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We demonstrate a simple pulse shaping technique designed to improve the fidelity of spin-dependent

force operations commonly used to implement entangling gates in trapped ion systems. This extension of

the Mølmer-Sørensen gate can theoretically suppress the effects of certain frequency and timing errors to

any desired order and is demonstrated through Walsh modulation of a two qubit entangling gate on

trapped atomic ions. The technique is applicable to any system of qubits coupled through collective

harmonic oscillator modes.
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The use of spin-dependent forces to create entangled
quantum systems has become widespread [1–4] and is
currently the technique used for the highest fidelity multi-
qubit operations [5]. This powerful technique, first pro-
posed in Refs. [6–8], has been used to implement quantum
algorithms [9], create large entangled states [10], test
quantum fundamentals [11,12], and perform simulations
of quantum magnetism [13,14] and quantum field theory
[15]. As these types of experiments are scaled to larger
numbers of qubits and more complex algorithms, the ac-
cumulation of gate errors will eventually require quantum
error correction. Because of the large overhead required for
quantum error correction, it is important that qubit opera-
tions be optimized passively in terms of speed and robust-
ness to nonideal control environments. In this Letter, we
show how ideas similar to the spin-echo pulse sequence
[16] and those developed in the context of dynamical
decoupling [17–19] can be used to optimize the Mølmer-
Sørensen (MS) gate that is based on the spin-dependent
force.

Spin-dependent force gates operate by coupling qubit
states to a collective external degree of freedom referred to
as a quantum bus. The coupling is switched on for an
amount of time that introduces a particular phase between
the spin states and leaves them disentangled from the
external degree of freedom at the end of the gate. While
the relative spin phase is robust due to geometric features
[20], the disentanglement of the qubit space and the quan-
tum bus at the end of the operation may be more suscep-
tible to experimental errors and is equally crucial to
achieving a high fidelity gate. Errors caused by noise on
the energy splitting of the qubit can be suppressed by the
insertion of an additional swapping pulse on the qubit
states in the middle of a two qubit gate [21] or, as proposed
in Ref. [22], by a � phase shift in the drive field. In this
Letter, we present analytic results which extend these ideas
and show how frequency and timing errors can, theoreti-
cally, be suppressed to any desired order with an optimized
gate sequence that does not rely on the insertion of addi-
tional � pulses within the gate. Furthermore, the technique

is demonstrated using atomic hyperfine qubits driven by a
stimulated Raman process and shown to be more robust to
certain errors than the operation described in the original
proposal [6]. Similar to the single qubit composite pulses
[23] originally designed for NMR experiments now being
in widespread use in other quantum information systems,
this composite pulse should be applicable to any system of
qubits coupled to a driven harmonic oscillator such as
superconducting flux qubits [24] or cavity QED [22].
In trapped ion systems, the spin-dependent force couples

internal atomic states of neighboring ions through the
collective modes of motion generated by the Coulomb
interaction. In the MS scheme, a spin-dependent force is
created by off resonantly driving the red and blue sideband
transitions, simultaneously. The interaction Hamiltonian

takes the form Ĥ ¼ �=2ð�̂þei�s þ �̂�e�i�sÞ�
ðâe�i�tei�m þ âyei�te�i�mÞ, where � is the sideband tran-
sition frequency, �̂� are the raising and lowering operators
for the qubit, fây; âg are the creation and annihilation
operators for the collective harmonic oscillator mode,
and �=2� is the symmetric detuning of the drive field
from the sidebands [6]. The spin phase �s¼ð�bþ�rÞ=2
and the motional phase �m ¼ ð�b ��rÞ=2 are deter-
mined by the phase of the red and blue drive fields. For
the general case of N ions, the time evolution operator is
given by,

ÛðtÞ ¼ e�i
R

t

0
dt0Ĥðt0Þ�1=2

R
t

0
dt0
R

t0
0
dt00½Ĥðt0Þ;Ĥðt00Þ�

(1)

¼ eŜNð�ðtÞây���ðtÞâÞe�i�ðtÞŜ2N ; (2)

where the total spin operator is given by ŜN ¼P
N
i¼1 �

ðiÞ
þ ei�s þ �ðiÞ� e�i�s , the time-dependent displace-

ment coefficient is �ðtÞ ¼ �=2
R
t
0 dt

0e�i�t0ei�m , and �ðtÞ
is a time-dependent phase that depends only on � and �.
When a collection of trapped ions that are each identically
prepared in an eigenstate of �̂z evolves according to
Eq. (2), the spin-dependent displacement operator splits
the motional wave packet into N þ 1 pieces that execute
circular trajectories in phase space according to the
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definition of �ðtÞ. The term in Eq. (2), proportional to Ŝ2N ,
imprints a relative phase on the various spin states, allow-
ing the operation to be used as an entangling operation.

