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Sympathetic cooling of trapped ions for quantum logic
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One limit to the fidelity of quantum logic operations on trapped ions arises from heating of the ions’
collective modes of motion. Sympathetic cooling of the ions during the logic operations may eliminate this
source of errors. We discuss the benefits and drawbacks of this proposal, and describe possible experimental
implementations. We also present an overview of trapped-ion dynamics in this scheme.

PACS number~s!: 03.67.2a, 32.80.Pj
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I. INTRODUCTION

One of the most attractive physical systems for genera
large entangled states and realizing a quantum compute@1#
is a collection of cold trapped atomic ions@2#. The ion trap
quantum computer stores one or more quantum bits~qubits!
in the internal states of each trapped ion, and quantum lo
gates~implemented by interactions with externally applie
laser beams! can couple qubits through a collective qua
tized mode of motion of the ion Coulomb crystal. Loss
coherence of the internal states of trapped ions is neglig
under proper conditions but heating of the motion of the
crystal may ultimately limit the fidelity of logic gates of thi
type. In fact, such heating is currently a limiting factor in t
National Institute of Standards and Technology~NIST! ion-
trap quantum logic experiments@3,4#.

Electric fields from the environment readily couple to t
motion of the ions, heating the ion crystal@3–7#. If the ion
trap is much larger than the ion crystal size, we expect th
electric fields to be nearly uniform across the crystal. U
form fields will heat only modes that involve center-of-ma
motion ~COM motion!, in which the crystal moves as a rigi
body. Motional modes orthogonal to the COM motion, f
instance, the collective breathing mode, require field gra
ents to excite their motion. The heating of these mode
therefore suppressed@4#. However, even if quantum logic
operations use such a ‘‘cold’’ mode, the heating of the CO
motion can still indirectly limit the fidelity of logic opera
tions. Since the laser coupling of an internal qubit and
motional mode depends on the total wave-packet sprea
the ion containing the qubit, the thermal COM motion c
reduce the logic fidelity@3,4#.

In this paper, we examine sympathetic cooling@8# in a
particular scheme for which we can continuously laser c
the COM motion while leaving undisturbed the coheren
of both the internal qubits and the mode used for quan
logic. In this method, one applies continuous laser cooling
only the center ion of a Coulomb-coupled string of an o
number of ions. One can address the center ion alone if
center ion is of a different ion species than that compos
the rest of the string@9#. Alternatively, one can simply focu
the cooling beams so that they affect only the center ion
either case, the cooling affects only the internal states of
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center ion, leaving all other internal coherences intact. If
logic operations use a mode in which the center ion rema
at rest, the motional coherences in that mode are also u
fected by the cooling. On the other hand, the sympath
cooling keeps the COM motion cold, reducing the therm
wave packet spread of the ions. In the following, we w
discuss the dynamics of an ion string in which all ions a
identical except the center ion, assuming heating by a u
form electric field. Our results give guidelines for imple
menting the sympathetic cooling scheme. Similar resu
would apply to two- and three-dimensional ion crystals@10–
13#.

II. AXIAL MODES OF MOTION

We consider a crystal ofN ions, all of chargeq, in a linear
radiofrequency~RF! trap @10,11#. The linear RF trap is es
sentially an RF quadrupole mass filter with a static confin
potential along the filter axisẑ. If the radial confinement is
sufficiently strong compared to the axial confinement,
ions will line up along thez axis in a string configuration
@10,11#. There is no RF electric field alongẑ, so we can write
the axial confining potential asf(z)5qa0z2/2 for a0 a con-
stant. The potential energy of the string is then given by

V~z1 , . . . ,zn!5
1

2
qa0(

i 51

N

zi
21

q2

8pe0
(
iÞ j

i , j 51

N
1

uzi2zj u
~1!

for zi the position of thei th ion in the string~counting from
the end of the string!. The first term in the potential energ
expresses the influence of the static confining potential al
thez axis, while the second arises from the mutual Coulo
repulsion of the ions. For a single ion of massm, the trap
frequency alongz is just vz5Aqa0 /m.

