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Abstract – We propose a large-scale quantum computer architecture by more easily stabilizing
a single large linear ion chain in a very simple trap geometry. By confining ions in an anharmonic
linear trap with nearly uniform spacing between ions, we show that high-fidelity quantum gates
can be realized in large linear ion crystals under the Doppler temperature based on coupling to a
near-continuum of transverse motional modes with simple shaped laser pulses.

Copyright c© EPLA, 2009

Trapped atomic ions remain one of the most attractive
candidates for the realization of a quantum computer,
owing to their long-lived internal qubit coherence and
strong laser-mediated Coulomb interaction [1–4]. Various
quantum gate protocols have been proposed [1,5–9] and
many have been demonstrated with small numbers of
ions [4,10–14]. The central challenge now is to scale up the
number of trapped ion qubits to a level where the quantum
behavior of the system cannot be efficiently modeled
through classical means [4]. The linear rf (Paul) trap has
been the workhorse for ion trap quantum computing, with
atomic ions laser-cooled and confined in 1D crystals [1–4]
(although there are proposals for the use of 2D crystals in
a Penning trap [15] or array of microtraps [6]). However,
scaling the linear ion trap to interesting numbers of ions
poses significant difficulties [2,4]. As more ions are added
to a harmonic axial potential, a structural instability
causes the linear chain to buckle near the middle into
a zigzag shape [16,17], and the resulting low-frequency
transverse modes and the off-axis rf micromotion of the
ions makes gate operation unreliable and noisy. Even in
a linear chain, the complex motional mode spectrum of
many ions makes it difficult to resolve individual modes
for quantum gate operations, and to sufficiently laser cool
many low-frequency modes. One promising approach is
to operate with small linear ion chains and multiplex

(a)E-mail: guindarl@umich.edu

the system by shuttling ions between multiple chains
through a maze of trapping zones, but this requires
complicated electrode structures and exquisite control of
ion trajectories [2,18].
In this paper, we propose a new approach to ion

quantum computation in a large linear architecture that
circumvents the above difficulties. This scheme is based
on several ideas. First, an anharmonic axial trap provided
by static electrode potentials can stabilize a single linear
crystal containing a large number of ions. Second, tightly
confined and closely spaced transverse phonon modes
can mediate quantum gate operations in a large archi-
tecture [19], while eliminating the need for single-mode
resolution and multimode sideband cooling. Third, gate
operations on the large ion array exploit the local char-
acter of the laser-induced dipole interaction that is domi-
nated by nearby ions only. As a result, the complexity of
the quantum gate does not increase with the size of the
system, and the gates can be performed in parallel on ions
in different locations of the chain.
The proposed ion architecture is illustrated in fig. 1.

It is a large linear array where the strong confinement
in the transverse (x, y) direction is provided by the
ponderomotive Paul trap with an effective potential of the
form V (x, y) = (mω2xx

2+mω2yy
2)/2, where m is the mass

of each ion. The ions are initially Doppler cooled, with
a number of ions at the edges of the chain continuously
Doppler cooled in order to overwhelm any heating that
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Fig. 1: (Color online) Linear architecture for large-scale quan-
tum computation, where lasers address individual ions and
couple to local modes of the ions, while the edge ions are
continuously Doppler laser-cooled. In a large ion chain, more
efficient sympathetic cooling could be achieved with cooling
ions sparsely distributed in the ion chain.

occurs during the gate operation. The middle portion
and majority of the ion chain is used for quantum
computation. Given an appropriate axial static potential
V (z) from the axially segmented electrodes, we assume
these computational ions are distributed nearly uniformly,
with a neighboring distance of about ∼ 10µm. This
enables efficient spatial addressing with focused laser
beams along the transverse direction for quantum gate
operations.
When the axial potential takes the conventional

harmonic form V (z) =mω2zz
2/2, the ion array is subject

to the well-known zigzag transition unless the trap
anisotropy is at least ωx,y/ωz > 0.77N/

√
logN [2,17,20],

where N is the number of ions. As N becomes large, this
structural instability occurs first at the minimal distance
at the trap center due to the spatial inhomogeneity of
the ion distribution. When the ions under a similar trap
anisotropy are instead uniformly spaced by neighboring
distance d0, it is easy to see that the linear structure
is always stable even for an infinite chain so long as
ω2x,y > 7ζ(3)e

