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1. Introduction

Many-body quantum systems are often impossible to understand analytically and difficult to
simulate numerically due to the exponential increase of required computational resources with
system size. As Feynman proposed in 1982 [1, 2], a well-controlled quantum system could
efficiently simulate another quantum system whose behavior is classically intractable. For
example, a quantum simulator could be used to determine properties and dynamics derived
from poorly understood models in condensed matter such as quantum magnetism [3], spin
glasses [4], spin liquids [5] and high-temperature superconductors [6, 7]. Quantum spin models
in particular can describe a large class of many-body quantum physics, and rich phenomena
in condensed matter can be understood by finding the ground states of certain classes of spin
Hamiltonians. Classical simulations of quantum spin models are currently limited to less than
40 spins [8, 9]; thus even quantum simulators of only 40 or more interacting spins are of great
interest.

A quantum simulator can be viewed as a restricted version of a quantum computer, with
quantum bits (qubits) playing the role of the spins. Compared to a quantum computer, a
quantum simulator would not perform the universal computation, but could solve a certain
difficult problem that is otherwise intractable. One way to operate such a quantum simulator
is to borrow ideas from adiabatic quantum computation [10, 11], where the initial state
of a non-interacting (trivial) Hamiltonian is adiabatically transformed to the corresponding
ground state of the target Hamiltonian. Intriguing physics such as exotic magnetic order and
quantum criticality can then be directly probed. Like quantum computers, quantum simulators
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require a platform with excellent coherence properties and controllable interactions, such as
trapped atomic ions [12–21], neutral atoms [22–26], quantum dots [27] or superconducting
circuits [28–30].

In this paper, we focus on the recent developments in the quantum simulation of the
transverse Ising model with atomic ions confined to a linear chain. First we show how to realize
effective spin–spin interactions and a transverse field with the trapped ion system (sections 2
and 3) [31]. Then we discuss the adiabatic algorithm and the criteria for the ground state
evolution as it relates to the energy gap (section 4) [18]. In this general framework, we will
show several results of the simulation such as a measured phase diagram (section 5) and a
direct connection between spin frustration and entanglement with a small number of spins
(section 6) [17, 18]. Finally, we present recent results on scaling the quantum simulation to
larger numbers of spins (section 7) [19] and conclude with speculations on scaling the system
approaching a level where classical modeling becomes intractable.

2. Realization of the transverse Ising model with trapped ions

The transverse Ising model for a set of interacting spin-1/2 particles is the simplest spin model
that reveals interesting properties of quantum magnetism such as spin frustration and quantum
criticality [32, 33]. Solving the Ising model in more than two dimensions and the transverse Ising
model in two dimensions both belong to the class of ‘NP-complete’ problems [34–36] and thus
can be related to a variety of intractable problems such as the traveling salesman problem [37].
The Ising model with a transverse field is described by the following Hamiltonian:

H =

∑
i< j

Ji, jσ
(i)
x σ

( j)
x + By

∑
i

σ (i)y , (1)

where σ (i)α , α = x, y, z, are the Pauli matrices of the i th spin, Ji, j is the Ising coupling
matrix, By is an effective uniform transverse field and Planck’s constant h̄ = 1 is assumed
throughout.

Any two-level quantum system can be mapped to a spin-1/2 particle in an effective
magnetic field. Atomic spins are typically represented by a pair of electronic or hyperfine
levels [38–40]. In the work described here, the spin-1/2 system (denoted by |↑〉z and
|↓〉z) is represented by two hyperfine ground states of 171Yb+, 2S1/2 |F = 1,m F = 0〉

and |F = 0,m F = 0〉, the so-called clock states separated in frequency by νHF/2π =

12 642 812 118 + 310B2
m Hz. Here, F and m F are quantum numbers associated with the total

atomic angular momentum and its projection along a weak magnetic field of Bm ≈ 4 G. Note
that the frequency difference of the clock state has only a small linear dependence on the
external magnetic field, and coherence times exceeding 10 min have been reported in this atomic
system [41]. In our experiment, the coherence time is measured to be of the order of 1 s
without magnetic field shielding or compensation [42], which is much longer than the simulation
duration, of the order of ms.

Because atomic ions within a linear crystal are typically spaced by a few micrometers,
the effective spins do not have sizable direct spin–spin interactions. Instead, large spin–spin
couplings are induced by collective excitations of the vibrational normal modes through optical
dipole forces. In the following, we discuss how to realize such spin–spin interactions in trapped
ions intuitively (sections 2.1 and 2.2) and formally (section 2.3).
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Figure 1. (a) A harmonic oscillator with particle mass m and natural
frequency µ. (b) The response of the particle’s position x(t) and the momentum
p(t) when it is driven by an oscillating force F(t)= FA cos 2π(ν + δ)t , with
x(0)= p(0)= 0. At τ = 1/δ, the coordinates x(t) and p(t) return to their initial
conditions. (c) Phase space representation of the response, where the particle
obtains the phase during the excitation by the amount of the action (equation (2)).
(d) Phase space evolution of the response in a frame rotating at the natural
frequency ν. The obtained phase is identical to the area of the closed space,
and is sometimes called a geometric phase [44–46].

2.1. Quantum phases and harmonic motion

In the semiclassical limit of quantum mechanics, a particle is described by a wavepacket ψ ,
whose phase evolves according to

ψ(t)= e−i
∫ t

0 L dtψ(0), (2)

where L is the Lagrangian describing the dynamics of the particle along a particular path [43].
In a harmonic oscillator illustrated in figure 1(a), the Lagrangian is L =

p2

2m −
1
2m(2πν)2x2,

where m and ν are the mass of the particle and the natural frequency of the oscillator,
respectively. The particle is resonantly excited when driven by an oscillating external force close
to its natural frequency. When the external force F(t)= FA cos 2π(ν + δ)t is detuned from the
frequency ν by δ � ν, the particle trajectory and momentum are given by

x(t)=
FA/2π

mδ(ν + δ

2)
sin 2π

(
δ

2
t

)
sin 2π

(
ν +

δ

2

)
t,

and p(t)= mẋ(t), respectively, as shown in figure 1(b). Here the initial conditions are x(0)=

p(0)= 0 and the particle returns to its initial position and momentum at τ = 1/δ. The trajectory
in xp phase space is shown in figure 1(c). The obtained phase of the particle from equation (2)
during τ is

81 =
π

2

(FA/2π)2

4πνm

|δ|

δ3
. (3)

The area of the trajectory in the rotated phase space with frequency ν shown in figure 1(d)
is identical to the value in equation (3) and is sometimes called a geometric phase. Note that the
sign of the phase in equation (3) is directly related to the sign of detuning δ. If δ > 0, the driving
frequency is larger than ν and the motion is out of phase with respect to the force. When δ > 0
(δ < 0), the system thus gains (loses) energy −

∫
F(t) dx with respect to the frame rotating at

the harmonic trap frequency.
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Figure 2. (a) The effective potential on a spin-1/2 system from an applied
field detuned from resonance by 1B . (b) A spin-dependent force from the
intensity gradient of the applied field. Here F↑ = −F↓. (c) A spin-dependent
force oscillating near resonance with the CM mode at frequency νCM, exciting
only the CM motion for the states |↑↑〉 and |↓↓〉. The CM motion correlated
with the other spin states |↑↓〉 and |↓↑〉 is not excited because there is no net
force on the two-spin system. An oscillating force with frequency µ= νCM + δ
can be generated by counter-propagating laser beams with a frequency difference
µ. (d) Due to the excitation of the motion, the states |↑↑〉 and |↓↓〉 will acquire
a phase with respect to the other states |↑↓〉 and |↓↑〉 as discussed in section 2.1.
At τ = 1/δ, the collective motion is disentangled from the spin states, imprinting
a phase 82 on |↑↑〉 and |↓↓〉.

2.2. Spin-dependent forces and spin–spin interactions

An external driving force that depends upon the internal spin state generates a spin-dependent
quantum phase. For multiple spins with collective motion, we find quantum phases that can
depend non-trivially upon the collective spin states of the collection. Such phases can be
interpreted as the result of an effective spin–spin interaction and can be used for quantum gate
operations that generate entangled spin states. This type of interaction is central to the generation
of the interacting spin models presented here.

The spin-dependent forces are classified according to which spin axis of the Bloch sphere
diagonalizes the force, including σz-gate [44, 46] and σx,y-gate [47–50]. The σx -gates can be
applied to clock states, whereas the σz-gate does not require high-frequency optical modulation
techniques and can be less sensitive to optical phase errors. However, the principle of both
types of operations is exactly the same, outside the spin basis. Here we first provide an intuitive
explanation of the operation with a σz-force and later we present the formal description based
on the σx,y-force.

