limits the allowable

beam path length, and due to commercial optics availability and quality, the total
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Figure 2.11: An image of the 10 beams from the diffractive optic element, demon-
strating even beam spacing, even power distribution, and very low-power higher-
order beams.

beam diameter should not exceed 2 inches at any point on the beam path.

The 10-way beam splitting problem is solved with a diffractive optic element

(DOE) from Holo-Or, part number MS-244-U-Y-A. It splits one incoming collimated

Gaussian beam with waist at least 0.24 mm into 10 evenly spaced, collimated Gaus-

sian beams of equal power and with the same waist as the input beam (see Figure

2.11). It has an observed diffraction efficency of > 56% and a diffraction angle of

4.3 mrad.

Since the optical system to be designed has so many constraints, it was im-

portant to perform careful analysis of the optical path for each solution attempted.

Additionally, both the spacing between the beams and the waist of each beam are

important. Consequently, ray transfer matrix analysis was used to simultaneously

keep track of beam spacing and beam widths. In the ray picture, we assume that

each beam acts like a ray, and then keep track of one beam’s displacement x from

the optical axis to determine the spacing between beams. The optical system starts

with the 10-way diffractive optic beamsplitter (10BS) splitting the incoming beam

with a diffraction angle of θ = 4.3 mrad. For simplicity, we will examine the size

and displacement of a beam that is deflected θ = 4.3 mrad from the optical axis,

which is equivalent to examining the size and spacing between 2 beams that are

each deflected θ = 2.15 mrad on either side of the optical axis, which will be the
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closest 2 beams for a diffractive optic element producing an even number of beams.

The initial ray vector is

r0 =

(
x0

θ0

)
=

(
0

0.0043

)
. (2.4)

In the Gaussian picture, we instead assume each beam is a Gaussian beam, and

use the complex beam parameter q to keep track of one beam’s width and calculate

relevant waists. For a Gaussian beam of wavelength λ = 0.000355 mm, radius of

curvature R = ∞ for collimated beams, refractive index n ≈ 1 for air, and radius

w,

1

q0

=
1

R
+

iλ

πnw2
=

0.000113i

w2
. (2.5)

Using the ABCD matrix method, we can find the final complex beam parameter for

a given system using

q1 =
Aq0 +B

Cq0 +D
(2.6)

and extract the beam radius from q1. For both the ray and Gaussian pictures, we

use (
A B

C D

)
=

(
1 d

0 1

)
(2.7)

to represent a distance d through free space, and

(
A B

C D

)
=

(
1 0

− 1
f

1

)
(2.8)

to represent a thin lens with focal length f . A naive solution would involve simply

focusing the 10 beams into 10 channels of the AOM, and then using one lens to

32



(a)

(b)

Figure 2.12: The solution for the optics system. The system starts with the 10-way
diffractive optic element beamsplitter (10BS) and is then focused into the 32-channel
AOM (32AOM) with the correct spacing. After that, the system uses alternting pairs
of lenses to bring the separate beams closer together, while expanding each beam’s
radius to then focus very sharply with the final objective f5. The beam radius is
expanded between f3 and f ′2 and between f ′3 and f4, while the individual beams
are kept parallel. The individual beams are brought closer together between lenses
f2 and f3, f ′2 and f ′3, and f4 and f5, where each beam is also kept collimated. For
appropriate lens selection, this will achieve our desired waist of 1 µm and spacing
of 5 µm at the ions. (a) The Gaussian solution shows the width of a single beam
passing through the lens system. (b) The ray solution shows the spacing of 2 beams
(one red, one orange) passing through the lens system.

image the AOM onto the ions. However, this solution requires that the imagining

lens have a focal length of ∼ 8 meters, which is entirely impractical. Instead, using

the ray transfer analysis, we found a solution that uses two telescope arrangements

after the 32-channel AOM to achieve the desired waist and spacing on the ions,

while reducing the total length of the system. The solution is shown in Figure 2.12.

The first important step in the optics system is focusing the 10 beams into the

AOM onto 10 separate channels. Since the diffractive angle θ = 4.3 mrad for the
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10-way beamsplitter is small, we can write

xAOM = f1θ (2.9)

for the spacing of the beams at the 32-channel AOM. So f1 must be chosen to achieve

the correct beam spacing at the AOM channels. After the AOM, the system’s

magnification can be calculated,

m =
f4f2f

′
2

f1f3f ′3
= 28 (2.10)

where ray transfer matrix analysis shows that m = 28 is the ideal magnification to

yield a 5 µm spacing at the ions given a choice of a 32.7 mm objective (see next

paragraph.) Much like in Equation 2.9, the final spacing is

xf =
f5θ

m
= 5µm. (2.11)

Taking into account contraints from commercially available lenses, the final

lenses chosen are listed in Table 2.1. f1 was chosen experimentally; the 90mm

Thorlabs lens allowed us to successfully line up 10 parallel beams into 10 channels.

For an input waist of 0.2 mm to the 10-way beamsplitter, this yields a waist of

55 µm; while this yields a spot slightly larger than the AOM channel, we do not

see any spillover since the channels are 450 µm apart, and the efficiency is still

high enough that the solution is workable. For the telescopes after the 32-channel

AOM, the magnification is m = 74.2, which is close to the ideal from equation 2.10.

34



Lens Focal length at 355 nm Lens used
f1 87.0 mm 90 mm Thorlabs plano-convex
f2 96.6 mm 100 mm Thorlabs plano-convex
f3 -29.0 mm -30 mm Thorlabs plano-concave
f ′2 120.8 mm 125 mm Thorlabs plano-convex
f ′3 -57.3 mm Doublet: -150 mm +meniscus and -100 mm

, Thorlabs plano-concave
f4 483.4 mm Doublet: 1000 mm and 1000 mm +meniscus,

Thorlabs plano-convex
f5 32.7 mm Ronar-Smith objective, 0.25 NA, working

distance 32.7 mm

Table 2.1: Final focal lengths for lenses chosen for the focusing lens system.

The final lens, f5, is a triplet objective made by Ronar-Smith with a 0.25 NA and

working distance 32.7 mm that was chosen because it will minimize abberations

on the ion. Since it will be focusing a large-diamater beam to a very small focal

point, it is important that f5 be chosen carefully. The total system length, from

10-way beamsplitter to ions, is 1.59 m. To save more space, it is possible to move

the objective f5 back toward f4, thus reducing the total length to slightly over 1

m. This is because f4 is a very slow lens; the individual beams have a very small

deflection angle as they converge after the lens, and so placing the objective closer

to f4 will still yield beams very close to parallel at the ions. The beam spacing will

still be correct at the working distance of the objective. This yields the additional

advantage that the individual beams can be focused on the ions without having to

move the entire optics system; instead, small adjustments in the objective will ensure

the individual beams are focused at the ions. While the system will no longer be

telecentric, meaning the beam spacing will vary with objective position, the amount

of variance is negligible.

The lens system was assembled on the table (see Figure 2.13) and a camera
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placed at the objective focus to image the results. The assembly yielded 10 beams

separated by 5 µm and with waists of 1 µm, as shown in Figure 2.14(a-b). Once the

optics setup was achieved, a retroreflector was added to the global beam arm of the

Raman beam setup to adjust and match the optical path length of the global beam

arm to the individual beam arm. It is important to note that while the individual

beam spacing is fixed, the ion spacing can be adjusted using the five DC electrodes

on the blade trap; this will allow the beams to be aligned as well as possible to the

ions in the trap. Coarse beam alignment was achieved through a rough method of

observing direct scatter off the trap blades to align the Raman beams to the middle

of the trap. Daily fine-tuning consists of optimizing the alignment by maximizing

the observed Rabi frequency.

A higher-resolution 2D profile of 5 focused beams is shown in Figure 2.14(c),

which was imaged using the ion response. With one ion in the trap, the individual

beams were moved across the ion and the Rabi rate on the ion, which corresponds

to the square root of the optical intensity seen by the ion, was measured. The

beams were moved by moving the final imaging objective, which is mounted on a

translation stage controlled by picomotors along all 3 axes. The picomotors allow

the objective to be moved in steps of about 20 nm without opening the protective

enclousure around the Raman optics, which reduces air currents that induce beam

pointing instability and therefore noise on the experiment’s coherent operations.

These picomotors are also used to fine-tune the individual beam alignment on the

ions, which drifts on a daily timescale.

The final ion positions relative to the center ion were [−10.74,−5.05, 0, 5.16, 10.85]
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Figure 2.13: Photograph of the 32-channel AOM on the optics table. Beam path is
shown in blue, along with the 10-way diffractive optic element (10BS), 32-channel
AOM, and the ion chamber. (This is a slightly earlier version of the setup, with
some different lenses.)

(a) (b)

(c)

Figure 2.14: Images of focused beams to be applied to ions. 10 beams are available
to shine on 10 ions; they can be turned off and on independently to achieve arbitrary
individual addressing. (a) Camera image of 10 focused beams with 1 µm waist and
4.5 µm spacing; this image was taken with an earlier lens setup, and was later
changed to a 5 µm beam spacing. (b) Camera image of beams for ions 1 and 2
turned on, and the rest off. (c) 2D profile across 5 beams focused to <1 µm waist
and separated by 5 µm, imaged by the ions themselves by moving the beams across
the ions and measuring the resulting Rabi frequencies experienced by the ions.
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µm, yielding spacing differences of [5.69, 5.05, 5.16, 5.69] µm, measured with an error

of about 0.16 µm.

2.4 Individual Addressing System Upgrades

Some upgrades to the individual addressing system have been added since

the results reported in [19, 20], which will apply to some but not all of the results

reported in this thesis. The Grover search algorithm discussed in Chapter 6 was

performed before the following upgrades, but several more results, including those

in Chapter 7 were made possible by the following upgrades.

For the earlier work on the experiment, a single AWG output provided RF

control to the global beam AOM, supplying sidebands and pulse-shaping to con-

trol two-qubit entangling gates. The multi-channel AOM controlling the individual

beams was controlled by a single RF source from the beatnote lock output; only

on/off TTL control was available for individual beams.

A significant upgrade was enabled by the addition of a 4-channel AWG2, bring-

ing to 5 the total number of AWG channels available. This allowed for total phase,

frequency, and amplitude control for the signal on each ion, not just on/off TTL

control. To use these new capabilities, the AWG controls were transferred to the RF

signals to the individual beam channels on the multi-channel AOM, and the beat-

note lock signal was applied to the AOM on the global beam. The controls for the

AWG were then integrated into the Igor control program using the NI-VISA com-

2Model WX1284C-1 1.25 GS/s Four Channel Arbitrary Waveform Generator, PN: 126182,
Tabor Electronics Ltd.
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munication protocol; a suite of utility functions were added in a separate procedure

file that managed communication with the device and ensured uploaded waveforms

adhered to the device’s parameters.

The additional, individually addressed controls provided by the AWG enabled

several procedures previously impossible to implement, including simultaneous ro-

tations, the simultaneous π pulses on different sidebands required to implement

phonon hopping and blockades in [29], and the parallel two-qubit operations demon-

strated in Chapter 7. Improved phase control for individual ions also enhanced ex-

perimental performance for all subsequent work by better compensating for differ-

ences in accumulated phases as operations are performed on different ions. Finally,

the arbitrary phase control on each ion allowed for the classical implementation of

Z rotations, further discussed in Section 3.1.2.

For further scaling in ion traps, however, continuing to rely on AWG control

for individual addressing is not ideal; at a cost of about $10,000 per channel, this is

not cost effective. Efforts such as Sinara [54] have made important progress in this

area, designing alternative control signal generators using an FPGA and a fast DAC

to create an effective dynamic AWG; this design is estimated to lower costs by an

order of magnitude to ∼$1000 per channel. Using only commercially available non-

AWG signal generators to generate control signals is unfortunately not currently

possible, due to the need to change frequencies while maintaining phase coherence.

Direct control over phase coherence also allows for compensation of effects like Stark

shifts, which can reduce fidelities if left unaddressed.
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2.5 Expansion to 7-Ion System

One experiment performed over the course of this thesis work required a 7-ion

system (specifically [31]), and we anticipate performing more 7-qubit experiments

in future. This presented several challenges. First and foremost was arranging for

7 ions positioned in the trap to align well with the individual addressing beams,

which have fixed equal spacing due to the optical setup (see Section 2.3.4). As

discussed in Section 2.2, perfectly equal spacing of more than 3 ions in this trap is

not feasible. While 5 ions are still pretty close to equal spacing, more ions in the

trap will have bigger and bigger spacing differentials between the outer and inner

ions. Consequently, 7 ions will be less well-positioned relative to the individual ad-

dressing beams than for 5 ions. However, this can be mitigated by instead trapping

9 ions, and ignoring the outer 2 ions. The inner 7 ions are then pushed together

by the sacrificial outer ions, resulting in a subchain of 7 ions with smaller spacing

differentials than would occur with just 7 ions in the trap.

With this strategy, several candidate DC voltage sets based on simulations

were tested on 9 ions in the trap to find the best experimental values. Once a

voltage set was chosen, we next needed to align the individual beams on the not-

quite-equally-spaced center 7 ions. Some experimentation demonstrated that the

best alignment strategy was to try to maximize the alignment of all ions, but to

particularly prioritize ions 2-6. This yielded reasonably comparable Rabi flops

on all ions, further discussed in Section 3.1.1. The selected ion spacing yielded

motional sidebands at [2.9424, 2.9604, 2.9774, 3.0044, 3.0149, 3.0264, 3.0384, 3.0534]
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MHz detuned from the carrier. The ion positions relative to the center ion were

[−23.24,−16.49,−10.69,−5.21, 0, 5.27, 10.59, 16.49, 23.40] µm, corresponding to dif-

ferential spacings of [6.76, 5.80, 5.48, 5.21, 5.27, 5.32, 5.90, 6.91] µm, measured with

an error of about 0.16 µm.

As discussed in Section 2.4, we now have 5 AWG channels for full phase,

frequency, and amplitude control on each individual addressing beam, but expanding

to 7 qubits means we no longer have 1 AWG channel per qubit. We instead had

some qubit controllers share AWG channels. For our initial setup, we had ions

1 and 7 share an AWG channel, and ions 2 and 6 share an AWG channel. This

consisted of installing a TTL-controlled switch on the two shared AWG outputs

that directed the AWG output to one qubit or the other, and adding software to

the control program to seamlessly handle the shared controllers by queueing control

sequences to the AWG and managing TTL timing accordingly. The tradeoff was

that ions 1 and 7, and ions 2 and 6, could not be controlled at the same time,

ruling out any 2-qubit gates between those pairs. For purposes of [31], we did not

need those gates, so this was sufficient. Future experiments may require these gates,

in which case we can set up a slightly more complicated TTL-controlled switching

system to supply two different AWG channels to a given pair of ions to perform a

2-qubit entangling gate. Finally, we also wanted to maintain our existing 5-qubit

infrastructure for ongoing 5-qubit experiments, so the control program was modified

to allow easy switching between controls for 5 and 7 qubits; a few button pushes

change the relevant parameters in the control program, 7 wires for the individual

addressing RF signals need to be shuffled, and the alignment of the readout objective
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is adjusted slightly to better align the ions to the PMT array.
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Chapter 3: Quantum Control

In this chapter I discuss our two mechanisms for quantum control: single qubit

rotations, or R gates, and two-qubit entangling interactions, or XX gates. These

two operations form the gate set native to our hardware, and together they form a

universal gate set that can implement any desired operation.

3.1 Single-Qubit Rotations R

In the matrix representation of quantum computation, we define the two qubit

states as

|0〉 =

(
1

0

)
|1〉 =

(
0

1

)
. (3.1)

Superposition states can be represented as points on the surface of the Bloch sphere

(Figure 3.1), where |0〉 and |1〉 define the poles of the Z axis of the sphere. The

polar angle θ represents the angular distance from the Z axis, and the azimuthal

angle φ gives the projection in the XY plane running orthogonal to the Z axis.

We define the azimuthal angle as φ = 0 at the X axis; φ = π
2

at the Y axis.

Consequently, coherent transformations of a qubit can be described as rotations on
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Figure 3.1: Quantum states can be represented as points on the surface of the Bloch
sphere with the radial variables (θ, φ). Single-qubit operations can be represented
as rotations performed about a selected axis on the Bloch sphere.

the Bloch sphere.

Rotations of an angle θ about an axis described by the azimuthal angle φ in

the XY plane are given by

R(θ, φ) =

(
cos θ

2
−ie−iφ sin θ

2

−ieiφ sin θ
2

cos θ
2

)
, (3.2)

with rotations about the X and Y axes given by

Rx(θ) = R(θ, φ = 0) =

(
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

)
(3.3)

and

Ry(θ) = R
(
θ, φ =

π

2

)
=

(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)
. (3.4)

Such rotations can be implemented on the experiment by applying a Raman

pulse and adjusting the duration and phase of the pulse accordingly. The duration of
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Figure 3.2: Sideband-cooled Rabi flops on 5 ions.

the pulse governs the magnitude of the rotation θ, to which it is directly proportional

by way of the Rabi frequency. The duration required to transfer all population from

the |0〉 to the |1〉 state, which corresponds to a R(θ = π) rotation, is known as the π

time. Rotation calibration consists of measuring the π time for each ion, and using

it to calculate the pulse duration necessary to implement each rotation: τθ = θ
π
· τπ.

The rotation angle φ is set by the phase of the control signal, with φ = 0 defined to

be the X axis.

3.1.1 Rabi Flopping on 5 or 7 ions

With individual Raman addressing beams in place, we can coherently cycle

between the |0〉 and |1〉 states of each ion using Rabi flopping. Sideband-cooled

Rabi flopping on 5 ions is shown in Figure 3.1.1. Applying Raman pulses for a
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Figure 3.3: Sideband-cooled Rabi flops on 7 ions in a 9 ion chain at low power. Ion
1 is directly behind ion 5 in the plot.

controlled duration with a controlled phase allows us to implement coherent rotation

gates. Typical rotation fidelities are 98-99%. Rotation fidelities are limited largely

by intensity fluctuations on the Raman beams and imperfect cooling. Intensity

fluctuations also inhibit our ability to accurately measure and calibrate the π times

for gate implementation.

Rabi flopping on 7 ions is shown in Figure 3.1.1. after sideband cooling, the

third Rabi flop peak was still above 90% bright for all ions, which is comparable

to sideband-cooled Rabi flopping with 5 ions. The Rabi flops decay faster for ions

that are less well aligned to the individual beams, which is primarily due to beam

pointing fluctuations on the individual addressing beams; while this is still manage-

able for 7 ions, this problem gets worse as more ions are added to the chain and
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the non-equally-spaced ions become less and less well matched to the equally-spaced

individual beams.

3.1.2 Z Rotations

Qubit rotations about the Z axis on the Bloch sphere, given by

Rz(θ) =

(
e−i

θ
2 0

0 ei
θ
2

)
, (3.5)

can be implemented on the ions in one of 2 ways. The first way is through a

composite series of rotations about axes in the XY plane, as discussed in Section

5.1. The second way is by adjusting the phase of individual controllers relative to the

ion. With this method, instead of performing a rotation on the qubit and moving

it on the Bloch sphere, the controller is rotating the Bloch sphere around the qubit.

This effectively rotates the XY plane around the Z axis and redefines the locations

of the X and Y axes, and is equivalent to rotating the ion around the Z axis of the

Bloch sphere. Subsequent operations are then implemented relative to the rotated

axes.

The upgrades discussed in Section 2.4 permitted individual phase offsets to be

applied differentially to individual ions. Because they can be implemented purely

classically by simply shifting the phase of the frequency source, the error introduced

by Z rotations is the same as the error of the frequency source itself. Consequently,

Z rotation contributions to the error in fidelity during an algorithm are negligible

compared to the error introduced by an R(θ, φ) of the same θ and can be disregarded.
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This has implications for composite sequence optimization further discussed in Sec-

tion 5.2.1.

3.2 Two-Qubit Entangling XX Gates

We implement two-qubit entangling gates using a Mølmer-Sørensen scheme

[41, 52, 55, 56] that creates an XX spin-spin interaction between two ions using the

normal motional modes of the chain as an information bus. In this experiment, we

couple to the transverse phonon modes [57,58] to drive the interaction.

The two-qubit XX entangling gate is

XX(χ) =


cos(χ) 0 0 −i sin(χ)

0 cos(χ) −i sin(χ) 0

0 −i sin(χ) cos(χ) 0

−i sin(χ) 0 0 cos(χ)

 , (3.6)

where the parameter χ can be varied continuously, 0 < χ ≤ π
4
, by adjusting the

overall power applied to the gate. The gate is maximally entangling for χ = ±π
4
,

where

XX
(
χ =

π

4

)
=

1√
2


1 0 0 −i
0 1 −i 0

0 −i 1 0

−i 0 0 1

 , XX
(
χ = −π

4

)
=

1√
2


1 0 0 i

0 1 i 0

0 i 1 0

i 0 0 1

 .

(3.7)
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When applied to two ions initilized to |00〉, this yields a maximally entangled state:

XX
(
χ =

π

4

)
|00〉 =

1√
2

(|00〉 − i|11〉)

XX
(
χ =

π

4

)
|00〉 =

1√
2

(|00〉+ i|11〉) . (3.8)

The sign of χ for a given gate depends on the interactions between the two ions

in question and the modes of motion primarily excited by the gate to produce the

spin-spin entanglement. The sign of the gate parameter χ is measured empirically

for each XX gate pairing. Accommodation for the difference in χ signs is handled

by the compiler at the gate library level (see Chapter 5). For ease of discussion, I

will only reference the χ = π
4

case for the remainder of this chapter.

3.2.1 Pulse-Shaping Scheme

We implement entangling XX gates using a pulse-shaping scheme designed to

ensure that the motional modes are fully detangled from the qubits at the end of

the gate, leaving only spin-spin entanglement [53, 57, 59]. Two ions in a chain of N

ions are illuminated with red and blue sidebands that are detuned near the normal

transverse modes of motion and couple the modes to the qubit spins. The pulse-

shaping scheme is also robust against detuning errors, and the number of pulses

needed to implement gate solutions grow linearly with the number of ions in the

chain. The detuning µ and gate time τ are independent parameters that can be

chosen before calculating a gate pulse shape, and a unit fidelity gate is possible at

any detuning [53].
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Because we couple to the normal motional modes of the chain to induce XX

gates, all ions participate in the motional modes, and so couplings are available

between all possible ion pairs. This fully connected architecture has significant ad-

vantages over less-connected architectures, which require additional gates to transfer

quantum information between unconnected qubits [27].

