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Experimental noise sources and their influence on the
thermalization dynamics

As discussed in the text, there are fluctuations on the inter-
action strength Jij , which originate from noise on the laser
intensity and ωm [ ]. This noise is slow compared to a sin-
gle experiment, but fast compared to the thousands of exper-
iments it takes to complete a data set. Averaging over this
classical noise leads to dynamics that resemble a running time
average, because the fast temporal oscillations are effectively
canceled out by the fluctuating Jij . To account for this, the
numeric simulations average over a small range of coupling
strengths (standard deviation of 0.12Jmax).
Another source of noise is the fourth order AC Stark shift
from the Mølmer-Sørensen interaction laser sidebands. This
noise also has a negligible effect, since we are in the regime
of large transverse fields and this Stark shift term only adds a
small global σz fluctuation of about 30 Hz, on top of the 10
kHz transverse field applied. We experimentally verify this
by applying a global offset field of ± 400 Hz and observe no
difference in the observed prethermalization. The relaxation
dynamics are robust against these experimental noise sources,
however it is sensitive to asymmetries of the spin-spin cou-
pling matrix.

Measuring the spin-spin coupling matrix

We directly measure the spin-spin coupling matrices for
seven ions for both long and short range interactions and en-
sure it is symmetric as seen in fig. S1. In order to measure
the strength of the interaction between two spins, we shelve
all but the two ions of interest out of the interaction space and
directly observe their time evolution. This is done by first per-
forming individual rotations on these two ions to the |↑〉z as
outlined above. Then we perform a global π rotation between
|↓〉z , 2S1/2|F = 0,mF = 0〉, and one of the Zeeman states,
2S1/2|F = 1,mF = −1〉, which takes the other 5 spins out of
the interaction space. We then apply the Hamiltonian which
now only acts on the two remaining spins.

Justification for postselection

As noted above the initialN spin flip fidelity is approxi-
mately (0.97)N and (0.85)N for short and long range inter-
actions respectively. Numerically, we find that the number
of spin excitations is essentially constant on the experimen-
tal timescale which is expected because the transverse field
Ising model can be mapped to an XY model for sufficiently
large transverse field and the XY model conserves the num-
ber of spin excitations [33]. However, experimentally we ob-
serve leakage out of the N excitation subspace with less than
50% remaining at the end of the evolution. This leakage er-
ror is largely due to the residual spin-phonon entanglement ig-
nored in Eq. 1 and that extra spin excitations can be created by
phonons within our experimental time scale. For clarity, we
postselect the data for the correct number of spin excitations

ions for both short-range ( left matrix) and long-range (r ight matrix)

action space. This is done by shelving the other spins in one of the
Zeeman levels. The estimated statistical error on Jij is 10% on the
nearest-neighbour coupling strengths.

to eliminate the effects of imperfect state preparation, detec-
tion error, and small deviations from our model Hamiltonian
due to unwanted excitations of the phonon modes.

The spin-boson mapping and the generalized Gibbs ensemble

To explain our observed prethermalization, it is convenient
to map the spins into bosons by using the Holstein-Primakoff

transformation: σzi = 2a†iai − 1, σ+
i = a†i

√
1− a†iai

. We will assume that the average spin excitation density
n̄ =

∑
i〈a
†
iai〉/N is much smaller than 1. This assumption

is justified in our experiments because our initial states have
small spin excitation densities and we set max(Jij) � B
so the amount of n̄ that will be dynamically created is small
[∼ (max(Jij)/B)2]. Therefore to the lowest order we can ap-
proximate σ+

i ≈ a†i , and (1) reduces to an integrable Hamil-
tonian H0 made of non-interacting bosons

H0 =
∑
i<j

Jij(a
†
iaj + a†ia

†
j + h.c.) + 2B

∑
i

a†iai (1)

H1 = H −H0 (2)

Here H1 contains interactions between the bosons which are
parametrically small in n̄, and, as a result, we can treat H1 as
a perturbation to H0. Thus, it is natural to expect the system
(in the thermodynamic limit) to first relax to a prethermal state
described by the GGE of H0, and to later relax to a thermal
state described by the full H . Naively, we expect the thermal-
ization to happen at a time scale much longer than the relax-
ation to GGE, based on the different energy scales of H0 and
H1. However, this is not always the case, as discussed below.
To explicitly define the GGE ofH0, we would need to first
diagonalize H0 and find the integrals of motion. Note that (1)
only involves Jij for i < j. For convenience, we will define
a new matrix J such that Jii = 0 and Jij = Jji = Jij for

fig. S1. We directly measure the spin-spincoupling matrix with seven

interactions and see it is symmetric. To measure the coupling between
two spins we transfer all except the spins of interest out of the inter-
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i < j. H0 can be rewritten as

