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ABSTRACT

Doppler-Free Spectroscopy of Iodine at 739nm

by
Andrew Chew

In this thesis, we will present the results of the study of Iodine Doppler Free Satu-

rated Spectroscopy performed at the 739.0289 nm region. We measured linewidth of

the doppler free peaks and attempted to study the various inhomogeneous broadening

effects typical in the gaseous phase, namely pressure broadening, power broadening

and doppler broadening. We finally provide future steps for a robust iodine laser

lock.



CHAPTER I

Introduction

1.1 Introduction

High resolution laser spectroscopies became powerful tools in atomic and molec-

ular physics in recent years. Experiments of this class not only provide sensitive

probes to study atomic and molecular structures in detail, but also that those tech-

niques have revolutionized and set new standard of modern day metrology. Both

goals are often very relevant and are usually approached iteratively. By that the

acquired high resolution spectra provide absolute frequency references for the probe

lasers, and the frequency stabilized lasers are then used to further manipulate the

internal and external degrees of the atoms and molecules via spectroscopic means,

such as laser cooling, optical pumping, or coherent manipulation. Laser stablization

of 780 nm lasers used in Rubidium Bose Einstein Condensates can be achieved using

Rubidium-87 as an atomic reference [24]. I2 has been used as an atomic reference to

stabilize He-Ne lasers at 633nm [4].

This thesis was derived from a subproject under a trapped ion quantum simulator

project at the University of Maryland. In this thesis, the introduction will provide

much of the motivation and basis behind the Iodine Doppler Free Spectroscopy. The

first chapter will provide the theoretical background for doppler free spectroscopy,
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and the second chapter will describe the experimental setup. The third chapter will

show the experimental results and the last chapter will describe the next step for our

spectroscopy.

1.2 Motivation

A classical computer is a computer, which has a memory consisting of bits which

can hold 2 states, 0 and 1. A quantum computer on the other hand, has a mem-

ory in the form of qubits. Each can hold two states,|0〉 and |1〉, and a quantum

superposition of both states. Richard Feynman presciently proposed in 1982 that a

quantum computer would be ideal for simulating a quantum many-body system as

the processing power required increases exponentially with the size of the system[8].

Such many-body systems are described as non-trackable, and simulations of such a

systems with modern computers will quickly become prohibitively slow if not impos-

sible. On the contrary, a quantum processor will be able to increase its processing

power exponentially as the number of qubits, increases, thanks to the massive paral-

lel computing built-in by the quantum phenomena, i.e., quantum superposition and

quantum entanglement. Because of that, a quantum computer will be able to track

down a many-body system that is considered non-trackable to a classical computer.

In recent years, trapped and laser cooled ions have been recognized as one of the

most advanced scheme toward realizing a scalable quantum computer [3]. Almost

without modifications, a trapped ion system can be used directly as a quantum

simulator, in which one can simulate Heisenberg-like spin Hamiltonians[28]. While a

two-ion quantum simulator has been realized, a quantum simulator utilizing few tens

to few hundreds of ions will be one of the many first steps towards accomplishing

this feat.
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While a universal working Quantum Computer is many years away, one can build

a quantum simulator that Feynman envisaged, which can be solved by using us-

ing a certain type of Hamiltonian[28]. In our research group, we focus our efforts

on quantum computing and simulation, and quantum communication, by utilizing

cold trapped singly-charged Ytterbium ions in a linear Paul trap. Ytterbium ion

is considered laser friendly in that the the 6S ↔ 6P cyclic transitions. Specifically,

the 2S1/2 ↔2P1/2 transition of the 171Y b+ is at 369.526 nm, and decent laser power

can be obtained by doubling a laser at 739.052 nm. Our experiments employ diode

systems, which are then doubled via ring cavity frequency doublers. Iodine molecule

has been observed to have lines in the 739 nm region and would serve as a convenient

frequency reference for stabilizing our diode lasers.

1.3 Trapping Ytterbium Ions for Quantum Computation

Ions stored in high frequency radio frequency (rf) traps have been demonstrated

to have excellent properties, such as long coherence times and long trapping lifetimes,

that make them attractive for scalable quantum computation [3, 18, 32]. Our group

has demonstrated in S. Olmschenk et. al[27] that trapped ytterbium (171Yb+) ions

can be used as quantum bits for quantum information processing. We will also use

the 171Yb+ ions for the Quantum Simulation experiment. 171Yb+ ion is loaded into a

high frequency rf trap using photoionization. The oscillating rf-trap has the potential

near the center given by [33]

Φ =
V0cosΩT t + Ur

2

(
1 +

x2 − y2

R2

)
(1.3.1)

Such an oscillating potential is essentially a saddle that forms a harmonic oscillator

well. 171Yb+ ions are loaded into the trap through a resonant two-photon process by

using two counterpropagating beams. One of which is a continuous wave(cw) diode
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laser of wavelength 399 nm tuned near resonant to the 1S0 →1P1 transition and the

another is the 369.5 nm beam that is resonant to the 2S1/2 →2P1/2 transition, and has

enough energy to drive the Ytterbium neutral to the continuum. An atomic beam of

Yb neutrals is aimed at 90◦ at the 399 nm beam to reduce Doppler shifts and allow

for isotopically selective loading. 935 nm and 638 nm beams are also aimed at the

trapping region to prevent the ion from being trapped in the the metastable 2D3/2

and 2F7/2 states. Doppler cooling the ions requires a 369.5 nm beam to drive the

2S1/2 ↔2P1/2 transitions. It also aids detection as it generates fluorescence which can

be collected and focused with an appropriate optics setup. 935 nm and 638 nm beams

are used to pump back to the cyclic 2S1/2 ↔2P1/2 transitions any of the ions that

decayed into the metastable 2D3/2 and 2F7/2 states. Subsequently, the Ytterbium

Qubit will be prepared and manipulated by the 369.5 nm, 935 nm and 638 nm laser

beams. More details on the cooling arrangement and Qubit manipulation can be

found in S. Olmschenk et. al [27].

The 369.5 nm beam is produced by frequency doubling a 739 nm laser beam

produced by an amplified cw diode laser from Toptica. An advantage of using a 739

nm laser is that it can be stabilized by a molecular iodine reference[27]. This thesis

is thus concerned with the doppler free spectroscopy of iodine at 739 nm for use in

stabilization of our 739 nm cw diode laser.

1.4 The Iodine Molecule

The Iodine I molecule is a well studied diatomic molecule with numerous old

literature [13, 11, 9, 10, 12, 2], detailing the absorption lines from 7220 cm−1 to

23800 cm−1. which are equivalent to 420.168nm to 1385.042nm. The emissions in

the visible spectrum to near infrared(IR) are due to transitions from the B3Π0−u →
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Figure 1.1: Ytterbium fine and hyperfine structure. The complete level scheme, including the hy-
perfine structure, of Ytterbium which is exploited for ion trapping. A 369.5 nm laser
is essential for driving the 2S1/2 →2P1/2 transitions for ionizing the Ytterbium neutral
to the continuum and also to cool the atom. The 369.5nm laser is also used for state
detections and for preparing and manipulating the Ytterbium Qubit.

X 1Σ+
g manifold ([17]). Molecular iodine is often selected as a frequency reference for

wavelengths from the near-infrared (e.g., 830 nm [21]) to the visible spectrum (e.g.,

633 nm [16]) to the disassociation limit at 499.5 nm because of the density of narrow

absorption lines in this region[14, 11]. These lines can serve as excellent frequency

references for laser stabilization to a few parts in 10−9 or better[7]. However, data on

the transitions involved in producing the spectrum for the regions 667 nm to 776 nm

and the 514 nm to 526 nm is generally scarce [19] beyond what data was provided by

the iodine atlas by Gerstenkorn and Luc (GL atlas [11, 10]) likely due to the weak

lines at room temperature. It is not altogether certain whether the lines around

the 739nm region (13530.0936cm−1, 13530.1934cm−1 and 13530.6745cm−1 [14]) are
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a result of a two level system or three level or some more complicated system.

Regardless, we should expect that that the infrared lines of the Iodine spectrum

are a result of vibrational and rotational energy level transitions in addition to the

electronic energy level transitions[17]. Transitions between the vibrational energy

levels give rise to fine structure while rotational energy levels give rise to the hyperfine

structure. The energy involved in a transition is given as a sum of that of all three

types of transitions[17]. Hence, in terms of the transition frequencies, the energy is

given as:

Etransition = ~ω = ~(ωr + ωv + ωt) (1.4.1)

where ωt, ωv and ωr are the frequency contributions due to the electronic energy level

transitions, vibrational energy level transitions and rotational energy level transitions

respectively. The vibrational energies could be modeled by the simple harmonic

oscillator model. As numerous textbooks on Quantum Mechanics, such as the one

by Griffiths[15] and Sakurai[29], would have it, solving the Schrödinger equation

with potential V (r) = 1
2
kx2 where k is the force constant would yield the vibrational

energy levels Ev to be

Ev = (n +
1

2
)~ωk (1.4.2)

where ωk is the frequency of the vibration. These are very simplistic models and in the

case of iodine, they might be too simple to model. In the case of vibrational energies,

it might be more appropriate to use a Anharmonic Oscillator well instead[17]. For

rotational energies, we might need to use the nonrigid rotator or symmetric top[17].

