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Implementation of Grover’s quantum search algorithm in a scalable system
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We report the implementation of Grover’s quantum search algorithm in the scalable system of trapped
atomic ion quantum bits. Any one of four possible states of a two-qubit memory is marked, and following a
single query of the search space, the marked element is successfully recovered with an average probability of
60(2)%. This exceeds the performance of any possible classical search algorithm, which can only succeed with

a maximum average probability of 50%.
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Quantum computers promise dramatic speedup over con-
ventional computers in some applications owing to the
power of entangled superpositions [1]. Among the best-
known quantum applications is Grover’s search algorithm,
which can search an unsorted database quadratically faster
than any known classical search [2]. A common analogy for
this searching algorithm is the problem of finding a person’s
name in a phone book given only their phone number [3]: for
N entries in the phonebook, this requires on the order of N
queries. However, if the correlation between name and phone
number is encoded with quantum bits, the name can be found
after only about VN queries. While Grover’s algorithm does
not attain the exponential speedup of Shor’s quantum factor-
ing algorithm [4], it may be more versatile, by providing
quadratic gains for almost any quantum algorithm [5] or ac-
celerating NP-complete problems through exhaustive
searches over possible solutions [6].

We implement the Grover search algorithm over a space
of N=4 elements using two trapped atomic ion qubits [7,8].
Grover’s algorithm has been implemented with ensembles of
molecules using nuclear magnetic resonance [9-11], with
states of light using linear optical techniques [12,13], and
with Rydberg states within individual atoms [14]. None of
these systems are scalable, however, as they require expo-
nential resources as the number of qubits grows. The imple-
mentation of Grover’s algorithm reported here complements
the repertoire of multiqubit quantum algorithms recently
demonstrated in the scalable system of trapped atomic ions
[15—18]. Unlike these earlier ion trap demonstrations, we use
magnetically insensitive “clock state” qubits and particular
entangling gates that are uniquely suited to such qubits while
remaining insensitive to external phase drifts between gates
[19-21].

At the heart of Grover’s algorithm is the “oracle query,”
which quickly checks if a proposed input “x” is a solution to
the search problem. The oracle marks a particular component
of a quantum superposition by flipping the sign of its ampli-
tude. Following the oracle, a number of quantum operations
amplify the weighting of the marked state independent of
which state is marked (see Fig. 1). After many iterations of
this query and amplification process, the marked state accu-
mulates nearly all of the weight and is revealed follow-
ing a measurement. The required number of queries is
the integer closest to 77/ [4 sin‘l(N‘”z)]—% [22]. For N>1,

1050-2947/2005/72(5)/050306(4)/$23.00

050306-1

PACS number(s): 03.67.Lx, 03.67.Mn, 32.80.Lg, 32.80.Pj

the marked element would thus appear with high probability
after approximately mN/4 iterations, and for the special
case of N=4 elements, a single query would provide the
marked element with unit probability. Classically, a single
query of a four-element search space followed by a guess can
only result in a successful outcome with 50% probability.
A standard quantum circuit for the Grover search algo-
rithm for N=4 entries is shown in Fig. 2(a) [1]. This scheme
uses a third ancilla bit which marks one of the database ele-
ments through a Toffoli gate that effectively flips the sign of
the marked element if and only if the two bit input is a
solution to the problem. The oracle scheme to mark each of
the four possibilities is shown below the circuit. The remain-
der of the circuit (shaded in dark gray) amplifies the weight-
ing of the marked state, with the operations between the
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FIG. 1. Schematic diagram of Grover’s quantum search algo-
rithm over a space of n qubits (N=2" entries). Initially, all qubits
are prepared in the state [000...0). (a) A global Hadamard gate
prepares an equal superposition of all states. (b) The oracle (shaded
in light gray) flips the sign of the amplitude corresponding to the
marked element, represented by the n-bit binary number x. (c) Two
global Hadamard gates surround an additional phase gate (shaded in
dark gray) that flips the sign of the amplitude corresponding to the
initial state |000...0), amplifying the weight of the marked state.
Steps (b) and (c) are repeated in sequence a prescribed number of
times, and finally (d) the qubits are measured. An example of the
distributions of quantum amplitudes at each stage is depicted at the
right.
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Hadamard gates flipping the sign of the amplitude of the |00)
state.

