
PHYSICAL REVIEW A 88, 012334 (2013)

Experimental performance of a quantum simulator: Optimizing adiabatic evolution and identifying
many-body ground states
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We use local adiabatic evolution to experimentally create and determine the ground-state spin ordering of a
fully connected Ising model with up to 14 spins. Local adiabatic evolution—in which the system evolution rate
is a function of the instantaneous energy gap—is found to maximize the ground-state probability compared with
other adiabatic methods while requiring knowledge only of the lowest ∼N of the 2N Hamiltonian eigenvalues.
We also demonstrate that the ground-state ordering can be experimentally identified as the most probable of all
possible spin configurations, even when the evolution is highly nonadiabatic.
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I. INTRODUCTION

The investigation of quantum many-body systems and en-
ergy optimization problems often begins with the preparation
or characterization of the ground state. A number of classical
methods can quickly find the ground state for a wide range of
many-body problems [1–5], and specialized techniques [6,7]
can be used to find the ground state of large systems in certain
instances [8,9]. However, the fully connected Ising model is
known to be NP-complete [10,11], and the exponential scaling
of the state space with the system size limits solutions of many
systems to only N � 30 spins [12–14].

Such scaling issues motivated Feynman and others to
propose quantum simulation, where a well-controlled quantum
system is used to simulate a quantum system of interest
[15,16]. When paired with ideas underlying adiabatic quantum
computation [17], quantum simulation becomes a powerful
way to find a many-body ground state by preparing the system
in the ground state of a trivial Hamiltonian, adiabatically
switching to the Hamiltonian of interest, and measuring the
resulting ground state.

Even when the ground state of a particular many-body
Hamiltonian is already known, preparing such a state with
high probability can be useful for studying entanglement or
dynamical processes—both of which are generally difficult
to solve classically [18]. In recent quantum simulation exper-
iments, it has been necessary to start with a well-prepared
ground state in order to probe frustrated antiferromagnetism
[19,20] or tunneling dynamics [21]. Similarly, studies of
defect production during nonequilibrium phase transitions
[22], thermalization in closed quantum systems [23], and
excitation spectra of many-body Hamiltonians will likely
require the spin ordering to be initialized into the ground state
before proceeding.

In this paper, we show how local adiabatic evolution
can be used for improved preparation and determination of
many-body ground states in a trapped-ion quantum simulator.
Compared with other adiabatic methods, local adiabatic
evolution [24] yields the highest probability of maintaining
the ground state in a system that is made to evolve from an
initial Hamiltonian to the Hamiltonian of interest. Compared
with optimal control methods [25,26], local adiabatic evolution

may require knowledge of only the lowest ∼N eigenstates
of the Hamiltonian rather than all 2N . Using local adiabatic
evolution in a system of up to 14 fully connected spins, we
demonstrate optimized ground-state preparation as well as a
method to find the ground-state spin ordering even when the
evolution is nonadiabatic.

The paper is organized as follows: Sec. II discusses the
principles behind adiabatic quantum simulation as applied to
our experimental system. In Sec. III, we describe our physical
implementation of an effective many-body spin system and the
methods by which we perform adiabatic quantum simulations.
Sections IV and V demonstrate how local adiabatic evolution
can be used to improve both ground-state preparation and
characterization, while Sec. VI shows the robustness of the
technique when scaled up to larger spin systems. In Sec. VII
we offer some concluding remarks.

II. ADIABATIC QUANTUM SIMULATION

Adiabatic quantum simulation [15,16,27] applies the meth-
ods of adiabatic quantum computation [17,28,29] to solve
interesting and difficult quantum problems. To date, adiabatic
quantum simulations have been performed on a variety of
different platforms [30], studying diverse problems such
as quantum phase transitions [31,32], quantum magnetism
[33–35], and quantum chemistry [36]. For the remainder of this
paper, we will consider adiabatic quantum simulation within
the context of the transverse-field Ising model.

The system Hamiltonian is given by

H =
∑
i<j

Ji,j σ
(i)
x σ (j )

x + B(t)
∑

i

σ (i)
y , (1)

where Ji,j are the Ising coupling strengths between spins i

and j , B(t) is the magnitude of a time-dependent transverse
magnetic field, σ (i)

α is the Pauli spin operator for spin i

along the α direction, and Planck’s constant h = 1. We set
Ji,j > 0 for all i �= j in our experiments to generate long-range
antiferromagnetic (AFM) spin-spin couplings.