On this experiment, we have also implemented entangling XX gates using a

pulse-shaping scheme that modulates the frequency of the gate driver, rather than

the amplitude [28].

In order to entangle ions i and j in a chain of N ions with N motional modes

ωk using red and blue sidebands with detuning µ, we have the following 2-qubit

unitary:

UXX(τ) = exp

(
i
∑
i

φi(τ)σxi + i
∑
i<j

χij(τ)σxi σ
x
j

)

= exp
(
i
[
φi(τ)σxi + φj(τ)σxj + χij(τ)σxi σ

x
j

])
(3.9)

where τ is the gate time, the spin-motion interaction φi(τ) is

φi(τ) = αi,k(τ)â†k − α
∗
i,k(τ)âk, (3.10)

â†k and âk are the raising and lowering operators for the motional phonons, the

spin-motion parameter αi,k(τ) is

αi,k(τ) =

∫ τ

0

ηi,kΩi(t) sin(µt)eiωktdt, (3.11)
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ηi,k is the spin-motion coupling or Lamb-Dicke parameter, Ωi(t) is the Rabi frequency

of the optical field applied to ion i, and the spin-spin interaction term χij(τ) is

χij(τ) = 2

∫ τ

0

dt′
∫ t′

0

dt
∑
k

ηi,kηj,kΩi(t)Ωj(t) sin(µt) sin(µt′) sin(ωk(t
′ − t)). (3.12)

At the end of the gate, the spin-motion terms must go to zero, ensuring that all

mode trajectories in phase space return to the origin. So, we require all 2N spin-

motion parameters (2 ions, N modes) α{i,j},k(τ) = 0. Entangling the ion pair (i, j)

requires that the spin-spin coupling term χij = χideal
ij , where 0 < χideal

ij ≤ π
4
. χideal

ij is

typically π
4

for a maximally entangling XX gate but can be set to smaller values to

implement partially-entangling gates. This then yields a set of 2N + 1 parameters

to control for when calculating pulse sequences to implement an XX gate:

α{i,j},k(τ) = 0

χij(τ) = χideal
ij , 0 < χideal

ij ≤ π

4
. (3.13)

To provide full control during the gate and fulfill the constraints in Equation

3.13, we divide up the gate amplitude Ωi(t) into S segments of equal duration τ/S,

and vary the amplitude in each segment Ωs as an independent variable. The gate
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amplitude on a the ions then becomes a piecewise-constant function,

Ωi(t) =



Ω1 0 ≤ t < τ/S

Ω2 τ/S ≤ t < 2τ/S

...
...

Ωs (s− 1)τ/S ≤ t < sτ/S

...
...

ΩS (S − 1)τ/S ≤ t < τ.

(3.14)

Consequently, Equations 3.11 and 3.12 can be re-written as

αi,k(τ) =
S∑
s=1

Ωs

[
ηi,k

∫ sτ/S

(s−1)τ/S

sin(µt)eiωktdt

]

=
S∑
s=1

ΩsC
i
k,s (3.15)

and

χij(τ) =
S∑
s=1

S∑
s′=1

ΩsΩs′

∫ sτ/S

(s−1)τ/S

dt′
∫ s′τ/S

(s′−1)τ/S

dt
∑
k

ηi,kηj,k sin(µt) sin(µt′) sin(ωk(t
′ − t))

=
S∑
s=1

S∑
s′=1

ΩsΩs′Ds,s′ , (3.16)

where the terms

Ci
k,s = ηi,k

∫ sτ/S

(s−1)τ/S

sin(µt)eiωktdt (3.17)
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and

Dij
s,s′ =

∫ sτ/S

(s−1)τ/S

dt′
∫ s′τ/S

(s′−1)τ/S

dt
∑
k

ηi,kηj,k sin(µt) sin(µt′) sin(ωk(t
′ − t)) (3.18)

are pre-calculated constants that are functions only of the motional mode frequencies

ωk, the detuning µ, and the segment number s, and so can be arranged into S ×N

and S × S matrices for each ion, respectively. Note that the time ordering of the

double integral in Equation 3.18 requires that t < t′, so the time-segmented scheme

requires s ≤ s′. In the case s = s′, we must force the t < t′ constraint, yielding

Dij
s=s′ =

∫ sτ/S

(s−1)τ/S

dt′
∫ t′

(s′−1)τ/S

dt
∑
k

ηi,kηj,k sin(µt) sin(µt′) sin(ωk(t
′ − t)). (3.19)

If we now arrange the segment amplitudes Ωs into the vector Ωij, we can now

write our constraint equations from Equation 3.13 as

(
Ci

Cj

)
Ωij = 0

ΩT
ijD

ijΩij = χideal
ij (3.20)

where
{
Ci,Cj

}
are the S×N spin-motion interaction matricies for each segment on

each ion and Dij is the S × S spin-spin interaction matrix for each segment. With

the constraints in Equation 3.20, we can calculate a pulse shape on a given pair of

ions that will create an XX entangling interaction between them.

An XX gate implemented with such a scheme has a theoretical maximum unit
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fidelity. From [59], the gate fidelity as a function of the spin-motion closure terms

α{i,j},k(τ) for a fully entangling gate with χideal
ij = π

4
is

FXX

(
χ =

π

4

)
=

1

8
[2 + 2(Γi + Γj) + Γ+ + Γ−] , (3.21)

where

Γ± = exp

(
−1

2

∑
k

βk |αi,k ± αj,k|2
)

Γi(j) = exp

(
−1

2

∑
k

βk
∣∣αi(j),k∣∣2) (3.22)

and the inverse mode temperature βk is

βk = coth

(
h̄ωk
kBT

)
= coth

[
1

2
ln

(
1 +

1

n̄k

)]
, (3.23)

where n̄k is the average phonon number in the kth mode. Errors on the gate arise if

the motional modes are not fully closed in phase space, in which case the number and

temperature of any phonons in these modes determine the extent of experimental

errors.

Since we are also interested in partially-entangling gates, we re-calculate this

fidelity for a general value of χij, and obtain

FXX(χij) =
1

8
[2 + 2(Γi + Γj) cos(2∆χ) + Γ+ + Γ−] (3.24)

where ∆χ = χideal
ij −χij. Plugging in the ideal-case parameters, where α{i,j},k(τ) = 0
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and χij = χideal
ij , we indeed get FXX = 1.

An XX gate bewteen a given pair of ions is implemented by finding a pulse

shape solution that fulfills the constraints in Equation 3.13. While in principle

2N + 1 segments are needed for a given gate to control for the 2N + 1 constraints,

in practice gates can be constructed with fewer segments. The modes closest to the

detuning µ have the biggest participation in the spin-motion coupling, but those

far from the detuning participate very little and don’t move far from the origin in

phase space. Consequently, fewer segments can be used, and the solution optimized

to close phase space for the high-participation modes where phase space closure

matters most.

Several solutions at different detunings are tested on the experiment to ensure

a high-quality gate is found. While all solutions in principle have high fidelity,

anharmonicities in the experiment mean that not all solutions will perform well on

our experiment. The process must be repeated for each ion pairing one wishes to

use. While this process of pre-calculating and testing solutions incurs some overhead,

once a good solution has been found, no further tweaks to the solution are required.

The only day-to-day calibration needed is to measure the overall scaling factor to the

gate necessary to correctly imiplement a fully-entangling gate, which is a function

of the Rabi frequency and hence subject to drifts in the beam intensity seen by the

ions.

An example pulse shape with 9 segments is shown in Figure 3.4, including

plots of the trajectory of each mode in phase space over the course of the gate, and

a parity scan from which fidelity can be calculated. The pulse-shaping scheme was
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Figure 3.4: We use a pulse-shaping scheme to implement robust, high-fidelity XX
gates. Here, we show a pulse shape used to implement a gate on ions 1 and 2 in
a previous hardware setup; the spin-motion trajectories in phase space successfully
close at the end of the gate. Parity scan data shows the gate fidelity here is 95(2)%
[53]. Improvements in the hardware and analysis allowing for SPAM correction have
since increased typical XX gate fidelities to 98-99%.
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implemented on two ions in a five-ion chain in a previous experimental setup with a

different trap [53]. The hardware improvements gained using our blade trap setup,

improved individual addressing, and SPAM correction analysis have since raised typ-

ical 2-qubit gate fidelities to 98-99%. Fidelities for XX gates can be measured by

scanning the phase of a global π
2

rotation applied after the XX gate and calculating

the parity, as described in Section 7.3.1. Solutions were calculated with gate time

τ = 230µs. The gate time can be adjusted on the experiment a little to maximize

gate fidelities, yielding experimental values of 210-260 µs. We measure motional

sidebands at ωk/(2π) = [2.946, 2.978, 3.005, 3.027, 3.045] MHz detuned from the car-

rier.

I will revisit this pulse shaping method to implement a scheme for parallel

XX gates in Chapter 7.

3.3 Universality of the Gate Set {R,XX}

With quantum control consisting of single-qubit rotation R gates and two-

qubit entangling XX gates, we now want to be able to construct more interesting

unitaries. In fact, to be a fully programmable quantum computer, we require that

we have access to a universal gate set that can implement any possible unitary, just

as classical computers have access to a universal gate set that can implement any

possible classical computation. Using the quantum circuit model of computation

[60], 2-level unitaries have been shown to be universal, meaning that any unitary

can be built from 1- and 2-qubit gates [61]; however, deterministic ways of building
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such unitaries do not necessarily yield the most efficient gate sequence for doing so.

Several gate sets have been shown to be universal, including the set of all 1-qubit

rotations and a CNOT gate [62, 63], as well as the more commonly cited universal

gate set of {CNOT,H, T} [64, 65].

Any single-qubit rotation can be constructed using a sequence requiring two

orthogonal Pauli rotations [65]. Since we have access to all rotations R(θ, φ) in

the XY plane of the Bloch sphere, we can construct any single-qubit rotation R.

Additionally, as will be shown in Figure 5.2(a), a CNOT gate can be constructed

from an XX gate and several single-qubit rotations R. Consequently, our available

gate set of {R,XX} is universal, and we can use it to implement any quantum

algorithm on this programmable quantum computer.

A toolbox of useful quantum gates have been developed in the literature, and

their unitaries decomposed into already-known quantum gates [65, 66]. In the next

chapter, I will discuss the gate library of composite gates that has been developed

and implemented on our machine so far.
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Chapter 4: Control System

Chapters 2-5 presented the hardware, quantum control, and gate library layers

of a full-stack ion trap quantum computer. The highest level of the stack is the

implementation of quantum algorithms, and the user interface where this level of

control happens. While our control system software is hardly a production-ready

product, it nevertheless uses principles of abstraction and compartmentalization

to control the quantum computer, and make it easy for a knowledgeable user to

implement a quantum algorithm without having to worry about lower levels of

control. Here, I present in some detail the workings of the control software, built in

Igor, and show how all the parts of the system are stitched together by the control

software using a systems-level perspective.

In this chapter, I will discuss the compiler layer of the stack, as well as the

experimental control program it is embedded in. This will provide a systems-level

perspective on the experimental setup, as the control program manages every step

in the experimental process. The control program is written with Wavemetrics

IgorPro, a data processing tool with some instrumentation interfacing and GUI

construction capabilities. Our control program uses Igor in ways it wasn’t really

designed for, and as such we’ve had to add some creative workarounds to push the
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boundaries of the program’s capabilities. Other projects, such as ARTIQ [67] and

the pyIonControl project through Sandia National Labs [68], have produced open-

source ion trap control programs in more versatile and widely-used languages like

Python that may prove more suitable with sufficient development.

In broad strokes, the Igor program provides the GUI the user interacts with,

the compiler that interprets algorithm sequences, and ongoing control of certain

low-level experimental processes necessary to trap and hold a small chain of ions,

When the user initiates an experiment, the Igor program compiles the user’s inputs,

assembles the complete experimental procedure, and hands it off to the FPGA for

real-time execution. The experiment requires a number of steps to be performed

by disparate experimental elements quickly and with precise timing, so an FPGA,

which can initiate and terminate TTL signals to other instrumentation on a 20ns

clock cycle, is ideal for such a role. When the user writes an algorithm for the

experiment to execute, they are writing a melody. The compiler then provides the

harmonies for the melody, the control program arranges the score for a full orchestra,

and when the user starts the experiment running, Igor hands the score off to the

FPGA, which then conducts the symphony orchestra that is our ion trap quantum

computer, ensuring each instrument - lasers, RF sources, electronic controllers, and

so on - comes in at the right time to create a harmonious piece of music.
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Figure 4.1: A diagram of the computational stack, from the low-level hardware up
to algorithm implementation through a user interface. Image modified from [19].

4.1 System Control Overview

Figure 4.2 provides a systems-level view of the experimental control structure.

The Igor control program, run on a commercial PC, provides a user interface that

accepts user instructions and translates them into an experimental sequence. This

sequence and related control information is then passed to peripherals that execute

the instructions on the physical system. During an experimental run, an FPGA

is used to initiate operations in real time. The 20 ns clock cycle allows for fast

and consistently precise timing of experimental operations, which happen on mi-

crosecond timescales; a typical consumer computer is too slow and inconsistent for

our purposes. Consequently, the Igor program pre-sets any instrumentation that

uses static values before an experimental sequence begins. During experiments, the
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Figure 4.2: An overview of the control setup for all major pieces of the experiment.
A note that all beams after AOMs are deflected first orders; the dumped 0th order
and the angle of deflection are omitted here for simplicity of viewing.
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FPGA sends TTL pulses at pre-specified times to trigger the instrumentation in the

correct order for the correct length of time.

The Igor program sets the trap voltages using a DAC (digital to analog con-

verter.) When the user changes the DC electrode voltages, the new voltage values

are sent to the DAC, which then outputs those voltages to the corresponding trap

electrodes. The DAC also sets the amplitude of the RF drive, by outputting a volt-

age that controls a VVA (voltage variable attenuator) on the RF drive signal. The

trap drive signal is provided by a DDS frequency source, which is set through the

Igor program. The drive signal is amplified by a helical resonator [44], colloqui-

ally referred to as an RF can, and its output is actively stabilized with a lock [43].

Real-time shuttling can be implemented by triggering the DAC with the FPGA.

The Doppler cooling, optical pumping, and detection operations are all im-

plemented similarly. The Igor control program statically sets the frequency and

amplitude of a PTS1 frequency synthesizer for each operation. Each PTS channel

then outputs an RF signal at the specified frequency and amplitude that, when ap-

plied to the corresponding AOM, deflects the incoming 369 nm beam. The deflected

beams are aligned along the rest of the optical pathway to the ions and the zero

orders are not, so applying the driving RF to the AOM turns the beam “on” from

the points of view of the ions. A TTL-controlled switch on the RF signal serves

as an on-off switch for each beam. During an experiment, the FPGA triggers each

operation by sending a TTL pulse to the switch, thereby applying the beam to the

ions.

1Programmed Test Sources, Inc., model PTS 3200
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The AWG provides the RF control signal used to implement coherent opera-

tions. Before an experiment starts, the Igor program calculates the AWG waveform

to be used in the experiment, which requires specifying the voltage the AWG should

output at every point in time. The program calculates the voltage output with

14-bit resolution for every 1 ns timestep. The waveform is then uploaded to the

AWG, and repeated for all channels. During run time, the FPGA sends a single

TTL trigger to the AWG, at which point it plays back the entire waveform stored

in each channel. The FPGA also sends TTL pulses to“turn on” individual beams,

timed to correspond with the AWG waveform needing to be applied to that channel.

As with the 369 nm AOM controls, this works by having the TTL from the FPGA

control a switch on the RF drive applied to each AOM channel in the 32-channel

AOM. These switches and TTLs proved particularly useful for controlling 7 ions

with only 5 AWG channels.

Data is collected by a multi-channel PMT, which counts photons collected

through an objective lens with an NA of 0.37. The detection light from each ion

is imaged onto a different PMT channel. After each experimental shot, the photon

counts for each channel are sent to the FPGA, which collects it for the specified

number of experimental repetitions per data ponit, then sends the compiled photon

counts back to the Igor control program for analysis. A flip mirror controls whether

the detection light is directed onto the PMT channels, or instead to an ICCD camera,

which is used for 2D imaging of ions while loading. The camera is controlled entirely

by the Igor program; a GUI provides a user interface for setting the gain, exposure,

and other parameters, and the camera data is sent back to the control program for
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display.

4.2 The Igor Control Program

The Igor control program provides a user interface consisting of GUIs that

control nearly all aspects of the experiment. The front end allows the user to

perform several activities through GUIs. The user can create new experimental

sequences, consisting of a series of experimental operations. They can load such

a sequence and adjust the parameters of experimental operations in the sequence.

They can change static controls on certain peripherals, such as the ion trap voltage

controls and the frequency and amplitude settings for the RF signals controlling the

cool, pump, and detect AOMs. Finally, the user can initiate an experimental run

and select from various options for data display. Two modes of experimental run

are available: scanning and alignment sweeper. In a scan, the user designates one

or more experimental operation parameters to scan over, and provides a start value,

stop value, and scan increment. The program collects and displays a data point

at each scan value and then stops. In alignment sweeper mode, the experiment

is performed with the same values for each data point, and repeats until the user

stops it. This mode is particularly useful for continually running and updating

experimental outcomes while aligning or adjusting an apparatus on the experiment,

hence the name.

The back end of the Igor control program consists of several Igor procedure

(.ipf) files that handle each modular aspect of the control system. An overview
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Figure 4.3: The Igor control system.
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is shown in Figure 4.3. The experiment constructor file handles experimental pa-

rameters and execution. The data handler handles data analysis and display. The

compiler consists of the algorithm constructor (interpreter) and the AWG controller

(see Section 4.3). The pulse GUI provides the user interface for creating and exe-

cuting experimental procedures. The initialization module creates GUIs for the user

to control various pheripheral settings, including the PTS settings controlling the

cool, pump, and detect AOM drive signals. The trap voltage control provides a GUI

interface for modifying the trap potential with the DC and RF electrodes, as well

as some utility functions for loading saved voltage sets and recrystallizing the ion

chain. Additional modules control the camera peripheral and the DDS frequency

source.

The control program manages experimental procedures through the use of an

experiment object. The experiment object stores an array of experimental operation

objects in the order in which they should be executed. An example such sequence is

shown in Figure 4.4. The experiment also has two metadata variables related to the

experiment: the number of experimental operations to be executed, and the number

of experimental shots to be performed for each data point. Each experimental

operation object consists of an operation definition and a list of parameters relevant

to that particular definition. For example, the Cool experimental operation has a

parameter list that consists of the duration of the cooling to be applied. A Rotation

experimental operation has a list of 3 parameters: θ, φ, and the ion channel(s)

specifying the ions to be rotated. The experimental operation also stores variables

used for scanning the experimental operation parameters in a scanning experiment.
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A full list of experimental operations is given in Figure 4.3.

The experiment constructor module creates an experiment object when the

user initiates an experiment with the operation sequence and parameters specified

by the user. The program parses through each experimental operation in the ex-

periment to construct a list of TTL names (pointing to one or more specific TTLs

that correspond to specific operations) and a corresponding list of TTL durations

(corresponding to how long that operation should be run.) The list of TTL’s and

durations is handed to the FPGA for execution during the experiment. If there is

an algorithm chapter, it is handed to the compiler. The experiment constructor

module also manages the experimental run, tracks and increments scan variables,

and listens for a user command to stop the experiment execution.

One limitation to this experiment object architecture is that Igor limits ar-

rays of objects to 100 items. Consequently, we cannot execute experiments with

more than 100 experimental operations. For most experiments performed over the

course of this thesis work, gate sequences were short enough that this was not a

problem. However, the measurement of Renyi entropy performed in [30] required

multiple repetitions of a circuit block of 20 operations, and for longer sequences,

the 100 operation limit was exceeded. To overcome this obstacle, the control was

moved down the stack. Instead of sending the compiler a set of 20 R and XX gates

per repetition, a new experimental operation was created at the control level. The

Renyi Block experimental operation executes an entire circuit, consisting of several

R and XX gates, as a single experimental operation. To do so, the AWG Controller

calculates a very long waveform, comprised of multiple sections of what would nor-
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Figure 4.4: An example sequence to be performed on the experiment. This will
implement a Bell measurement on qubits 3 and 4.
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mally be standalone R and XX gate waveforms. Thus, many repetitions of the gate

sequence became possible, allowing data collection to proceed.

The data handler receives photon counts from the PMT via the FPGA and

analyzes the contents for display in the data frame. It uses a discriminator on

each PMT channel to determine which ions in the chain are bright and dark for

each experimental shot. This data is then aggregated to calculate birght and dark

populations on each ion. Before running the experiment, the user selects what

analyses will be displayed in the 4 panels of the data frame from several options.

Per-ion analysis options include the average photon counts seen for each ion and

probability each ion is bright. A histogram of the photon counts seen for each

ion is also displayed as a monitor; deviations from the usual histogram distribution

indicate something is wrong in the ion with the ion control. For multi-qubit analysis,

the data is aggregated into a state vector for each data point that contains the

population in each of the possible multi-qubit states. For example, the user can

specify that they want to see populations in the 4-qubit state vector for ions 1, 3,

4, and 5. The data frame will then display a plot in the data frame showing the

populations in (0000, 0001, 0010, . . .) for each data point. Another option analyzes

the populations in 2-qubit state vectors for each sub-pair in a set of 3 or more

ions. For example, if the user selects ions 1, 2, 4, and 5 for this analysis, then the

populations in (00, 01, 10, 11) will be displayed for each of the 6 ion pairs (1,2), (1,4),

(1,5), (2,4), (2,5), and (4,5). This option is particularly useful for looking at the

result of parallel 2-qubit operations. Finally, parity can be calculated and displayed

for a pair of ions, or for multiple pairs of ions within a set of 3 or more. After an
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experiment is ended, the data handler can also save data from the experiment into

a series of related text files for the user, including the raw data, analyzed data files,

and the experiment parameters used.