2/(2md30)≈ 4.2e2/(md30), where ζ(l) is the
Reimann zeta function and e is the charge of each ion.
Therefore, a large linear structure can be more easily
stabilized so long as static potentials from the trap
electrodes are designed to accommodate equally spaced
ions. The uniformity of the distribution is critical for
scaling because the minimum ion spacing can be kept
constant to avoid the zigzag transition, while at the
same time the maximum ion spacing does not grow, as is
required for operating entangling gates efficiently across
the whole chain, as described below.
To illustrate the general method, here we consider

an explicit example with a quartic potential V (z) =
α2z

2/2+α4z
4/4 that can be realized with a simple five-

segment electrode geometry as shown in fig. 2(a). Under a
quartic trap V (z), the axial equilibrium position zi of the
i-th ion can be obtained by solving the force balance
equations ∂U/∂zi = 0, where U =

∑
i[V (zi)+V (x, y)]+∑

i<j e
2/|ri− rj | is the overall potential including the ions’

Fig. 2: (Color online) (a) Sample five-segment linear ion trap
with voltages Vi (i= 1, 2) to produce a quartic axial potential.
The ions are confined in the central segment. (b) The variance
of the ion spacings sz in a linear quartic trap as a function of
the trap parameter B that characterizes the ratio of quadratic
to positive-quartic nature of the potential. (c) The distribution
of the ion spacing at the optimum value B =−6.1. The
computational ions are within the dashed lines, where the
spacing is essentially uniform.

mutual interactions. We optimize the dimensionless ratio
B = |α2/e2|2/3(α2/α4) characterizing the axial potential
to produce a nearly uniformly spaced crystal. To be
concrete, we consider an array of 120 ions, with 10 ions
at each edge continuously laser cooled and 100 qubit
ions in the middle for coherent quantum gate operation.
We solve the equilibrium positions of all the ions under
V (z) and minimize the variance in ion spacing sz =√

1
100

∑110
i=11

(
∆zn−∆zn

)2
for the qubit ions, where ∆zn

is the distance between the n-th and (n+1)th ion in the
chain and ∆zn denotes its average. The variance in spacing
is shown in fig. 2(b) as a function of the parameter B.
The value of sz is fairly insensitive to B and reaches a
minimum when B ≈−6.1. Here, the distribution of ion
spacing zn is shown in fig. 2(c), which is remarkably
homogeneous for the qubit ions even though we have
optimized just one control parameter: sz/∆zn deviates by
only 3% over the entire crystal. In this configuration, if
we take ∆zn = 10µm for atomic Yb

+ ions, we only need a
transverse center-of-mass frequency ωx,y/2π > 221 kHz to
stabilize the linear structure. In this paper, we actually
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take ωx/2π= 5MHz, as is typical in experiments [21], and
such transverse confinement would be able to stabilize
linear chains with thousands of ions under an optimized
quartic potential. We note that the ion spacing can be
made even more uniform by adding higher order multipole
potentials.
We now describe quantum gate operations with this

large ion chain, mediated by many transverse phonon
modes. Given the equilibrium positions of the ions, we
can efficiently determine all axial and transverse phonon
modes. We then apply a spin-dependent laser force, with
the resulting interaction Hamiltonian [22,23]

H =
∑
n

�Ωn(t)σ
z
n cos(kqn+µt), (1)

where the transverse displacement qn of the n-th ion in
the x-direction is expressed in terms of phonon modes ak
with eigenfrequency ωk and the normal mode matrix b

k
n

by qn =
∑
k b
k
n

√
�/2mωk(a

†
ke
iωkt+ ake

−iωkt). The normal
mode matrix bkn and its eigenfrequency ωk are determined
by solving the eigenequations