An ideal adiabatic quantum simulation begins by initializ-
ing the spins to point along the transverse magnetic field B0ŷ,
with B0 � Max(Ji,j ), which to good approximation is the
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FIG. 1. (Color online) Low-lying energy eigenvalues of Eq. (1)
for N = 6, with the ground-state energy Eg set to 0, B0 = 5Jmax,
and the long-range Ji,j couplings determined from experimental
conditions (see text). Indicated in bold red is the first coupled excited
state, the minimum of which determines the critical field Bc and the
critical gap �c.

instantaneous ground state of Eq. (1) at t = 0. After initializa-
tion, the transverse field B(t) is then ramped adiabatically from
B(t = 0) = B0 to B(t = tf ) = 0, ensuring that the system
remains in its instantaneous ground state during its evolution.
At the conclusion of the ramp, the ground-state spin ordering
of the Ising Hamiltonian [the first term in Eq. (1)] may be
either directly read out or used as a starting point for further
experiments.

Figure 1 shows the energy-level spectrum for the
Hamiltonian in Eq. (1) for N = 6 spins. Since the Hamiltonian
obeys Z2 symmetry (as well as parity symmetry in the
experiments), the ground state |g〉 is coupled to only a subset of
the excited energy eigenstates. The first coupled excited state,
shown in red in Fig. 1, is the lowest-energy excited state |e〉 for
which 〈e|σy |g〉 �= 0. This state displays a general property seen
in most adiabatic quantum simulations—namely, the existence
of a critical gap �c that is central to parametrizing the adia-
baticity of a given ramp. We will now explore three possible
ramp profiles for transforming from the initial Hamiltonian
to the Ising Hamiltonian and discuss their implications for
adiabaticity and ground-state preparation.

A. Linear ramps

For a linear ramp, the time-dependent transverse field B(t)
in Eq. (1) takes the form Blin(t) = B0(1 − t/tf ), with a ramp
profile shown in Fig. 2(a). To determine whether such a
ramp is adiabatic or not, we must compare to the adiabatic
criterion [37] ∣∣∣∣ Ḃ(t)ε

�2
c

∣∣∣∣ � 1, (2)

where Ḃ(t) is the rate at which the transverse field is changed
and ε = Max[〈e|dH/dB|g〉] is a number of order unity that
parametrizes the coupling strength between the ground state
|g〉 and the first coupled excited state |e〉. Equation (2)
highlights that fast ramps and small critical gaps can greatly
decrease adiabaticity.

To satisfy the adiabatic criterion, a linear ramp must proceed
slowly enough so that the total time tf � B0/�

2
c . For the N =
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FIG. 2. (Color online) (a) Local adiabatic ramp profile calculated
for the energy levels in Fig. 1, along with a linear ramp and an
exponential ramp with decay constant τ = tf /6. (b) The slope of the
local adiabatic (LA) ramp is minimized at the critical field value Bc,
and is smaller than the slopes of the exponential and linear ramps at
the critical point. (c) The inverse of the adiabaticity parameter γ (see
text) is peaked near the critical point for exponential and linear ramps
but constant for the local adiabatic profile.

6 Ising Hamiltonian shown in Fig. 1, B0 = 3.9 kHz and �c =
0.29 kHz, giving the adiabaticity requirement tf � 46 ms. As
we will see in Sec. IV, this time is exceptionally long compared
with a maximum ramp time of 2.4 ms in our apparatus (to avoid
decoherence effects). We therefore seek alternative ways to
decrease B(t) more quickly while maintaining adiabaticity.

B. Exponential ramps

Decreasing the transverse field exponentially according to
Bexp(t) = B0 exp(−t/τ ), with tf = 6τ , can yield a signifi-
cantly more adiabatic evolution than linear ramps for the same
tf . Figure 1 shows that the instantaneous gap � between the
ground and first coupled excited states is large at the beginning
of the ramp and small only when B approaches 0. Exponential
ramps exploit this gap structure by quickly changing B(t) at
first, then gradually slowing the rate of change as t → tf .

At the critical point of the Hamiltonian shown in Fig. 1,
|Ḃexp(t)| = 0.3B0/tf . Adiabaticity [Eq. (2)] then requires
tf � 14.5 ms, a factor of 3 less time than the requirement
found for linear evolution. Note that the adiabaticity gains of
exponential ramps can be realized whenever the critical gap
occurs towards the end of the ramp (Bc/B0 < τ/tf ), which is
generally the case for the Ising Hamiltonian [Eq. (1)].