H0 =
∑
i,j

Jij
[
a†iaj +

1

2
(a†ia

†
j + aiaj)

]
+2B

∑
i

a†iai (3)

An orthogonal matrix V can be used to diagonalize the ma-
trix J as

∑
i,j VikJijVjk′ = νkδkk′ , where {νk} are the

eigenvalues of matrix J . Introducing ck =
∑
i Vikai, we

have

H0 =
∑
k

[
(νk + 2B)c†kck +

1

2
νk(c†kc

†
k + ckck)

]
(4)

Next, we perform a Bogoliubov transformation ck =

cosh(θk)dk − sinh(θk)d†k with θk = 1
2 tanh−1( νk

νk+2B ) to
fully diagonalize H0

H0 =
∑
k

εkd
†
kdk, εk ≡ 2

√
B(B + νk) (5)

Since integrable models have an extensive number of con-
served quantities that are not taken into account by canonical
ensembles from statistical mechanics, the GGE was developed
to make predictions about equilibrium values of observables
in these systems by incorporating the additional integrals of
motion [14-18]. The GGE for H0 is defined as

ρGGE =
e−

∑
k λkd

†
kdk

Tr(e−
∑

k λkd
†
kdk)

(6)

with λks determined by 〈d†kdk〉0 = 〈d†kdk〉GGE , where the
notation 〈· · · 〉0 denotes the expectation value in the initial
state |ψ0〉, and the notation 〈· · · 〉GGE denotes the expecta-
tion value in ρGGE . We observe relaxation to the GGE if for
any local observable O, 〈O(t)〉 ≈ tr(OρGGE).
Using the fact that our initial state |ψ0〉 is always a Fock
state in the basis of {a†iai}, the value of 〈d†kdk〉0 can be cal-
culated by the following formula

〈d†kdk〉0 = cosh(2θk)
∑
i

V2
ik〈a

†
iai〉0 + sinh2(θk) (7)

To calculate the expectation values of σzi = 2a†iai − 1 in
the GGE, we use the following equations

〈a†iai〉GGE = 〈
∑
k,k′

VikVik′c†kck′〉GGE

=
∑
k

V2
ik〈cosh(2θk)d†kdk + sinh2(θk)〉GGE

=
∑
k

V2
ik[cosh(2θk)〈d†kdk〉0 + sinh2(θk)]

(8)

where we use the fact that ρGGE is diagonal in the Fock basis
of {d†kdk}, so 〈d†kdk′〉GGE = 〈d†kd

†
k′〉GGE = 0 for k 6= k′.

Single-particle properties of H0

Since vk/B is small, we can expand εk and dk in νk/B to
the leading order

εk ≈ 2B + νk, dk ≈
∑
i

Vik(ai +
νk
4B

a†i ) (9)

This means to understand the single-particle properties of H0

(Eq. 5), we just need to understand the properties of the eigen-
values {νk} and eigenvectors V of the matrix J . We empha-
size that the matrix J defined in Eq. 3 of the main text differs
from the matrix J used in defining H0, because Jii 6= 0 by
the above definition . This is because Jii has no physical con-
sequence in the Ising Hamiltonian as (σxi )2 = 1.
Let us first try to understand the properties of the eigenval-
ues and eigenvectors of the matrix J . To make this possible,
we will need to approximate the spacing between ions to be
uniform. While this is not true in the current experiment due
to the harmonic trapping potential, the inhomogeneity in ion
spacing is not responsible for the observed prethermalization
[20] and from now on we will assume that the ions are equally
spaced.
We now write down the motional Hamiltonian of N ions
trapped along the z direction ignoring the ions’ motion along
the y direction for simplicity since we barely couple the spins
to the phonons in that direction

Hm =
∑N
i=1

[
p2i,x
2M +

p2i,z
2M + V (zi) + 1

2Mω2
xx

2
i

]
(10)

+ Q2

4πε0

∑N
i=1

∑i−1
j=1

1√
(zi−zj)2+(xi−xj)2

(11)

Here {xi, zi, pi,x, pi,z} are respectively the coordinates and
momenta of the ith ion in the x and z directions. M and Q
are the mass and charge of each ion, and ωx is the transverse
trapping frequency. The ions will be equally spaced with a
spacing a0 if V (z) = − Q2

4πε0a0
log(1 − z2/L2), with L =

Na0/2.
By expanding the Coulomb interaction around the ions’
equilibrium positions up to second order in position, the mo-
tional Hamiltonian in the x direction can be written as