∑
nAinb

k
n = ω

2
kb
k
i , where

Ain ≡ ∂2U/∂xi∂xn are calculated at the ions’ equilibrium
positions zi. In eq. (1), σ

z
n is the Pauli spin operator for

the n-th ion, Ωn(t) denotes the Rabi frequency of the
laser pulse on the n-th ion with detuning µ from the
qubit resonance, and the effective laser momentum kick
k is assumed to be along the transverse x-direction. (For
twin-beam stimulated Raman laser forces and hyperfine
state qubits, the effective laser kick carries momentum
along the difference wave vector k1−k2 of the two beams.)
Due to the strong transverse confinement, the Lamb-Dicke
parameter ηk ≡ |k|

√
�/2mωk� 1, and the Hamiltonian

H can be expanded as H =−∑n,k �χn(t)gkn(a†keiωkt+
ake

−iωkt)σzn with gkn = ηkbkn and χn(t) =Ωn(t) sin(µt) (the
effect of higher-order terms in the Lamb-Dicke expansion
will be estimated later). The corresponding evolution
operator is given by [23]

U(τ) = exp


i∑
n,k

[αkn(τ)a
†
k +α

k∗
n (τ)ak]σ

z
n

+ i
∑
m<n

φmn(τ)σ
z
mσ
z
n

]
, (2)

where αkn(τ) =
∫ τ
0
χn(t)g

k
ne
iωktdt characterizes the resid-

ual entanglement between ion n and phonon mode k and
φmn(τ) = 2

∫ τ
0
dt2
∫ t2
0
dt1
∑
k g
k
mg
k
nχm(t2)χn(t1) sinωk(t2−

t1) represents the effective qubit-qubit interaction between
ions m and n.
For a two-qubit gate on an ion pair i and j, we

direct laser light exclusively on these two ions (Ωi(t) =
Ωj(t)≡Ω(t) and all other Ωn(t) = 0), and the evolution
operator reduces to the standard controlled π-phase (CP)
gate for αkn(τ) = 0 and φjn(τ) = π/4. For a large ion
crystal, the residual entanglement with the motional
modes cannot be eliminated completely, but we can

Fig. 3: (Color online) (a) The gate infidelity δF as a function of
the laser detuning µ from the qubit resonance, with optimized
Rabi frequencies over M = 5 equal segments of the laser pulse.
Different curves correspond to different gate times. The 120
transverse phonon modes are all distributed within the narrow
frequency range indicated by the two vertical lines. (b) The
shape of the laser pulse ηΩ (in units of ωx) that achieves the
optimal fidelity (with δF = 8.5× 10−6), at the detuning shown
by the arrow in (a) (with (µ−ωx)/ωx = 9.3× 10−3) and the
gate time τ = 500τ0. The dashed (or dotted) lines represent
the approximate optimal solutions of the laser shape where
only 4 (or 8) ions (from the 59th to 62nd or the 57th to 64th,
respectively) are allowed to vibrate and all the other ions are
fixed in their equilibrium positions. This approximation does
not significantly change the optimal laser pulse shape compared
to that of the exact solution (represented by the solid line)
where all ions are allowed to vibrate, so the gate is essentially
local and the gate complexity does not depend on the crystal
size. (c) The relative response of the ions for the gate shown

in (b) (characterized by the largest spin-dependent shift |q(m)n |
during the gate time τ). We take a relative unit where |q(m)n |
for the target ions haven been normalized to 1. The fast decay
of the response as one moves away from the target ions (59th
and 62nd) shows that the gate involves vibration of only local
ions.

minimize the resulting gate infidelity by optimizing the
laser pulse shape Ω(t) [23]. Assuming each phonon mode
k is cooled to temperature Tk, the infidelity of the
CP gate from the residual motional entanglement is
given by δF = [6− 2(Γi+Γj)−Γ+−Γ−]/8 [23], where
Γi(j)= exp[−

