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Random numbers certified by Bell’s theorem
S. Pironio1,2*, A. Acı́n3,4*, S. Massar1*, A. Boyer de la Giroday5, D. N. Matsukevich6, P. Maunz6, S. Olmschenk6,
D. Hayes6, L. Luo6, T. A. Manning6 & C. Monroe6

Randomness is a fundamental feature of nature and a valuable
resource for applications ranging from cryptography and gambling
to numerical simulation of physical and biological systems. Random
numbers, however, are difficult to characterize mathematically1,
and their generation must rely on an unpredictable physical
process2–6. Inaccuracies in the theoretical modelling of such pro-
cesses or failures of the devices, possibly due to adversarial attacks,
limit the reliability of random number generators in ways that are
difficult to control and detect. Here, inspired by earlier work on
non-locality-based7–9 and device-independent10–14 quantum infor-
mation processing, we show that the non-local correlations of
entangled quantum particles can be used to certify the presence of
genuine randomness. It is thereby possible to design a cryptogra-
phically secure random number generator that does not require any
assumption about the internal working of the device. Such a strong
form of randomness generation is impossible classically and pos-
sible in quantum systems only if certified by a Bell inequality viola-
tion15. We carry out a proof-of-concept demonstration of this
proposal in a system of two entangled atoms separated by approxi-
mately one metre. The observed Bell inequality violation, featuring
near perfect detection efficiency, guarantees that 42 new random
numbers are generated with 99 per cent confidence. Our results lay
the groundwork for future device-independent quantum informa-
tion experiments and for addressing fundamental issues raised by
the intrinsic randomness of quantum theory.

The characterization of true randomness is elusive. There exist stat-
istical tests used to verify the absence of certain patterns in a stream of
numbers16,17, but no finite set of tests can ever be considered complete,
as there may be patterns not covered by such tests. For example, certain
pseudo-random number generators are deterministic in nature, yet
produce results that satisfy all the randomness tests18. At a more fun-
damental level, there is no such thing as true randomness in the classical
world: any classical system admits in principle a deterministic descrip-
tion and thus appears random to us as a consequence of a lack of
knowledge about its fundamental description. Quantum theory is, on
the other hand, fundamentally random; yet, in any real experiment the
intrinsic randomness of quantum systems is necessarily mixed-up with
an apparent randomness that results from noise or lack of control of the
experiment. It is therefore unclear how to certify or quantify unequi-
vocally the observed random behaviour even of a quantum process.

These considerations are of direct relevance to applications of
randomness, and in particular cryptographic applications. Imperfec-
tions in random number generators2–6,18 (RNGs) can introduce
patterns undetected by statistical tests but known to an adversary.
Furthermore, if the device is not trusted but viewed as a black
box prepared by an adversary, no existing RNGs can establish the
presence of private randomness. Indeed, one can never exclude the

possibility that the numbers were generated in advance by the advers-
ary and copied into a memory located inside the device.

Here we establish a fundamental link between the violation of Bell
inequalities and the unpredictable character of the outcomes of
quantum measurements and show, as originally proposed in ref. 14,
that the non-local correlations of quantum states can be used to
generate certified private randomness. The violation of a Bell inequa-
lity15 guarantees that the observed outputs are not predetermined and
that they arise from entangled quantum systems that possess intrinsic
randomness. For simplicity, we consider the Clauser–Horn–
Shimony–Holt (CHSH) form of Bell inequality19, but our approach
is general and applies to any Bell inequality. We thus consider two
separate systems that can each be measured in two different ways, with
a measurement on each system resulting in one of two values (Fig. 1).
The binary variables x and y describe the type of measurement per-
formed on each system, resulting in respective binary measurement
outcomes a and b. We quantify the Bell inequality violation through
the CHSH correlation function19

I~
P
x,y

{1ð Þxy
P a~b xyjð Þ{P a=b xyjð Þ½ � ð1Þ

where P(a 5 bjxy) is the probability that a 5 b when settings (x, y) are
chosen, and P(a ? bjxy) is defined analogously. Systems that admit a
local, hence deterministic20, description satisfy I # 2. Certain mea-
surements performed on entangled states, however, can violate this
inequality.

In order to estimate the Bell violation, the experiment is repeated n
times in succession. The measurement choices (x, y) for each trial are
generated by an identical and independent probability distribution
P(xy). We denote the final output string after the n runs r 5 (a1, b1; … ;
an, bn) and the input string s 5 (x1, y1; … ; xn, yn). An estimator Î of the
CHSH expression, equation (1), determined from the observed data is
given by

Î~
1

n

X
x,y

{1ð Þxy
N a~b,xyð Þ{N a=b,xyð Þ½ �=P xyð Þ ð2Þ

where N(a 5 b, xy) is the number of times that the measurements x, y
were performed and that the outcomes a and b were found equal after
n realizations, and where N(a ? b, xy) is defined analogously.