We can compute the equilibrium positions of the ions
the string by minimizing the potential energy of Eq.~1!.
Defining a length scalel by l 35q/(4pe0a0) and normal-
izing the ion positions byui5zi /l gives a set of equation
for the ui as
10-1
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ui2(
j 51

i 21
1

~ui2uj !
2

1 (
j 5 i 11

N
1

~ui2uj !
2

50, i 51, . . . ,N,

~2!

which has analytic solutions only up toN53. Steane@1# and
James@14# have computed the equilibrium positions of io
in strings withN up to 10. The potential energy is indepe
dent of the mass, so the equilibrium positions of ions in
string are independent of the elemental composition of
string if all the ions have the same charge.

In a real ion trap the ions will have some nonzero te
perature and will move about their equilibrium positions.
the ions are sufficiently cold, we can write their positions
a function of time aszi(t)5l ui1qi(t), whereqi(t) is small
enough to allow linearizing all forces. We focus on the ca
of an odd number of ionsN, where all ions have massm,
except for the one at the center of the string which has m
M. The ions are numbered1,...,N, with the center ion la-
beled bync5(N11)/2. Following James@14#, the Lagrang-
ian for the resulting small oscillations is

L5
m

2 (
iÞnc

i 51

N

q̇i
21

M

2
q̇nc

2 2
1

2 (
i , j 51

N
]2V

]zi]zj
U
$qi %50

qiqj ~3!

5
m

2 (
iÞnc

i 51

N

q̇i
21

M

2
q̇nc

2 2
1

2
qa0 (

i , j 51

N

Ai j qiqj , ~4!

where

Ai j 55
112(

kÞ i
k51

N
1

uui2uku3 i 5 j

22
1

uui2uj u3
iÞ j .

~5!

We define a normalized time asT5vzt. In treating the
case of two ion species, we writem5M /m for the mass ratio
of the two species and normalize the amplitude of the
vibrations qi(t) as Qi5qiAqa0, iÞnc , Qnc

5qnc
Aqa0m.

The Lagrangian becomes

L5
1

2 (
i 51

N S dQi

dT D 2

2
1

2 (
i , j 51

N

Ai j8 QiQj , ~6!

where

Ai j8 5H Ai j i , j Þnc

Ai j /Am i or j 5nc ,iÞ j

Ai j /m i 5 j 5nc

~7!

generalizing the result of James@14#.
The Lagrangian is now cast in the canonical form

small oscillations in the coordinatesQi(t). To find the nor-
mal modes, we solve the eigenvalue equation
03231
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A8•vW (k)5zk
2vW (k) k51, . . . ,N ~8!

for the frequencieszk and~orthonormal! eigenvectorsvW (k) of
the N normal modes. Because of our normalization of t
Lagrangian~6!, thezk are normalized tovz and thevW (k) are
expressed in terms of the normalized coordinatesQi(t). In
terms of the physical timet, the frequency of thekth mode is
zkvz . If the kth mode is excited with an amplitudeC, we
have

qi~ t !5Re@Cv i
(k)ei (zkvzt1fk)# iÞnc , ~9!

qnc
~ t !5ReFC

1

Am
vnc

(k)ei (zkvzt1fk)G ~10!

in terms of the physical coordinatesqi(t).
We can solve for the normal modes analytically forN

53. Exact expressions for the normal-mode frequencies

z15F13

10
1

1

10m
~212A441234m1169m2!G1/2

, ~11!

z25A3, ~12!

z35F13

10
1

1

10m
~211A441234m1169m2!G1/2

, ~13!

normalized tovz . The mode eigenvectors are

vW (1)5N1S 1,
Am

8
~1325z1

2!, 1D , ~14!

vW (2)5N2~1, 0,21!, ~15!

vW (3)5N3S 1,
Am

8
~1325z3

2!, 1D , ~16!

in terms ofQi(t). Here N1 , N2, and N3 are normalization
factors. In the case of three identical ions (m51), we can
express the mode eigenvectors in terms of theQi(t) asvW (1)

5(1,1,1)/A3, vW (2)5(1,0,21)/A2, andvW (3)5(1,22,1)/A6.
The mode eigenvectors, in this special case, also give the
oscillation amplitudes in terms of the physical coordina
qi(t). For three identical ions, then, pure axial COM motio
constitutes a normal mode.~This result holds for an arbitrary
number of identical ions.! We also note that the center io
does not move in mode #2; hence the frequency and eig
vector of mode #2 are independent ofm. For any odd num-
berN of ions there are (N21)/2 modes for which the cente
ion does not move. These modes will likewise have frequ
cies and eigenvectors independent ofm. Moreover, they have
vnc2m

