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Abstract

We demonstrate a Bayesian quantum game on an ion-trap quantum computer with five qubits. The
players share an entangled pair of qubits and perform rotations on their qubit as the strategy choice.
Two five-qubit circuits are sufficient to run all 16 possible strategy choice sets in a game with four
possible strategies. The data are then parsed into player types randomly in order to combine them
classically into a Bayesian framework. We exhaustively compute the possible strategies of the game so
that the experimental data can be used to solve for the Nash equilibria of the game directly. Then we
compare the payoff at the Nash equilibria and location of discontinuous changes in the payoff
obtained from the experimental data to the theory, and study how it changes as a function of the
amount of entanglement.

1. Introduction

Game theory, originally developed in the 1940s and 1950s [ 1-3], has since been the source of important
contributions in fields such as economics [4], political science [5], biology [6], and computer science [7]. The
addition of quantum information concepts into games led to the formalization of quantum games [8, 9]. Since
their introduction, quantum games have been studied in a variety of contexts. With the growing prevalence of
quantum computers and quantum networks, quantum games emerge as strong candidates for real world
applications in quantum security protocols [10], distributed quantum computing algorithms [11], or improving
the efficiency of classical network routing algorithms [12]. Because game theory is required to describe any
system that has multiple independent agents, quantum games may be useful and even necessary to the rapidly
growing field of quantum machine learning where quantum systems will behave autonomously and
independently.

In contrast with many interesting quantum computing algorithms, quantum games can be demonstrated
with small numbers of qubits, making them an attractive application for early demonstrations on quantum
computers. There have been several experimental demonstrations of quantum games using NMR quantum
computers [13, 14] and various linear optical quantum computing schemes [15-21]. In these demonstrations,
the circuit equivalent of the game was executed with the strategy choices of the Nash equilibrium, as determined
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by theoretical analysis, and compared the expected payoff at Nash equilibrium. This amounts to a type of
benchmarking of the performance of the quantum computer under the framework of game theory.

The most common use of quantum computing is to produce an algorithm with a speedup over the classical
version, in terms of resources used or gates employed. A natural question is whether or not quantum
information or quantum games could be used to speedup the calculation of the Nash equilibria in classical
games, where computational speed is limiting. Optimization of finding the solutions in the quantum context is
not explored and is beyond the scope of this paper. For our purposes, quantum information is introduced into
the games in order to produce equilibria that do not exist in the classical version of the game.

One might argue that a true demonstration of a quantum game would actually involve real players, either
humans or computers, playing the game on true quantum hardware. With real players playing on a classically
simulated quantum computer, people may actually play quantum games more rationally than they play classical
games, even if they have no prior training in quantum mechanics [22, 23]. This may be due to the fact that people
may have fewer preconceived notions about the quantum strategies, and are thus more likely to simply play for
the highest payoff. Though this may have interesting implications for potential real world applications of
quantum games, there is a gap between the potential uses of quantum games and the availability of quantum
hardware.

This work aims to partially address that gap by performing a more complete demonstration of a game on a
scalable quantum architecture that can be applied to more complex game scenarios in the future. Ion-trap-based
systems are promising candidates for quantum computers, which is a prerequisite for quantum games. Further,
ion-trap architectures are also promising for quantum networking [24], where nodes are remotely located and
entangled, which may also be a requirement for quantum game applications that require the players to be
remotely located.

We realize a game with incomplete information, i.e., a Bayesian game [25]. The amount of incomplete
information is determined by a probability distribution of different player types. Bayesian games are of interest
because of their deep connection to Bell’s inequalities [26]. The Bayesian game we analyze is not directly derived
from a Bell’s inequality, but is rather a Bayesian game formed by incorporating incomplete information
classically into a quantum game. The motivation behind this approach is that incomplete information may often
be a feature of any potential application of quantum games, not just games specifically designed to violate Bell’s
inequalities, and the interplay of classical probability and quantum statistics can lead to a rich structure [27].

