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Abstract
Wedemonstrate a Bayesian quantumgame on an ion-trap quantum computer withfive qubits. The
players share an entangled pair of qubits and perform rotations on their qubit as the strategy choice.
Twofive-qubit circuits are sufficient to run all 16 possible strategy choice sets in a gamewith four
possible strategies. The data are then parsed into player types randomly in order to combine them
classically into a Bayesian framework.We exhaustively compute the possible strategies of the game so
that the experimental data can be used to solve for theNash equilibria of the game directly. Thenwe
compare the payoff at theNash equilibria and location of discontinuous changes in the payoff
obtained from the experimental data to the theory, and study how it changes as a function of the
amount of entanglement.

1. Introduction

Game theory, originally developed in the 1940s and 1950s [1–3], has since been the source of important
contributions infields such as economics [4], political science [5], biology [6], and computer science [7]. The
addition of quantum information concepts into games led to the formalization of quantumgames [8, 9]. Since
their introduction, quantum games have been studied in a variety of contexts.With the growing prevalence of
quantum computers and quantumnetworks, quantum games emerge as strong candidates for real world
applications in quantum security protocols [10], distributed quantum computing algorithms [11], or improving
the efficiency of classical network routing algorithms [12]. Because game theory is required to describe any
system that hasmultiple independent agents, quantumgamesmay be useful and even necessary to the rapidly
growing field of quantummachine learningwhere quantum systemswill behave autonomously and
independently.

In contrast withmany interesting quantum computing algorithms, quantum games can be demonstrated
with small numbers of qubits, making them an attractive application for early demonstrations on quantum
computers. There have been several experimental demonstrations of quantumgames usingNMRquantum
computers [13, 14] and various linear optical quantum computing schemes [15–21]. In these demonstrations,
the circuit equivalent of the gamewas executedwith the strategy choices of theNash equilibrium, as determined
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by theoretical analysis, and compared the expected payoff atNash equilibrium. This amounts to a type of
benchmarking of the performance of the quantum computer under the framework of game theory.

Themost commonuse of quantum computing is to produce an algorithmwith a speedup over the classical
version, in terms of resources used or gates employed. A natural question is whether or not quantum
information or quantum games could be used to speedup the calculation of theNash equilibria in classical
games, where computational speed is limiting. Optimization offinding the solutions in the quantum context is
not explored and is beyond the scope of this paper. For our purposes, quantum information is introduced into
the games in order to produce equilibria that do not exist in the classical version of the game.

Onemight argue that a true demonstration of a quantum gamewould actually involve real players, either
humans or computers, playing the game on true quantumhardware.With real players playing on a classically
simulated quantum computer, peoplemay actually play quantum gamesmore rationally than they play classical
games, even if they have no prior training in quantummechanics [22, 23]. Thismay be due to the fact that people
may have fewer preconceived notions about the quantum strategies, and are thusmore likely to simply play for
the highest payoff. Though thismay have interesting implications for potential real world applications of
quantumgames, there is a gap between the potential uses of quantum games and the availability of quantum
hardware.

This work aims to partially address that gap by performing amore complete demonstration of a game on a
scalable quantum architecture that can be applied tomore complex game scenarios in the future. Ion-trap-based
systems are promising candidates for quantum computers, which is a prerequisite for quantumgames. Further,
ion-trap architectures are also promising for quantumnetworking [24], where nodes are remotely located and
entangled, whichmay also be a requirement for quantum game applications that require the players to be
remotely located.

We realize a gamewith incomplete information, i.e., a Bayesian game [25]. The amount of incomplete
information is determined by a probability distribution of different player types. Bayesian games are of interest
because of their deep connection to Bell’s inequalities [26]. The Bayesian gamewe analyze is not directly derived
fromaBell’s inequality, but is rather a Bayesian game formed by incorporating incomplete information
classically into a quantum game. Themotivation behind this approach is that incomplete informationmay often
be a feature of any potential application of quantum games, not just games specifically designed to violate Bell’s
inequalities, and the interplay of classical probability and quantum statistics can lead to a rich structure [27].