The randomness of the output string r can be quantified by the
min-entropy21 H‘(RjS) 5 2log2[maxr P(rjs)], where P(rjs) is the
conditional probability of obtaining the outcomes r when the mea-
surements s are made and the maximum is taken over all possible
values of the output string r. We show (Supplementary Information
A) that the min-entropy of the outputs r is bounded by

H? R Sjð Þ§nf Î{e
� �

ð3Þ
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Avançats, 08010 Barcelona, Spain. 5Cavendish Laboratory, Cambridge University, Cambridge CB3 0HE, UK. 6Joint Quantum Institute, University of Maryland Department of Physics
and National Institute of Standards and Technology, College Park, Maryland 20742, USA.

Vol 464 | 15 April 2010 | doi:10.1038/nature09008

1021
Macmillan Publishers Limited. All rights reserved©2010

www.nature.com/doifinder/10.1038/nature09008
www.nature.com/nature
www.nature.com/nature


with probability greater than 1 2 d, where e~O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{ log d= q2nð Þ

p� �
is a statistical parameter and q 5 minx,y P(xy) is the probability of the
least probable input pair. The function f(I) is obtained using semi-
definite programming22,23 and presented in Fig. 2. To derive the
bound given as equation (3), we make the following assumptions:
(1) the two observed systems satisfy the laws of quantum theory; (2)
they are separated and non-interacting during each measurement
step i; and (3) the inputs xi, yi are generated by random processes
that are independent and uncorrelated from the systems and their
value is revealed to the systems only at step i (Fig. 1). Other than these

assumptions, no constraints are imposed on the states, measure-
ments, or the dimension of the Hilbert space. We do not even assume
that the system behaves identically and independently for each trial;
for instance, the devices may have an internal memory (possibly
quantum), so that the ith measurement can depend on the previous
i 2 1 results and measurement settings. Any value of the min-entropy
smaller than that given by equation (3) is incompatible with

quantum theory. The observed CHSH quantity Î thus provides a
bound (Fig. 3) on the randomness produced by the quantum devices,
independent of any apparent randomness that could arise from noise
or limited control over the experiment.

This result can be exploited to construct a novel RNG where the
violation of a Bell inequality guarantees that the output is random and
private from any adversary, even in a device-independent scenario12,13

where the internal workings of the two quantum devices are unknown
or not trusted (Supplementary Information B). Some amount of ran-
domness at the inputs is necessary to perform the statistical tests used
to estimate the Bell inequality violation. Hence what we describe here
is a randomness expansion scheme14, where a small private random
seed is expanded into a longer private random string. The randomness
used to choose the inputs needs not be divulged and can be used
subsequently for another task. The final random string, the con-
catenation of the input and output random strings, is thus manifestly
longer than the initial one. However, when n becomes sufficiently
large, a catalysis effect is possible wherein a seed string of length
O

ffiffiffi
n
p

log
ffiffiffi
n
p� �

produces a much longer random output string of
entropy O(n), as illustrated in Fig. 3 (Supplementary Information
B). This is possible because I can be adequately estimated without
consuming much randomness by using the same input pair most of
the time (for example, (x, y) 5 (0, 0)) while only seldom sampling
from the other possibilities, in which case q=1. This follows from the
fact that the CHSH expression depends only the conditional probabil-
ities P(abjxy), which can be estimated even if x, y are not uniformly
distributed.

Although the final output string may not be uniformly random (it
may not even pass one of the usual statistical tests16,17 of randomness),
we are guaranteed that its entropy is bounded by equation (3). With
the help of a small private random seed, the output string can then be
classically processed using a randomness extractor24 to convert it into
a string of size nf Î{e

