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We report the creation and full determination of several quantum states of motion of a 9Be+

ion bound in a rf (Paul) trap. The states are coherently prepared from an ion which has been
initially laser cooled to the zero-point of motion. We create states having both classical and
nonclassical character including thermal, number, coherent, squeezed, and \Schr�odinger
cat" states. The motional quantum state is fully reconstructed using two novel schemes
that determine the density matrix in the number state basis or the Wigner-function. Our
techniques allow well controlled experiments on decoherence and related phenomena on the
quantum-classical borderline.

I. Introduction

The ability to create and completely characterize

a variety of fundamental quantum states has long been

sought after in the laboratory since it brings to the fore-

front issues involving the relationship between quantum

and classical physics. Since most theoretical propos-

als to achieve these goals were put forward in quan-

tum optics, it might seem surprising that some of the

�rst experiments succeeding in both respects were real-

ized on the motion of a trapped atom. However, since

both the photon �eld of quantum optics and the motion

of a trapped atom are quantum harmonic oscillators,

their couplings to internal atomic levels (described by

the Jaynes-Cummings model.[1, 2]) are similar [3, 4].

In addition, for a harmonically bound atom driven by

a light �eld, there are interactions beyond the simple

Jaynes-Cummings coupling, allowing more control over

the engineering and measurement of quantum states.

Section will give a brief description of the interac-

tion of a trapped atom with light �elds and outline the

similarities to the Jaynes-Cummings Hamiltonian stud-

ied in quantum optics. Our experimental setup and the

cooling of the trapped atom to the motional ground

state are described in section III. We then describe the

controlled preparation of both classical and nonclassi-

cal motional states including a \Schr�odinger-cat" type

state in section IV. The complete measurement of ei-

ther the density matrix in the number state basis or the

Wigner-function is covered in section V and we �nally

o�er some conclusions in section VI.

II. Interaction of a trapped atom with light �elds

To describe the interaction of the trapped atomwith

light �elds we make the following assumptions, which

will be justi�ed below. First we assume that the in-

ternal degrees of freedom of the trapped atom are suf-

�ciently described by a two-level system, second that

the motion of the atom bound in the trap is harmonic

in all three dimensions, and �nally that the vibrational

level spacings (trap frequencies) and internal state tran-

sition frequencies are much larger than any internal or

motional relaxation rates. Starting from these assump-

tions we can describe the trapped atom as a two-level

system with levels labeled j #i and j "i, dressed by the

harmonic oscillator ladders of the external motion with

number states jnxnynzi. We will consider coupling to

only the x̂ dimension harmonic oscillator with number

states jnxi = jni [n = 1; 2;...,1; see Fig. 1(a)]. To

couple the motional and internal degrees of freedom of
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the trapped atom, we apply two laser beams whose dif-

ference frequency matches the separation of two energy

levels, as depicted in Fig. 1(a). The beams are each

su�ciently detuned from short-lived excited electronic

states, resulting in two-photon stimulated Raman tran-

sitions between the states of interest, formally equiva-

lent to narrow single-photon transitions. By employing

two laser beams to drive stimulated-Raman transitions,

we are able to combine the advantages of strong opti-

cal electric-�eld gradients (allowingmanipulation of the

state of motion) and microwave stability of the crucial

di�erence frequency.

In the rotating wave approximation in a frame ro-

tating with !0, where ~!0 is the energy di�erence of

the two internal levels, the interaction of the classical

laser �eld with the two levels of the trapped atom is

described by the interaction Hamiltonian

Hint(t) = ~g
�
�+e

�i(�t�k�x) + ��e
i(�t�k�x)

�
; (1)

where g denotes the interaction strength, �+ and ��

are the Pauli -spin matrices describing transitions in the

two level system and � the detuning of the frequency

di�erence of the two Raman beams ! = !1 � !2 with

respect to !0, and k = k1 � k2 the di�erence of the

two Raman beam wavevectors. In these experiments

the wavevector di�erence was always chosen to be par-

allel with the x-direction of the trap, so k � x = kx and

the interaction couples only the motion in x̂-direction

to the internal state of the trapped atom.

In our experiment we con�ne a single beryllium ion

in a rf (Paul) trap [5], so the trapping potential is not a

simple harmonic potential but rather a time dependent

potential with the periodicity of the rf �eld. Based on

the full quantum mechanical treatment of Glauber [6],

several workers have studied the time dependence of

the interaction Hamiltonian (1) [7,8]. While Bardro�

et al.[7]give a general expression for the Rabi frequen-

cies, we restrict ourselves to an approximate treatment

in the limit where the dimensionless Paul trap parame-

ters a and q related to the static and rf potential [5] are

much smaller than 1 (in our trap, a ' 0, q ' 0:14). The

main change in the full treatment is a common scaling

factor in the interaction strength (Rabi frequencies).

This is already taken into account in our experiments,

since we scale all our Rabi frequencies with the exper-

imentally determined Rabi frequency 
0;1 (see below).

In the approximation of a simple harmonic oscillator

with creation and destruction operators ay and a, the

interaction Hamiltonian (1) reduces to

He� = ~g
�
�+e

i�(ay+a)�i�t + ��e
�i�(ay+a)+i�t

�
; (2)

where � = k
p
~=(2m!x), m is the mass and !x is the

secular frequency of the ion in x̂-direction. By tuning

the frequency di�erence � to an integer multiple of the

secular frequency !x, � = (n0�n)!x, we can resonantly

drive transitions from j #; ni to j "; n0i. In this case He�

is dominated by a single stationary term. The exponent

exp(i�(ay + a)) in He� contains all powers of a and ay.