This is thefirst experimental demonstration of a quantumgame using a scalable architecture. Because of the
sophistication of current ion-trap quantum computers compared to previously used quantum computers, a
more extensive implementation is possible. Using a novel parallelization scheme, we perform an exhaustive
computation of all possible strategy choice combinations. This allows us to solve for theNash equilibria of the
game based only on the experimental outcomes. Therefore, we can look not only at the payoff atNash equilibria,
but also studywhere the equilibria occur and observe the effect of experimental noise on the location of the
discontinuous changes in the payoff that can occurwhen one set of equilibria changes to another as the
entanglement or amount of incomplete information is changed [28].Wefind that the deviation of the expected
tomeasured payoff growswith the degree of entanglement in the game.We alsofind that the deviation between
the experimental and theoretical location of the discontinuity growswith entanglement.

2.Quantumgame implementation

Weexperimentally demonstrate a Bayesian game that displays several features worth exploring such asmultiple
simultaneousNash equlibria and discontinuous behavior as functions of both the Bayesian probability and the
amount of entanglement. A detailed theoretical analysis of this game can be found in [27]. Being composed of
two player games, the demonstration is relatively straightforward to implement experimentally, yet has a rich
enough structure to observe several features of Bayesian games that are interesting from a game theoretical
perspective.

First, we describe the two player game, which is used to construct the Bayesian game, see figure 1. An
entangling gate is applied to two qubits, initialized in the state 00ñ∣ , each qubit corresponding to one of two
players. The entangling operation is given by the general XX gate:
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where 0, 4c pÎ [ ]. Forχ=0, J is the identitymatrix, where the resulting state, 00ñ∣ has a concurrence of 1.
Forχ=π/4, a Bell state withmaximal entanglement is produced, 1 2 00 11ñ + ñ(∣ ∣ ), with a concurrence of 1.
After the entangling operation, the players apply their strategy choicesUA andUB. Finally wewill need the
conjugate transpose of J J J,c c c= -( ) ( ( )) ( )† . Thefinal state for the two player game is given, in the basis
A B, ñ∣ , by:

J U U J 00 . 2f A B1y c cñ = Ä ñ∣ ( ) · ( ) · ( )∣ ( )†

The payoff is then calculated based on themeasurements of the qubits. If the outcome of themeasurement is
0ñ∣ , this corresponds to one strategy choice in the classical game (the analogue of cooperation (C) in the
prisoner’s dilemma), whereas if the outcome is 1ñ∣ , this corresponds to the analogue of defection (D). The payoff
for a given strategy choice set is determined by the payoffmatrix for the game:
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The two payoffmatrices are for the games versus the two different player types for playerB.Wewill call the
type of playerB that uses the first payoffmatrixB1, where playerB2 uses the second payoffmatrix. The rows and
columns represent the outcomes (which are the strategy choices in classical games) of playerA andB
respectively, and the numbers ($A, $B) are the payoffs for playerA andB.

The game betweenA andB1 is the standard prisoner’s dilemma, while in the game betweenA andB2, player
B2 believes playerA is theDA’s brother, which gives playerA an advantage resulting in an asymmetric payoff
between the players.

The payoff for playerA is given by the expectation value of the final state weighted by the elements of the
payoffmatrix:

i$ $ , 3A

i
f i

A2å yá ñ = á ñ∣ ∣ ∣ ( )

where the sum is over all four possiblemeasurement outcomes of the two-qubit system, and the $i
A are the

corresponding elements of the payoffmatrix.
A game is also defined by the allowable strategy choices.We implement the game using four possible strategy

choices, compared to themost commonly used set of three. The four-choice single player strategy set, whichwe
labelU, is given by the three Paulimatrices (X,Y, andZ) plus the identity (I). This choice of possible strategies
bounds the results of a gamewith arbitrary continuous strategy choices [29, 30].With no entanglement, the
strategies I andX correspond to the classical strategy choices of cooperation (C) and defection (D) respectively.
There are no classical analogues for the strategy choicesY andZ. The classical analogue of entanglement is a
correlated equilibria in classical game theory, which requires communication between the players.