The AWG Freeform experimental operation can be used in lieu of an algorithm

chapter. It consists of an editable procedure file that calculates and assembles AWG

waves directly from user input. The file is provided with pre-written instructions

and templates to ease programming new sequences; the user simply fills in the

blanks with desired parameters. This setup allows for more flexibility and can

be used to implement schemes outside the standard R/XX gate set; for example,

it was used to implement phonon hopping and blockades [29]. This module may

prove useful for implementing other kinds of quantum simulation experiments that

would particularly benefit from our individual addressing capabilities not available

on many other experiments. The module could benefit from improvements such as

a user-friendly GUI control interface.

The Igor control program for ion experiments was originally developed at Geor-

gia Tech. The program has since been significantly expanded, with many new func-

tionalities added to create a program capable of controlling a programmable ion

trap quantum computer.

4.3 Compiler

When a user provides an algorithm for the quantum computer to execute, the

compiler breaks it down from a high-level gate specification into a quantum machine
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language - a series of pulses that are then executed on the qubit. The high-level gate

specification is provided by the user as a string of abbreviated control statements

separated by colons; for example, “CN24” indicates that a CNOT gate should be

performed with control ion 2 and target ion 4. Generic native R and XX gates

can also be included. Each control statement requires the inclusion of certain gate

parameters, depending on the specific operation or composite gate being called.

The interpreter of the compiler reads each control statement in turn, and then

creates one or more new experimental operations that are added to the experiment

object corresponding to the control statement. In our “CN24” example, the inter-

preter identifies that a CNOT gate is needed on the ions in question. It then adds

to the experiment object the series of R and XX experimental operations that will

execute this composite gate (see Section 5.3), specifying the required parameters for

each R/XX gate. For rotation R gates, the interpreter specifies the rotation angle

θ, the rotation axis φ, and the ion(s) to be rotated. For classical Z rotations, the

interpreter specifies the rotation angle θ and the ion(s) to be rotated. For two-qubit

entangling XX gates, the interpreter provides the ion pair to be entangled, and the

absolute value of the entanglement parameter χ. For parallel 2-qubit XX gates,

the interperter specifies two pairs of ions to be entangled, and two χ values. For

composite gates containing XX gates, the interpreter also accesses the sign of each

XX gate’s χ parameter in the XX gate parameter lookup table, which may in-

form the parameters of R gates in the composite operation to ensure fully modular

operations. How this is handled for specific gates is further discussed in Chapter 5.

With the algorithm section of the experiment object consisting entirely of R
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and XX native gates, the experiment is handed off to the AWG controller, which

compiles the waveforms needed to implement the gates. For each gate, the AWG

controller calculates a waveform for every AWG control channel; channels not used

are simply set to 0 V for the duration. For channels in use, the AWG controller

accesses calibration data from lookup tables to correctly calculate the needed wave-

form using the parameters specified in the experimental operation. For R gates, the

program looks up the π time(s) on the ion(s) in question to calculate the necessary

pulse duration to execute a rotation angle θ, and then calculates a sine wave of the

specified duration with phase set by the rotation angle φ and the phase tracked by

the phase counter. For XX gates, the program calls information about the pulse

shape specific to the ion pair in question from the lookup table, including the gate

time, sideband detuning, and the normalized pulse shape. It also accesses the cal-

ibrated gate power scaling factor, which scales the overall power of the gate pulse

shape to ensure the correct value of χ is imparted to the ions. The AWG con-

troller then calculates a bichromatic signal using these parameters, changing the

amplitude over the course of the gate in accordance with the pulse shape. Two sine

waves are calculated, red and blue of the carrier by the specified gate detuning, and

then summed, with the phase set by the phase counter. Parallel two-qubit XX

gate parameters are similar to those of standard XX gates, but with two ion pairs,

pulse shapes, calibrated gate powers, and χ values. The AWG controller calculates

2 separate bichromatic waveforms, one applied to each ion pair.

A phase counting scheme serves to track the individual phase of each ion as it

evolves over the course of the experiment. During an operation, an ion experiences
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a small Stark shift due to the applied laser field, accumulating phase at a slightly

different rate than in the dark. This phase accumulation must be carefully tracked

for phase-coherent operations. For each operation performed, the program calculates

how much phase each ion accumulates and adds it to a table of running phase

counters, which are then used to set the phase of the signal for the next operation.

Classical Z rotations are performed by adding a phase of θ to this counter for the

ion(s) undergoing the rotation.

The calculated waveforms consist of a sequence of values corresponding to

plotting a point of the waveform function every 1 ns. The sine waves are initially

calculated for a normalized maximum amplitude of 1. The waveforms for each

channel are then formatted to voltage values by the AWG utility functions; the Chase

and Tabor AWGs have different formattings, so the initial waves are calculated in

a normalized manner first and then formatted separately for ease of modularity.

A set of utility functions written to control the 4-channel Tabor AWG using

the NI-VISA communication protocol initialize the instrument’s settings. It also

provides functionality to check that a calculated waveform is within uploadable

parameters, format it for the AWG, and manage the upload to each channel over

a USB connection. The Chase AWG is directly connected to the control computer

through a PCI connection, and requires a much more limited set of utility functions

to serve a similar purpose. Once uploaded to the AWG channels, a TTL signal

from the FPGA triggers all channels to start outputting their waveforms at the

same time. The waveforms act as RF controls for the individual channels of the

32-channel AOM, which sends deflected beams onto their corresponding ions for
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coherent control.

4.4 Outlook

The control program described here has proved very capable at executing small

quantum algorithms with short control sequences on a few qubits. However, scaling

up will present challenges. The most immediate need is to automate calibration

functions. Currently, experimental operators spend a signficant amount of time cal-

ibrating the π times for R gates and the scaling power needed for XX gates by

hand as the Rabi frequency of the individual controllers drifts on a scale of hours.

Automating these procedures will speed the process significantly, as well as reduc-

ing the burden on experimental operators. Ongoing efforts include implementing

automated calibration, as well as automated loading of 5 or 9 ions. This will be

necessary for more ambitious projects, such as applying machine learning techniques

to build quantum circuits using a method that will require many repetitions of a

feedback loop that provides experimental data to a machine learning module [69].

Implementing longer gate sequences will require several structural changes to

the control systems. As discussed in Section 4.2, the experiment object in Igor

is limited in the number of experimental operations it can perform as it is cur-

rently designed. While workarounds can be implemented on an ad hoc basis2, a

structural redesign allowing for unlimited experimental operations will be needed.

A better solution, however, will be to switch to a broader, more robust control

software scheme altogether, such as those provided with ARTIQ [67] or Sandia’s

2This is sufficient for an experiment in an academic lab, right up until it isn’t.
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pyIonControl software [68], which use a Python, a more well-known and versatile

programming language. They also have the benefit of being an open-source project

with contributions from other users who can help build new functionality and fix

bugs. Other platforms may also prove to be good candidates to build such a control

system.3 On the hardware side, using the AWG for control waveforms is not scalable

not only in terms of cost, but also in terms of time. Pre-calculating and uploading

waveforms to the AWG is the slowest part of the experimental sequence; a sequence

with 10-20 XX gates may take tens of seconds to calculate and upload. Hardware

upgrades such as those provided in the Sinara project [54], which calculates and

outputs waveforms on the fly, will obviate this problem.

Another challenge will be managing the growth in the number of two-qubit

gate connections. For a fully-connected system with N qubits, the number of two-

qubit gates is (
N

2

)
=

N !

2!(N − 2)!
=
N2 −N

2
∼ O(N2), (4.1)

yielding a quadratic growth rate in the number of connections. While this is still

polynomial (and not exponential), and larger ion traps will likely be missing some

connections, it still presents a challenge. Our current strategy of using lookup tables

to supply gate parameters may prove slow in the long term; more nimble database

architectures may be needed. Additionally, this presents significant growth in the

overhead required to set up all available gate connections by pre-calculating pulse

shapes for each ion pairing and then selecting one that performs well in practice.

3Just do yourself a favor and don’t use Labview.
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While this is indeed overhead, and does not slow down operational execution once

gates are set up, the growing overhead will present costs for those needing to iterate

through many machines for development purposes. Finding methods to automatize

gate solution selection may be helpful here. Additionally, several of our two-qubit

gates use the same pulse shape and/or detuning; characterizing why and how this

happens may facilitate finding experimentally optimal solutions.

Although we already have quite a few composite operations in our gate li-

brary (see Chapter 5), further expanding the library will be important for providing

pre-optimized subroutines for larger and larger algorithms. Also useful will be a

user-friendly interface for defining new additions to the gate library; this currently

must be done by writing new code in an Igor procedure file. Improvements to the

overall user-friendliness and robustness of a quantum computing control program

will be important for allowing more users to operate the machine without having

to know either how to program changes to the control software or how to avoid the

little quirks and bugs always present in ad hoc software with no quality control pro-

cess. Integrating a universal language for gate entry that functions across multiple

platforms - just as programming languages like Python and Java can be used on

many hardwares and operating systems in the classical world - will be crucial for

collaboration as quantum computers scale up. Finally, integrating software that can

automatically optimize new user-entered gate sequences before implementing it on

the hardware will be incredibly useful. Efforts such as Microsoft’s LIQUi| > [70]

and Rigetti’s Forest [71] have started to address these needs.

While the control program described here certainly has limitations, and more
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streamlined approaches will be needed as the size of quantum computers grows, this

can certainly serve as a demonstration that, moving forward, quantum computer

control software will require modularity, flexibile construction, and well-thought-

out program design.
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Chapter 5: Gate Library

Now that we have a programmable quantum computer with high-quality qubits

(Chapter 2) and coherent single- and two-qubit operations yielding a universal gate

set (Chapter 3), the next step is to build a gate library. These gates are used

in Chapters 6-7 and [30, 31] to construct complex, multi-qubit algorithms, and the

modular nature of these gates will be crucial to flexible ion-qubit mappings and allow

great ease of implementation. In this chapter, I present detailed circuit diagrams

for all of the operations used in the course of the research for this thesis, shown in

terms of the R(θ, φ) and XX(χ) gates directly implemented by the experiment.

5.1 Single-Qubit Gates

From Chapter 3, the single-qubit rotation is defined as

R(θ, φ) =

(
cos θ

2
−ie−iφ sin θ

2

−ieiφ sin θ
2

cos θ
2

)
. (5.1)

Rotations about the X-axis (Rx(θ)) are achieved by setting φ = 0, and rotations

about the Y -axis (Ry(θ)) are achieved by setting φ = π
2
. Rotations about the Z

axis (Rz(θ)) can be constructed from three rotations about axes in the XY plane,

79



(a)

|q〉 Rz(θ) = Ry(π
2
) Rx(θ) Ry(−π

2
)

(b)

|q〉 H = Ry(π
2
) Rx(π) = Rz(π) Ry(π

2
)

Figure 5.1: (a) Rz(θ) gate implementation using Rx(θ) and Ry(θ) gates. (b)
Hadamard (H) gate implementations using Rx(θ), Ry(θ), and Rz(θ) gates.

as demonstrated in Figure 5.1(a).

A Hadamard (H) gate,

H =
1√
2

(
1 1

1 −1

)
, (5.2)

can be performed with 2 rotations, as shown in Figure 5.1(b), with a few implemen-

tation options. The fidelities of these composite rotations gates are comparable to

the fidelities of individual rotations, typically 98-99%.

5.2 Multi-Qubit Circuit Construction

From Chapter 3, the two-qubit XX entangling gate is

XX(χ) =


cos(χ) 0 0 −i sin(χ)

0 cos(χ) −i sin(χ) 0

0 −i sin(χ) cos(χ) 0

−i sin(χ) 0 0 cos(χ)

 . (5.3)

The parameter χ can be varied continuously, 0 < χ ≤ π
4
, by adjusting the overall

power applied to the gate, but the gates used here require only χ = ±π
4

or χ =
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±π
8
. The ability to vary χ continuously has proved useful in implementing circuits

for other applications not discussed in depth here, including the quantum Fourier

transform [19] and a Bayesian quantum game [32]. The gate is maximally entangling

for χ = ±π
4
.

Two-qubit XX gates are combined with rotation R gates to construct com-

posite gates. The parameter χ can be positive or negative, depending on what ion

pair is chosen and the particulars of the pulse segmentation solution chosen for the

ion pair in question; the sign of χ (sgn(χ)) is determined experimentally for each ion

pair. Consequently, some composite gate circuits include rotations with parameters

that depend on sgn(χ); all composite gates are constructed to account for both signs

of χ for each XX gate used, so that composite gates are always fully modular.

Composite gates are constructed by starting with known circuits, converting

constituent parts into R and XX gates using lower-level constructions, and then

optimizing the circuit. First, the number of XX gates is minimized (as in the Toffoli-

3 gate, described in Section 5.4). Second, the single-qubit gates are optimized by

minimizing the sum of all rotation angles θ, as this minimizes the total time for the

experiment.

Several composite circuits used in algorithms performed in this thesis are pre-

sented in this chapter. Other quantum algorithms may be implemented on this

system in a similar fashion. First, decompose the algorithms subroutines into high-

level circuits. Second, optimize those circuits to minimize the number of two-qubit

interactions required. Third, decompose the high-level circuits into physical-level R

and XX gates. Finally, perform further optimizations to first minimize the num-
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ber of two-qubit XX gates required, and then to minimize the total rotation time

(the sum of all rotation angles θ) across all R gates. However, the optimization of

quantum circuits is in the QMA-Hard complexity class, which is the quantum ana-

log of the classical NP-Hard complexity class. We therefore anticipate that future

improvements in algorithm design, circuit synthesis, and circuit optimization tech-

niques may result in more efficient circuit implementations, facilitating increased

experimental performance.

5.2.1 Optimization Strategy Adjustments with Experimental Up-

grades

This chapter features composite gates developed for use before and after the

improvements described in Section 2.4 were implemented, and consequently are opti-

mized slightly differently. In particular, the introduction of individual ion phase con-

trol allowing for the purely classical implementation of Z rotations (see Section 3.1.2)

leads to different optimization strategies for minimizing rotations. Pre-upgrade, any

Z rotations had to be implemented via a combination of several rotations in the XY

plane. Consequently, composite gates were optimized by minimizing the total rota-

tion angle θ for all rotations R(θ, φ) in the XY plane; Z rotations were to be avoided

where possible, and compiled into X and Y rotations for further optimization when

not. Post-upgrade, however, Z rotations became effectively error-free to perform

relative to R(θ, φ) rotations. Therefore, when optimizing a given composite gate,

the total rotation angle θ over all R(θ, φ) rotations can be further minimized by
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(b)

|qc〉 •
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2
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)

Figure 5.2: χct is the parameter for the XX gate between the two qubits. Let
α = sgn(χct). (a) CNOT gate implementation using XX(χ), Rx(θ), Ry(θ), and
Rz(θ) gates. (b) Controlled-Z gate implementation using XX(χ), Rx(θ), and Ry(θ)
gates.

employing Z rotations instead wherever possible. In particular, the following Pauli

rotation identities were very useful for converting between X, Y , and Z rotations

to minimize rotations other than Z:

Rz(θ) = Ry

(π
2

)
·Rx(θ) ·Ry

(
−π

2

)
= Rx

(
−π

2

)
·Ry(θ) ·Rx

(π
2

)
(5.4)

Rx(θ) = Rz

(π
2

)
·Ry(θ) ·Rz

(
−π

2

)
= Ry

(
−π

2

)
·Rz(θ) ·Ry

(π
2

)
(5.5)

Ry(θ) = Rx

(π
2

)
·Rz(θ) ·Rx

(
−π

2

)
= Rz

(
−π

2

)
·Rx(θ) ·Rz

(π
2

)
(5.6)

It is also useful to note that X rotations commute with XX gates, and can therefore

be moved around more to minimize rotations. In this chapter, I will identify which

composite gates were optimized under which set of circumstances.

5.3 Two-Qubit Composite Gates

The controlled-NOT , or CNOT , gate, is a two-qubit interaction used as the

building block for many quantum algorithms. A control qubit |qc〉 acts on a target
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qubit |qt〉 by flipping the target qubit’s state if the control qubit is in the |1〉 state;

otherwise, it does nothing. This has the unitary evolution operator

UCNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (5.7)

Another useful two-qubit interaction is the controlled-Z, or C(Z), gate, which flips

the phase of the two-qubit state if the two qubits are in the |11〉 state:

UC(Z) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 . (5.8)

Circuits for the CNOT and C(Z) gates are shown in Figures 5.2(a-b) respectively.

They each require one XX
(
π
4

)
gate and several rotations. Both gates were first

demonstrated on this system in [19], with typical fidelities of 96-98% [19, 20]. The

upgrades described in Section 2.4 have resulted in typical CNOT gate fidelities

increasing to 98-99%. In this work, the CNOT gate will be used in Chapters 6 and

7, while the controlled-Z gate will only be needed for Chapter 6.

5.4 Toffoli Gates

Next, we scale up to a three-qubit composite gate by implementing a controlled-

controlled-NOT (C2(NOT )), or Toffoli-3, gate. The Toffoli gate [72] requires two

control qubits (q1 and q2) and one target qubit (qt). Like the CNOT gate, it flips
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• • • •

• = • •

U V V † V

Figure 5.3: Any doubly-controlled unitary U can be constructed out of 5 two-qubit
interactions using CNOT gates and controlled-V operations, where V 2 = U [63].

the target qubit state if and only if both control qubits are in the |1〉 state:

UT3 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


. (5.9)

Our Toffoli-3 gate is constructed from 5 two-qubit gates (three XX
(
π
8

)
and

two XX
(
π
4

)
gates) in a manner similar to the Toffoli gate demonstrated in [73].

As shown in Figure 5.3, any doubly-controlled unitary C2(U) operation can be

performed with 5 two-qubit interactions (two CNOT s, two C(V )s, and one C(V †))

if a controlled-V operation is available such that V 2 = U [63]. Since

[
XX

(π
8

)]2

= XX
(π

4

)
, (5.10)

we can add single-qubit rotations to construct a Toffoli-3 gate with minimal use

of two-qubit gates, as shown in Figure 5.4(a). This compares favorably to the 6

two-qubit gates that would be necessary if only CNOT (or equivalently, XX
(
π
4

)
)

gates were available. These constructions also provide for the implementation of
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Figure 5.4: Three-qubit composite gates using XX(χ), Rx(θ), Ry(θ), and R(θ, φ)

gates. Let α = sgn(χ12), β = sgn(χ1t), γ = sgn(χ2t), and P = arcsin
(√

2
3

)
. (a)

Toffoli-3 gate implementation. (b) Controlled-controlled-Z (CCZ) gate implemen-
tation.
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Figure 5.5: Measured truth table for a Toffoli-3 gate. The average process fidelity is
89.6(2)%, corrected for a 1.5% average state preparation and measurement (SPAM)
error.

C2(Z) gates, which can be constructed by adding a few single-qubit rotations to a

Toffoli-3 gate (see Figure 5.4(b)) and has the unitary evolution operator

UC2(Z) =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 −1


. (5.11)

For all circuits, the single-qubit rotations are further optimized to minimize total

rotation time [74], optimized under pre-upgrade constraints.

Here, we show results for a Toffoli-3 gate, with a process fidelity of 89.6(2)%

(see Figure 5.5). Toffoli-3 gates have been previously performed in NMR systems [75]

and ion traps [76], including this system [24,27]. We employed a limited tomography

procedure to verify that the Toffoli-3 gate performed had no spurious phases on the
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outputs (see Section 5.4.1). This gate will be used for the Grover search algorithm

in Chapter 6.

5.4.1 Toffoli-3 Characterization

We employed a limited tomography procedure to characterize the outputs of

the Toffoli-3 gate performed. A global rotation into the X basis was applied to

all 3 ions before and after the Toffoli-3 gate for each input (see Figure 5.6(a)):

Ry(π
2
) for the even inputs (000, 010, 100, 110) and Ry(−π

2
) for the odd inputs (001,

011, 101, 111). An ideal Toffoli-3 gate will result in an anti-diagonal input-output

matrix in the Z basis when this procedure is applied. The experimental results

of this verification procedure are shown in Figure 5.6(b) with an average success

probability of 82.1(2)%, indicating the Toffoli-3 is faithful for arbitrary input states.

88



(a)

|q1〉 Ry

(
±π

2

)
• Ry

(
±π

2

)
|q2〉 Ry

(
±π

2

)
• Ry

(
±π

2

)
|qt〉 Ry

(
±π

2

)
Ry

(
±π

2

)
(b)

0
0.2

000

0.4

111

0.6

pr
ob
ab
ili
ty

011

detected

0.8

input

1

011
111 000

0

0.2

0.4

0.6

0.8

1

Figure 5.6: (a) Circuit for implementing the Toffoli-3 limited tomography procedure.
The global rotations are positive for even input states and negative for odd input
states. (b) Limited tomography check performed on the Toffoli-3 gate to verify
phases. The average success probability is 82.1(2)%, corrected for a 2.4% average
SPAM error.
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Figure 5.7: Toffoli-4 gate implementation using XX(χ) and R(θ, φ) gates.
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Figure 5.8: Measured truth table for a Toffoli-4 gate performed with 3 controls, 1
target, and 1 ancilla qubit. The average process fidelity is 70.5(3)%, corrected for a
1.9% average SPAM error.
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5.4.2 Toffoli-4 Gate

We use a related strategy to construct a Toffoli-4 gate as was done for the

Toffoli-3 gate, where the Toffoli-4 gate is a triply-controlled NOT gate,

UT4 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0



. (5.12)

Using the methods described in [77], we construct a circuit between 3 control qubits

(q1, q2, and q3), one target qubit (qt), and an additional ancilla qubit (qa), shown

in Figure 5.7. In the circuit diagram, α1 = sgn(χ1a), α2 = sgn(χ2a), α3 = sgn(χ3a),

αt = sgn(χta), β = sgn(χ3t), P = arcsin
(√

2
3

)
, and Q = 1

8
(4 − 3α2αt). By again

using both XX
(
π
4

)
and XX

(
π
8

)
gates, we are able to save one two-qubit gate

relative to a construction limited to CNOT gates [77]. When executing the gate on

the system, we report an average process fidelity of 70.5(3)% (see Figure 5.8) [24].
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5.5 The SWAP Gate

A SWAP gate exchanges the quantum states of two qubits, like so:

USWAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 . (5.13)

If one assumes that qubits are fixed wires, one could naively implement a SWAP

gate as follows [65]:

• •

•
=
×

×

.
(5.14)

However, if one has a fully-connected system - for example, an ion-trap quantum

computer where the normal modes of motion yield multi-qubit entangling gates with

all possible pairwise interactions available - then one can simply swap the qubit

assignments, a purely classical operation that saves us 3 two-qubit interactions.