∑
k |αki(j)(τ)|2β̄k/2], Γ±= exp[−

∑
k |αki (τ)±

αkj (τ)|2β̄k/2], and β̄k = coth(�ωk/kBTk).
To minimize the gate infidelity δF , we break the laser

pulse on the two ions into uniform segments of constant
intensity as shown in fig. 3(b) and optimize the values
Ω(i) (i= 1, . . . ,M) over M equal-time segments [23]. The
control of Ω(t) from one segment to the next can easily be
accomplished with optical modulators. (Alternatively, we
can modulate the detuning µ of the laser pulse as a control
parameter.) After optimization of Ω(i), the infidelity δF
is shown as a function of the detuning µ in fig. 3(a) for
M = 5 segments. For this example, we perform a CP gate
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on the 59th and 62nd ions in this 120-ion chain. With
an appropriate choice of Ω(i) and µ, the infidelity can be
made negligible (well below 10−5). For this calculation, we
assume Doppler cooling for all modes and take gate times
τ in the range 50τ0 to 500τ0, where τ0 = 2π/ωx = 0.2µs is
the period of transverse harmonic motion. The gate can
certainly be faster with stronger laser beams (there is no
speed limit), and with a faster gate, the control becomes
easier as the gate becomes more localized (fig. 3).
Interestingly, we use only a few control parameters

(M = 5 segments) to perform a high-fidelity gate that
involves excitation of hundreds of transverse phonon
normal modes. This is possible because the gate has a
local character where the contribution to the CP gate
comes primarily from the spin-dependent oscillations of
the ions that are close to the target ions. To show this, we
plot the response of each ion in fig. 3(c) during the gate
operation. Note that the displacement qn of the n-th ion is
spin-dependent during the gate, and we can use its largest

magnitude |q(m)n | over the gate time τ to characterize the
response of ion n, as is shown in fig. 3(c). The ion response
decays very fast from the target ions (59th and 62nd in
this case) and can be safely neglected after a distance of
a few ions. Thus during a gate, only the motion of ions
near the target ions are important, and the other ions
largely remain in their equilibrium positions. The resultant
control parameters from this approximation are almost
identical to those shown in fig. 3(b). Owing to the local
character of the gate, the complexity of a gate operation
does not depend on the chain size, and we can perform
gates in parallel on ions in different regions of a large chain.
As we use primarily the quasi-local phonon modes for

the gate operations, we assume only local entangling
gates where the distance between the target ions is
small compared with the length of the whole ion chain.
(For distant quantum computing, gate operations can
be implemented through aids of a series of mediate
local SWAP gates.) Recent studies have shown that
with only nearest-neighbor entangling gates in a two-
dimensional (2D) lattice, the error threshold for fault-
tolerant computation can be still very good, close to the
level of one percent [24]. In a one dimensional (1D) ion
chain, if we perform gates with distance up to

√
N (which

is still relatively local compared with the size N of the ion
chain), this simulates a 2D system, and the error threshold
for this case should be as least as good as the 2D case with
nearest neighbor entangling gates. Moreover, in the 1D
case, it is even possible to perform fault-tolerant quantum
computing with only next to nearest-neighbor entangling
gates [25], albeit with a more demanding threshold.
We now discuss several sources of noise for gates

in a large ion crystal and show that their effects are
negligible. First, the axial ion modes have large phonon
occupation numbers under Doppler cooling alone, and
the resulting thermal spread in position along the axial
direction can degrade the effective laser interaction. For
example, the lowest axial mode in a 120-ion chain of Yb+

ions with a spacing z ∼ 10µm has a frequency of only
ωL0/2π= 9.8 kHz and a mean thermal phonon number
n0 ≈ γ/ωL0 ≈ 103 under Doppler laser cooling (radiative
half-linewidth γ/2π= 10MHz). We assume the quantum
gate laser beams are directed along the transverse direc-
tion with an axial Gaussian laser profile Ω(z)∝ e−(z/w)2
centered on each ion. The beam waist is taken as
w= z/2.5≈ 4µm so that the cross-talk error probability
between adjacent ions is Pc = e

−2(z/w)2 < 10−5. The posi-
tion fluctuation δzn of the n-th ion causes the effective
Rabi frequency to fluctuate, resulting in a gate infidelity
δF1 ≈ (π2/4)(δΩn/Ω̄n)2 ≈ (π2/4)(δzn/w)4. The fluctua-
tion δzn can be calculated exactly from summation of
contributions of all the axial modes and its value is almost
independent of the index n for the computational ions (see
Appendix). Under Doppler laser-cooling, δzn ≈ 0.26µm
and the corresponding infidelity is δF1 = 4.4× 10−5. The
position fluctuation of the ions may also lead to anhar-
monic ion motion, whose contribution to the gate infidelity
can be estimated by δF2 ∼ (δzn/z)2 ∼ 6.8× 10−4. Finally,
in the transverse direction we estimate the infidelity
caused by the higher-order expansions in the Lamb-Dicke
parameter. As all the transverse modes have roughly the
same frequency ωk ≈ ωx, the effective Lamb-Dicke para-
meter for the transverse modes is ηx = |∆k|

