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Observation of a discrete time crystal
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Spontaneous symmetry breaking is a fundamental concept in 
many areas of physics, including cosmology, particle physics 
and condensed matter1. An example is the breaking of spatial 
translational symmetry, which underlies the formation of crystals 
and the phase transition from liquid to solid. Using the analogy of 
crystals in space, the breaking of translational symmetry in time and 
the emergence of a ‘time crystal’ was recently proposed2,3, but was 
later shown to be forbidden in thermal equilibrium4–6. However, 
non-equilibrium Floquet systems, which are subject to a periodic 
drive, can exhibit persistent time correlations at an emergent 
subharmonic frequency7–10. This new phase of matter has been 
dubbed a ‘discrete time crystal’10. Here we present the experimental 
observation of a discrete time crystal, in an interacting spin chain 
of trapped atomic ions. We apply a periodic Hamiltonian to the 
system under many-body localization conditions, and observe 
a subharmonic temporal response that is robust to external 
perturbations. The observation of such a time crystal opens the door 
to the study of systems with long-range spatio-temporal correlations 
and novel phases of matter that emerge under intrinsically non-
equilibrium conditions7.

For any symmetry in a Hamiltonian system, its spontaneous breaking 
in the ground state leads to a phase transition11. The broken symmetry 
itself can assume many different forms. For example, the breaking of 
spin-rotational symmetry leads to a phase transition from paramag-
netism to ferromagnetism when the temperature is brought below the 
Curie point. The breaking of spatial symmetry leads to the formation 
of crystals, where the continuous translational symmetry of space is 
replaced by a discrete one.

We now pose an analogous question: can the translational  symmetry 
of time be broken? The proposal of such a ‘time crystal’2 for time- 
independent Hamiltonians has led to much discussion12, with the 
conclusion that such structures cannot exist in the ground state or 
any thermal equilibrium state of a quantum mechanical system4–6.  
A simple intuitive explanation is that quantum equilibrium states have 
time-independent observables by construction; thus, time transla-
tional symmetry can only be spontaneously broken in non-equilibrium 
 systems7–10. In particular, the dynamics of periodically driven Floquet 
systems possesses a discrete time translational symmetry governed by 
the drive period. This symmetry can be further broken into ‘super- 
lattice’ structures where physical observables exhibit a period larger 
than that of the drive13. Such a response is analogous to commensurate 
charge density waves that break the discrete translational symmetry 
of their underlying lattice1. The robust subharmonic synchronization 
of the many-body Floquet system is the essence of the discrete time 
crystal (DTC) phase7–10. In a DTC, the underlying Floquet drive should 
 generally be accompanied by strong disorder, leading to many-body 
localization14 and thereby preventing the quantum system from absorb-
ing the drive energy and heating to infinite temperatures15–17. We note 
that under certain conditions, time crystal dynamics can persist for 
rather long times even in the absence of localization before ultimately 
being destroyed by thermalization18.

Here we report the direct observation of discrete time translational 
symmetry breaking and DTC formation in a spin chain of trapped 
atomic ions, under the influence of a periodic Floquet many-body 
localization (MBL) Hamiltonian. We experimentally implement a 
quantum many-body Hamiltonian with long-range Ising interac-
tions and disordered local effective fields, using optical control tech-
niques19,20. Following the evolution through many Floquet periods, we 
measure the temporal correlations of the spin magnetization dynamics.

A DTC requires the ability to control the interplay between three key 
ingredients: strong drive, interactions and disorder. These are reflected 
in the applied Floquet Hamiltonian H, consisting of the following three 
successive pieces with overall period T =  t1 +  t2 +  t3 (see Fig. 1) (ħ =  1):
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Here, σγi  (γ =  x, y, z) is the Pauli matrix acting on the ith spin, g is the 
Rabi frequency with small perturbation ε, 2gt1 =  π , Jij is the coupling 
strength between spins i and j, and Di is a site-dependent disordered 
potential sampled from a uniform random distribution with  
Di ∈  [0, W].