This will come in handy in Section 5.9. A comparison to another architecture,

the IBM Quantum Experience, shows that our system benefits from the absence of

SWAP -gate overhead due to its complete connectivity graph [27].

5.6 Controlled-SWAP Gate
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Figure 5.9: Controlled-SWAP (or Fredkin) gate implementation. (a) Controlled-
SWAP gate in terms of CNOT and Toffoli gates, used for optimized circuit con-
struction. (b) Controlled-SWAP gate circuit optimized for use on the experi-
ment using XX(χ), Rx(θ), Ry(θ), Rz(θ), and R(θ, φ) gates, where α = sgn(χ12),

β = sgn(χ23), γ = sgn(χ13), and P = arcsin
√

2
3
.
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Figure 5.10: Measured truth table for a Controlled-SWAP gate. The average pro-
cess fidelity is 86.8(3)%, corrected for a 1% average state preparation and measure-
ment (SPAM) error.

The controlled-SWAP (CSWAP , or Fredkin) gate [78] is a three-qubit in-

teraction that operates by swapping the last two qubits |q2〉 and |q3〉 if the control

qubit |qc〉 is in the state |1〉, and has the unitary evolution operator

UCSWAP =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1


. (5.15)

It has been previously demonstrated on NMR [79] and photonic systems [80, 81];

this represents its first demonstration on a trapped ion system.
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The CSWAP can be implemented using two CNOT gates and a Toffoli gate,

as shown in Figure 5.10(a). The final composite circuit, shown in Figure 5.10(b), was

constructed by assembling the pre-optimized CNOT and Toffoli circuits in Figures

5.2(a) and 5.4(a) respectively, and then further optimizing the combined rotations.

The Toffoli and CNOT gates used here were optimized for use on the machine pre-

upgrade, but the CSWAP was optimized for use post-upgrade; consequently, it is

possible further rotation savings could be achieved were a more optimal Toffoli gate

determined first. Future uses of the CSWAP may benefit from a more thorough

optimization procedure taking advantage of the upgraded experimental capabilities.

The CSWAP gate was used as a readout module to measure the Renyi-2

entropy in a two-site Fermi-Hubbard model system [30]. Data for all bitwise inputs

and outputs is shown in Figure 5.10, with an average process fidelity of 86.8(3)%.

For use in the Reyni-2 entropy measurement scheme, only the outcome of the control

qubit is needed; its process fidelity is 94.0(2)%.

5.7 Using Z-Rotations to Obviate χ Sign in XX Gates

With Z rotations implemented classically (see Section 5.2.1), an opportunity

now arises to abstract away the considerations made for the effects of the sign of χ

on the constuction of a composite gate. Since XX
(
π
4

)
6= XX

(
−π

4

)
, a mechanism

is needed to ensure correct gate sequences. Previously, a parameter for the sign of

the χ for each XX gate had to be introduced, and affected the properties of other

rotations in the circuit in order to ensure the gate was fully modular and could be
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|q1〉
XX(+χ)

|q2〉
=

Rz(π)
XX(−χ)

Rz(−π)

|q1〉
XX(+χ)

|q2〉
= XX(−χ)

Rz(π) Rz(−π)

Figure 5.11: Adding an appropriate Z rotation on one qubit on either side of an
XX(χ) gate flips the sign of its χ parameter, obviating the need to consider all
possible combinations of χ signs when optimizing a modular, programmable gate.
When implementing a gate on a given set of ions, simply add Z rotations on either
side of any XX gates on ion pairs with experimentally-verified negative χ signs.

used on any qubit selection, regardless of the χ-signs of the XX gates in use. This

made circuit optimization considerably more complicated, and led to some circuits

(such as the Toffoli-3 in Figure 5.4(a)) that were not necessarily optimal for all

possible χ sign combinations.

Conveniently, it turns out that adding a classical Z rotation on the same qubit

before and after an XX(χ) gate flips the sign of its χ parameter, as shown in Figure

5.11. By adding these classically-implemented rotations whenver an XX gate with

a negative χ parameter is used, all XX gates are rendered identical without an error

penalty, making composite gate optimzation much simpler (I optimized all of the

following gate sequences by hand) and ensuring that all composite gates are always

optimal.

5.8 The Square Root of CNOT

In Section 7.5, to construct the full adder circuit from [82] we will need to

construct a Controlled-V (C(V )) gate, where C(V ) is the square root of a CNOT

gate, or C(V )2 = CNOT , and consists of a controlled-X(θ) operation. As discussed
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Figure 5.12: Component circuits for CNOT and its square root gates using XX(χ),
Rx(θ), Ry(θ), and Rz(θ) gates.. (a) and (b) Alternate CNOT gate implementa-
tions. (c) Controlled-V (C(V )) gate implementation. (d) Controlled-V † (C(V †))
gate implementation. (e) C(V ) and C(V †) gates are equivalent to the square root
of a CNOT gate.
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in Section 5.4, we can adjust the χ parameter of the XX(χ) gate to achieve such a

relationship, shown in Equation 5.10. Figure 5.12(a) shows a variation on the CNOT

gate from Figure 5.2(a) that allows for the creation of a
√
CNOT by adjusting

the χ of the XX gate, and concurrently adjusting the length of the following X

rotations on each ion; the resulting circuit for a C(V ) gate is shown in Figure

5.12(c). Additionally, C(V †) is needed, shown in Figure 5.12(d); from Section 5.7,

we can easily implement the XX(−π
8
) gate by adding Z rotations on either side of

the XX gate. By squaring the C(V ) or C(V †) gates, a CNOT gate is performed

(C(V †) (Figure 5.12(e)).

The unitary for the C(V ) =
√
CNOT gate is

UV =


1 0 0 0

0 1 0 0

0 0 1
2
(1− i) 1

2
(1 + i)

0 0 1
2
(1 + i) 1

2
(1− i)

 . (5.16)

5.9 Quantum Scrambling Library

Quantum scrambling is a phenomenon of interest that describes how infor-

mation spreads through a system. It has direct implications for out of time order

correlators (OTOCs) and has implications for the study of quantum information in

black holes [83]. We have implemented scrambling unitaries on our experiment and

probed their properties in several ways [31], as proposed in [84]. Here, I discuss the

library of quantum circuits used for implementing and probing scrambling unitaries.

The general circuit diagram to test whether a unitary U is a quantum scram-
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bling unitary is shown in Figure 5.13. In the case of a scrambling unitary, the

input state |ψ〉 will teleport to the output state |ϕ〉 with fidelity F = |〈ψ|ϕ〉|2 = 1,

conditioned on the outcome of the Bell measurement. The Bell measurement it-

self will yield the correct Bell state |00〉 + |11〉 with post-selection probability P .

Three possible pairs of qubits can be used for Bell measurements: (3,4), (2,5), and

(1,6). If successful teleportation with the correct post-selection probability P for

all possible input states and all possible choices of Bell pair, quantum scrambling is

verified. Using the teleportation fidelity F and the post-selection probability P , we

can probe the relationship between scrambling, OTOCs, and decoherence [84].

|ψ〉

U

Bell

|0〉 EPR

Bell
|0〉

EPR Bell
|0〉

U∗P|0〉 EPR

|0〉
EPR

|0〉 |ϕ〉

Figure 5.13: General figure for testing the scrambling properties of a unitary U .

The unitary U∗P is a permutation of the unitary U∗ that permutes the first
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and third input, such that U∗P = PU∗P , where

P =



1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1


. (5.17)

This can also be modeled by simply swapping the inputs of qubits 4 and 6 into the

unitary U∗, and swapping them back afterwards.

5.9.1 Deterministic Teleportation Protocol

An alternative protocol that teleports |ψ〉 deterministically, eliminating the

need to perform post-selection, can be performed using a variant of the Grover search

protocol [85] and implemented as shown in Figure 5.14(a). The Grover operations,

GD and GA, have the form

G = I − 2|EPR〉〈EPR| =


0 0 0 −1

0 1 0 0

0 0 1 0

−1 0 0 0

 , (5.18)

which is a SWAP operation and a few rotations. The circuit is shown in Figure

5.14(b). We can implement the SWAP by simplly re-assigning the qubits to the

other ion; no quantum operation needed.
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(a)

|ψ〉

U|0〉 EPR

|0〉
EPR GD

|0〉

U∗ UT|0〉 EPR

|0〉
EPR GA

|0〉 |ϕ〉

(b)

|q1〉 Rz (π) Rx (π) × Rz (π)

|q2〉 Rx (π) ×

Figure 5.14: (a) General figure for testing the scrambling properties of a unitary U ,
using a Grover protocol requiring G. (b) Circuit for Grover protocol G.

5.9.2 Bell States and Bell Measurements

For the quantum scrambling experiments presented in [31], we will need to

create and measure Bell pairs. Below are the schemes used for dealing with Bell

pairs, optimized under the post-upgrades capabilities.

The four Bell states can be created using the following recipe (or related vari-

ations) as a method of constructing the EPR pairs required by the scramble-tester
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circuit in Figure 5.13:

|Φ+〉 =
1√
2

(|00〉+ |11〉) = RZ,1

(
α
π

2

)
XX

(
α
π

4

)
|00〉 (5.19)

|Φ−〉 =
1√
2

(|00〉 − |11〉) = RZ,1

(
−απ

2

)
XX

(
α
π

4

)
|00〉 (5.20)

|Ψ+〉 =
1√
2

(|01〉+ |10〉) = RZ,1

(
α
π

2

)
RX,2 (π)XX

(
α
π

4

)
|00〉 (5.21)

|Ψ−〉 =
1√
2

(|01〉 − |10〉) = RZ,1

(
−απ

2

)
RX,2 (π)XX

(
α
π

4

)
|00〉 (5.22)

Our native XX(χ) gates create the entangling state 1√
2

(|00〉 − i|11〉). As such,

XX(π
4
) gates can be used by themselves to create EPR pairs. Since the resulting

output in Figure 5.13 simply adds a global phase to the teleported state |ϕ〉, the

bare XX(π
4
) gates can be used without modification in the circuit. Note that proper

Bell measurement as described next is still necessary - we can’t use bare XX gates

there.

Bell measurements can be performed using the circuit shown in Figure 5.15(a)

[65]. This takes as input a state |q1q2〉 in the Bell basis, so

|q1q2〉 = a|Φ+〉+ b|Ψ+〉+ c|Φ−〉+ d|Ψ−〉, (5.23)

where a2 + b2 + c2 + d2 = 1, and outputs the result

|q1q2〉 = a|00〉+ b|01〉+ c|10〉+ d|11〉. (5.24)

This circuit can be optimized using our experimentally available gates R(θ, φ) and
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2

)
Rx

(
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2

)
Figure 5.15: (a) Simple Bell measurement circuit implemented with a CNOT gate
and a Hadamard gate. (b) Optimized Bell measurement gate sequence using R and
XX gates.

XX(χ) to the Bell measurement circuit shown in Figure 5.15(b).

5.9.3 Scrambling Unitary US

The scrambling unitary US used for much of the data discussed in [31],

US =
1

2



−1 0 0 −1 0 −1 −1 0

0 1 −1 0 −1 0 0 1

0 −1 1 0 −1 0 0 1

1 0 0 1 0 −1 −1 0

0 −1 −1 0 1 0 0 1

1 0 0 −1 0 1 −1 0

1 0 0 −1 0 −1 1 0

0 −1 −1 0 −1 0 0 −1


, (5.25)
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is verified to be a scrambling unitary by showing

U †(X ⊗ I ⊗ I)U = X ⊗ Z ⊗ Z

U †(I ⊗X ⊗ I)U = Z ⊗X ⊗ Z

U †(I ⊗ I ⊗X)U = Z ⊗ Z ⊗X

U †(Y ⊗ I ⊗ I)U = Y ⊗X ⊗X

U †(I ⊗ Y ⊗ I)U = X ⊗ Y ⊗X

U †(I ⊗ I ⊗ Y )U = X ⊗X ⊗ Y

U †(Z ⊗ I ⊗ I)U = Z ⊗ Y ⊗ Y

U †(I ⊗ Z ⊗ I)U = Y ⊗ Z ⊗ Y

U †(I ⊗ I ⊗ Z)U = Y ⊗ Y ⊗ Z (5.26)

where {X, Y, Z, I} are the Pauli operators. The circuit to implement this unitary

consists of 3 XX gates followed by 3 Y Y gates; the latter can be implemented by

adding rotations to an XX gate to move the interaction to the Y Y basis. Because

this unitary is fully real, US = U∗S. The gate sequence to produce this unitary is

shown in Figure 5.16(a). A circuit with a continuously-adjustable parameter θ that

scans how much scrambling the unitary performs is shown in Figure 5.16(b); for

θ = 0, the unitary is the identity I, and for θ = π
2
, the unitary is the maximally-

scrambling unitary US. We note that the 3 XX gates in each group of consecutive

XX gates can be done in any order.
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(
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(
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)
|q3〉 XX Rz

(
π
2
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XX Rz

(
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2

)
(b)

|q1〉
XX

XX Rz (θ)
XX

XX Rz (−θ)

|q2〉
XX

Rz (θ)
XX

Rz (−θ)

|q3〉 XX Rz (θ) XX Rz (−θ)

Figure 5.16: (a) Circuit to produce the unitary US. (b) Circuit for U(θ), with an
adjustable parameter θ that goes from the identity U(θ = 0) = I to the maximally-
scrambling U(θ = π

2
) = US, allowing for a scan of the amount of scrambling per-

formed by the unitary. XX indicates a XX
(
π
4

)
gate.

5.9.4 Scrambling Unitary UCZ

An additional scrambling unitary, UCZ , is also probed in [31] for use with the

Grover protocol, where

UCZ =
1

2
√

2



1 1 1 −1 1 −1 −1 −1

1 −1 1 1 1 1 −1 1

1 1 −1 1 1 −1 1 1

−1 1 1 1 −1 −1 −1 1

1 1 1 −1 −1 1 1 1

−1 1 −1 −1 1 1 −1 1

−1 −1 1 −1 1 −1 1 1

−1 1 1 1 1 1 1 −1


. (5.27)

The gate sequence yielding this unitary is shown in Figure 5.17(a), and is

based on an arrangement of 6 Control-Z gates. An optimized gate sequence is

shown in Figure 5.17(b). Additionally, a gate sequence with the same number of
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operations as the unitary but instead performing the identity is shown in Figure

5.17(c), allowing for direct comparisons and error characterization. As with US, we

note that the 3 XX gates in each group of consecutive XX gates can be done in

any order. Additionally, the rotations before the first XX gate and after the last

XX gate can all have their signs flipped without changing the unitary performed.

This comes in handy when optimizing the overall circuit with the Grover protocol,

and allows for some XX gate cancellations (see Section 5.9.6.) Finally, we note that

UCZ = U∗CZ = UT
CZ .

(a) UCZ

|q1〉 • • H • •
|q2〉 • Z H Z •
|q3〉 Z Z H Z Z

(b) UCZ, optimized

|q1〉 Rz (π) Ry

(
π
2

)
XX

XX Ry

(
π
2

)
XX

XX Ry

(
π
2

)
|q2〉 Rz (π) Ry

(
π
2

)
XX

Ry

(
π
2

)
XX

Ry

(
π
2

)
|q3〉 Rz (π) Ry

(
π
2

)
XX Ry

(
π
2

)
XX Ry

(
π
2

)
(c) Identity I

|q1〉 Rz (π) Ry

(
π
2

)
XX

XX Rz (π)
XX

XX Ry

(
π
2

)
|q2〉 Rz (π) Ry

(
π
2

)
XX

Rz (π)
XX

Ry

(
π
2

)
|q3〉 Rz (π) Ry

(
π
2

)
XX Rz (π) XX Ry

(
π
2

)
Figure 5.17: (a) Basic circuit to produce the scrambling unitary UCZ . (b) Opti-
mized circuit to produce the scrambling unitary UCZ . (c) Identity circuit requiring
the same number of gates as UCZ , allowing for error characterization and direct com-
parisons between maximally- and minimally-scrambling unitaries. XX indicates a
XX

(
π
4

)
gate.
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5.9.5 Classical Scrambler

Some unitaries will scramble quantum information non-maximally. This means

they can transform 1-body information into 3-body information in some bases, but

not others. Maximally-scrambling unitaries transform 1-body information into 3-

body information in all bases. One such unitary is the “classical” scrambling unitary

UCS, which scrambles information in the X and Y bases, but not information in Z.

Here,

UCS =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1


(5.28)

and we have

U †CS(X ⊗ I ⊗ I)UCS = X ⊗ Z ⊗ Z

U †CS(I ⊗X ⊗ I)UCS = Z ⊗X ⊗ Z

U †CS(I ⊗ I ⊗X)UCS = Z ⊗ Z ⊗X

U †CS(Y ⊗ I ⊗ I)UCS = Y ⊗ Z ⊗ Z

U †CS(I ⊗ Y ⊗ I)UCS = Z ⊗ Y ⊗ Z

U †CS(I ⊗ I ⊗ Y )UCS = Z ⊗ Z ⊗ Y. (5.29)
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However, U †CS(Z ⊗ I ⊗ I)UCS, U †CS(I ⊗ Z ⊗ I)UCS, and U †CS(I ⊗ I ⊗ Z)UCS are

not equal to any combination of three Pauli matrices, and therefore no scrambling

occurs in that basis. The gate sequence yielding this unitary (controlled-Z gates

connecting each pair of qunits) is shown in Figure 5.18(a), with its optimized version

in Figure 5.18(b).

Because this unitary only scrambles classical information, the circuit in Figure

5.13 will only teleport classical information; in other words, information about pop-

ulations will be teleported from the input to the output state, but not information

about the phase on each state. For an input state |ψ〉 = a|0〉 + b|1〉 on qubit 1, a

measurement on the output qubit ϕ will yield a2 population in |0〉 and b2 population

in |1〉 conditioned on the Bell pair |00〉 + |11〉. Additionally, the probability P of

getting the Bell pair |00〉+ |11〉 will be 50% rather than 25%.

(a)

|q1〉 • •

|q2〉 Z •

|q3〉 Z Z

(b)

|q1〉 Rz (π) Ry

(
−π

2

)
XX

(
π
4

) XX
(
π
4

)
Ry

(
π
2

)
|q2〉 Rz (π) Ry

(
−π

2

)
XX

(
π
4

) Ry

(
π
2

)
|q3〉 Rz (π) Ry

(
−π

2

)
XX

(
π
4

)
Ry

(
π
2

)
Figure 5.18: (a) Basic circuit to produce the unitary UCS, which scrambles classical
but not phase information. (b) Optimized circuit to produce the unitary UCS.
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5.9.6 Circuit Optimization

We can eliminate several XX gates by cancelling XX gates repeated between

repeated scrambling unitaries on the same qubits. Additionally, we can use prop-

erties of EPR pairs that allow us to “move” gates from one half of an EPR pair

to the other half, subject to a transformation. Specifically, any unitary U applied

on one half of an EPR pair is the same as that unitary’s transpose UT applied to

the other half (see Figure 5.19). As an example of how this improves circuit perfor-

mance, Figures 5.20 and 5.21 showsthe gates eliminated with these techniques for

UCZ implemented in the circuit from Figure 5.13.

|q1〉
EPR

U

|q2〉
= EPR

UT

Figure 5.19: A unitary U performed on one half of an EPR pair is the same as its
transpose UT performed on the other half of the EPR pair.

|q1〉
XX

(
π
4

) Ry

(
π
2

)
Rz (−π) Ry

(
−π

2

)
XX

(
π
4

)
|q2〉 Ry

(
π
2

)
Rz (−π) Ry

(
−π

2

)

= XX
(
π
4

) Rx (π)
XX

(
π
4

)
Rx (π)

=

Figure 5.20: Equivalence used to eliminate XX gates in neighboring, repeated UCZ
unitaries.
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|q1〉 Rz (π) Ry

(
π
2

)
· · ·

|q2〉 EPR Rz (π) Ry

(
π
2

)
XX

(
π
4

) · · ·

|q3〉
EPR

Rz (π) Ry

(
π
2

)
· · ·

|q4〉 Rz (π) Ry

(
π
2

)
XX

(
π
4

) · · ·

|q5〉 EPR Rz (π) Ry

(
π
2

)
· · ·

|q6〉
EPR

Rz (π) Ry

(
π
2

)
· · ·

|q7〉 · · ·

Rz (π) Ry

(
π
2

)
· · ·

EPR · · ·

EPR
· · ·

=
XX

(
π
4

)T RT
y

(
π
2

)
RT
z (π) Rz (π) Ry

(
π
2

)
XX

(
π
4

) · · ·

EPR RT
y

(
π
2

)
RT
z (π) Rz (π) Ry

(
π
2

)
· · ·

EPR
Rz (π) Ry

(
π
2

)
· · ·

· · ·

Rz (π) Ry

(
π
2

)
· · ·

EPR · · ·

EPR
· · ·

= Rx (π) · · ·

EPR Rx (π) · · ·

EPR
Rz (π) Ry

(
π
2

)
· · ·

· · ·

Figure 5.21: Equivalence used to eliminate XX gates from stacked UCZ unitaries
using the EPR property in Figure 5.19.
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Chapter 6: Complete 3-Qubit Grover Search

The Grover quantum search algorithm is a hallmark application of a quan-

tum computer with a well-known speedup over classical searches of an unsorted

database. Here, we report results for a complete three-qubit Grover search algo-

rithm using the scalable quantum computing technology of trapped atomic ions,

with better-than-classical performance. Two methods of state marking are used for

the oracles: a phase-flip method employed by other experimental demonstrations,

and a previously-undemonstrated Boolean method requiring an ancilla qubit that

is directly equivalent to the state-marking scheme required to perform a classical

search. The data presented here is also presented in [24].

6.1 The Grover Search Algorithm

Searching large databases is an important problem with broad applications.

