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Quantum simulation of frustrated Ising spins with
trapped ions
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A network is frustrated when competing interactions between
nodes prevent each bond from being satisfied. This compromise
is central to the behaviour of many complex systems, from social1

and neural2 networks to protein folding3 and magnetism4,5.
Frustrated networks have highly degenerate ground states, with
excess entropy and disorder even at zero temperature. In the case
of quantum networks, frustration can lead to massively entangled
ground states, underpinning exotic materials such as quantum spin
liquids and spin glasses6–9. Here we realize a quantum simulation of
frustrated Ising spins in a system of three trapped atomic ions10–12,
whose interactions are precisely controlled using optical forces13.
We study the ground state of this system as it adiabatically evolves
from a transverse polarized state, and observe that frustration
induces extra degeneracy. We also measure the entanglement in
the system, finding a link between frustration and ground-state
entanglement. This experimental system can be scaled to simulate
larger numbers of spins, the ground states of which (for frustrated
interactions) cannot be simulated on a classical computer.

Linus Pauling predicted in 1945 that the frustrated oxygen–hydrogen
bond lengths in the pyrochloric lattice of ice would lead to a macro-
scopic degeneracy of the ground state near zero temperature14. This
zero-point entropy has been observed in spin-ice materials5,15, where
the competing interactions are magnetic in nature. In the simple case
of a two-dimensional triangular lattice with frustrated antiferromag-
netic Ising interactions, the ground-state degeneracy can easily be seen
(Fig. 1a): only two of the three spins on each triangular cell can align
antiparallel, so all possible mixed configurations in each triangle
(three-quarters of all cases) are ground states. Quantum super-
position of these degenerate states leads to massive entanglement that
is important in our understanding of the complex phase structure of
many frustrated materials, ranging from molecular and liquid crystals
to high-temperature superconductors5,16.

In our experiment, we implement a quantum simulation of the
smallest possible frustrated magnetic network, which consists of three
spins. This work builds on earlier results for two trapped ions12, in a
system that can be scaled to much larger numbers of spins. We control
the sign and strength of the individual magnetic interactions, directly
measure all possible spin correlation functions and characterize
entanglement using techniques borrowed from quantum information
science12,17. The experiment is based on a linear chain of three trapped
atomic 171Yb1 ions, where the effective spin-1/2 system is represented
by the 2S1/2 jF 5 1, mF 5 0æ and jF 5 0, mF 5 0æ hyperfine ‘clock’ states
in each ion, depicted by j"æz and j#æz, respectively18, and separated in
frequency by nHF 5 12.642821 GHz.

The ions are confined in a three-layer linear trap13 and form a
crystal along the trap’s z axis with a centre-of-mass trap frequency
of nz 5 1.49 MHz. The three normal modes of transverse motion
along the principal x axis occur at frequencies n1 5 4.334 MHz,

n2 5 4.074 MHz and n3 5 3.674 MHz. Off-resonance laser beams
uniformly illuminate the ions, driving stimulated Raman transitions
between the spin states and also imparting spin-dependent forces in
the x direction. As discussed in Methods, this allows quantum simu-
lation of the Ising Hamiltonian with a transverse field10–12

H~
X
ivj

Ji,js
(i)
x s(j)

x zBy

X
i

s(i)
y ð1Þ

where By is an effective uniform transverse magnetic field with each
spin having unit magnetic moment, and we have set Planck’s constant,
h, equal to one. For three spins, we define J1 ; J1,2 5 J2,3 as the nearest-
neighbour interaction and J2 ; J1,3 as the next-nearest-neighbour

interaction (Fig. 1b), and s(i)
a denote the Pauli matrices of the ith spin.

We initialize each spin parallel to a strong transverse field and then
adiabatically lower the field relative to the Ising couplings so that the
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Figure 1 | Frustrated Ising spins. a, Simplest case of spin frustration, with
three antiferromagnetic spins on a triangle. b, Image of three trapped atomic
171Yb1 ions in the experiment, taken with an intensified charge-coupled-
device camera, with nearest-neighbour (J1) and next-nearest-neighbour (J2)
interactions. c, Expected form of the Ising interactions J1 and J2, controlled
through the detuning, m, of an optical spin-dependent force, scaled to the
axial (nz) and transverse (n1) centre-of-mass (CM) normal-mode frequencies
of motion such that the CM, tilt and zigzag modes of transverse motion
occur at ~mm:(m2{n2

1)=n2
z 5 0, 21 and 22.4, respectively13.
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quantum state ideally follows the ground state of the Hamiltonian in
equation (1). Because the transverse field does not commute with the
Ising couplings, it provides a quantum interaction that leads to an
entangled ground state7,8.