Hmx =

N∑
i=1

p2
i,x

2M
+

1

2
M

 N∑
i=1

ω2
xx

2
i − ω2

z

N∑
i,j=1

Kijxixj


(12)

where we have set ωz ≡
√

Q2

4πε0Ma30
as an “effective” axial

trapping frequency. The dimensionless matrix K character-
izes the dipolar interactions between ions

Ki 6=j = −|i− j|−3, Kii = −
∑
j 6=i

Kij (13)

The exact analytical expressions for the eigenvalues {κm}
and eigenvectors {Vi,m} of K cannot be obtained. But we
can employ a first-order perturbation theory and assume that



the eigenvectors of K are approximately the same as those of
a nearest-neighbor coupling matrix K. As a result

Vi,m ≈

{√
1/N, m = 0,√
2
N cos[mπN (i− 1

2 )], m = 1, 2, · · ·N − 1
(14)

κm ≈
N/2∑
r=1

2− 2 cos mrπN
r3

, (m = 0, 1, · · ·N − 1) (15)

Note that the (i− 1
2 ) above ensures that the phonon modes are

either symmetric or antisymmetric under the spatial inversion
of the chain (i→ N + 1− i).
As a result, the eigenvectors of the matrix J are given by
{Vi,m}, and the eigenvalues are given by

λm =
h̄(δk)2Ω2

2M(µ2 − ω2
x + ω2

zκm)
(16)

Finally, we point out that importantly, Jii is in general non-
uniform. This can be seen in the following two limits:

1. When µ2 − ω2
x � ω2

zκm for all m, we expect Jij to
decay as 1/|i− j|3 (α→ 3 limit), and

Jii ≈
h̄(δk)2Ω2ω2

z

2M(µ2 − ω2
x)2

Kii (17)

Jii in this limit is very close to uniform in the large N
limit, except for i close to 1 and N [see ig. S2(a)].

2. When µ2 − ω2
x � ω2

zκm for all m 6= 0 (α → 0 limit),
we can separate out the m = 0 term and approximate
Jii by

Jii ≈
h̄(δk)2Ω2

2Mω2
z

1

N

{
1 + 2

N−1∑
m=1

cos2[mπN (i− 1
2 )]

κm

}
(18)

Note that even in the large N limit, Jii is non-uniform
across the entire ion chain [see fig. S2(a)]. An ana-
lytical formula can be obtained if we approximate κm
by including only the r = 1 (nearest-neighbor) term
in Eq. 15, leading to Jii ≈ h̄(δk)2Ω2

2Mω2
z

1
N (i − N+1

2 )2 +
constant.

As shown above, when the interactions described by Jij are
very long-ranged, Jii can be rather non-uniform. This will
result in a qualitatively different structure between the eigen-
values and eigenvectors of the two matrices J and J . To see
this, we first notice that the eigenvalues and eigenvectors of J
are similar to those of the Hamiltonian for a free-particle in an
square well potential. This connection can be formalized by
going into the continuum limit and introducing a continuous
momentum q ≡ mπ/N ∈ (0, π). The eigenspectrum λ(q) of
J is minimized at q = π. Expanding λ(q) around q = π and
using Eq. 15-16, we obtain

λ(q) ≈ O((q − π)0) +
h̄(δk)2

2Meff
(q − π)2 +O[(q − π)4]

(19)

Meff ≡M
[
µ2 − ω2

x + 4ζ(3)
]2

ω2
zΩ2 ln 2

(20)

corresponding to the dispersion relation of a massive parti-
cle with an effective mass Meff and an effective momentum
(δk)q. Here we point out that because the low-energy spin
waves have momentum around q = π, the long-range hop-
pings among local spin excitations are canceling out each
other and do not lead to non-analytic dispersion relation, thus
the spin-wave approximation remains valid as in a short-range
interacting transverse-field Ising model.
The Schr̈odinger equation for the above particle can be
written in the position space parameterized by a continuous
coordinate z ∈ [1, N ] that replaces the discrete ion index
i ∈ {1, 2, · · ·N}

− h̄
2(δk)2

2Meff

∂2

∂z2
ψ(z) = Eψ(z) (21)

with the boundary condition ψ(z ≤ 1) = ψ(z ≥ N) = 0
corresponding to that of a particle in a box potential. Here the
eigenwavefunction ψm(z) ≈ (−1)iVi,m (for z = i), and the
eigenenergy Em ≈ h̄λm (up to a constant shift) near q = π.
We can similarly map the eigenvalue equation of J to a
Schrödinger equation of a massive particle

− h̄
2(δk)2

2Meff

∂2

∂z2
Ψ(z) + U(z) = EΨ(z) (22)

However, we now have an effective potential U(z) due to the
fact that Jii = 0 6= Jii, and up to a constant energy shift

U(z) ≡

{
∞ z < 1 or z > N

−Jii z = i ∈ {1, 2, · · · , N}
(23)

As discussed in the previous section, for µ2 − ω2
x � ω2

zκm
(where α→ 3), the potential U(z) will be nearly flat, and the
eigenvalues and eigenvectors of J are similar to those of a
particle in a box. However, for µ2−ω2

x � ω2
zκm (where α→

0), U(z) has the shape of a double well potential [fig. S2(a)].