This is the first experimental demonstration of a quantum game using a scalable architecture. Because of the
sophistication of current ion-trap quantum computers compared to previously used quantum computers, a
more extensive implementation is possible. Using a novel parallelization scheme, we perform an exhaustive
computation of all possible strategy choice combinations. This allows us to solve for the Nash equilibria of the
game based only on the experimental outcomes. Therefore, we can look not only at the payoff at Nash equilibria,
but also study where the equilibria occur and observe the effect of experimental noise on the location of the
discontinuous changes in the payoff that can occur when one set of equilibria changes to another as the
entanglement or amount of incomplete information is changed [28]. We find that the deviation of the expected
to measured payoff grows with the degree of entanglement in the game. We also find that the deviation between
the experimental and theoretical location of the discontinuity grows with entanglement.

2. Quantum game implementation

We experimentally demonstrate a Bayesian game that displays several features worth exploring such as multiple
simultaneous Nash equlibria and discontinuous behavior as functions of both the Bayesian probability and the
amount of entanglement. A detailed theoretical analysis of this game can be found in [27]. Being composed of
two player games, the demonstration is relatively straightforward to implement experimentally, yet has a rich
enough structure to observe several features of Bayesian games that are interesting from a game theoretical
perspective.

First, we describe the two player game, which is used to construct the Bayesian game, see figure 1. An
entangling gate is applied to two qubits, initialized in the state |00), each qubit corresponding to one of two
players. The entangling operation is given by the general XX gate:

J(x) = eM®X = cosy + iX ® X siny

cos Y 0 0 —isiny
0 cosy —isiny 0
0 —isiny cos) 0
—isiny 0 0 cos Y
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Figure 1. Basic circuit of two player game. The qubits are entangled J(), the players apply their strategy choices U, and U, the qubits
are unentangled J (), and finally a measurement is performed.

where x € [0, w/4]. For x = 0, ]is the identity matrix, where the resulting state, |00) has a concurrence of 1.
For x = m/4, a Bell state with maximal entanglement is produced, 1/ J2 (100) + |11)), with a concurrence of 1.
After the entangling operation, the players apply their strategy choices U, and Up. Finally we will need the
conjugate transpose of J (x), J ()" = J(—x). The final state for the two player game is given, in the basis

|A, B),by:

[¥r) =TT (x) - (Ua @ Ugy) - J(x)]00). 2

The payoffis then calculated based on the measurements of the qubits. If the outcome of the measurement is
|0), this corresponds to one strategy choice in the classical game (the analogue of cooperation (C) in the
prisoner’s dilemma), whereas if the outcome is | 1), this corresponds to the analogue of defection (D). The payoff
for a given strategy choice set is determined by the payoff matrix for the game:

AlBy 10)(C) [1)(D)
10)(C) (11, 9) (1, 10)
I1)(D) (10, 1) (6, 6)
AlB, [0)(C)[1)(D)
10)(C) (11, 9) (1, 6)
1) (D) (10, 1) (6, 0).

The two payoff matrices are for the games versus the two different player types for player B. We will call the
type of player B that uses the first payoff matrix B;, where player B, uses the second payoff matrix. The rows and
columns represent the outcomes (which are the strategy choices in classical games) of player A and B
respectively, and the numbers ($*, $7) are the payoffs for player A and B.

The game between A and B is the standard prisoner’s dilemma, while in the game between A and B,, player
B, believes player A is the DA’s brother, which gives player A an advantage resulting in an asymmetric payoff
between the players.

The payoff for player A is given by the expectation value of the final state weighted by the elements of the
payoff matrix:

($4) = oIl 187, 3)

where the sum is over all four possible measurement outcomes of the two-qubit system, and the $' are the
corresponding elements of the payoff matrix.

A game is also defined by the allowable strategy choices. We implement the game using four possible strategy
choices, compared to the most commonly used set of three. The four-choice single player strategy set, which we
label U, is given by the three Pauli matrices (X, Y, and Z) plus the identity (I). This choice of possible strategies
bounds the results of a game with arbitrary continuous strategy choices [29, 30]. With no entanglement, the
strategies I and X correspond to the classical strategy choices of cooperation (C) and defection (D) respectively.
There are no classical analogues for the strategy choices Y and Z. The classical analogue of entanglement is a
correlated equilibria in classical game theory, which requires communication between the players.