C. Local adiabatic ramps

Local adiabatic ramps seek to keep the adiabaticity fixed
at all points along the evolution by adjusting Ḃ(t) based
on the instantaneous gap �(B(t)) [24,38]. If we define the
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adiabaticity parameter

γ =
∣∣∣∣�

2(B)

Ḃ(t)

∣∣∣∣ (3)

then a local adiabatic ramp would follow the profile B(t) that
solves the differential equation (3) with γ fixed. Adiabaticity
then requires γ � 1.

To solve Eq. (3), it is necessary to know �(B) everywhere
along the evolution. This requires knowledge of the first
coupled excited state of the N -spin Hamiltonian [Eq. (1)],
which is always the second excited state at small B and
the (N + 1)st excited state at large B. Determination of the
local adiabatic evolution profile therefore relies on calculation
of only the lowest ∼N eigenvalues, which is much more
computationally approachable than direct diagonalization of
a 2N × 2N matrix [12].

For a local adiabatic ramp, the critical time tc may be
calculated by integrating Eq. (3). Since Ḃ(t) is negative
throughout the evolution, we find

tc = γ

∫ B0

Bc

dB

�2(B)
. (4)

Similarly, we may calculate the total evolution time

tf = γ

∫ B0

0

dB

�2(B)
, (5)

which shows a linear relationship between the total time tf
and the adiabaticity parameter γ . Satisfying the adiabaticity
condition γ � 1 for the Hamiltonian in Fig. 1 implies tf �
3.6 ms, factors of 4 and 12 less time than exponential and linear
ramps, respectively. The fact that local adiabatic evolution
can lead to faster ramps while satisfying adiabaticity has
been well explored in Ref. [24], where it was shown that
local adiabatic ramps could recover the quadratic speedup
of Grover’s quantum search algorithm. In contrast, it was
found that linear ramps offer no improvement over classical
search [28].

Figure 2(a) compares linear, exponential, and local adia-
batic ramp profiles for the Hamiltonian shown in Fig. 1. The
local adiabatic ramp spends much of its time evolution in the
vicinity of the critical point, since the transverse field changes
slowly on account of the small instantaneous gap. This is
further illustrated in Fig. 2(b), which shows that at the critical
point, the slope of the local adiabatic ramp is minimized and
smaller than the slopes of the exponential or linear ramps. As
a result, the inverse adiabaticity 1/γ is peaked near the critical
point for exponential and linear ramps, greatly increasing the
probability of nonadiabatic transitions away from the ground
state [see Fig. 2(c)]. By design, the local adiabatic ramp
maintains constant adiabaticity for all values of B and does
not suffer from large nonadiabaticities near Bc.

III. PHYSICAL IMPLEMENTATION

Adiabatic quantum simulations are realized by applying the
Hamiltonian [Eq. (1)] to an effective spin-1/2 system encoded
in a linear chain of trapped 171Yb+ ions [39]. For this work,
between 2 and 14 ions are held in an rf Paul trap with an
axial center-of-mass frequency fz = 0.7 MHz and transverse
frequencies fx = 4.8 MHz and fy = 4.6 MHz. The Ising

spin states |0〉z and |1〉z are represented by the ion hyperfine
clock states 2S1/2|F = 0,mF = 0〉 and |F = 1,mF = 0〉, re-
spectively. These states are split by ωS/2π = 12.642 819 GHz
in a background magnetic field of ∼5 G that defines the
quantization axis, and their near-insensitivity to Zeeman shifts
allows us to measure spin coherence times of longer than 1 s
with no magnetic shielding [40].

Experiments begin by cooling the ion motion to deep
within the Lamb-Dicke regime and optically pumping to
the state |000 . . .〉z. The effective spins are then coherently
rotated to point along the y direction of the Bloch sphere,
which is the approximate instantaneous ground state of the
Hamiltonian [Eq. (1)] at t = 0. After initialization, we turn
on the Hamiltonian and ramp B(t) down with the desired
profile. At t = tf the x̂ component of each spin is coherently
rotated back onto the ẑ axis of the Bloch sphere. Measurement
proceeds by illuminating the ions with 369.5 nm laser light
resonant with the cycling 2S1/2 to 2P1/2 transition and imaging
the spin-dependent fluorescence onto an intensified CCD
camera [20].