As shown in Fig. 1c, we have nearly complete control of the signs
and strengths of J1 and J2 through m, the detuning of the lasers from
spin resonance, which regulates the Coulomb interaction between
the ions by coupling to particular collective modes of motion19,20. In
detuning regions II and IV in Fig. 1c, the next-nearest-neighbour
interaction is ferromagnetic, because J2 , 0. The resulting ground
state as By R 0 is an entangled superposition of the two states j###æ
and j"""æ in region II and j#"#æ and j"#"æ in region IV. (We define
the default basis of spins to be along the x axis of the Bloch sphere:
j"æ ; j"æz 1 j#æz and j#æ ; j#æz 2 j"æz.) In regions I and III, the three
spins are frustrated because J2 . 0. In region I, all the interactions are
antiferromagnetic and the Ising ground state is an entangled super-
position of six states: the four antiferromagnetic asymmetric states
j##"æ, j"##æ, j#""æ and j""#æ, and the two antiferromagnetic sym-
metric states j#"#æ and j"#"æ. Region III is more complicated, as it
features a competition between the ferromagnetic nearest-neighbour
interaction (J1 , 0) and the antiferromagnetic next-nearest-neighbour
interaction (J2 . 0), and shows a type of frustration similar to that
expected in two-dimensional ‘Union Jack’ lattices21.

The experiment proceeds as follows. We cool all transverse x modes
to near their zero point of motion, and deep within the Lamb–Dicke
regime, and then initialize the electronic states of each 171Yb1 ion
along the 2y axis of the Bloch sphere through optical pumping and
rotation operations18. Next, we apply the Ising coupling along with a
strong transverse field and adiabatically ramp down the field

(Methods). Finally, we measure the spins along the x axis of the
Bloch sphere by rotating the spins from the x basis to the z basis
and measuring the spin state (j#æz or j"æz) by standard spin-dependent
fluorescence techniques18 using a charge-coupled-device imager (the
detection efficiency is ,95% per spin, including initialization and
rotation errors). We determine the probability of each spin configura-
tion (for example P#"") by repeating the above procedure ,1,000
times. We also measure the number of spins in state j"æ by using a
photomultiplier tube, which is useful for higher-efficiency measure-
ments of certain symmetric observables such as entanglement fidelities
and witness operators.

The above simulation is performed for various magnetic field end
points, By, and laser beat-note detunings, m. Figure 2a shows the
expected ferromagnetic order of the exact ground state, characterized
by P###1 P""" and calculated by diagonalizing equation (1). The
observed evolution of all eight spin states is shown in Fig. 2b–f for
various values of m. The cases in Fig. 2b, d, e correspond to situations
in which the underlying Hamiltonian is frustrated, which is reflected
in the large number of states with roughly equal probability at the end

of the ramps when By=Jrms ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2J 2

1 zJ 2
2 )=3

q
. The theoretical curves

show both the exact ground-state populations as well as the popu-
lation evolution expected from the applied time-dependent
Hamiltonian22, using the Trotter formula and including the contri-
bution from phonons to lowest order in the Lamb–Dicke expansion23.
The case in Fig. 2b corresponds to nearly uniform antiferromagnetic
couplings and gives roughly equal probabilities for all six antiferro-
magnetic states (three-quarters of all possible spin states). Figure 2d
shows a situation in which the four asymmetric antiferromagnetic
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Figure 2 | Quantum simulation of the three-spin Ising model with a
transverse field. a, Theoretical phase diagram of ferromagnetic order of the
Ising model with a transverse field, characterized by P###1 P""" plotted as a
function of the final value of By/Jrms and the scaled laser beat-note detuning,
~mm. b–f, Evolution of each of the eight spin states, measured with a charge-
coupled-device camera, plotted as By/Jrms is ramped down in time, with each
plot corresponding to a different form of the Ising couplings through the
laser detuning (trajectories denoted by vertical dashed lines in a). The green
circles are the two ferromagnetic states, the blue diamonds are the two
symmetric antiferromagnetic states and the red squares are the remaining
four asymmetric antiferromagnetic states. The dotted lines correspond to
the populations in the exact ground state and the solid lines represent the
theoretical evolution expected from the actual ramp, including non-
adiabaticity from the initial sudden switch-on of the Ising Hamiltonian. The
probability of inelastic spontaneous scattering is not included in the