Since their time dependence (in the interaction picture)

is a(t)m = ~a(t)m exp(�i m !xt) all contributions with

m 6= n0�n oscillate rapidly and average out when !x is

much larger than g. The biggest stationary term in the

Lamb-Dicke limit (�
p
h(a+ ay)2i � 1) is proportional

to

He� � ~g
�n�n

0

(n � n0)!

�
�+(a

y)n�n
0

+ ��a
n�n0

�
(3)

if n0 � n � 0 and

He� � ~g
�n

0�n

(n0 � n)!

�
�+a

n�n0

+ ��(a
y)n�n

0
�

(4)

if n0 � n < 0. In the special case of n0 � n = �1 (� <

0, �rst red sideband) we obtain the familiar Jaynes-

Cummings Hamiltonian �(�+a + ��a
y). By choosing

other detunings we can realize a number of couplings

beyond the Jaynes-Cummings coupling, for example,

a \two-phonon" coupling (�2=2)(�+a2 + ��(ay)2) for

n � n0 = �2 (second red sideband). The coupling

strength to lowest order in � is given by the matrix

elements (Rabi frequencies)

c

~
n;n0 = h#; njHe� j "; n0i ' ~g
�jn

0�nj

jn0 � nj
p
n>(n> � 1) : : : (n< + 1); (5)

d
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where n> (n<) is the greater (lesser) of n and n0. The

di�erences are only signi�cant for large n or n0. A 'Rabi

�-pulse' which transfers a pure j #; ni state to a pure

j "; n0i state corresponds to applying the Raman beams

for a time t, such that 
n;n0t = �=2.

III. Experimental setup and cooling to the mo-

tional ground state

In our experiment, a single 9Be+ ion is stored in

a rf Paul trap [9] with a secular frequency along x of

!x=2� � 11:2 MHz, providing a spread of the ground-

state wavefunction of about �x0 �
phx2i � 7 nm. The

j #i and j "i levels are the long-lived 2S1=2(F=2,mF=2)

and 2S1=2(F=1,mF=1) hyper�ne ground states (see

Fig. 1).

Figure 1. (a) Electronic (internal) and motional (external)
energy levels of the trapped Be+ ion, coupled by indicated
laser beams R1 and R2. The di�erence frequency of the Ra-
man beams is set near !0=2� ' 1:250 GHz, providing a two
photon Raman coupling between the 2S1=2(F=2, mF = 2)

and 2S1=2(F=1, mF = 1) hyper�ne ground states (denoted
by j #i and j "i respectively). The motional energy levels are
depicted by a ladder of vibrational states separated by the
trap frequency !x=(2�) ' 11:2 MHz. The Raman beams
are detuned by �=(2�) ' �12 GHz from the 2P1=2(F=2,
mF = 2) excited state. As shown the Raman beams are
tuned to the �rst red sideband. (b) Detection of the in-
ternal state is accomplished by illuminating the ion with a
�+-polarized 'detection' beam D2, which drives the cycling
2S1=2(F=2, mF = 2)!2P3=2(F=3, mF = 3) transition, and
observing the scattered 
uorescence. The vibrational struc-
ture is omited from (b) since it is not resolved. Beam D1,
also �+ polarized, provides spontaneous recycling from the
j "i to j #i state.

To prepare the ion in the ground state, it is �rst

\Doppler pre-cooled" by two beams of �+ polarized

light detuned approximately one linewidth (�=2� =19.4

MHz) to the red of the 2S1=2(F=1 and 2)!2P3=2 tran-

sitions. This cools the ion to n � 1, in the j #i state [10].
To further cool the ion we use narrower Raman transi-

tions in order to be in the resolved sideband limit. One

cooling cycle consists of two steps. First we drive stim-

ulated Raman transitions to the j "i state by applying

a pair of traveling-wave laser beams detuned from the
2P1=2 state[10]. These Raman beam wavevectors point

at 45� to the x-axis with their wavevector di�erence

nearly along the x-axis of the trap [�x = 0:202(5)], so

the Raman transitions are highly insensitive to motion

in the y� or z�directions. The beams are derived from

the same laser with an acousto-optic modulator, reduc-

ing the e�ects of laser frequency jitter. The di�erence

frequency can be tuned near the ground state hyper-

�ne splitting of !0=2� � 1:25 GHz. The beams are

detuned approximately 12 GHz to the red of the 2P1=2

excited state with approximately 0.5 mW in each beam,

so that the Raman transition Rabi frequency 
0;1=2� is

approximately 200 kHz, and the vibrational structure is

clearly resolved. For cooling, the frequency di�erence is

tuned to the red sideband (� = �!x), so that one vibra-
tional quantum is lost in the transfer to the j "i state.
The time during which we apply the red-sideband inter-

action is optimized to leave the internal state as close

to a pure j "i state as possible (Rabi � pulse). In the

second step of the cooling cycle , we apply lasers tuned

to the j "i ! 2P3=2 and 2S1=2(F=2,mF=1) ! 2P1=2

that repump the atom to the j #i state. In analogy

to the M�ossbauer e�ect, the recoil of the spontaneous

emission process in this repumping is absorbed by the

whole trap structure with high probability, leaving the

motional state of the trapped atom unchanged. Five

cycles of this two-step cooling scheme prepare the ion

in the j #; n = 0i state approximately 95% of the time

[10].

In the experiments described below we detect the

probability of being in one of the states j "i or j #i.
We detect P#, the probability of �nding the j #i state,
by driving a cycling transition to the 2P3=2 with �+

polarized light and detecting the emitted 
ourescence.