(k) 52vnc1m
(k) and so they are orthogonal to the CO

motion and do not couple to uniform electric fields. Th
center ion moves in the other (N11)/2 modes, and unles
m51, each of these (N11)/2 modes has a component
axial COM motion and therefore couples to uniform elect
fields.
0-2
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FIG. 1. Normalized axial
mode frequencies as a function o
m for ~a! 3, ~b! 5, ~c! 7, and~d! 9
ions.
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For N55 and higher, the normal mode frequencies d
pend onm in a complicated way. However, it is easy to fin
the frequencies numerically. Figure 1 shows the mode
quencies forN53, 5, 7, and 9 as a function ofm for 0.01
,m,100. The modes are numbered in order of increas
frequency~atm51), and are normalized tovz . In each case
the lowest-lying mode has all ions moving in the same
rection and consists of pure COM motion form51. The
even-numbered modes correspond to the (N21)/2 modes
for which the center ion does not move. Their frequenc
are therefore independent ofm. For both very large and very
smallm the modes pair up, as shown in Fig. 1. For each p
there is some valuem.1 for which the modes become de
generate. The relative spacing between modes in a pa
also smaller in the large-m limit than in the small-m limit.

If the static confining potential of the trap is not perfec
harmonic, the normal modes of motion will exchange ene
with each other. This problem is addressed in Ref.@3# ~Sec.
4.1.8!. These effects are small if all modes are reasona
cold. Moreover, mode cross-coupling is a resonant proc
which requires the mode frequencies to be related as sum
differences. Avoiding such resonances by tuning the trap
tentials reduces the rate of energy transfer by a large fac

The Rabi frequency of the laser-ion interaction sets
speed of quantum logic gates and the linewidths of tra
tions between vibrational states of the ion crystal. If we p
form quantum logic on a normal mode whose frequency
too close to that of another ‘‘spectator’’ mode, we must
duce our Rabi frequency, and thus our gate speed, to a
driving transitions on the spectator mode; otherwise we s
fer a loss of fidelity. Only the lowest-frequency mode is w
separated from all other modes form very large. We will
03231
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show below~Sec. IV! that this mode is undesirable for use
quantum logic. Hence, in order to maximize gate speed,
best to use a cooling ion that is of the same mass as
lighter than, the logic ions. In this case mode 2 is well se
rated from all other modes, as shown in Fig. 1.

III. TRANSVERSE MODES OF MOTION

We now consider the motion of the ions transverse to
z axis. The ions experience an RF potentialx cos(Vt)(x2

2y2)/2 for a suitable choice of axesx andy perpendicular to
z, where V is the frequency of the RF field andx is a
constant. The static confining potential can be writt
(qa0/2)„z22ax22(12a)y2

… at the position of the ions
~with a a constant!, so there is also a transverse static ele
tric field. To analyze the ion motion, we work in the pseud
potential approximation@15#, in which one time averages th
motion over a period of the RF drive to find the ponderom
tive force on the ion. If the static potential is negligible, th
RF drive gives rise to an effective transverse confining
tential of 1

2 mv r0
2 (x21y2), wherev r05qx/(A2Vm) for an

ion of massm. If we include the effects of the static field, th
transverse potential becomes1

2 m(vx
2x21vy

2y2), where vx

5v r0A12avz
2/v r0

2 , vy5v r0A12(12a)vz
2/v r0

2 . Below
we will assumea51/2, so thatvy5vx . In any case, the
transverse potential is that of a simple harmonic oscillator
we saw also for the axial potential. However, the transve
potential depends directly on the ion’s mass, so the ce
ion of a string feels a different trap potential than the oth
for mÞ1.

We definee5v r0 /vz , so thatvx5vzAe221/2. Then the
0-3
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normalized Lagrangian for the motion alongx is

L5
1

2 (
i 51

N S dXi

dT D 2

2
1

2 (
i , j 51

N

Bi j8 XiXj , ~17!

whereXi5xiAqa0 for iÞnc andXnc
5xiAqa0m are normal-

ized ion vibration amplitudes alongx. Here

Bi j8 5H Bi j i , j Þnc

Bi j /Am i or j 5nc ,iÞ j

Bi j /m i 5 j 5nc

~18!

and

Bi j 5

¦

e22
1

2
2(

kÞ i
k51

N
1

uui2uku3
i 5 j , j Þnc

e2

m
2

1

2
2(

kÞ i
k51

N
1

uui2uku3
i 5 j 5nc

1

uui2uj u3
iÞ j .