To apply the spin-spin interactions [the first term of the
Hamiltonian (1)], we globally address the ions using two off-
resonant λ = 355 nm laser beams (which we call R1 and R2) to
drive stimulated Raman transitions [41,42]. At the ion chain,
the beam R1 with frequency ωL perpendicularly intersects
a multicolored beam R2 with frequencies ωL + ωS ± μ.
Their wave-vector difference �	k points along the x direction
of transverse ion motion and their frequency differences
couple near the upper and lower x-motional sidebands. This
configuration generates a spin-dependent force at frequency
μ [43] and gives the Ising couplings [44]

2πJi,j = �i�j

h̄(�	k)2

2M

∑
m

bi,mbj,m

μ2 − ω2
m

(6)

in the Lamb-Dicke limit when the frequency μ is sufficiently
far from the normal-mode frequencies ωm. In Eq. (6), �i is the
Rabi frequency at the ith ion, M is the single-ion mass, and
bi,m is the normal-mode transformation matrix element for the
ith ion in the mth mode. We set μ so that all Ji,j > 0, resulting
in long-range AFM Ising interactions that fall off with ion
index as ∼ 1/|i − j |α , where α is varied between ≈1.3 and
0.9 for 3–10 ions.

To apply the transverse-field part of the Hamiltonian [the
second term in Eq. (1)], we add an additional component
at frequency ωL + ωS to the multicolor laser beam R2. The
beat-note difference between R1 and this component of R2
drives carrier Rabi oscillations between the spin states |0〉z
and |1〉z, generating an effective magnetic field. We orient
the field transversely to the spin-spin couplings by setting the
phase of the component at ωL + ωS equal to the average phase
of the two components at ωL + ωS ± μ.

The amplitudes, frequencies, and phases needed to apply
the Ising Hamiltonian are imprinted on the λ = 355 nm laser
beams using acousto-optic modulators (AOMs) driven by an
arbitrary waveform generator (AWG). The AWG (Agilent
M8190A) is programmed to output a voltage of the form

V (t) = V1 sin[(ωA − μ)t] + V2 sin[(ωA + μ)t + ϕ]

+V3(t) sin[ωAt + ϕ/2], (7)
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where V1 and V2 are the amplitudes of the components that
generate the Ji,j couplings, ωA shifts the frequency difference
between R1 and R2 into resonance with ωS , and by our
convention ϕ is set to π to define a spin-spin interaction σxσx .
The time-dependent amplitude V3(t) determines the transverse
field B(t) and is made to decrease with a linear, exponential, or
local adiabatic profile for these experiments. Because the phase
of the carrier component V3(t) is the same as the mean phase
of the two sideband components V1 and V2, the interaction is
shifted by π/2 to give an effective magnetic field coupled to
σy , after accounting for the inherent π/2 phase lag between
the carrier and the sideband transitions. The rf AWG output
signal [Eq. (7)] is amplified to deliver a peak power of 1.8 W
to a 50� AOM in the beam path of R2, generating frequency
components relative to R1 at ωS − μ, ωS + μ, and ωS with
corresponding amplitudes set by V1, V2, and V3(t).

IV. PREPARING AFM GROUND STATES

We now measure the ability for each of the ramp profiles
in Sec. II to prepare our spin system into the ground state of
Eq. (1) at B = 0. For this measurement, we use N = 6 ions and
choose the trap voltages and the laser detuning μ to give AFM
spin-spin interactions of the form Ji,j ≈ (0.77 kHz)/|i − j |.
These long-range AFM interactions lead to a fully connected,
frustrated system as all couplings cannot be simultaneously
satisfied. Nevertheless, the ground state of the system is easily
calculable for six spins and is found to be a superposition of
the two Néel-ordered AFM states (|010101〉 + |101010〉)/√2.

Figure 3(a) shows the probability of creating the AFM
ground state when the transverse field B(t) is ramped using
linear, exponential, and local adiabatic profiles. The total ramp
time tf is varied from 0 to 2.4 ms, with a new ramp profile
calculated for each tf . Each data point is the result of 4000
repetitions of the same experiment, with error bars that account
for statistical uncertainty as well as estimated drifts in the Ising
coupling strengths. In agreement with the predictions in Sec. II,
the data show that local adiabatic ramps prepare the ground
state with higher fidelity than exponential or linear ramps.