The j "i is not resonantly coupled to an excited state

by the light �eld, so P# is proportional to the number

of tries where we see 
ourescence when we repeat the

experiment. Since the application of the resonant light

�eld e�ectively reduces the internal state to either j "i
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or j #i, we can consider the internal atomic state to be

a unit e�ciency detector, even if we fail to detect the


ourescence every time. The analogy with photon de-

tection would be a 100% e�cient detector which is read

out only sporadically.

IV. Creation of various motional states and mea-

surement of their number state population

IV.1 Fock states

A Fock state jni is a harmonic oscillator energy

eigenstate, designated by the number n of energy

quanta. Several techniques for creation of Fock states

of motion have been proposed, using quantum jumps[4,

11], adiabatic passage[12], or trapping states[13]; here

we use an alternate technique. Since the ion is initially

cooled to the j #; 0i Fock state, we create higher-n Fock

states by simply applying a sequence of Rabi �-pulses

of laser radiation on the blue sideband, red sideband,

or carrier. For example, the j "; 2i state is prepared by

using blue sideband, red sideband, and carrier �-pulses

in succession, so that the ion steps through the states

j #; 0i, j "; 1i, j #; 2i, and j "; 2i [14].
Once the Fock state is created, the signature of the

state can be found by driving Rabi transitions on the

blue sideband. Speci�cally, the Raman beams were

tuned to the �rst blue sideband and applied for a time

t. The probability of �nding the j #i level was then
measured by applying �+-polarized radiation on the

j #i ! 2P3=2 cycling transition and detecting the 
uo-

rescence as described above. The value of t was stepped,

and the data P#(t) was acquired. The rate of the Rabi


opping, 
n;n+1 in Eq. (5) depends on the value of n

of the Fock state occupied. The expected signal is [14]

P#(t) =
1

2
[1 + cos(2
n;n+1t) exp (�
nt)]; (6)

where 
n is the decoherence rate between levels jni and
jn + 1i. The measured P#(t) for an initial j #; n = 0i
Fock state is shown in Fig. 2(a) together with a �t

to equation (6), yielding 
0;1=(2�) = 94(1) kHz and


0 = 11:9(4) s�1.

We created a series of Fock states j #; ni and

recorded P#(t). The measured Rabi frequency ratios


n;n+1=
0;1 are plotted in Fig. 2(b), showing very good

agreement with the theoretical frequencies corrected for

the trap's �nite Lamb-Dicke parameter � = 0:202. The

observed increase of 
n with n (we experimentally �nd


n � 
0(n + 1)0:7) is qualitatively consistent with our

view that the decoherence is due to technical problems.

Figure 2. (a) P#(t) for an initial j #; 0i Fock state driven
by a JCM-type interaction provided by tuning the stimu-
lated Raman beams to the �rst blue sideband. The solid
line is a �t to an exponentially decaying sinusoid. (b) The
relative Rabi frequencies 
n;n+1=
0;1 vs. the prepared Fock
state number n. The lines represent the predictions of the
non-linear JCM for certain Lamb-Dicke parameters, show-
ing very good agreement with the known Lamb-Dicke pa-
rameter � = 0:202(5). For � � 1 the ratio of the Rabi
frequencies is given by 
n;n+1=
0;1 =

p
n+ 1.

IV.2 Thermal states

When the ion's motion is not in a Fock state, P#(t)

shows a more complicated structure. In this case,

P#(t) =
1

2

"
1 +

1X
n=0

Pncos(2
n;n+1t)e
�
nt

#
; (7)

where Pn is the probability of �nding the atom in the

nth motional number state. For example, a thermal

distribution is found after Doppler cooling [15]. In this

case, the probability of occupying the nth Fock level is

Pn = [nn=(1+n)n+1], where n is the average vibrational

quantum number. The value of n can be controlled by

the detuning during Doppler cooling. An example of

P#(t) data for a thermal state of motion is given in Fig.

3. To demonstrate consistency with a thermal state of

motion, the time-domain data are �tted to Eq. (7) with

a thermal population distribution for Pn. The signal

scale and n are allowed to vary in the �t. Values for the
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base Rabi frequency 
0;1 and base decay rate 
0 (from

which the other rates are scaled using the dependence

found in the Fock state data) are obtained from a sep-

arate trace of P#(t) for an initial j #; 0i state. For Fig.
3, the �t yields n = 1:3� 0:1. The inset shows the re-

sults of an independent analysis (the frequency domain

analysis). In this case, we directly extract the popu-

lations of the various jni levels. Since the Fock state

parameters 
n;n+1 and 
n are well characterized, the

time-domain data can be decomposed into Fock-state

components. Equation (7) is linear in the Pn, so we use

singular-value decomposition [16] to extract the proba-

bilities, shown in the inset to Fig. 3. The probabilities

are �tted to an exponential, yielding n = 1:5� 0:1. A

third measure of n by comparing the amplitude of the

red and blue sidebands[10] yields n = 1:5� 0:2.

Figure 3. P#(t) for a thermal state. The data (points) are
�tted (line) to a superposition of Fock states with Pn given
by a thermal state distribution. The �t allows n to vary,
�nding 1:3� 0:1. The inset shows the decomposition of the
data onto the Fock state components (bars) with a �t (line)
to the expected exponential distribution, yielding 1:5� 0:1.

IV.3 Coherent states

A coherent state of motion j�i of the ion corre-

sponds to a minimum uncertainty wave packet whose

center oscillates classically in the harmonic well and

retains its shape. The probability distribution among

Fock states is Poissonian, Pn = jhnj�ij2 = (nne�n)=n!

with n = j�j2. As predicted by the Jaynes-Cummings

model, the internal-state evolution P#(t) will undergo

collapses and revivals[17], a purely quantum e�ect

[2, 17].

