Supplemental Material

In this section, we aim to prove the following identity
by induction,
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The construction of the Walsh functions is simple in
terms of the elementary sequences known as Rademacher
functions R (n,t) = sign [sin (2"7t)]. The dyadic order-
ing of the Walsh functions allow them to be defined
in terms of the Rademacher functions as W (n,t) =
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HZ’:{l R (i,t)"~" when n is expressed as a binary num-
ber n = b,2™ + ... + bp2° and b; = 0 or 1. With this
definition, it is easy to see that choosing the index 2™ — 1
for the Walsh function means that all the b; coefficients
are 1. We now prove the base case, n = 1.
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For the inductive step, assume that (4) is true and look
at the 2"*! — 1 case:
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For the next step, note that for an integer n > 0,
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R(n + 1,2/2) = R(n, ), which allows the expression to
be written as,
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In the next step, the substitution ' = x — 1 is made and
we take advantage of the fact that R(n,z + 1) = R(n, z)
for n > 1.
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which is zero by assumption since b; is a constant, thus
concluding the proof. If the Radamacher functions are
considered to be elementary sequences, then the Walsh
filter is optimized in this resource for the task of sup-
pressing the errors in the spin-dependent force operation
that are discussed in this paper.