To implement the Floquet Hamiltonian, each of the effective spin-1/2 
particles in the chain is encoded in the = = 〉/ F mS 0, 0F

2
1 2  and 

= = 〉F m1, 0F  hyperfine ‘clock’ states of a 171Yb+ ion, denoted ↓〉z and 
↑〉z and separated by 12.642831 GHz (F and mF denote the hyperfine 
and Zeeman quantum numbers, respectively). We store a chain of  
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Figure 1 | Floquet evolution of a spin chain. Three Hamiltonians are 
applied sequentially in time: a global spin rotation of nearly π  (H1), long-
range Ising interactions (H2), and strong disorder (H3) (left). The system 
evolves for 100 Floquet periods of this sequence (right). On the left, circles 
with arrows denote spins (that is, ions 1 to 10), where the red colour 
denotes initial magnetization. Curved coloured lines between spins denote 
the spin–spin interactions, and the black trace illustrates the applied 
disorder.
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10 ions in a linear radio frequency Paul trap, and apply single spin 
rotations using optically driven Raman transitions between the two 
spin states. Spin–spin interactions are generated by spin-dependent 
optical dipole forces, which give rise to a tunable long-range Ising cou-
pling21 that falls off approximately algebraically as ∝ / − αJ J i jij 0 . 
Programmable disorder among the spins is generated by the ac Stark 
shift from a tightly focused laser beam that addresses each spin 
 individually20. The Stark shift is an effective site-dependent σi

z field, so 
in order to transform it into the x direction of the Bloch sphere we sur-
round this operation with π /2 pulses (see Methods). Finally, we measure 
the magnetization of each spin by collecting the spin-dependent  
fluorescence on a camera for site-resolved imaging. This allows access 
to the single-site magnetization, σγi , along any direction with a detec-
tion fidelity > 98% per spin. The unitary time evolution under a single 
Floquet period is:

= − − −U T( ) e e e (2)iH t iH t iH t3 3 2 2 1 1

The first evolution operator −e iH t1 1 nominally flips all the spins around 
the y-axis of the Bloch sphere by an angle 2gt1 =  π , but also includes a 
controlled perturbation in the angle, επ , where ε <  0.15. This critical 
rotation step is susceptible to noise in the Rabi frequency (1% r.m.s.) 
from laser intensity instability, and also optical inhomogeneities (< 5%) 
across the chain due to the shape of the Raman laser beams. In order 
to accurately control H1, we use the BB1 dynamical decoupling echo 
sequence22 (see Methods) to suppress these effects, resulting in control 

of the rotation angle to a precision < 0.5%. The second evolution 
 operator −e iH t2 2  applies the spin–spin Ising interaction, where the  
maximum nearest-neighbour coupling J0 ranges from 2π (0.04 kHz) to 
2π (0.25 kHz) and decays with distance at a power law exponent α =  1.5. 
The duration of the interaction term is set so that J0t2 <  0.04 rad of 
phase accumulation. The third evolution operator −e iH t3 3 provides  
disorder to localize the system, and is programmed so that the variance 
of the disorder is set by Wt3 =  π . In this regime, MBL is expected to 
persist even in the presence of long-range interactions23,24.

To observe the DTC, we initialize the spins to the state 
ψ 〉= ↓〉 = ↓〉 + ↑〉( )x z z0

1
2

 through optical pumping followed by a 
global π /2 rotation. After many periods of the above Floquet unitary 
equation (2), we measure the magnetization of each spin along x, which 
gives the time-correlation function:

σ ψ σ σ ψ〈 〉= 〈 〉t t( ) ( ) (0)i
x

i
x

i
x

0 0

Figure 2 depicts the measured spin magnetization dynamics, both in 
the time and the frequency domain, up to N =  100 Floquet periods. 
A single Floquet period T is set to a value between 74 μs and 75 μ s, 
depending on the parameters in the Hamiltonian.