The Grover search algorithm [86,87] provides a powerful method for quantum com-

puters to perform searches with a quadratic speedup in the number of required

database queries over classical computers. It is an optimal search algorithm for

a quantum computer [88], and has further applications as a subroutine for other
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OracleInitialize Amplification

Figure 6.1: Evolution of relative amplitudes for each state during a Grover search
algorithm. The initialization stage creates an equal superposition of all possible
input states, so the amplitude αx = 1 for all basis states |x〉. The oracle stage marks
the desired state, so the amplitude αm of the marked state |m〉 becomes negative
while the amplitudes αb of the unmarked states |b〉, b 6= m remain unchanged. The
amplification stage performs a reflection about the mean vector

∑N−1
x=0 |x〉, which

has amplitude A = 1
N

∑N−1
x=0 αx = 1

N
(−αm + (N − 1)αb), to amplify the marked

state. An appropriate number of repetitions of the oracle and amplification stages
will maximize the amplitude of the correct answer. All qubit states are normalized
by the factor 1√

N
. The algorithm can also be generalized to mark and amplify the

amplitude of t desired states.

quantum algorithms [89, 90]. Searches with two qubits have been demonstrated on

a variety of platforms [91–97] and proposed for others [98], but larger search spaces

have only been demonstrated on a non-scalable NMR system [73].

The Grover search algorithm has 4 stages: initialization, oracle, amplifica-

tion, and measurement, as shown in Figure 6.1. The initialization stage creates

an equal superposition of all states, 1√
N

∑N−1
x=0 |x〉 for all basis states |x〉. The or-

acle stage marks the solution(s) |m〉 by flipping the sign of that state’s amplitude,

yielding 1√
N

(
−αm

∑
m |m〉+

∑
b 6=m αb|b〉

)
for marked state amplitude(s) αm and

non-marked state amplitudes αb. Inverting an amplitude α about an average am-

plitude A can be written as −α + 2A or A + (A − α). Here, the amplification

stage performs a reflection about the mean vector
∑N−1

x=0 |x〉, thus increasing the
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amplitude of the marked state:

|Ψamp〉 =
1√
N

[
(2A+ αm)

∑
m

|m〉+ (2A− αb)
∑
b 6=m

|b〉

]
, (6.1)

where A is the amplitude of the mean vector. Finally, the algorithm output is

measured. For a search database of size N with t possible solutions, the single-

shot probability of measuring the correct answer is maximized to near-unity by

repeating the oracle and amplification stages O(
√
N/t) times before measurement.

The probability of failing to measure a correct answer is guaranteed to be less than t
N

if the optimal number of iterations, j = b π
4θ
c, is used, where sin2(θ) = t

N
, 0 < θ ≤ π

2
;

for t� N , the probability of failure is negligible [86,87]. By comparison, a classical

search algorithm will get the correct answer after an average of N/2 queries of the

oracle, and in the worst case may require up to N queries to find the correct answer.

For large databases, this quadratic speedup represents a significant advantage for

quantum computers.

Here, we implement the Grover search algorithm on n = 3 qubits, which

corresponds to a search database of size N = 2n = 8. All searches are performed

with a single iteration (j = 1). After a single iteration, the initial amplitudes

αx = 1 on all basis states |x〉, so the mean vector has amplitude A = 1
N

∑N−1
x=0 αx =

1
N

(−αm · t+ (N − t)αb) = N−2t
N

. Plugging in to Equation 6.1 above and rewriting
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the inversion about the mean vector as A+ (A− α), we have

|Ψamp(j = 1)〉 =
1√
N

[
(A+ (A+ αm))

∑
m

|m〉+ (A+ (A− αb))
∑
b 6=m

|b〉

]

=
1√
N

[(
N − 2t

N
+

(
N − 2t

N
+ 1

))∑
m

|m〉

+

(
N − 2t

N
+

(
N − 2t

N
− 1

))∑
b6=m

|b〉

]

=
1√
N

[(
N − 2t

N
+

2(N − t
N

)∑
m

|m〉+

(
N − 2t

N
− (

2t

N

)∑
b6=m

|b〉

]
.

(6.2)

Since there are t possible correct solutions |m〉, the probability of measuring one

correct solution after one iteration is

Pm = t ·
([

N − 2t

N
+

2(N − t)
N

]
1√
N

)2

. (6.3)

In contrast, the optimal classical search strategy consists of a single query (equiva-

lent to a single Grover iteration) followed by a random guess in the event the query

failed. Therefore, the total probability of finding a correct solution is P (success) =

P (query correct) + P (query incorrect) ∗ P (guess correct|query incorrect), where

P (query correct) = t
N

, P (query incorrect) = N−t
N

, and P (guess correct|query incorrect)

= t
N−1

. In general, for t solutions in the classical case,

P (success) =
t

N
+
N − t
N
· t

N − 1
. (6.4)
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Consequently, for a single-solution algorithm (t = 1), the algorithmic probabil-

ity of measuring the correct state after one iteration is t ·
([

N−2t
N

+ 2(N−t)
N

]
1√
N

)2

=(
5

4
√

2

)2

= 78.125% [87], compared to t
N

+ N−t
N
· t
N−1

= 1
8

+ 7
8
· 1

7
= 25% for the optimal

classical search strategy.

In the two-solution case (t = 2), where two states are marked as correct answers

during the oracle stage and both states’ amplitudes are amplified in the algorithm’s

amplification stage, the probability of measuring one of the two correct answers is

t ·
([

N−2t
N

+ 2(N−t)
N

]
1√
N

)2

= 2 ·
(

16
8
√

8

)2

= 2 ·
(

1√
2

)2

= 100% for the quantum case,

as compared to 2
8

+ 6
8
· 2

7
= 13

28
≈ 46.4% for the classical case.

The algorithm is performed with both a phase oracle, which has been previ-

ously demonstrated on other experimental systems, and a Boolean oracle, first re-

ported here, which requires more resources but is directly comparable to a classical

search. All quantum solutions are shown to outperform their classical counterparts.

6.2 Oracles

We examine two alternative methods of encoding the marked state within the

oracle. While both methods are mathematically equivalent [65], only one is directly

comparable to a classical search. The previously-undemonstrated Boolean method

requires the use of an ancilla qubit initialized to |1〉, as shown in Figure 6.2(a). The

oracle is determined by constructing a circuit out of NOT and Ck(NOT ) (k ≤ n)

gates such that, were the oracle circuit to be implemented classically, the ancilla bit

would flip if and only if the input to the circuit is one of the marked states. By using
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(a)
Init Amplification

|q1〉 : |0〉 H

Oracle

H X • X H

|q2〉 : |0〉 H H X • X H

|q3〉 : |0〉 H H X Z X H

|qa〉 : |1〉 H H

(b)
Init Oracle Amplification

|0〉 H X • X H X • X H
|0〉 H • H X • X H

5
4
√

2
|011〉+ 1

4
√

2

∑
x 6=011 |x〉

|0〉 H • H X Z X H

|1〉 H H |1〉

(c)
Init Amplification

|q1〉 : |0〉 H

Oracle

H X • X H

|q2〉 : |0〉 H H X • X H

|q3〉 : |0〉 H H X Z X H

(d)
Init Oracle Amplification

|0〉 H • H X • X H
|0〉 H • H X • X H

1√
2

(|011〉+ |101〉)
|0〉 H Z Z H X Z X H

Figure 6.2: (a) General circuit diagram for a Grover search algorithm using a
Boolean oracle, depicted using standard quantum circuit diagram notation [65].
The last qubit qa is the ancilla qubit. (b) Example single-solution Boolean oracle
marking the |011〉 state. (c) General circuit diagram for a Grover search algorithm
using a phase oracle. (d) Example two-solution phase oracle marking the |011〉 and
|101〉 states.

classically available gates, this oracle formulation is directly equivalent to the classi-

cal search algorithm, and therefore can most convincingly demonstrate the quantum

algorithm’s superiority. On a quantum computer, because the initialization sets up

an equal superposition of all possible input states, the Cn(NOT ) gate targeted on

the ancilla provides a phase kickback that flips the phase of the marked state(s) in
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the data qubits. An example oracle is shown in Figure 6.2(b) to illustrate this. The

phase method of oracle implementation does not require the ancilla qubit. Instead,

the oracle is implemented with a circuit consisting of Z and Ck(Z) (k ≤ n−1) gates

that directly flip the phase(s) of the state(s) to be marked (see Figures 6.2(c-d)).

6.3 Circuit Implementation

The Grover search algorithm is implemented using circuits that are equivalent

to those shown in Figures 6.1(b,d), but with the initialization and amplification

stages optimized to minimize gate times, as shown in Figures 6.3(a-b). The circuits

shown are for use with Boolean oracles; in the phase oracle case, the ancilla qubit

qa is simply omitted. To preserve the modularity of the algorithm, the initialization

stage and amplification stage were each optimized without regard to the contents of

the oracle, so each possible oracle can simply be inserted into the algorithm without

making any changes to the other stages.

Oracles for the Grover search algorithm were constructed using a combination

of reversible and classical logic synthesis techniques. For Boolean oracles, reversible

logic synthesis was employed to find a set of X,CN(NOT ) gates that marked the

desired state(s) for each oracle. For phase oracles, EXOR polynomial synthesis was

used to find a set of Z,CN(Z) gates that marked the desired state(s) for each oracle.

For example, for Boolean oracles, the selection was limited to the classically available

X (or NOT ) and CN(NOT ) gates, and a reversible circuit was constructed such

that the output bit (corresponding to the ancilla qubit in the quantum oracle) would
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(a)

|q1〉 :

|q2〉 :

|q3〉 :

|qa〉 :

|0〉 Rx(π) Ry(−π
2
)

|0〉 Rx(π) Ry(−π
2
)

|0〉 Rx(π) Ry(−π
2
)

|0〉 Ry(−π
2
)

(b)

|q1〉

|q2〉

|q3〉

|qa〉

Ry

(
(1− β)π

2

)
Rx(β 3π

4
) XX(β π

8
)

Ry

(
(1− γ)π

2

)
Rx(γ π

2
)

XX(γ π
8
)

R(−2π
3
, (γ+1

2
)π − P )

Ry(π) Rx(π
4
) XX(β π

8
)

Ry(π
2
) Rx(π)

· · ·
XX(απ

4
)

· · · R(−αβγ 2π
3
, (αβ+1

2
)π − αβγP )

XX(γ π
8
)

R(π,−αβγ π
4
)

· · ·

· · ·

· · ·
XX(απ

4
)

Ry

(
(β − 1)π

2

)
· · · Ry(−π

2
)

· · · Ry(π)

· · ·
Figure 6.3: Grover search algorithm implementation by substage using XX(χ),
Rx(θ), Ry(θ), and R(θ, φ) gates. The circuits shown are for use with Boolean ora-
cles; removing the ancilla qubit |qa〉 produces the necessary circuits for use with a

phase oracle. Let α = sgn(χ12), β = sgn(χ1t), γ = sgn(χ2t), and P = arcsin
(√

2
3

)
.

(a) Grover initialization stage implementation. (b) Grover amplification stage im-
plementation.
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be flipped if and only if a marked state was used as the input to the circuit. While

there are many possible circuit constructions for each oracle, the oracle chosen for

implementation was one that first minimized the number of two-qubit interactions

required, and then minimized the number of single-qubit interactions needed. The

synthesis techniques used are scalable and can be applied to oracles of any size. The

oracles used here were implemented as per the circuit diagrams shown in Table 6.1

for single-solution oracles and Table 6.2 for two-solution oracles. The algorithm is

executed for all 8 possible single-result oracles and all 28 possible two-result oracles.

Mark Boolean Oracle Phase Oracle Mark Boolean Oracle Phase Oracle

000 |q1〉 X • X

|q2〉 X • X

|q3〉 X • X

|qa〉

|q1〉 X • X

|q2〉 X • X

|q3〉 X Z X

100 |q1〉 •
|q2〉 X • X

|q3〉 X • X

|qa〉

|q1〉 •
|q2〉 X • X

|q3〉 X Z X

001 |q1〉 X • X

|q2〉 X • X

|q3〉 •
|qa〉

|q1〉 X • X

|q2〉 X • X

|q3〉 Z

101 |q1〉 •
|q2〉 X • X

|q3〉 •
|qa〉

|q1〉 •
|q2〉 X • X

|q3〉 Z

010 |q1〉 X • X

|q2〉 •
|q3〉 X • X

|qa〉

|q1〉 X • X

|q2〉 •
|q3〉 X Z X

110 |q1〉 •
|q2〉 •
|q3〉 X • X

|qa〉

|q1〉 •
|q2〉 •
|q3〉 X Z X

011 |q1〉 X • X

|q2〉 •
|q3〉 •
|qa〉

|q1〉 X • X

|q2〉 •
|q3〉 Z

111 |q1〉 •
|q2〉 •
|q3〉 •
|qa〉

|q1〉 •
|q2〉 •
|q3〉 Z

Table 6.1: Table of all oracles used for the single-solution Grover

search algorithm.
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Marked Boolean Oracle Phase Oracle

000, 001 |q1〉 X • X

|q2〉 X • X

|q3〉
|qa〉

|q1〉 Z •
|q2〉 Z Z

|q3〉

000, 010 |q1〉 X • X

|q2〉
|q3〉 X • X

|qa〉

|q1〉 Z •
|q2〉
|q3〉 Z Z

000, 011 |q1〉 X • X

|q2〉 X • • X

|q3〉 •
|qa〉

|q1〉 Z • •
|q2〉 Z Z

|q3〉 Z Z

000, 100 |q1〉
|q2〉 X • X

|q3〉 X • X

|qa〉

|q1〉
|q2〉 Z •
|q3〉 Z Z

000, 101 |q1〉 X • • X

|q2〉 X • X

|q3〉 •
|qa〉

|q1〉 Z •
|q2〉 Z Z •
|q3〉 Z Z

000, 110 |q1〉 X • • X

|q2〉 •
|q3〉 X • X

|qa〉

|q1〉 Z •
|q2〉 Z •
|q3〉 Z Z Z

000, 111 |q1〉 X • • • • X

|q2〉 •
|q3〉 •
|qa〉

|q1〉 Z • •
|q2〉 Z Z •
|q3〉 Z Z Z

001, 010 |q1〉 X • X

|q2〉 • •
|q3〉 •
|qa〉

|q1〉 • •
|q2〉 Z Z

|q3〉 Z Z

Table 6.2 – Continued on next page
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Table 6.2 – Continued from previous page

Marked Boolean Oracle Phase Oracle

001, 011 |q1〉 X • X

|q2〉
|q3〉 •
|qa〉

|q1〉 •
|q2〉
|q3〉 Z Z

001, 100 |q1〉 • •
|q2〉 X • X

|q3〉 •
|qa〉

|q1〉 Z •
|q2〉 Z •
|q3〉 Z Z

001, 101 |q1〉
|q2〉 X • X

|q3〉 •
|qa〉

|q1〉
|q2〉 •
|q3〉 Z Z

001, 110 |q1〉 • • • •
|q2〉 X • X

|q3〉 •
|qa〉

|q1〉 • •
|q2〉 Z •
|q3〉 Z Z Z

001, 111 |q1〉 X • • X

|q2〉 •
|q3〉 •
|qa〉

|q1〉 •
|q2〉 •
|q3〉 Z Z Z

010, 011 |q1〉 X • X

|q2〉 •
|q3〉
|qa〉

|q1〉 •
|q2〉 Z Z

|q3〉

010, 100 |q1〉 • •
|q2〉 •
|q3〉 X • X

|qa〉

|q1〉 Z •
|q2〉 Z •
|q3〉 Z Z

010, 101 |q1〉 • • • •
|q2〉 •
|q3〉 X • X

|qa〉

|q1〉 • •
|q2〉 Z Z •
|q3〉 Z Z

Table 6.2 – Continued on next page
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Table 6.2 – Continued from previous page

Marked Boolean Oracle Phase Oracle

010, 110 |q1〉
|q2〉 •
|q3〉 X • X

|qa〉

|q1〉
|q2〉 Z •
|q3〉 Z

010, 111 |q1〉 X • • X

|q2〉 •
|q3〉 •
|qa〉

|q1〉 •
|q2〉 Z Z •
|q3〉 Z

011, 100 |q1〉 • • • •
|q2〉 •
|q3〉 •
|qa〉

|q1〉 Z • •
|q2〉 Z •
|q3〉 Z Z

011, 101 |q1〉 • •
|q2〉 •
|q3〉 •
|qa〉

|q1〉 •
|q2〉 •
|q3〉 Z Z

011, 110 |q1〉 • •
|q2〉 •
|q3〉 •
|qa〉

|q1〉 •
|q2〉 Z •
|q3〉 Z

011, 111 |q1〉
|q2〉 •
|q3〉 •
|qa〉

|q1〉
|q2〉 •
|q3〉 Z

100, 101 |q1〉 •
|q2〉 X • X

|q3〉
|qa〉

|q1〉 Z •
|q2〉 Z

|q3〉

100, 110 |q1〉 •
|q2〉
|q3〉 X • X

|qa〉

|q1〉 Z •
|q2〉
|q3〉 Z

Table 6.2 – Continued on next page
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Table 6.2 – Continued from previous page

Marked Boolean Oracle Phase Oracle

100, 111 |q1〉 •
|q2〉 X • • X

|q3〉 •
|qa〉

|q1〉 Z • •
|q2〉 Z

|q3〉 Z

101, 110 |q1〉 •
|q2〉 • •
|q3〉 •
|qa〉

|q1〉 • •
|q2〉 Z

|q3〉 Z

101, 111 |q1〉 •
|q2〉
|q3〉 •
|qa〉

|q1〉 •
|q2〉
|q3〉 Z

110, 111 |q1〉 •
|q2〉 •
|q3〉
|qa〉

|q1〉 •
|q2〉 Z

|q3〉

Table 6.2: Table of all oracles used for the two-solution Grover

search algorithm.

Detailed information and individual fidelities for constituent composite gates

can be found in Chapter 5.

6.4 Data

Figures 6.4 and 6.5 show the results, respectively, of single- and two-solution

Grover search algorithms, each using both the Boolean and phase marking methods.

All possible oracles are tested to demonstrate a complete Grover search (see Tables

6.1 and 6.2). Two figures of merit are provided with the data for each oracle. The
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Figure 6.4: Results from a single iteration of a single-solution Grover search algo-
rithm performed on a 3-qubit database. Data for the Boolean oracle formulation is
shown on the left, and data for the phase oracle formulation is shown on the right.
The plots show the probability of detecting each output state. All values shown are
percents, with a theoretical ASP of 78.1% and theoretical SSO of 100%. Data is
corrected for average SPAM errors of 1%.

algorithm success probability (ASP) is the probability of measuring the marked

state as the experimental outcome. For the two-solution algorithm, the ASP is

calculated by summing the probabilities of measuring each of the two marked states.

The squared statistical overlap (SSO) measures the statistical overlap between the

measured and expected populations for all states: SSO =
(∑N

j=0

√
ejmj

)2

, where ej

is the expected population and mj is the measured population for each state j [99].

Additionally, all of the data shown in this paper is corrected to account for state

preparation and measurement (SPAM) errors (see figure captions for values), similar

to the method proposed in [39] while also accounting for multi-ion crosstalk [19]. All

uncertainties given are statistical uncertainties based on the number of experiments

performed.

The single-iteration, single-solution Grover search algorithm shown in Figure

6.4 has a theoretical ASP of 78.1%, as discussed above. The SSO takes into account
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Figure 6.5: Results from the execution of a two-solution Grover search algorithm
performed on a 3-qubit database. Data for the Boolean oracle formulation is shown
on the left, and data for the phase oracle formulation is shown on the right. The
plots show the probability of detecting each output state. All values shown are
percents. The ASP is the sum of the probabilities of detecting each of the two
marked states. Data is corrected for average SPAM errors of 1%.
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that the 7 unmarked states then have equal expected probabilities totaling 21.9%

of being measured. For all Boolean oracles, the average ASP is 38.9(4)% and the

average SSO is 83.2(7)%, while phase oracles have an average ASP of 43.7(2)% and

an average SSO of 84.9(4)%; the reduced use of resources in the phase oracles (10

XX(χ) gates and 3 qubits for phase oracles compared to 16 XX(χ) gates and 5

qubits for Boolean oracles) results in better performance, as expected. These results

compare favorably with the classical ASP of 25%.

The two-solution Grover search algorithm shown in Figure 6.5 has a theoretical

ASP of 100%, as discussed above. For all Boolean oracles, the average ASP is

67.9(2)% and the average SSO is 67.6(2)%, while phase oracles have an average

ASP of 75.3(2)% and an average SSO of 74.4(2)%; the reduced use of resources in

the phase oracles (6-8 XX(χ) gates and 3 qubits for phase oracles compared to 10-

14 XX(χ) gates and 4 qubits for Boolean oracles) results in better performance, as

expected. For all oracles in both cases, the two states with the highest measurement

probability are also the two marked states. These results compare favorably with

the classical ASP of 46.4%.

6.5 Additional Iterations

Performing an additional iteration on the single-solution Grover search algo-

rithms was inhibited by circuit-depth limitations in the experimental control pro-

gram, which will be fixed for future work. Here, we estimate the impact of an

additional iteration on algorithm performance. While a single iteration of the single-
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solution Grover search algorithm has a maximum ASP of 78.125%, performing two

iterations raises the maximum ASP to 94.5312%. Applying the error estimation

models used in [27], the likely performances of two Grover search algorithm cases

were examined: the Boolean 000 oracle and the phase 111 oracle, which correspond

to the worst- and best-case oracles by gate count. The random error estimation

model assumes random error propagation for each operation of the form (1− εg)
√
N ,

and the systematic error estimation model assumes coherent over- or under-rotations

for each operation and has the form (1− εg)N , where N is the number of operations

and εg is the error per operation. Based on the analysis in [27] on this same system,

we expect the actual results to fall somewhere between these two models. For a

single iteration of the phase 111 oracle, we estimate an SSO of 86% and an ASP of

41% using the random error model, or an SSO of 61% and an ASP of 16% using the

systematic error model; as in the analysis in [27], we compare this to the measured

SSO of 84(1)% and ASP of 46.5(7)% and see that the experiment performs slightly

worse than the random error model, and better than the systematic error model.