The Bayesian game consists of two playersA andB. PlayerA is of one type, and playerB can be one of two
types,B1 orB2. PlayerA plays with eitherB1 orB2, with some probability p, which parametrizes the incomplete
information held by playerAwhich ismaximal when p= 0.5, andminimal when p= 0 or 1. This game uses
three qubits, one for each player type, and proceeds as follows. All three qubits are initialized to state 0ñ∣ . The
entangling operation J c( ) is performed between eitherA andB1 orA andB2 probabilistically. Each player
chooses a strategyUi from the setU and applies it to their qubit. Then the appropriate unentangling operation
J c( )† is performed. Finally, the three qubits aremeasured and the expected payoff for playerA is given by the
weighted average of playingwithB1 andB2:

A B p A B p$ $ , $ , 1 4A A A
1 2á ñ = á ñ + á ñ -( ) ( ) ( ) ( ) ( )

Figure 1.Basic circuit of two player game. The qubits are entangled J(χ), the players apply their strategy choicesUA andUB, the qubits
are unentangled J c( )† , and finally ameasurement is performed.
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and the payoff for theB players is given by A B$ ,B1
1á ñ( ) and A B$ ,B2

2á ñ( ) . There is structure in the game as the
amount of entanglement,χ, is varied, and as the probability to playwith either player, p, is varied.We
demonstrate this by varyingχ in the experiment, and varying p in the analysis. To implement a Bayesian game
between playersA,B1, andB2, we runmany versions of the two player circuit shown infigure 1, and then
combine them into a Bayesian game in the data analysis. This is similar towhat has been done to produce initial
states for quantumgameswhich are amixture of entangled states that exhibit quantumdiscord [19].

The demonstration requires running 4×4=16 two-qubit circuits for different strategy combinations,
and tomake efficient use of the hardware available, we employ a novel parallelization scheme.We compute the
circuit formultiple strategy choices simultaneously by using auxiliary qubits in superposition. If the
parallelization schemewere not used, the computer could only compute two strategy choice combinations at
oncewhichwould therefore require eight different circuits to be run. Switching the circuit is the primary
contribution to overhead time, and thus, the parallelization scheme decreases the run time by a factor of four.

Two of the qubitsmust be assigned to the players, while the three remaining qubits can be used to
simultaneously run eight of the 16 strategy choice combinations. The circuit for the parallel implementation is
given in figure 2. Startingwith the three auxiliary qubits in the state 000 123ñ∣ , we apply aHadamard gateH on

each of them. Together with the other 2 qubits, we form 00 AB123+++ñ∣ , where 0 11

2
+ñ = ñ + ñ∣ (∣ ∣ ).

We perform J(χ) on qubitsA andB, resulting in the state

J 00 . 5AB AB123c +++ñ( )∣ ( )

Weuse thefirst auxiliary qubit as control to perform a controlled-NOT (CNOT) gate on qubitA.
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Weuse the second auxiliary qubit as control to perform a controlled-Z (C–Z) gate on qubitA.
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Thenwe use the third auxiliary qubit as control to performC–Z on qubitB.
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Finally, we apply J(−χ) on qubitsA andB, to obtain
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and thenmeasure all qubits. Thefinal state contains 8 terms corresponding to different strategies,
U I X Y Z, , ,A Î { }andU I Z,B Î { }.

For the remaining strategies, we need to applyX on qubitB before the final step. In this case, thefinal state is

J X Z Z X J xyz
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x y z
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z
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y
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x
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1
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Its terms correspond to the remaining eight strategies,U I X Y Z, , ,A Î { }andU X Y,B Î { }.

Figure 2.Circuit used for parallel implementation of twoplayer quantumgames. The top twoqubits correspond to the two players,
and the bottom three qubits are auxiliary qubits used to run various strategy choices in parallel. The two player qubits are entangled, J
(χ) and aHadamard is applied to each of the auxiliary qubits. TheCNOT andC–Z gates followed by either an I orX gate, entangle the
player qubits with the auxiliary qubits so that all 16 strategy choice combinations can be runwith two 5-qubit circuits. Finally, an
unentangling gate is applied and ameasurement is performed on all qubits.
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3. Experimental procedure

The experimental setup constitutes a programmable quantum computer. It consists offive 171Yb+ ionswhich
are trapped in a linear arrangement using a radiofrequency (RF)Paul trap, and laser cooled close to their
motional ground state. Two states in the S2

1 2 ground level are used as the qubit states ( F m0 0, 0Fñ = = = ñ∣ ∣ ,
and F m1 1, 0Fñ = = = ñ∣ ∣ ). They differ in energy by the 12.642 821 GHz hyperfine splittingwhich is
insensitive to themagnetic field tofirst order. This a so-called ‘atomic clock’ qubit has a typical coherence time of
0.5 s which can be further extended by suppressingmagnetic field noise. Optical pumping initializes the entire
five-qubit register, and readout is performed collectively by detecting state-dependent fluorescence [31].