The global π -pulse −e iH t1 1 rotates the spins roughly half way around 
the Bloch sphere, so that we expect a response of the system at twice 
the drive period 2T, or half the Floquet frequency. The frequency of 
this subharmonic response in the magnetization is sensitive to the 
 precise value of the global rotation in H1 and is therefore expected to 
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 = 0.11, 2J0 t2 = 0.072  = 0.03, 2J0 t2 = 0.072  = 0.03, W t3 = π  = 0.03, W t3 = 0  
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Figure 2 | Spontaneous breaking of discrete time translational 
symmetry. Time-evolved magnetizations of each spin σ t( )i

x  and their 
Fourier spectra are displayed, showing the subharmonic response of the 
system to the Floquet Hamiltonian. a, When only the H1 spin flip is 
applied, the spins oscillate with a subharmonic response that beats owing 
to the perturbation ε =  0.03 from perfect π  pulses, with a clear splitting in 
the Fourier spectrum. Wt3 denotes the maximum phase accumulated by 
the disorder, which is fixed to π  throughout the experiment. b, With both 
the H1 spin flip and the disorder H3, the spins precess with various Larmor 
rates in the presence of different individual fields. c, Finally, adding the 

spin–spin interaction term H2 (shown with the largest interaction 
2J0t2 =  0.072), the spins lock to the subharmonic frequency of the drive 
period. Here the Fourier spectrum merges into a single peak even in the 
face of perturbation ε on the spin flip H1. d, When the perturbation is too 
strong (ε =  0.11), we cross the boundary from the DTC into a symmetry 
unbroken phase10. e, Spin magnetization for all 10 spins corresponding to 
the case of b, indicated by blue box. f, Spins of ions 3 and 8 corresponding 
to the case of c, indicated by red box. Each point is the average of 150 
experimental repetitions. Error bars are computed from quantum 
projection noise and detection infidelities.
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track the perturbation ε. This results in coherent beats and a splitting 
in the Fourier spectrum by 2ε (Fig. 2a). When we add disorder −e iH t3 3 
to the Floquet period, the single spins precess at different Larmor rates 
(Fig. 2e) and dephase with respect to each other (Fig. 2b). Only on 
adding Ising interactions −e iH t2 2, and hence many-body correlations, 
the spin synchronization is restored (Fig. 2c, f).

The key result is that with all of these elements, the temporal 
response is locked to twice the Floquet period, even in the face of 
perturbations to the drive in H1. This can be seen clearly as the split 
Fourier peaks from Fig. 2b merge into a single peak in Fig. 2c. This 
represents the ‘rigidity’ of the DTC10, which persists under moderate 
perturbation strengths. However, for large ε, the DTC phase disappears, 
as evinced by the decay of the subharmonic temporal correlations and 
the  suppression of the central peak heights, as shown in Fig. 2d. In the 
thermodynamic limit, these perturbations induce a phase transition 
from a DTC to a symmetry unbroken MBL phase7–10, which is rounded 
into a crossover in finite size systems.

The phase boundary is defined by the competition between the 
drive perturbation ε and strength of the interactions J0. We probe this 
boundary by measuring the variance of the subharmonic spectral peak 
height, computed over the 10 sites and averaged over 10 instances of 
disorder. Figure 3a shows the variances as a function of the perturba-
tion ε, for four different interaction strengths. As we increase ε, the 
variance growth distinctively captures the onset of the transition, with 
increased fluctuations signalling the crossing of the phase boundary. 
When the perturbations are too large, the crystal ‘melts’. The highest 
variances correspond to the crossover points. Figure 3b shows the fitted 
maxima of the variance curve, on top of numerically computed phase 
boundaries with experimental parameters (see Methods for the fitting 

procedure). The measurements are in agreement with the expected 
DTC to time crystal ‘melting’ boundary, which displays approximately 
linear dependence on the perturbation strength in the limit of small 
interactions10.

Figure 4 illustrates the amplitude of the subharmonic peak as a 
 function of ε, for the four different applied interaction strengths. In the 
presence of spin–spin interactions, the peak height falls off slowly with 
increasing ε. This slope is steeper as we turn down the interaction 
strength, in agreement with the trend of numerical simulations (Fig. 4 
inset). This is characteristic of the higher susceptibility to perturbations. 
This subharmonic peak height observable is expected to scale in a 
 similar way as the mutual information10, and can serve as an order 
parameter. This connection also provides insight into the Floquet 
many-body quantum dynamics, in particular the correlations or entan-
glement underlying the DTC phase. Indeed, the eigenstates of the entire 
Floquet unitary are expected to resemble GHZ (Greenberger–Horne–
Zeilinger) or spin-‘Schrödinger Cat’ states8. The initial product state in 
the experiment can be written as a superposition of two cat states: 

φ φ↓↓…↓〉 = 〉+ 〉+ −( )x
1
2

, where φ 〉= ↓↓…↓〉 ± ↑↑…↑〉± ( )x x
1
2

. 
These two states evolve at different rates corresponding to their respec-
tive quasi-energies, giving rise to the subharmonic periodic oscillations 
of physical observables. Such oscillations are expected to persist at 
increasingly long times as the system size increases7,8,10.

