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Observation of a many-body dynamical phase 
transition with a 53-qubit quantum simulator
J. Zhang1, G. Pagano1, P. W. Hess1, A. Kyprianidis1, P. Becker1, H. Kaplan1, A. V. Gorshkov1, Z.-X. Gong1† & C. Monroe1,2

A quantum simulator is a type of quantum computer that controls 
the interactions between quantum bits (or qubits) in a way that 
can be mapped to certain quantum many-body problems1,2. As 
it becomes possible to exert more control over larger numbers 
of qubits, such simulators will be able to tackle a wider range of 
problems, such as materials design and molecular modelling, 
with the ultimate limit being a universal quantum computer 
that can solve general classes of hard problems3. Here we use a 
quantum simulator composed of up to 53 qubits to study non-
equilibrium dynamics in the transverse-field Ising model with 
long-range interactions. We observe a dynamical phase transition 
after a sudden change of the Hamiltonian, in a regime in which 
conventional statistical mechanics does not apply4. The qubits are 
represented by the spins of trapped ions, which can be prepared 
in various initial pure states. We apply a global long-range Ising 
interaction with controllable strength and range, and measure each 
individual qubit with an efficiency of nearly 99 per cent. Such high 
efficiency means that arbitrary many-body correlations between 
qubits can be measured in a single shot, enabling the dynamical 
phase transition to be probed directly and revealing computationally 
intractable features that rely on the long-range interactions and high 
connectivity between qubits.

There have been many recent demonstrations of quantum simulators  
with varying numbers of qubits and degrees of individual qubit  
control2. For instance, small numbers of qubits stored in trapped atomic 
ions5,6 and superconducting circuits7,8 have been used to simulate  
various magnetic spin or Hubbard models, with preparation and 
measurement of individual qubit states. Large numbers of atoms have 
been used to simulate similar models, but with global control and 
measurements9 or with correlations that appear over only a few atom 
sites10. Such quantum simulators are excellent platforms for studying 
quantum systems out of equilibrium11. However, an outstanding chal-
lenge is to increase the number of qubits while maintaining control 
and measurement of individual qubits, with the goal of performing 
simulations or implementing algorithms to tackle problems that 
cannot be solved efficiently using classical means. Atomic systems 
are excellent candidates for this challenge, because their qubits can 
be made to be virtually identical, with flexible and reconfigurable 
control through external optical fields and high initialization and 
detection efficiency for individual qubits. Recent work with Rydberg 
atoms12,13 has demonstrated many-body quantum dynamics with up 
to 51 atoms coupled through van der Waals interactions. Here we 
present quantum simulations at a similar scale using the more con-
trollable system of trapped atomic ions, the many-body qubit inter-
actions of which are mediated by their long-range Coulomb-coupled  
motion.

We perform a quantum simulation of a dynamical phase transition  
(DPT) with up to 53 qubits. The understanding of such non- 
equilibrium behaviour is of interest in a wide range of subjects, includ-
ing social science14, cellular biology15, astrophysics and quantum 

condensed matter physics16. Recent theoretical studies of DPTs17–19 
involve the transverse-field Ising model—the quintessential model of 
quantum phase transitions20. Recent experiments have investigated 
DPT with cold neutral atoms21 and up to 10 trapped-ion qubits, with 
the transverse field dominating the interactions22. These studies have 
considered long-time spin relaxation dynamics17,19 and non-analytic 
time evolution of non-local quantities18,19,22.

In this experiment, we use a quantum quench—a sudden change 
in the Hamiltonian of the system—to bring a collection of interacting 
trapped-ion qubits out of equilibrium5,6,22,23. The theoretical descrip-
tion of the dynamics is made difficult by the population of exponen-
tially many excited states of the many-body spectrum as the number 
of qubits is increased, typically accompanied by high entanglement 
density between the qubits. Given the long-range interactions between 
the qubits, the growth in entanglement can be much faster than in 
locally connected systems12,13,24, limiting efficient numerical simulation  
using matrix product states to short-time dynamics25. The nature 
of the long-range Ising interaction also leads to unique dynamical  
features (discussed below) and an emergent higher dimensionality of 
the system19,26.

