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We demonstrate entangling quantum gates within a chain of five trapped ion qubits by optimally shaping
optical fields that couple to multiple collective modes of motion. We individually address qubits with
segmented optical pulses to construct multipartite entangled states in a programmable way. This approach
enables high-fidelity gates that can be scaled to larger qubit registers for quantum computation and
simulation.
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Trapped atomic ion crystals are the leading architecture
for quantum information processing, with their unsur-
passed level of qubit coherence and near perfect initializa-
tion and detection efficiency [1,2]. Moreover, trapped ion
qubits can be controllably entangled through their
Coulomb-coupled motion by applying external fields that
provide a qubit state-dependent force [3–6]. However,
scaling to large numbers of ions N within a single crystal
is complicated by the many collective modes of motion,
which can cause gate errors from mode crosstalk. Such
errors can be mitigated by coupling to a single motional
mode, at a cost of significantly slowing the gate operation.
The gate time τg must generally be much longer than the
inverse of the frequency splitting of the motional modes,
which for axial motion in a linear chain implies τg ≫ 1=
ωz > N0.86=ωx, where ωz and ωx are the center-of-mass
axial and transverse mode frequencies [7]. For gates using
transverse motion in a linear chain [8], we find τg ≫ ωx=
ω2
z > N1.72=ωx. In either case, the slowdown with qubit

number N can severely limit the practical size of trapped
ion qubit crystals. Shuttling ions between separate trapping
zones may mitigate this problem [9], but even in that
architecture it will be useful to increase the number of
qubits per zone.
In this letter, we address this scaling problem by

applying qubit state-dependent optical forces that simulta-
neously couple to multiple modes of motion. We address
subsets of ions immersed in a five-ion linear crystal and
engineer laser pulse shapes to entangle pairs of ions. This
suppression of mode crosstalk provides high gate fidelity
without slowing the gate [8,10]. The precalculated pulse
shapes optimize theoretical gate fidelity, achieving unity
for sufficiently complex pulses. In the experiment, we
concatenate these shaped gates to entangle multiple pairs of
qubits and directly measure multiqubit entanglement in
the crystal. Extensions of this approach can be scaled to
larger ion chains and also incorporate higher levels of

pulse shaping to reduce sensitivity to particular experi-
mental errors and drifts [11–13].
In the experiment, five 171Ybþ ions are confined in a

three-layer linear rf trap [14] with transverse center-of-mass
(CM) frequency ranging from ωx=2π ¼ 2.5–4.5 MHz and
axial CM frequency ωz=2π ¼ 310–550 kHz, with a
minimal ion separation of ∼5 μm. Each qubit is represented
by the 2S1=2 hyperfine “clock" states within 171Ybþ,
denoted by j0i and j1i and having a splitting of ω0=2π ¼
12.642821 GHz [15]. We initialize each qubit by optically
pumping to state j0i using laser light resonant with the
2S1=2↔2P1=2 transition near 369.5 nm.
We then coherently manipulate the qubits with a

mode-locked laser at 355 nm whose frequency comb beat
notes drive stimulated Raman transitions between the qubit
states and produce qubit state-dependent forces [16,17].
The Raman laser is split into two beams, one illuminating
the entire chain and the other focused to a waist of ∼3.5 μm
for addressing any subset of adjacent ion pairs in the chain,
with a wave vector difference Δk aligned along the x
direction of transverse motion. We finally measure the state
of each qubit by applying resonant laser light near 369.5
nm that results in state-dependent fluorescence [15] that
is imaged onto a multichannel photomultiplier tube for
individual qubit state detection. We repeat each experiment
at least 300 times and extract state populations by fitting to
previously measured fluorescence histograms [18].
When a constant state-dependent force is applied to the

ion qubits, the multiple incommensurate modes generally
remain entangled with the qubits following the interaction,
thereby degrading the quantum gate fidelity. However,
more complex optical pulses can be created that satisfy a set
of constraints for disentangling every mode of motion
following the gate. This optimal control problem involves
engineering a sufficiently complex laser pulse that can in
principle achieve near-unit fidelity.
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The qubit state-dependent optical force is applied by
generating bichromatic beat notes near the upper and
lower motional sideband frequencies at ω0 � μ, where
the detuning μ is in the neighborhood of the motional
mode frequencies. Using the rotating wave approximation
in the Lamb-Dicke and resolved-sideband limits, the
evolution operator of the dipole interaction Hamiltonian
becomes [10,19–21]