A spin-dependent force can be realized through gradients of applied electromagnetic
fields. For a spin state connected through a hyperfine transition, an oscillating magnetic
field of amplitude B(x) having a detuning 1B from spin resonance yields a potential V↑z =

±�(x)2/21B on the |↑〉z and |↓〉z spin states as depicted in figure 2(a). Here the Rabi frequency
�(x)= µB B(x)/2 parameterizes the dipole interaction of the spin with the field, where µB
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is the magnetic dipole moment for the spin system. The field B(x) can be implemented by
a microwave field [51] or a pair of optical Raman fields coupling each spin off-resonantly
to a third state through an electric dipole transition. In the latter case, 1B is understood
as the detuning of the beatnote of the two fields with respect to spin resonance. The force
on the |↑〉z (|↓〉z) state originates from the gradient of the applied field, F↑z = −

dV
dx =

−
�

1B

d�(x)
dx (F↓z =

�

1B

d�(x)
dx ), as shown in figure 2(b).

For two ions in a harmonic trap, there are two collective vibrational modes in one
dimension: the center of mass (CM) and stretch or tilt (TT) modes. We assume that an oscillating
spin-dependent force on both spins is applied through the use of a ‘walking standing wave’ as
shown in figure 2(c). When the frequency of this force is close to the CM mode, the CM motion
will be excited for the spin states |↑↑〉z and |↓↓〉z. On the other hand, the spin states |↑↓〉z and
|↓↑〉z will not be influenced by the external force, since the two spins are pulled in opposite
directions. As a result, the acquired phases depend on the spin configurations, as shown in
figure 2(d). At τ = 1/δ, the collective motion returns to its initial position and momentum with

the phase82 =
π

2
(2F↑z (↓z )/2π)

2

4π(2m)νCM

|δ|

δ3 imprinted on the |↑↑〉z and |↓↓〉z states. Note that the operation
is equivalent to a quantum CNOT gate when 82 = π/2 [44, 46, 47].

At τ = n/δ (n = 1, 2, 3, . . .), the motional degree of freedom is disentangled from internal
spin states and the evolution of the spin system at these times is exactly as though the system
was influenced by the following pure spin Hamiltonian:

H (2)
CM =

(F/2π)2

4πmνCMδ
(σ (1)z + σ (2)z )2/2 = Jσ (1)z σ (2)z , (4)

where F = F↑z = −F↓z , J =
(F/2π)2

4πmνCMδ
, and we suppress constant offset terms in the Hamiltonian.

The effective Hamiltonian (4) is exactly the Ising Hamiltonian for a two spin-1/2 system.
By adjusting the sign of the detuning δ, the spin–spin interaction is controlled to be either
ferromagnetic (FM) (δ < 0) or AFM (δ > 0). Note that this effective Hamiltonian only applies
to those special times. However, this Hamiltonian is valid for all times in the limit FA/2π

mνδ � 1,
where the amplitude of actual motion x(t) (see section 2.1) is negligible.

The effective Ising interactions are generated through the collective motional mode
excitation and the feature of the mode determines the characteristic of the Ising spin interactions.
For three spins in a linear chain, in addition to the CM and TT modes we have zigzag (ZZ) mode.
The eigenvectors of TT and ZZ modes are (1, 0,−1)/

√
2 and (1,−2, 1)/

√
6, respectively. The

effective Ising Hamiltonians through the motional couplings are then

H (3)
TT =

9

8

(F/2π)2

4πmνTTδTT
(σ (1)z − σ (3)z )2/(

√
2)2 = JTT(−σ

(1)
z σ (3)z ),

H (3)
ZZ =

9

8

(F/2π)2

4πmνZZδZZ
(σ (1)z − 2σ (2)z + σ (3)z )2/(

√
6)2

= JZZ(−2σ (1)z σ (2)z − 2σ (2)z σ (3)z + σ (1)z σ (3)z ), (5)

where JTT =
9(F/2π)2

32πmνTTδTT
, JZZ =

3(F/2π)2

32πmνZZδZZ
and δTT and δZZ are the detunings from the TT and

ZZ modes, respectively. For the H (3)
ZZ with a detuning δZZ > 0, the nearest-neighbor (NN)

interactions (between spins 1 and 2 or spins 2 and 3) are FM, and the next-nearest neighbor
(NNN) interaction (between spins 1 and 3) is AFM, with the NN interaction twice as large as
the NNN interaction.
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In principle, we can use the longitudinal and transverse vibrational modes to generate
the effective Ising-spin interactions. We focus on the transverse modes because they are at
higher frequencies for a linear crystal and can be more easily prepared near the ground state
and suffer from less motional heating [52]. Moreover, the spectrum of transverse normal mode
frequencies can be controlled through the anisotropy of the trapping potential [53], allowing
more flexibility in setting the relative strengths of each normal modes’ contribution to the
effective Ising couplings. For example, we can control the relative strengths between NN and
NNN interactions by adjusting laser detuning between the TT and ZZ modes. From equation (5),
the NNN interaction dominates when tuned near the TT mode, while the NN interaction takes
over when tuned closer to the ZZ mode.

2.3. General and formal descriptions of the Ising interaction

In the experiments reported here, the spin-dependent force is generated by the scheme proposed
by Mølmer and Sørensen [48, 49]. The scheme produces differential forces on the spins in
the rotated x basis of the Bloch sphere, where |↑〉 = (|↑〉z + |↓〉z)/

√
2 and |↓〉 = (−|↑〉z +

|↓〉z)/
√

2. Unlike the σz-dependent force discussed in section 2.2, the σx -dependent force can
be applied to magnetic-field-insensitive ‘clock’ spin states [47, 54, 55]. The Mølmer–Sørensen
scheme applied to hyperfine ground states employs two pairs of non-copropagating laser
beams with beatnote frequencies νH F ±µ. When the spins are simultaneously addressed by
laser beams with equal intensities and coupled to the N transverse vibrational modes (νm ,
m = 1, 2, . . . , N ) along the x-direction, the resulting interaction Hamiltonian is

H(t)=

∑
m

sinµt (am e−iνm t + a†
m eiνm t)

{∑
i

�iηi,mσ
(i)
x

}
, (6)

where �i is the two-photon spin-flip Rabi frequency, σ (i)x is a Pauli spin-flip operator on spin i ,
and a†

m and am are the phonon creation and annihilation operators for the harmonic normal mode
m at frequency ωm . The Lamb–Dicke parameters ηi,m = bi,m1k/

√
4πmνm include the normal

mode transformation matrix bi,m of the i th ion with the mth normal mode [56], and m is the
mass of a single ion.

The time-evolution operator, UI (t), of the interaction Hamiltonian can be calculated by
using the Magnus expansion

UI(t)= exp

[
−i
∫ t

0
dt ′HI(t

′)−π

∫ t

0
dt ′

∫ t ′

0
dt ′′[HI(t

′), HI(t
′′)] + · · ·

= D̂

(∑
m

αm(τ )

{∑
i

�iηi,mσ
(i)
x

})
exp

∑
m

8m(τ )

{∑
i

�iηi,mσ
(i)
x

}2
 , (7)

where D̂(αÔ)= exp[(α∗a −αa†)Ô] is the displacement operator and

αm(τ )= −i[µ− eiνmτ (µ cosµτ − iνm sinµτ)]/(µ2
− ν2

m)

and

8m(τ )= −
νmτ

2(µ2 − ν2
m)

[
1 −

µ sin(µ− νm)τ

(µ− νm)νmτ
+
µ sin 2π(µ+ νm)τ

(µ+ νm)νmτ
+

sin 4πµτ

2µτ

]
.
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When the optical beatnote detuning µ is close to a particular normal mode νm , the spins
become entangled with the motion through the spin-dependent displacement. At certain times,
the final displacement α ≈ 0 and the motion nearly factorizes, which is useful for the quantum
logic gates of synchronous entanglement between the spins as discussed in section 2.2 [45].
When the optical beatnote frequency is far from each normal mode compared to that mode’s
sideband Rabi frequency (|µ− νm| � ηi,m�i), the phonons are only virtually excited as the
displacements become negligible (αm � 1), and the result is a nearly pure Ising Hamiltonian
for all times from the last (secular) term of equation (7),

H eff
I =

∑
i, j

Ji, jσ
(i)
x σ

( j)
x , (8)

where

Ji, j = −

∑
m

ηi,m�iη j,m� jνm

µ2 − ν2
m

. (9)

When |µ− νm| � δν for all modes m, where δν is the frequency spread of all modes, the
strength of Ji, j follows a dipolar decay pattern in space 1/|i − j |3 [12, 13]. When the laser
beatnote detuning µ is close to a single motional mode νm compared with the other modes,
various long-range interaction patterns emerge that mimic the product of the eigenvectors of
that particular normal mode on each ion. For example, when tuned near the second-to-highest
(TT) mode of a linear crystal, the first and last ions in the chain interact most strongly, even
though they are the furthest apart in space.