We experimentally realize a quantum many-body Hamiltonian with 
long-range Ising interactions and flexible tuning parameters27, where 
the strength and the range of the interactions can both be tuned. As 
outlined in Fig. 1, we initialize the qubits (effective spin-1/2 systems) in 
a product state, all polarized along the x direction of the Bloch sphere, 
and then suddenly turn on the Hamiltonian of the transverse-field Ising 
model (setting the Planck constant h =​ 1)
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Here σγ
i  (γ ∈​ {x, y, z}) is the Pauli matrix acting on the ith spin along 

the γ direction of the Bloch sphere, Jij is the Ising coupling between 
spins i and j, and Bz denotes the transverse magnetic field, which 
acts as the control parameter for crossing dynamical criticality in 
the DPT. In Fig. 1b we show a simplified Bloch-sphere representation 
of the DPT. The spins quickly evolve from the longitudinally polarized 
initial state, and then either precess about a large transverse magnetic 
field (green curves) or stay pinned near the initial conditions when the 
transverse field is small (blue curves).

To implement the quantum Hamiltonian (see Methods), each 
spin in the chain is encoded in the 2S1/2|​F =​ 0, mF =​ 0〉​ ≡​ |​↓​〉​z and  
|​F =​ 1, mF =​ 0〉​ ≡​ |​↑​〉​z hyperfine ‘clock’ states of a 171Yb+ ion and sepa-
rated by a frequency of ν0 =​ 12.642821 GHz. We store a chain of up to 
N =​ 53 ions in a linear radio-frequency Paul trap (Methods) and ini-
tialize the qubits in the product state |​↓​↓​…↓​〉​x, where |​↓​〉​x ≡​ |​↓​〉​z −​ |​↑​〉​z.  
Spin–spin interactions are generated by spin-dependent optical dipole 
forces from an applied laser field, which give rise to tunable long-range 
Ising couplings that fall off approximately algebraically as Jij ≈​ J0/|​i −​ j|​α  
(refs 27, 28). The power-law exponent α is set to between 0.8 and 
1.0 in the experiment, and the maximum interaction strengths are  
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J0 =​ (0.82, 0.56, 0.38, 0.65) kHz, for 8, 12, 16 and 53 spins, respectively. 
The transverse field is generated by a controllable Stark shift of the spin 
qubit splitting from the same laser field (Methods).

Finally, we measure the magnetization of each spin σ〈 〉i
x . We rotate 

all of the spins by π​/2 about the y axis of the Bloch sphere (exchanging 
σ σ↔i
x

i
z) and then illuminate the ions with resonant radiation and col-

lect the σi
z-dependent fluorescence on a camera with site-resolved 

imaging28. We estimate a spin detection efficiency of about 99% for 
each qubit (see Methods), providing access to all possible many-body 
correlators in a single shot.

The simplest observable of quench dynamics, after evolving the sys-
tem under the transverse-field Ising model for time t, is the average 
magnetization of the spins along x:

∑σ σ〈 〉= 〈 〉t
N

t( ) 1 ( )x

i
i
x

In Fig. 2 we show the measured average magnetization for N =​ 16 spins 
through 2π​J0t =​ 4.8, for different values of the transverse field. We for-
mulate a renormalized field �Bz  to account for the divergence of the 
energy density of the long-range Ising interactions, so that the ratio 
/�B Jz 0 is meaningful in the thermodynamic limit (see Methods). This 

enables a fair comparison of the DPT for different numbers of spins in 
the chain.

The evolution of the time-dependent magnetization separates into 
two distinctive regimes: one that breaks the global ℤ2 symmetry 
(σ σ→−i

x y
i
x y, , ) of the Ising Hamiltonian (Fig. 2a), as was set by the 

initial conditions explicitly, and one that restores this symmetry  
(Fig. 2c), with the intermediate time dynamics oscillating around and 
relaxing to zero average magnetization. Between these two regimes we 
observe a relaxation to a non-zero steady value (Fig. 2b). Cumulative 
time-averages (insets in Fig. 2)