~19!

We can describe the normal mode frequencies and osc
tion amplitudes in terms of the eigenvectors and eigenva
of Bi j8 , just as for the axial case above. The normalizations
the time and position coordinates remain the same as in
axial case.

In the previous section, we assumed that the radial c
finement of the ions was strong enough that the configura
of ions in a string along thez axis was always stable. How
ever, for sufficiently smalle, the string configuration be
comes unstable. The stable configurations for different v
ues of e can be calculated@16,17#, and several of these
configurations have been observed for small numbers of
@10,11#. Rather than review the theory of these configu
tions, we will simply find the range of validity of our smal
oscillation Lagrangian for the string configuration. The stri
will remain stable for alle greater than somees5es(m); es
also varies withN. On the boundary between stable and u
stable regions, the frequency of some mode goes to z
Recalling that the determinant of a matrix is equal to
product of its eigenvalues, we see thates(m) is the maxi-
mum value ofe satisfying detB8(e,m)50 for m fixed. Fig-
ure 2 showses(m) as a function ofm for 3, 5, 7, and 9 ions.
In each case, there is a cusp ines(m) corresponding to the
crossing of the two largest solutions to detB8(e,m)50. The
position of the cusp varies with the number of ions, but l
betweenm50.1 andm51 for N<9. The positions of the
cusps are labeled with arrows in Fig. 2. Form greater than
the value at the cusp,e,es(m) corresponds to instability o
the zigzag mode, so that the string breaks into a config
tion in which each ion is displaced in the opposite direct
to its neighbors@16,17#. For m smaller than the value at th
03231
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cusp,es is independent ofm. In this regime,e,es creates an
instability in a mode similar to the zigzag mode, except th
the center ion remains fixed.

We can proceed to calculate the frequencies of the tra
verse modes for valuese.es(m). Again, these frequencie
are normalized to the axial frequency of a single ion of m
m. Figure 3 shows the transverse mode frequencies for 3
7, and 9 ions as a function ofm, wheree is taken equal to
1.1es(m). The modes are numbered in order of increas
frequency atm51 ~all ions identical!. In this numbering
scheme, the central ion moves in odd-numbered modes
not in even-numbered modes. The frequencies of the ev
numbered modes appear to depend onm because they are
calculated at a multiple ofes(m); for constante these fre-
quencies are independent ofm. The cusps in the mode fre
quencies in Fig. 3 arise from the cusps ofes(m) at the cross-
over points between the two relevant solutions of detB8
50. Mode frequencies plotted for a constant value ofe do
not exhibit these cusps. As in the case of axial motion,
mode frequencies form pairs of one even- and one o
numbered mode for smallm. However, for largem all but
one of the transverse modes become degenerate. The
nondegenerate transverse mode in this case is the zi
mode. In general, the modes are most easily resolved f
their neighbors form51, as in the case of axial motion
Increasinge reduces the frequency spacing between nea
degenerate modes. Ate51.1es(m) and m51, for instance,
the fractional spacing between the cold transverse mode
ions and its nearest neighbor is 0.20, but fore51.5es(m) the
same spacing is 0.09.

The near degeneracy of the modes for large or smalm
and fore/es significantly greater than 1 limits the usefulne
of these modes because of possible mode cross-coupling
as for the axial modes. Resolving a particular transve
mode requires operating the trap near the point at which
string configuration becomes unstable, i.e.,e neare0(m). In
this regime, the collective motion of the ions is quite sen

FIG. 2. Trap anisotropy at instability of the string configuratio
as a function ofm for 3, 5, 7, and 9 ions. Arrows indicate the cus
discussed in the text.
0-4
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FIG. 3. Normalized frequen-
cies of the transverse modes as
function of m with e51.1e0(m)
for ~a! 3, ~b! 5, ~c! 7, and ~d! 9
ions.
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tive to uncontrolled perturbations, which may pose sign
cant technical problems for using a transverse mode in qu
tum logic operations.