Extending the analysis to two iterations of the phase 111 oracle, we estimate an

SSO of 81% and ASP of 60% using the random error model, or an SSO of 40% and

an ASP of 19% using the systematic error model.

Similarly, for a single iteration of the Boolean 000 oracle, we estimate an

SSO of 83% and an ASP of 37% using the random error model, or an SSO of 45%

and an ASP of 6% using the systematic error model; as before, we compare this

to the measured SSO of 80(2)% and ASP of 34(1)% and see that the experiment

performs slightly worse than the random error model. Extending the analysis to two
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iterations of the phase 111 oracle, we estimate an SSO of 77% and ASP of 55% using

the random error model, or an SSO of 22% and an ASP of 6% using the systematic

error model. We expect the experiment would perform somewhere between these

two models, although we do not know how well these error models hold for very

deep circuits; it is not clear whether the experiment would have outperformed the

best classical strategy with two iterations, which has a success probability of 37.5%.

6.6 Outlook

We note that this implementation of the Grover search algorithm scales linearly

in the two-qubit gate count and ancilla count for increasing search database size as

a function of the number of qubits n, and for a constant number of solutions t. For

a database of size N = 2n stored on n qubits, the amplification stage requires one

Toffoli-n gate, and the t-solution oracle stage requires at worst t Toffoli-n (for a phase

oracle) or Toffoli-(n+ 1) (for a Boolean oracle) gates; optimal oracles for particular

sets of marked states may require even fewer two-qubit gates. The method used in

Section 5.4.2 to construct the Toffoli-4 circuit scales to Toffoli-n gates as 6n− 13 in

the two-qubit gate count and as dn−3
2
e in the ancilla count [77]. This paves the way

for more extensive use of the Grover search algorithm in solving larger problems on

quantum computers, including using the circuit as a subroutine for other quantum

algorithms.
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Chapter 7: Parallel 2-Qubit Operations

In any computer, quantum or classical, parallel operations are highly desir-

able. Parallel operations save considerable time over performing operations in series.

Current trends in the (classical) computer industry include a focus on developing

multi-core processors and developing software with multiple parallel threads. Quan-

tum computers have a long way to go before such a scale will be possible, but the

ability to perform parallel operations is nevertheless crucial to our ultimate ability

to scale up.

In ion-trap quantum computers, two-qubit interactions are mediated by the

normal modes of motion in the ion chain. However, as the chain grows in size, so do

the number of modes of motion, and spectral crowding makes sideband resolution

more difficult. Two-qubit interactions can be implemented in less time by using

more optical power in the Raman beams, but this has the consequence of reducing

sideband resolution, which degrades gate fidelity. Consequently, gate speed is lim-

ited by sideband resolution, a limitation that gets worse as the processor size grows.

Parallel two-qubit operations are a tool to speed up computation that avoids this

problem. Parallel gate operations also reduce the overall gate depth of a given pro-

cess, permitting more operations before decoherence and error accumulation obviate
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any meaningful outputs. Several quantum computing subroutines and composite

gates have been shown to benefit directly from parallel entangling gates, including

the quantum Fourier transform [100,101], multiply controlled Toffoli gates, and sta-

bilizer circuits [101]. Quantum algorithms that will similarly benefit from parallel

entangling gates include Shor’s integer factoring [102], solving the discrete logarithm

problem over the elliptic curve group [103], simulating Hamiltonian dynamics using

the Suzuki-Trotter formula [104], and quantum chemistry [105].

Here, we present experimental results for a pair of two-qubit gates performed

simultaneously in a single chain of trapped ions. We employ a pulse shaping scheme

that modulates the phase and amplitude of the Raman laser to drive programmable

high-fidelity 2-qubit XX gates in parallel by coupling to the collective modes of

motion of the ion chain. Ensuring the interaction produced yields only spin-spin in-

teractions between the desired pairs with neither residual spin-motion entanglement

nor crosstalk spin-spin entanglement between non-desired ion pairs is a nonlinear

constraint problem, and optimal pulse shapes are found using optimization tech-

niques. As an application of these parallel operations, we demonstrate the quantum

full adder using a depth-4 circuit requiring the use of parallel 2-qubit operations as

well as single- and two-qubit operations previously demonstrated on this system.

7.1 Theory

We perform parallel gates by modulating the Rabi frequency of the individ-

ual Raman beams. This is accomplished in a similar manner to the 2-qubit gates
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already implemented on this experiment [19,53] (see Section 3.2), which implement

entangling XX gates using a Mølmer-Sørensen scheme [41,52,55,56], where red and

blue sidebands are applied to entangle the ion spins of illuminated ions with the

radial normal motional modes of the ions in the trap. Using the motional modes

as an information bus, the spin states of separate ions become entangled, and the

pulse shape is engineered so that at the end of the gate, the motional modes are

entirely disentangled from the spins, leaving only spin-spin entanglement [53,57,59].

The pulse shape is controlled by dividing the gate time into several equal-length

segments, and adjusting the amplitude of the gate modulation in each segment.

Alternative possible schemes include varying the detuning µ [106] or the beatnote

phase [107] to engineer high-fidelity gates; the former scheme has been demonstrated

to generate 2-qubit entangling XX gates on this system [28].

In order to perform parallel entangling operations involving 2 pairs of qubits

(i, j) and (m,n) in a chain of N ions with N motional modes ωk using red and blue

sidebands with detuning µ, we have a 4-qubit unitary, as follows:

U||(τ) = exp

(
i
∑
i

φi(τ)σxi + i
∑
i<j

χij(τ)σxi σ
x
j

)

= exp
(
i
[
φi(τ)σxi + φj(τ)σxj + φm(τ)σxm + φn(τ)σxn

+ χij(τ)σxi σ
x
j + χmn(τ)σxmσ

x
n + χim(τ)σxi σ

x
m

+ χin(τ)σxi σ
x
n + χjm(τ)σxj σ

x
m + χjn(τ)σxj σ

x
n

])
(7.1)
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where τ is the gate time, the spin-motion interaction φi(τ) is

φi(τ) = αi,k(τ)â†k − α
∗
i,k(τ)âk, (7.2)

â†k and âk are the raising and lowering operators for the motional phonons, the

spin-motion parameter αi,k(τ) is

αi,k(τ) =

∫ τ

0

ηi,kΩi(t) sin(µt)eiωktdt, (7.3)

ηi,k is the spin-motion coupling or Lamb-Dicke parameter, Ωi(t) is the Rabi frequency

of the optical field applied to ion i, and the spin-spin interaction term χij(τ) is

χij(τ) = 2

∫ τ

0

dt′
∫ t′

0

dt
∑
k

ηi,kηj,kΩi(t)Ωj(t) sin(µt) sin(µt′) sin(ωk(t
′ − t)). (7.4)

At the end of the gate, the spin-motion terms must go to zero, ensuring that all mode

trajectories in phase space return to the origin. So, we require all 4N spin-motion

parameters (4 ions, N modes) α{i,j,m,n},k(τ) = 0. Since we wish to entangle only the

ions pairs (i, j) and (m,n), we do not wish to entangle the “crosstalk” pairs (i,m)

(i, n), and so on. Consequently, for the entangling pairs, we require χij = χideal
ij and

χmn = χideal
mn , where 0 < χideal ≤ π

4
. χideal is typically π

4
for a maximally entangling

XX gate but can be set to smaller values to implement partially-entangling gates.

For the crosstalk pairs, we require χim = χin = χjm = χjn = 0 to ensure no

unwanted entanglement at the end of the gate. This then yields a set of 4N + 6

parameters to control for when optimizing pulse sequences to implement parallel
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XX gates:

α{i,j,m,n},k(τ) = 0

χij(τ) = χideal
ij

χmn(τ) = χideal
mn

χim(τ) = χin(τ) = χjm(τ) = χjn(τ) = 0. (7.5)

To provide optimal control during the gate and fulfill the constraints in Equa-

tion 7.5, we divide up the gate amplitude Ωi(t) into S segments of equal duration

τ/S, and vary the amplitude in each segment Ωs as an independent variable. In or-

der to implement independent XX gates, we implement independent signals on the

two ion pairs we want to entangle; ions (i, j) see one pulse shape, while ions (m,n)

see another. Separate signals on the two ion pairs are necessary to provide suffi-

cient control to simultaneously entangle the desired ion pairs but not the crosstalk

pairings. Without two different signals, there is no way to provide cancellation to

crosstalk entanglement. On the experiment, this ion-specific signal shaping is pro-

vided by the upgrade to a multi-channel AWG, as discussed in Section 2.4. The
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gate amplitude on a given ion then becomes a piecewise-constant function,

Ωi(t) =



Ω1 0 ≤ t < τ/S

Ω2 τ/S ≤ t < 2τ/S

...
...

Ωs (s− 1)τ/S ≤ t < sτ/S

...
...

ΩS (S − 1)τ/S ≤ t < τ.

(7.6)

Consequently, Equations 7.3 and 7.4 can be re-written as

αi,k(τ) =
S∑
s=1

Ωs

[
ηi,k

∫ sτ/S

(s−1)τ/S

sin(µt)eiωktdt

]

=
S∑
s=1

ΩsC
i
k,s (7.7)

and

χij(τ) =
S∑
s=1

S∑
s′=1

ΩsΩs′

∫ sτ/S

(s−1)τ/S

dt′
∫ s′τ/S

(s′−1)τ/S

dt
∑
k

ηi,kηj,k sin(µt) sin(µt′) sin(ωk(t
′ − t))

=
S∑
s=1

S∑
s′=1

ΩsΩs′Ds,s′ , (7.8)

where the terms

Ci
k,s = ηi,k

∫ sτ/S

(s−1)τ/S

sin(µt)eiωktdt (7.9)
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and

Dij
s,s′ =

∫ sτ/S

(s−1)τ/S

dt′
∫ s′τ/S

(s′−1)τ/S

dt
∑
k

ηi,kηj,k sin(µt) sin(µt′) sin(ωk(t
′ − t)) (7.10)

are pre-calculated constants that are functions only of the motional mode frequencies

ωk, the detuning µ, and the segment number s, and so can be arranged into S ×N

and S × S matrices for each ion and ion-ion pair, respectively. Note that the time

ordering of the double integral in Equation 7.10 requires that t < t′, so the time-

segmented scheme requires s ≤ s′. In the case s = s′, we must force the t < t′

constraint, yielding

Dij
s=s′ =

∫ sτ/S

(s−1)τ/S

dt′
∫ t′

(s′−1)τ/S

dt
∑
k

ηi,kηj,k sin(µt) sin(µt′) sin(ωk(t
′ − t)). (7.11)

If we now arrange the segment amplitudes Ωs into two vectors Ωij and Ωmn,

one for each entangling pair (i, j) and (m,n), we can now write our constraint

equations from Equation 7.5 as


Ci

Cj

Cm

Cn


(

Ωij

Ωmn

)
= 0

(
ΩT

ij ΩT
mn

)(Dij 0

0 0

)(
Ωij

Ωmn

)
= χideal

ij

(
ΩT

ij ΩT
mn

)(0 0

0 Dmn

)(
Ωij

Ωmn

)
= χideal

mn

(
ΩT

ij ΩT
mn

)(0 Dcross

0 0

)(
Ωij

Ωmn

)
= 0, (7.12)

136



where
{
Ci,Cj,Cm,Cn

}
are the S × N spin-motion interaction matricies for each

segment on each ion,
{
Dij,Dmn

}
are the two S×S spin-spin interaction matricies for

each segment on the entangling ion pairs, and Dcross =
{
Dim,Din,Djm,Djn

}
are the

four S×S spin-spin interaction matricies for each segment on the crosstalk ion pairs.

While the C-constraints are linear, the 6 D constraints on the spin-spin interaction

terms are not. With multiple quadratic constraints and no evident guarantees the

constraint matricies are positive or negative semidefinite, this is now a non-convex

quadratically constrained quadratic program (QCQP). In the general case, this kind

of problem is NP-hard. As a result, analytical approaches are intractable, and so

we use optimization techniques to find solutions that fit the constraints in Equation

7.12 as well as possible.

7.1.1 Fidelity of Parallel XX Operations

Next, we calculate the fidelity of simultaneous XX gate operations as a func-

tion of the control parameters in Equation 7.5. The fidelity is given by

F|| = 〈ψinit|U †idealρrUideal |ψinit〉 , (7.13)

where ρr is the density matrix for the experimental operation traced over the motion,

ρr = Trm

[
Uexpt |ψinit〉 〈ψinit|U †expt

]
. (7.14)

For convience of calculations, this derivation will be performed in the X basis.
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Consequently, we use the initial state

|ψinit〉 =
1

4

(
|0〉i + |1〉i

)
⊗
(
|0〉j + |1〉j

)
⊗
(
|0〉m + |1〉m

)
⊗
(
|0〉n + |1〉n

)

=



1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1



(7.15)

and calculations of the unitary will be performed with σz instead of σx. The final

fidelity is independent of the basis in which it is calculated. In matrix form, the
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general parallel 2-qubit gate unitary from Equation 7.1 is

Uexpt =



eiΦ0000 0 0 0 0 0 0 0

0 eiΦ0001 0 0 0 0 0 0

0 0 eiΦ0010 0 0 0 0 0

0 0 0 eiΦ0011 0 0 0 0

0 0 0 0 eiΦ0100 0 0 0

0 0 0 0 0 eiΦ0101 0 0

0 0 0 0 0 0 eiΦ0110 0

0 0 0 0 0 0 0 eiΦ0111

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

· · ·

· · ·

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

eiΦ1000 0 0 0 0 0 0 0

0 eiΦ1001 0 0 0 0 0 0

0 0 eiΦ1010 0 0 0 0 0

0 0 0 eiΦ1011 0 0 0 0

0 0 0 0 eiΦ1100 0 0 0

0 0 0 0 0 eiΦ1101 0 0

0 0 0 0 0 0 eiΦ1110 0

0 0 0 0 0 0 0 eiΦ1111



,

(7.16)
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where

Φ0000 = φi + φj + φm + φn + χij + χim + χin + χjm + χjn + χmn

Φ0001 = φi + φj + φm − φn + χij + χim − χin + χjm − χjn − χmn

Φ0010 = φi + φj − φm + φn + χij − χim + χin − χjm + χjn − χmn

Φ0011 = φi + φj − φm − φn + χij − χim − χin − χjm − χjn + χmn

Φ0100 = φi − φj + φm + φn − χij + χim + χin − χjm − χjn + χmn

Φ0101 = φi − φj + φm − φn − χij + χim − χin − χjm + χjn − χmn

Φ0110 = φi − φj − φm + φn − χij − χim + χin + χjm − χjn − χmn

Φ0111 = φi − φj − φm − φn − χij − χim − χin + χjm + χjn + χmn

Φ1000 = −φi + φj + φm + φn − χij − χim − χin + χjm + χjn + χmn

Φ1001 = −φi + φj + φm − φn − χij − χim + χin + χjm − χjn − χmn

Φ1010 = −φi + φj − φm + φn − χij + χim − χin − χjm + χjn − χmn

Φ1011 = −φi + φj − φm − φn − χij + χim + χin − χjm − χjn + χmn

Φ1100 = −φi − φj + φm + φn + χij − χim − χin − χjm − χjn + χmn

Φ1101 = −φi − φj + φm − φn + χij − χim + χin − χjm + χjn − χmn

Φ1110 = −φi − φj − φm + φn + χij + χim − χin + χjm − χjn − χmn

Φ1111 = −φi − φj − φm − φn + χij + χim + χin + χjm + χjn + χmn. (7.17)

In an ideally-executed pair of parallel XX gates, with all parameters set as in
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Equation 7.5, we get

Uideal = U
(
α{i,j,m,n},k = 0, χij = χideal

ij , χmn = χideal
mn , χim = χin = χjm = χjn = 0

)

=



eiχ++ 0 0 0 0 0 0 0

0 eiχ+− 0 0 0 0 0 0

0 0 eiχ+− 0 0 0 0 0

0 0 0 eiχ++ 0 0 0 0

0 0 0 0 eiχ−+ 0 0 0

0 0 0 0 0 eiχ−− 0 0

0 0 0 0 0 0 eiχ−− 0

0 0 0 0 0 0 0 eiχ−+

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

· · ·

· · ·

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

eiχ−+ 0 0 0 0 0 0 0

0 eiχ−− 0 0 0 0 0 0

0 0 eiχ−− 0 0 0 0 0

0 0 0 eiχ−+ 0 0 0 0

0 0 0 0 eiχ++ 0 0 0

0 0 0 0 0 eiχ+− 0 0

0 0 0 0 0 0 eiχ+− 0

0 0 0 0 0 0 0 eiχ++



, (7.18)
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where

χ++ = χideal
ij + χideal

mn

χ+− = χideal
ij − χideal

mn

χ−+ = −χideal
ij + χideal

mn

χ−− = −χideal
ij − χideal

mn . (7.19)

Next, we calculate the density matrix ρr, given by Equation 7.14. As an

intermediate step, we calculate the matrix A to be traced over. The first 3 columns

of this 16× 16 matrix are shown here:

A = Uexpt |ψinit〉 〈ψinit|U†expt

=
1

16



1 e2i(φn+χin+χjn+χmn) e2i(φm+χim+χjm+χmn)

e−2i(φn+χin+χjn+χmn) 1 e2i(φm−φn+χim−χin+χjm−χjn)

e−2i(φm+χim+χjm+χmn) e−2i(φm−φn+χim−χin+χjm−χjn) 1

e−2i(φm+φn+χim+χin+χjm+χjn) e−2i(φm+χim+χjm−χmn) e−2i(φn+χin+χjn−χmn)

e−2i(φj+χij+χjm+χjn) e−2i(φj−φn+χij−χin+χjm−χmn) e−2i(φj−φm+χij−χim+χjn−χmn)

e−2i(φj+φn+χij+χin+χjm+χmn) e−2i(φj+χij+χjm−χjn) e−2i(φj−φm+φn+χij−χim+χin)

e−2i(φj+φm+χij+χim+χjn+χmn) e−2i(φj+φm−φn+χij+χim−χin) e−2i(φj+χij−χjm+χjn)

e−2i(φj+φm+φn+χij+χim+χin) e−2i(φj+φm+χij+χim−χjn−χmn) e−2i(φj+φn+χij+χin−χjm−χmn)

e−2i(φi+χij+χim+χin) e−2i(φi−φn+χij+χim−χjn−χmn) e−2i(φi−φm+χij+χin−χjm−χmn)

e−2i(φi+φn+χij+χim+χjn+χmn) e−2i(φi+χij+χim−χin) e−2i(φi−φm+φn+χij−χjm+χjn)

e−2i(φi+φm+χij+χin+χjm+χmn) e−2i(φi+φm−φn+χij+χjm−χjn) e−2i(φi+χij−χim+χin)

e−2i(φi+φm+φn+χij+χjm+χjn) e−2i(φi+φm+χij−χin+χjm−χmn) e−2i(φi+φn+χij−χim+χjn−χmn)

e−2i(φi+φj+χim+χin+χjm+χjn) e−2i(φi+φj−φn+χim+χjm−χmn) e−2i(φi+φj−φm+χin+χjn−χmn)

e−2i(φi+φj+φn+χim+χjm+χmn) e−2i(φi+φj+χim−χin+χjm−χjn) e−2i(φi+φj−φm+φn)

e−2i(φi+φj+φm+χin+χjn+χmn) e−2i(φi+φj+φm−φn) e−2i(φi+φj−χim+χin−χjm+χjn)

e−2i(φi+φj+φm+φn) e−2i(φi+φj+φm−χin−χjn−χmn) e−2i(φi+φj+φn−χim−χjm−χmn)

· · · etc.
)
. (7.20)

Now we find the trace over the motion for this matrix A to find the density matrix.
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Since the spin-spin chi terms have no motional components, they are unaffected by

the trace operation. The scalars on the diagonal are similarly unaffected. Hence,

we only have to worry about the spin-motion φ{i,j,m,n} terms. We further note that

the displacement operator D is

D
(
αki (τ)

)
= e(α

k
i (τ)â†k−α

k∗
i (τ)âk)

= e

(
|αki (τ)|2/2

)
e(−α

k∗
i (τ)âk)e(α

k
i (τ)â†k) (7.21)

for a given parameter αk{i,j,m,n}. Consequently, as an example, tracing over the term

in row 4, column 1 of Equation 7.20 can be written as

Trm
[
e−2i(φm+φn+χim+χin+χjm+χjn)

]
= e−2i(χim+χin+χjm+χjn)Trm

[
e−2i(φm+φn)

]
= e−2i(χim+χin+χjm+χjn)

∏
k

Trm
[
D
(
2αkm + 2αkn

)]
.

(7.22)

In Fock space, a thermal state for the kth motional mode in a linear ion chain

can be written as

ρtherm =
(
1− eh̄ωk/kBT

) ∞∑
n=0

e−nh̄ωk/kBT |n〉 〈n| , (7.23)

where n is the phonon number. For a generic displacement operator D(α) using

Equation 7.21 and using the properties of the raising and lowering operators â† and
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â, we can write

Trm [D(α)] = Tr [D(α)ρtherm]

=
(
1− eh̄ω/kBT

)
e|α|

2/2

∞∑
n=0

e−nh̄ω/kBTTr
[
e−α

∗âeαâ
† |n〉 〈n|

]
=
(
1− eh̄ω/kBT

)
e|α|

2/2

∞∑
n=0

e−nh̄ω/kBTTr

[
∞∑
p=0

1

p!
(−α∗â)p

∞∑
q=0

1

q!
(αâ†)q |n〉 〈n|

]

=
(
1− eh̄ω/kBT

)
e|α|

2/2

∞∑
n=0

e−nh̄ω/kBTTr

[
∞∑
p=0

(−1)p |α|2p

(p!)2
âp(â†)q |n〉 〈n|

]

=
(
1− eh̄ω/kBT

)
e|α|

2/2

∞∑
n=0

e−nh̄ω/kBT×

. . .
∞∑
p=0

(−1)p |α|2p

(p!)2
(n+ 1)(n+ 2)× . . .× (n+m)

= e−
|α|2
2

coth(h̄ω/2kBT )

(7.24)

where we note that the trace is only nonzero for q = p. So continuing our example
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from Equation 7.22, we can now write

Trm
[
e−2i(φm+φn+χim+χin+χjm+χjn)

]
= e−2i(χim+χin+χjm+χjn)

∏
k

Trm
[
D
(
2αkm + 2αkn

)]

= e−2i(χim+χin+χjm+χjn)
∏
k

e

− |2αkm+2αkn|2
2

coth(h̄ωk/2kBT )



= e−2i(χim+χin+χjm+χjn)e

(
− 1

2

∑
k|2αkm+2αkn|2 coth(h̄ωk/2kBT )

)

= e−2i(χim+χin+χjm+χjn)e

(
− 1

2

∑
k βk|2αkm+2αkn|2

)

= e−2i(χim+χin+χjm+χjn)Γ00++. (7.25)

Here, to better abbreviate the representation, we define a set of parameters,

ΓAiAjAmAn = exp

(
−1

2

∑
k

βk |2 (Aiαi,k + Ajαj,k + Amαm,k + Anαn,k)|2
)
, (7.26)

where the parameters {Ai, Aj, Am, An} can be {0,±1} and are indicated as {0 →

0,+1→ +,−1→ −}. The inverse mode temperature βk is

βk = coth

(
h̄ωk
kBT

)
= coth

[
1

2
ln

(
1 +

1

n̄k

)]
, (7.27)

where n̄k is the average phonon number in the kth mode. By applying the trace

operation to all elements of Equation 7.20, we get the final density matrix.