In summary, we present the experimental observation of discrete 
time translational symmetry breaking into a DTC. We measure 
 persistent oscillations and synchronizations of interacting spins in 
a chain and show that the discrete time crystal is rigid, or robust to 
perturbations in the drive. Our Floquet-MBL system with long-range 
interactions provides an ideal testbed for out-of-equilibrium quantum 
dynamics and the study of novel phases of matter that exist only in a 
Floquet setting7–10,25–28. Such phases can also exhibit topological order 
and can be used for various quantum information tasks, such as imple-
menting a robust quantum memory26,29,30.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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METHODS
Dynamical decoupling sequence. We use a pair of Raman laser beams globally 
illuminating the entire 171Yb+ ion chain to drive qubit rotations31,32. The ion chain 
is 25 μ m long, and we shape the beams to have 200 μ m full-width at half-maximum 
along the ion chain, resulting in ∼ 5% intensity inhomogeneity. When a fixed dura-
tion is set for H1 in equation (1), the time dependent magnetization for different 
ions acquires different evolution frequencies, resulting in the net magnetization 
of the system dephasing after about 10 π -pulses. In addition, the Raman laser has 
r.m.s. intensity noise of about 1%, which restricts the spin-rotation coherence to 
only about 30 π -pulses (80% contrast).

To mitigate these imperfections, we employ a BB1 dynamical decoupling pulse 
sequence for the drive unitary U1 (written for each spin i):

ε = = σ σ σ ε σ− − π − π − π − π −θ θ θ
U ( ) e e e e eiH t i i i i

1 2 2 2 (1 )i i i i
y

1 1
3

where in addition to the perturbed π  rotation ε σ− −π
e i (1 ) i

y
2 , three additional rotations 

are applied: a π  pulse along an angle θ= −π
π( )arccos

4
, a 2π  pulse along 3θ, and 

another π  pulse along θ, where the axes of these additional rotations are in the x–y 
plane of the Bloch sphere with the specified angle referenced to the x-axis. In this 
way, any deviation in the original rotation from the desired value of π (1 −  ε) is 
reduced to the third order22.
Generating the effective Ising Hamiltonian. We generate spin–spin interactions 
by applying spin-dependent optical dipole forces to ions confined in a three-layer 
linear Paul trap with a 4.8 MHz transverse centre-of-mass motional frequency. 
Two off-resonant laser beams with a wavevector difference Δ k along a principal 
axis of transverse motion globally address the ions and drive stimulated Raman 
transitions. The two beams contain a pair of beat-note frequencies symmetrically 
detuned from the spin transition frequency by an amount μ, comparable to the 
transverse motional mode frequencies. In the Lamb–Dicke regime, this results in 
the Ising-type Hamiltonian in equation (1)21,33 with

∑Ω ω
μ ω

=
−=

J
b b

i j
m

N
i m j m

m
,

2
R

1

, ,
2 2

where Ω is the global Rabi frequency, ωR =  ħΔ k2/(2M) is the recoil frequency, bi,m 
is the normal-mode matrix, and ωm are the transverse mode frequencies. The 
coupling profile may be approximated as a power-law decay ≈ / − αJ J i ji j, 0  , where 
in principle α can be tuned between 0 and 3 by varying the laser detuning μ or the 
trap frequencies ωm. In this work, α is fixed at 1.5 by setting the axial trapping 
frequency to be 0.44 MHz, and Raman beat-node detuning to be 155 kHz.
Apply disorder in the axial direction. We apply the strong random disordered 
field with a fourth-order ac Stark shift20, which is naturally an effective σi

z operator. 
To transform this into a σi

x operator, we apply additional π /2 rotations. Hence the 
third term in the Floquet evolution U3 (written for each spin i) is also a composite 
sequence:

= = =σ σ σ σ− − − −π π
U e e e e eiH t i iD t i iD t

3 i
y

i i
z

i
y

i i
x

3 3 4 3 4 3

Experimental time sequence. The Floquet time evolution is realized using the 
timing sequence illustrated in Extended Data Fig. 1.