The Bayesian game consists of two players A and B. Player A is of one type, and player B can be one of two
types, B; or B,. Player A plays with either B; or B,, with some probability p, which parametrizes the incomplete
information held by player A which is maximal when p = 0.5, and minimal when p = 0 or 1. This game uses
three qubits, one for each player type, and proceeds as follows. All three qubits are initialized to state |0). The
entangling operation J () is performed between either A and B; or A and B, probabilistically. Each player
chooses a strategy U; from the set U and applies it to their qubit. Then the appropriate unentangling operation
J7(x) is performed. Finally, the three qubits are measured and the expected payoff for player A is given by the
weighted average of playing with B, and B,:

($4) = ($4(A, B))(p) + ($24(A, By))(1 — p) “4)
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Figure 2. Circuit used for parallel implementation of two player quantum games. The top two qubits correspond to the two players,
and the bottom three qubits are auxiliary qubits used to run various strategy choices in parallel. The two player qubits are entangled, J
(x) and a Hadamard is applied to each of the auxiliary qubits. The CNOT and C-Z gates followed by either an I or X gate, entangle the
player qubits with the auxiliary qubits so that all 16 strategy choice combinations can be run with two 5-qubit circuits. Finally, an
unentangling gate is applied and a measurement is performed on all qubits.

and the payoff for the B players is given by ($81(A, B)))and ($#2(A, B,)). There is structure in the game as the
amount of entanglement, Y, is varied, and as the probability to play with either player, p, is varied. We
demonstrate this by varying x in the experiment, and varying p in the analysis. To implement a Bayesian game
between players A, By, and B,, we run many versions of the two player circuit shown in figure 1, and then
combine them into a Bayesian game in the data analysis. This is similar to what has been done to produce initial
states for quantum games which are a mixture of entangled states that exhibit quantum discord [19].

The demonstration requires running4 x 4 = 16 two-qubit circuits for different strategy combinations,
and to make efficient use of the hardware available, we employ a novel parallelization scheme. We compute the
circuit for multiple strategy choices simultaneously by using auxiliary qubits in superposition. If the
parallelization scheme were not used, the computer could only compute two strategy choice combinations at
once which would therefore require eight different circuits to be run. Switching the circuit is the primary
contribution to overhead time, and thus, the parallelization scheme decreases the run time by a factor of four.

Two of the qubits must be assigned to the players, while the three remaining qubits can be used to
simultaneously run eight of the 16 strategy choice combinations. The circuit for the parallel implementation is
given in figure 2. Starting with the three auxiliary qubits in the state |000);,3, we apply a Hadamard gate H on
each of them. Together with the other 2 qubits, we form |00 +++)4p123, Where |[+) = %(|0> + [1)).

We perform /() on qubits A and B, resulting in the state
Jas(X) 100 +4+)ap123. (5

We use the first auxiliary qubit as control to perform a controlled-NOT (CNOT) gate on qubit A.

1 J
— > XiJas(X)00x ++)ap123- (6)
ﬁ x=0
We use the second auxiliary qubit as control to perform a controlled-Z (C-Z) gate on qubit A.
1 ¢ .
2 > ZEXJas(X) 100xy+)ap123. )
x,y=0

Then we use the third auxiliary qubit as control to perform C-Z on qubit B.

1

1
YY) > ZEZX X Jas(X)100xyz)aB123- (8)
x,,z=0

Finally, we apply J(—x) on qubits A and B, to obtain

1

1
> > Jas(—X)ZEZ) X3 Tap(X)100xyZ) 123 9

X,y,2=0

and then measure all qubits. The final state contains 8 terms corresponding to different strategies,
Ui e {1, X, Y, Z and U, € {I, Z}.
For the remaining strategies, we need to apply X on qubit B before the final step. In this case, the final state is

1 : Z X
> > Jap(—=X)XBZE Z5 X5 Tan(X)|00xy2)ap123- (10)
x,,2=0

Its terms correspond to the remaining eight strategies, Uy € {I, X, Y, Z}and Uy € {X, Y}.