In the adiabatic state evolution, where we work with an additional transverse field added to
the Ising model, the above analysis is more complicated. But in the limit where the phonons are
only virtually excited and their occupancy is always small, the extra complication comes only
from the fact that the spin Hamiltonian in equation (8) is modified by an additional transverse
field term with a time-dependent magnetic field.

2.4. Extensions of the spin–spin interaction

With the same trapped ion system, higher-dimensional spin systems can be realized, depending
on the details of the internal states in the atomic species. For example, a spin-1 system can be
represented by the three Zeeman states in 2S1/2 F = 1 of 171Yb+, the |−〉 ≡ |F = 1,m F = −1〉,
|0〉 ≡ |F = 1,m F = 0〉 and |+〉 ≡ |F = 1,m F = +1〉 states uniformly separated in frequency
by the linear Zeeman splitting νzm. In this case, a pair of Raman laser beams with σ+ and π
polarization with the beatnote frequency of νzm can result in the rotation operator Sx operation
of the spin-1 system. Similarly, changing the phase between the laser beams will result in the
Sy operation.

When bichromatic laser beatnote frequencies are detuned by ±µ from the resonant
transitions νzm similar to above, a spin-dependent force is generated on the spin-1 system. The
Hamiltonian from the force is similar to that of equation (6), replacing σx with Sx . As shown
previously in equation (7), this spin-dependent force on the spin-1 system provides an effective
S2

x interaction. The end result is a spin-1 Ising Hamiltonian of equation (8). Here, we neglect the
second-order Zeeman shift, since it can be compensated for either by taking a proper rotating
frame on |0〉 or by adding a non-resonant compensation laser beam.

The Ising coupling scheme above can also be extended to act on multiple components
of spin operators in order to simulate spin Hamiltonians such as the ‘XY ’ model
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HXY =
∑

i, j Ji, j(σ
(i)
x σ

( j)
x + σ (i)y σ

( j)
y ) and the more general anisotropic Heisenberg spin model

HHeis =
∑

i, j Ji, j(aσ (i)x σ
( j)
x + bσ (i)y σ

( j)
y + cσ (i)z σ

( j)
z ).

These spin models can be realized by adding one or two more pairs of laser beams in
different directions [12] or by utilizing different frequency ranges. For example, the σyσy

interaction term can be achieved by changing the phase of bichromatic Raman laser beams
where beatnote frequencies are detuned near the vibrational modes along the y-axis. The σzσz

interaction can be realized by applying the Raman beatnote detunings set to nearly half of the
motional sideband frequencies µ≈ νm/2 [57, 58]. In this condition, the spin-dependent force on
the σz operation is the dominant term in the time evolution described by the following effective
Hamiltonian:

Hz ≈
(
am e−i2π(νm−2µ) + a†

m ei2π(νm−2µ)
) {∑

i

�eff
i ηi,mσ

(i)
z

}
, (10)

where �eff
i =�2

i /2µ. As we discussed, the σz-dependent Hamiltonian (10) generates the σzσz-
type spin–spin interactions.

3. Experimental demonstration of the Ising interaction

We trap 171Yb+ ions in a three-layer linear rf-Paul trap [59], with the nearest trap electrode
a transverse distance of 100µm from the ion axis shown in figure 3(a). An rf potential of
amplitude ∼200 V at 39 MHz is applied to the middle layer, and the top and bottom layers
are segmented into axial sections, where static potentials of the order of 10–100 V are applied
for axial confinement. The ions form a linear chain along the trap Z -axis, and the axial CM
trap frequency is controlled in the range νz = 0.6–1.7 MHz. In the transverse X -direction, the
highest frequency normal mode of motion is the CM mode, set to about ν1 ≈ 4 MHz. The second
highest is the TT mode at frequency ν2 = ν1

√
1 − ε2, where the trap anisotropy ε = νz/ν1 � 1

scales the spacing of the transverse modes. For three ions, the lowest ZZ occurs at frequency
ν3 = ν1

√
1 − 2.4ε2. The other transverse Y -modes are sufficiently far away from the X -modes

and do not overlap. Moreover, the coupling to these modes is suppressed by a factor of >10 by
rotating the principal Y -axis of motion to be nearly perpendicular to the laser beams.

We direct two Raman laser beams onto the ions to drive spin-dependent forces, with
their wavevector difference aligned along the transverse x-axis of ion motion (1k = k

√
2,

where k = 2π/λ) (figure 3(a)). The Raman beams are detuned 0.5–2.7 THz to the red of the
2S1/2–2P1/2 transition at a wavelength of λ= 369.76 nm shown in figure 3(b). The Raman
beams are phase modulated at a frequency nearly half of the 171Yb+ hyperfine splitting with a
6.32 GHz resonant electro-optic modulator, and each of the two Raman beams have independent
acousto-optic frequency shifters in order to select appropriate optical beatnotes to drive Raman
transitions [60]. The Raman beams are focused to a waist of approximately 30–100µm with a
power of up to 10–20 mW in each beam. When their beatnote is adjusted to drive the carrier
transition at the hyperfine transition νHF, we observe a carrier Rabi frequency of �i/2π ≈

1 MHz. For the spin-dependent force, we set �i/2π ≈ 0.4 MHz for each pair of Raman beams
and for the transverse field, �i/2π is less than 0.1 MHz. The resonant transition generates the
effective transverse field by adjusting the phase with respect to the spin-dependent force. For
up to nine ions in a chain, we observe that the outer two ions experience ∼2% lower Rabi
frequency and variation in the differential ac-Stark shift in each qubit of <1%.

In the experiment, we first Doppler laser cool 171Yb+ ions for 3 ms using a laser tuned to the
red of the 2S1/2–2 P1/2 transition at a wavelength of 369.53 nm. We then Raman sideband cool
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Figure 3. (a) Schematic representation of the ion trap apparatus and the
geometry of Raman laser beams for the spin-dependent force. Two Raman beams
uniformly address the ions, with 1k along the transverse x-direction. The spin
states are defined with respect to a magnetic field of ∼4 G along the y-axis,
and because the laser beams are each linearly polarized and perpendicular to
each other in the xz-plane, the Raman transitions are driven between states
as shown in (b). A photomultiplier tube (PMT) and charge-coupled-device
(CCD) camera are used to measure the spin state of each ion through standard
spin-dependent fluorescence. (b) The spin-1/2 system is represented by |↑〉z =

|F = 1,m F = 0〉 and |↓〉z = |F = 0,m F = 0〉 in the S1/2 manifold in 171Yb+. The
Raman laser beams are detuned by 1 from P1/2 states and induce coherent Rabi
oscillations. When the Raman beatnote frequency is tuned to match the spin state
frequency splitting νHF, the laser coupling generates the effective transverse field
in equation (1). When the beatnote frequencies are detuned ±µ from νHF, the
laser coupling generates the spin-dependent force and effective Ising couplings
as discussed in the text.

all m modes of transverse motion along x to mean vibrational indices of n̄m < 1 in about 0.5 ms,
well within the Lamb–Dicke limit. Next, the ions are each initialized to the |↓〉 state through
standard optical pumping techniques [42]. We then apply the optical spin-dependent force on
the ions for a duration τ by impressing the bichromatic beatnotes at νHF ±µ. Afterwards,
the spin states are measured by directing resonant laser radiation having all polarizations
on the 2S1/2(F = 1)–2 P1/2(F ′

= 0) transition following standard state-dependent fluorescence
techniques [42]. We use a CCD imager (the detection efficiency is 95% per spin). We determine
the probability of each spin configuration (for example P↑↑↓ ) by repeating the above procedure
more than 1000 times. We also measure the probability Pn of having n spins in state |↑〉 by using
the PMT, which is useful for higher-efficiency measurements of certain symmetric observables
such as entanglement fidelities and witness operators.

3.1. The two-spin case

Figure 4(a) shows the theoretical values of J = J1,2 from equation (9) and measurements at

various detunings µ for two spins with J = −�1�2(
η2

1ν1

µ2−ν2
2
−

η2
2ν2

µ2−ν2
2
), where η1 =1k/

√
4 mν1

and η2 =1k/
√

4 mν2 are the Lamb–Dicke parameters for CM and TT modes. The solid

New Journal of Physics 13 (2011) 105003 (http://www.njp.org/)

http://www.njp.org/


11

Figure 4. (a) Measured coupling J for two ions as a function of detuning
µ overlaid with theory (lines) from equation (9) with no free fit parameters.
The detuning is scaled to the axial (νz) and transverse (ν1) CM normal-mode
frequencies of motion such that CM and TT modes of transverse motion
occur at µS ≡ (µ2

− ν2
1)/ν

2
z = 0 and −1, respectively. (b) Time evolution of

the average number of ions in the |↑〉 state under the influence of the
bichromatic force in the far-detuned limit, showing the secular oscillation
of the Ising spin–spin coupling, where the detuning µ/2π is 80 kHz from
the CM motional sideband. (c) Measurements with µ− ν1 = 2

√
3η1�/2π ≈

56 kHz. Here the small oscillations from the motional excitation and the
coupling to spin states are noticeable on top of the sinusoidal oscillations of
the Ising interactions. (d) Measurements at µ− ν1 = 2

√
2η1�/2π ≈ 45 kHz.