The chain of 10 trapped ions is initialized in the ground motional state of their 
centre of mass motion using Doppler cooling and sideband cooling (not shown). 
Optical pumping prepares the ions in the ↓ z state. We then globally rotate each 
spin vector onto ↓ x by performing a π /2 pulse around the y-axis (‘Initialization’ 
in Extended Data Fig. 1).

The H1 Hamiltonian (perturbed π  pulses) lasts 14–15 μ s depending on ε and 
it consists of a four pulse BB1 sequence as described above. Our carrier Rabi 
 frequency is set such that we perform a π  pulse in less than 3 μ s. Including the three 
compensating pulses, the BB1 sequence requires 5 π -pulse times to  implement 
U1(ε).

The H2 Ising Hamiltonian is applied for 25 μ s (‘Spin–spin interactions’ in 
Extended Data Fig. 1). The pulse time was sufficiently long that with the pulse 
shaping described below the effects of the finite pulse time spectral broadening 
were largely reduced. To compensate for the residual off-resonant carrier drive, 
we apply a small amplitude transverse field (‘Compensation’ in Extended Data 
Fig. 1) for 2 μ s.

For the H3 disorder Hamiltonian, we apply σ∑ = Di
N

i i
z

1  (‘Strong random disorder’ 
in Extended Data Fig. 1) generated by Stark shifts as described above. This is 
sandwiched between rotations around the y-axis to convert this into disorder in 
σi
x. After up to 100 applications of the Floquet evolution, we rotate the state back 

to the z-axis (‘Prepare for measurement’ in Extended Data Fig. 1) and detect the 
spin state ↑ z or ↓ z using spin-dependent fluorescence.

Pulse shaping for suppressing off-resonant excitations. The optical control 
fields for generating H1, H2 and H3 are amplitude modulated using acousto- 
optic  modulators (AOMs) to generate the evolution operators. If the rf drive to 
these modulators is applied as a square pulse, it will be broadened in the Fourier 
domain owing to fast rise and fall times at the edges (100 ns). As the pulse duration 
decreases, the width of the spectral broadening will expand (see Extended Data 
Fig. 1 inset). The components of the evolution operator must be sufficiently short 
in order to evolve 100 Floquet periods within a decoherence time of < 8 ms.

This spectral broadening is problematic when generating the interaction 
Hamiltonian H2 due to off-resonant driving. The spin–spin interactions are 
applied using beat-note frequencies detuned 4.8 MHz from the carrier transition 
and 155 kHz from the sidebands. A broad pulse in the frequency domain can 
drive either the qubit hyperfine transition at the carrier frequency or phonons via 
sideband transitions.

Similar issues occur while we apply the disordered field in H3. The fourth-order 
ac Stark shift is generated from a frequency comb that has a closest beat note which 
is 23 MHz away from hyperfine and Zeeman transitions. To apply large average 
Stark shifts (33 kHz maximum) across the 10 ions, we raster the laser beam once 
within a single cycle (30 μ s), for a single-ion pulse duration of 3 μ s. The fast 
 rastering also produces off-resonant carrier driving that resembles σi

y fields.
We mitigate both these effects by shaping the pulses with a 25% ‘Tukey’ window, 

a cosine tapered function for the rise and fall. This largely removes off-resonant 
terms in the three parts of the Floquet Hamiltonian, while minimizing the 
 reduction in pulse area (80%). We carefully characterize any residual effects in H2 
with a single ion where no interaction dynamics are present, and apply a small 
compensation field in σi

y to cancel residual effects. We deduce an upper limit of 
0.3% (relative to H1) on the residuals from the envelopes of the dynamically 
 decoupled π -pulse sequence.
Emergence of time crystal stabilized by the interactions and the disorder. In the 
main text we have shown different scenarios which occur when we modify subsec-
tions of the total Floquet evolution operator. Here we first expand the results shown 
in Fig. 2 of the main text by highlighting the effect of the interactions. Extended 
Data Fig. 2 shows individual magnetization evolutions with the same ε and instance 
of disorder {Di} but with increasing interaction J0, from left to right. This shows 
how, all else being equal, as we turn up the interaction strength the synchronization 
across the ions gradually builds up signalling the formation of a DTC.