Figure 2(b) shows the experimental implementation of the
algorithm for N=4 search elements. The Mglmer-Sgrensen
(MS) entangling gate [23] is adapted to the algorithm for
both the marking and state amplification steps and is accom-
panied by a variety of single qubit rotations. This circuit is
identical in function to the circuit of Fig. 2(a) but does not
use an ancilla qubit [24]. First, each qubit is initialized to the
|0) state through optical pumping techniques. Next, an equal
superposition of all qubit states is prepared with a global
single qubit rotation of /2, replacing the Hadamard gates of
Figs. 1 and 2(a). The oracle function (shaded in light gray)
then marks one of the four possible states |xx) by flipping its
sign. This is accomplished with a controlled-z phase gate
(white boxes inside oracle) containing the MS gate, that flips
the sign of the |11) state. The phase gate is surrounded by
rotations (shaded in black) that swap the marked state |xx)
with the |11) state, depending on the settings of the rotation
angles depicted in the table at the bottom of Fig. 2(b). After
the oracle query, a global rotation of 7/2 (with a phase of
—1r/2 relative to the initial rotation) followed by a second
application of the MS gate amplifies the weighting of the
marked state |xx) (operations shaded in dark gray).

The experiment is performed with two '''Cd* ions con-
fined in a three-layer linear ion trap with axial frequency
w,/27=2.0 MHz [19,20,25]. The S, ground state hyperfine
levels |[F=0, m;=0) (denoted by |0)) and [F=1, m=0) (de-
noted by |1)), separated in frequency by wy/27=14.5 GHz,
serve as qubit levels. These “clock”™ states are relatively in-
sensitive to magnetic field noise, obviating the need for “spin
echo” pulses in the implementation of the algorithm [16]. A
variety of optical and microwave sources are used to control,
entangle, and measure the qubits. In particular, pairs of off-
resonant laser beams with a beat note near w, drive stimu-
lated Raman transitions that couple the qubits to their collec-
tive motion and give rise to entangling quantum gates
[20,26]. Both the center of mass and stretch modes of axial
motion are initialized to near the ground state via stimulated
Raman cooling, with average vibrational numbers of
1n=0.28 and 0.12, respectively [25]. Single qubit rotations are
accomplished through resonant microwave pulses (tuned to
near w,) and composite pulse sequences involving a single
tightly-focused off-resonant laser. The microwaves are ap-
plied to both qubits simultaneously and provide global single
qubit rotations. The off-resonant laser, which addresses one
ion more strongly than the other, creates a differential ac
Stark shift between the two qubits, imparting a relative phase
shift of 7 between the two qubits. Combined with appropri-
ate microwave pulses, this allows arbitrary single qubit rota-
tions. Finally, each qubit is detected with greater than 97%
efficiency by uniformly illuminating the ions with resonant
laser radiation and observing the ion fluorescence on an in-
tensified charged-coupled device camera.

The Mglmer-Sgrensen gate directly entangles the clock
state qubits and is insensitive to the relative optical phase
of the Raman laser beams between gates [19-21]. This
is an important consideration when multiple entangling
gates are implemented because it suppresses decoherence
from magnetic fields and optical phase noise that may fluc-
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FIG. 2. Quantum circuit to implement Grover’s searching algo-
rithm for N=4 entries [1]. (a) Theoretical circuit using a third an-
cilla bit and standard gates including the Haddamard gate (H), the
generalized Toffoli gate, a bit flip X, and a controlled-NOT (CNOT)
gate. The Toffoli gate implements the oracle (shaded in light gray),
where the scheme to mark each of the four possibilities is shown
below the circuit. The remainder of the circuit (shaded in dark gray)
amplifies the weighting of the marked state. (b) The experimental
circuit to implement the algorithm for n=2 qubits, where R(6, ¢) is
a rotation on the Bloch sphere [33], R.(¢) is a phase rotation about
the Z axis, and Gy is the Mglmer-Sgrensen entangling gate. The
light gray shaded box identifies the oracle, where the value of the
variables a and B (given in the table), determine which state is
marked [34]. The remainder of the circuit (shaded in dark gray)
amplifies the weighting of the marked state.