Coherent states of motion can be produced from the

jn = 0i state by a spatially uniform classical driving

�eld[18], by a \moving standing wave" [19], by pairs of

standing waves [20], or by a non-adiabatic shift of the

trap center[21]. We have used the �rst two methods.

For the classical drive, we apply a sinusoidally vary-

ing potential at the trap oscillation frequency on one

of the trap compensation electrodes [9] for a �xed time

(typically 10 �s.) For the\moving standing wave," cre-

ation we use two Raman beams which have a frequency

di�erence of only !x. Applying these beams couples ad-

jacent oscillator levels within a given internal state. In

the Lamb-Dicke limit this interaction is formally equiv-

alent to applying the coherent displacement operator

to the state of motion. The Raman beams produce an

optical dipole force which is modulated at !x[19], res-

onately driving the motion of the atom. On resonance,

the magnitude of the coherent state grows linearly with

the coupling time.

Figure 4. P#(t) for a coherent state, showing collapse and
revival. The data are �tted to a coherent state distribution,
yielding n = 3:1� 0:1. The inset shows the decomposition
of the data onto the expected Fock state components, �tted
to a Poissonian distribution, yielding n = 2:9� 0:1.

In Fig. 4 we present an example of P#(t) after cre-

ation of a coherent state of motion. Similar behavior

has recently been seen in the context of cavity QED

[22]. The time-domain data are �tted to Eq. (7) us-

ing a Poissonian distribution and allowing only n to

vary. All other parameters (signal amplitude, signal

o�set and decoherence rate) are measured from a sep-

arate jn = 0i Fock state trace. The inset shows the

probabilities of the Fock components, extracted using

the frequency-domain analysis described above. These

amplitudes display the expected Poissonian dependence
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on n. The observed revival for higher n coherent states

is attenuated due to the progressively faster decay rates

of the higher-n Fock states, and for states with n >
� 7

we are unable to see the revival.

We can also realize a di�erent interaction by tuning

the frequency di�erence of the Raman beams to the sec-

ond blue sideband: � = 2!x. The interaction Hamilton

is then proportional to (�2=2)(�+(a
y)2+��a

2) [see Eq.

(3)] and the Rabi frequencies [see Eq. (5)]are given by


n;n+2 ' g
�2

2

p
(n+ 1)(n+ 2) ' g

�2

2
(n+ 3=2) (8)

Since the last relation holds within 6 % for all n, the

Rabi frequencies in P#(t) are almost commensurate, so

P#(t) shows very sharp collapse and revival features,

similar to the two-photon cases discussed by Buck and

Sukumar [23] and Knight [24]. Our experimental re-

sult is shown in Fig. 5. The factor 3=2 in the above

approximation leads to an aditional 3� phase shift be-

tween successive revivals. This inverts the interference

feature from revival to revival. In addition there are are

small deviations from Eq. (8), because of the approx-

imation made and the �nite Lamb-Dicke parameter �

which alters the Rabi frequencies [see Fig. 2(b)].

Figure 5. P#(t) for a coherent state, driven on the second
blue sideband. Since the Rabi-frequencies are almost com-
mensurate in this interaction, P# shows very sharp collapse
and revival features. The solid line is a �t using the exact
Rabi-frequencies for �nite �. It yields n = 2:0� 0:1

IV.4 Squeezed states

A \vacuum squeezed state" of motion can be cre-

ated by a parametric drive [21], by a combination

of standing- and traveling-wave laser �elds[20], or by

a non-adiabatic drop in the trap spring constant[21].

Here we irradiate the jn = 0i ion with two Raman

beams which di�er in frequency by 2!, driving Raman

transitions between the even-n levels within the same

hyper�ne state. The interaction can also be thought of

as a parametric drive induced by an optical dipole force

modulated at 2![19]. The squeeze parameter � (de-

�ned as the factor by which the variance of the squeezed

quadrature is decreased) grows exponentially with the

driving time. Fig. 6 shows P#(t) for a squeezed state

prepared in this way. The data are �tted to a vacuum

squeezed state distribution, allowing only � to vary.

The �t of the data in Fig. 6 demonstrates consistency

with a squeezed state and �nds � = 40 � 10 (16 dB

below the zero-point variance), which corresponds to

n � 7:1.

Figure 6. P#(t) for a squeezed state. The data are �tted to a
squeezed state population distribution, �nding � � 40� 10
(16 dB below the zero point variance), which corresponds
to n � 7:1.

The probability distribution for a vacuum squeezed

state is restricted to the even states, P2n =

N (2n)!(tanh r)2n=(2nn!)2, with � = exp(2r). The dis-

tribution is very 
at; for example, with � = 40, 16% of

the population is in states above n = 20. The Rabi fre-

quency di�erences of these high-n levels are small (see

Fig. 2b), and with � = 0:202 the Rabi frequencies be-

gin to decrease with n after n = 20. The levels can no

longer be well distinguished by frequency to extract the

level populations.

In the above cases, we have checked our state cre-

ation through the values of the Pn. This information

is, of course, incomplete since it does not reveal the co-

herences. Measurements completely characterizing the

quantum state will be discussed below.