4
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3. Experimental procedure

The experimental setup constitutes a programmable quantum computer. It consists of five '”'Yb™ ions which
are trapped in a linear arrangement using a radiofrequency (RF) Paul trap, and laser cooled close to their
motional ground state. Two states in the 2S; /, ground level are used as the qubit states (0) = |F = 0, mp = 0),
and|1) = |F = 1, mp = 0)). They differ in energy by the 12.642 821 GHz hyperfine splitting which is
insensitive to the magnetic field to first order. This a so-called ‘atomic clock’ qubit has a typical coherence time of
0.5 s which can be further extended by suppressing magnetic field noise. Optical pumping initializes the entire
five-qubit register, and readout is performed collectively by detecting state-dependent fluorescence [31].

Each ion is imaged onto its own channel of a multi-channel photomultiplier tube which allows its state to be
determined with 99.4(1)% average fidelity, while the 5-qubit state detection is limited by channel-to-channel
crosstalk to 95.7(1)% average fidelity. For averaged state probabilities, this state-preparation and measurement
(SPAM) error can be straightforwardly re-normalized by applying an independently determined crosstalk-
matrix. We drive qubit operations by applying a pair of Raman beams that are configured to form beat notes near
the qubit frequency to the ions. Both beams are derived from a single 355 nm mode-locked laser. One beam is
applied globally to the entire chain while the second is split into a linear array of individual addressing beams,
each of which is focused onto on a single ion using a multi-channel acousto-optic modulator (AOM) [32].

Single qubit gates (so-called R-gates) are applied by driving resonant Rabi flopping on any individual ion
with the duration, phase, and amplitude defined by the RF signals on the multi-channel AOM. We achieve two-
qubit gates (so-called XX-gates) by applying bichromatic Raman beat notes near the motional sideband
frequencies. They create an effective XX-Ising interaction between the spin degrees of freedom containing the
qubit mediated by all of the collective motional modes in the ion chain [33-35]. In order to leave spin and
motion disentangled at the end of the operation, we employ a pulse-shaping scheme during the gates [36, 37].

Any pair of qubits can be entangled in this way, which makes this a fully-connected system of qubits [38]. A
classical compiler breaks down a library of computational gates, such as Hadamard, CNOT, or controlled-
Phase, into the native R- and XX-operations. Since any context-dependence (such as calibration parameters) of
the native operations is handled by the compiler, the high-level gates become modular. Arbitrary circuits can
then be implemented from a user interface by specifying a sequence of computational and/or native gates which
makes the system programmable. Our compiler breaks down computational gates into basic gates by using a
look-up table which contains pre-optimized circuits for standard gates such as CNOT, as well as a list of
calibration parameters which are periodically updated. The theoretical concept behind the compiler is described
in [39]. Native single- and two-qubit gate fidelities are typically 99.5(2)% and 98.5(5)%, respectively. Gate times
are about 10 ps for single- and 210 us for two-qubit gates.

4, Results

We perform the simulation for nine values of x between zero and maximal in steps of %0. The nominal values of
X were, in units of 7: (0, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15,0.175, 0.2, 0.225, 0.25). For each of the two five-qubit
circuits depicted in figure 1, we have ~30 000 runs. Before and after each data run (except for y = (0, 0.125,
0.25)), arun was taken to measure the value of  to take any deviation from the nominal values into account. The
procedure for Y = (0, 0.125, 0.25) were taken at an earlier date before the calibration of x was implemented.
Such deviations are the result of calibration inaccuracy in the experiment primarily due to laser power and
alignment over the course of the experimental data run. The average of the measured xs are used for the analysis
and were found to be: (0, 0.027(2), 0.054(3), 0.080(4), 0.108(4), 0.125, 0.151(5), 0.178(5), 0.201(5), 0.224(6),
0.25). For each experimental run, the quantum computer outputs the measured value (i.e., either |0) or | 1)) for
all five qubits.

The data are parsed into two groups representing games of A versus B, and A versus B, respectively. The
value of p, which determines the probability that player A plays with either B; or B,, is chosen for a given analysis,
and each data point is sorted randomly into the two categories with probability p. Next, the expectation value of
all 32 possible outcomes is computed to form the output population vector for the two data sets. SPAM
correction is then applied to the population vector to correct for readout errors.