Discussion

Ignoring tunneling between the two deep wells of a double-
well-shaped potential, the low-energy eigenstates of a massive
particle in such a potential are localized orbitals inside either
well [see fig. S2(b)]. The tunneling rate (which is exponen-
tially small in the height of the barrier) splits the degeneracy of
the localized orbitals in each well and leads to pairs of sym-
metric and antisymmetric (upon the spatial inversion of the
chain) wavefunctions. This physical picture explains the ob-
served prethermalization: Initial excitations placed in the left
half of the chain will be localized for an extended period of
time under the evolution of H0, until the tunneling between
the two wells eventually delocalizes the excitations. The ex-
plicit scaling of the tunneling rate as a function of α and sys-
tem size N is difficult to obtain and requires future theoretical
study, due to the challenge in obtaining an analytical solution
to Eq. 22 for a given α.
Although the physics we observe is similar to weakly in-
teracting bosons in a double-well potential, it is important to
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−J ii [in arbitrary units
and shifted by min(Jii)] that determines the single-particle potential
U(z) for N = 100 ions. We choose the parameters that make Jij
decay approximately as 1/rα with different values of α shown in
the plot. As α decreases, the potential changes continuously from
nearly flat to an approximately harmonic anti-trap. Together with two
hard wall potentials at i/N = 0, 1, the potential looks like a double
well that becomes deeper for smaller α. (b) The eigenvector Vi,10
corresponding to the 10th lowest eigenvalue of J for aN = 100 ion
chain. For small α’s, the eigenvector, as well as the wavefunction
Ψ(z) of Eq. 22, is localized inside the two wells. For large α’s, the
eigenvector is delocalized and similar to that of a particle in a box.

emphasize that, in our system, the double-well potential is not
present in the Hamiltonian H0 (Eq. 1). Instead, the effective
potential emerges from the long-range hoppings of the bosons
with open boundary conditions. This emergent inhomoge-
neous potential is a particularly surprising effect because the
motional Hamiltonian (Eq. 11) and spin-motion couplings in-
duced by the Raman lasers are all homogeneous. The key rea-
son is that for a short-range interacting system, translational
invariance can usually be assumed for an open boundary chain
as far as bulk properties are concerned. But long-range inter-
actions make the boundary conditions important even for bulk
properties, which is why spin excitations in the bulk can still
feel a strongly inhomogeneous potential. Finding the critical
α at which this effect takes place in our system is still an open
question, because it is difficult to find the analytical expres-
sion for Jii as a function of α.

The notion of a boundary starts to break down for suffi-
ciently long-ranged interactions, and therefore we cannot at-
tribute the observed prethermalization to boundary effects.
Usually, boundary effects only affect a finite number of eigen-
states and do not affect local quenches in the bulk. However,
here there is an extensive number of eigenstates that are lo-
calized in the two wells because the width of the wells is
proportional to the chain length [see fig. S2(a)], and excita-
tions placed an extensive number of lattice sites away from
the edges are still subject to the quantum tunneling effect.

Finally, we point out that interactions in H1 can also delo-
calize the initial spin excitations placed in one of the wells,
and eventually thermalize the system. As a result, there is an
interesting interplay between the timescales of prethermaliza-
tion to the GGE and of thermalization. If the interactions in
H1 are sufficiently weaker than the kinetic tunneling rate in
H0, which can be achieved by increasing the magnetic field
strength B or changing the range of interactions, then we ex-
pect the system to have two prethermal phases before ther-
malization, with the observed prethermalization followed by
prethermalization to the GGE of H0. If instead the tunneling
rate is sufficiently smaller than the interactions inH1, then the
prethermal states described by the GGE of H0 may never ap-
pear during the time evolution. These interesting multi-stage
relaxation processes will require future experimental investi-
gations with longer coherence times and larger spin chains.

fig. S2. Numerical calculation to illustrate the origin of the
double-well potential.
(a) The diagonal matrix element