In order to prepare a pure spin state with this type of
operation, the entanglement between the spin and motion
must disappear at the end of the gate. When the gate time tg
is not equal to 2�j=�, where j is any nonzero integer, the
motional wave packets do not trace out closed trajectories
in phase space and therefore, will not be fully disentangled
from the spin state. The required level of precision grows
with higher temperatures since the overlap between two
states separated in phase space decreases exponentially
with temperature. To see this, consider a qubit under the
influence of the time evolution operator in Eq. (2). If the
initial motional state is assumed to be a Gaussian state,
c ðxÞ, with an uncertainty in position, �x, and we describe
a small timing or detuning error in the gate operation as
an unintentional momentum displacement, @q, then the
overlap between the two motional states is given byR1
�1 dxc �ðxÞe�iqxc ðxÞ ¼ exp½� 1

2 ðq�xÞ2�. For a har-

monic oscillator in a thermal state, �x increases

approximately as
ffiffiffiffi
T

p
for kBT > @!, meaning that the

overlap between the two states decreases exponentially.
As shown in Fig. 1(a), a small detuning error can largely
be corrected with a second pulse whose phase has been
shifted by�. We now discuss how to generalize this simple
pulse sequence in order to suppress larger errors of this
type.

Suppose there is a symmetric error, �, in the detuning,
such that � ¼ 2�=tg þ �, that could be the result of a

change in the trapping frequency. The error in the opera-
tion results in some residual entanglement between the
spin and motion that can be quantified by the magnitude

of �0ðtgÞ ¼ �=2
Rtg
0 dte�i�t (which goes to zero for� ¼ 0

at tg ¼ 2�j=�). We will show that by switching either �s

or �m between 0 and � at times prescribed by certain
Walsh functions, the effect of � on the magnitude of �ðtgÞ
can be suppressed to any order. AWalsh function, denoted
here as Wðk; xÞ, is a piecewise constant function that alter-
nates between the values�1 at certain values of x depend-
ing on the dyadic ordered index k [25] [see Fig. 1(b)]. If�r

and �b shift together between 0 and �, then �s shifts
between 0 and �, but �m remains constant and can be
assumed to be 0 without the loss of generality. Note, the
effect of the phase shift, �s ¼ 0 ) �s ¼ �, is equivalent
to shifting the motional phase, �m ¼ 0 ) �m ¼ �, while
keeping�s constant. Both of these phase shifts are equiva-

lent to the mapping, Ĥ ) �Ĥ, which can also be achieved
with � pulses on the qubit states as done in Ref. [21].
Although the � phase shifts and � rotations are ideally
equivalent, the phase shift switching time and precision is
limited by electronics; whereas, the microwave rotations
depend on qubit control that might be subject to the same
noise source that generates �. If the times at which
phase shifts occur are determined by the zero crossing

times of Wðk; t=tgÞ, then ŜN ¼ Wðk; t=tgÞPN
i �ðiÞ

þ þ
�ðiÞ� � Wðk; t=tgÞX̂N . When modulating �s in this manner,

the displacement operator in Eq. (2) becomes,

D̂ kðtgÞ ¼ e�iX̂N�=2
R

tg

0
dtWðk;t=tgÞðe�ið�þ�Þtâyþeið�þ�ÞtâÞ: (3)

By choosing a Walsh function with index k ¼ 2n � 1,
where n is an integer and a detuning � ¼ 2nþ1�=tg, phase

flips only occur at integer multiples of 2�=� and the effect
of� can be suppressed to any order. This statement rests on
the following equality,

Z 1

0
dxWð2n � 1; xÞe�i2nþ1�x

Xn
l¼0

alx
l ¼ 0; (4)

where al is a constant (see Supplemental Material [26] for
the proof). If the function e�i�t is expanded in a Taylor
series, the identity in Eq. (4) ensures that the displacement

operator D̂2n�1ðtgÞ ¼ ÎþOð�nþ1Þ, where Î is the identity
operator.
To demonstrate the power of the composite pulse se-

quence, we use a qubit defined as the clock states in the
S1=2 hyperfine manifold of a Ybþ ion in an rf Paul trap