Nevertheless, they give us some idea of what we should expect in our spectrum.

The simplest model of a rotating molecule is to regard the molecule as a rigid
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rotator[17]. The energy of rotation Er of a rigid body is given by

Er =
1

2
Iω2

r =
L2

2I
(1.4.3)

where I is the moment of inertia of the system about the axis of rotation and ωr is the

angular velocity and L is the angular momentum of the system, given by L = Iωr.

The moment of inertia is given to be

I = µr2 (1.4.4)

where µ is the reduced mass of the system. Solving the Schrödinger equation in

spherical coordinates yields L = J(J +1)~2 where J is the rotational energy quantum

number. So effectively the rotational energies are given by

Er =
J(J + 1)~2

2I
(1.4.5)

Thhe transitions we are trying to examine are not at the ground vibrational

levels, and thus the population of molecules at the required vibrational levels are not

sufficiently populated to produce the spectrum at around 739nm. The iodine thus

requires substantial heating to about 500◦C[19] to sufficiently populate those states

which produce the spectrum around 739nm. The number of molecules dN that has

energy between E and E + dE at thermal equilibrium is given by the Boltzmann

distribution [17]

dN ∝ e−E/kT dE (1.4.6)

In the case of vibrational energy levels, the number of molecules Nv in state n is [17]

Nv =
N

Qv

e−En/kT (1.4.7)

where k is the Boltzman constant and N is the total number of molecules while Qv

is the partition function given by Qv = 1 + e−E1/kT + e−E2/kT + ...
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In the case of rotational energy levels, it is given by [17]

dNi = N
gi

Z
e−Ei/kT (1.4.8)

where gi = 2Ji + 1 is the statistical weight that gives the number of degenerate

sublevels at the level |i〉 with total angular momentum Ji and the partition function

Z =
∑

i gie
−Ei/kT is the normalizing constant.

Hence, the higher temperature, the more populated the higher energy states are.

In the case of a two level system, we would want the ratio between the population

at the excited state N2 and the population between the ground state N1 to be

N2/N1 ∝ e−(E2−E1)/kT = e−1 (1.4.9)

Otherwise, there will not be sufficient transitions and thus the doppler signal would

be too weak for us to pick out.



CHAPTER II

Theory of Frequency Modulated Doppler Free Spectroscopy

Of the many ways to implement Doppler free Spectroscopy, one of them is to have

two counter propagating beams, a stronger pump and a weaker probe beam, going

through a vapor cell heated to a certain temperature. A single laser beam alone,

tuned to the right resonant frequency of the atoms, would on its own, produce a

doppler broadened absorption spectrum. Having two laser beams, each tuned to the

same resonant frequency, would instead introduce doppler free dips in the doppler

broadened absorption spectrum corresponding to the frequency of the transitions.

The advantage of Doppler Free Spectroscopy is such that, combined with frequency

modulation of the pump beam, the resolution of the weaker lines in the spectrum of a

given atom would be enhanced. This signal is a result of many underlying processes,

namely doppler broadening, pressure broadening, and power broadening, that will

now be examined in detail in this chapter.

2.1 The Doppler Free Signal

2.1.1 Lambert-Beer’s Law

The Lambert-Beer’s law holds when the absorption is linear. The vapor cell could

be regarded as a dielectric medium and the intensity of the laser decreases along the

9
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length of the cell by [23]

dI = −α(ω)Idz (2.1.1)

where α(ω) = σ(ω)n and σ(ω) is the cross section of the interaction between the

photon and the atom as a function of frequency ω and n is the population density.

Solving the differential equation, and assuming that the absorption coefficient α is

independent of intensity, we have

I(z) = I0e
−α(ω)nz (2.1.2)

Of particular note would be the fact that the doppler free signal would grow stronger

as the length of the interaction increases. However, α not only has frequency depen-

dencies, but also laser intensity dependencies which invalidate Eqn. 2.1.2.

2.1.2 Natural Linewidth

The power spectrum of the emitted of light from a stationary excited atom could

be modeled by considering the excited atomic electron as a Lorentz oscillator, namely

a classical damped simple harmonic oscillator. Define ω0 =
√

k/m as the natural

frequency of the oscillation of the oscillator, where k is the the force constant and m

the mass of the oscillator. The differential equation of motion is given by[5]

ẍ + γ0ẋ + ω2
0x = 0 (2.1.3)

where γ0 as the damping constant. Note that ω0 corresponds to the central frequency

of the transition ωif = (Ef − Ei) /~. Taking ω0 À γ0, we can solve the above

differential equation, by applying the trial solution x = x0e
iωt and taking the real

component of the solution. Substituting and solving with the given initial conditions

yields

x(t) = x0e
γ0t
2

(
cos ω′t +

γ0

2ω′
sin ω′t

)
(2.1.4)
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where ω′ =
√

ω2
0 − γ2

0/4 If the damping is small, we can neglect the sine term and

ω′ ∼ ω0. The solution then reduces to

x(t) = x0e
γ0t
2 (cos ω0t) (2.1.5)

Performing a Fourier Transformation and using Euler’s formula to obtain the spectral

distribution of the photons emitted yields,

A(ω) =
x0

2
√

2π

(
1

i(ω − ω0) + γ0/2
+

1

i(ω + ω0) + γ0/2

)
(2.1.6)

Since Intensity I ∝ x2, one would expect that in the frequency space, I ∝ |A(ω)|2.

Hence, if we focus on the region ω0 ≈ ω, we can neglect the (ω0 + ω) terms. Thus,

I(ω − ω0) == C ′
(

γ0/2π

(ω − ω0)2 + (γ0/2)2

)
(2.1.7)

Where C’ is a proportional constant. The intensity I is a normalized Lorentzian

curve and the Full Width Half Maximum(FWHM), which gives the frequency range

at which the intensity is half its maximum (which is 2
γ0π

), is γ0. An example of a

Lorentzian curve is depicted in Fig. 2.1. An electron excited by an incident photon
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Figure 2.1: A Lorentzian Emission Profile

tuned close to the same energy transition could also be modeled with a similar
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differential equation [5]. An electron of charge e is excited by a weak electric field

E = E0e
iωt with the following equation of motion for the weakly driven oscillator[5]

ẍ + γ0ẋ + ω2
0x =

qE0

m
eiωt (2.1.8)

The above equation can be solved by introducing a particular solution x = ei(ω+τ)t,

and the solution is given as

x(t) =
qE0e

iωt

m (ω2
0 − ω2 + iγ0ω)

(2.1.9)

To find the intensity as a function of frequency, we need to use the Fourier transform

to solve the above differential equation and obtain the solution in the frequency

domain. Taking |ω − ω0| ¿ ω0, we have [5]

I(ω) ∝ γ0/2

((ω0 − ω)2 + (γ0/2)2)
(2.1.10)

We note immediately that I(ω) is a Lorentzian and is similar to Eqn.2.1.7 with

the same FWHM of γ0. We thus should expect that any stationary excited atom to

emit light that has a Lorentzian line profile with a linewidth identical to that of the

natural linewidth. Such a profile is depicted in Fig. 2.2. However, in reality, there

are a combination of effects that might broaden the linewidth and modify the shape

of the signal. This will be discussed in the in the subsequent sections.

2.2 Inhomogenous Broadening

Inhomegenous broadening effects arise from the fact that atoms are not station-

ary and are constantly moving and collide with each other, leading to collision and

doppler broadening. Further, broadening effects will also arise when the gas cell is

sufficiently saturated when the energy levels involved become evenly populated. Such

effects may or may not appear in the signal we observe, though doppler broadening

will definitely observed given that it is an intrinsic part of our experiment.
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Figure 2.2: A Lorentzian Absorption Profile

2.2.1 Doppler Broadening

The frequency of incident photons ω is doppler shifted in the rest frame of the

molecule traveling in the velocity vector v to ω′. Define k here to be the wave vector

of the incident photon.