IV.5 A \Schr�odinger's cat" state of motion

A\Schr�odinger's cat" state can be taken as a super-

position of classical-like states. In Schr�odinger's origi-

nal thought experiment [25] he describes how one could

in principle transform a superposition inside an atom

to a large-scale superposition of a live and dead cat. In
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our experiment [26], we construct an analogous state

at the single-atom level. A superposition of internal

states (j "i and j #i) is transformed into a superposition

of coherent motional states with di�erent phases. The

coherent motional states of the superposition are sep-

arated in space by mesoscopic distances much greater

than the wavepacket width of the atom.

This situation is interesting from the point of view

of the quantum measurement problem associated with

\wavefunction collapse," historically debated by Ein-

stein and Bohr, among others [27]. One practical ap-

proach toward resolving this controversy is the intro-

duction of quantum decoherence, or the environmen-

tally induced reduction of quantum superpositions into

statistical mixtures and classical behavior [28]. Deco-

herence is commonly interpreted as a way of quantify-

ing the elusive boundary between classical and quan-

tum worlds, and almost always precludes the exis-

tence of macroscopic Schr�odinger's cat states, except

at extremely short time scales [28]. The creation

of mesoscopic Sch�odinger's cat states may allow con-

trolled studies of quantum decoherence and the quan-

tum/classical boundary.

In the present work, we create a \Schr�odinger's cat"

state of the harmonic oscillator by forming a superpo-

sition of two coherent state wavepackets of the single

trapped atom with a sequence of laser pulses. The co-

herent states are excited with the use of a pair of Ra-

man laser beams as described above (section IV.3). The

key to the experiment is that the displacement beams

are both polarized �+, so that they do not a�ect the

j "i internal state. It is this selection that allows a su-

perposition of internal states to be transformed into a

superposition of motional states.

Following (a) laser cooling to the j #ijn = 0i state as
described above, we create the Schr�odinger's cat state

by applying several sequential pulses of the Raman

beams: (b) A �=2-pulse on the carrier splits the wave

function into an equal superposition of states j #ij0i
and j "ij0i. (c) The displacement beams excite the mo-

tion correlated with the j "i component to a coherent

state j�i. (d) A �-pulse on the carrier swaps the inter-

nal states of the superposition. (e) The displacement

beams excite the motion correlated with the new j "i
component to a second coherent state j�ei�i. (f) A �-

nal �=2-pulse on the carrier combines the two coherent

states (the evolving state of the system is summarized

in Fig. 7. The relative phases [� and the phases of steps

(b), (d), and (f)] of the steps above are determined by

the phases of the rf di�erence frequencies of the Raman

beams, which are easily controlled by phase-locking the

rf sources.

Figure 7. Evolution of the idealized position-space atomic
wavepacket entangled with the internal states #i and j "i
during creation of a \Schr�odinger's cat" state with � = 3
and � = � (displacement forces in opposite directions). The
wavepackets are snapshots in time, taken when the atom is
at extrema of motion in the harmonic trap (represented by
the parabolas). The area of the wavepackets corresponds
to the probability of �nding the atom in the given internal
state. (a) The initial wavepacket corresponds to the quan-
tum ground state of motion following laser-cooling. (b) The
wavepacket is split following a �=2-pulse on the carrier. (c)
The j "i wavepacket is excited to a coherent state by the
force F1 of the displacement beams. Note the force acts
only on the j "i wavepacket, thereby entangling the internal
and motional systems. (d) The j "i and the j #i wavepack-
ets are exchanged, following a �-pulse on the carrier. (e)
The j #i wavepacket is excited to a coherent state by the
displacement beam force F2, which in general has di�erent
phase with respect to the force in (c) (F2= -F1 in the �g-
ure). The state shown in (e) is analogous to a \Schr�odinger's
cat" state. (f) The j "i and the j #i wavepackets are �nally
combined following a �=2-pulse on the carrier.

The state created after step (e) is a superposition of

two independent coherent states each correlated with

an internal state of the ion (for � = �),

j	i = j�ij "i+ j � �ij #ip
2

; (9)

In this state, the widely separated coherent states re-

place the classical notions of "dead" and "alive" in

Schr�odinger's original thought experiment. We verify

this mesoscopic superposition by recombining the co-

herent wavepackets in the �nal step (f). This results

in an interference of the two wavepackets as the rela-

tive phase � of the displacement forces [steps (c) and

(e)] is varied. The nature of the interference depends

on the phases of steps (b), (d), and (f), and is set here

to cause destructive interference of the wavepackets in

the j #i state. We directly measure this interference by

detecting the probability P#(�) that the ion is in the
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j #i internal state for a given value of �. The signal for

particular choices of the phases in (b), (d) and (f) is

P#(�) =
1

2
[1� Ce��

2(1�cos�)cos(�2sin�)]: (10)

where � is the magnitude of the coherent states and

C = 1 is the expected visibility of the fringes in the ab-

sence of decoherence. We continuously repeat the ex-

periment - cooling, state preparation, detection - while

slowly sweeping the relative motional phase � of the

coherent states.

In Fig. 8, we display the measured P#(�) for a

few di�erent values of the coherent state amplitude �,

which is set by changing the duration of application of

the displacement beams (steps (c) and (e) from above).

The unit visibility of the interference feature near � = 0

veri�es that we are producing superposition states in-

stead of statistical mixtures, and the feature clearly nar-

rows as � is increased. We extract the amplitude of the

Schr�odinger's cat state by �tting the interference data

to the expected form of the interference fringe. The ex-

tracted values of � agree with an independent calibra-

tion of the displacement forces. We measure coherent

state amplitudes as high as � ' 2:97(6), corresponding

to an average of n ' 9 vibrational quanta in the state of

motion. This indicates a maximum spatial separation

of 4�x0 = 83(3) nm, which is signi�cantly larger than

the single wavepacket size characterized by x0 = 7:1(1)

nm as well as a typical atomic dimension (' 0:1 nm).