FIG. 1 (color online). (a) The phase space trajectory of the
motional wave packets of a single ion during a Wð1; t=tgÞ spin-
dependent force operation with a small detuning error, �=��1.
The solid and dashed curves show the two different trajectories
taken by the two different wave packets associated with spin up
and spin down in the Ŝ1 basis with only the spin up trajectory
being labeled for clarity. After being initialized to a state
centered at the origin, the spin up wave packet begins its clock-
wise motion near the point labeled 1. Halfway through the
operation, near the point 2, the phase of the drive field is
advanced by �, changing the direction of the applied force. At
the end of the gate, near point 3, the wave packet ends up much
closer to the origin than the turning point near point 2. Therefore,
the two wave packets have more overlap at the end of the gate
which is the key to achieving a higher fidelity operation. (b) The
Walsh functions Wð1; xÞ, Wð3; xÞ and Wð7; xÞ are shown. Notice
that Wð3; xÞ can be constructed as two sequential Wð1; xÞ func-
tions with a phase flip on the second pulse. Likewise,Wð7; xÞ can
be constructed as sequential Wð3; xÞ pulses with a phase flip on
the second pulse.
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which can be initialized and read out using the techniques
described in Ref. [27]. These states, fjF¼0;mF¼0i� j #i;
jF¼1;mF¼0i� j "ig, have a splitting of 12.6428 GHz and
are coupled to each other using stimulated Raman transi-
tions. As described in Ref. [28], the Raman transition
induced spin-dependent forces are created by the beat
notes between two optical frequency combs that are gen-
erated by a 355 nm mode-locked pulsed laser. The UV
pulses have a duration of �10 psec at a repetition rate of
80.57 MHz and have a nearly optimal center wavelength
for minimizing off resonant scattering from the excited P
states in Ybþ [29]. At the position of the ion, the two
overlapped beams are cross polarized and mutually or-
thogonal to a magnetic field of 5 G with a geometry such
that the momentum transfer only excites the transverse
modes of motion which have a resonance frequency of
1.5 MHz. The two Raman beams are frequency shifted
with acousto-optic modulators (AOMs) to set up the ap-
propriate beat notes in the interference field at the location
of the ions. As in Ref. [28], driving one AOM with a single
frequency and the other with two frequencies generates the
bichromatic beat note that gives rise to the MS interaction.
The red and blue phases �r=b are, therefore, defined by the

phases of these rf drive frequencies. The composite pulse is
implemented by splitting the operation into segments,
between which the phases �r and �b are shifted. In this
setup, symmetric detuning errors are the result of fluctuat-
ing rf trap voltages which manifests itself as noise on the
oscillation frequency.

The effect of Walsh modulation on the spin-dependent
force can be plainly seen with a single ion. In the case of a
single ion, the phase,�ðtÞ, is global and the only operation
that results in a pure spin state is one that restores the initial
spin state. The disentanglement of the spin and motion and
consequential revival of the initial spin state should occur
when �tg=2� ¼ 2nj, where 2n � 1 ¼ k is the Walsh func-

tion index. If the spin is initialized to j #i in the �̂z basis and
the joint spin-motion state after the operation is �̂, then the
state fidelity is F1 ¼ Tr½j #ih# j�̂�. Ignoring heating effects
and assuming an initial thermal state of motion, the fidelity
is F1 ¼ 1

2 ð1þ exp½�ð �nþ 1=2Þj2�kðtgÞj2�Þ, where �n is the

average excitation number of the harmonic oscillator and

�kðtgÞ ¼ �
2

Rtg
0 dtWðk; t=tgÞe�ið�þ�Þt. Because the lowest

order term for the infidelity isOðj�kj2Þ, the infidelity of the
Walsh modulated operation at �tg=2� ¼ 2nj is Oð�2nþ2Þ.
This effect is clearly seen in Fig. 2, where the higher order
Walsh sequences exhibit spin revivals of high purity over a
much larger range of detunings in the neighborhood of
� ¼ 2�=tg, where the gate is optimized for speed.

The effect of the Walsh modulation on a two qubit gate
is more complicated than that of a single qubit operation

since the term in Eq. (2) proportional to Ŝ2N must be taken
into account. The Walsh modulation of �s changes
the evolution of �ðtÞ in general, but not in the case where
� ¼ 2nþ1�=tg since the evolution is a series of closed

circles in phase space. In this case, �ðtgÞ ¼ �2tg=� and

a fully entangling operation is achieved when �ðtgÞ ¼
�=2. This implies that in order to use Wð2n � 1; t=tgÞ,
the gate time must be at least tg ¼ 2n=2�=�. While the

exponential nature of this composite gate becomes daunt-
ing for large n, small errors can easily be corrected with a
modest increase in the gate time. In the case of two ions,
the maximally entangling operation ideally implements the
transformation j ##i ) j ##i þ ei�j ""i, where the phase � is
determined by the phase of the drive field. With this

target state, the fidelity is F2 ¼ 1=4je�ð �nþ1=2Þj2�kðtgÞj2 þ
ie�i�2�kðtgÞj2 and is measured in the same manner as
described in Ref. [28]. The phase, �kðtgÞ ¼P

k
i>j¼0 Im½’�

i ’j� � 1
� ðtg � 1

�

P
k
i¼0 sinð�tiÞÞ, is written

here in terms of sums over the different parts of a pulse
sequence. The parameters, ti, refer to the duration of the