ω′ = ω − k · v (2.2.1)

In the lab frame, a photon of frequency ω′′ with k wave vector emitted from a molecule

is doppler shifted by

ω = ω′′ + k · v (2.2.2)

To simplify matters, consider only molecules traveling in the z-direction with velocity

vz. If the frequency of the photon ω′ is tuned to ω0 which is one of the resonant

frequency of the molecules, the absorption frequency ωa in the lab frame is given by

ωa = ω0

(
1 +

vz

c

)
(2.2.3)

Thus we will inevitably see a doppler broadening of the Lorentzian lineshape. In ther-

mal equilibrium at a given different temperature T, the molecules follow a Maxwell-
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Boltzmann velocity distribution and thus the number of molecules ni(vz)dvz at a

certain energy level Ei with velocity along the z-direction between vz and vz + dvz is

given by [5][31]

ni(vz)dvz = Ni

√
m

2kTπ
exp

(
−mv2

z

2kT

)
dvz (2.2.4)

where Ni =
∫

vz
ni(vz)dvz and m is the mass of the molecule. Rearranging Eqn. 2.2.3,

we have

vz = c

(
ωa − ω0

ω0

)
(2.2.5a)

dvz =
c

ω0

dωa (2.2.5b)

Substituting Eqn. 2.2.5b into Eqn. 2.2.4, we obtain the number distribution of the

molecules with absorption frequencies differing from ω0 in the interval ω and ω +dω.

ni(ωa)dωa = Ni
c

ω0

√
m

2kTπ
exp

(
−

(
c(ωa − ω0)

ω0

)2
m

2kT

)
dωa (2.2.6)

The intensity of the signal would naturally be proportional to the population of

molecules that interact with the laser. The expected doppler broadened profile should

be thus of form

ID(ωa) = I0 exp

(
−

(
c(ωa − ω0)

ω0

)2
m

2kT

)
(2.2.7)

which is a Gaussian. The doppler width γD is then

γD =

√
(8 ln 2)kT

mc2
ω0 (2.2.8)

Normalizing the Gaussian leads to [31]

ID(ωa) =

(
4 ln 2

πγD

)1/2

exp

(
−(4 ln 2)

(
c(ωa − ω0)

γD

)2
)

(2.2.9)

To find the resulting signal, take a convolution of Eqn. 2.2.9 and Eqn. 2.1.7 and

obtain

Iv(ω) =

∫
I(ω − ωa)ID(ωa)dωa

= C

∫ ∞

∞

γ0/2

((ω0 − ωa)2 + (γ0/2)2)
exp

(
−(4 ln 2)

(
c(ωa − ω0)

γD

)2
)

dωa

(2.2.10)
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Where C is some normalizing constant. Eqn.2.2.10is essentially a Voigt Lineshape

which is quite complicated to solve analytically although numerical approximations

are possible. However, given that the doppler effects will be quite large even at room

temperature, we might however be able to find approximations for it. If γ0 ¿ γD,

we might approximate the Lorentzian as a delta function [31] and produce:

Iv(ω) = C

∫ ∞

∞
δ(ω − ωa) exp

(
−(4 ln 2)

(
c(ωa − ω0)

γD

)2
)

dωa

= C ′ exp

(
−(4 ln 2)

(
c(ω − ω0)

γd

)2
) (2.2.11)

It is then valid to approximate the possible doppler profile with a Gaussian with

linewidth γD.

2.2.2 Pressure Broadening

Pressure broadening, or collision broadening in some literature, arises from colli-

sions between molecules in the vapor cell. Collisions whether elastic or inelastic, will

both broaden the linewidth.

Returning to the damped oscillator model in section 2.1.2, elastic collisions do not

induce energy transfer, and therefore will not alter the amplitude of the oscillations.

However, the phase can be shifted due to the frequency shift during the collisions.

Elastic collisions cause a shift in not only in the linewidth, but also a shift in the

resonance peak. Ignoring any doppler effects, we have a lorentzian of the form [5]:

Ic(ω) =
I0

2π

(γ0/2 + Nv̄σb)
2

(ω − ω0 −Nv̄σs)
2 + (γ0/2−Nv̄σb)

2 (2.2.12)

where σb and σs are cross sectional constants to be determined through experimen-

tation, and N is the particles per unit volume and v̄ is the mean relative velocity.

Inelastic collisions on the other hand, reduce the number of atoms in the excited

state. The effect on this results in the damping constant is increased by γinel
col . Hence,
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we finally have [5]

Ic(ω) =
I0

2π

γ0 + γinel
col + Nv̄σb

(ω − ω0 −Nv̄σs)
2 +

(
γ0/2 + γinel

col + Nv̄σb

)2 (2.2.13)

Thus the total linewidth γc is

γc = γ0/2 + γinel
col + 2Nv̄σb (2.2.14)

2.2.3 Power Broadening

Assume that the energy level transitions |g〉 → |e〉 in question form a two level

system. We then have the Optical Bloch equations with spontaneous emission [23]

dρee

dt
= γρee − i

2
(Ω∗ρeg − Ωρge)) (2.2.15a)

dρgg

dt
= γρee − i

2
(Ωρge − Ω∗ρeg)) (2.2.15b)

dρeg

dt
= −

(γ

2
− i(ω − ω0)

)
ρeg +

iΩ

2
(ρee − ρgg) (2.2.15c)

dρge

dt
= −

(γ

2
+ i(ω − ω0)

)
ρge +

iΩ∗

2
(ρee − ρgg) (2.2.15d)

where Ω = −eE0/~〈e|r〉 is the Rabi frequency and γ here is linewidth of the decay

from the excited state. ρee and ρgg are the probability of an atom being in the

excited and ground state respectively, and are proportional to the population in

both the excited and ground states. ρge and ρeg can be considered as a form of

coupling between the ground and excited state. Let ρD = ρee−ρgg be the population

difference between the excited state and the ground state. ρD is then

dρD

dt
= −γ0ρD − i

(
Ωρ∗eg − Ω∗ρeg

)
+ γ0 (2.2.16)

The above equations can be solved by taking the steady state case with both deriva-

tives equal zero. We then have [23]

ρD =
1

1 + s
(2.2.17a)
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ρeg =
iΩ

2(γ0/2− i(ω − ω0))(1 + s)
(2.2.17b)

where s =
|Ω|2/2

γ2
0/4 + (ω − ω0)2

=
I/Is

γ2
0/4 + (ω − ω0)2

(2.2.17c)

where Is =
πhc

3λ3τ
(2.2.17d)

where τ is the lifetime and λ is the wavelength of the transition and I is the intensity

of the beam. Is is the saturation intensity and s is the saturation parameter. Let

s0 = I/Is. With these equations in hand, we can now examine how the population

in the excited state varies. We expect that when the transitions are driven by a laser

beam of high intensity, both excited and ground states are equally populated, i.e.

ρD = 0. Thus, we would have the population ρee to be [23]

ρee =
1

2
(1− ρD) =

s0

1 + s0 + (2(ω − ω0)/γ0)2
(2.2.18)

where when ρD → 0, ρee = 1/2. Since the population decays at a rate γ0, the

scattering rate γS = γ0ρe. As s0 gets large, we can write [23]

γS =

(
s0

1 + s0

)(
γ0/2

1 + (ω − ω0)2/((γ0/2)2(1 + s0))

)
(2.2.19)

Thus, comparing γS to Eqn. 2.1.7, we recognize that the effective linewidth γp of the

Lorentzian is

γp = γ0

√
1 + s0 (2.2.20)

Thus, with greater laser intensity, we will see further widening of the linewidth. How-

ever, it should be noted that the gas cell must be sufficiently saturated. Otherwise,

this broadening will not be observed.

One way to quantify power broadening instead is to attempt to measure signal

intensity and find the saturation intensity Is. Consider again the scattering rate γS

as a function of only intensity I and set ω = ω0. Thus we have

γS = γ0/2

(
1− Is

Is + I

)
(2.2.21)
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To find the saturation intensity, set γS = γ0/4 which is half the maximum scattering

rate. Thus, with some rearranging, the corresponding intensity is thus Is.

2.3 Hole Burning and Velocity Selection

The resolution of the spectroscopy is affected by the broadening effects mentioned

in this chapter. Doppler Broadening, in particular, is one of the most dominant

broadening effects that decreases resolution of the spectroscopy. To counter this, we

perform velocity selection, whereby only molecules in a certain velocity class can be

excited by the counter-propagating laser beams. One beam is the pump beam and

the other is the probe beam, and the pump beam is typically 5-10 times more intense

than the probe beam. Thus only molecules with near zero velocity can interact with

both pump and probe beams.

To understand how velocity selection works in the context of Doppler Free Spec-

troscopy, let us consider a number of scenarios. Note that velocity components

of molecules in the x and y direction have no bearing on the linewidth broaden-

ing. Given the absorption profile in the rest frame of the molecules has a natural

linewidth γ0, we should expect the frequency range of the laser that can interact

with the molecules to be approximately ω0 ± γ0/2.