(e) Measurements at µ− ν1 = 2η1�/2π ≈ 32 kHz. The insets of panels (b)–(e)
show the respective wavepackets in phase space and the areas enclosed are
shaded.

theoretical curve is plotted with no adjustable parameters, as the motional mode frequencies
and the sideband Rabi frequencies are independently measured.

We measure the strength of J by observing the time evolution between |↓↓〉z and |↑↑〉z

after applying the spin-dependent forces on |↓↓〉z states. The evolution for the two spins
is simply described by U (t)|↓↓〉z = exp(−iJσ (1)x σ (2)x t)|↓↓〉z = cos(J t)|↓↓〉z + i sin(J t)|↑↑〉z

when we neglect the couplings between internal states and the motion. As shown in figure 4(b),
the oscillations of the populations are sinusoidal, with frequency 2J . To detect the sign of the
Ising coupling, we applied the same force on the initial state |↑↑〉 and observe the phase of the
oscillations.

When the beatnote detuning µ is close to a vibrational mode, or |µ− ν1,2| is within a few
sideband linewidths η1,2�, the coupling between motion and spin states modulates the spin state
evolution. Figure 4(e) shows the spin state evolution at a detuning δ = µ− ν1 = 2η1� [48].
In this case, the motional state is displaced in phase space by not more than |α| = 1, and at
particular times during the evolution τ = n/δ (n = 1, 2, . . .) the motional degree of freedom is
decoupled from the internal state, enabling the generation of pure spin–spin entanglement. As
the detuning δ increases as shown in figures 4(b)–(d), the maximum displacement decreases
and the evolution approaches a pure sinusoid indicative of pure spin–spin interactions. Typical
experiments are performed with δ > 4η�, where the largest displacements |α|< 1/4, resulting
in a 2% modulation of the spin evolution.
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Figure 5. (a) Measured couplings J1 = J1,2 = J2,3, J2 = J1,3 for three ions as a
function of detuning µ overlaid with theory (lines) from equation (9) with no
adjustable parameters. At the scaled detuning µS, CM, TT and ZZ modes of
transverse motion occur at µS ≡ (µ2

− ν2
1)/ν

2
z = 0,−1 and −2.4, respectively.

(b) Time evolution of the probability P0 of all spins |↓〉 under the bichromatic
force in the far-detuned limit. Here, the two couplings J1 and J2 are clearly
visible. The solid line is a fit to the time evolutions of equation (8) with an
empirical exponential decay. The measurements are carried out at the indicated
detuning in (a), or −50 kHz from TT mode. (c) The Fourier transform of the
experimental curve shown in (b), where three peaks originate from the frequency
components of 4J1, 2J1 − 2J2 and 2J1 + 2J2. The orange bars represent the
calculated values from equation (9). The peak near the origin comes from the
overall decay of the oscillation due to decoherence with ∼100 Hz.

3.2. The three-spin case

For three spins addressed uniformly with the Raman laser beams, we have J1 = J1,2 = J2,3 as
the NN interaction and J2 = J1,3 as the NNN interaction as shown in figure 5(a). Since the
bandwidth of the transverse mode spectrum is relatively small, all modes can be addressed from
a single laser beatnote and the signs and strengths of J1 and J2 are under great control as shown
in figure 5(a) and equation (9) [31]. In the region µ > ν1, both have AFM interactions (J1,2 > 0),
and in the region ν2 < µ< ν1, both have FM couplings (J1,2 < 0). In the region ν3 < µ< ν2, the
NN interaction is FM (J1 < 0) and the NNN is AFM (J2 > 0). When µ is near the TT mode, J2

overpowers J1, and when µ is closer to the ZZ mode, J1 is stronger than J2. Finally, for µ < ν3,
all interactions are FM again.

We measure the J1 and J2 couplings by observing the oscillations in the population of
state |↓↓↓〉z after applying a spin-dependent force on the three spins. This population oscillates
as cos2 J1t cos J2t − i sin2 J1t sin J2t , as shown in figure 5(b). We use Fourier analysis on the
oscillations and find certain frequency combinations of the couplings 4J1, 2(J1 − J2) and
2(J1 + J2), as shown in figure 5(c). In this figure, we use theoretical values for the signs of
J1 and J2.

In principle, we can produce an arbitrary spin–spin interaction graph with a linear string
of trapped ions. For N spins, there are N (N − 1)/2 unique interactions that must be controlled

New Journal of Physics 13 (2011) 105003 (http://www.njp.org/)

http://www.njp.org/


13

independently. Instead of uniformly illuminating the ions with a single Raman beatnote, we can
apply N different beatnote detunings to the ions, with a different power spectrum in each of
these detunings for each of the N ions:

Ji, j = −

∑
k

�i,k� j,k

∑
m

ηi,mη j,mνm

µ2
k − ν2

m

. (11)

Here we can choose N 2 different values of�i,k , which allows the possibility of full independent
control of the sign and strength of all spin–spin interactions.

4. Adiabatic quantum simulation

In order to use the above spin–spin interactions to determine the ground state of a particular
Hamiltonian, we adiabatically evolve from a trivial Hamiltonian to the one under study [61].
This approach is motivated by the adiabatic quantum computation algorithm first proposed as
a method to solve NP-complete satisfiability problems [10]. The process of quantum adiabatic
computation works as follows: a quantum system is initialized to the ground state of a trivial
Hamiltonian. Next, the Hamiltonian is adiabatically deformed into the Hamiltonian of interest,
whose ground state encodes the solution of a problem that has been mapped to the final
Hamiltonian. If successful, the system will remain in the ground state and can be directly probed
once the system arrives at the desired Hamiltonian. For quantum simulation of magnetically
interacting spins, this approach allows the determination of ground states where the Hamiltonian
can easily be written, yet the spin ground state cannot always be predicted, even with just a few
dozen spins [9]. In this section, we describe the adiabatic quantum simulation of the transverse
Ising model with three spins, where the exact solution is known, and discuss the criteria for
adiabaticity. We then present experimental results for two example Ising interaction strengths
and signs.

4.1. Basic principle of adiabatic evolution

We consider three Ising spins, where the transverse Ising Hamiltonian (1) is reduced to

H3 = J1

(
σ (1)x σ (2)x + σ (2)x σ (3)x

)
+ J2σ

(3)
x σ (1)x + By(t)

(
σ (1)y + σ (2)y + σ (3)y

)
. (12)

This is the simplest Hamiltonian wherein the minimum energy state can exhibit frustration
due to a compromise between the various Ising couplings. Additionally, the ground state phase
diagram has a first-order transition as the Ising couplings are varied. As with the two-spin case,
the non-commuting operators in the Hamiltonian can give rise to a quantum phase transition
(QPT) in the thermodynamic limit.

We can calculate the exact instantaneous energy spectra as a function of the scaled
transverse field By/|J1| for the Hamiltonian (equation (12)). In figure 6, we present two cases
where the NN interactions are FM (J1 < 0), and examine the effect of changing the sign of
J2. We will compare the adiabatic requirements for the following experimental trajectory. In all
simulations the spins are initially prepared in the ground state of the transverse field (By � |J1|),
depicted by the solid circle (figure 6). The goal is to subsequently adiabatically lower the field
compared to the Ising couplings. When By/|J1| �1 the Ising interactions determine the form
of the ground state (for simulation details, see figure 7).

In figure 6(a), the NNN interaction is also FM (J2 < 0). There are no level crossings with
the ground state (solid black line) over the trajectory indicated by the arrow; thus if the evolution
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Figure 6. Energy level diagrams for equation (12) with two different types of
spin–spin interactions. For both panels, the NN interactions are FM (J1 < 0).
(a) The NNN interaction is FM with J2/|J1| ∼ −2 and (b) AFM with J2/|J1|

∼0.9. The arrow in both diagrams indicates the trajectory in the simulation,
initialized at By/|J1| ∼10. Under this condition, the initial ground state is an
eigenstate of the second term in equation (12), a polarized state along By . In both
examples, at B ≈ J1 some high-energy states cross, but the ground state (black
solid line) has no level crossings with any excited state. Likewise, the highest
energy state does not cross any other levels, allowing one to also adiabatically
follow this state. The dotted lines represent excited states, which are most
strongly coupled to the ground state along the path. In the large-field limit,
the energy difference between ground and excited states 1ge (here, scaled by√

B2
y + J 2

1 ) is proportional to By , but as By/|J1| decreases the spin–spin couplings

determine the energy difference and the form of the ground state. In both (a)
and (b), the final ground state is FM (defined along the x-axis of the Bloch
sphere); however, in the case of (a), the minimum 1ge is ∼20 times larger.