(iþ 1)th segment of a sequence and the parameters, ’i ¼
ð�Þi Rti

ti�1
dte�i�t with t�1 ¼ 0 and tk ¼ tg. The state fidel-

ity measurement for the MS gate [28] is compared for the
different pulse sequences in Fig. 3. The increased robust-
ness to detuning errors can be quantified by defining a
characteristic width of the high fidelity region, which we
refer to as the passband Bk. Since the smallest infidelity in

FIG. 2 (color online). A single ion prepared in j #i and with an
average excitation number, �n 	 7, is subjected to the standard
and composite spin-dependent force operations and then mea-
sured in the �̂z basis. The data shown are plotted together with
theoretical curves assuming an initial thermal state of motion.
(a) The data show the probability of finding the ion in j "i as a
function of the symmetric detuning � for t0 ¼ 100 � sec . On
resonance, � ¼ 0, the motional wave packets quickly become
entangled with the spin state, resulting in a maximally mixed
spin state. For finite �, the wave packets trace out circles in phase
space resulting in revivals of the initial spin state when �t0=2� is
a nonzero integer. (b) The spin-dependent force operation is
implemented using Wð1; t=t1Þ for the phase �sðtÞ with t1 ¼ffiffiffi
2

p
t0. (c) Wð3; t=t3Þ is used for �sðtÞ with t3 ¼ 2t0. Note, the

narrow resonance at �t3=2� ¼ 2 corresponds to a trajectory
where the phase flips occur when the motional wave packets
are not at the origin.
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the data sets is of order 0.1, we choose to define the
passband as the range of detunings where the infidelity
is always observed to be lower than 0.2 and estimate
B0 	 0:5 kHz, B1 	 0:7 kHz, and B3 	 1:5 kHz, demon-
strating the composite sequences’ tendency to suppress
symmetric detuning errors. The maximum fidelities ob-
served for the sequences k ¼ f0; 1; 3g are, respectively,
F2 ¼ f0:91� 0:02; 0:92� 0:02; 0:95� 0:1g. The relative
modest increase in the maximum fidelity achieved indi-
cates that trapping frequency is not changing significantly,
(1 kHz), on a time scale of less than the time between
recalibrations of the detuning �, which is approximately
5 min.We observed trap frequency fluctuations of 1 kHz on
a time scale of about 1 hour. The combined effects of state
preparation and detection errors contribute �2� 10�2 to
the infidelity, with the remaining error being dominating by
intensity fluctuations due to beam pointing instabilities.

Walsh functions have long been known by the electrical
engineering, astronomy, and radio communications com-
munities to have useful error correcting properties [25].
While the Walsh functions are not the only option for
choosing how to modulate the drive field of the spin-
dependent force gate, we hope their introduction in the
context of quantum control provides a useful tool for the

further development of dynamical decoupling and related
areas. In the formalism of dynamical decoupling, the func-
tion, �kðtgÞ, can be viewed as an optimized filter function

designed to suppress the effects of a noise source centered
at �=2� [30]. In comparison to the Uhrig sequence, which
is optimal in the number of pulses used for a given order of
noise suppression [18], Walsh modulation is optimal in the
number of elementary sequences (see Supplemental
Material [31] for the definition of an elementary sequence)
which allows for both a simple mathematical construction
and simple synthesis using integrated circuits. It is worth
noting that, unlike Walsh filters, the Uhrig sequence is
designed for low frequency noise and is not an effective
filter for noise centered at a finite frequency.
The supression of symmetric detuning errors comes at

the cost of an increase in the gate time for a fixed coupling
strength �, meaning that increasingly complex gate se-
quences will eventually perform worse than simpler ones
as the gate becomes sensitive to other noise sources. As
described in Ref. [22], some heating effects might also be
supressed through the technique described in this Letter,
but the influence of other errors, such as fluctuations in �,
requires further investigation. It is worth noting that the
extra time needed for performing the modulated sequence
might be partially offset by the decreased sensitivity to the
initial temperature of the oscillator, thereby, reducing the
amount of resource intensive cooling that may be needed.
As quantum information experiments progress, this tech-
nique of coherent error suppression in quantum bus opera-
tions might prove to be an important ingredient in scaling
toward larger systems and more complex algorithms.
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