∫σ σ τ τ〈 〉 = 〈 〉t
t

( ) 1 ( ) dx

t

x

0

reveal the long-time magnetization plateaus.
The DPT is expected to occur between the small- and large-transverse- 

field regimes as the spin alignment changes abruptly from ferromagnetic 
to paramagnetic in the long-time limit (Fig. 1). This phase transition  
is well-established for α =​ 0, as shown in Methods. There is strong 
numerical evidence that such a transition will survive20,29 for the small 
values of α chosen in our experiments, but not for α →​ ∞​, in which 
case interactions are nearest-neighbour only.
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Figure 1 | Illustration of the DPT from a quantum quench. We subject 
a system of interacting spins to a sudden change in the Hamiltonian 
and study the resulting quantum dynamics. a, An isolated spin system 
is prepared in a product state, and then an Ising spin–spin interaction 
is suddenly turned on, along with a tunable transverse magnetic field 
(see text for details). At the end of the evolution, we measure the spin 
magnetizations along the initial spin orientation direction using a camera. 
Blue spins and shaded arrows indicate the initial spin polarization; red 
spins and arrow indicate the projective measurement of spin-down in 
the measurement basis; and spin and lines of other colours indicate 

interacting spins in superpositions. b, A Bloch-sphere representation19 of 
the average spin magnetization. Spins are initially fully polarized along the 
longitudinal x direction of the Bloch sphere, and then evolve with Ising 
interactions along x competing with the transverse field along z, resulting 
in oscillations and relaxations. Blue curves illustrate the quench dynamics 
with a low transverse field; green curves indicate the dynamics with a large 
transverse field across criticality. The grey line indicates a level of zero 
average magnetization along x.
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Figure 2 | Real-time spin dynamics after a quantum quench of 16 spins 
in an Ising chain. a, Polarized spins evolve under the long-range Ising 
Hamiltonian with a small transverse field ( / = .�B J 0 6z 0 ). The broken 
symmetry given by the initial polarized state is preserved during the 
evolution. b, When the transverse field is increased ( / = .�B J 0 8z 0 ), the 
dynamics shows a faster initial relaxation, before settling to a non-zero 
plateau. c, Under larger transverse fields ( / = .�B J 1 6z 0 ), the Larmor 

precession takes over and the spins oscillate and relax to zero average 
magnetization. The dashed lines are numerical simulations based on  
exact diagonalization. Insets show cumulative time averages of the spin 
magnetization, smoothing out temporal fluctuations and showing the 
plateaus. Each point is the average of 200 experimental repetitions. Error 
bars are statistical, computed from quantum projection noise and 
detection infidelities as described in Methods.
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Further signatures of the DPT are observed by measuring the spa-
tially averaged two-spin correlations

∑ σ σ= 〈 〉C
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From the behaviour of the magnetizations described above, we expect 
that C2 →​ 1 for small �Bz and C2 →​ 1/2 for large �Bz at long times, because 
the collective spin precesses around the z axis and C2 oscillates between 
1 and 0. In Fig. 3 we show the cumulative time-averaged correlations. 
Near the critical value of �Bz we observe the emergence of a dip in C2, 
which is a direct signature of the DPT. The sharpening of the dip for 
larger system sizes is not strong, which might be due to a logarithmic 
finite-size scaling (see Methods).

For a non-integrable system such as the long-range transverse-field 
Ising model studied here, it might be conjectured that the spins even-
tually reach a thermal distribution30. However, we find that this is true 
only for small �Bz  (Fig. 3a, b). We note that the thermal values of the 
correlator C2 do not exhibit a dip or signatures of a phase transition 
with varying /�B Jz 0 for the system sizes that we are able to model numer-
ically. Interestingly, thermalization appears to break down in this 
quenched system, which we suspect is a consequence of the inherent 
long-range nature of the Ising interactions31.

We further explore many-body dynamical properties of this system 
by investigating higher-order correlations, which are even harder to cal-
culate classically25. Through high-efficiency single-shot state detection 
of all of the spins, we measure the distribution of domain sizes in the 
chain directly as a higher-order correlation observable (see Methods). 
Single-shot images for N =​ 53 spins are shown in Fig. 4a and are recon-
structed from binary thresholding and image convolution of the fluo-
rescence distribution of the ion chain (see Methods).