Consider a pump beam and probe beam both tuned to the exact same frequency

while sweeping over a range of frequencies which include the the transition frequency

ω0 = (Ef − Ei)/~ in a two level system. Assume also, that the laser has a small

linewidth such that we can consider it a delta function and that laser intensity

is constant (in reality, it is a Gaussian beam). In the lab frame, the absorption

frequency ωa of the molecule has been shifted according to Eqn. 2.2.3 and the

incident photons in the rest frame of the molecules would be shifted accordingly.
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The range of velocities that allow the incident photons in the pump beam when it

to interact with the molecules when it is at a frequency ω are

(
−1 +

ω0 − γ0/2

ω

)
≤ vz,pump

c
≤

(
−1 +

ω0 + γ0/2

ω

)
(2.3.1)

Correspondingly, for the probe beam, the range of velocities are

(
1− ω0 − γ0/2

ω

)
≤ vz,probe

c
≤

(
1− ω0 + γ0/2

ω

)
(2.3.2)

The overlap between the two ranges give the very small range of velocities that

will cause the molecules to interact with both probe and pump beams, with a center

velocity of 0. For example, if we tune the laser frequency to exactly ω0, the common

frequency would be γ0/2ω ≤ vz

c
≤ γ0/2ω. The center frequency of the interaction

remains the same at ω0. Molecules with velocity that fall outside the overlap between

the above two ranges will not interact with the probe beam.

Since the pump beam is expected to be above saturation intensity. Thus, the

pump beam excites a greater proportion of population to the relative excited state of

the two level system. Thus, the population of molecules with velocity falling in both

the two ranges of velocities above available to interact with the much weaker probe

will inevitably be reduced. Hole burning of the Voigt line profile (see Eqn. 2.2.11

will occur in the regions where the frequency of the laser matches the absorption

frequencies of the molecule in the lab frame. Note that the probe beam must be

be weaker so that it will not cause further saturation and power broadening of the

linewidths.

In our experimental setup, the pump laser was sent through an Acousto-Optic

Modulator (AOM) before going through the vapor cell. The pump laser frequency

is thus expected to experience a shift of −ωf and thus the pump laser frequency is

ω = ωprobe − ωf (2.3.3)
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To find the velocity class that interact with both beams in this case, simply substitute

the above relation into Eqn.2.3.1 and Eqn. 2.3.2 and then check for the overlapping

range. This range also gives the range of absorption frequencies by substituting the

upper and lower bounds of the velocity range into Eqn. 2.2.3. We thus have

−1 +
ω0 + γ0/2

ωprobe − ωf

≤ vz,pump

c
≤ −1 +

−∆ + γ0/2

ωprobe − ωf

(2.3.4a)

1− ω0 + γ0/2

ωprobe

≤ vz,probe

c
≤ 1− ω0 − γ0/2

ωprobe

(2.3.4b)

Again, the overlap of the two velocity ranges above will dictate the range of velocities

that will interact with both the pump and probe beams. To find the central velocity

at which the molecule would be resonant to both the pump and probe beams, we

need to consider how the frequency of each beam is shifted due to the doppler effect.

Let ω′probe and ω′pump be the frequency of the probe laser and pump laser in the rest

frame of the molecule. Thus

ω′probe = ωprobe

(
1− vz

c

)
(2.3.5a)

ω′pump = (ωprobe − ωf )
(
1 +

vz

c

)
(2.3.5b)

Setting ω′probe = ω′pump = ω0, we obtain

vz =
cωf

2ωprobe − ωf

(2.3.6)

The corresponding value of ωprobe in terms of the resonant frequency can then be

obtained by substituting Eqn. 2.3.6 into Eqn. 2.3.5b with ω′pump = ω0, and then we

obtain

ωprobe =
2(ω0 + ωf ) +

√
4(ω0 + ωf )2 − 8ω0ωf

4
(2.3.7)

In our experiment, ωf is 80 MHz and since we would expect that ωprobe should be

close to the resonant frequency ω0 at 406 THz, vz 10ms−1. Hence, we do not expect
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the velocity of the molecules to change the resonant frequency in the lab frame due

to the doppler effect as the average velocity is effectively zero. Essentially, when the

probe and pump beam interact with the molecule when

ωprobe u ω0 +
ωf

2
(2.3.8)

Further, taking a derivative of vz with respect to ωprobe, we have

δvz = − cωf

(2ωprobe − ωf )
2 δωprobe (2.3.9)

Adding a small perturbation δωprobe to ωprobe in Eqn:2.3.5a then yields,

ω′probe = (ωprobe + δωprobe)

(
1− vz + δvz

c

)
(2.3.10)

Substituting Eqn. 2.3.9 to Eqn. 2.3.10, and after some manipulation, we yield

ω′probe = ω0 + δωprobe +

(
− ωf

2ωprobe − ωf

δω + +
ωfωprobe

(2ωprobe − ωf )2

)
δωprobe

+
ωf

(2ωprobe − ωf )2
δω2

probe

(2.3.11)

If δωprobe ± γ/2 and γ ¿ ωprobe (γ ∼ MHz), the above equation reduces to

ω′probe u ω0 ± γ

2
(2.3.12)

Solving for ω′pump yields a similar result. This tells us that the central frequency and

the linewidth of the absorption profile of the velocity class will correspond to the

resonant frequency and the linewidth of the molecules. The velocity of the molecules

is small enough that it is possible to neglect the possible doppler broadening of the

natural linewidth. As such, we may write the signal in the form:

ID.F (ω) = A

(
s0

1 + s0

)(
γ0/2

1 + (ω − ω0)2/((γ0/2)2(1 + s0))

)
(2.3.13)

where A is a constant proportional ρD (the population difference). To obtain the final

signal, we need to account for both the doppler signal and the doppler free signal[5].
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We then expect the final result, excluding any power and pressure broadening, to be

ILock(ω) =

(
1− I0 exp

(
−(4 ln 2)

(
c(ω − ω0)

γd

)2
))

×
(

A
s0

1 + s0

)(
γ0/2

1 + (ω − ω0)2/((γ0/2)2(1 + s0))

) (2.3.14)

Note that the could be possible power and pressure broadening of the natural linewidth,

and as such, γ0 should be replaced with the appropriate linewidth as necessary. The

doppler free peak is depicted in Fig. 2.3. In addition to the doppler free peaks,
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Figure 2.3: A Doppler Free Peak in Doppler Profile. Notice that the peak is small compared to the
rest of the Gaussian absorption profile

we need to also examine the occurrence of crossover signals [5]. Crossover signals

occur in multi-level systems where there is a common ground or upper state and the

frequency of these signals is the average of the two levels which contribute to the

crossover signal. Consider then a three-level system as shown in Fig. 2.8.

The frequency of the transition to the upper state 1 to be ω1 and upper state

2 to be ω1 + ∆, where ∆ ¿ ω1. Because ∆ is small, an incident photon could be

doppler shifted in the rest frame of atoms traveling at a certain velocity such that

the photon could excite the atoms to the 2 upper states simultaneously. Thus, a

crossover peak is produced in the doppler absorption profile. To determine the exact
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Figure 2.4: A possible 3 energy level system.The frequencies of the two transitions are ω1 and
ω1 + ∆ where ∆ is the difference in frequency between the two transitions. We would
thus expect a cross over peak between the two upper energy levels, i.e.ω1 + ∆/2. This
is in addition to the two doppler free peaks we should see as a result of the transitions
to the 2 upper level states.

central frequency of the crossover signal, let us return to Eqn. 2.3.5b and 2.3.5a. Let

ω′pump = ω1 + ∆ and ω′probe = ω1. Solving both Eqn. 2.3.5b and 2.3.5a for ωp yields

ωp =
(2ω0 + ωf + ∆) +

√
4(2ω0 + ωf + ∆)2 − 8ω0ωf

4
(2.3.15)

Since ωf ¿ ∆, we can approximate ωp to

ωp ' ω0 +
T

2
(2.3.16)

which is where we expect the crossover peak to show. If we have more than 2 upper

level or ground states. In between any two of the energy levels would have a crossover

peak.

2.4 Frequency Modulation and Detecting the Signal

For effective detection of weak signals, the process of modulation-demodulation

must be used. The pump beam will be frequency modulated using an AOM as

mentioned before, and a Lock-in Amplifier will be used to demodulate the signal

received from the photodiode. The Lock-in Amplifier works on the principle of
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frequency modulation-demodulation[5] and is a phase sensitive detector. It consists

of a demodulator in the form of a mixer, where the error signal α(ω) is multiplied

by the reference signal. The mixed signal is subsequently passed through a low pass

filter to filter out the high frequency noise. The process is shown graphically in

Fig.2.5.

Error Signal

α(ω)

Mixer

Reference Signal

Low-pass �lter Resulting Signal S(ω)

Figure 2.5: Block Diagram describing the processes in the Lock-in Amplifier. A Lock-in Amplifier
consists consists of a demodulator in the form of a mixer and low pass filter. The input
signal α(ω) is multiplied with the reference signal, and is subsequently passed through
a low pass filter to filter out the high frequency noise to produce S(ω).