In a complementary fashion, Extended Data Fig. 3 addresses the role of disorder 
in stabilizing the time crystal formation. In particular we compare the magnetiza-
tion dynamics, both in the time and the frequency domain, including or removing 
the disorder chapter from the total Floquet evolution. We show on the side the 
corresponding exact numerics calculated by applying U(T)N on the initial state ψ0  
with the measured experimental parameters. Extended Data Fig. 3a shows that, 
with no disorder, the ion coherent dynamics tracks the perturbation ε, which 
results in coherent beats in agreement with our exact results. On the other hand, 
Extended Data Fig. 3b shows that, all else being equal, adding the disorder chapter 
locks the subharmonic response of all the ions. Although the numerics is 
 qualitatively in agreement with the experimental data, nevertheless we observe a 
decay in the magnetization that cannot be explained by our numerical unitary 
 simulations.

This damping can be due to two possible sources: one is the residual off- 
resonant drive of the disorder chapter which is not totally eliminated by the pulse 
shaping (see pulse-shaping section above). This small residual effect can behave 
like residual σi

x and σi
y terms, or coupling between the clock spin states and the 

Zeeman states = =±F m1, 1F , resulting in a decay in the coherent oscillations. 
This effect varies across the different disorder instances and the different interac-
tion strengths and leads to an overall decrease of the Fourier subharmonic peak 
height and of its variance with respect to what is expected from the theory (see 
Extended Data Fig. 3b). To take this effect into account in the theory, we perform 
a least squares fit of the amplitude of the four theory curves to the experimental 
data. With this procedure we obtain scaling factors (0.56, 0.53, 0.51, 0.78) for the 
interaction strengths 2J0t2 =  (0.072, 0.48, 0.024, 0.012) respectively, which are 
 consistent with the decays discussed above.
Different system sizes and initial states. We also perform the experiment with 
different system sizes, and show comparison with 10, 12 and 14 ions. In the ther-
modynamic limit, we expect the peak height order parameter to sharply decay at 
a certain critical perturbation strength. In our experiment this is rounded into a 
crossover, owing to a combination of finite size effects and long-range interactions. 
Extended Data Fig. 4 shows the behaviour of the subharmonic peak height as we 
gradually add more ions to the spin system. The slope clearly sharpens up to 14 
ions. We show a phenomological scaling in the inset of Extended Data Fig. 4, when 
collapsing the three curves on top of each other.

Another interesting check is the time crystal dynamics under different  initial 
conditions. In the data presented in the main text, we started from all spins 
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 polarized in the same direction. However, the time crystal dynamics in the MBL 
regime should exhibit little dependence on the initial state, and should in fact 
manifest the rigidity with arbitrary initial conditions. We observe that this is indeed 
the case, for example in a different initial state that has the left half of the spins 
anti-aligned with the right half. Indeed we see that the ions are synchronized by 
the interactions, and oscillate either in-phase or out-of-phase, retaining memory 
of the initial states (left panel of Extended Data Fig. 5). The right panel of Extended 
Data Fig. 5 shows the peak height observable, and the inset shows the fast Fourier 
transform (FFT) subharmonic response.
Data analysis and fitting procedure. The peak height variance data in Fig. 3a 
are fitted to a lineshape in order to extract the crossover transition boundary εp 
in Fig. 3b. We use the following phenomenologial lineshape, a Lorentzian of the 
log10(ε/εp):

ε =
+

+
ε ε

γ

/( )
F A B( ) 1

1 (3)log ( ) 2
p10

A statistical error is extracted from a weighted nonlinear fit to the data, which 
yields a fractional standard error bar of a few per cent. The error in the peak height 
is limited by systematic error in the finite number of instances we realized in the 

experiment. For each value of J0 and ε we average over the same 10 instances of 
disorder. These 10 instances are averaged and fitted to F(ε).