The occurrence of long domains of correlated spins in the state |​↑​〉​x 
(fluorescing spins) signifies the fully polarized initial state, in which 
the correlations are largely preserved by the interactions. With an 
increasing transverse field, the absence of spin ordering is reflected by 
exponentially small probabilities of observing long strings. We plot the 
domain length statistics at late times in Fig. 4a (see Methods) for three 
transverse field strengths, / = . . .�B J (0 1, 1 0, 1 6)z 0 . The dashed lines in 
Fig. 4a are fits to exponentials on the histogram of domain sizes. The 
rare occurrence of especially large domains (see, for example, the red 
boxes in Fig. 4a) demonstrates the existence of many-body high-order 
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Figure 3 | Two-body correlations. a–d, Long-time-averaged values of the 
two-body correlations C2 over all pairs of spins as a function of the 
transverse field /�B Jz 0 for different numbers of spins in the chain. The final 
evolution times correspond to 2π​J0t =​ (10.3, 5.3, 4.8, 6.5) for 8 (a), 12 (b),  
16 (c) and 53 (d) spins, respectively. Statistical error bars are ±​1 s.d. from 
measurements covering 21 different time steps. Solid lines in a–c are exact 
numerical solutions to the Schrödinger equation; the shaded regions take 
into account uncertainties from experimental Stark shift calibration errors. 
Dashed lines in a and b are calculations using a canonical (thermal) 
ensemble with an effective temperature corresponding to the initial energy 
density. For N =​ 53 spins (d), the correlations are uniformly degraded from 
residual Stark shifts across the ion chain, so in this case we normalize to the 
maximum correlation at small field (see Methods). Exact diagonalization for 
N =​ 53 spins is not possible, so we instead fit the experimental data to a 
Lorentzian function with linear background (dashed line).
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Figure 4 | Domain statistics and reconstructed single-shot images of 53 
spins. a, Top and bottom, reconstructed images based on binary detection 
of spin states (see Methods). The top image shows a chain of 53 ions in 
‘bright’ (corresponding to |↑〉x) spin states. The other three images show 53 
ions in combinations of ‘bright’ and ‘dark’ (corresponding to |↓〉x) spin 
states. Centre, statistics of the domain size, or of blocks with spins pointing 
along the same direction, for different values of the transverse field. 
Histograms are plotted on a logarithmic scale to visualize the rarity of 
regions with large domains; example large domains for the different 
transverse fields (coloured coded) are boxed in the top and bottom images. 

Dashed lines are fits to exponential functions, which are expected for a 
thermal state of the spins and could thus characterize defects such as 
imperfect preparation and measurement of the qubits. Long tails of 
deviations from the exponential are clearly visible, and vary depending on 
/�B Jz 0. b, Mean largest domain size over the repeated single experimental 

shots. Error bars are the standard deviation of the mean (see Methods). 
Dashed line represents a piecewise linear fit, from which we extract  
the transition point (see text). The green, yellow and red data points 
correspond to the transverse fields shown in the domain statistics  
data in a.
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correlations, with the order given by the length of the domain. In  
Fig. 4b we plot the mean largest domain size as a function of the  
normalized transverse field strength, for late times and repeated exper-
imental shots. The average longest domain size ranges from 12 to 20 
and exhibits a sharp transition across the critical point of the DPT. We 
fit this observable using a piecewise linear function and extract the 
critical point to be / = .�B J 0 89(7)z 0  (see Methods for more details).

The DPT studied here, with up to 53 trapped-ion qubits, is to our 
knowledge the largest quantum simulation ever performed with high- 
efficiency single-shot measurements of individual qubits. This  
provides access to arbitrary many-body correlators that carry informa-
tion that is difficult or impossible to model classically. This experimental  
platform can be extended to tackle provably hard quantum problems 
such as Ising sampling32. Given an even higher level of control over 
the interactions between spins, as already demonstrated for smaller 
numbers of trapped-ion qubits33, this same system can be upgraded to 
a universal quantum computer.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Methods
Confinement of long ion chains. The ion chain is confined in a three-layer linear 
Paul trap with a transverse centre-of-mass motional frequency34 of νcm =​ 4.85 MHz. 
The harmonic axial confinement is kept low enough that the lowest energy con-
formation of the ions is linear; for 8–16 ions the axial centre-of-mass frequency is 
about 400 kHz and for 53 ions it is about 200 kHz. The ion spacing is anisotropic 
across the chain, with typical spacings of 1.5 μ​m at the centre of the chain and 3.5 μ​m  
at either end35.