In a typical Doppler Free Spectroscopy set up, a beam splitter is used to divert

a small part of the probe beam to a photo receiver, which has two photo diodes,

to serve as the reference beam with intensity IR. The probe beam, after passing

through the iodine cell, is also directed to one of the two photo diodes. Recalling the

Lambert-Beer’s law and Eqn. 2.1.2, the intensity of the probe beam after passing

through the cell Iprobe is given by

Iprobe(ω) = I0 exp(−α(ω)x) ' I0(1− α(ω)x) (2.4.1)

The above taylor expansion assumes α(ω)x is small. Now, if we balance both the

reference and the probe beams such that they both share the same initial intensity

I0, we can measure α(ω) through the following formula:

α(ω) =
IR − IProbe

IRx
(2.4.2)
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A derivative of α(ω) with respect to ω is then

dα

dω
=
−1

IRx

dIprobe

dω
(2.4.3)

Because the pump beam was frequency modulated using the AOM, the frequency

varies as follows:

ωprobe(t) = ω0 + ωbw sin ωFM t (2.4.4)

where ωbw is the modulation bandwidth and ωFM is the modulation frequency. Taylor

expanding Iprobe(ω + ωbw sin ωFM t) yields,

Iprobe(ω) = Iprobe(ω0) +
∞∑

n=1

ωn
bw

n!
sinn ωFM t

[
dnIprobe

dωn

]

ω=ω0

(2.4.5)

Combining Eqn. 2.4.5, Eqn. 2.4.3 and 2.4.2, we obtain [5]

α(ω) = −
∞∑

n=1

ωn
bw

n!
sinn ωFM t

[
dnα

dωn

]

ω=ω0

(2.4.6)

Eqn. 2.4.6 can be further rewritten as[5]:

α(ω) =

(
ω2

bw

4

[
d2α

dω2

]

ω=ω0

+
ω4

bw

64

[
d4α

dω4

]

ω=ω0

+ · · ·
)

+

(
ωbw

1

[
dα

dω

]

ω=ω0

+
ω3

bw

8

[
d3α

dω3

]

ω=ω0

+ · · ·
)

sin(ωFM t)

+

(
−ω2

bw

4

[
d2α

dω2

]

ωω0

+
ω4

bw

48

[
d4α

dω4

]

ω=ω0

+ · · ·
)

cos(2ωFM t)

+

(
−ω3

bw

24

[
d3α

dω3

]

ω=ω0

+
ω5

bw

384

[
d5α

dω5

]

ω=ω0

+ · · ·
)

sin(3ωFM t)

+ · · ·

(2.4.7)

If the modulation bandwidth is small and ωbw/ω0 ¿ 1, we only need to con-

sider the first order terms in each of the coefficients of sin((2m + 1)ωFM t) and

cos((2m)ωFM t), where m is a positive integer, while the consecutive terms can be
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ignored. Next, we pass the above signal into the Lock-in Amplifier. We use a sinu-

soidal reference signal with frequency ωFM . passing the signal through the mixer,

we obtain the Smixed(ω)

Smixed(ω) ' sin(ωFM)α(ω)

=

(
ωbw

[
dα

dω

]

ω=ω0

)
sin2(ωFM t) + · · ·

= ωbw

[
dα

dω

]

ω=ω0

1

2
(1− cos(2ωFM t))

(2.4.8)

The other terms can be ignored because when we pass S(ω) through the low pass

filter, the high frequency components will be filtered out. Note also the DC term in

Eqn. 2.4.8 which will be the only term that survives after passing the signal through

the low-pass filter. Hence,

S(ω) =
1

nT

∫ nT

0

ωbw

[
dα

dω

]

ω=ω0

cos(2ωFM t)

=
ωbw

2

[
dα

dω

]

ω=ω0

(2.4.9)

Notice that the magnitude of S(ω) is proportional to the modulation bandwidth.

Our lock-in signal is a derivative of the doppler free peaks. Hence, since the doppler

free peak is a Lorentzian, the derivative of the Lorentzian is

dα

dω
=

d

dω

[
Aγ0/2π

(ω − ω0)2 + (γ0/2)2

]

=
2Aγ0/2π(ω − ω0)

((ω − ω0)2 + (γ0/2)2)2

(2.4.10)

With maxima/minima at

ω = ω0 ± γ

2
√

3
(2.4.11)

and amplitude difference between the maxima and minima is

∆α′ =
3
√

(3)A

γ2
(2.4.12)
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Of particular note, would be that measuring the frequency difference between the

maxima and minima would yield a value proportional to linewidth of the Lorentzian

and measuring the amplitude difference between the two maxima and minima would

yield a value proportional to the amplitude of the Lorentzian. Both quantities are

useful when we are determining the doppler linewidth and the absolute intensity of

the signal. An example of a lock signal is depicted in Fig.2.6.
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Figure 2.6: Lock Signal. Notice that it is a derivative a Lorentzian.

2.5 Optimizing the Signal

Since the lock-in signal depends on the amount of absorption that takes place as

the laser travels through the cell, we need to optimize the beam profile to maximize

the lock-in signal especially when the laser power sent to lock is typically about

25mW. To optimize the signal, we need to find the ideal waist of the laser beam to

maximize the interaction between the laser beam and the Iodine molecules.

Let us first consider the intensity profile of the laser beam. The intensity profile

of a TE00 single mode Gaussian beam defined as follows:

I(r, z) =
2P

πω2
0

e
− 2r2

w(z)2 (2.5.1)
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where w(z) is the beam radius as a function of distance z from the point of emission

and is also the FWHM of the Gaussian beam.

w(z) = w0

√
1 +

(
z

zR

)2

(2.5.2)

where Rayleigh’s range zR for the beam is given by

zR =
πw2

0

λ
(2.5.3)

and w0 is the beam waist at the narrowest point and λ here is the wavelength of the

laser beam. The Rayleigh range is regarded as the distance between the between

point where the the Gaussian Beam has waist
√

2w0 and w0. The Rayleigh range is

thus the spatial region where the molecules would interact most with the laser as the

laser intensity is at its highest. Hence, it is important that most of the Iodine cell is

placed within the Rayleigh range of both laser beams to ensure maximum interaction

between the laser beam and the iodine molecules in the cell.

The intensity of the probe beam, which it is assumed to be a TE00 single mode

Gaussian beam, as it passes through the iodine cell is a combination of Eqn. 2.5.1

and Eqn.2.1.2 as a result of the Lambert-Beer law. The equation is given to be:

Iprobe(r, z) = ε
2P

πω2
0

e
−ρaσoptz− 2r2

ω(z)2 (2.5.4)

where ε is the fraction of the pump beam power and σopt is the transition cross-section

at resonance and it is defined as

σopt =
3λ2

2π
(2.5.5)

and the actual number density ρa accessible to the laser is a function of ρ0 which is

the number density of the molecules accessible to the laser and ρ0 is given by

ρ0 = pn
γ0

γD

(2.5.6)
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where p is the probability of a transition, and γ0 and γD are the natural linewidth

and doppler linewidth (Eqn.2.2.8) as before. n is the number density of molecules in

the cell, and is defined as according to the ideal gas law:

n =
P

kT
(2.5.7)

where P is the iodine cell pressure at room temperature, and T is the cell temperature

and k is the Boltzmann constant. To determine actual number density ρa, we must

determine the fraction of the population available for interaction with the probe

beam after saturation by the pump beam. Assume that Iodine is a two level system

and that our laser beams are locked tightly to the resonance frequency of 739nm.

The population of molecules in the excited state ρee (Eqn.2.2.18) becomes

ρee =
s0

1 + s0

(2.5.8)

Since the population of molecules in the ground state is given by ρgg = 1− ρee, and

that the actual density of molecules ρa that can interact with the probe beam when

the pump beam is shone through is proportional to ρee − ρgg so

ρa = ρ0

(
1− s0

1 + s0

)
= ρ0δrho (2.5.9)

where δrho is paremeter defined as δrho =
(
1− s0

1+s0

)
. Since s0 = I/Is, for simplicity,

take I to be the average intensity of the laser beam, which is given to be I = P
πω2 so

that we do not have to worry about spatial dependency. Hence, the intensity of the

probe beam in the presence of a pump beam which saturates the cell is given by

Ip
probe = I0e

−ρ0σoptδrhoz− 2r2

ω(z)2 (2.5.10)

Without the pump beam, only the probe beam will be interacting with the molecules,

of which most have not been excited to the excited state and hence the more of the
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probe beam will be absorbed. Thus, the intensity is given by

In.p.
probe = I0e

−ρ0σoptz− 2r2

ω(z)2 (2.5.11)

To obtain an equation which maximizes the signal, we will integrate ∆I = Ip
probe −

In.p.
probe over a cylinder of length 2zR but infinite width since this is the region when

the laser is most intense and thus the greatest amount of interaction between the

probe beam and Iodine molecules will take place here and produce the most signal.