IV. MODE HEATING

Stochastic electric fields present on the ion trap el
trodes, for instance, from fluctuating surface potentials,
heat the various normal modes of motion incoherently.
ion trap characteristic dimensiondtrap much larger than the
size of the ion crystaldions , these fields are approximate
uniform across the ion crystal, so they couple only to
COM motion. The (N21)/2 even-numbered modes are o
thogonal to the COM motion, so they are only heated
fluctuating electric-field gradients. The heating rates of th
modes are reduced by a factor of at least (dions /dtrap)2!1
as compared to the heating of the other modes@4#. In the
following, therefore, we will neglect the effects of fluctua
ing field gradients, so that the even-numbered modes do
heat at all.

The analysis of Secs. II and III shows that the motion o
crystal of N ions is separable into the 3N normal modes,
each of which is equivalent to a simple harmonic oscillat
Hence we can quantize the crystal motion by quantizing
normal modes. Thekth normal mode gives rise to a ladder
energy levels spaced by\zkvz , with 3N such ladders in all.
If we now write the uniform electric-field power spectr
density asSE(v), we can generalize the result of Ref.@18# to
give

ṅ̄k5
q2SE~zkvz!

4m\zkvz S vnc

(k)

Am
1 (

j Þnc

j 51

N

v j
(k)D 2

~20!
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for the heating rate of thekth mode, expressed in terms o
the average number of quanta gained per second. Recal
v i

(k) is the oscillation amplitude of thei th ion in the kth
normal mode, expressed in the normalized coordinates.
useful to normalize the heating rate in Eq.~20! to the heating
rate of the lowest-lying axial mode of a string of identic
ions. This normal mode consists entirely of COM motio
and we writev j

COM51/AN for all ions. The normalized heat
ing rate of thekth mode is then

ṅ̄k

ṅ̄COM

5
1

Nzk S vnc

(k)

Am
1 (

j Þnc

j 51

N

v j
(k)D 2

, ~21!

where we have assumed that the spectral densitySE(v) is
constant over the frequency range of the normal modes,
SE(vz)5SE(zkvz).

Figure 4 shows plots of the normalized heating rates
the axial modes forN53, 5, 7, and 9 as a function ofm.
Figure 5 is the same, but for the transverse modes, wite
51.1es . The numbering of modes on the plots of heati
rate matches the numbering on the corresponding plot
mode frequency~Figs 1 and 2!.

In both axial-mode and transverse-mode plots, the ev
numbered modes have the center ion at rest, while the ce
ion moves for all odd-numbered modes. We see from Fig
and 5 that the modes for which the center ion is fixed c
never heat, while all the other modes always heat to so
extent formÞ1. We will refer to these modes as ‘‘cold’’ an
‘‘hot’’ modes, respectively. If the ions are identical, only th
modes with all ions moving with the same amplitude~COM
0-5
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FIG. 4. Normalized heating
rates for the axial modes as
function of m for ~a! 3, ~b! 5, ~c!
7, and~d! 9 ions.
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modes! can heat. There are three such modes, one alonx̂,
one alongŷ, and one alongẑ. In interpreting Figs. 4 and 5, i
is important to recall that the normalized heating rate defi
in Eq. ~21! is inversely proportional to the mode frequenc
For instance, them dependence of the heating rate of t
highest-frequency transverse mode can be largely ascribe
variations in the mode frequency, rather than to change
the coupling of the mode to the electric field.

V. PROSPECTS FOR SYMPATHETIC COOLING

Heating reduces logic gate fidelity in two ways. The log
mode itself can be heated, but by choosing a cold mode
can render this effect negligible. On the other hand, the R
frequency of the transition between logic-mode motio
states depends on the total wave-packet spread of the
involved in the transition@3,4#. Heating on modes other tha
the logic mode can thus lead to unknown, uncontrol
changes in this Rabi frequency, resulting in overdriving
underdriving of the transition. The purpose of sympathe
cooling is to remove this effect by cooling the center ion a
thus all hot modes.