� �
that is nearly uniform and uncorrelated to
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Figure 1 | Experimental realization of private random number generator
using two 171Yb1 qubits trapped in independent vacuum chambers. Each
atom emits a single photon (to the left) that is entangled with its host atomic
qubit and coupled into optical fibres; the interference of the photons on the
beamsplitter (BS) and subsequent coincidence detection on photomultiplier
tubes (PMT) herald the entanglement of the atomic qubits26. After the qubits
are entangled, binary random inputs (x, y) are fed to microwave oscillators
that coherently rotate each qubit in one of two ways before measurement26.
Each qubit is finally measured through fluorescence that is collected by the
PMTs25 (right), resulting in the binary outputs (a, b). Abstractly, we can view
this scheme as composed of two black boxes that receive inputs x, y and
produce outputs a, b. In our theoretical analysis, no hypotheses are made
about the internal working of the devices, but the classical and quantum

information flowing in and out of the boxes is restricted (dashed lines). In
particular, the two boxes are free to communicate before inputs are
introduced (to establish shared entanglement), but are no longer allowed to
interact during the measurement process. Moreover, the values of the inputs
are revealed to the boxes only at the beginning of the measurement process.
In the experiment, no active measures are taken to control the flow of
information in and out of the systems. However, once the atoms are
entangled, direct interaction between them is negligible. In addition, the
value of the chosen measurement bases (x, y), obtained by combining the
outputs of several random number generators, is unlikely to be correlated to
the state of the atoms before the measurement microwave pulses are applied.
The conditions for the bound (equation (3)) on the entropy of the outputs
should thus be satisfied.
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Figure 2 | Plot of the function f(I) bounding the output randomness. The
function f(I) can be interpreted as a bound on the min-entropy per use of the
system for a given CHSH expectation I, in the asymptotic limit of large n
where finite statistics effects (the parameter e in equation (3)) can be
neglected. The function f(I) (curve a) is derived through semidefinite
programming using the techniques of refs 22 and 23 (semidefinite
programming is a numerical method that is guaranteed to converge to the
exact result). Curve b corresponds to the analytical lower-bound

f Ið Þ§{log2 1{log2 1z

ffiffiffiffiffiffiffiffiffiffiffiffi
2{

I2

4

r !" #
. Curve c corresponds to the

minimal value f(I) 5 2log2(3/2 2 I/4) of the min-entropy implied by the no-
signalling principle alone. The function f(I) starts at zero at the local
threshold value I 5 2. Systems that violate the CHSH inequality (I . 2), on
the other hand, satisfy f(I) . 0, that is, have a positive min-entropy.

LETTERS NATURE | Vol 464 | 15 April 2010

1022
Macmillan Publishers Limited. All rights reserved©2010



the information of an adversary. The bound, equation (3), establishes
security of our randomness expansion protocol against an adversary
that measures his side-information before the randomness extraction
step; for example, against an adversary that has only a short-lived or
bounded quantum memory. This is because it applies when condi-
tioned to any measurement performed by the adversary. However,
our protocol is not yet proven to be universally composable against a
full quantum adversary, that is, secure against an adversary that stores
his side-information in a quantum memory which can be measured
at a later stage. A universally composable proof would also cover the
situation in which the adversary tries to estimate the random numbers
after getting partial information about them. Proving universally
composable security of our protocol would also probably lead to
much more efficient randomness expansion schemes. Note that the
fact that the bound, equation (3), holds for devices that have an
internal memory is a significant advance over the device-independent
protocols9,12,13 proposed so far. It is the crucial feature that makes our
protocol practical.

The experimental realization of this scheme requires the obser-
vation of a Bell inequality with the detection loophole closed (near-
perfect detection of every event), so that the outputs r cannot be
deterministically reproduced. The two individual systems should also
be sufficiently separated so that they do not interact, but it is not
necessary for the two subsystems to be space-like separated (Sup-
plementary Information C).

We realize this situation with two 171Yb1 atomic ion quantum bits
(qubits)25 confined in two independent vacuum chambers separated
by about 1 m. The qubit levels within each atom are entangled
through a probabilistic process whereby each atom is entangled with
emitted photons and the interference and coincident detection of the

two photons heralds successful preparation of a near-maximal
entangled state of the two remote atomic qubits through entangle-
ment swapping26, as described in Fig. 1 and Supplementary Informa-
tion D. The binary values a and b correspond to subsequent
measurement results of each qubit obtained through standard atomic
fluorescence techniques (detection error ,3%)25, and every event is
recorded. The respective binary measurement bases x and y are
chosen randomly and set by coherent qubit rotation operations
before measurement. Direct interaction between the atoms is neg-
ligible and classical microwave and optical fields used to perform
rotations and measurements on one atom have no influence on the
other atom (we perform statistical tests to verify that the measure-
ment data are compatible with this hypothesis; Supplementary Infor-
mation D.4). To estimate the value of the CHSH inequality, we
accumulate n 5 3,016 successive entanglement events over the period
of about one month, summarized in Supplementary Information D.1
and Table 1. The observed CHSH violation of Î~2:414 represents a
substantial improvement over previous results26,27. The probability
that a local theory, possibly including an internal memory of past
events28, could produce such a violation is P Î§2:414