Each ion is imaged onto its own channel of amulti-channel photomultiplier tubewhich allows its state to be
determinedwith 99.4(1)%average fidelity, while the 5-qubit state detection is limited by channel-to-channel
crosstalk to 95.7(1)%average fidelity. For averaged state probabilities, this state-preparation andmeasurement
(SPAM) error can be straightforwardly re-normalized by applying an independently determined crosstalk-
matrix.We drive qubit operations by applying a pair of Raman beams that are configured to formbeat notes near
the qubit frequency to the ions. Both beams are derived from a single 355 nmmode-locked laser. One beam is
applied globally to the entire chainwhile the second is split into a linear array of individual addressing beams,
each of which is focused onto on a single ion using amulti-channel acousto-opticmodulator (AOM) [32].

Single qubit gates (so-called R-gates) are applied by driving resonant Rabi flopping on any individual ion
with the duration, phase, and amplitude defined by the RF signals on themulti-channel AOM.We achieve two-
qubit gates (so-called XX-gates) by applying bichromatic Raman beat notes near themotional sideband
frequencies. They create an effective XX-Ising interaction between the spin degrees of freedom containing the
qubitmediated by all of the collectivemotionalmodes in the ion chain [33–35]. In order to leave spin and
motion disentangled at the end of the operation, we employ a pulse-shaping scheme during the gates [36, 37].

Any pair of qubits can be entangled in this way, whichmakes this a fully-connected systemof qubits [38]. A
classical compiler breaks down a library of computational gates, such asHadamard, CNOT, or controlled-
Phase, into the native R- andXX-operations. Since any context-dependence (such as calibration parameters) of
the native operations is handled by the compiler, the high-level gates becomemodular. Arbitrary circuits can
then be implemented froma user interface by specifying a sequence of computational and/or native gates which
makes the systemprogrammable. Our compiler breaks down computational gates into basic gates by using a
look-up table which contains pre-optimized circuits for standard gates such asCNOT, aswell as a list of
calibration parameters which are periodically updated. The theoretical concept behind the compiler is described
in [39]. Native single- and two-qubit gate fidelities are typically 99.5(2)%and 98.5(5)%, respectively. Gate times
are about 10 μs for single- and 210 μs for two-qubit gates.

4. Results

Weperform the simulation for nine values ofχ between zero andmaximal in steps of
40

p . The nominal values of

χwere, in units ofπ: (0, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.225, 0.25). For each of the twofive-qubit
circuits depicted infigure 1, we have∼30 000 runs. Before and after each data run (except forχ=(0, 0.125,
0.25)), a runwas taken tomeasure the value ofχ to take any deviation from the nominal values into account. The
procedure forχ=(0, 0.125, 0.25)were taken at an earlier date before the calibration ofχwas implemented.
Such deviations are the result of calibration inaccuracy in the experiment primarily due to laser power and
alignment over the course of the experimental data run. The average of themeasuredχs are used for the analysis
andwere found to be: (0, 0.027(2), 0.054(3), 0.080(4), 0.108(4), 0.125, 0.151(5), 0.178(5), 0.201(5), 0.224(6),
0.25). For each experimental run, the quantum computer outputs themeasured value (i.e., either 0ñ∣ or 1ñ∣ ) for
allfive qubits.

The data are parsed into two groups representing games ofA versusB1 andA versusB2 respectively. The
value of p, which determines the probability that playerA plays with eitherB1 orB2, is chosen for a given analysis,
and each data point is sorted randomly into the two categories with probability p. Next, the expectation value of
all 32 possible outcomes is computed to form the output population vector for the two data sets. SPAM
correction is then applied to the population vector to correct for readout errors.