ÛðτÞ ¼ exp

�X
i

ϕ̂iðτÞσ̂ðiÞx þ i
X
i;j

χi;jðτÞσ̂ðiÞx σ̂ðjÞx

�
: (1)

The first term corresponds to the qubit-motion coupling on
ion i, where ϕ̂iðτÞ ¼

P
m½αi;mðτÞâ†m − αi;m

�ðτÞâm�, â†mðâmÞ
is the raising (lowering) operator of mode m, and σ̂ðiÞx is the
Pauli-X operator of the ith qubit, where we define the x axis
of the qubit Bloch sphere according to the phase of the
bichromatic beatnotes [22]. This is a state-dependent
displacement of the ion i such that the j0i � j1i states
follow the trajectories �αi;mðτÞ in phase space of the mth
motional mode according to [10]

αi;mðτÞ ¼ iηi;m

Z
τ

0

ΩiðtÞ sinðμtÞeiωmtdt: (2)

Here, ηi;m ¼ bi;m · Δk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2Mωm

p
is the Lamb-Dicke

parameter, bi;m is the normal mode transformation matrix
for ion i and mode m [23], ωm is the frequency of the mth
motional mode, and M is the mass of a single 171Ybþ ion.
The second term of Eq. (1) describes the entangling
interaction between qubits i and j, with [10]

χi;jðτÞ ¼ 2
X
m

ηi;mηj;m

Z
τ

0

Z
t0

0

ΩiðtÞΩjðt0Þ

× sinðμtÞ sinðμt0Þ sin½ωmðt0 − tÞ�dtdt0: (3)

In Eqs. (2)–(3), the time-dependent Rabi frequency ΩiðtÞ
on the ith ion is used as a control parameter for optimi-
zation of the gate and is assumed to be real without loss of
generality. (We could alternatively vary the detuning μ [24]
or the beatnote phase [25] over time for control.)
In order to perform an entangling XX gate on two ions a

and b in a chain of N ions, we apply identical state-
dependent forces to just these target ions and realize

ÛðτgÞ ¼ exp½iπσ̂ðaÞx σ̂ðbÞx =4�. This requires χa;bðτgÞ ¼ π=4
along with the 2N conditions αa;mðτgÞ ¼ 0 so that the
phase space trajectories of all N motional modes return to
their origin and disentangle the qubits from their motion
[4–6]. These constraints can be satisfied by evenly parti-
tioning the pulse shape ΩaðtÞ ¼ ΩbðtÞ into 2N þ 1 seg-
ments [8,10], reducing the problem to a system of linear
equations with a guaranteed solution. The detuning and

gate duration become independent parameters so that in
principle, the gate can be performed with near-unit fidelity
at any detuning μ ≠ ωm on any two ions in a chain, given
sufficient optical power.
Figure 1(a) shows theoretical and measured fidelity of

the entangled state ÛðτgÞj00i ¼ j00i þ ij11i for both a
simple constant pulse and a five-segment pulse on a two-
ion chain, as a function of detuning μ for a fixed gate time
τg ¼ 104 μs. For two ions, the five segments provide full
control (2N þ 1 ¼ 5), meaning that a pulse shape can be
calculated at each detuning that should yield unit fidelity
in theory. As seen in Fig. 1(a), a constant pulse can be
optimized to achieve high fidelity, but only at detunings μ
whose frequency difference from the two modes is com-
mensurate [20], which in this case has many solutions
spaced by 1=τg. The observed fidelity of the constant pulse
follows theory, with uniformly lower fidelities consistent
with known errors in the system. On the other hand,
relatively high fidelities of the 5-segment pulse are
observed over a wide range of detunings for the same gate
time, with the details of a particular pulse sequence shown
in Fig. 1(b)–(c). We measure the fidelity by first observing
the populations of the j00i and j11i states, then extracting
their coherence by repeating the experiment with an
additional global π=2 analysis rotation Rðπ=2;ϕÞ and
measuring the contrast in qubit parity as the phase ϕ is
scanned [26].