The effective lifetime of an ion chain is limited by Langevin collisions with the 
residual background gas in the ultrahigh-vacuum apparatus36, which in general 
re-order the crystal but can also melt the crystal and even ultimately eject the ions 
as a result of radio-frequency heating or other mechanisms. The chain melting can 
be mitigated by quickly re-cooling the chain, and we expect that occasionally it 
returns to the crystalized phase without notice. Occasionally, such collisions with 
the background gas are inelastic, either populating the 171Yb+ ion in the metastable 
F7/2 state or forming a YbH+ molecule. The 355-nm Raman laser quickly returns 
the ions to their atomic ground-state manifold, with a small probability of creating 
doubly charged ions. The mean time between Langevin collisions is expected to be 
of the order of one collision per hour per trapped ion, and we expect that the mean 
lifetime of a chain of ions might therefore scale inversely with the number of ions. 
For 53 ions we observe an average lifetime of about 5 min. However, we observe 
rare events whereby a long ion chain survives for about 30 min. We speculate that 
either the chain is consistently re-captured instantaneously, or the local pressure 
in the chamber is anomalously low during these periods. Because we can load an 
ion chain in less than 1 min, we achieve a reasonable duty cycle of collecting data. 
To further scale up the system size, a cryogenic ion trap system could be used 
to efficiently reduce the pressure and the collision energies, which could enable 
quantum simulations with well over 100 ions.
State preparation. Two off-resonant laser beams at 355 nm globally address 
the ions and drive stimulated Raman transitions between the two hyperfine 
qubit clock states 2S1/2|​F =​ 0, mF =​ 0〉​ and |​F =​ 1, mF =​ 0〉​. The Raman beatnotes  
(frequency difference between two beams) are provided by the frequency comb 
from the mode-locked laser, resulting in coherent qubit rotations37,38. The ion chain 
is about 100 μ​m in length, and the beams are focused to a 200-μ​m full-width at half- 
maximum along the ion chain, resulting in a 30%–40% intensity imbalance 
between the centre and edges of the chain. To prepare each individual ion in the 
|​↓​〉​x ≡​ |↓​〉​z −​ |​↑​〉​z state, we first optically pump the ions in the |​↓​〉​z state with an 
efficiency of more than 99%37 and then apply a π​/2 rotation around the y axis. 
However, if we use a single pulse for the rotation, then the inhomogeneity of the 
beam leads to reduced Rabi frequencies near the edge of the chain and hence an 
imperfect qubit rotation to the desired initial state.

To mitigate this effect, we use a composite pulse compensation sequence (BB1 
dynamical decoupling39), written for each spin i as

σ σ σ σπ/ = 

−

π 

 − π 


−
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

−

π 



θ θ θU i i i i( 2) exp
2

exp( )exp
2

exp
4i i i i

y
1

3

where, in addition to the π​/2 rotation σ− π /iexp( 4)i
y , three additional rotations 

are applied: a π​ pulse along an angle θ =​ cos−1(−​1/16) =​ 93.6°, a 2π​ pulse along 3θ,  
and another π​ pulse along θ, where the axes of these additional rotations are in the 
x–y plane of the Bloch sphere with the specified angle referenced to the x axis. With 
this scheme, we estimate a state preparation fidelity of up to 99% per spin for the 
well-compensated ions at the middle of the chain, and an average fidelity of 93%, 
limited by the ions at the edges of the chain.
Generating the Ising Hamiltonian. We generate spin–spin interactions by apply-
ing a spin-dependent optical dipole force that is induced by the global Raman 
beams, which are aligned with a wavevector difference Δ​k along a principal axis 
of transverse motion34. Two beatnotes of the non-copropagating Raman beams 
are tuned near the transverse upper and lower motional sideband frequencies at 
ν0 ±​ μ​, in the usual Mølmer–Sørensen configuration40. In the Lamb–Dicke regime, 
this gives rise to the Ising-type Hamiltonian34 in equation (1) with Ising coupling 
between ions i and j,

∑Ω ν
μ ν

=
−

≈
| − |α

J
b b J

i j
(2)ij

m

im jm

m

2
R 2 2

0

Here Ω is the global (carrier) Rabi frequency, νR =​ hΔ​k2/(8π​2M) is the recoil  
frequency, bim is the normal-mode transformation matrix of the ith ion with the 
mth normal mode (∑ | | =∑ | | =b b 1i im m im

2 2 )35, M is the mass of a single ion and 
νm is the frequency of the mth normal mode. Here, the beatnote frequency detun-
ing μ​ is assumed to be sufficiently far from all sidebands, μ ν Ω ν ν| − | /� bm im mR  , 
so that the spins only couple through the motion virtually and phonon production 
is suppressed.