Next, in order to compute the payoff, equation (4), for the players for a given set of strategy choices, we must
determine the outcomes of the qubits for player A and B depending on the 8 possible outcomes for the three
auxiliary qubits. For example, if the ‘I’ circuit in figure 2 outputs |000) for the three auxiliary qubits, this
corresponds to players A and B having applied the strategies {1, I}. The components with the auxiliary output of
|000) are summed to form the 4-component vector representing the expectation values of the A and B qubits for
each of the 8 auxiliary output combinations. These population vectors are each then re-normalized and the
experimental payoff is computed with equation (3). This is done for both the I-circuit and the X-circuit of

5
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Figure 3. Payoffs at Nash equilibrium for the Bayesian game analyzed for p = 0.5. The lines are the experimentally determined payoffs
while the circles are the theoretically calculated values. There were no Nash equilibria found for regions of the graph with no data, i.e.,
for x = 0.05, orfor x > 0.2. Notealso that in the case of y = 0.025 the experimental results computed a Nash equilibrium, while the
theoretical computation did not.

figure 2 in order to compute the experimental payoff for all 16 possible strategy choice combinations of the two
player payoff matrix. The data for both types of player B receive the same treatment.

Fromthetwo4 X 4 two player payoff matrices, we can compute the 64 element4 X 4 x 4 payoff matrix of
the Bayesian game according to equation (4). The same data are analyzed for p values ranging from 0 to 1 in steps
0f0.01 in order to observe the structure of the game as a function of the incomplete information.

In order to compute the Nash equilibria, the best response curves must be constructed. The best response
curve for player A is given by thelist 34 = {i*, j, k}, wherej and k run over all of the possible strategy choices of
By and B,, and i" is the strategy choice that gives A the highest payoff for the choices of j and k for players B, and
B,. The best response curves for the B players are similarly calculated, 85, = {i, j*, k},and 3p, = {3, j, k*}.
The Nash equilibria are given by the intersection of the best response curves, 34 U 8p; U Og;. In other words,
any strategy choice combination where each player is playing their best response to the other player’s choices is a
Nash equilibrium. In general, this can result in one or more Nash equilibria or none.

For the computation of the best response curves from the experimental data, we consider a payoff to be the
best response if it is within an amount ¢ of the maximum. If this is not included, the best response for each player
will only be one particular strategy choice set, that will be determined by the experimental noise, and we almost
never get a Nash equilibrium. The data presented use 6 = 0.1.

We plot the payoffs of the three players, as a function of the entanglement ;, both theoretically and
experimentally, for the nine different values of entanglement in figure 3. These data are analyzed for the case
where p = 0.5. The error in the horizontal represents the error in entanglement calibration data taken before and
after each set of data. The error in the payoffis the statistical error determined by the error in a binomial
distribution of ion populations assuming that, on average, there were 3000 shots contributing to each point, with
~300 of them in | 1), which was found to be the case for the dominant equilibria.

The data show that for no entanglement, x = 0, the experimental data very closely match the theoretical
data. With growing x there is a systematic shift by which the experimental results fall predominantly below the
theory values, probably a result of the growing error introduced by the gate. However this effect is smaller than
our estimated statistical error. The theoretical and experimental data have no Nash equilibrium above a critical
value of entanglement, x ~ 0.1757. Note also that the experimental data for x = 0.0257 show a Nash
equilibrium even though none is predicted theoretically. This is indicative of the fact that experimental errors
can alter the critical values of the discontinuous equilibria changes.

The addition of experimental noise to quantum games is known to not affect the existence of a Nash
equilibrium, but it tends to lower the payoff at Nash equilibria [40]. This is due to the fact that the quantum
games that are chosen for demonstrations are those in which the payoff at Nash equilibrium is larger than the
payoff for other strategy choices. This is also the case for our implementation, see figure 3.