tuate from gate to gate. The MS entangling gate is realized
by applying multiple sets of Raman beat notes to the ions,
simultaneously driving the first lower and upper motional
sidebands for a particular duration. This entangles the spin
states via their collective motional mode, in this case the
stretch mode [23]. The evolution of the four basis states is
given by the following:

10)[0) — [0)[0) = i 1)[1),
IDI1) — [D]1) - i]0)[0),
0)1) — [0)[1) = 1| 1)[0),

[1)[0) — [1)]0) — ]0)[1).

The desired states are produced with a fidelity of approxi-
mately 80%. There are additional phases not included in the
above equation pertaining to the ion-ion spacing, the phase
of the oscillator that defines the Raman beam beat note, and
Stark shifts from the applied Raman beams [19-21]. These
phases are set to zero for the present case since they are fixed
before the experiment is run by first synchronizing the phase
of the entangling gate with the phase of microwave /2
pulses [19]. Then the phases of the two entangling gates used
in the experiment are synchronized to each other through a
Ramsey experiment. Note that phase noise from the Raman
beam path fluctuations is suppressed due to the spectral ar-
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FIG. 3. (a) Output of the algorithm. The conditional probability
of measuring each of four output states given one was marked is
shown in the sequence from top to bottom |00), |01), |10}, [11). Each
of the four data sets shows the distribution of measurements aver-
aged over 500 trials. The marked state was recovered on average
with 60(2)%, compared to unit probability for the ideal quantum
algorithm and 50% for the best possible classical algorithm. (b)
Output of the algorithm without the final entangling gate. This
shows that the fidelity of the oracle is about 80%. Each of the four
data sets was also averaged over 500 trials. The experimental aver-
age to recover the marked state is 41(2)% with the theoretical limit
of 50%, both of which are less than the 60% from (a). The quoted
errors are statistical.

rangement of the Raman sidebands [26,20]. The time scale
for each operation in the algorithm is as follows: 10 us for a
global microwave rotation, 20 us for a differential single
qubit rotation, and 140 us for the Mg@lmer-Sgrensen two qu-
bit entangling gate, giving a total of ~380 us to complete
the 20 pulses that form the algorithm.

There are several approaches to gauging the performance
of the algorithm implementation. One method is to compare
the algorithm’s success at recovering the marked state with
the best that can be achieved classically. The classical coun-
terpart is a simple shell game: suppose a marble is hidden
under one of four shells, and after a single query the location
of the marble is guessed. Under these conditions, the best
classical approach gives an average probability of success
Pcl=i+§(%)=0.50, because 41_1 of the time the query will give
the correct location of the marble while % of the time a guess
must be made among the three remaining choices each with
% probability of choosing the correct location. If Grover’s
algorithm is used, the answer to the single query would result
in a 100% success rate at “guessing” the marble’s location.
As can be seen in Fig. 3(a) the marked state is recovered
with an averaged probability over the four markings of
60(2)%, surpassing the classical limit of 50%.

It is interesting to consider the output of the algorithm
when the final entangling gate used for state amplification is
omitted. This situation shows how well the algorithm can do
with only single qubit rotations outside the oracle. This sce-
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nario lies between the classical and quantum searches de-
scribed above since entanglement is not used outside the
oracle, but quantum superpositions are used to find the
marked element. In this case it can be shown that quantum
mechanics without entanglement can do no better than what
can be achieved with classical means: both methods have the
outcome of finding the marked state with only a 50% prob-
ability, assuming a perfect oracle. In addition, this diagnostic
allows the performance of the oracle itself to be character-
ized. The rotations following the oracle convert the marked
state into one of four Bell states each of which yields a
maximum probability of 50% to recover the marked state.
Figure 3(b) shows that the marked state is recovered with an
average of 42(1)% probability, implying the oracle itself has
a fidelity of roughly 80%.