Plugging in all values to the fidelity equation from Equation 7.13 and solving,
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we derive the fidelity,

F||
(
α{i,j,m,n},k, χij, χ

ideal
ij , χmn, χ

ideal
mn , χim, χin, χjm, χjn

)
=

1

128
(8 + Γ+−−− + Γ+−−+ + Γ+−+− + Γ+−++ + Γ++−− + Γ++−+ + Γ+++− + Γ++++

+ 2 (Γ0+−− + Γ+000) cos [2 (∆χij − χim − χin)]

+ 2 (Γ0++− + Γ+000) cos [2 (∆χij + χim − χin)]

+ 2 (Γ0+−+ + Γ+000) cos [2 (∆χij − χim + χin)]

+ 2 (Γ0+++ + Γ+000) cos [2 (∆χij + χim + χin)]

+ 2 (Γ0+00 + Γ+0−−) cos [2 (∆χij − χjm − χjn)]

+ 2 (Γ00++ + Γ+−00) cos [2 (χim + χin − χjm − χjn)]

+ 2 (Γ0+00 + Γ+0+−) cos [2 (∆χij + χjm − χjn)]

+ 2 (Γ00+− + Γ++00) cos [2 (χim − χin + χjm − χjn)]

+ 2 (Γ0+00 + Γ+0−+) cos [2 (∆χij − χjm + χjn)]

+ 2 (Γ00+− + Γ+−00) cos [2 (χim − χin − χjm + χjn)]

+ 2 (Γ0+00 + Γ+0++) cos [2 (∆χij + χjm + χjn)]

+ 2 (Γ00++ + Γ++00) cos [2 (χim + χin + χjm + χjn)]

+ 2 (Γ00+0 + Γ+−0+) cos [2 (χim − χjm + ∆χmn)]

+ 2 (Γ0+0− + Γ+0−0) cos [2 (∆χij − χin − χjm + ∆χmn)]

+ 2 (Γ00+0 + Γ++0+) cos [2 (χim + χjm + ∆χmn)]

+ 2 (Γ0+0+ + Γ+0+0) cos [2 (∆χij + χin + χjm + ∆χmn)]

+ 2 (Γ0+−0 + Γ+00−) cos [2 (∆χij − χim − χjn + ∆χmn)]
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+ 2 (Γ000+ + Γ+−+0) cos [2 (χin − χjn + ∆χmn)]

+ 2 (Γ0++0 + Γ+00+) cos [2 (∆χij + χim + χjn + ∆χmn)]

+ 2 (Γ000+ + Γ+++0) cos [2 (χin + χjn + ∆χmn)]

+ 2 (Γ00+0 + Γ+−0−) cos [2 (χim − χjm −∆χmn)]

+ 2 (Γ0+0+ + Γ+0−0) cos [2 (∆χij + χin − χjm −∆χmn)]

+ 2 (Γ00+0 + Γ++0−) cos [2 (χim + χjm −∆χmn)]

+ 2 (Γ0+0− + Γ+0+0) cos [2 (∆χij − χin + χjm −∆χmn)]

+ 2 (Γ0++0 + Γ+00−) cos [2 (∆χij + χim − χjn −∆χmn)]

+ 2 (Γ000+ + Γ+−−0) cos [2 (χin − χjn −∆χmn)]

+ 2 (Γ0+−0 + Γ+00+) cos [2 (∆χij − χim + χjn −∆χmn)]

+ 2 (Γ000+ + Γ++−0) cos [2 (χin + χjn −∆χmn)]) . (7.28)

Here,

∆χij = χij − χideal
ij

∆χmn = χmn − χideal
mn . (7.29)

Plugging in the ideal-case parameters, where α{i,j,m,n},k(τ) = 0, χim = χin = χjm =

χjn = 0, χij = χideal
ij , and χmn = χideal

mn , we indeed get F|| = 1.

The Mathematica notebook for this derivation is available upon request; it

includes the full matrix for Equation 7.20 and the final density matrix ρr.

See also Appendix D.3-D.5 of [108]), which provides a very nice treatment of
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the fidelity calculation for a 2-ion XX gate.

7.2 Implementation

To find a sequence of pulses that would give a Rabi frequency modulation op-

timally satisfying the above constraints, an optimization scheme was implemented.

The built-in MATLAB unconstrained multivariable optimization function “fmin-

unc” was used, where the objective function included the above constraints on α

and χ parameters, as well as a term to minimize power. (The fidelity for a given

solution was not calculated until after the solution was optimized, as calculating the

fidelity with Equation 7.28 slowed the solution-finding process considerably; simply

minimizing the parameters in question was sufficient.) Sequences were calculated

for a gate time of τgate = 250 µs, which is comparable to the standard 2-qubit XX

gates already used on the experiment (see Section 3.2), and for a range of detunings

µ. This generated a selection of solutions, which were tested on the experimental

setup; the solution generating the highest-quality gate using the least amount of

power was chosen. The quick screening method used to determine comparative gate

quality consisted of running the gate and looking at the populations in the states

|00〉, |01〉, |10〉, and |11〉 for each of the 6 pairs available from the 4 ions in use. The

entangled pairs should show populations at 50% in each of |00〉 and |11〉 with no

population in |01〉 or |10〉, whereas the crosstalk pairs should have 25% population

in each of |00〉, |01〉, |10〉, and |11〉. The amount of odd parity (|01〉 and |10〉) pop-

ulation for the two entangled pairs provided a strong heuristic for gate quality; on
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the experiment, high quality gates will show odd parity populations of 0-2% on the

entangled pairs (before correcting for SPAM errors.)

Experimental gates were found for 6 ion pair combinations: (1,4) and (2,5);

(1,2) and (3,4); (1,5) and (2,4); (1,4) and (2,3); (1,3) and (2,5); (1,2) and (4,5). For

each set of parallel 2-qubit gates, Figures 7.1-7.6 show the pulse sequence applied to

each entangled pair to construct the gate, as well as the trajectories in phase space

of each mode-pair interaction. Within each figure, the phase space plots are plotted

on axes of the same size, so relative engagement of each mode is shown. The phase

space trajectories start out at the blue open circle and follow the path to end at the

green star. Most phase space trajectories do end up back at the origin (indicating the

corresponding α = 0), but since these solutions were generated with a numerical op-

timization procedure, not all of them are perfect. The 5 transverse motional modes

in this 5 ion chain have sideband frequencies νx = {3.045, 3.027, 3.005, 2.978, 2.946}

MHz, and the plot captions include information on the detuning value used for that

solution; the phase space trajectories for each set show that the mode interactions

closest to the selected detuning exhibit the greatest activity, and contribute the

most to the final spin-spin entanglement by enclosing more of phase space.

Negative-amplitude pulses are implemented by inverting the phase of the con-

trol signal. This capability was crucial, as changing the control signal phase allows

the entangling pairs to continue accumulating entanglement while cancelling out

accumulated entanglement with cross-talk pairs. To that end, the initial guess used

for the gates in the optimization protocol was that one pair would have two pos-

itive “humps” (since regular XX gate pulse shapes frequently featured symmetric
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increasing and then decreasing segment amplitudes), and the other pair would have

one positive “hump” and one negative “hump,” the idea being the two gates would

perform half of their entanglement process each in their first humps, and then per-

form the second half of the entanglement during the second humps while the relative

change in phase on pair 2 cancelled out the accumulated crosstalk entanglement.

The pulse shapes in Figure 7.1 provide a good example of this; most of the other

pulse solutions feature similar patterns with some kind of symmetry, increasing and

decreasing segment amplitudes, and phase flips on one pair to cancel out crosstalk

entanglement.

7.3 Experimental Results

Here, we present experimental results from implementing parallel 2-qubit en-

tangling gates on several ion pair selections. Fidelities are calculated by performing

the parallel gates followed by an analysis pulse, then using the calculated parity

to determine the fidelity (see Section 7.3.1.) The analysis pulses are rotations us-

ing the SK1 composite pulse for increased robustness against errors in the rotation

angle [109, 110]. For the four ions involved in each gates, the parity analysis was

performed for all 6 possible pairs within the set, allowing for analysis of the 2 en-

tangled ion pairs as well as the 4 crosstalk pairs. Parity curves are shown in Figures

7.7 - 7.12. Entangling gate fidelities were typically between 96-99%, with crosstalk

of a few percent. An exception is the (1,2), (4,5) gate, for which the (4,5) gate has

a fidelity of 91% (Figure 7.12); looking at its phase space closure diagram in Figure
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Figure 7.1: Pulse shapes and phase space trajectories for parallel XX gates on ions
(1,4) and (2,5), with detuning µ = 2.962 MHz and theoretical fidelity 99.63%.
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Figure 7.2: Pulse shapes and phase space trajectories for parallel XX gates on ions
(1,2) and (3,4), with detuning µ = 3.016 MHz and theoretical fidelity 99.97%.
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Figure 7.3: Pulse shapes and phase space trajectories for parallel XX gates on ions
(1,5) and (2,4), with detuning µ = 2.992 MHz and theoretical fidelity 99.75%.
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Figure 7.4: Pulse shapes and phase space trajectories for parallel XX gates on ions
(1,4) and (2,3), with detuning µ = 2.964 MHz and theoretical fidelity 99.85%.
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Figure 7.5: Pulse shapes and phase space trajectories for parallel XX gates on ions
(1,3) and (2,5), with detuning µ = 3.036 MHz and theoretical fidelity 98.97%.
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Figure 7.6: Pulse shapes and phase space trajectories for parallel XX gates on ions
(1,2) and (4,5), with detuning µ = 3.018 MHz and theoretical fidelity 95.91%.

156



0 /4 /2 3 /4 5 /4 3 /2 7 /4 2
Rotation Axis

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

P
ar

ity

Parity Scan (1,4), (2,5)

14 data
14 fit
25 data
25 fit
12 data
12 fit
15 data
15 fit
24 data
24 fit
45 data
45 fit

Figure 7.7: Parity curve for parallel XX gates on ions (1,4) and (2,5), yielding
fidelities of 96.5(4)% and 97.8(3)% on the respective entangled pairs, with an average
crosstalk error of 3.6(3)% and corrected for 3% SPAM errors.
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Figure 7.8: Parity curve for parallel XX gates on ions (1,2) and (3,4), yielding
fidelities of 98.4(3)% and 97.7(3)% on the respective entangled pairs, with an average
crosstalk error of 0.6(3)% and corrected for 3% SPAM errors.
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Figure 7.9: Parity curve for parallel XX gates on ions (1,5) and (2,4), yielding
fidelities of 96.8(3)% and 98.1(2)% on the respective entangled pairs, with an average
crosstalk error of 1.7(3)% and corrected for 2% SPAM errors.
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Figure 7.10: Parity curve for parallel XX gates on ions (1,4) and (2,3), yielding
fidelities of 98.8(3)% and 99.0(3)% on the respective entangled pairs, with an average
crosstalk error of 1.4(3)% and corrected for <1% SPAM errors.
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Figure 7.11: Parity curve for parallel XX gates on ions (1,3) and (2,5), yielding
fidelities of 98.3(3)% and 97.5(2)% on the respective entangled pairs, with an average
crosstalk error of 0.8(4)% and corrected for 3% SPAM errors.
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Figure 7.12: Parity curve for parallel XX gates on ions (1,2) and (4,5), yielding
fidelities of 97.2(3)% and 91.9(3)% on the respective entangled pairs, with an average
crosstalk error of 0.9(3)% and corrected for 2% SPAM errors.
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Parallel Gate Pairs R||, Pair 1 R||, Pair 2

(1,4) and (2,5) 4.3 1.8
(1,2) and (3,4) 7.9 5.0
(1,5) and (2,4) 2.1 1.6
(1,4) and (2,3) 4.3 3.8
(1,3) and (2,5) 0.9 1.5
(1,2) and (4,5) 2.2 2.2

Table 7.1: For each pair of parallel XX gates implemented, we compare the power
required to perform each component XX with its corresponding stand-alone 2-qubit
XX gate by calculating the power ratio R||.

7.6, however, it is clear that it did not close very well, the likely source of the low

fidelity.

Error bars and fidelity errors are statistical errors. Data has been corrected

for state preparation and measurement (SPAM) errors, as described in [19, 26] and

Section 2.1.4. Crosstalk errors were found by fitting the crosstalk pair parity scan

to a sine curve as if it were a normal parity flop, calculating its fidelity as an

entangling gate, and subtracting out the 25% base fidelity that represents a complete

statistical mixture; any fidelity above that represents a correlation or small amount

of entanglement that is considered an error here. All crosstalk fidelities for all pairs

was well below 50% (in fact, most were quite close to 25%), indicating that no

crosstalk pairs had verifiable entanglement.

While the gate time τgate = 250 µs for running 2 XX gates in parallel is

comparable to that of a single XX gate (and consequently, half the time it would

take to execute two XX gates in series), the parallel gates scheme requires somewhat

more optical power. The Rabi frequency Ω is proportional to the square root of

each beam intensity I, Ω ∝
√
I0I1, where I0 and I1 are the beam intensities for the
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individual and global beams, respectively. We can therefore calculate the ratio R||

of the power for a gate executed in parallel to the power required for a single XX

gate on the same ions ions as R|| =
P||
PXX

=
I||
IXX

=
(

Ω||
ΩXX

)2

. Since intensity is power

per unit area, and the beam sizes do not not vary, this cancels out. Power ratios

for each gate are shown in Table 7.1. While some gates required rather more power

(for example, we had some trouble finding a solution for (1,2), (3,4) that was both

high-quality and low power), most gates performed in parallel require about two to

four times as much power as their singly-performed counterparts. However, a full

accounting of power requirements on this experiment must also take into account

power wasted by unused beams, and the total time required to perform equivalent

operations. Since the individual addressing system has all individual beams on at

all times and are dumped after the AOM when not in use (see Section 2.3), any

ion not illuminated corresponds to an individual beam wasting power. Running 2

XX gates in parallel takes τgate = 250 µs and uses beams each with power P to

illuminate 4 ions, but performing those same 2 gates in series using stand-alone

XX gates requires time 2τgate and uses 4 beams each with power P/4 to P/2 to

illuminate 2 ions, wasting 2 beams. This yields a choice of using twice the power

(or more) in half the time versus half the power in twice the time, coming out close

to equal cost depending on the gate in question; these parallel gates are then very

useful when faster calculation is a higher priority than minimizing laser power.

161



7.3.1 Calculating Experimental Fidelities of 2-Qubit Entangling Gates

The fidelity of a two-qubit XX(χ) entangling gate can be measured by scan-

ning the phase φ of a global π
2

rotation applied after performing the XX gate and

calculating the parity at each point of the scan [58,97,111]. We start with a global

rotation on 2 qubits,

RG

(π
2
, φ
)

= R1

(π
2
, φ
)
⊗R2

(π
2
, φ
)

=
1

2


1 −ie−iφ −ie−iφ −e−2iφ

−ieiφ 1 −1 −ie−iφ

−ieiφ −1 1 −ie−iφ

−e2iφ −ieiφ −ieiφ 1

 , (7.30)

and a general 2-qubit density matrix ρg that represents the density matrix produced

after experimentally performing an XX gate,

ρg =


ρ00 ρ01 ρ02 ρ03

ρ∗01 ρ11 ρ12 ρ13

ρ∗02 ρ∗12 ρ22 ρ23

ρ∗03 ρ∗13 ρ∗23 ρ33

 , (7.31)

where ρ00 = |00〉 〈00|, ρ01 = |00〉 〈01|, . . ., ρ23 = |10〉 〈11|, ρ33 = |11〉 〈11|. After

performing the analysis pulse RG

(
π
2
, φ
)
, the new density matrix ρa = RG

(
π
2
, φ
)
·
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ρg ·R†G
(
π
2
, φ
)

is used to calculate the parity:

Π (ρa, φ) =
(
ρ00
a + ρ33

a

)
−
(
ρ11
a + ρ22

a

)
= 2A12 cosφ12 − 2A03 cos(2φ− φ03)

= 2A12 cosφ12 − AΠ cos(2φ− φ03), (7.32)

where parity is defined as the sum of the even parity populations minus the sum of

the odd parity populations and the coherences (off-diagonal density matrix elements)

from ρg are re-written in the form ρxy = Axye
−iφxy . Let us also define the parity

amplitude AΠ ≡ 2A03.

Now we calculate the fidelity of an XX(χ) gate. Using the XX(χ) gate unitary

(see Equation 5.3), we construct the ideal density matrix after an XX(χ) gate,

ρideal = XX(χ) · |00〉 〈00| ·XX(χ)†

=


cos2(χ) 0 0 i cos(χ) sin(χ)

0 0 0 0

0 0 0 0

−i cos(χ) sin(χ) 0 0 sin2(χ)

 . (7.33)

The fidelity of the general fidelity matrix ρg with respect to the ideal fidelity matrix

ρideal is given by

F (χ) = Tr
[
ρideal(χ) · ρg · ρ†ideal(χ)

]
. (7.34)
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Plugging in equations 7.31 and 7.33, using AΠ ≡ 2A03, and simplifying yields

F (χ) = ρ00 cos2(χ) + ρ33 sin2(χ) + AΠ cos(χ) sin(χ) (7.35)

as the fidelity of an XX(χ) gate. Specifically for maximally entangling gates, we

plug in χ = π
4

and get

F
(
χ =

π

4

)
=

1

2
(ρ00 + ρ33) +

1

2
AΠ. (7.36)

While ρ00 and ρ33 are simply the populations in |00〉 and |11〉 respectively after

an XX gate, we still need the AΠ term. We can extract this from a parity scan

using Equation 7.32. Given a perfect XX(χ) gate where A12 = 0, φ03 = −fracπ2,

and AΠ = 2A03 = 2 cos(χ) sin(χ) (from Equation 7.33), scanning the analysis phase

φ from 0 to 2π and measuring the parity at each point will yield a sine curve

of amplitude 2 cos(χ) sin(χ) with 2 periods in the range from 0 to 2π. (For a fully

entangling XX(χ = π
4
) gate, the sine curve should have amplitude 1.) Consequently,

by fitting a sine curve to thie measured parity curve, we can estimate the parity

amplitude AΠ and use it in Equation 7.35 to calculate the gate fidelity.

7.3.2 Fidelity of Parallel 2-Qubit Entangling Gates with Different

Degrees of Entanglement

Since the XX gates in this parallelization scheme have independent calibration

(see Section 7.3.3), the χ parameters of the two XX gates are independent. The
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Figure 7.13: Parity curve for parallel XX(χ) gates on ions (1,5) and (2,4), where an
XX

(
π
4

)
gate is performed on ions (1,5), and an XX

(
π
8

)
gate is performed on ions

(2,4). This yields fidelities of 96.4(3)% and 99.4(3)% on the respective entangled
pairs, with an average crosstalk error of 2.2(3)% and corrected for 1% SPAM errors.

continuously-variable parameter χ is directly related to the amount of entanglement

generated between the two qubits, given by

XX (χ) |00〉 =
1√
2

(cos (χ) |00〉 − i sin (χ) |11〉) , (7.37)

and can be adjusted on the experiment by scaling the power of the overall gate.

Consequently, we can simultaneously implement two XX gates with different de-

grees of entanglement, which may prove useful for some applications. For example,

the full adder implementation in Section 7.5 will require simultaneously performing

an XX
(
π
4

)
gate on one pair of qubits, and an XX

(
π
8

)
gate on another pair of

qubits. To demonstrate this capability, Figure 7.13 shows parity scan data for a
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simultaneous XX
(
π
4

)
gate on ions (1,5) and an XX

(
π
8

)
gate on ions (2,4). The

data is analyzed as in Section 7.3, but while we use Equation 7.36 (setting χ = π
4
)

to calculate the fidelity for the (1,5) gate, we use Equation 7.35 and set χ = π
8

for

the (2,4) gate. The respective gate fidelities are therefore 96.4(3)% and 99.4(3)%,

with an average crosstalk error of 2.2(3)% and corrected for 1% SPAM errors.