The solid lines in Fig. 3 plot the theoretical prediction of
the ground-state probability with no free parameters. In each
case we begin by numerically integrating the Schrödinger
equation using Hamiltonian (1) with the desired B(t) and
the initial state |ψ(0)〉 = |000 . . .〉y . At the end of the ramp,
we calculate the overlap between the final state |ψ(tf )〉 and
the AFM ground state (|010 . . .〉 + |101 . . .〉)/√2 to extract
the probability of the ground-state spin configuration. We
account for decoherence-induced decay of the ground-state
probability by multiplying the calculated probability at time t

by exp[−t/td ], where td is the measured 1/e coherence time
of our spin-spin interactions.

The fact that local adiabatic ramps yield ∼80% ground
state probability at tf = 2.4 ms is not surprising, given that
the adiabatic condition is tf � 3.6 ms for our experimental
parameters. In comparison to the 2.4 ms local adiabatic ramp,
achieving 80% ground-state population using an exponential
(linear) ramp would take a calculated 9.7 ms (29 ms)—a factor
of 4 (12) longer. However, these significantly longer ramps do
not yield high-fidelity ground-state preparation in practice,
since significant decoherence effects arise in our experiment
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FIG. 3. (Color online) (a) Probability of preparing the AFM
ground state after local adiabatic, exponential, and linear ramps with
tf varied from 0 to 2.4 ms. The local adiabatic ramp gives the ground
state with highest probability. Solid lines indicate the theoretical
prediction. Inset: 0.96 ms local adiabatic ramp profile compared to
the 2.4 ms profile (dotted). (b) Probability of preparing the AFM
ground state for various times during tf = 2.4 ms simulations with
three different ramp profiles. The linear ramp takes ∼2.3 ms to reach
the critical point, while the local adiabatic and exponential ramps
need only 1.2 ms. The inset shows the 2.4 ms local adiabatic profile
evolved for 0.96 ms.

after about 2.4 ms. Local adiabatic ramps therefore offer the
best way to prepare the ground state with high probability.

The data in Fig. 3(b) show how the AFM ground-state
probability grows during a single 2.4 ms linear, exponential,
or local adiabatic ramp. The ground-state population grows
quickly under local adiabatic evolution since the transverse
field B(t) is reduced quickly at first. In contrast, the linear ramp
does not approach the paramagnetic to AFM phase transition
until ∼2 ms, and the AFM probability is suppressed until
this time. Once again, local adiabatic ramps show the largest
ground-state probability at each time.

V. DETERMINING GROUND STATES

Finding the ground state at the end of an adiabatic quantum
simulation presupposes that the transverse field B(t) is ramped
adiabatically [28]. However, as demonstrated in Sec. IV, it can
be difficult in many instances to satisfy the adiabatic criterion
while avoiding decoherence effects, particularly in frustrated,
fully connected systems. In this section, we show that the
ground-state spin ordering may be extracted even when the
ramp is nonadiabatic.

012334-4



EXPERIMENTAL PERFORMANCE OF A QUANTUM . . . PHYSICAL REVIEW A 88, 012334 (2013)

To accomplish this goal of ground-state identification, we
examine the probability distribution of all spin configurations
and select the most prevalent state. Consider an experiment
where the spins are initialized into |000 . . .〉y (as usual) and the
transverse field B(t) is instantly switched from B = B0 to B =
0. Measurement along the x direction would yield an equal
superposition of all spin states; in this instance, the ground
state is just as probable as any other state. If the transverse
field B(t) is instead ramped at a fast but finite rate, the quantum
simulation is slightly more adiabatic than in the instantaneous
case, and the ground state becomes slightly more prevalent
than any other state. When B(t) is ramped slowly enough, the
ground-state population is nearly 100% and dominates over
that of any other state.

Using the single-ion resolution of our intensified CCD
camera, we can directly measure the probability of creating
each of the 2N possible spin configurations. Figure 4 shows the
measured probability for all of the 64 spin states at each local
adiabatic ramp data point in Fig. 3(a). When the total ramp
time is 0.00 ms (i.e., an instantaneous ramp), we measure a
distribution with nearly equal probability in each of the possi-
ble states, as expected. As the total ramp time is made longer
(up to 2.4 ms), the populations in the two degenerate AFM
ground states emerge as the most probable compared to any
other spin configuration.
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FIG. 4. (Color online) State probabilities of all 26 = 64 spin
configurations for each local adiabatic data point in Fig. 3(a), ordered
in binary notation (e.g., |010101〉 = 21 and |101010〉 = 42). The two
degenerate AFM states (solid blue) are the most prevalent for all
times.