Next, in order to compute the payoff, equation (4), for the players for a given set of strategy choices, wemust
determine the outcomes of the qubits for playerA andB depending on the 8 possible outcomes for the three
auxiliary qubits. For example, if the ‘I’ circuit infigure 2 outputs 000ñ∣ for the three auxiliary qubits, this
corresponds to playersA andB having applied the strategies {I, I}. The components with the auxiliary output of
000ñ∣ are summed to form the 4-component vector representing the expectation values of theA andB qubits for
each of the 8 auxiliary output combinations. These population vectors are each then re-normalized and the
experimental payoff is computedwith equation (3). This is done for both the I-circuit and theX-circuit of
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figure 2 in order to compute the experimental payoff for all 16 possible strategy choice combinations of the two
player payoffmatrix. The data for both types of playerB receive the same treatment.

From the two 4×4 two player payoffmatrices, we can compute the 64 element 4×4×4 payoffmatrix of
the Bayesian game according to equation (4). The same data are analyzed for p values ranging from0 to 1 in steps
of 0.01 in order to observe the structure of the game as a function of the incomplete information.

In order to compute theNash equilibria, the best response curvesmust be constructed. The best response
curve for playerA is given by the list i j k, ,A *b = { }, where j and k run over all of the possible strategy choices of
B1 andB2, and i

* is the strategy choice that givesA the highest payoff for the choices of j and k for playersB1 and
B2. The best response curves for theB players are similarly calculated, i j k, ,B1 *b = { }, and i j k, ,B2 *b = { }.
TheNash equilibria are given by the intersection of the best response curves, A B B1 2È Èb b b . In otherwords,
any strategy choice combinationwhere each player is playing their best response to the other player’s choices is a
Nash equilibrium. In general, this can result in one ormoreNash equilibria or none.

For the computation of the best response curves from the experimental data, we consider a payoff to be the
best response if it is within an amount δ of themaximum. If this is not included, the best response for each player
will only be one particular strategy choice set, that will be determined by the experimental noise, andwe almost
never get aNash equilibrium. The data presented use δ=0.1.

We plot the payoffs of the three players, as a function of the entanglementχ, both theoretically and
experimentally, for the nine different values of entanglement infigure 3. These data are analyzed for the case
where p= 0.5. The error in the horizontal represents the error in entanglement calibration data taken before and
after each set of data. The error in the payoff is the statistical error determined by the error in a binomial
distribution of ion populations assuming that, on average, therewere 3000 shots contributing to each point, with
∼300 of them in 1ñ∣ , whichwas found to be the case for the dominant equilibria.

The data show that for no entanglement,χ=0, the experimental data very closelymatch the theoretical
data.With growingχ there is a systematic shift bywhich the experimental results fall predominantly below the
theory values, probably a result of the growing error introduced by the gate. However this effect is smaller than
our estimated statistical error. The theoretical and experimental data have noNash equilibrium above a critical
value of entanglement,χ∼0.175π. Note also that the experimental data forχ=0.025π show aNash
equilibrium even though none is predicted theoretically. This is indicative of the fact that experimental errors
can alter the critical values of the discontinuous equilibria changes.

The addition of experimental noise to quantum games is known to not affect the existence of aNash
equilibrium, but it tends to lower the payoff atNash equilibria [40]. This is due to the fact that the quantum
games that are chosen for demonstrations are those inwhich the payoff at Nash equilibrium is larger than the
payoff for other strategy choices. This is also the case for our implementation, seefigure 3.

To characterize the size of the systematic shift of the expected payoff for theory versus experiment, we plot
the root-mean-square deviation (RMSD) of the experimental data to the theoretical calculation as a function of
entanglement. The results are plotted infigure 4. Because not all equilibria exist for all values of entanglement,
the data are analyzed for p=0, instead of because at p=0 there isNash equilibrium that is constant for all
values of entanglement, and has the theoretical payoffs for players (A,B1 ,B2) equal to (11, 10, 9)with the strategy