Figure 7. After preparing the spins in the ground state of By
∑

j σ
( j)
y , we

apply the Hamiltonian (1) with the condition of By(t = 0)� Ji, j . Then we
adiabatically reduce the strength of the transverse field By(t) to the final value
By(τf), where Ising interactions are dominant. At various times along the path
we halt the experiment and detect the spin states, thus mapping out the ground
state phase diagram of Hamiltonian (1).

of the Hamiltonian is sufficiently slow, excitations will be minimized. We can also change the
sign of By and adiabatically follow the highest excited level, as it does not exhibit any level
crossings.
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In figure 6(b), J2 > 0 and the NNN interaction is AFM. The gap at the crossover to
magnetic order determined by the Ising couplings is ∼15 times smaller than that of figure 6(a),
requiring a slower change of By/|J1| to remain in the ground state. This gap is comparatively
smaller because the Ising couplings J1 and J2 have opposite sign and are nearly equal in
magnitude. When this is exactly true at zero magnetic field, there is an energy level crossing
due to the competition between the two Ising couplings. For larger spin systems this competition
persists and gives rise to an interesting phase diagram as described in section 5.

The general requirement of adiabatic following along the Hamiltonian trajectory H(t)
described above is characterized by the condition [61]

Ḃy(t)ε

12
ge

� 1. (13)

In this expression, the dimensionless quantity |〈g(t)|dH(t)
dBy

|e(t)〉| characterizes the coupling
from the ground state |g(t)〉 to any excited state |e(t)〉 with energy gap 1ge. In the context of
this paper, we consider the dynamic requirements to maintain adiabaticity and therefore only
transitions allowed by symmetry are considered. The parameter ε is small, of the order of unity
for this simulation, but is peaked at a crossover in magnetic order, where the instantaneous
eigenstates are most rapidly varying.

Assuming that the parameters are smoothly changing, it is clear that to remain adiabatic
the bottleneck is crossing a region containing a small gap. For an infinite-sized system, the gap
shown in figure 6(a) will vanish at the point of a QPT. Of course in this limit, crossing a phase
transition will lead to the formation of defects [62] and one needs to consider adiabaticity in the
context of an acceptable level of excitations, as well as quantify how those excitations decay.
For a finite-sized system it is instructive to consider the onset of a phase transition and the rich
dynamics which can be studied. Although the minimum energy gap between two instantaneous
energy levels will certainly be different depending on the form of the Ising couplings, for all
cases of the generalized form of the Hamiltonian shown in equation (12), the adiabaticity criteria
will be satisfied if the time to sweep through the gap is much larger than the inverse gap.

More specifically, equation (13) states that to remain adiabatic with respect to spin flip
excitations, the rate of changing the time-dependent By-field profile must be shallow when
the gaps in the energy spectrum are small (as in figure 6(b)), in particular near a crossover
(corresponding to a phase transition for large N ).

4.2. Experiments

We experimentally investigate this adiabaticity criterion for the two different types of NNN
coupling that were introduced above. We initialize the spins along the By-direction through
optical pumping (∼1µs) and a π/2 rotation about the −x-axis of the Bloch sphere. Figure 7
shows the adiabatic simulation protocol. The simulation begins with a simultaneous and sudden
application of both By and J1, J2, where By overpowers J1 (By/|J1| ≈ 10). A typical experi-
mental ramp of By decays as By(t)= a e−t/τ + b with a time constant of τ ∼30µs, varying from
a ∼10 kHz to a final offset of b ∼500 Hz after t = 300µs. By varying the power in only one of
the Raman beams, this procedure introduces a change in the differential ac-Stark shift of less
than 2 Hz. We turn off the Ising interactions and transverse field at different By/|J1| endpoints
along the ramp. We then measure the magnetic order along the x-axis of the Bloch sphere by
first rotating the spins by π/2 about the y-axis and detecting the z-component of the spins.

New Journal of Physics 13 (2011) 105003 (http://www.njp.org/)

http://www.njp.org/


16

Figure 8. (a) The theoretical order from the exact experimental ramp with a
35µs time constant and final offset value given in the text (gray solid line) is
in reasonable agreement with the order in the true ground state (black solid
line) for By/J1 > 0.5. The dotted line is the expected state evolution for a
pure exponential decay ramp with a 100µs time constant, allowing By → 0.
(b) The data also match well to theory, as we avoided the regions where diabatic
transitions are expected for By/J1 � 1. According to calculations, the duration
of three-spin experiments near the special point should be of the order of
milliseconds.

In figure 8(a) all interactions are FM and J2/|J1| ∼ −2 (as in figure 6(a)). The dashed
line is the adiabaticity parameters from equation (13) calculated over the trajectory for
the two coupled excited states (recall figure 6). Due to the 500 Hz final offset of By , the
simulation stops at By/|J1| ∼ 0.5. To examine the behavior below this value, we calculate
the criteria for an exponential ramp with a 100µs time constant. This profile was chosen to
overlap with experimental parameters for large By/|J1| and also reach By = 0 in a typical
simulation time (∼300µs). The results indicate that equation (13) is satisfied over the trajectory;
Ḃy(t)ε/12

ge remains much less than one even with a maximum occurring at By/|J1| ∼1. To
demonstrate that the simulation is indeed adiabatic for these parameters, we plot the measured
probability of occupying an FM state P(F M)= P↑↑↑ + P↓↓↓ (solid dots in figure 8(a)). The
black line represents the adiabatic ground state and the grey line is the theoretical expected
probability including the experimental ramp. The dotted line in this figure is the theoretical state
evolution using a By-field ramp that reaches zero. The predicted evolution does not significantly
deviate from the ideal ground state and the data are in good agreement with all three theory
curves.

Figure 8(b) presents the case when the NNN interaction is AFM and J2/|J1| ∼0.9 (as in
figure 6(b)). When By/|J1| � 1, Ḃy(t)ε/12

ge reaches a maximum value of ∼0.6, indicating that
the probability for excitations will likely increase. This difference is because in this case the gap
1ge at the ‘critical’ point is ∼15 times smaller than that in figure 6(a). In contrast to the FM J2

case, the theoretical probability curve shown in figure 8(b) predicts significant diabatic effects
when using this By-field profile for simulations near the critical point. In fact, to successfully
evolve to the true ground state near By = 0, the simulation time (assuming the same initial
conditions and an exponential ramp of By) should be at least a factor of ten longer.

Because all data lie outside the region where the energy gaps are small, the diabatic
excitations are minimal, but further experimental study is needed to precisely quantify this
effect. One method to probe excitations, which may also be useful as N � 1, is to perform
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and then reverse the experimental ramp and measure the probability of returning to the
initial state [62].

5. Phase diagram

Assuming adiabaticity as described above, we can generate an experimental phase diagram
for the transverse Ising model. We will first describe this for the three-spin case, and then
discuss specific features and scalability in sections 6 and 7. For the three-spin Hamiltonian
in equation (12), the competition between the two spin–spin couplings and the transverse field
gives rise to a rich phase diagram. Here, we label the 23 possible spin configurations as the
two FM states, |↑↑↑〉 and |↓↓↓〉, two symmetric AFM states, |↓↑↓〉 and |↑↓↑〉, and four
asymmetric AFM states, |↑↑↓〉, |↑↓↓〉, |↓↑↑〉 and |↓↓↑〉, all defined along the x-axis of the
Bloch sphere.

In figure 9(a), we plot a part of the theoretical phase diagram where the NN interactions
are always FM (J1 < 0). The order parameter is the probability of occupying an FM state,
P(FM)= P↑↑↑ + P↓↓↓. For regions where By/|J1| �1, the ground state is polarized along By

with P(FM)= 2/2N
= 1/4, as all states in the x-basis are equally populated and there are two

FM states. As By/|J1| decreases, different magnetic phases arise. When the NNN interaction is
also FM (J2 < 0), and By/|J1| � 1 the ground states are the two degenerate FM states. In the
region where the NNN interaction is AFM and J2 overpowers J1 (J2/|J1|> 1), the asymmetric
AFM states are lowest in energy. A special point appears at J2/|J1| = 1 and By = 0, where all
the contours of constant FM order meet. Here, the ground state will be a superposition of the FM
and asymmetric AFM states. This effect arises because the pairwise interaction energy cannot
be minimized individually, leading to a highly degenerate, or frustrated, ground state [17].