Thus we have

∆I =

∫

V ol

(
Ip
probe − In.p

probe

)
dV

= ε
2P

πw2
0

∫ ∞

0

e
2r2

w2
0

∫ 2zR

0

(
e−ρ0σoptδrhoz − e−ρ0σoptz

)
dz2πrdr

(2.5.12)

∆I = ε
2P

πw2
0

2π
ω2

4

(−e−2ρ0σoptwzR + 1

ρ0σoptw
− e−2ρ0σoptzR − 1

ρ0σopt

)
(2.5.13)

The difference in intensity ∆I is a function of the beam waist w0. By plotting ∆I

versus w0 and finding the maxima of the equation, we are able to determine which

value of w0 gives us the best signal required for the lock.

Now, we may calculate the best possible laser waist that optimizes our pump-

probe signal. Table 2.1 lists down the values of the variables to be used for our

model. To estimate the vapor pressure of Iodine, the vapor pressure of crystalline

Table 2.1: Variables and Constants
Variable/Constant Name Value
Mass of Iodine Molecule m 4.21322× 10−25 kg
fraction of pump beam power ε 0.1
Pump Beam Power P .02mW
Laser/Iodine Spectrum Wavelength λ 739nm
Approximate Life Time τ 10−6 s

Iodine varies according to this table [20]: Using the above values the log of the vapor

pressure P with base 10 was plotted against temperature T in Fig. 2.7 Igor was use
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Table 2.2: Iodine vs Temperature[20]
Temperature / K 260 282 309 342 381 457

Pressure / Pa 1 10 102 103 104 105
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Figure 2.7: log Pressure/Pa vs Temperature/K. The polynomial fit of the curve was done using Igor
to estimate the variation of Pressure vs Temperaure

to fit the data in Fig. 2.7, yielding the fit equation:

log10 P = −18.339 + 0.096468T − 9.9349× 10−5T 2 (2.5.14)

The estimated pressure at room temperature 293 K was found to be 24.9 Pa.

With all the necessary parameters, we plot the ∆I in Fig. 2.8. The best beam waist

we need for our experiment is approximately 200µm according to Fig. 2.8

0.0002 0.0004 0.0006 0.0008 0.001

5·10-6

0.00001

0.000015
793K

493K

Figure 2.8: ∆ I vs Beam Waist/m. The maxima of the curves gives us the optimum beam waist
required for our experiment. The best beam waist is approximately 200µm.



CHAPTER III

Experimental Setup

In this chapter, we will describe the experimental setup and briefly introduce the

important techniques and equipment used in the setup and finally how we would

optimize our signal.

3.1 Optics Setup

The relevant optics and electronics required for the proposed Pound-Drever-Hall

laser lock [6, 1] are shown in Fig.3.1 and is similar to what was done in the Ytterbium

Ion-Photon entanglement experiment [27, 25, 22]. 0.5 mW of laser power is sent from

the diode laser through a half waveplate and a polarizing beam splitter (PBS) into a

single-mode optical fiber which directs the 25 mW of power to the Iodine lock. Note

that for the purpose of spectroscopy, we will be directing more power to the iodine

lock so as to take data required to analyze the iodine spectrum. We will replace this

optical fiber with a fiber electro-optical modulator (EOM), so that we can change

the frequency offset point for our laser frequency stabilization. The advantage of

using an optical fiber is that the optical fiber acts as a spatial filter and produces a

single mode TE00 beam. In our experiment, we have coupled more than 50%.

The signal from the lock is then directed to a proportional integral derivative

servo controller (PID). 2 mW of the main beam is sent to a reference invar cavity

32



33

λ/4PBS Cavity

rf-PD

739.05 nm
Bias T

80 MHz

P
ID

To
 d

io
d

e

cu
rr

e
n

t

Error sig

To cavity piezo

PBS

λ/2

25 mW

100 kHz

low passP
ID

To
 g

ra
ti

n
g

-1
0

 d
B

Iodine

Setup

(Fig. 3)

To frequency doubler

and experiment

10 MHz

low pass

Toptica

Electronics

for Sweeping 

Laser

Figure 3.1: 739nm Laser Lock. 0.5 mW of laser power is sent from the diode laser through a half
waveplate and a polarizing beam splitter (PBS) into an optical fiber which directs the
25 mW of power to the Iodine lock. Note that for the purpose of spectroscopy, we will
be directing more power to the iodine lock so as to take data required to analyze the
iodine spectrum. The signal from the lock is then directed to a proportional integral
derivative servo controller (PID). Because the signal from the lock is typically too weak,
2 mW of the main beam is sent to a reference invar cavity with a cavity piezo controlled
by the aforementioned PID. Essentially this cavity is stabilized by the iodine lock. Invar
is used to ensure maximum thermal stability. The output from the cavity is measured
by a radio-frequency photodiode (PD) and the signal is then amplified by an amplifier
and mixed a 120MHz signal modulating the Bias T of the laser. The signal from the
radio-frequency photodiode is subsequently routed through 2 low pass filters followed by
PIDs to control the laser diode current and laser grating, thus stabilizing the frequency
of the laser.

with a cavity piezo controlled by the aforementioned PID. Essentially this cavity is

stabilized by the iodine lock. Invar is used to ensure maximum thermal stability. The

output from the cavity is measured by a radio-frequency photodiode (PD) and the

signal is then amplified by an amplifier and mixed a 120MHz signal modulating the

Bias T of the laser. The signal from the radio-frequency photodiode is subsequently

routed through 2 low pass filters followed by PIDs to control the laser diode current

and laser grating, thus stabilizing the frequency of the laser.
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Figure 3.2: The laser beam from the optical fiber is then split between the pump and probe beam
with about > 1% power diverted to the probe beam. The pump beam goes through an
AOM and the 1st order is selected. Another small part of the probe beam is diverted
with a beam splitter to the photo receiver as the reference beam. Both the reference
and probe beams are focused tightly with two 10 cm lens. Both the pump and probe
beam have an approximately 9:1 ratio in terms of power and are focused into the Iodine
cell with 20cm lens. The two lens are 43cm apart so that the Rayleigh range of both
the probe and pump beam overlap as much as possible. For the purpose of measuring
the iodine spectrum, we will send the output signal from the lock-in amplifier and the
doppler signal from the photodiode to the oscilloscope. Note also the Fabry Perot
Cavity (FPC) that we use to check whether the laser mode is clean.

The laser beam from the optical fiber is then split between the pump and probe

beam and reference beam using a beam splitter with about > 1% power diverted

to the probe beam. The pump beam goes through an AOM and the 1st order is

selected. Using a beam splitter, a small part of the pump beam is diverted to a

Fabry-Perot Cavity (FPC) to allow us to check that the laser is single mode. Both

the reference and probe beams are focused tightly with two 10cm lens. Both the

pump and probe beam have an approximately 9:1 ratio in terms of power and are

focused into the Iodine cell with 20cm lens. The beam radius at the focus of the two
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lens was measured using a beam profiler and found to be 100µm. The two lens are

43cm apart so that the Rayleigh range of both beams overlap as much as possible.

For the purpose of the measuring the iodine spectrum, we will sweep the 739nm

laser using the Toptica electronics supplied with the laser. The trigger from the

sweep and the output signal from the photodiode and the lock-in amplifier from the

iodine setup is sent to the oscilloscope to allow us to collect data. The power sent to

the iodine setup instead can be up to 100mW depending on the measurements we

would like to take.

3.2 Iodine Cell

The iodine cell is a glass cell with tapered quartz windows and a cold finger

that is kept at room temperature. The quartz windows are tapered at Bragg angle,

hence any beam that enters parallel to the axis of the cell enters at Bragg angle

and the reflected beam is polarized. It is 30cm long, and 0.5” wide. The cell was

manufactured by a commercial company whereby iodine was pumped and evaporated

at 50◦C until no more iodine could be evaporated. To reduce radiation of heat, the

cell is wrapped around with many layers of aluminium foil and fiber glass. The

cell is first surrounded by layers of aluminium before the heating tape (FGS051-020

fiber glass insulated heater tape by Omega Engineering Inc.) is wrapped around the

cell. This ensures even heating of the cell and prevent any fractures due to uneven

heating. A J-type thermocouple (XC-24-J-12 thermocouple by Omega Engineering

Inc.) which is capable of measuring temperature up to 700◦C is inserted after the

heating tape is also wrapped around with more layers of aluminium. As stated in

the previous chapter, the iodine cell was heated to approximately 500◦C. It must be

carefully heated to ensure it does not fracture due to rapid expansion or contraction.
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Two aluminium plates are placed at each end of the cell to reflect the heat back to

the cell window and prevent the heat from affecting the surrounding optics. The

plates have holes to allow the counterpropagating pump and probe beams to pass

through.