The individual wavepackets are thus clearly separated

in phase space.

Of particular interest is the fact that as the sepa-

ration of the cat state is made larger, the decay from

superposition to statistical mixture (decoherence) be-

comes faster [29]. In the experiment, decoherence due

to coupling to a thermal reservoir is expected to result

in the loss of visibility in the interference pattern of

C = e��
2�t where � is the coupling constant and t the

coupling time. The exponential reduction of coherence

with the square of the separation (�2 term) underlies

the reason that bigger \cats" decay faster. In Fig. 8(d),

the observed loss of contrast at the largest observed

separation may already indicate the onset of decoher-

ence. Decoherence due to radiative coupling has been

observed in cavity QED [29]. The precise control of

quantum wavepackets in this version of \Schr�odinger's

cat" provides a very sensitive indicator of quantum de-

coherence, whose characterization is of great interest

to quantum measurement theory and applications such

as quantum computing [30] and quantum cryptogra-

phy [31].

Figure 8. P#(�) interference signal with increasing val-
ues of j�j. The data are �tted to Eqn. (10), yielding
� = 0:84; 1:20; 1:92 and 2:97. The �t in curve (d) includes
a term to account for the loss of contrast.

V. Complete quantum state measurement

The controlled interaction of light and rf-

electromagnetic �elds with the trapped atom allows us

not only to prepare very general states of motion, but

also to determine these quantum mechanical states us-

ing novel techniques. Few experiments have succeeded

in determining the density matrices orWigner functions

of quantum systems. The angular momentum density

matrices of the electronic n = 3 substate were mea-

sured in collisionally produced atomic hydrogen [32].

The Wigner function and density matrix of a mode of

light were experimentally mapped by optical homodyne

tomography [33, 34]. The Wigner function of the vi-

brational degree of freedom of a diatomic molecule was
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reconstructed with a related technique [35], and, more

recently the Wigner function of an atomic beam pass-

ing through a double slit was reconstructed [36]. Here

we present the theory and experimental demonstration

of two distinct schemes that allow us to reconstruct

both the density matrix in the number state basis and

the Wigner function of the motional state of a single

trapped atom [37]. Other proposals to measure the

motional state of a trapped atom are outlined in [38].

As described above, we are able to prepare a variety of

nonclassical input states [14] which can, for example,

exhibit negative values of the Wigner function. Also,

comparing the results of the state determination with

the state we intended to produce can give an idea of

the accuracy of the preparation.

Both of our measurement techniques rely on our

ability to displace the input state to several di�erent

locations in phase space. Speci�cally, a coherent dis-

placement [14, 18] U (��) = U y(�) = exp(��a � �ay)

(�� is used for convenience below) controlled in phase

and amplitude is used in our schemes. We then apply

radiation on the blue sideband to the atom for a time

t, which induces a resonant exchange between the mo-

tional and internal degrees of freedom (see sections II

and IV). For each � and time t, the population P#(t; �)

of the j #i level is then measured by monitoring the 
u-

orescence produced in driving the resonant dipole cy-

cling transition (see section II). For these experiments

the internal state at t = 0 is always prepared to be j #i

for the various input states, so the signal averaged over

many measurements is

P#(t; �) =
1

2

(
1 +

1X
k=0

Qk(�)cos(2
k;k+1t)e
�
kt

)
;

(11)

where Qk(�) denotes the population of the coherently

displaced number state U (�)jki. Without the coher-

ent displacement we would just recover the previously

discussed P#(t) signal [eq. (7)] and would �nd the pop-

ulations of the motional eigenstates only. But since

we repeat these measurements for several magnitudes

and phases of the coherent displacement, we are able

to extract information about the o�-diagonal elements

of the density matrix and can also reconstruct the

Wigner function from the measured displaced popula-

tions Qk(�).

V.1 Reconstruction of the number-state density

matrix

To reconstruct the density matrix � in the number

state basis, we use the relation

Qk(�) = hkjU y(�)�U (�)jki = h�; kj�j�; ki; (12)

where j�; ki is a coherently displaced number state [39].

Hence every Qk(�) is the population of the displaced

number state j�; ki for an ensemble characterized by

the input density matrix �. Rewriting (12) we get

c

Qk(�) =
1

k!
h0jakU y(�)�U (�)(ay)kj0i (13)

=
1

k!
h�j(a� �)k�(ay � ��)kj�i

=
e�j�j

2 j�j2k
k!

1X
n;m=0

kX
j;j0=0

(��)n�j�m�j0

n!m!
�

(�1)�j�j0 �kj � �kj0�p(m + j)!(n + j0)!�n+j0;m+j :

To separate the contributions of di�erent matrix-elements �n;m, we may displace the state along a circle,

�p = j�j exp[i(�=N )p]; (14)

where p � f�N; :::; N � 1g. The number of angles 2N on that circle determines the maximum number of states

nmax = N �1 that can be included in the reconstruction. With a full set of populations of the state displaced along

2N points on a circle we can perform a discrete Fourier transform of Eq. (14) evaluated at the values �p, and we
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obtain the matrix equations

Q
(l)
k � 1

2N

N�1X
p=�N

Qk(�p)e
�il(�=N)p

=
1X

n=max(0;�l)



(l)
kn�n;n+l (15)

with matrix elements



(l)
kn =

e�j�j
2j�j2k
k!

min(k;n)X
j0=0

min(k;l+n)X
j=0

j�j2(n�j�j0)+l �

(�1)�j�j0 �kj � �kj0�
p
(l + n)!n!