The approximate power-law exponent in equation (2) can in principle be 
tuned in the range 0 <​ α <​ 3, but in practice we are restricted to 0.5 <​ α <​ 1.8 
so as to avoid motional decoherence and experimental drifts. We set α to be 
roughly constant across different system sizes by adjusting the detuning from the  
nearest (centre-of-mass) sideband to the values μ​ −​ νm =​ (56, 69, 82, 60) kHz for  
N =​ (8, 12, 16, 53) ions, with respective nearest-neighbour Ising couplings 
J0 =​ (0.82, 0.56, 0.38, 0.65) kHz. For the case of 53 spins, we use a higher Raman 
laser intensity to produce a relatively high Ising coupling strength, and whereas 
α ≈​ 0.8 for N =​ (8, 12, 16), α ≈​ 1 for N =​ 53.

The ratio of the spontaneous emission rate from the off-resonant Raman beams 
to the Ising coupling is expected to be less than 0.003 for N =​ 53 ions. However, as 
the system is scaled to larger numbers of spins, the intensity must ultimately be 
reduced to prevent the creation of phonons from the increasing number of nearby 
sideband transitions. The residual entanglement between phonons and spin would 
lead to effective spin decoherence. The scaling of these errors with the number of 
spins depends on the details of the Ising interactions and sideband detuning, but 
holding these parameters constant while keeping phonon errors low will lead to a 
ratio of spontaneous emission to Ising coupling that is expected to grow as N . 
Nevertheless, these fundamental sources of decoherence are not expected to be 
substantial, even for hundreds of spins.

With α <​ 1, the long-range interaction term in the Hamiltonian in equation (1) 
is non-extensive for a one-dimensional linear chain. To have a well-defined ther-
modynamic limit of the Hamiltonian, the couplings are typically rescaled to 
= /� NJ Jij ij  using the Kac normalization constant41

∑=N
N

J
J

1

i j

ij

, 0

Because all of our observables are functions of the ratio of the field to the Ising 
coupling strength (Bz/J0), we instead equivalently renormalize the magnetic field 
using = /� NB Bz z  and retain the original form of the Ising coupling.
Generating the transverse magnetic field. To generate the effective magnetic 
field, we adjust the two Raman beatnotes asymmetrically to ν​0 ±​ μ​ +​ Bz, resulting 
in a uniform effective transverse magnetic field of Bz in equation (1) (not yet Kac-
renormalized as described above).

To induce the quantum quench, the sidebands are switched on in about 100 ns 
using acousto-optic modulators, which control the detuning and amplitude of the 
Raman beatnotes. These two beatnotes correspond to different beam angles out 
of the acousto-optic modulator, so we image these beams onto the ion chain to 
maximize the overlap of all frequency components. We measure a residual effective 
linear gradient of magnetic field across the chain, resulting from a fourth-order 
Stark shift gradient42 that arises from the non-perfect overlap of the two beatnotes. 
This effect is measured to be Δ​Bz =​ ±​0.65 kHz end-to-end on a 16-ion chain, and 
was included in the numerics. This gradient is dominated by uniform magnetic 
fields Bz >​ 2 kHz, but still plays a part at zero or small magnetic fields, causing an 
effective depolarization of the initial state |​↓​↓​…↓​〉​x. Additional spin depolarizations 
can be caused by Stark-shift fluctuations and calibration errors, or by residual 
spin–phonon coupling. These effects are responsible for the slight decay that is 
seen in Fig. 2a and for the zero-field error in Fig. 3c, d.
Single-shot detection and image processing. We detect the ion spin state by 
globally rotating all of the spins into the measurement basis (composite (BB1) π​/2 
pulse as describe above, to rotate x basis into z basis), followed by the scattering of 
resonant laser radiation on the 2S1/2|​F =​ 1〉​ −​ 2P1/2|​F =​ 0〉​ cycling transition (wave-
length near 369.5 nm and radiative line width γ/2π​ ≈​ 20 MHz). The |​↑​〉​z ‘bright’ 
state fluoresces strongly whereas the |​↓​〉​z ‘dark’ state fluoresces almost no photons 
because the laser is far from resonance37.