FIG. 1 (color online). Improvement of entangled state creation
using pulse shaping on N ¼ 2 trapped ion qubits. (a) Comparison
of Bell state entanglement fidelity for a constant pulse (black)
versus a five-segment pulse (red) over a range of detuning μ,
showing significant improvement with the segmented gate.
(b) The segmented pulse pattern, parameterized by the Rabi
frequency ΩiðtÞ with the particular detuning μ near the 2nd
(“tilt”) motional mode [arrow in (a)] and measured state fidelity
≥ 94ð2Þ%. (c) Phase space trajectories (arbitrary units) subject to
pulse sequence in (b) for both CM and tilt modes of the two ions.
The thickness of the curves from each segmented pulse is
alternated to guide the trajectories. The five-segment pulse
pattern brings the two trajectories back to their origins, simulta-
neously disentangling both modes of motion from the qubits.
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When the number of ions in a chain increases to N > 2,
it becomes difficult to find detunings μ of a constant pulse
whose difference frequencies μ − ωm from all modes are
nearly commensurate, without significantly slowing the
gate. Figure 2(a)–(b) compares the measured parity curves
using a constant versus a nine-segment pulse for perform-
ing the XX gate on an ion pair 1 and 2 within a five ion
chain, while maintaining the same gate time (τg ¼ 190 μs).
The measured state fidelity increases from 82(3)% for a
constant pulse to 95(2)% for the segmented pulse, even
though fewer than 2N þ 1 ¼ 11 control parameters are
utilized. Much of this gain in fidelity from the segmented
pulse appears to stem from its relative insensitivity to
detuning fluctuations, as discussed below. Using a different
nine-segment pulse solution, we also achieve a fidelity of
95(2)% for an ion pair 2 and 3 as seen in Fig. 2(c). In this
overconstrained case, the calculation becomes an optimi-
zation problem, where more weight is given to the closing
of more influential phase space trajectories [Fig. 2(d)].
Therefore, a judicious choice of detuning can often reduce

the number of parameters required to achieve near-unit gate
fidelities [8,10].
Figure 3(a) shows the theoretical maximum gate fidelity

using a constant, a five-segment, and a nine-segment
pulse for entangling the first two ions as a function of
the total number of ions in a chain. We use a fixed gate time
τg ∼ 90 μs and minimal (central) ion spacing ∼5 μm. The
improvement of the segmented gates becomes significant
as the number of ions grows, as there are more modes that
must be considered [8,10].
A further advantage of using multisegment pulses is their

relative insensitivity to fluctuations in detuning μ and trap
frequency ωm. For conventional constant pulses, such noise
strongly affects the simple phase space trajectories, and the
fidelity degrades quickly. Segmented pulses also show
errors, but because of the complex phase space trajectories
[Fig. 2(d)], these errors are higher order, admitting sol-
utions that do not change rapidly with detuning. As seen in
Fig. 3(b), a constant pulse is expected to degrade the
fidelity by ∼15% for a 1 kHz drift in detuning, which is
consistent with the measured state fidelity of 82(3)%.
However, the nine-segment pulse is expected to degrade
the fidelity by only 1% for the same drift, which compares
to the observed fidelity of 95(2)%. Other sources of the
infidelity in the experiment are Rabi frequency fluctuations
from intensity noise in the tightly focused Raman laser
beam (∼3%), optical Raman laser beam spillover (∼1%),
and optical crosstalk of the multichannel photomultiplier
tube used for qubit detection (∼1%).
To demonstrate pulse-shaped gates on subsets of qubits

in a linear crystal, we produce tripartite entangled states by
concatenating twoXX gates in a five ion chain [seeFig. 4(a)].