theoretical curves. b, All interactions are antiferromagnetic (region I of
Fig. 1c). The ferromagnetic-ordered states vanish and the six
antiferromagnetic states are all populated as By R 0. Because J2 < 0.8J1 for
this data, a population imbalance also develops between symmetric and
asymmetric antiferromagnetic states. c, All interactions are ferromagnetic
(region II of Fig. 1c), with evolution to the two ferromagnetic states as
By R 0. d, Strong antiferromagnetic interactions between next-nearest
neighbours and weak ferromagnetic interactions between nearest
neighbours. Here the four asymmetric antiferromagnetic states |##"æ,
|"##æ, |#""æ and |""#æ emerge with roughly equal probabilities. e, Next-
nearest-neighbour antiferromagnetic interactions balance nearest-
neighbour ferromagnetic interactions, with six states emerging. f, Nearest-
neighbour antiferromagnetic interactions and next-nearest-neighbour
ferromagnetic interactions, with states |#"#æ and |"#"æ emerging.
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states emerge (half of all states), and the non-frustrated cases in Fig 2c,
f show only two states emerging, owing to the global spin parity
symmetry of the Hamiltonian in equation (1).

The adiabatic evolution of the ground state of equation (1) from
By? Jrms to By= Jrms should result in an equal superposition of all
Ising ground states and should therefore carry entanglement. For
instance, in the ferromagnetic case with J1 , 0 and J2 , 0, we expect
a Greenberger–Horne–Zeilinger (GHZ) ground state j###æ 2 j"""æ.
For the isotropic antiferromagnetic case with J1 5 J2 . 0, we expect
the ground state to be j""#æ 1 j#""æ 1 j"#"æ 2 j##"æ 2 j"##æ 2 j#"#æ,
which is a superposition of two W states17. To compare these two cases,
we characterize the entanglement in the system at each point in the
adiabatic evolution by measuring particular entanglement witness
operators, with negative expectation values indicating the correspond-
ing form of entanglement17. For the ferromagnetic case, we measure
the GHZ witness operator17,24, WGHZ~9=4{ĴJ 2

x {s
(1)
w s

(2)
w s

(3)
w , where

ĴJa:
P

is
(i)
a =2 is proportional to the projection of the total effective

angular momentum of the three spins along the a-direction, and w
is a direction in the y–z plane of the Bloch sphere. For the anti-
ferromagnetic (frustrated) case, we measure the symmetric W-state
witness operator17, WW~4z

ffiffiffi
5
p

{2(ĴJ 2
y zĴJ 2

z ). In both cases, as
shown in Fig. 3, we find that entanglement of the corresponding form
develops during the adiabatic evolution. In this antiferromagnetic–
ferromagnetic comparison, we operate with ~mm < 0.22 for both cases
(J2 < 0.8J1 . 0), but for the ferromagnetic case we reverse the sign of By

and follow the highest excited state12, which is formally equivalent to
measuring the ground state of the sign-inverted Hamiltonian.

In macroscopic systems, the global symmetry in the Ising
Hamiltonian of equation (1) is spontaneously broken, and ground-
state entanglement originating from this symmetry is expected to
vanish for the non-frustrated ferromagnetic case7. However, for the
frustrated antiferromagnetic case, the resultant ground state after
symmetry breaking (for example j""#æ 1 j"#"æ 1 j#""æ) is still
entangled. Although spontaneous symmetry breaking does not occur
in a small system of three spins, we can mimic its effect by adding a

weak effective magnetic field, {Bx

X
i

s(i)
x , during the adiabatic

evolution25. Figure 4a shows the measured final populations after
adiabatic evolution to the Ising Hamiltonian (jByj= Jrms) in the
ferromagnetic case without symmetry breaking. Figure 4b shows
the same with a symmetry-breaking field, Bx < Jrms, that breaks the
degeneracy of the two components of the ferromagnetic ground state
and leaves a dominant j"""æ product state. Figure 4c shows a mea-
surement of the corresponding GHZ witness operator, showing clear
quenching of GHZ-type entanglement when symmetry is broken.