The cold finger is approximately 15cm long and is coated with thermal paste to

allow easy conduction of heat to the copper mesh that is wrapped around it. The

copper mesh serves as a heat sink to conduct heat away from the cold finger. A

thermocouple is also inserted in the copper mesh to allow us to monitor the tem-

perature of the cold finger. The cold finger is typically kept in the temperatures

from 28◦C − 32◦C. The temperature of the cold finger is small compared to the cell

temperature, which is typically greater than 200◦C. One way to understand how the

cell works is to note that there is a pressure difference between the cold finger and

the cell due to the large difference in temperatures between the cold finger and the

cell. As a result, iodine molecules are pushed into the cold finger where it condenses

at near room temperature. As a result, the population of iodine molecules in the cell

decreases and maintain the vapour pressure of the cell at room temperature and thus

reduces the probability of collisions between atoms responsible for pressure broad-

ening. One would think that the reduction in population of molecules would affect

the signal. On the contrary, the high temperature would populate more molecules in

the upper vibrational levels in the ground manifold as mentioned in the last chapter

and increase the optical density at the 739nm.

3.3 AOM

The AOM or Acoustic Optical Modulator, modulates the pump laser by adding

a frequency offset and adding a sinusoidal modulation to the laser. It does this by
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Figure 3.3: Iodine Cell without Insulation. Here we have the iodine cell wrapped with only heater
tape and aluminium foil. The heater tape is wrapped such that heat is evenly distributed
across the cell.

using an acoustic wave produced by a piezo-electric transducer that vibrates at the

supplied frequency that changes the structure of the crystal to form a moving bragg

grating. The angle of diffraction follows this relation[30]:

sin θ =
mλ

2λs

, m = 0,±1,±2, ... (3.3.1)

where λ and λs are the wavelength of the laser and sound wave and m is the order.

The moving wave also gives a momentum kick to the laser beam and such that the

frequency f is given by f ′ = f +mF where F is the frequency of the sound wave and

m is the order of diffraction. The AOM is given a central frequency of 80MHz by

a Voltage Controlled Oscillator(VCO) and 22KHz modulation provided by a signal

generator.

3.4 Photoreceiver and Lock in Amplifier

The photoreceiver receives the reference beam and the probe beam and subtracts

the reference beam from the probe beam. Both beams should be balanced in intensity
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Figure 3.4: The cell is wrapped with many layers of aluminium and fiber glass to insulate the cell. A
heater tape is wrapped round the cell after the initial few layers of aluminium to ensure
even heating of the cell. J-type thermocouple inserted after a few layers of aluminium
around the heater tape. The cold finger is coated with thermal paste to allow easy
conduction of heat to the copper mesh wrapped around it. The copper mesh serves as
a heat sink to conduct heat away from the cold finger. A thermocouple is also inserted
in the copper mesh to allow us to monitor the temperature of the cold finger.

to cancel the Direct Current (DC) background and the common mode noise, such

as laser power fluctuations. Subtraction of the DC background also reserves the

dynamic range of the amplifier gain for the error signal.

As mentioned in section 2.4, the Lock-in Amplifier is a demodulator. A 22KHz

signal (same as the one sent to the AOM) is sent to the Lock-in Amplifier whereby

the mixer multiplies the 22KHz signal with the error signal and the low pass filter

filters out the high frequency components. The Lock-in amplifier then produces the

derivative of the error signal from the photoreceiver. This derivative will be useful in

allowing us to quantify the linewidth and the amplitude of the absorption profile.



CHAPTER IV

Experimental Results

In this chapter, I will detail the experimental results obtained from the doppler

free spectroscopy experiment. We explored the relation between signal strength and

the temperature of the cell, doppler broadening and broadening effects.

4.1 The Signal at 739.0289

25x10
-3

20

15

10

5

0

-5

-10

S
ig

n
a

l 
(A

rb
it
ra

ry
 U

n
it
s
)

13.213.012.812.612.4
Frequency Offset/GHz

 Doppler Signal
 Lock Signal

1

2 3

4

5

6

Figure 4.1: Doppler Signal and Lock Signal at 520◦C showing the Hyperfine structure of Iodine. A
total of 6 doppler free features are marked 1 - 6 here. The positive frequency offset is
from 739.05204nm. Notice how the doppler free peaks in the doppler profile overlaps
with the lorentzian derivatives in the lock signal.

To obtain extremely accurate measurements, the ratio between pump beam and

the probe beam power has to be increased and the pump beam power kept as small

39
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as possible. This is to minimize any power broadening of the signal. With 44mW for

a pump beam and a 320µW probe beam, we obtain the following doppler broadened

signal and lock signal in Fig. 4.1. The frequency scale in the figure is based on iodine

spectroscopy data obtained by Steven Olmschenk et. al [27]. In the figure, we labeled

6 features from 1 to 6 with error of ±0.1GHz, centered at 739.0297nm, 739.0292nm,

739.0289nm, 739.0287nm, 739.0284nm and 739.0282nm respectively, with error of

±0.01GHz to account for laser drifting. The signal has a similar pattern to the

lines at 739.034 nm [27] and to the lines at 657 nm [26] which might imply that the

transitions at 739.0289 nm are similar to the transitions that results in the P(84)

line in the 5-5 band at 657nm. This ratio of pump beam to the probe beam is not

the atypical ratio we would use in the main experiment as the probe beam would

be otherwise far too weak when only 5mW of power is delivered to the setup. Some

100mW of laser power was delivered to the setup with the use of optics filters to

reduce the intensity of the pump beam.

Notice in Fig. 4.1, signal feature 1, 4 and 6 are clear and distinct with no hyperfine

structure, while 2, 3, and 5 have hyperfine structure in them. Also note that the

doppler free peaks in the doppler signal overlaps with the lorentzian derivatives in

the lock signal. Further, it’s possible that feature 2 is the crossover signal for feature

1 and 4 since the middle between 1 and 4 is 739.0293nm, while feature 3 is a crossover

signal for feature 1 and 6 since the mid point is 739.0289nm. Feature 5 is a crossover

between 4 and 6 since the mid point is 739.0285nm. However, with the hyperfine

structure in feature 2, 3 and 5 may mean they are either not crossover signals, or are

superpositions of other signals. The linewidths of the features, in ascending order, are

measured to be 0.02910GHz, 0.09041GHz, 0.11293GHz, 0.02425GHz, 0.093138GHz

and 0.02078GHz with error of ±0.01732GHz to account for noise and laser drifting.
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4.2 Temperature and Signal Strength

To see how the signal strength varies according to temperature, we choose a

number of data points and then heat the cell up to the required temperature and

hold the temperature steady for several minutes to ensure thermal equilibrium was

achieved. The spectrum and the lock-in signal is subsequently taken. We keep

the cell from heating beyond 600◦C to ensure that the cell does not expand too

much and crack. We measure the peak the peak amplitude of one of the peaks in

each of the lock-in signal versus temperature and plot the graph in Fig.4.2. The
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Figure 4.2: Peak to Peak Amplitude vs Temperature of feature 6. The signal increases in intensity
as temperature rises. To ensure the best signal possible while keeping the temperature
under 600◦C, we should keep the cell heated at 500◦C. The equation of the fit line is
y = −1.6008± 0.315 + (0.006838± 0.000727)x

amplitude/Temperature gradient is 0.006838 ± 0.000727 mV/K. From the fit line,

there should be negligible signal strength at temperatures less than 234 degrees

Celsius, which is in line with what we saw in our experiments. It would appear that

the best possible temperature for our lock is at 500◦C which is more line with the

expectation as noted in Tiemann et. al[19]. The ground states for the transitions

must be sufficiently populated to provide us with substantial signal. The test was

done with a ratio 1 : 10 of 1mW probe power to 10mW of pump power.
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4.3 Doppler Broadening

Measuring the doppler Broadening is difficult as the peaks are very close to each

other and thus it is hard to measure the doppler linewidth. What we tried to do

instead is to fit the signal to a sum of 6 Gaussian curves with the appropriate center

frequencies. In addition, we added a weightage ai of each curve as many of the peaks

are very close to each other and as a result, certain features in the lock-in signal are

actually a sum of a number of peaks. The normalized weightage is determined by

multiplying a weightage to each amplitude of each doppler peak and then divided by

the total sum of weighted amplitudes. The formula of the fit is given to be:

Ifit = y0 + A

6∑
i=1

aie
(ω−ωi)

2

(ωD(T ))2 (4.3.1)

where a1 = 0.07029, a2 = 0.3183, a3 = 0.2569, a4 = 0.06829, a5 = 0.2192232,

a6 = 0.06696347 and ωD(T ) is the doppler linewidth as defined by Eqn. 2.2.8. ωi is

the center frequency of the 6 features as was mentioned in section 4.1. A and y0 are

fit variables to be determined by the fitting algorithms. Igor Pro 5.0 was used to do

the fits and calculate the χ2 value for the curves to see the goodness of fit. The fits

are shown in Fig. 4.3, 4.4 and 4.5

A χ2 goodness of fit test with degree of freedom n = 9994 will indicate how good

our fit is. The reduced χ2/n for each fit is less than one. This might indicate that

the doppler broadening equation is correct.As we note, the fits in Fig. 4.3 to Fig.