FIG. 2 (color online). Entanglement of qubit pairs within a
chain of N ¼ 5 trapped ions. (a) Applied pulse pattern and
measured parity oscillations for a constant pulse used to entangle
ions 1 and 2. The gate time is τg ¼ 190 μs and the detuning is set
to μ ¼ ωx þ 2π=τg, which should exhibit the highest fidelity; we
measure F ¼ 82ð3Þ%. (b) Same as (a), but with a nine-segment
pulse. The gate time is again τg ¼ 190 μs, and the detuning is set
close to the tilt mode; we measure F ¼ 95ð2Þ%. (c) Different
nine-segment pulse pattern used to entangle ions 2 and 3 with
same gate time, and the detuning is set close to the 5th mode; we
measure F ¼ 95ð2Þ%. (d) Phase space trajectories (arbitrary units
but all on same scale) for the pulse pattern applied to the ion pair 1
and 2 at the detuning used in (b).

FIG. 3 (color online). (a) Theoretical entanglement gate fidelity
for the first two ions as a function of total number of ions in a
chain using a constant (black), a five-segment (blue), and a nine-
segment (red) pulse. The gate time is fixed to ∼90 μs and the
minimum (central) ion spacing is ∼5 μm. The advantages of the
pulse segmentation are clearly seen for larger numbers of ions.
(b) Theoretical entanglement gate fidelity for the first two ions as
a function of detuning error Δμ in a chain of 5 ions. The solid
black (red) line corresponds to a constant (nine-segment) pulse on
the two ions, where the pulse power is optimized at each value of
the detuning offset. The dashed black (red) line corresponds to a
constant (nine-segment) pulse optimized for Δμ ¼ 0. We see that
the segmented pulse not only allows high-fidelity solutions at any
detuning (solid line), but even when the detuning drifts, the
segmented pulses mitigate this error (dashed line).
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We adiabatically shuttle the ions across the fixed laser
beams in order to address nearest neighbor pairs of the three
target ions and ideally create a GHZ-type state,

j000i → j000i þ ij110i þ ij011i − j101i: (4)

The measured state populations are consistent with the
above state, as shown in Fig. 4(b).
In order to measure the coherences of the three-qubit

subsystem, we apply analysis rotations Rðπ=2;ϕÞ to any
two of the three qubits, then measure their parity as before.
As the phase ϕ of the analysis rotations is scanned, the
parity should oscillate with period π or 2π when the third

ion is postselected to be in state j0i or j1i, respectively, as
seen in Fig. 4(c) for one of the pairs. By measuring the
contrasts of the two parity curves for each of the three
possible pairs conditioned upon the measured value of
the third, we obtain the six coherences of the final state.
Combined with the state populations [Fig. 4(b)], we calcu-
late a quantum state fidelity of 79(4)% with respect to
Eq. (4). This level of fidelity is consistent with the com-
pounded XX gate fidelities (∼95% each) and the discrimi-
nation efficiency (∼93%) for postselection of the third qubit.
To prove genuine tripartite entanglement within the five

ion chain, we use single qubit rotations to transform the
state given by Eq. (4) into a GHZ “cat” state j000i þ ij111i
[27]. As shown in the circuit of Fig. 4(d), this is achieved by
applying a Z-rotation operation Rzð−π=2Þ ¼ Rð−π=2; 0Þ
Rðπ=2; π=2ÞRðπ=2; 0Þ to the middle ion only followed by
Rðπ=2; 0Þ rotations to all three ions. We finally measure the
parity of all three qubits while scanning the phases of
subsequent Rðπ=2;ϕÞ analysis pulses, and the oscillation
with period 2π=3 with a contrast of over 70% [Fig. 4(e)]
verifies genuine tripartite entanglement [26]. This is a
conservative lower limit to the entanglement fidelity,
given known errors and crosstalk in the rotations and the
measurement process. The simulated blue dashed curve in
the same figure depicts what we expect to measure given
our known errors and assuming a perfect initial state.
We have shown how a single control parameter can be

used to mitigate multimode couplings between a collection
of qubits, but this approach can be expanded to include
additional parameters, such as spectral, phase, or spatial
addressing of each qubit [24,25,28]. This could allow for
the efficient implementation of more complicated quantum
circuits, such as Toffoli [29] and other gates involving more
than two qubits, or global operations for quantum simu-
lations of particular Hamiltonian models [30]. The optimal
quantum control we demonstrate here could apply to any
quantum information and simulation architectures that
entangle subsets of qubits through a bosonic quantum
bus having multimode components, such as cavity QED
[31] and superconducting circuits [32].
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