A close analogy may be drawn with a Landau-Zener process
[45] in a two-level system comprised of the ground and first
coupled excited states. In the Landau-Zener framework, a
system that starts in the state |000 . . .〉y , the ground state of
the Hamiltonian [Eq. (1)] when B/J � 1, will be transformed
into the new ground state |111 . . .〉y at B/J � −1 if B(t) is
ramped adiabatically. Likewise, an instantaneous switch from
B/J � 1 to B/J � −1 will leave the system in an excited
state with 100% probability.

Our experiment most closely resembles half of a Landau-
Zener process, in which B(t) starts with B � J and ends
at B = 0. One can write an analytic expression to calculate
the transition probability for this half-Landau-Zener evolution
[46], which has a maximum value of 0.5 for an instantaneous
ramp. Any fast but finite ramp will give a transition probability
less than 0.5, and the ground state will always be more
prevalent than the excited state.

The technique of identifying the most prevalent state as the
ground state is subject to some limitations. First, the initial
state (before the ramp) should be a uniform superposition of
all spin states in the measurement basis—a condition satisfied
by preparing the state |000 . . .〉y and measuring along x̂. If
some spin states are more prevalent than the ground state
initially, then some nonzero ramp time will be necessary before
the ground-state probabilities “catch up” and surpass these
initially prevalent states. Second, the ramp must not cross any
first-order transitions between ordered phases, as nonadiabatic
ramps may not allow sufficient evolution time towards the new
ground-state order.

In addition, a good determination of the ground state
requires that the difference between the measured ground-
state probability Pg and next-excited-state probability Pe be
large compared with the experimental uncertainty, which is
fundamentally limited by quantum projection noise ∼1/

√
n

after n repetitions of the experiment [47]. This implies that the
most prevalent ground state can be determined reliably after
repeating the measurement n > (P 2

g + P 2
e )/(Pg − Pe)2 times.

Assuming an exponential distribution of populated states
during the ramp (as may be expected from Landau-Zener-like
transitions), the number of required runs should then scale as
n ∼ (Ē/�)2 in the limit Ē � �, where Ē is the mean energy
imparted to the spins during the ramp, and � is the energy
splitting between the ground and first coupled excited states.

If the gap shrinks exponentially with the number of spins
N (i.e., � ∼ e−N ), ground-state identification requires an
exponential number of measurements n in the simulation.
However, in cases where the gap shrinks as a power law
(� ∼ N−α), the most prevalent state can be ascertained in
a time that scales polynomially with the number of spins.
Regardless of the scaling, techniques that improve the ground-
state probability (such as local adiabatic evolution) can greatly
increase the contrast of the most prevalent state and reduce the
number of necessary repetitions.

VI. SCALING TO LARGER N

In Secs. IV and V, we showed that local adiabatic evolution
could improve ground-state preparation and identification in a
system of N = 6 ions. As the system size increases, creating
the ground state with high probability becomes much more
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FIG. 5. (Color online) (a) The long-range AFM interactions
between spins i and j fall off as ∼1/|i − j |α . For fixed trap voltages,
increasing the number of ions leads to smaller α and longer-range
interactions which increase frustration in the system. (b) The critical
gap �c between the ground and first coupled excited states shrinks for
increasing N . The gap for experimental parameters is compared with
three different curves that show the shrinking gap for fixed values of α.
(c) The measured ground-state probability decreases with increasing
N , reflecting the narrowing critical gap. Lines are to guide the eye. (d)
An approximate local adiabatic ramp profile for 12 (14) ions yields a
10% (3%) probability of creating the ground state, much larger than
the average state probability of 0.02% (0.006%).

difficult. However, we demonstrate that identification of the
ground state remains robust in a system of up to N = 14 spins
using the most-prevalent-state selection technique.

