Differential Eqns

1. Solve the below ordinary differential equations, where C is a positive constant. Include and label any integration constants.

 (a) \(\frac{dy}{dx} = Cy \)

 (b) \(\frac{d^2y}{dx^2} = Cy \)

 (c) \(\frac{d^2y}{dx^2} = -Cy \)

 (d) \(\frac{d^2y}{dx^2} = Cx \)

2. Provide the form of \(f(x,t) \) in the below partial differential equations, where C is a positive constant. You don’t have enough information to solve it, but simply show how the function \(f \) must depend upon \(x \) and \(t \).

 (a) \(\frac{\partial^2 f(x,t)}{\partial t^2} = C \frac{\partial^2 f(x,t)}{\partial x^2} \)

 (b) \(\frac{\partial f}{\partial t} = C \frac{\partial^2 f}{\partial x^2} \)

Complex Variables

3. Simplify the below expressions into a sum of real and imaginary parts \(a+bi \)

 (a) \(i^i \)

 (b) \((-1)^{1/4} \)

 (c) \(\log(i) \) (this is a natural log to base \(e \), also known as \(\ln \))

4. Use Euler’s formula to derive the below trig identities

 (a) \(\cos(a+b) = \cos a \cos b – \sin a \sin b \)

 (b) \(\cos^2 x = (1+\cos 2x)/2 \)

 (c) \(\cosh(x) = \cos(ix) \)
Fourier Transforms

5. Find the Fourier transform \(F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt \) for a square pulse of duration \(\tau \):

\[
f(t) = 1 \text{ (for } 0 < t < \tau); \quad f(t) = 0 \text{ otherwise.}
\]

What is the spectral bandwidth of \(F(\omega) \)?

Probability

6. The lifetime of a lightbulb is commonly modeled as an exponentially-distributed random variable \(t \) with probability distribution function

\[
f(t) = \frac{1}{\tau} e^{-t/\tau} \quad \text{for } t \geq 0,
\]

where \(\tau \) is a parameter in the distribution. Find the mean and standard deviation of the random variable \(t \).

Linear Algebra

7. Find the eigenvalues and eigenvectors of the 3x3 matrix

\[
\begin{bmatrix}
3 & 0 & -2 \\
0 & 8 & 2 \\
0 & -3 & 1
\end{bmatrix}
\]