Figure 3.Payoffs atNash equilibrium for the Bayesian game analyzed for p=0.5. The lines are the experimentally determined payoffs
while the circles are the theoretically calculated values. Therewere noNash equilibria found for regions of the graphwith no data, i.e.,
forχ=0.05, or forχ>0.2. Note also that in the case ofχ=0.025 the experimental results computed aNash equilibrium, while the
theoretical computation did not.
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choices of the three players given by { I,X, I } as well as {Z,Y,Z}. This payoff could be verified by plugging the
strategy choices forA andB2 into figure 1, and computing the payoff from the resulting state and the payoff
matrices. The trend is that the deviation from the theoretically calculated payoff grows as entanglement, and
hence experimental error, increases. Notably, for large values of entanglement, the shift is larger in the case of
p=0 than it is for the case of p=0.5 plotted infigure 3. This is because there is a larger deviation in the game of
A versusB2 than there is in the game ofA versusB1, which stems from the differences in the particular gates
applied by the players in the equilibria in different regions of the Bayesian game.

The data forB players are scaled to the probability of playingwithA, to retain the same scale as the payoff
matrix. The data forB1 at p=0, where he does not actually play the gamewithA, are calculated as the
asymptotic value as p approaches zero froman infinitesimally small non-zero probability. This was done in
order to be able to analyze the data, whereas in an actual Bayesian game, the payoff ofB1 in this case is nothing,
which is determined by the definition of the Bayesian game.

In addition, we can see from the data how the discontinuous behavior of theNash equilibria changewith
experimental noise. Our step size ofχ=π/40 does not permit a detailed study of the threshold for
discontinuity as the entanglement is varied. But, because we incorporate the probability in the analysis, we can
see the change in the threshold probability withfine steps allowing a systematic study of the threshold
probability at which the equilibria change. In the top part offigure 5we plot the data for one example value of
entanglement,π/ 20, as a function of p both theoretically and experimentally as a black line and red triangles,
respectively.

First, there are two discontinuities, one near p= 0.16 and the other near p=0.55. It can be seen that the
critical value of p for the discontinuity is different from theory and experiment. If we increase the value of the
best response thresholding parameter δ, the experimental Nash equilibria will extend further in either direction,
also, additional equilibriamay arise.

In the region of the equilibriumbetween p= 0.6 and p=1, another feature of note occurs. Themain
equilibrium in this region is given by {X,Y,Z}. Though for p between 0.81 and 1, a secondNash equilibrium
appears. This equilibrium is given by {Y,X, I} and has a slightly lower payoff. The presence of this equilibrium is
due to thefinite δ parameter in the analysis of the best response. If δwere smaller, the region of the second
equilibria would shrink, but sowould the regionwith the real equilibrium. For this, and other similar observed
secondary equiliria, the transition is usually blurred,meaning the second equilibrium can appear and vanish
several timeswith increasing p before it is reliably present.

We analyze the data for each value of entanglement for all values of p in order to see how the deviation of the
threshold p changes as the entanglement grows. For consistency, we analyze the location of the discontinuity
near p=0.16. Theoretically this discontinuity occurs at p=0.16 for all values of entanglement. The deviation
of the theoretical to experimental threshold p also grows slightly with the entanglement as seen in the bottomof
figure 5. For the values ofχ>.175π, another equilibrium appeared in the analysis (not shown in any graph)
with the strategy choices of {X,Z,Y}. This equilibrium closely resembles themain one in this regionwith
strategy choices { I,X, I } and {Z,Y,Z}with nearly the same payoffs. However, this equilibriumhas a threshold p
which is slightly larger, p∼0.29 . Asχ increases, the payoffs, and threshold p of this equilibrium converge to the
main equilibrium.

Figure 4.TheRMSDof the payoff at themaximal payoff Nash equilibria when the Bayesian game is analyzedwith p=0 (i.e., playerA
exclusively plays with playerB2), is plotted as a function of entanglement.
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5.Discussion