� �
ƒ0:00077

(Supplementary Information D.3).
In the experiment, we chose a uniform random distribution of the

initial input measurement bases, P(x, y) 5 1/4, to minimize the num-
ber of runs required to obtain a meaningful bound on the output
entropy (Fig. 3). The observed CHSH violation implies that at least
H(RjS) . 42 new random bits are generated in the experiment with a
99% confidence level. This is the first time that one can certify that
new randomness is produced in an experiment without a detailed
model of the devices. We rely only on a high-level description (atoms
confined to independent vacuum chambers separated by one metre)
to ensure the absence of interaction between the two subsystems
when the measurements are performed. As no active measures are
taken in our experiment to control this interaction, these new ran-
dom bits cannot be considered private in the strongest adversarial
device-independent scenario. The level of security provided by our
experiment will nevertheless be sufficient for many applications, as it
guarantees that almost all failure modes of the devices will be
detected. The current experiment does not reach the catalysis regime
mentioned above, owing to the low success probability of heralded
entanglement generation (2 3 1028) (ref. 26). However, it should be
possible to exceed the catalysis threshold by improving the photon-
collection efficiency through the use of nearby optical collection ele-
ments or optical cavities29.

Stepping back to the more conceptual level, we note that equation
(3) relates the random character of quantum theory to the violation
of Bell inequalities. This bound can be modified for a situation where
we assume only the no-signalling principle instead of the entire
quantum formalism (Figs 2 and 3 and Supplementary Information
A.3). Such a bound lays the basis for addressing in a statistically
significant way one of the most fundamental questions raised by
quantum theory: whether our world is compatible with determinism
(but then necessarily allows signalling between space-like separated

Table 1 | Experimental results

Inputs
(x, y)

Rotations
(Qx, Qy)

N(0, 0; x, y) N(0, 1; x, y) N(1, 0; x, y) N(1, 1; x, y) Total
events

P(a 5 b | xy)

0, 0 0u, 45u 293 94 70 295 752 0.782

0, 1 0u, 135u 298 70 74 309 751 0.808

1, 0 90u, 45u 283 69 64 291 707 0.812

1, 1 90u, 135u 68 340 309 89 806 0.195

Observed number of events N(a, b; x, y) for which the measurement on one atom gave outcome
a and the measurement on the other atom gave outcome b, given the binary choices of the
measurement bases (x, y) corresponding to p/2 qubit rotations with phase angles (Qx, Qy) on the
equator of the Bloch sphere. The last column gives the fraction of events where a 5 b given each
input. If the experiment is interpreted as consisting of identical and independent realizations (an
assumption not made elsewhere in this paper), the data then indicate a CHSH observable of
Î~
X

x,y
{1ð Þxy P a~b xyjð Þ{P a=b xyjð Þ½ �~2:414+0:058, significantly beyond the local-

deterministic threshold of I 5 2.
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Figure 3 | Bound nf(I) on the minimum entropy produced versus the
number of trials n for an observed CHSH violation of Î~2:414, and a
confidence level 1 2 d 5 99%. The amount of randomness given by the
bound (equation (3)) depends on the probability with which the inputs of
each trial (xi, yi) are chosen through the parameter q 5 minx,y[P(x, y)], where
P(x, y) is the probability distribution of the inputs. We have plotted the
bounds on the entropy implied by quantum theory for a uniform choice of
inputs [P(x, y) 5 1/4] (curve a) and for a biased choice of inputs given by
P(00) 5 1 2 3q, P(01) 5 P(10) 5 P(11) 5 q, where q 5 an21/2 with a 5 11
(curve b). For a given number n of uses of the devices, the uniform choice of
inputs leads to more randomness in the outputs. On the other hand, biased
inputs require less randomness to be generated, and the net amount of
randomness produced (given by the difference between the output and input
entropy) becomes positive for sufficiently large n. Curve c represents the
bound on the entropy implied by the no-signalling principle alone for a
uniform choice of inputs. Note that in all cases, a minimal number of uses of
the devices (a few thousand) is required to guarantee that some randomness
has been produced at the confidence level 1 2 d 5 99% The inset shows the
net amount of entropy produced (output entropy minus input entropy) for
the biased choice of inputs with the observed CHSH violation.

NATURE | Vol 464 | 15 April 2010 LETTERS

1023
Macmillan Publishers Limited. All rights reserved©2010



regions), or is inherently random (if signalling between space-liked
separated regions is deemed impossible).
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