(l + n� j)!(n� j0)!
(16)

d

for every diagonal �n;n+l of the density matrix. To

keep the matrix dimension �nite, a cuto� for the max-

imum n in (15) is introduced, based on the magnitude

of the input state. For an unknown input state, an up-

per bound on n may be extracted from the populations

Qk(�). If these are negligible for k higher than a cer-

tain kmax and all displacements �, they are negligible in

the input state as well, and it is convenient to truncate

Eq. (15) at nmax = kmax. The resulting matrix equation

is overcomplete for some l, but the diagonals �n;n+l can

still be reconstructed by a general linear least-squares

method[16].

V.2 Reconstruction of s-parameterized

quasiprobability distributions

As pointed out by several authors, all s-

parameterized quasiprobability distributions F (�; s)

have a particularly simple representation when ex-

pressed in populations of displaced number states

Qk(�) [39, 40, 41, 42].

F (�; s) =
1

�

1X
n=0

[(s+ 1)=2]n
nX

k=0

(�1)k (nk )Qk(�) (17)

For s = �1 the sum breaks down to one term and

F (�;�1) = Q0(�)=� gives the value of the Husimi

Q quasi-probability distribution at the complex coor-

dinate � [43]. Also for s = 0 the Wigner function

F (�; 0) = W (�) for every point � in the complex plane

can be determined by the single sum

W (�) =
2

�

1X
n=0

(�1)nQn(�): (18)

In our reconstruction, the sum is carried out only to a

�nite nmax, as described above. Since truncation of the

sum leads to artifacts in the quasiprobability distribu-

tions [44], we have averaged our experimental data over

di�erent nmax. This smooths out the artifacts to a high

degree.

In contrast to the density matrix method described

in section , summing the displaced probabilities with

their weighting factors provides a direct method to ob-

tain the quasiprobability distribution at the point � in

phase space, without the need to measure at other val-

ues of �. This also distinguishes the method from pre-

ceding experiments that determined the Wigner func-

tion by inversion of integral equations (tomography)

[33, 35].

V.3 Experimental results

The coherent displacement needed for the recon-

struction mapping is provided by a spatially uniform

classical driving �eld at the trap oscillation frequency.

This �eld is applied on one of the trap compensation

electrodes [9] for a time of about 10 �s. The rf oscilla-

tors that create and displace the state are phase-locked

to control their relative phase. Di�erent displacements

are realized by varying the amplitude and the phase of

the displacement oscillator. For every displacement �,

we record P#(t; �). Qn(�) can be found from the mea-

sured traces with a singular-value decomposition (see

sec. IV.2). To determine the amplitude j�j of each
displacement, the same driving �eld is applied to the

jn = 0i ground state and the resulting collapse and

revival trace is �tted to that of a coherent state (see

section IV.3).
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Figure 9. (a) Reconstructed number-state density matrix
amplitudes �nm for an approximate jn = 1i number state.
The coherent reconstruction displacement amplitude was
j�j = 1:15(3). The number of relative phases N = 4 in
Eq. (14), so nmax = 3. (b) Surface and contour plots of
the Wigner function W (�) of the jn = 1i number state.
The white contour represents W (�) = 0. The negative val-
ues around the origin highlight the nonclassical character of
this state. (c) The Wigner function of the jn = 1i number
state is rotationally symmetric: W (�) =W (j�j). In this �g-
ure we show a radial slice through this function for a pure
number state (dashed line) and a thermally contaminated
state (solid line) which assumes the ion is in the ground
state only � 90% of the time after cooling.This was inde-
pendently veri�ed after sideband cooling [10]. The dots are
experimentally determined values of the Wigner function,
averaged for equal j�j.

The accuracy of the reconstruction is limited by the

uncertainty in the applied displacements, the errors in

the determination of the displaced populations, and de-

coherence during the measurement. The value of the

Wigner function is found by a sum with simple error

propagation rules. The density matrix is reconstructed

by a linear least-squares method, and it is straightfor-

ward to calculate a covariance matrix [16]. As the size

of the input state increases, decoherence and the rela-

tive accuracy of the displacements become more criti-

cal, thereby increasing their uncertainties.

In Fig. 9, we show the reconstruction of both the

number state density matrix (a) and surface and con-

tour plots of the Wigner function (b) of an approximate

jn = 1i number state. The plotted surface is the re-

sult of �tting a linear interpolation between the actual

data points to a 0.1 by 0.1 grid. The octagonal shape

is an artifact of the eight measured phases per radius.

The white contour represents W (�) = 0. The nega-

tive values around the origin highlight the nonclassical

character of this state. The Wigner function W (�) is

rotationally symmetric within the experimental errors

as con�rmed by our measured values. Therefore we

averaged sets of data with the same value of j�j. The
averaged points are displayed in Fig. 9(c) together with

a radial slice through the theoretical Wigner function

for a pure number state (dashed line) and a thermally

contaminated state (solid line) which assumes that the

ion is prepared in a thermal distribution with a proba-

bility to �nd it in ground state of only � 90% after

cooling and before the preparation of the jn = 1i num-

ber state. This was independently veri�ed to be the

case in our experiment by comparing the magnitude of

red and blue sidebands after Raman-sideband cooling

to the ground state [10]. Again the large negative part

of the Wigner function around the origin highlights the

fact that the prepared state is nonclassical.

In contrast to the number state, the state closest to

a classical state of motion in a harmonic oscillator is a

coherent state. As one example, we have excited and

reconstructed a small coherent state with amplitude

j�j � 0:67. The experimental amplitude and phase of

the number state density matrix are depicted in Fig. 10.