As the system size N grows larger, two effects contribute
to a shrinking critical gap �c, further reducing the adiabaticity
of transverse-field ramps in our frustrated AFM system. The
first is the well-known result for transverse-field Ising models
that �c → 0 as the system size approaches the thermodynamic
limit N → ∞ [48]. The second effect arises from increasingly
longer-range interactions at larger N [see Fig. 5(a)] that lead
to more frustration and smaller energy gaps in the system [20].
The combined effect is shown in Fig. 5(b), where the resulting
critical gap for our experimental parameters decreases by a
factor of 6 when N is increased from three to ten ions. The
gray dotted curves in Fig. 5(b) demonstrate that even if the
interaction range α is held fixed, �c decreases with N on
account of the first effect.

Figure 5(c) shows the probability of preparing the ground
state using linear, exponential, and local adiabatic ramps as
N is increased from 2 to 10. At N = 10, the fidelity falls
to only 21% for local adiabatic ramps, which is small but
markedly better than for the exponential (9%) or linear (3%)
ramps. Higher fidelities may be achieved by widening the gap
�c via stronger Ji,j couplings, which scale quadratically with
increased λ = 355 nm laser power. Additionally, coherence
times longer than 2.4 ms (which we believe to be limited by the
pointing instability of the λ = 355 nm Raman laser) are likely

needed for high-fidelity adiabatic ground-state preparation at
larger N . Future iterations of this experiment will include
a more powerful Raman laser that is well isolated from air
currents or other perturbations along its entire beam path.

To show the potential scaling power of local adiabatic
evolution, we perform quantum simulations with 12 and 14
ions [Fig. 5(d)]. In this regime, we are unable to directly
calculate the local adiabatic ramp profile using a standard
desktop computer due to the exponential growth of the
computation time (just building a 214 × 214 matrix of machine-
sized numbers requires over 2 gigabytes of RAM). Instead, we
approximate the gap �(B) by the piecewise function

�(B) =
{

�c if B � Bc,

�c + 4(B − Bc) if B > Bc,
(8)

with Bc and �c extrapolated from the calculations for three
to ten ions. This �(B) is then used to solve the differential
equation (3). For N � 10 the approximate local adiabatic ramp
performs as well as the exact ramp to within experimental error,
while for N > 10 it continues to outperform exponential and
linear ramps.

Although the ground-state probability becomes small for
increasingly large N , the ground-state spin ordering remains
distinctly the most prevalent spin configuration even for
N = 14. Following the technique outlined in Sec. V, we
experimentally measure the probability distribution of creating
each of the 214 = 16 384 possible spin states at the end of our
quantum simulation. The two most prevalent spin states, the
camera images of which are shown in Fig. 6(a), are again
revealed to be the Néel-ordered AFM states.

Figure 6(b) demonstrates the resiliency of most-prevalent-
state selection to ramps that are far from adiabatic. Identifi-
cation of the ground state proceeds easily, even though the
total ground-state probability is only ∼3%. The requirement
of satisfying the adiabatic criterion [Eq. (2)] is replaced only
by the requirement that the most-prevalent-state probabilities
are accurately resolvable compared with those of any other
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FIG. 6. (Color online) (a) Camera images of experimentally
prepared AFM ground states for N = 14. (b) State probabilities of all
214 = 16 384 spin configurations for the 14-ion local adiabatic ramp
in Fig. 5(d). The Néel-ordered ground states are unambiguously the
most prevalent, despite a total probability of only 3%.
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states. While the method should remain robust for even larger
N , more adiabatic ramps (generated by longer ramp times
or stronger spin-spin couplings) will decrease the number of
experimental repetitions needed to clearly resolve the state
probabilities.

VII. CONCLUSION

In conclusion, we have used local adiabatic ramps to prepare
ground states with high probability in a trapped-ion adiabatic
quantum simulator, as well as to identify ground states in a
system of up to 14 fully connected spins. Local adiabatic ramps
are found to maximize the ground-state population compared
with other adiabatic methods and require knowledge of only
the lowest ∼N energy eigenvalues of the Hamiltonian under
study. As N grows large and even the lowest eigenvalues are
difficult to calculate, we have demonstrated that a simple,
approximated local adiabatic ramp can still be used to improve

the ground-state preparation. We have additionally described
a technique to determine the ground-state spin ordering even
when ramps are severely nonadiabatic, and have experimen-
tally found the correct ground state in an N = 14 frustrated
AFM spin system. The technique should scale in principle to
N = 30 spins and beyond, where finding the ground states
of complicated many-body spin systems becomes classically
intractable.
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