This procedure is performed for nine different combinations of J1 and J2 determined by the
beatnote detuning µ from equation (9). In figure 9(b) we present the results as a 3D plot of the
FM order parameter, with the theoretical phase diagram (surface) from figure 9(a) superimposed
on the data. The data are in good agreement with the theory (the average deviation per trace is
∼0.09) and show many of the essential features of the phase diagram. As By/|J1| decreases, a
smooth crossover from a non-ordered state to FM order occurs in the region where J2/|J1|< 1
(figure 9(c)). The data (e.g. figure 9(c)) show small-amplitude oscillations in the initial evolution
due to the sudden application of the spin–spin interaction, which is held constant during the
simulation to minimize variation in the differential ac-Stark shifts. As the number of spins
increases, this is an example of a QPT. A first-order transition due to an energy level crossing
is apparent (figure 9(d)) when changing J2 for a fixed and small value of By/|J1| = 0.57. This
transition is sharp even in the case of three spins [63].

6. Spin frustration and entanglement

We also study the properties of the ground states in the case of a frustrated Ising Hamiltonian.
Frustration in spin systems occurs when spins cannot find a ground state that minimizes the
energy of each pairwise interaction [3, 32]. As shown in figure 10(a), this can be simply
illustrated by three spins with AFM interactions on a triangular lattice [64]. The situation gives
rise to a large ground state degeneracy, leading to magnetic analogues of liquids and the crystal
arrangement of ice [65, 66]. For quantum spins, the frustrated ground states are expected to be
directly related to entanglement [67, 68].
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Figure 9. (a) Theoretical phase diagram for equation (12). The color scale
indicates the amplitude of the FM order parameter, P(FM)= P|↑↑↑〉 + P|↓↓↓〉.
Here, J1 is always negative, yielding FM order in that coupling. In the region
where J2/|J1|< 0, there is a crossover to FM order as By/|J1| is lowered.
When J2/|J1|> 0, the AFM and FM interactions compete. When J2/|J1| =1
and By = 0 the ground state is comprised of six states: four asymmetric AFM
and two FM states. This creates a special sharpened point where all lines of
equiprobable FM order converge. (b) Experimental measurements of the phase
diagram for equation (1) (solid bars) compared to the theoretical prediction
from figure 9 (surface). The vertical amplitude is the FM order parameter
P(FM)= P|↑↑↑〉 + P|↓↓↓〉. The ratio of By/|J1| was varied from ∼10 to ∼0.1 for
J2/|J1| values of −1.3, −2.0, −3.6, 4.2, 2.0, 1.3, 0.92, 0.74, and 0.62. J1 < 0 for
all traces. (c) As By/|J1| → 0 in the region where J2/|J1|<−1, we observe a
smooth crossover to FM order. The filled circles and solid line are the data and
theory for J2/|J1| = −1.3, respectively. (d) When changing J2 for a fixed and
small value of By/|J1| the system undergoes a sharp transition. The data (filled
circles) shown are for a scan of By/Jy = 0.57. The average deviation per scan of
By/|J1| from the exact ground state is ∼0.09.

We realize the textbook example of spin frustration in a unit triangular cell with AFM
interactions by setting the Raman beatnotes µ to the blue side of CM mode. For comparison,
we also study the ground state property of all FM interactions by setting µ to the red side of CM
mode. Recall that a linear chain of three ions can have NN and NNN interactions through the
collective normal modes as discussed in section 2 (figure 10(b)). The experimental procedure to
prepare the ground states of the Hamiltonian with all AFM interactions and all FM interactions
is the same as the description in section 4. Figure 10(c) shows the time evolution for the
Hamiltonian frustrated with nearly uniform AFM couplings and gives almost equal probabilities
for the six AFM states (three-quarters of all possible spin states) at By ≈ 0. Because J2 < 0.8J1

for this data, a population imbalance also develops between symmetric and asymmetric AFM
states. Figure 10(d) shows the evolution to the two FM states as By → 0, where all interactions
are FM.
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Figure 10. (a) The simplest case of spin frustration in a triangular geometry
with AFM interactions. (b) Image of three trapped atomic 171Yb+ ions in the
experiment, taken with an intensified CCD camera. The spins in the linear ion
string have NN (J1) and NNN (J2) interactions mediated by the collective
vibrational modes. (c, d) Evolution of each of the eight spin states, measured
with a CCD camera, plotted as By/Jrms is ramped down in time, with each
plot corresponding to a different form of the Ising couplings. The dotted lines
correspond to the populations in the exact ground state and the solid lines
represent the theoretical evolution expected from the actual ramp, including non-
adiabaticity from the initial sudden switch-on of the Ising Hamiltonian. (c) All
interactions are AFM. The FM-ordered states vanish and the six AFM states
are all populated as By → 0. Because J2 ≈ 0.8J1, a population imbalance also
develops between symmetric and asymmetric AFM. (d) All interactions are FM,
with evolution to the two FM states as By → 0.

The adiabatic evolution of the ground state of Hamiltonian (1,12) from By � Jrms to By �

Jrms should result in an equal superposition of all classical ground states and therefore carry
entanglement. For instance, for the FM case, we expect a GHZ ground state |↓↓↓〉− |↑↑↑〉.
For the isotropic AFM case, we expect the ground state to be |↓↓↑〉 + |↑↓↓〉 + |↓↑↑〉−

|↑↑↓〉− |↓↑↓〉 − |↑↓↑〉. We characterize the entanglement in the system at each point in
the adiabatic evolution by measuring particular entanglement witness operators [69]. This is
accomplished by performing various global rotations to the three spins before measurement
and combining the results of many identical experiments. When the expectation value of
such an operator is negative, this indicates entanglement of a particular type defined by
the witness operator. For the FM case, we measure the expectation of the symmetric GHZ
witness operator WGHZ = 9 Î/4 − Ĵ 2

x − σ (1)y σ (2)y σ (3)y [50, 69], where Î is the identity operator

and Ĵi ≡
1
2(σ

(1)
l + σ (2)l + σ (3)l ) is proportional to the lth projection of the total effective angular

momentum of the three spins. For the AFM (frustrated) case, we measure the expectation of
the symmetric W-state witness, WW = (4 +

√
5) Î − 2(Ĵ 2

x + Ĵ 2
y ) [69]. In both cases, as shown

in figure 11, we found that entanglement of the corresponding form develops during the
adiabatic evolution.

In macroscopic systems, the global symmetry in the Ising Hamiltonian (1) is spontaneously
broken, and ground-state entanglement originating from this symmetry is expected to vanish
for the non-frustrated FM case [33]. However, for the frustrated AFM case, the resultant
ground state after symmetry breaking (e.g. |↑↑↓〉 + |↑↓↑〉 + |↓↑↑〉) is still entangled. While
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Figure 11. (a) Entanglement generation through the quantum simulation for
the all FM interactions. We measure the entanglement by observing the
expectation of a particular operator that indicates the presence of entanglement,
called the entanglement witness [69]. For the case of all FM interactions, we
use the Greenberger–Horne–Zeilinger (GHZ) witness [69], sensitive to the state
(|↓↓↓〉− |↑↑↑〉)/

√
2. We found that entanglement occurs when |By|/Jrms < 1.

(b) Entanglement generation for the case of all AFM interactions. Here, we
use the symmetric W-state witness, sensitive to the state (|↓↓↑〉 + |↓↑↓〉 +
|↑↓↓〉− |↓↑↑〉 − |↑↓↑〉 − |↑↑↓〉)/

√
6 and we find that entanglement emerges

for By/Jrms < 1.1. In both (a) and (b), the error bars represent the spread of
the measured expectation values for the witness, likely originating from the
fluctuations of experimental conditions. The black solid lines are theoretical
witness values for the exact expected ground states, and the black dashed lines
describe theoretically expected values at the actual ramps of the transverse field
By . The blue lines reveal the oscillation and suppression of the entanglement
due to the remaining spin–motion couplings, showing better agreement with the
experimental results. Note that the residual spin–motion couplings do not appear
to impact on the FM order of each state, as shown in figure 10. In the theoretical
curves we do not include other possible errors such as state detection inefficiency
or errors due to spontaneous scattering or fluctuations in control parameters.

spontaneous symmetry breaking does not occur in a small system of three spins, we can mimic
its effect by adding a weak effective magnetic field −Bx

∑
i σ

(i)
x to the Hamiltonian during

the adiabatic evolution [18, 70]. We experimentally observed that the frustrated ground state
carries entanglement even after global symmetry is broken by using an appropriate witness
in the Ising model, and thereby establishes a link between frustration and an extra degree of
entanglement [17].