The above figures of merit focus on the mean success
probability and neglect the information content inherent
in the distributions of Fig. 3(a). The mutual information
between the marking of the state and the measurement
can be used to characterize this correlation and hence
is another measure of the algorithm’s success [1] (for
other figures of merit see Ref. [24]). The mutual information
measures how much information two random variables,
x, the measurement, and y, the marking, have in common.
It is defined by H(x:y)=H(x)+H(y)-H(x,y), where
H(x,y)=-2,, p(x,y) log, p(x,y) is the joint Shannon
entropy between the two distributions, p(x,y)=p(x)p(y|x)
is the joint probability distribution of x and y, and p(y|x)
is the conditional probability of y having been marked
given that x was measured. H(x)=-2,p(x) log, p(x)
and H(y)=-2,p(y) log, p(y) are the Shannon entropies
of the individual variables. Classically, the mutual in-
formation acquired after a single query of the oracle is
H(x:y)=0.2510g,(0.25)-0.75 10g,(0.75)=0.81 bits, mean-
ing, on average, 0.81 bits of information are gained upon
measurement. The ideal quantum algorithm would yield two
bits of information upon measurement. For the data in Fig.
3(a) the mutual information is 0.44, so on average only about
a half a bit of information is gained. Even though less infor-
mation is gained per measurement than the classical case, the
probability of finding the marked state in the experiment still
exceeds the classical limit.

As the data in Fig. 3(a) shows, the marked state is not
recovered with unit probability. A large part of this infidelity
is due to the Mglmer-Sgrensen entangling gate. Each in-
stance of the Mg@lmer-Sgrensen gate has a fidelity of about
80%, and since there are two such gates in the algorithm,
overall fidelities of approximately 60% are expected. The
main sources of decoherence during the gate are spontaneous
emission from off-resonant coupling to the excited state and
fluctuating ac Stark shifts from the Raman beams that drive
the entangling gate [20]. Both of these induced decoherence
sources can be suppressed by increasing the detuning of the
Raman beams from the excited state, at the expense of slow-
ing the gate. We choose the detuning to strike a balance
between these induced decoherence sources and other slowly
varying noise sources, such as motional heating [25,27],
fluctuating magnetic fields, and microwave oscillator phase
drifts. Additional power in the Raman laser beams accompa-

050306-3



BRICKMAN et al.

nied by larger detunings could suppress decoherence from
spontaneous emission and ac Stark shifts while maintaining a
reasonable gate speed (see [20] for more details). Fluctuating
ac Stark shifts during the differential single qubit rotations
due to technical intensity fluctuations and beam pointing in-
stabilities add infidelities to the experiment on the order of
5-10%.

For Grover’s algorithm to be useful it needs to extend
beyond a few qubits. Using a quantum circuit similar to
Fig. 2(a), an n-qubit Grover algorithm can be implemented
with n-qubit Toffoli gates, a series of two qubit gates,
and single qubit rotations. It has been shown that an
n-qubit Toffoli gate can be constructed with single qubit
gates and CNOT gates with order n basic operations [28]. A
CNOT gate can be constructed from the MS entangling gate
through the following sequence [23]: [R,(7/2,0),
Rl(ﬂ'/z,’ﬂ'), R2(7T/2,7T), GMS’ R1(7T/2,0), R2(7T/2,0),
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R (-=m/2), R,(-m/2), Ry(w/2,-m), R, (m)], where
R;_1,(60,¢) is a rotation of ion i by angle # and phase ¢,
R.(¢) is a z rotation of ion i by angle ¢, and G,y is the
Mglmer-Sgrensen entangling gate. Since the ion system is
scalable to a large number of qubits it is feasible to construct
an efficient n-qubit Grover algorithm where each iteration
scales polynomially with n. In this case, the isolation of in-
dividual ions could be accomplished through tight focusing
of laser beams [29] or the shuttling of ions between separated
trap zones [16-18,30-32].
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