To characterize the size of the systematic shift of the expected payoff for theory versus experiment, we plot
the root-mean-square deviation (RMSD) of the experimental data to the theoretical calculation as a function of
entanglement. The results are plotted in figure 4. Because not all equilibria exist for all values of entanglement,
the data are analyzed for p = 0, instead of because at p = 0 there is Nash equilibrium that is constant for all
values of entanglement, and has the theoretical payoffs for players (4, B; , B,) equal to (11, 10, 9) with the strategy
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Figure 4. The RMSD of the payoff at the maximal payoff Nash equilibria when the Bayesian game is analyzed with p = 0 (i.e., player A
exclusively plays with player B,), is plotted as a function of entanglement.

choices of the three players given by { I, X, I } aswell as { Z, Y, Z}. This payoff could be verified by plugging the
strategy choices for A and B, into figure 1, and computing the payoff from the resulting state and the payoff
matrices. The trend is that the deviation from the theoretically calculated payoff grows as entanglement, and
hence experimental error, increases. Notably, for large values of entanglement, the shift is larger in the case of

p = Othanitis for the case of p = 0.5 plotted in figure 3. This is because there is a larger deviation in the game of
Aversus B, than there is in the game of A versus B, which stems from the differences in the particular gates
applied by the players in the equilibria in different regions of the Bayesian game.

The data for B players are scaled to the probability of playing with A, to retain the same scale as the payoff
matrix. The data for By at p = 0, where he does not actually play the game with A, are calculated as the
asymptotic value as p approaches zero from an infinitesimally small non-zero probability. This was done in
order to be able to analyze the data, whereas in an actual Bayesian game, the payoff of B in this case is nothing,
which is determined by the definition of the Bayesian game.

In addition, we can see from the data how the discontinuous behavior of the Nash equilibria change with
experimental noise. Our step size of x = /40 does not permit a detailed study of the threshold for
discontinuity as the entanglement is varied. But, because we incorporate the probability in the analysis, we can
see the change in the threshold probability with fine steps allowing a systematic study of the threshold
probability at which the equilibria change. In the top part of figure 5 we plot the data for one example value of
entanglement, 7/ 20, as a function of p both theoretically and experimentally as a black line and red triangles,
respectively.

First, there are two discontinuities, one near p = 0.16 and the other near p = 0.55. It can be seen that the
critical value of p for the discontinuity is different from theory and experiment. If we increase the value of the
best response thresholding parameter 6, the experimental Nash equilibria will extend further in either direction,
also, additional equilibria may arise.

In the region of the equilibrium between p = 0.6 and p = 1, another feature of note occurs. The main
equilibrium in this region is given by { X, Y, Z}. Though for p between 0.81 and 1, a second Nash equilibrium
appears. This equilibrium is given by { Y, X, I} and has a slightly lower payoff. The presence of this equilibrium is
due to the finite § parameter in the analysis of the best response. If 6 were smaller, the region of the second
equilibria would shrink, but so would the region with the real equilibrium. For this, and other similar observed
secondary equiliria, the transition is usually blurred, meaning the second equilibrium can appear and vanish
several times with increasing p before it is reliably present.

We analyze the data for each value of entanglement for all values of p in order to see how the deviation of the
threshold p changes as the entanglement grows. For consistency, we analyze the location of the discontinuity
near p = 0.16. Theoretically this discontinuity occurs at p = 0.16 for all values of entanglement. The deviation
of the theoretical to experimental threshold p also grows slightly with the entanglement as seen in the bottom of
figure 5. For the values of y > .1757, another equilibrium appeared in the analysis (not shown in any graph)
with the strategy choices of { X, Z, Y}. This equilibrium closely resembles the main one in this region with
strategy choices { I, X, I } and {Z, Y, Z} with nearly the same payoffs. However, this equilibrium has a threshold p
which is slightly larger, p ~ 0.29. As x increases, the payoffs, and threshold p of this equilibrium converge to the
main equilibrium.
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Figure 5. Top: example of an analysis with varying p for y = 7/20. There is a region in the center where the equilibrium disappears,
and aregion for high p where a second equilibrium appears. Bottom: the deviation of the experimentally determined threshold pasa
function of entanglement.