As we discussed in sections 2 and 3, the spin degree of freedom is disentangled from
the motion at discrete time steps, which results in pure spin–spin interactions. In the presence
of transverse field, however, the disentanglement between motional states and spin states
becomes imperfect and is accumulated during the adiabatic evolution. Fortunately, the residual
entanglement does not have an influence on the probabilities of spin product states measured in
the direction of the Ising model axis [71]. Therefore we do not see the effects on the experiments
generating the phase diagram shown in section 5. The influence of spin–motion coupling
becomes noticeable in the witness measurements, since the motional degrees of freedom are
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traced out during the spin state detections. As shown in the blue curves of figure 11, the
entanglement of the spin states is suppressed because of the remaining spin coupling to motions.

7. Scalablility of the quantum simulation

As the number of spins N grows, the technical demands on the apparatus are not forbidding
[17, 31]. In particular, the expected adiabatic simulation time for the spin models is inversely
proportional to the ‘critical’ gap in the energy spectrum; for instance, in a fully connected
uniform FM transverse Ising model in a finite-size system, this gap decreases as N−1/3 [72].
Scaling this system to accommodate long ion chains will allow the investigation of critical
behavior depending on the the system size, which is intractable in classical numerical
simulation.

We perform a benchmarking experiment where all interactions Ji, j are FM regardless of the
number of spins in the system by tuning the Raman beatnote detuning close to the CM mode.
We carefully investigate deviations of experimental simulations from theoretical predictions as
the system size increases and discuss possible solutions overcoming the limitations. We observe
a crossover from paramagnetic to FM spin order, and the crossover sharpens as the number
of spins is increased, prefacing the expected QPT [33] in the thermodynamic limit. We found
that particular order parameters of the system can be quite insensitive to the imperfections of
the quantum simulations, and the extraction of intensive variables such as magnetization is
much less susceptible to decoherence compared with full tomographic characterizations of the
resulting quantum state.

In the experiment, we produce the strength of Ji, j close to 1 kHz by setting the Raman
beatnote detuning µ≈ ν1 + 4η1�, where ν1 are the Lamb–Dicke parameter and the frequency
of CM motional mode, respectively. The strength of the couplings is pretty uniform among the
pairs, since the CM mode dominates the interactions. The non-uniformity in the Ising couplings
arises from other vibrational modes, which produce around 30% differences in the strength at
most. We note that for larger detunings, the range of the interaction falls off even further with
distance, approaching the limit Ji, j ∼1/|i − j |3 for µ� ν1 [12, 13].

The experiment is performed according to the adiabatic quantum simulation protocol, as
described in section 4 and shown in figure 7. We initially start with a strong effective transverse
field By ≈ 5N Jrms (N = 2, 3, . . . , 9) after preparing the ground state of the By Hamiltonian. We
transfer it to the Ising Hamiltonian with a weak transverse field by exponentially ramping down
By with time constant τ = 80µs. We observe the evolution of state step by step as we proceed
with the experiment. For the measurements, we use the PMT and obtain the probability Ps of
having s spins in state |↑〉 from a histogram of fluorescence counts, constructed by the more than
∼1000 × N times repetition of the experiments [73]. The final states of the adiabatic evolution
are the superposition of two perfect FM states |↑↑ · · · ↑〉 and |↓↓ · · · ↓〉, called the GHZ state,
since we implement FM couplings for all the pairs of spins and begin with the ground state of
the transverse field. Therefore we measure the density matrix of the GHZ state as the simulation
evolves. We also use other observables such as magnetization to characterize the time evolutions
and the phase transitions.

We analyze the reliability of the simulation depending on the system size by using the
fidelity of the GHZ state, |〈ψSIM|GHZ〉|

2
=

1
2(P↓↓···↓ + P↑↑···↑)+ |C↓↓···↓,↑↑···↑|. Here P(FM)=

P↓↓...↓ + P↑↑...↑ and the GHZ coherence |C↓↓...↓,↑↑...↑| is the coefficient of |↓↓ · · · ↓〉〈↑↑ · · · ↑|

in the density matrix [50]. We measure the coherence of the GHZ state by observing the contrast
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Figure 12. Experimental results of adiabatic quantum simulation depending
on the system size. Here all pairs of spins have FM interactions. (a) The
evolution of FM order parameter P(FM) as the system size increases. Initially
P(FM) starts at 2/2N , since P(FM) is the probability of two states P|↑↑···↑〉

and P|↓↓···↓〉 over equally distributed 2N states. As the spin–spin interactions J
overpower By (By → 0), P(FM) are developed. Here J is the average strength
of all interactions. The red, orange, yellow, green and blue dots represent the
experiments for the total number of spins N = 2, 3, 4, 5 and 6, respectively.
Ideally P(FM) should be close to 1 at the end. However, P(FM) clearly reduces
as the number of spins increases in the system from 2 to 6. The sources and
amounts of errors are discussed in the text. (b) The parity oscillations for
the final states of the simulation depending on the number of spins, obtained
from the population difference between the even number of |↑〉 state and the
odd number of |↑〉 state after applying analysis π/2 pulse and swiping its
phase φ. The contrast of the oscillations provides the lower bound of the
coherence, the off-diagonal element of the density matrix for the GHZ state
(|↑↑ · · · ↑〉 ± |↓↓ · · · ↓〉)/

√
2. The coherences decrease to 0.8, 0.47, 0.35, 0.27

much faster than P(FM) as the number of spins increases from 2 to 5, because
of spin–motional couplings during the simulation as discussed in the text.

of the oscillating parity signals (figure 12(b)), obtained by applying analysis π/2 pulse with
different phases φ and taking the differences in population of the even number bright states and
odd number bright states (P(0)+ P(2)+ · · · − P(1)− P(3)− · · · ).

Figure 12 shows the experimental results of the quantum simulation as the number of spins
increases in the system. Initially P(FM) starts 2/2N , since P(FM) is the total probability of
two states (|↑↑ · · · ↑〉, |↓↓ · · · ↓〉) and the ground state of By

∑
σ ( j)

y , |↓↓ · · · ↓〉y is equally
distributed in a total of 2N states in the x-basis. Ideally P(FM) should be close to 1 at the end
of the simulation. However, we observe that the final states are increasingly deviating from the
ideal situation as the number of spins grows as shown in figure 12(a). We also observe that
the GHZ coherence decreases much more rapidly than P(FM) shown in figure 12(b). After
six spins, we did not measure any significant GHZ entanglement for the final state due to the
large suppression of the coherence compared to the populations. In the following subsections,
we discuss the reason for these deviations and we summarize the expected experimental
imperfections in quantum simulations as the system size grows.
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7.1. Scaling of imperfections

7.1.1. Spin–motion coupling. As briefly discussed in section 6, the spin–motion entanglement
does not completely vanish during the simulation; in contrast, the amount of coupling increases
in the presence of the transverse field. The transverse field mixes the spin states along the axis
where the spin-dependent force is applied; therefore this coupling induces phonon excitations,
modifying the final state from the ideal GHZ state to (|↑↑ · · · ↑〉|α〉 ± |↓↓ · · · ↓〉|−α〉)/

√
2.

Here |α〉 is a motional coherent state and 〈n〉 = |α|
2 increases as the amount of state mixing

grows. According to numerical calculations corresponding to the experiment, 〈n〉 increases to
≈0.5 for the five-spin experiment. The effective phonon excitation occurs primarily in the early
stages of the simulation evolution, where the strength of the transverse field is much larger than
the frequency of spin rotations. In the experimental conditions, the Raman beatnote is detuned
∼4η1� from the CM mode, which results in an increment of |α|, because of the required large
initial transverse field. However, the population P(FM) and the evolution is not sensitive to
these spin–motion couplings.

7.1.2. Diabaticity. The finite ramping speed of parameters in the Hamiltonian leads to
excitations out of the ground state and can lead to oscillations in the observed order parameter.
This diabaticity in the evolution, along with errors in the initialization to the original ground
state, is estimated to suppress the final value of P(FM) by ∼4% for N = 5 shown in the orange
line of figure 13(a). As discussed in section 4, the diabaticity is related to the minimum gap over
the trajectory of the Hamiltonian as well as the ramping time. We note that the gap between
the ground and first excited state of the fully connected uniform FM model scales as N−1/3,
implying that the simulation time increases by a factor of ten when the number of spins grows
by a factor of 1000.

7.1.3. Spontaneous emission. One of the major error sources is the spontaneous emission from
Raman beams, which amounts to a ∼10% spontaneous emission probability per spin in 1 ms
for a detuning of 1≈ 2.7 THz [74]. Spontaneous emission dephases and randomizes the spin
state and thus introduces entropy into the system. In addition, each spontaneous emission
event populates other states outside the Hilbert space of each spin with a probability of 1/3.
Spontaneous emission errors grow with increasing system size, which also suppresses P(FM)
order with increasing N , as seen in figure 13. We theoretically estimate the suppression of
P(FM) due to spontaneous emission by averaging over quantum trajectories and solving density
matrix equations to be ∼5% for N = 2 spins and ∼13% for N = 5 spins. The error contributions
are the same for both populations and coherences.