The o�-diagonal elements are generally slightly smaller

for the experiment than we would expect from the the-

ory of a pure coherent state. In part this is due to deco-
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herence during the measurement, so the reconstruction

shows a mixed state character rather than a pure co-

herent state signature. This view is further supported

by the fact that farther o�-diagonal elements seem to

decrease faster than direct neighbors of the diagonal.

Figure 10. Experimental amplitudes �nm and phases
�(�nm) of the number-state density matrix elements of a
j�j � 0:67 coherent state. The state was displaced by
j�j = 0:92, for N = 4 in Eq. (14).

The reconstructed Wigner function of a second co-

herent state with amplitude j�j � 1:5 is shown in Fig.

11. The plotted surface is the result of �tting a linear

interpolation between the actual data points to a 0.13

by 0.13 grid. The approximately Gaussian minimum

uncertainty wavepacket is centered around a coherent

amplitude of about 1.5 from the origin. The halfwidth

at half maximum is about 0.6, in accordance with the

minimum uncertainty halfwidth of
p
ln(2)=2 � 0:59.

To suppress truncation artifacts in the Wigner function

summation (18) [44], we have averaged over nmax = 5

and nmax = 6.

We have also created a coherent superposition of

jn = 0i and jn = 2i number states. This state is ide-

ally suited to demonstrate the sensitivity of the recon-

struction to coherences. The only nonzero o�-diagonal

elements should be �02 and �20, with a magnitude

of j�02j = j�20j =
p
�00�22 � 0:5 for a superposi-

tion with about equal probability of being measured

in the jn = 0i or jn = 2i state. In the reconstruc-

tion shown in Fig. 12 the populations �00 and �22 are

somewhat smaller, due to imperfections in the prepa-

ration, but the coherence has the expected value of

j�20j = j�02j � p
�00�22.

Figure 11. Surface and contour plots of the reconstructed
Wigner function of a coherent state. The approximately
Gaussian minimum uncertainty wavepacket is centered
around a coherent amplitude of about 1.5 from the origin.
The halfwidth at half maximum is about 0.6, in accordance

with the minimum uncertainty halfwidth of
p
ln(2)=2 �

0:59.

Figure 12. Reconstructed density matrix amplitudes of an
approximate 1=

p
2(jn = 0i � ijn = 2i) state. The state was

displaced by j�j = 0:79 for N = 4 in Eq. (14). The am-
plitudes of the coherences indicate that the reconstructed
density matrix is close to that of a pure state.

For a known density matrix we can also �nd the

Wigner function by expanding Eq. (18) in the number

state basis,

W (�) =
2

�

1X
n=0

(�1)n
1X

k;l=0

h�; njki�klhlj�; ni; (19)

with the matrix elements given by (l � n) [45]

hlj�; ni =
p
n!=l!�l�ne�1=2j�j

2L(l�n)
n (j�j2); (20)
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where L(l�n)
n is a generalized Laguerre polynomial. Us-

ing this approach we have generated a plot of the

Wigner function using our density matrix data. The

result is shown in Fig. 13 together with the theoretical

Wigner function for a 1=
p
2(jn = 0i � ijn = 2i) state.

The di�erences can be traced to the imperfections in

the preparation also visible in Fig. 12: The small but

nonzero values of j�11j and j�33j and the respective co-

herences lead to the di�erences in the central feature of

the Wigner function.

Figure 13. Comparison of the Wigner function of an ap-
proximate 1=

p
2(jn = 0i � ijn = 2i) state transformed from

our experimental density matrix data (a) with its theoretical
counterpart (b).

Finally, we have generated a thermal state by only

Doppler-cooling the ion. The reconstruction of the re-

sulting state is depicted in Fig. 14. As expected, there

are no coherences, and the diagonal, which gives the

number state occupation, shows an exponential behav-

ior within the experimental errors, indicating a mean

occupation number n � 1:3.

Figure 14. Reconstructed density matrix of a n � 1:3 ther-
mal state. This state was displaced by j�j = 0:78, for N = 4
in Eq. (14). As we would expect for a thermal state, no co-
herences are present within the experimental uncertainties
and the populations drop exponentially for higher n.

VI. Conclusions

The interaction of a trapped atom with classical

light �elds can lead to experimental situations that al-

low us to coherently prepare a multitude of quantum

states, both classical-like and wholly nonclassical. Since

the interaction can be tailored to resemble the Jaynes-

Cummings model, the system is suited to realize many

proposals originally introduced in the realm of quantum

optics and cavity quantum electrodynamics. One spe-

cial application is the preparation of a state where the

internal degree of freedom is entangled with two coher-

ent states with a separation in phase space much bigger

than their spread. This state, bearing many features of

\Schr�odinger's cat," is well suited to the study of deco-

herence phenomena on the boundary of quantum and

classical mechanics such as the decoherence of meso-

scopic objects. Such studies are especially interesting

in our system since we should be able to engineer dif-

ferent couplings and reservoirs by an appropriate choice

of the interaction Hamiltonian [46].
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Our control in the preparation of the states also

allows us to prepare the same state many times to a

high accuracy. By extending our techniques to several

simultaneously trapped ions, we should be able to con-

trollably prepare and manipulate their combined state

and thus implement simple quantum logic gates [47,48].

The techniques described here for characterizing the

quantum state of motion combined with a Ramsey-

type spectroscopy on the internal states seem to lead

to a method for completely measuring the internal and

motional states of several simultaneously trapped ions

(for an alternative method see [49]). Apart from detect-

ing quantum correlations in these states, this might be

useful to fully characterize simple quantum logic gates

[50].
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