The fluorescence of the ion chain is imaged onto an electron-multiplying (EM) 
CCD camera (Model Andor iXon 897) using an imaging objective with a numer-
ical aperture of 0.4 and a magnification of 60. The fluorescence of each ion covers 
roughly a 5 ×​ 5 array of pixels on the EMCCD. After collecting the fluorescence for 
an integration time of 300 μ​s, we collect a mean of about 20 photons per bright ion, 
distributed in a circular region of interest around the centre of the ion’s position. In 
every single shot, we use a simple binary threshold to determine the state of each 
ion (|​↓​〉​z or |​↑​〉​z), providing a binary detection of the quantum state of any ion with 
nearly 99% accuracy. The residual 1% errors include off-resonant optical pumping 
of the ion between states during detection, readout noise and background counts, 
and crosstalk between adjacent ions.

The regions of interest of the individual ions on the camera are determined from 
periodically acquiring diagnostic images, whereby a resonant re-pumper laser is 
applied, causing each ion to fluoresce strongly regardless of its state. The signal-to- 
background-noise ratio in the diagnostic shots is larger than 100, yielding precise 
knowledge of the centre locations. Ion separations range from 1.5 μ​m to 3.5 μ​m  
depending on the trap settings and the distance from the chain centre, and are 
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always much larger than the resolution limit of the diffraction-limited imaging 
system ( −

+500 nm0
100  Airy ring radius projected at the ion position). We use the 

pre-determined ion centres to process the individual detection shots, and optimize 
the integration area on the EMCCD camera to collect each ion’s fluorescence while 
minimizing crosstalk. We estimate crosstalk to be dominated by nearest-neighbour 
fluorescence, which can bias a dark ion to be erroneously read as bright with less 
than 1% probability. The larger inhomogeneities of inter-ion spacings near the 
edge of the chain do not introduce additional infidelities, as long as they are well 
illuminated by the detection laser beam.
Statistical data analysis of domain size. Here we present a detailed analysis of 
the domain statistics presented in Fig. 4. The domain size is directly related to 
‘formation probabilities’, which have recently attracted theoretical interest43. The 
raw domain statistics are analysed from the binary tally of bright and dark ions, 
after sorting them into domains with consecutive spins up (bright) or down (dark). 
The collection of all 200 experimental repetitions for the last 5 time steps (out of 
21 time steps overall) are treated equally, resulting in the distribution shown in  
Fig. 4a. The particular choice of the last 5 time steps is a compromise between being 
insensitive to early-time dynamics in the magnetic field and increasing the sample 
size for reduced statistical errors.

To analyse the large domains, or the outliers of the distributions in Fig. 4, we 
find the largest domain in each single shot and plot the statistical distribution in 
Extended Data Fig. 1. In the main text, the mean (standard error of the mean) is 
used to extract the data (error bars) presented in Fig. 4b. This has an underlying  
assumption that the central limit theorem holds for our largest-domain-size  
statistics.

We analyse the distribution in the observed data and fit the histogram to a 
two-parameter Gamma distribution, shown as the dashed lines in Extended Data 
Fig. 1. From the fit parameters we extract the mean, taking the skewness of the 
distribution into account. This systematically shifts the largest domain size by about 
1 for all datasets, and a piecewise fit similar to that described in the main text yields 
the critical point / = .�B J 0 92(7)z 0  from this alternative method of data analysis, in 
good agreement with that obtained in the main text. As a comparison with theory, 
in Extended Data Fig. 2 we plot the observed mean domain size for 16 spins next 
to an exact calculation of the mean domain size under the same conditions. The 
general trend of the data is qualitatively reproduced by theory, although the 
extremes are tempered in the data, possibly from imperfections in the preparation 
or measurement of the spins and inhomogeneous fields.
Analytical study of the DPT for α = 0. In this section, we show analytically that 
in the limit α →​ 0 (Jij =​ J0 for i ≠​ j) the spatially averaged two-point correlation C2 
measured in the experiment undergoes a DPT when /�B Jz 0 crosses unity, in the 
thermodynamic and long-time limit. (The average magnetization 〈​σx〉​ (ref. 43) 
undergoes a similar DPT, but the second-order correlator that we study here has 
the advantage that its infinite-time average can be used as a static order parameter.) 
The case α ≈​ 1 in our experiment cannot be treated analytically or numerically for 
large system sizes, but appears to have dynamics qualitatively similar to the α =​ 0 
case treated here analytically.