7.1.4. Intensity fluctuations. Intensity fluctuations on the Raman beams during the simulation
induce an ac-Stark shift on the spins. The ac-Stark shifts produce an imbalance in the blue
and red sideband detunings, which give rise to the imperfection of spin–spin interactions.
According to our numerical calculations, the imbalance fluctuations of ∼150 Hz (∼1.5%
intensity fluctuations in our experimental conditions) can explain the suppressions of P(FM) at
the end of the experimental simulations shown in figure 13. We investigate the non-uniformity
of the laser beams that induces different ac shifts on the spins by measuring the ac shift at each
location, which is introducing a position-dependent Bz-field with at most ∼200 Hz difference.
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Figure 13. (a) Comparison of the experimental results of P(FM) to the
theoretical expectations including various imperfections of experiments for the
five spins. The black line represents the evolution of the perfect adiabatic
evolution, and the dashed line shows the actual time evolution including
the actual ramping of the transverse field with the imperfections of initial
state preparations. The red line is obtained from the theory with spontaneous
emissions and the green line is calculated by adding intensity fluctuations
of 1.5%. The overall populations of P(FM) are in agreement with the
green theoretical curve including all the above-mentioned imperfections. The
horizontal shift By/J comes from the inaccuracy of the calibration that is not
fully understood yet. (b) The amount of errors in P(FM) (the diagonal parts
of the density matrix) from the ideal ground states for the cases of N = 2,
3, 4 and 5. (c) The amount of errors in coherence (the off-diagonal parts).
In both (b) and (c), the green squares represent the total errors measured in
the experiment and the bars illustrate the numerically estimated errors from
the various sources of experimental imperfections. The black, red and green
bars show the error amounts from non-perfect adiabatic evolutions, spontaneous
emissions and intensity fluctuations. The blue bars stand for deviations from the
spin–motion couplings shown in equation (7). The spin–motion coupling reduces
the coherence significantly as the system size grows, while it does not have any
influence on the P(FM).

According to the numerical calculation, the additional small Bz-field does not noticeably
suppress P(FM).

7.1.5. Detection errors. Imperfect spin detection efficiency contributes 5–10% uncertainties
in P(FM). Fluorescence histograms for P(0) and P(1) have a ∼1% overlap (in a detection
time of 0.8 ms) due to off-resonant coupling of the spin states to the 2 P1/2 level. This prevents
us from increasing detection beam power or photon collection time to separate the histograms.
In the experiment, the average photon number from a single bright spin is 12. The uncertainty
in fitting the observed fluorescence histograms to determine P(s) increases. The histograms are
also affected by the intensity fluctuations of detection laser beams and the finite widths. This
problem can be eliminated by detecting each spin individually with an imaging detector.

Figure 13(a) shows the experimental results and the theoretical calculations including a few
steps of imperfections discussed above for the N = 5 spin case as an example. In the population
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P(FM) also shown in figure 13(b), the main deviations come from the spontaneous emissions
and the intensity fluctuations. For the adiabatic evolution, the fluctuations of coupling strengths
from the laser intensity changes have a negligible influence on the final ground state. As
discussed, small amounts of intensity fluctuations degrade the performance of the experimental
simulations. One of the solutions for those imperfections is to implement a high-power laser
with a detuning far from the 2 P energy levels, which would minimize spontaneous emission
while maintaining the same level of Ising couplings. This would also allow versatility in varying
the Ising interaction (together with the effective external field) during the simulation, as the
differential ac-Stark shift between spin states is negligible for a sufficiently large detuning.
The coherence time increases in the absence of spontaneous emission, allowing for a longer
simulation time necessary to preserve adiabaticity as the system grows in size. Recently,
Raman transitions were driven using a mode-locked high-power pulsed laser at a wavelength
of 355 nm, which is optimum for 171Yb+ wherein the ratio of differential ac-Stark shift to Rabi
frequency is minimized and spontaneous emission probabilities per Rabi cycle are <10−5 per
spin [75, 76].

Figure 13(c) shows the measured and numerically estimated errors in the magnitude of
coherence, |C↓↓...↓,↑↑...↑|, at the final state of the quantum simulation. We can clearly see that
the errors of the coherence increase much more rapidly than those of P(FM). According to
the numerical study, the dominant source of the errors of |C↓↓...↓,↑↑...↑| is the non-vanishing
spin–motion couplings in the experimental simulation, shown as the blue area of figure 13(c). In
principle, we can eliminate the effect of spin–motion coupling by alternating the transverse field
and Ising interactions [77]. The adiabatic evolution can be discretized by the Trotter expansion
written by

UTIM(τ )= T exp

(
−i
∫ τ

0
dt ′
[
HI (t

′)+ HB(t
′)
])

≈
[
exp (−iHI (τ/N )) exp (−iHB(τ/N ))

]N
, (14)

where HI and HB are the Ising Hamiltonian and the transverse field Hamiltonian, respectively.
In the experiment, we can choose τ/N as the special duration (1/δ), where the spin–motion
couplings vanish as discussed in sections 2 and 3. We can also reduce the errors of
the Trotter expansion by increasing the Raman beatnote detuning δ from the motional
mode.

In condensed matter, phase transitions are typically described in terms of order parameters
or correlations instead of the density matrices of particular states. We use an absolute
magnetization 〈|m|〉 =

∑
m |m/N |P(m) per site along the Ising direction. Actually we rescale

the magnetization 〈|m|〉 from 0 to 1 regardless of the number of spins to make a fair comparison
even for small-size systems. We found that the deviation between experiment and theory for this
order parameter does not grow substantially as the system is scaled up in size. Figure 14 shows
the scaled magnetization, 〈|mS|〉, for N = 2–9 spins, showing a final value of ∼80% (figure 14)
regardless of the number of spins. Moreover, as shown in figure 14(a) we observe the sharpening
of the crossover curves from paramagnetic to FM spin order with increasing system size. The
continued sharpening of this transition is of great interest to the understanding of finite-size
effects in phase transitions and can be used to compare various numerical techniques in studying
critical phenomena.
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Figure 14. (a) Scaled average absolute magnetization per site, 〈|mS|〉, versus
B/N Jrms is plotted for N = 2–9 spins. As B/N Jrms is lowered, the spin ordering
undergoes a crossover from a paramagnetic to FM phase. The crossover curves
sharpen as the system size is increased from N = 2 to N = 9, anticipating
a QPT in the limit of infinite system size. The oscillations in the data arise
due to imperfect initial state preparation and non-adiabaticity due to finite
ramping time. (b) Magnetization data for N = 2 spins (circles) are contrasted
with N = 9 spins (squares). The data deviate from unity at B/N Jrms by ∼20%,
predominantly due to spontaneous emissions in Raman transitions and intensity
fluctuations of Raman laser beams, as discussed in the text. Here, the theoretical
time-evolution curves (red line for N = 2 and black line for N = 9 spins) are
calculated by averaging over 10 000 quantum trajectories.

8. Conclusion and outlook

Trapped atomic ions represent a promising platform for the quantum simulation of intractable
Hamiltonian systems. There have been several theoretical proposals in this direction, largely
following schemes in the realm of quantum computing, and recent experiments have shown that
the system can be scaled to a degree where all classical simulations become impossible [17–19].
This paper has shown both theoretically and experimentally that the quantum simulation of
quantum magnetism and the emergence of spin order can be controlled through external laser
beams up to nine spins and can further be scaled to much larger numbers of spins. The
stable confinement of larger numbers of ions may require novel ion trap architectures such
as anharmonic axial potentials [78] for a linear chain or two-dimensional trap geometries
[79, 80], but there are no known fundamental limitations in this scaling. As discussed here, for a
fixed level of total laser power, the errors associated with decoherence from spontaneous Raman
scattering from the lasers is expected to grow only as N 1/3 for the linear chain, holding the errors
from phonon creation and diabatic transitions to excited states at fixed levels. Alternatively, all
these errors can be held at a fixed value independent of N as long as laser power increases by
N 1/3. In either case the required time for adiabatic ramping grows as N 1/3, so slowly drifting
errors such as (real) magnetic fields and motional heating of the ions must be kept under control
for very large N as discussed in the supplementary information of [17].
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This system can also be extended to the Heisenberg or XY Z spin models [12] or
spin-1 systems by adding a few more laser beams. As the system grows, the transverse motional
modes that mediate the Ising couplings can give rise to higher levels of frustration and complex
phases of magnetic ordering. For instance, by preparing the ground state of a highly frustrated
collection of trapped ion spins, it should be possible to create localized topological excitations
and guide their transport through the system [81]. This example of topological matter is of great
interest for the robust representation and manipulation of quantum information [82, 83]. But
more generally, the trapped ion system is poised to be the first to determine the ground state
features of Hamiltonians where no solution can be obtained otherwise.
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