In order to estimate the error due to the finite disorder instances, we perform 
random sampling from a numerical dataset of 100 instances of disorder. Sampling 
10 of these and fitting the peak height variance data to F(ε) yields a Gaussian 
 distribution of extracted peak centres εp over 10,000 repetitions (Extended  
Data Fig. 6). We take the one standard deviation (67%) confidence interval  
in the sample as the systematic uncertainty in the fit, which yields a fractional  
error of ∼ 15%. This systematic uncertainty dominates over the statistical, so  
we apply error bars in Extended Data Fig. 3b equal to this computed finite  
sampling error.
Data availability. The data that support the plots within this paper and other 
findings of this study are available from the corresponding author upon reasonable 
request.
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Extended Data Figure 1 | Experimental pulse sequence. Bottom left, 
we initialize the spins via optical pumping plus a spin rotation, and then 
start the Floquet evolution. Each period includes the three parts of the 
Hamiltonian as described in the main text and Methods (top left), and is 

repeated for 100 times. We then perform an analysis rotation to the desired 
direction on the Bloch sphere, and then perform spin state detection 
(bottom right). Inset at top right, all pulses in the Floquet evolution are 
shaped with a ‘Tukey’ window. See text for detailed explanations.
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Extended Data Figure 2 | Build-up of a DTC. From a to b to c, we fix 
the disorder instance (that is, a single sample of the random disorder 
realizations) and the perturbation ε, while gradually increasing the 
interactions (2J0t2) for different experimental runs. The temporal 

oscillations are synchronized with increasing interactions, and the Fourier 
subharmonic peak is enhanced. The top panel shows the time-traces of the 
individual spin magnetizations, and the bottom panel shows the Fourier 
spectrum.
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Extended Data Figure 3 | Comparing the ions’ dynamics with and 
without disorder. a, Without disorder (W0t3 set to 0), the spin–spin 
interactions suppress the beatnote imposed by the external perturbation 
ε. Left, experimental data; right, exact numerics calculated under 
Floquet time-evolution. b, With disorder (W0t3 =  π ), the time crystal 

is more stable. Left, experimental result for a single disorder instance; 
right, numerical simulations. The top panels show the individual spin 
magnetizations as a function of time, and the bottom panels shows the 
Fourier transforms to the frequency domain.
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Extended Data Figure 4 | Finite size scaling. Shown are subharmonic 
central peak heights as a function of the perturbation, for different 
numbers of ions, N =  10, 12, and 14. We observe a sharpening, that is, that 
the curvature of the slope is increasing, as the chain size grows, consistent 
with expectations. Each curve contains one disorder realization, which is a 
single sample of random instance with W0t3 =  π , but the data are averaged 

over all the ions (yielding the error bars shown). Inset, phenomenological 
scaling collapse of the three curves10, with the following parameters: 
εc =  0.041, v =  0.33, β =  1.9, which are critical exponents following 
the analysis in ref. 10. The extracted value of εc is consistent with the 
interaction strength, which is fixed at 2J0t2 =  0.048 throughout this dataset.
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Extended Data Figure 5 | Different initial states. Starting with the left 
half of the chain initialized in the opposite direction, we observe that the 
time crystal is still persistent in the presence of perturbations. Top left, 
time-dependent magnetizations for ions in the first half of the chain. 
Bottom left, magnetizations for the second half. Notice that the spins on 

the two halves oscillate with opposite phases throughout, until the end of 
the evolution. Right, average peak height as a function of perturbation. 
Inset, FFT spectrum for 2% perturbation. 2J0t2 was fixed at 0.048 
throughout this dataset.
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Extended Data Figure 6 | A random sampling from numerical 
evolutions. Shown are averages of 10 disorder instances from numerical 
evolution under H for 2J0t2 =  0.072. Left, an example random numerical 
dataset (points) and the fit to equation (3) in Methods (dashed line).  
Right, the normalized probability distribution (PDF) of peak fit centres  

εp is shown in yellow, and a normal distribution is overlaid in red. The 
normal distribution is fitted using only the mean and standard deviation of 
the sample, showing excellent agreement with Gaussian statistics. For this 
value of J0 the mean ε = .0 046p  and the standard deviation σεp =  0.006.
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