We first rewrite the Hamiltonian for α =​ 0

Σ Σ= + �H J
N

B( ) (3)x
z

z
0

0 2

using collective spin operators
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Here the Ising interactions are normalized to make H0 extensive (see above), which 
enables a well-defined thermodynamic limit. According to the Heisenberg equa-
tion, we have (setting h =​ 1)
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d
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We note that the thermodynamic limit (N →​ ∞​) coincides with the 
semi-classical limit for the Hamiltonian in equation (3). We can thus 
assign to the values of Σx,y,z classical vectors of length N on a Bloch sphere: 
(Σx, Σy, Σz) =​ N(cosθ, sinθsinφ, sinθcosφ). The above equation of motion can 
then be reduced to

θ φ= �
t

Bd
d

2 sinz

together with the equation φ θ= /�J Bcos ( )sinz0  that comes from energy  
conservation.

Given the initial state θ(t =​ 0) =​ 0, the dynamics of the correlation θ=C cos2
2  can 

be obtained analytically. In the long-time limit, we find a time-averaged value of
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where ξ= | / |− �B Jsin [min( , 1)]z
1

0   . We plot ∞C ( )2  as a function of /�B Jz 0 in Extended  
Data Fig. 3. A sharp dip is observed, confirming the existence of the DPT.

To understand how ∞C ( )2  at / =�B J 1z 0  scales with N, we note that although 
there are only N +​ 1 orthogonal quantum states for the collective spin Σ with length 
N, the Bloch sphere has a surface area of 4π​. Thus,  each orthogonal quantum state 
occupies a small area on the Bloch sphere with a radius that scales as / N1 , owing 
to the usual uncertainty relation between the different projections of spin. As a 
result, the upper limit of the integral over θ in equation (4) can reach only π​/2 −​ ε, 
with ε∼ / N1  as N →​ ∞​. It can therefore be shown that for large N

∞ ∼
/ →�

C
N

lim ( ) 1
log( )B J 1

2
z 0

We conclude that the size of the dip in the DPT decreases logarithmically with 
N, which may qualitatively explain why only a weak sharpening of the DPT is 
observed in the experiment as the spin chain grows in size.
Data availability. The data presented in the figures and that support the other 
findings of this study are available from the corresponding author on reasonable 
request.
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Extended Data Figure 1 | Distributions of the largest domain size. 
Statistics of the largest domain size in each experimental shot  
(200 experiments for each of the last 5 time steps). Considering only the 
largest domains of each shot eliminates the undesirable biasing towards 
small domain sizes that is present in Fig. 4a. Domain sizes are related 

to many-body correlators, with a domain size of N corresponding to 
an N-body correlator. Dashed lines are fits to a two-parameter Gamma 
distribution proportional to e−x/βxα−1, with shape parameter α and scale 
parameter β.
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Extended Data Figure 2 | Domain size observable for 16 spins. Mean 
maximum domain size as a function of the (Kac-normalized41) transverse 
field for 16 spins. Experimental data are analysed as for Fig. 4b. The dashed 
line is a numerical simulation of the Hamiltonian determined from the 
experimental parameters. Error bars, 1 s.d.
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Extended Data Figure 3 | Theoretical calculations of the correlations. The 
spatially and long-time averaged correlation ∞C ( )2  (defined in equation (4)), 
calculated as a function of /�B Jz 0 for α =​ 0. The finite-N curves are calculated 
using exact diagonalization; the N =​ ∞​ curve is calculated analytically from 
equation (4).
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