5. Discussion

Deviations in the payoff for the experimentally determined equilibria are expected due to the finite fidelity of the
circuit, figure 2. If there is an error in one of the player qubits, the experimentally determined payoff will be
incorrect, while if there is an error in one of the auxiliary qubits, the outputs for the player qubits in that run will
be misidentified. In either case this results in a different output than that predicted by the circuit. Because the
game implemented is one where the payoffs at the equilibria are typically some of the higher payoffs in the game,
deviation from the theoretical behavior will typically result in a lower payoff. If a game were chosen where the
equilibrium was not the highest payoffin the game, i.e., if it were not Pareto optimal, then deviation from the
theoretical payoft at equilibrium would tend to increase the payoff, which we see if we change the payoff matrices
for the analysis in our game. Gate errors tend to be larger for larger values of entanglement because they depend
on the coherence of relative phases of multiple qubits, which suffers from experimental error such as differential
Stark shifts, whereas unentangled states only rely on their individual coherences. Thus, the deviation from
theoretical behavior increases with x.

When the experimentally determined payoff deviates significantly from the theoretical value, this can result
in the disappearance or appearance of Nash equilibria. This is seen both at the boundaries between regions with
different equilibria and in the appearance of new equilibria as in the bottom and top of figure 5. The value of
X = m/20was simply chosen as a representative example, the results for other values of entanglement are
similar. These transitions can be blurred, so that they are not as precisely defined as they are theoretically. This
could have impact in the applications of quantum games such as mechanism design where the game is
structured in order to steer the players towards certain Nash equilibria, so that the play is self-reinforcing and
thus stable. If the experimental errors remove some expected equilibrium, the players would not converge their
play on the strategies of the equilibrium as expected and the game could become unstable.

When an alternate competing equlibrium appears, such as in the top of figure 5, the players could become
stuck on the ‘wrong’ equilibrium. If the game dynamically changes, for instance, if p changes, the players may
continue to follow the lower payoff equilibrium.

We have performed what we believe is a unique demonstration of a quantum game for several reasons. It is
the first experimental demonstration performed on an ion-trap-based quantum computer, and we employ a
novel parallelization scheme. The sophistication of the ion-trap quantum computer has enabled a much more
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extensive demonstration that has allowed us to generate enough data to demonstrate a more complicated
Bayesian game than the more commonly demonstrated two player games. This is also the first time the
experimental data have been solely used to solve for the Nash equilibria of the game, which allowed us to
experimentally observe the behavior of the payoff as well as the equilibria discontinuities as the amount of
entanglement changes. We are also the first to show explicitly how the deviation of the theory to experiment
varies as a function of the entanglement.

The value of entanglement is interpreted as being set by a referee of the game. In the case of four allowed
strategy choices, maximal entanglement is not always desired from the point of view of an optimal equilibrium.
In fact, the behavior of the game becomes less predictable for larger entanglement because of the increased gate
errors. These considerations would have to come into any design of a game or choices by a referee in order to
promote the desired behavior.

All the ingredients to move trapped ion quantum computing devices into the noisy intermediate-scale
quantum era [41] have been demonstrated. Stable chains of over 100 ions [42], and the technology to manipulate
them exists. The best entangling gates achieved to date were realized with trapped ions, and their errors are one
order of magnitude lower [43] than the gates used in this work. The combination of these capabilities will
produce medium size systems able to surpass classical computers in the next few years. This means quantum
games which can only be run on a quantum computer will be implemented and perhaps used to test quantum
computers and communication protocols. Even with these low error rates, the system size and number of
operations needed will require error mitigation techniques such as [44] to achieve useful performance before
error corrected operations eventually come into reach.

Advances in ion-trap quantum computers underscore the reason that they are a promising platform for
quantum games in particular. In addition, ion-trap-based quantum computers are a promising candidate for
quantum networking, which is crucial for some quantum game applications that require the agents to be
remotely located in order to be useful. The potentially long coherence time of trapped ions would also enable the
quantum hardware to interact with other systems, such as humans, classical computers, sensors, etc, as may be
required for quantum game applications.

Quantum games may play an important role in the applications of quantum computers and quantum
networks as they begin to become more available. We believe this demonstration brings us one step closer to that
reality.
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