7.3.3 Independence of Parallel Gate Calibration

Parallel gates can be calibrated independently from one another by adjusting

a scaling factor that controls the overall power on the gate without modifying the

pulse shape. Furthermore, adjusting a scaling factor that controls the power on

a single ion only affects the gate in which it participates by modifying the total

amount of entanglement, without any apparent ill effects on the gate quality. This

was confirmed experimentally using parallel operations on ions (1,2) and (3,4) by

scanning over the scaling factors associated with ions 1 and 2. Figure 7.14 shows

several such scans over the scaling factors for ions 1 and 2 while keeping the (3,4)

gate “on”, with the scaling factor for those two ions set near to a fully-entangling

gate; Figures 7.14(a,c) show scans with just the scaling factor for ion 1 while holding

the scale factor for ion 2 constant, and Figures 7.14(b,d) show scans over the scaling

factor for ions 1 and 2 together. Figure 7.15 shows scans over the scaling factors for

ions 1 and 2 while keeping the interaction on (3,4) “off”; the scaling factor for this

gate is set to 0, so the ions see no light and therefore perform no interaction during

the gate. Figure 7.15(a) scans the scale factor just on ion 2 while holding the scale
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Figure 7.14: Parallel gates can be calibrated independently. Here, we perform an
entangling gate on ions (3,4) while simultaneously performing a gate on ions (1,2)
and scanning a scale factor, which determines the overall amplitude envelope on the
control signal applied to perform the gate on ions (1,2). This indicates we can inde-
pendently set the amount of entanglement created by each gate when performed in
parallel. (a) Scanning the scale factor on ion 1, with ions (3,4) performing an entan-
gling gate. (b) Scanning the scale factor on ions (1,2), with ions (3,4) performing an
entangling gate. (c) Scanning the scale factor on ion 1, with ions (3,4) performing
an entangling gate, with higher resolution zoomed in close to full entanglement for
ions (1,2). (d) Scanning the scale factor on ions (1,2), with ions (3,4) performing
an entangling gate, with higher resolution zoomed in close to full entanglement for
ions (1,2).
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Figure 7.15: Parallel gates can be calibrated independently. (a) Scanning the scale
factor on ion 2, with no light on ions (3,4). (b) Scanning the scale factor on ions
(1,2), with no light on ions (3,4).

on ion 1 constant, and Figure 7.15(b) scans the overall scaling factor for ions 1 and 2

together. For all of these scans, as the scaling factors are increased, the population in

|11〉 for ions 1 and 2 increases (and the population in |00〉 decreases correspondingly),

while the |00〉 and |11〉 populations for the (3,4) gate remain unchanged.

7.4 Simultaneous CNOT Gates

As an example application of a parallel operation, we performed a pair of

CNOT gates in parallel on two pairs of ions. The CNOT gate sequence (compiled

version with R and XX gates shown in Figure 5.2(a)) was performed simultaneously

on the pair (1, 4), with ion 1 acting as the control and ion 4 acting as the target,

and on the pair (2, 3), with ion 2 acting as the control and ion 3 acting as the target.

Each constituent operation in the composite gate was performed in parallel, with

each rotation performed at the same time as the corresponding rotation on the other

pair, and the two XX gates performed using parallel XX gates on ion pairs (1, 4)

168



0
0.2

0000

0.4
0.6

P
ro
b
a
b
ili
ty 0.8

0100 1111

1

Detected

11001000

Input

1000
1100 0100

1111 0000
0

0.2

0.4

0.6

0.8

1

Figure 7.16: Data for simultaneous CNOT gates on ions (1,4) and (2,3), with an
average process fidelity of 94.5(2)% and corrected for average SPAM errors of 5%.

and (2, 3) (see Figure 7.10 for fidelity data.)

The simultaneous CNOT gates were performed for each of the 16 possible

bitwise inputs, and population data for the 16 possible bitwise outputs is shown in

Figure 7.16 with an average process fidelity of 94.5(2)% and corrected for average

SPAM errors of 5%.

7.5 The Quantum Full Adder

The ability to add numbers is fundamental to classical computers, and indeed

was one of the first motivations for computing machines; arguably the very first

computing machine, the abacus, was a tool for adding and subtracting numbers. In

modern computing, a full adder is a basic circuit that can be cascaded to add many-

bit numbers, and can be found in processors as components of arithmetic logic units
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Figure 7.17: (a) Feynman quantum full adder [112]. (b) Maslov adder with 2-
qubit gate depth 4 [82]. (c) Application-optimized full adder implementation using
XX(χ), Rx(θ), and Ry(θ) gates. The two parallel 2-qubit operations are outlined
in dashed boxes for both (b) and (c).
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Figure 7.18: Data for full adder using sumiltaneous 2-qubit gates on ions (1,2,4,5),
with an average process fidelity of 83.3(3)% and corrected for average SPAM errors
of 3%.

(ALU’s) and performing low-level operations like computing register addresses.

A cascadable full adder is one that takes 3 inputs - two bits x and y you wish

to add, plus a carry bit Cin stemming from a previous addition - and has 2 outputs

that communicate the 2-bit value of the sum of the two inputs. To build a quantum

adder, one must design a circuit that accomplishes these goals while being reversible.

Feynman first designed such a circuit using CNOT and Toffoli gates [112], shown

in Figure 7.17(a).

However, with 5 2-qubit interactions per Toffoli meaning that this full adder

would require 12 XX gates to implement on an ion trap quantum computer, this

circuit is not efficient. A more efficient circuit requiring at most 6 2-qubit inter-

actions was shown in [82], one which has the further advantage of being reduced

to a gate depth of 4 if simultaneous two-qubit operations are available, as shown

by the dashed outlines in Figure 7.17(b). Like the Feynman circuit, the quantum
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full adder requires 4 qubits, 3 for the inputs x, y, and the carry bit Cin, and the

fourth a qubit initialized to |0〉. The four outputs consist of the first input, x, simply

carrying through; y′, which carries x ⊕ y (an additional CNOT can be added to

extract y if desired); and the sum S and output carry Cout, which together comprise

the 2-bit result of summing x. y, and Cin, where Cout is the most significant bit and

hence becomes the carry bit to the next adder in the cascade, and S is the least

significant bit. We can also write sum as S = x⊕ y ⊕ Cin and the output carry as

Cout = (x · y)⊕ (Cin · (x⊕ y)).

The optimized full adder circuit to be implemented on the experiment, shown

in Figure 7.17(c), is constructed by combining the CNOT , C(V ), and C(V †) gates

from Figure 5.12 and further optimizing the rotations per the method described in

Section 5.2.1. The two parallel 2-qubit operations are outlined in dashed boxes for

Figures 7.17(b-c).

The full adder was implemented using 2 different parallel XX gate configu-

rations, as well as the rotations and additional XX gates shown in Figure 7.17(c).

The inputs x, y, Cin, and 0 were mapped to the qubits (1, 2, 4, 5) respectively.

Consequently, the first parallel gates were implemented on the pairs (1,2) XX
(
π
4

)
and (4,5) XX

(
π
8

)
(see Figure 7.12 for (1,2) XX

(
π
4

)
, (4,5) XX

(
π
4

)
fidelity data),

and the second parallel gate was implemented on the pairs (1,5) XX
(
π
4

)
and (2,4)

XX
(
π
8

)
(see Figure 7.9 for (1,5) XX

(
π
4

)
, (2,4) XX

(
π
4

)
fidelity data and Figure

7.13 for (1,5) XX
(
π
4

)
, (2,4) XX

(
π
8

)
fidelity data.) Figure 7.18 shows the resulting

data from implementing this algorithm, with all 8 possible bitwise inputs on the 3

input qubits, and displaying the populations in all 16 possible bitwise outputs on
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the 4 qubits used. The data yielded an average process fidelity of 83.3(3)%, and was

corrected for average SPAM errors of 3%.

7.6 Toward a Single-Operation GHZ State

This control scheme for parallel 2-qubit entangling gates in ions also suggests

a method for performing multi-qubit entanglement in a single operation. Of partic-

ular interest is the creation of GHZ states [113], which are a class of non-biseparable

maximally-entangled multi-qubit states. To calculate parallel XX gates, as dis-

cussed in Section 7.1, we set the spin-spin interaction terms χ = π
4

for the two

desired entangling interactions, and to 0 for the remaining 4 crosstalk interactions.
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However, setting all 6 spin-spin interaction terms to χ = π
4

yields the unitary

U ideal
GHZ = U

(
α{i,j,m,n},k = 0, χij = χim = χin = χjm = χjn = χmn =

π

4

)

=
1√
2



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −i
0 1 0 0 0 0 0 0 0 0 0 0 0 0 −i 0

0 0 1 0 0 0 0 0 0 0 0 0 0 −i 0 0

0 0 0 1 0 0 0 0 0 0 0 0 −i 0 0 0

0 0 0 0 1 0 0 0 0 0 0 −i 0 0 0 0

0 0 0 0 0 1 0 0 0 0 −i 0 0 0 0 0

0 0 0 0 0 0 1 0 0 −i 0 0 0 0 0 0

0 0 0 0 0 0 0 1 −i 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −i 1 0 0 0 0 0 0 0

0 0 0 0 0 0 −i 0 0 1 0 0 0 0 0 0

0 0 0 0 0 −i 0 0 0 0 1 0 0 0 0 0

0 0 0 0 −i 0 0 0 0 0 0 1 0 0 0 0

0 0 0 −i 0 0 0 0 0 0 0 0 1 0 0 0

0 0 −i 0 0 0 0 0 0 0 0 0 0 1 0 0

0 −i 0 0 0 0 0 0 0 0 0 0 0 0 1 0

−i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


(7.38)

and adding one Z rotation produces a 4-qubit GHZ state:

R1
z

(π
2

)
· U ideal

GHZ |0000〉 =
1√
2

(|0000〉+ |1111〉) . (7.39)

Following a similar derivation as in Section 7.1, we therefore calculate the

objective fidelity function to be

FGHZ

(
α{i,j,m,n},k, χ

ideal
ij , χideal

im , χideal
in , χideal

jm , χideal
jn , χideal

mn , χij, χim, χin, χjm, χjn, χmn
)

=

1

128
(8 + Γ+−−− + Γ+−−+ + Γ+−+− + Γ+−++ + Γ++−− + Γ++−+ + Γ+++− + Γ++++
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+ 2 (Γ0+++ + Γ+000) cos [2 (∆χij + ∆χim + ∆χin)]

+ 2 (Γ0+−+ + Γ+000) cos [2 (∆χij −∆χim + ∆χin)]

+ 2 (Γ0++− + Γ+000) cos [2 (∆χij + ∆χim −∆χin)]

+ 2 (Γ0+−− + Γ+000) cos [2 (∆χij −∆χim −∆χin)]

+ 2 (Γ0+00 + Γ+0++) cos [2 (∆χij + ∆χjm + ∆χjn)]

+ 2 (Γ00++ + Γ++00) cos [2 (∆χim + ∆χin + ∆χjm + ∆χjn)]

+ 2 (Γ0+00 + Γ+0−+) cos [2 (∆χij −∆χjm + ∆χjn)]

+ 2 (Γ00+− + Γ+−00) cos [2 (∆χim −∆χin −∆χjm + ∆χjn)]

+ 2 (Γ0+00 + Γ+0+−) cos [2 (∆χij + ∆χjm −∆χjn)]

+ 2 (Γ00+− + Γ++00) cos [2 (∆χim −∆χin + ∆χjm −∆χjn)]

+ 2 (Γ0+00 + Γ+0−−) cos [2 (∆χij −∆χjm −∆χjn)]

+ 2 (Γ00++ + Γ+−00) cos [2 (∆χim + ∆χin −∆χjm −∆χjn)]

+ 2 (Γ00+0 + Γ++0+) cos [2 (∆χim + ∆χjm + ∆χmn)]

+ 2 (Γ0+0+ + Γ+0+0) cos [2 (∆χij + ∆χin + ∆χjm + ∆χmn)]

+ 2 (Γ00+0 + Γ+−0+) cos [2 (∆χim −∆χjm + ∆χmn)]

+ 2 (Γ0+0− + Γ+0−0) cos [2 (∆χij −∆χin −∆χjm + ∆χmn)]

+ 2 (Γ0++0 + Γ+00+) cos [2 (∆χij + ∆χim + ∆χjn + ∆χmn)]

+ 2 (Γ000+ + Γ+++0) cos [2 (∆χin + ∆χjn + ∆χmn)]

+ 2 (Γ0+−0 + Γ+00−) cos [2 (∆χij −∆χim −∆χjn + ∆χmn)]

+ 2 (Γ000+ + Γ+−+0) cos [2 (∆χin −∆χjn + ∆χmn)]
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+ 2 (Γ00+0 + Γ++0−) cos [2 (∆χim + ∆χjm −∆χmn)]

+ 2 (Γ0+0− + Γ+0+0) cos [2 (∆χij −∆χin + ∆χjm −∆χmn)]

+ 2 (Γ00+0 + Γ+−0−) cos [2 (∆χim −∆χjm −∆χmn)]

+ 2 (Γ0+0+ + Γ+0−0) cos [2 (∆χij + ∆χin −∆χjm −∆χmn)]

+ 2 (Γ0+−0 + Γ+00+) cos [2 (∆χij −∆χim + ∆χjn −∆χmn)]

+ 2 (Γ000+ + Γ++−0) cos [2 (∆χin + ∆χjn −∆χmn)]

+ 2 (Γ0++0 + Γ+00−) cos [2 (∆χij + ∆χim −∆χjn −∆χmn)]

+ 2 (Γ000+ + 2Γ+−−0) cos [2 (∆χin −∆χjn −∆χmn)]) , (7.40)

where

∆χij = χij − χideal
ij

∆χmn = χmn − χideal
mn

∆χim = χim − χideal
im

∆χin = χin − χideal
in

∆χjm = χjm − χideal
jm

∆χjn = χjn − χideal
jn . (7.41)

This indicates we may be able to use the same optimization approach to produce

pulse shapes that will create GHZ states when applied to the ions. Unlike with

parallel gates, however, it may be necessary to allow independent pulse shapes on

all 4 ions, rather than solving for pairwise solutions; this will provide more free pa-
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rameters. Additional challenges will include finding effective calibration techniques

when implementing such gates on the experiment, since there will be 6 interactions

that will all need to be at the same strength, but only 4 control signals. Our current

approach of calibrating a 2-qubit gate by adjusting the overall power for the pulse

shape applied by the control signal may no longer work; new techniques with more

degrees of freedom may be needed, such as independently adjusting the power for

different segments of the pulse shape on each ion.

The benefits of implementing GHZ states with fewer gates would be significant,

as it would substantially reduce the circuit depth of several important algorithms.

With only 2-qubit gates available, building a GHZ state of size N requires O(N)

2-qubit gates. With parallel 2-qubit gates available, the gate depth required to

build a GHZ state is reduced to O(log(N)); this is accomplished with a binary tree

algorithm by dividing all qubits into pairs and entangling those pairs in parallel,

then entangling pairs of these pairs, and so on until all are entangled. A single-

operation GHZ state would drop this circuit depth to unity. Single-operation GHZ

state construction will greatly enhance the efficiency of several algorithms; for exam-

ple, arbitrary stabilizer circuits require O( N2

log(N)
) CNOT gates [114], but could be

implemented in O(N) gates with single-operation GHZ state circuitry [115]. Single-

operation GHZ state creation will also benefit applications such as quantum secret

sharing [116], Toffoli-N gates, the quantum Fourier transform, and quantum Fourier

adder circuits [115].
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7.7 Outlook

The scaling outlook on simultaneous gates is polynomial or better in the num-

ber of constraints to consider when calculating optimal solutions. As discussed in

Section 7.1, two parallel XX gates in a chain of N ions requires 4N+6 ∼ O(N) con-

straints, so the problem growth is linear in N . Entangling more pairs at once grows

quadratically: entangling M pairs involves the interactions of 2M ions, yielding the

number of spin-spin interactions we must control to be

(
2M

2

)
=

(2M)!

2!(2M − 2)!
= 2M2 −M ∼ O(M2) (7.42)

and the number of spin-motion interactions to be the number of ions times the

number of modes, 2MN . Scaling both the number of entangled pairs M and the

number of ions N in the chain therefore gives a total problem growth rate of

2MN + 2M2 −M = M(2N − 1) + 2M2 ∼ O(M2 +MN). (7.43)

The work presented here represents a successful first attempt at implementing

parallel 2-qubit entangling operations in a chain of trapped ions, and further ex-

ploration will likely produce improved results. In particular, future research could

investigate better optimization techniques to produce solutions that have higher fi-

delities and require lower power on the experiment. Since the solutions are found

via optimization rather than analytically, the theoretical fidelities for these gates are
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less than 1; most of the gates presented here have theoretical fidelities <99.9%, so

optimization approaches increasing the theoretical fidelities to ≥99.99% will help.

An additional problem is that testing the possible solutions generated by the op-

timization techniques is a time-consuming process; better systematics to pinpoint

the most promising candidates may help here. Techniques that further suppress

entanglement crosstalk between undesired pairs may also enhance experimental per-

formance. However, these problems are all ones of overhead. Once a high-quality

gate solution is implemented on the experiment, no further calculations are needed;

only a single calibration is required to determine the overall power on each XX gate

as the Rabi frequencies seen by the ions drift.

Several areas of exploration may help with increasing solution fidelity, both

theoretically and experimentally. One is measuring and using the experimental

Lamb-Dicke parameter ηi,k for each spin-mode coupling, rather than calculating

what they should be based on the ion spacings and measured motionial modes. The

trap in our experiment has some anharmonicities that cause asymmetries in the

motional mode eigenvectors, so the participation of each ion in each mode is a little

different from what one would theoretically expect. Calculating gate solutions with

experimentally measured parameters may result in solutions that perform better

on the experiment. Another parameter of interest is the gate time τ ; while we

settled on 250 µs as one comparable to our existing XX gate times, adjusting that

parameter - theoretically and on the experiment - may prove beneficial. Easing

constraints on the power needed may also allow for higher-fidelity solutions to be

calculated, although increasing power on the experiment can exacerbate errors due
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to Stark shifts; an accounting of tradeoffs between power usage and gate fidelity will

optimize operational success given experimental conditions.

While the gate solution for N = 5 ions in principle has 4N + 6 = 26 degrees

of freedom that need to be solved (per Section 7.1), since solutions were found

via optimization rather than analytically, we provided the optimization program

additional degrees of freedom to increase the probability of finding good solutions;

most of the gate solutions shown here use 60 segments per pair, although the (1,4),

(2,3) optimization was performed with only 40 segments to no apparent ill effects.

Further explorations of this technique may benefit from determining the optimal

number of segments to use. A final line of future inquiry could include investigating

whether the constraint matricies in Equation 7.12 are in fact positive or negative

semidefinite, or can be modified to have such properties, as convex QCQP’s are

readily solved using semidefinite programming techniques and could allow for higher-

fidelity solutions.
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Chapter 8: Outlook

Trapped ion systems are a promising candidate for constructing a large-scale

quantum computer. Here, we have reported results for several algorithms on a fully

programmable machine with modular gates, and exhibiting a stack architecture in

the control system that will be imperative for effective control of larger machines.

With high initialization and detection efficiencies, well-understood coherent controls,

and nature-provided, stable qubit frequencies providing long coherence times, scaling

up to larger systems has a positive outlook. While much work certainly remains to

be done, the biggest challenges can largely be tackled with engineering solutions.

8.1 Experimental Error Sources

The measured process fidelities for results discussed in this thesis are reduced

from the theoretical ideal fidelities primarily through technical imperfections in the

experimental system. The predominant source of error is beam pointing instability

on the individual Raman beams, causing laser intensity fluctuations at the ions. This

results in small random coherent errors, as the effective Rabi frequency seen by each

ion drifts randomly during the course of an experiment. Causes for this instability
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include air currents through the free-space Raman optical setup and phase noise on

the laser itself. Future work on the experiment will include installing a piezo mirror

controlled by a quadrant photodiode to actively stabilize the power and position of

the individual addressing beams.

Another source of error is crosstalk between individual ion controls. While the

individual Raman beams are very tightly focused, abberations cause some spillover,

so a given ion will see small amounts of light from its neighbors’ control beams.

Additionally, there is also crosstalk between neighboring channels at the 32-channel

AOM. Overall, the ions typically experience ∼2% nearest-neighbor crosstalk from

their coherent optical controls, and ≤1% from the next nearest neighbors [20]. Other

error sources include inhomogeneous Stark shifts across the ion chain that could not

be perfectly compensated. These control problems can largely be solved through

improved engineering of key components.

8.2 Scalability of Ion Traps

Continuing challenges will include building apparatuses with more ions per

trap that can execute long sequences of high-fidelity quantum gates. More qubits will

be needed to implement algorithms larger than can be simulated classically. While

error correction schemes provide protection against experimental errors, baseline

gate fidelities will need to be higher than we have demonstrated here to achieve

fault tolerant computation.

Schemes to implement entangling gates in chains of a few hundred ions have
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been proposed [117], although full connectivity will not be possible at such scaling;

co-desgning algorithms with available connection architecture will mitigate the costs

associated with reduced connectivity. Experimentally, improvements in multi-zone,

microfabricated ion trap technology provide control over tens of ions in a single

trap, and ongoing efforts in chip trap technology at Sandia National Labs, MIT

Lincoln Labs, and elsewhere will likely scale to hundreds of ions in future. Vacuum

chambers cooled to low temperatures using cryostats can operate at significantly

lower pressure than room-temperature ion traps, allowing for longer chains to be

held in a trap for longer periods of time before collisions with background gas disrupt

the crystal.

Fidelity gains can be achieved through improvements in the quantum control

hardware. Other experiments have shown up to four 9’s of fidelity for single-qubit

gates and up to three 9’s of fidelity for two-qubit gates in ions [118, 119]. However,

these were performed with only one or two ions in the trap; achieving these kinds

of fidelities for larger chains will present a significant engineering challenge. As

discussed in Section 8.1, a major source of experimental errors on our experiment

is noise on the coherent addressing beams. Optical intensity stabilization will be

imperative to achieving long, high-fidelity gate sequences, and can likely be achieved

with integrated photonics, minimal use of free-space optics, active stabilization of

the source power, and other engineering improvements. Coherence times for ions can

be extended using techniques like dynamic decoupling [120] and additional magnetic

shielding.

Further scalability may be achieved by connecting multiple ion trap modules
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through ion shuttling [121] or photonic interconnects [6, 7]. In the latter scheme,

each qubit register would constitute an elementary logic unit (ELU), and consist of a

vacuum chamber containing an ion trap holding a single chain of ions, much like the

one discussed in this work. Many such ELU modules could be connected remotely

through coherent photon exchange over fibers. The qubits within a single register

would perform computations together, much like the bits of an ELU in a classical

computer. Quantum information that needs to be used in another register would

be imparted from an atomic qubit to a photon, and the photon sent to another

chamber to implement remote entanglement. The ion-photon information transfer

could occur via a different ion species that emits photons at frequencies more suitable

for fiber communication [122]. Optical switches would permit connections between

all qubit registers. The modularity of this design would enable scalability, allowing

for far bigger quantum computers than can be achieved with a single ion trap.
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