For the frustrated antiferromagnetic case, Fig. 4d shows the mea-
sured final populations of the evolution of the Ising Hamiltonian,
with the six antiferromagnetic states dominating. However, when
symmetry is broken (Fig. 4e), the antiferromagnetic system primarily
evolves to the three states j""#æ, j"#"æ and j#""æ, consistent with the
expected W state. (The residual population in the other states is
attributed to non-adiabatic evolution and a finite value of By at the
end of the ramp.) We characterize entanglement of the symmetry-
broken frustrated antiferromagnetic case by measuring the bipartite
spin-squeezing witness operator17

WSS~ ĴJ 2
x z
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y zĴJ 2
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We choose this witness operator because it is less sensitive to experi-
mental errors than the W-state witness operator, WW (ref. 17). The
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Figure 3 | Entanglement generation through the quantum simulation.
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photomultiplier tube for detection (see Methods for the error budgets), for
ferromagnetic (a) and antiferromagnetic (b) situations as | By | /Jrms is
ramped down, with a negative value of the witness operator indicating
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expectation values. a, In the ferromagnetic regime, we measure a GHZ
witness operator with w 5 y (filled circles) and find that entanglement occurs
for | By | /Jrms , 1.25. The GHZ fidelity, F (open circles), or the overlap
probability with the ideal GHZ state, is also extracted from this
measurement, where F . 0.5 indicates entanglement24. b, For the frustrated
antiferromagnetic case, we measure a W-state witness operator (filled
circles) and find that entanglement emerges for By/Jrms , 1.1. In both a and
b, the dashed lines are theoretical witness-operator values for the exact
ground states, and the solid lines theoretically describe the expected witness-
operator values given the actual ramps, not including detection errors or
errors due to spontaneous scattering or fluctuations in control parameters.
The error bars represent the spread over the observed witness-operator
expectations following various global rotation directions of the spins, and
indicate the uncertainty due to parasitic effective magnetic fields not
appearing in equation (1) as well as possible drifts in the control parameters.
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the uncertainty due to parasitic effective magnetic fields and drifts not
appearing in equation (1).
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observation of negative values of WSS presented in Fig. 4f shows directly
that the frustrated ground state carries entanglement even after global
symmetry is broken in the Ising model, and thereby establishes a link
between frustration and an extra degree of entanglement.

Simulations of quantum magnetism in this system can be scaled to
much larger numbers, N, of trapped ion spins. The stable confine-
ment of larger numbers of ions may require novel ion trap architec-
tures, but there are no known fundamental limitations. As detailed in
Supplementary Information, for a fixed level of total laser power the
errors associated with decoherence from spontaneous Raman scat-
tering from the lasers is expected to grow only as N1/3, holding errors
from phonon creation and diabatic transitions to excited states at
fixed values. Alternatively, all of these errors can be held at fixed
values independent of N as long as the laser power increases as
N1/3. In either case, however, the required time for adiabatic ramping
grows as N1/3, so slowly drifting errors such as (real) magnetic fields
and motional heating of the ions must be kept under control for very
large values of N. This system can also be extended to Heisenberg or
XYZ spin models by adding one or two more laser beams10,11. As the
system grows, the transverse motional modes that mediate the Ising
couplings can give rise to higher levels of frustration and complex
phases of magnetic ordering. For instance, by preparing the ground
state of a highly frustrated collection of trapped ion spins, it should be
possible to create localized topological excitations and guide their
transport through the system26. This example of topological matter is
of great interest for the robust representation and manipulation of
quantum information27,28.

METHODS SUMMARY
The transverse fields are generated through optical stimulated Raman couplings

between the spin states, and the Ising couplings are generated through a spin-

dependent optical dipole force that is close to resonance with the transverse

modes of ion motion13,19,20. Within the Lamb–Dicke regime23, the result is a

nearly pure Ising Hamiltonian of typical coupling strength Jrms < 2 kHz and

transverse field up to By < 10 kHz. The relative axes of the Ising coupling and

transverse magnetic field in the x–y plane of the Bloch sphere defined in equation

(1) are set by the relative phase of the beat notes in the Raman beams. We ramp

down the amplitude of the effective magnetic field, By, in equation (1) by con-

trolling the optical Raman power, resulting in a typical ramp in Rabi frequency

from V < 10 kHz to 0.3 kHz following an exponential decay trajectory.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Transverse field and Ising couplings. The transverse fields are generated

through optical Raman couplings between the spin states. Laser radiation red-

detuned ,1.8 THz from the 2S1/2–2P1/2 transition in 171Yb1 (wavelength,

,369.5 nm) uniformly illuminates the ions with an intensity of ,103 W cm22.