√
�/2mωx ≈

0.038 for Yb+ ions at ωx/2π= 5MHz, with each mode
containing a mean thermal phonon number n̄x ≈ 2.0 under
Doppler cooling. The resultant gate infidelity is estimated
to be δF3 ≈ π2η4x(n̄2x+ n̄x+1/8)≈ 7× 10−4 [19,26]. Note
finally that sideband cooling is possible in the transverse
direction as all the modes have nearly the same frequency,
thus reducing the gate infidelity due to transverse thermal
motion by another order of magnitude.
In summary, we have shown through explicit examples

and calculations that it is feasible to stabilize large
linear ion crystals where the gate complexity does not
increase with the size of the crystal and the gate infidelity
from thermal fluctuations can be made negligibly small
under routine Doppler cooling. The results suggest a
realistic prospect for realization of large-scale quantum
computation in a simple linear ion architecture.
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Appendix: thermal position fluctuation of the
ions along the axial direction. – We address indi-
vidual ions through focused laser beams which typically
take a Gaussian shape along the z-direction with Ωn(z)∝
e−z

′2
n /w

2

, where z′n = z− zn is centered at the equilib-
rium position zn of the n-th ion. Under the Doppler
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Fig. 4: The axial position fluctuation δzn is plotted along
the ion chain, which is about 0.26µm (averaged) for the
computational ions (n from 11 to 110).

temperature, the ions have significant thermal fluctua-
tion of their positions along the z-direction, which leads
to an effectively fluctuating laser amplitude Ωn(z) and
induces infidelity to the gate operation. This position
fluctuation influences both the single-bit and the two-
bit operations in the same way. To quantify the gate
error caused by this fluctuation, let us consider a spin-
flip gate operated on the n-th ion as a typical exam-
ple. For a spin-flip with a π-pulse, the gate fidelity is
given by F1 = sin

2(Ω̄nτ + δΩnτ)≈ 1− (π2/4)(δΩn/Ω̄n)2,
where Ω̄n is the expectation value of the Rabi frequency
which satisfies Ω̄nτ = π/2 for a spin-flip gate, and δΩn
is its fluctuation caused by the position fluctuation of
the ion. From Ωn(z)∝ e−z′2n /w2 ≈ 1− z′2n /w2 around the
equilibrium position, the gate infidelity δF1 ≡ 1−F1 =
(π2/4)(δzn/w)

4, where δzn ≡
(
z′4n − z′2n

2)1/4
characterizes

the thermal position fluctuation of the n-th ion along the
axial direction.
The phonon modes are in thermal equilibrium

under the Doppler temperature T , with their density
operator given by ρm =

∏
k

∑
{nk} Pk|nk〉〈nk|, where

Pk = n̄
nk
k /(n̄k +1)

nk+1 is the probability of having
nk phonons in the k-th mode, and n̄k = kBT/(�ωk)
is the average phonon number. From z′2n = tr(z′2n ρm)
and z′4n = tr(z′4n ρm), we explicitly have δzn =√
�/2m

[√
2
∑
k

(
bz,kn
)2 (
2n̄k +1

)
/ωz,k

]1/2
where ωz,k

and bz,kn denote the eigenfrequencies and eigenmatrices
of the axial modes. For our example of a 120-ion chain
with the Doppler temperature kBT/�= 62MHz for
the Yb+ ions, the resultant position fluctuation δzn is
plotted in fig. 4 for all the ions. One can see that for the

computational ions (n from 11 to 110), δzn ≈ 0.26µm
with its value almost independent of the ion index. The
position fluctuation is still significantly smaller than the
ion spacing (≈ 10µm), which ensures a tiny gate infidelity
δF1 as discussed in the main text.
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