Deviations in the payoff for the experimentally determined equilibria are expected due to thefinitefidelity of the
circuit,figure 2. If there is an error in one of the player qubits, the experimentally determined payoff will be
incorrect, while if there is an error in one of the auxiliary qubits, the outputs for the player qubits in that runwill
bemisidentified. In either case this results in a different output than that predicted by the circuit. Because the
game implemented is onewhere the payoffs at the equilibria are typically some of the higher payoffs in the game,
deviation from the theoretical behavior will typically result in a lower payoff. If a gamewere chosenwhere the
equilibriumwas not the highest payoff in the game, i.e., if it were not Pareto optimal, then deviation from the
theoretical payoff at equilibriumwould tend to increase the payoff, whichwe see if we change the payoffmatrices
for the analysis in our game. Gate errors tend to be larger for larger values of entanglement because they depend
on the coherence of relative phases ofmultiple qubits, which suffers from experimental error such as differential
Stark shifts, whereas unentangled states only rely on their individual coherences. Thus, the deviation from
theoretical behavior increases withχ.

When the experimentally determined payoff deviates significantly from the theoretical value, this can result
in the disappearance or appearance ofNash equilibria. This is seen both at the boundaries between regionswith
different equilibria and in the appearance of new equilibria as in the bottom and top offigure 5. The value of
χ=π/20was simply chosen as a representative example, the results for other values of entanglement are
similar. These transitions can be blurred, so that they are not as precisely defined as they are theoretically. This
could have impact in the applications of quantum games such asmechanismdesignwhere the game is
structured in order to steer the players towards certainNash equilibria, so that the play is self-reinforcing and
thus stable. If the experimental errors remove some expected equilibrium, the players would not converge their
play on the strategies of the equilibrium as expected and the game could become unstable.

When an alternate competing equlibrium appears, such as in the top offigure 5, the players could become
stuck on the ‘wrong’ equilibrium. If the game dynamically changes, for instance, if p changes, the playersmay
continue to follow the lower payoff equilibrium.

Wehave performedwhat we believe is a unique demonstration of a quantumgame for several reasons. It is
thefirst experimental demonstration performed on an ion-trap-based quantum computer, andwe employ a
novel parallelization scheme. The sophistication of the ion-trap quantum computer has enabled amuchmore

Figure 5.Top: example of an analysis with varying p forχ=π/20. There is a region in the center where the equilibriumdisappears,
and a region for high pwhere a second equilibrium appears. Bottom: the deviation of the experimentally determined threshold p as a
function of entanglement.
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extensive demonstration that has allowed us to generate enough data to demonstrate amore complicated
Bayesian game than themore commonly demonstrated two player games. This is also the first time the
experimental data have been solely used to solve for theNash equilibria of the game, which allowed us to
experimentally observe the behavior of the payoff as well as the equilibria discontinuities as the amount of
entanglement changes.We are also the first to show explicitly how the deviation of the theory to experiment
varies as a function of the entanglement.

The value of entanglement is interpreted as being set by a referee of the game. In the case of four allowed
strategy choices,maximal entanglement is not always desired from the point of view of an optimal equilibrium.
In fact, the behavior of the game becomes less predictable for larger entanglement because of the increased gate
errors. These considerations would have to come into any design of a game or choices by a referee in order to
promote the desired behavior.

All the ingredients tomove trapped ion quantum computing devices into the noisy intermediate-scale
quantum era [41] have been demonstrated. Stable chains of over 100 ions [42], and the technology tomanipulate
them exists. The best entangling gates achieved to date were realizedwith trapped ions, and their errors are one
order ofmagnitude lower [43] than the gates used in this work. The combination of these capabilities will
producemedium size systems able to surpass classical computers in the next few years. Thismeans quantum
gameswhich can only be run on a quantum computer will be implemented and perhaps used to test quantum
computers and communication protocols. Evenwith these low error rates, the system size and number of
operations neededwill require errormitigation techniques such as [44] to achieve useful performance before
error corrected operations eventually come into reach.

Advances in ion-trap quantum computers underscore the reason that they are a promising platform for
quantumgames in particular. In addition, ion-trap-based quantum computers are a promising candidate for
quantumnetworking, which is crucial for some quantumgame applications that require the agents to be
remotely located in order to be useful. The potentially long coherence time of trapped ionswould also enable the
quantumhardware to interact with other systems, such as humans, classical computers, sensors, etc, asmay be
required for quantumgame applications.

Quantum gamesmay play an important role in the applications of quantum computers and quantum
networks as they begin to becomemore available.We believe this demonstration brings us one step closer to that
reality.
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