4.5 appear to match the recorded spectrum which may indicate that the fit function

is correct. One might even note that at low temperature, one starts to see some

distinct evidence of the multiple Gaussian absorption profiles.
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Figure 4.3: Doppler fit of Doppler Signal at 301◦C. χ2 = 3.05901 The fit is clearly not very
good. One might however note that the profile is not as smooth as the plots at higher
temperatures, giving hint to the multiple absorption profiles.
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Figure 4.4: Doppler fit of Doppler Signal at 460◦C. χ2 = 0.285219 The model is a good fit for the
signal.
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Figure 4.5: Doppler fit of Doppler Signal at 533◦C. χ2 = 0.440139 The model is a good fit for the
signal.

4.4 Power Broadening

To measure power broadening, we maintain the probe beam at a constant power of

320µW and vary the power of the pump beam. This is to keep any power broadening

by the probe beam to the very minimum. Since the absolute intensity of the signal is

expected to be proportional to the light scattered from the population in the excited

state γs (Eqn.2.2.21) and that the saturation intensity Is is intensity of the laser

beam at half the maximum possible scattering rate, our fit function for our data is

of the form:

γs,fit = A′ x/B′

1 + x/B′ (4.4.1)

where A’ and B’ are fit parameters, and B’ is the saturation intensity Is. Choosing

feature 1, 4 and 6 in the lock signal, we plot the graph of absolute intensity of the

signal versus power of the pump beam in Fig. 4.6, 4.7 and 4.8.

From the fit in the Fig.4.6, 4.7 and 4.8, saturation intensity Is has values Is =

7.5136 ±0.73mW, 7.5134 ±0.68mW and 7.4368 ±0.68mW respectively. To calculate
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Figure 4.6: Signal Peak to Peak amplitude vs Power of Pump beam for Feature 1. The fit has
parameters A’ = 1.9223 and B’ = 7.5136 This implies that the saturation intensity is Is

= 7.5134 ±0.73mW. The saturation intensity per unit area for a 100µm is 23915 ±2355
mW/cm2. Error bars for Power was approximately ±0.5mW to account for random
fluctuations in power and error bars for intensity is based on the noise signal strength.

the saturation intensity, we first measured the waist of the beam at the focus of the

lens using a CCD (Charge Coupled Device) camera and the beam waist was 100µm.

The saturation intensities for a 100µm beam waist is 2.39±0.23 W/cm2, 2.39±0.21

W/cm2 and 2.36 ±0.21W/cm2 respectively. This suggest a saturation intensity per

unit area of 2.38 W/cm2. This saturation intensity is rather high but it is expected

given that the Iodine molecule has a complicated energy level structure.
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Figure 4.7: Signal Peak to Peak amplitude vs Power of Pump beam for Feature 4. The fit has
parameters A’ = 2.0811 and B’ = 7.5134 This implies that the saturation intensity is Is

= 7.5136 ±0.68mW. The saturation intensity per unit area for a 100µm is 23915 ±2164
mW/cm2. Error bars for Power was approximately ±0.5mW to account for random
fluctuations in power and error bars for intensity is based on the noise signal strength.
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Figure 4.8: Signal Peak to Peak amplitude vs Power of Pump beam for Feature 6. The fit has
parameters A’ = 2.0258 and B’ = 7.4368 This implies that the saturation intensity is Is

= 7.4368 ±0.68mW. The saturation intensity per unit area for a 100µm is 23672 ±2164
mW/cm2. Error bars for Power was approximately ±0.5mW to account for random
fluctuations in power and error bars for intensity is based on the noise signal strength.



CHAPTER V

Future Development

No project is truly complete, and time constraints however, prevented some im-

provements to the setup to be implemented. Originally, it was planned to implement

Multipass Doppler Free Spectroscopy instead to obtain a better doppler free spec-

trum. In this chapter, I will detail how the Multipass Spectroscopy is to be done, and

how the setup could be optimized to produce the best possible doppler free spectrum.

5.1 MultiPass Spectroscopy

To further increase the signal strength of the doppler free spectrum, one might

instead implement a multipass doppler free spectroscopy. The key difference is that

instead of one single pass through the iodine cell, we place the iodine cell in the mid-

dle of a laser cavity. The key advantage to this system is that it increases the length

of interaction between the laser and the iodine molecules and thus increase the am-

plitude of the doppler free signal. A way to reason this is to recall the Lambert-Beer’s

law and assume linear absorption. Let the length of interaction for the multipass

spectroscopy is zm and the length of the cell is zcell. Thus zm > zcell and from

Lambert-Beer’s law, the reduction in intensity due to linear absorption will thus be

greater. A probe and pump beam again must be counterprogating, but both are

aligned such that they enter the cavity at a small angle and thus reflect off the two
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cavity mirrors repeatedly, passing through the cell many times before emerging from

the cell. Extremely good mirrors are recommended, with power absorbed by the

mirrors at most 1%.

This setup, as depicted in Fig. 5.1, is worth considering implementing especially

when the lock-in signal gets weaker if less power is sent through an optical fiber

EOM to the iodine lock setup, and locked to a FM sideband, leading to a reduction

of the effective laser beam power. We may in the future implement the multipass

configuration if the experiment demands it.

Lock-in

Amp
VCO PID

To cavity

piezo

Photo-

receiverAOM25 mW

739.05 nm

probe

ref.

22 kHz

80 MHz

central

frequency

p
u

m
p

probe

reference

Oscilloscope

From Trigger

Lock Signal
 Doppler Signal

FPC

Iodine Cell

Cold finger

Cavity Mirror 1 Cavity Mirror 2

Figure 5.1: Multipass Spectroscopy. Here, the iodine cell is placed between two cavity mirrors and
the probe and pump beam enter the cavity at a small angle to the horizontal. The two
beams bounce back and forth between the two mirrors before emerging from the cell.

To optimize the signal, we should design our cavity such that the beam waist of

the cavity mode matches what we had calculated in section 2.5. Then we should try

to match our probe and pump beam waist to the beam waist of the cavity mode.

However, the beams will enter the cavity at an angle, we should not expect the probe
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and pump beam waist to completely match the cavity mode beam waist.

To calculate the beam waist ω0 of the cavity mode, let us introduce two parameters

known as the ”resonator g parameters” g1 and g2

g1 = 1− L

R1

(5.1.1a)

g2 = 1− L

R2

(5.1.1b)

where L is the distance between the two cavity mirrors and R1 and R2 are the

curvature of the two cavity mirrors used. The waist at the focus of the cavity mode

is given by

w2
0 =

Lλ

π

√
g1g1(1− g1g2)

(g1 + g2 − 2g1g2)2
(5.1.2)

where λ is the wavelength of the laser. The spot size at the two mirrors are given

by

w2
1 =

Lλ

π

√
g1

(g1(1− g1g2)2
(5.1.3a)

w2
2 =

Lλ

π

√
g1

(g1(1− g1g2)2
(5.1.3b)

In general, the parameters are kept within the stability range defined by [31]

0 ≤ g1g2 ≤ 1 (5.1.4)

In practice, symmetric confocal resonators are the simplest and most stable of res-

onators, with g1 = g2 = 0 and R1 = R2 = L. They are stable in that a slight

misalignment will not change the beam focus spot size or position too much. How-

ever, we may not yield the correct beam focus waist w0 and we are also limited by

the available mirror curvature and also physical dimensions. Instead, we will go with
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a symmetric resonator, with g1 = g2 = g and R1 = R2 = R. Eqn. 5.1.2 and Eqn.

5.1.3 reduce to

w2
0 =

Lλ

π

√
1 + g

(4(1− g)
(5.1.5a)

w2
1 = w2

2 =
Lλ

π

√
1

1− g2
(5.1.5b)

To determine the radius of curvature we need for our mirrors, we need to rearrange

Eqn. 5.1.5. With a given w0, define the parameter

α = 4w4
0

( π

Lλ

)2

(5.1.6)

then g is

g =
α− 1

α + 1
(5.1.7)

We then get the radius of curvature R, in terms of g, to be

R =
L

1− g
(5.1.8)

With these equations, we can thus estimate the curvature of the mirror we would

need, with a given distance L between the two mirrors and a given spot size w0. For

example, let L = 0.30m, and the wavelength λ will be 739nm, the corresponding

waist would be 187.8 µm.

5.2 End Notes

In summary, doppler free spectroscopy of the Iodine molecule at 739nm was com-

pleted. The relationship between temperature and signal and the power broaden-

ing of the signal were examined, and the saturation intensity was found to be 2.38

W/cm2. The setup was subsequently used to lock a 739nm laser.
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