In the foregoing, we have chosen to consider only
case of a crystal of an odd number of ions, with the cool
ion at the center. We now see that this is the only c
suitable for sympathetic cooling, since only in this case
we find both~a! cold modes for arbitrarym and~b! isolation
of motion of the cold modes from motion of the cooling io
As long as the crystal is symmetric under inversion inzW, the
normal modes must be either symmetric~hot! or antisym-
metric ~cold! under inversion inzW. If the cooling ion is not at
the center of the crystal, the crystal symmetry is broken
03231
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cold modes will only appear for particular values ofm. The
case of a crystal of an even number of ions, with two cool
ions at the center, will again yield cold modes. Howev
excitation of any mode will cause the cooling ions to mov
so that the cold modes are not well isolated from the sym
thetic cooling in this case.

For sympathetic cooling to be useful, we must find a co
mode suitable for use in quantum logic. The cold mode m
be spectrally well separated from any other modes in orde
maximize gate speed. We can use the lowest-lying cold a
mode as the logic mode form&3. In this mode, called the
breathing mode, the center ion remains fixed and the sp
ings between ions expand and contract in unison. Unless
trap is operated very close to the instability point of t
string configuration, the breathing mode is better separa
from its neighbors than are any of the cold transverse mo
For m*3 any cold mode, either axial or transverse, is nea
degenerate with a hot mode. In this regime one must ma
specific calculation of mode frequencies in order to find
best-resolved cold mode. Even so, the cold axial modes
again better separated from their neighbors than are the
transverse modes, except fore very close toes(m). It seems
best to select a cold axial mode as the logic mode in m
cases.

By selecting our laser-beam geometry appropriately,
can ensure that the Rabi frequency of the motional transi
on the axial mode used for logic depends chiefly on
spread of the ion wave packet alongz. In this case, heating o
the axial modes will affect logic-gate fidelity, but heating
the transverse modes will have little effect. If the mass of
central ion is nearly the same as that of the others (m'1),
only the lowest axial mode will heat significantly, and w
0-6
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FIG. 5. Normalized heating
rates for the transverse modes as
function of m with e51.1e0(m)
for ~a! 3, ~b! 5, ~c! 7, and ~d! 9
ions.
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can continuously cool this mode by cooling only the cent
ion, ensuring that all ions remain in the Lamb-Dicke lim
@3#. If m is not near 1, we must cool all (N11)/2 hot modes
~again by addressing the central ion! to keep all ions in the
Lamb-Dicke limit.

The analysis above indicates that, all other things be
equal, we are best off if our substituted ion is identical to,
is an isotope of, the logic ions. However, sympathetic co
ing can still be useful if the two ion species have differe
masses. For example, we can consider sympathetic coo
using the species9Be1 and 24Mg1. Linear traps constructed
at NIST have demonstrated axial secular frequencies of o
10 MHz for single trapped9Be1 ions. For three ions with
24Mg1 as the central ion,vz(Be1)52p310 MHz yields a
spacing of 1.6 MHz between the cold axial breathing mo
and its nearest neighbor. If we reverse the roles of the i
@vz(Mg1)52p310 MHz#, the spacing increases to 6
MHz. The transverse modes are much harder to resolve f
each other. For three ions with24Mg1 in the center, we
requirev r0(Be1)52p327.6 MHz to obtaine51.1es , and
the spacing between the cold transverse zigzag mode an
nearest neighbor is only 560 kHz. Reversing the roles of
ions, we finde51.1es at v r0(Mg1)52p314.7 MHz with
a spacing of 1.1 MHz. For this combination of ion speci
the cold axial breathing mode seems most appropriate
03231
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logic. For a string of 3 or 5 ions, sympathetic cooling wou
require driving transitions on 2 or 3 axial-mode sideband
respectively. From this example we see that sympathe
cooling can be useful even for ion mass ratios of nearly
to 1.

VI. CONCLUSION

We have investigated a particular sympathetic cooli
scheme for the case of an ion string confined in a linear
trap. We have numerically calculated the mode frequenc
of the axial and transverse modes as functions of the m
ratio m and trap anisotropye for 3, 5, 7, and 9 ions. We have
also calculated the heating rates of these modes relativ
the heating rate of a single ion, assuming that the heatin
driven by a uniform stochastic electric field. The results i
dicate that the scheme is feasible for many choices of
species if we use a cold axial mode as the logic mode. T
optimal implementation of the scheme employs two ion sp
cies of nearly equal mass. However, a demonstration of sy
pathetic cooling using9Be1 and 24Mg1 appears well within
the reach of current experimental technique.
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