The laser carries an optical beat note at the 171Yb1 hyperfine splitting frequency,

nHF, generated by electro-optic and acousto-optic modulators29. The effective

transverse field, By, arises from the resulting resonant carrier transitions23. We

observe Rabi frequencies up to V < 1 MHz that are stable over time and isotropic

over the ions to better than 1%.

The Ising couplings are generated through a spin-dependent force in the x

direction at frequency m (refs 19, 20). The same laser as described above is split

into two beams that propagate at right angles to each other with their wavevector

difference, k, pointing along the x axis of transverse motion. Two frequencies

simultaneously drive an acousto-optic modulator on one of the beam lines in the

‘phase-sensitive’ configuration29, forming bichromatic beat notes at nHF 6 m.

When m is in the neighbourhood of the x-transverse motional mode frequencies,

there is an off-resonance coupling to upper and lower motional side-band tran-

sitions23 of all x-transverse modes simultaneously13. However, the detuning, m, is

set far enough from each normal mode that the motion is only virtually

excited19,20. The probability of phonon population in the mth normal mode is

pph <
P

m(gi,mV)2/(m 2 nm)2, where gi,m~bi,m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bk2=4pMnm

p
is the Lamb–

Dicke parameter of the ith ion with the mth mode, bi,m is the normal-mode

transformation matrix, M is the mass of a single ion13 and B is Planck’s constant

divided by 2p (the centre-of-mass Lamb–Dicke parameter is gi,1 < 0.025).

Within the Lamb–Dicke regime23, the result is a nearly pure spin–

spin Hamiltonian with nearest-neighbour and next-nearest-neighbour Ising

couplings as plotted in Fig. 1c13,22, with a typical Ising coupling strength of

Jrms < 2 kHz. We expect pph , 2% over all detuning settings in the experiment.

This is theoretically verified by numerical integration of the Schrödinger

equation with and without phonon terms, which results in no observable dif-

ference in the evolution shown in Fig. 2b–f. (However, the residual phonon

population is expected to contribute a ,2% fidelity degradation for the data

shown in Fig. 3a.)

The relative axes of the Ising coupling and transverse magnetic field in the x–y
plane of the Bloch sphere defined in equation (1) are set by the relative phase of

the radio-frequency sources driving the acousto-optic modulators for the trans-

verse field and Ising couplings as described above. These radio-frequency phases

are carefully calibrated by observing appropriate spin dynamics in a series of

diagnostic Ramsey experiments12.

Adiabatic ramping procedure. We ramp down the amplitude of the effective

magnetic field, By, in equation (1) by controlling the amplitude of the radio-

frequency signal driving the acousto-optic modulators, resulting in a typical ramp

in V from ,10.0 kHz to ,0.3 kHz. We expect the differential a.c. Stark shift

between the j"æz and j#æz states to change by less than ,2 Hz during the ramp.

The ramp profile follows an exponential decay in time plus a non-zero offset field,

with the characteristic decay time of 35ms chosen as a compromise between non-

adiabatic evolution when the ramp is too fast and decoherence effects when the

ramp is too slow. Non-adiabatic evolution including imperfect ground-state pre-

paration is expected to contribute population errors at a level below 7%. We

observe that the probability of spontaneous scattering from the off-resonance

Raman lasers at full power is approximately 15% after a typical simulation time

of 0.3 ms. Heating of the motional modes is less than 1 phonon ms21 and does not
contribute to significant levels of decoherence. The net effect of these errors is

consistent with the data in Figs 2–4. Non-adiabatic evolution is expected to occur

when the ramp decay rate is much larger than the gap between the ground and

excited spin states, a condition that depends on the form of the transverse Ising

model in equation (1). The ramp decay rate is therefore never much larger than

4p(jJ1j1 jJ2j), which sets the scale for the gaps in the ferromagnetic and anti-

ferromagnetic cases central to the experiment. However, the ramp does not always

resolve ground states separated by gaps of order jJ1j2 jJ2j, as expected between the

symmetric/asymmetric antiferromagnetic states in region I and the ferromagnetic/

asymmetric-antiferromagnetic states in region III of Fig. 1c. (These unresolved

gaps may explain some of the discrepancy between theory and experiment in

Fig. 2e, where there seems to be higher sensitivity to parasitic effective magnetic

fields along the x or z axes of the Bloch sphere.)

29. Lee, P. J. et al. Phase control of trapped ion quantum gates. J. Opt. B 7, S371–S383
(2005).
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